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Abstract: The changes in stream discharge extremes due to temperature and seasonality are key
metrics in assessing the effects of climate change on the hydrological cycle. While scaling is commonly
applied to temperature and precipitation due to the physical connections between temperature and
moisture (i.e., Clausius–Clapeyron), the scaling rate of stream discharge extremes to air and dewpoint
temperatures has not been evaluated. To address this challenge, we assess the scaling rates between
stream discharge and air temperature and between stream discharge and dewpoint temperature
in Utah using a well-designed statistical framework. While there are deviations from the Clausius–
Clapeyron (CC) relationship in Utah using discharge data based on stream gauges and gridded
climate data, we identify positive scaling rates of extreme discharge to temperatures across most of
the state. Further diagnosis of extreme discharge events reveals that regional factors combined with
topography are responsible for the marked seasonality of scaling, with most areas of Utah driven by
spring snowmelt tied to high temperatures. The exception is far southwestern areas, being largely
driven by winter rain-on-snow events. Our research highlights a measurable portion of stream
discharge extremes associated with higher temperatures and dewpoints, suggesting that climate
change could facilitate more extreme discharge events despite reductions to mean flows.

Keywords: streamflow; scaling; Clausius–Clapeyron; river discharge extremes; air temperature;
dewpoint temperature; drought; climate change

1. Introduction

The sensitivity of stream discharge extremes to changing temperature is an important
metric in assessing the effects of climate change on hydrology and water supply [1]. In fact,
extreme discharge events are linked to levels of endorheic saline lakes such as the Great
Salt Lake in Utah, which can have widespread impacts on human and ecosystem health [2].
However, understanding the sensitivity of discharge to temperature within Utah and other
areas of the semi-arid southwestern United States (US) is challenging given the varied to-
pography, the seasonality of winter snowpack accumulation, and the diverse climatological
characteristics of the region. Specifically, as the footprint of the North American Monsoon
(NASM) (which causes peak annual precipitation in summer) is largely restricted to the
southwestern US and southern Utah, temperature may play a different role in modulating
streamflow extremes than other regions which receive predominantly winter and spring
precipitation in the form of extratropical cyclones and atmospheric rivers [3–6]. Due to
these heterogeneities and the importance of understanding stream discharge sensitivity
to temperature in a region with growing water demand [1,7], this study will explore the
relationship between temperature and stream discharge extremes in Utah—a region which
encapsulates much of the heterogeneities of the western United States.
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Current water management in Utah, like other states in the West, relies heavily on the
storage of spring snowmelt runoff largely controlled by winter snowpack accumulation
and the timing and intensity of snowmelt [3]. Research indicates that climate change affects
stream discharge base flows, extremes, and seasonality in diverse ways. For example,
warmer and drier winters result in reduced snow accumulation and less runoff and reservoir
storage. In addition, warming in the spring and summer can lead to earlier and larger
peak snowmelt discharge, which can result in greater evaporative loss and demand [1,8,9].
Studies have also explored, with varying methodologies, the effects seasonally in western
North America, including discharge sensitivity and precipitation elasticity to changing
temperature in the Colorado River basin [10] and the Pacific Northwest [11], and drainage
basin sensitivity to seasonal changes in Alaska [12] and the western US [13].

Different methods have been employed to assess streamflow sensitivity to temper-
ature [1]. Hydrological modeling, albeit well-established, can be limited due to internal
feedbacks and scenarios being under-represented due to the multitude of multiple complex
variables [14]. Other methods, with heavier reliance on historic streamflow and climate
data such as multivariate regression and the Budyko framework, have sound statistical
foundations [1]; however, they are at the mercy of reliability and representativeness of obser-
vational data. Regardless, historic streamflow and climate data are key for the calibration
and validation of both hydrologic and climate modeling schemes [1,15]. To character-
ize the impacts of a warming climate on the hydrologic cycle, the scaling sensitivity of
precipitation and stream discharge extremes to temperature has been widely tied to the
Clausius–Clapeyron (CC) relationship, which states that the atmospheric holding capacity
for water vapor increases approximately 7% for every 1◦C temperature increase [16–23].
However, there are significant regional and seasonal deviations from this generalization,
as well as large differences in scaling between temperature and humidity or dewpoint
temperature [17,24–26].

Addressing these deviations by scaling with both temperature and dewpoint tempera-
ture can reveal the response of the hydrological cycle to changes in both relative humidity
and surface-air temperature [20,27,28]. At higher surface-air temperatures, relative humid-
ity is already limited, and results have shown declining scaling after a certain temperature
threshold [29] in regions such as the western US [26]. However, by using dewpoint tem-
perature, the atmosphere can reflect changes in both relative humidity and surface-air
temperature [20,28]. This relationship and the influence on precipitation is well-described
by thermodynamics and with more recent theoretical developments in microphysics and
atmospheric dynamics [18]. However, temperature and dewpoint also vary seasonally, ne-
cessitating the inclusion of, or accounting for, seasonality in studies, which have had some
success in resolving some deviations [26,30,31]. For instance, deviations in the western US
have included a declined scaling of discharge beyond a certain temperature threshold [26],
which is explained by the limiting factor of relative humidity at higher temperatures. In
addition, deviations between precipitation and discharge scaling lie in snowmelt and
create a more stable scaling with temperature [3,26]. However, little is known about the
mechanisms behind the scaling rate of discharge to surface-air and dewpoint temperatures.

Here, we will focus on extreme discharge scaling with surface-air and dewpoint
temperatures across Utah to infer what role climate change may have in shaping water
supply in the future climate. Additionally, we will identify some mechanisms involved
in surface-air and dewpoint relationships with extreme stream discharge over the diverse
climatological characteristics of Utah. While our analysis is restricted to a relatively small
geographic domain, we aim to provide a framework for exploring stream discharge and
temperature/dewpoint scaling over larger regions and watersheds.

2. Site Description, Materials and Methods

Utah is characterized by highly complex terrain and spatial heterogeneity in the
seasonality of precipitation and snowmelt. This state is comprised of large valleys and
basins from 700 m to 1500 m in elevation interspersed with mountain ranges containing
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a spectrum of montane climates up to 4000 m. Winters are cold with most precipitation
above 1500 m in the form of snow [3]. Spring is characterized by initial continued mountain
snow accumulation then eventual snowmelt and runoff, with this timing varying between
years [3,8]. Summers are dry except during the moist summer Southwest Monsoon, which
disproportionately impacts southern Utah and high elevations and can continue into
early fall. Otherwise, fall typically has the lowest stream discharge rates due to low soil
moisture after low precipitation and high evapotranspiration rates of the summer [3], and
therefore, the cutoff between water years (1 October to 30 September) is chosen in this
season. High-elevation snowpack begins to accumulate during late fall as temperatures
cool but varies between years [3]. A warming climate is expected to alter the amount of
winter precipitation, snowpack, the intensity and timing of spring runoff [10,13], and the
strength of the NASM [5]. Most of the peak discharge in Utah occurs during peak spring
snowmelt associated with rain on snow and the NASM rainfall during warm season [3].

Daily river discharge data were obtained from the United States Geological Survey
(USGS). We analyzed all gauges in the state, including watersheds connected to the Great
Salt Lake basin, with a consistent record of river discharge from 1980 to 2021 (Figure A1).
Gauges were excluded if they met any of the following conditions: (1) insufficient data
for scaling analysis (see below), (2) significant flow alteration in the upstream watershed
(i.e., flood control projects, dams, and irrigation diversion); and (3) base flow is insufficient
to produce nearly continuous discharge data at a gauge location.

Since climate data are not consistently measured at river gauge locations, daily mean
air and mean dewpoint temperature and precipitation were obtained from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM, https://prism.oregonstate.
edu (accessed on 17 March 2022)) [32,33]. Studies found that this interpolation model has
less climatological error in terms of temperature in complicated terrains such as the western
United States when compared to other models such as DAYMET and WorldClim and is
superior to many other methods to interpolate point station data [32,34]. Data from grid
points closest to the geographical coordinates of the USGS gauge stations (Figure 1) in the
discharge data were selected for scaling with the USGS gauge data.

Scaling analysis was used to evaluate the meteorological conditions associated with
extremes in daily mean stream discharge values [20]. These extremes are analyzed in
association with daily mean (TMean) and dewpoint (TDMean) temperatures. First, we
computed the 95th percentile of daily discharge (Q) at each gauge for 0.5 K (for TMean and
TDMean) bins. For the days exceeding this threshold, the median of the meteorological
variable is calculated (M). To ensure an appropriate sample size, a minimum of 50 data
points is required in each 0.5 K bin. The scaling of extreme discharge, Q, is then estimated
by Equation (1)

log(Q) = β0 + β1M (1)

where β1 is estimated through regression analysis and the scaling of Q is obtained through
an exponential transformation of the regression coefficients, as shown in Equation (2) [20].

∆Q% = 100 × (eβ1 − 1) (2)

This process was applied to daily discharge for all days (total scaling) for the period
of 1981–2021 and we also compare these results with scaling analysis which is confined
to days from March to June (runoff season scaling). We then calculated scaling based on
3- and 5-day running-mean meteorological variables to account for thermal loading of
deeper snowpacks. Stream discharge in Utah is mainly driven by runoff from spring melt
of mountain snowpack [3,35]. Hence, to highlight seasonal effects and biases in our results,
we broke down scaling by month and focused on the runoff season (i.e., March to June). For
instance, the low temperature bins, especially those below the freezing point, were mostly
sampled from winter months since most gauge locations were at higher elevations (above
1500 m) and experienced long periods below freezing every year. Thus, river discharge was
reduced to baseflow, and the estimated scaling relationship may be biased from pervasive

https://prism.oregonstate.edu
https://prism.oregonstate.edu
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low-flow conditions associated with cold temperatures and frozen precipitation during
winter. We also calculated long-term trends in annualized discharge tied to the water year
(October 1 to September 30) for comparison to scaling.
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Individual extreme events were evaluated for further comparison with the scaling
of extremes to diagnose the seasonality and geographical distribution of the main drivers
of extreme discharge. PRISM precipitation data, along with temperature and dewpoint
temperature, were compared. The fifth-generation ECMWF reanalysis (ERA5) data were
also used to determine the synoptic pattern associated with each event [36].

3. Results

The long-term trend of water-year discharge during 1981-2021 exhibits a general
decline at most of the USGS gauges (Figure 1). In terms of time scale, the overall trend is
significantly declining during the study period, but with multi-year to decadal variability
(Figure 2a) which is also seen in surface-air and dewpoint temperatures (Figure 2b,c). The
greatest discharge values are in the early 1980s during the anomalous wet years during
that time with a prominent decline thereafter. Even discounting the early 1980s, there is
still an overall decline since 1986, which has been noted in other studies, and has generally
followed the declining trend of the Great Salt Lake [2,29].
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Figure 2. Time series with linear trends in annual mean water year data from water years 1982 to
2021 for (a) stream discharge at the 65 USGS stations used in this study; (b) PRISM water year mean
air temperature and trend for Utah; and (c) PRISM water year mean dewpoint temperature and trend
for Utah.

Despite a declining trend in discharge, positive scaling rates of discharge extremes
with surface-air temperature and dewpoint temperature are identified across almost all
the USGS stations in Utah (Figure 3). Meanwhile, the scaling rates of discharge extremes
with respect to dewpoint temperature (Figure 3b) tend to be slightly higher than those
with respect to air temperature (Figure 3a). This echoes previous studies that suggest the
scaling of extreme precipitation corresponding to dewpoint temperatures are closer to the
CC scaling than the scaling using air temperature [20,25].
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Figure 3. April to June scaling (%) of at least 95th percentile of discharge with (a) daily mean air
temperature and (b) daily mean dewpoint temperature.

When aggregated by month, the scaling rate of extreme discharge shows a clear seasonality
with a strong preference to the April to June timeframe, matching that of the snowmelt season
with greatest sample size occurrence in May and June, coincident with the climatological peak
of snowmelt (Figure 4a). Much smaller secondary maxima appear in the late fall and winter,
tied to monsoonal precipitation and atmospheric river events (Figure 4a).
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When comparing TMean and TDMean (Figures 4 and 5), the distribution across
temperature bins is much smaller for TDMean than TMean, with the greatest sampling
again ranging in the spring snowmelt season with maxes in May to June. As with TMean,
secondary elevated occurrence lies in fall (monsoon) and winter, probably associated with
NASM and atmospheric river, respectively.
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Figure 5. Monthly distribution of sample size of scaling by PRISM daily mean dew point temperature
with at least 95th percentile of discharge (a) for positive scaling with discharge and (b) negative
scaling with dis-charge.

Daily discharge data are scaled with 3-day running mean (Figures A2 and A3) and
5-day running mean (Figures A4 and A5) to assess sensitivity to multi-day events to account
for snowpack thermal inertia and lag time of melting. Some differences are noted between
scaling using 1-day and the 3-day and 5-day aggregations.

With an increased number of aggregated days, the spread of higher incidence across
temperature bins is narrowed and focused mainly for the spring melt season, but to a lesser
extent for the late fall and winter. There is a noted increase in October negative TDMean
scaling near the −1 ◦C to 0 ◦C bin from the 1-day to 3-day to 5-day aggregation. This is
during the latter monsoon season.

To illustrate the scaling rates corresponding to air temperature and dewpoint tem-
perature, we examined two high-discharge events during 23 June 1983, and 21 December
2010. The first event occurred in the monsoon season, while the second event is a winter
precipitation event. For the warm season event, we can notice the marked difference
between air temperature and dewpoint temperature (Figure 6a). In contrast, the difference
between air temperature and dewpoint temperature is much smaller for the winter event
(Figure 6b). These results align with the scaling rates at different air temperature and
dewpoint temperatures (Figures 4a and 5a), particularly during the warm season.
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Some of these seasonal peak discharge occurrences were examined. Considering
specific dates of maximum discharge, the high flows of the 1980s are prevalent, but a
few from the 1990s and 2000s also stand out. The exceptions are the Virgin River and its
tributaries, which show the greatest discharge events during wintertime rain-on-snow
events brought on by atmospheric rivers (Figure 7).

Water 2023, 15, x FOR PEER REVIEW 8 of 15 
 

 

TDMean scaling near the −1 °C to 0 °C bin from the 1-day to 3-day to 5-day aggregation. 
This is during the latter monsoon season. 

To illustrate the scaling rates corresponding to air temperature and dewpoint tem-
perature, we examined two high-discharge events during 23 June 1983, and 21 December 
2010. The first event occurred in the monsoon season, while the second event is a winter 
precipitation event. For the warm season event, we can notice the marked difference be-
tween air temperature and dewpoint temperature (Figure 6a). In contrast, the difference 
between air temperature and dewpoint temperature is much smaller for the winter event 
(Figure 6b). These results align with the scaling rates at different air temperature and dew-
point temperatures (Figures 4a and 5a), particularly during the warm season. 

Some of these seasonal peak discharge occurrences were examined. Considering spe-
cific dates of maximum discharge, the high flows of the 1980s are prevalent, but a few 
from the 1990s and 2000s also stand out. The exceptions are the Virgin River and its trib-
utaries, which show the greatest discharge events during wintertime rain-on-snow events 
brought on by atmospheric rivers (Figure 7). 

 
Figure 6. From left to right: 4 km resolution PRISM precipitation, daily mean temperature, and daily 
mean dewpoint temperature maps for the high-discharge (Q) events of (a) a warm season snowmelt 
runoff and (b) cold season rain-on-snow event. Circles depict USGS gauge locations reporting top 
99.5 percentile of discharge. 

Figure 6. From left to right: 4 km resolution PRISM precipitation, daily mean temperature, and daily
mean dewpoint temperature maps for the high-discharge (Q) events of (a) a warm season snowmelt
runoff and (b) cold season rain-on-snow event. Circles depict USGS gauge locations reporting top
99.5 percentile of discharge.



Water 2023, 15, 688 9 of 15Water 2023, 15, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. ERA 5 reanalysis at the 700 mb pressure level of geopotential height and specific humidity 
centered over Utah, on 21 December 2010. 

4. Discussion and Conclusions 
Quantifying the responses of discharge extremes to temperature increase plays a cen-

tral role in understanding the future changes to the hydrological cycle under a warmer 
climate. Here, we performed a scaling analysis for discharge with respect to temperature 
across Utah. Consistent with earlier studies, the long-term trend in discharge for Utah 
streams is declining, but with a multi-year to decadal variability that, as expected, is also 
trending with the levels of the Great Salt Lake [2,3]. This matches the general decline in 
overall precipitation noted for the region. 

In contrast to a general decrease in average discharge, we found an overall positive 
scaling of discharge extremes with respect to air temperature or dewpoint temperature. 
The wide range of scaling results from negative to largely positive, and also speaks to 
regionality and the heterogeneous landscape and varied topography in Utah. Most loca-
tions have scaling rates less than the CC 7% baseline with an average of all 65 sites being 
just under 5% per °C. This result echoes previous findings in the nearby Rocky Mountain 
region [26]. 

We also explored seasonal variability of scaling rates. Results of the monthly distri-
bution of sample size by temperature bin (Figures 4 and 5) clearly show the seasonality 
and dominance of the snowmelt regime in extreme discharge scenarios, with May and 
June having the greatest frequency of extreme discharge events. The top discharge events 
were found to be dominated by May–June peaks, matching the extreme discharge timing 
for the region in prior studies [26]. The monthly breakdown also shows the temperature 
bins of highest frequency increase between April and June. Climatologically, tempera-
tures increase throughout this period, but spring snowmelt and peak runoff can vary from 

Figure 7. ERA 5 reanalysis at the 700 mb pressure level of geopotential height and specific humidity
centered over Utah, on 21 December 2010.

4. Discussion and Conclusions

Quantifying the responses of discharge extremes to temperature increase plays a
central role in understanding the future changes to the hydrological cycle under a warmer
climate. Here, we performed a scaling analysis for discharge with respect to temperature
across Utah. Consistent with earlier studies, the long-term trend in discharge for Utah
streams is declining, but with a multi-year to decadal variability that, as expected, is also
trending with the levels of the Great Salt Lake [2,3]. This matches the general decline in
overall precipitation noted for the region.

In contrast to a general decrease in average discharge, we found an overall positive
scaling of discharge extremes with respect to air temperature or dewpoint temperature. The
wide range of scaling results from negative to largely positive, and also speaks to regionality
and the heterogeneous landscape and varied topography in Utah. Most locations have
scaling rates less than the CC 7% baseline with an average of all 65 sites being just under
5% per ◦C. This result echoes previous findings in the nearby Rocky Mountain region [26].

We also explored seasonal variability of scaling rates. Results of the monthly distri-
bution of sample size by temperature bin (Figures 4 and 5) clearly show the seasonality
and dominance of the snowmelt regime in extreme discharge scenarios, with May and
June having the greatest frequency of extreme discharge events. The top discharge events
were found to be dominated by May–June peaks, matching the extreme discharge timing
for the region in prior studies [26]. The monthly breakdown also shows the temperature
bins of highest frequency increase between April and June. Climatologically, temperatures
increase throughout this period, but spring snowmelt and peak runoff can vary from April
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to June, due to a combination of elevation, anomalous spring warmth, and/or spring rain
on snow [37].

Assessing 3- and 5-day running-average temperatures can capture multi-day heat
waves during runoff season that contribute to a large portion of runoff [37]. Since the
thermal inertia required to bring a deep snowpack to isothermal melting conditions is quite
large, multiple days were considered. The spread of sample size across temperature bins
was narrowed when introducing 3-day and further with 5-day running mean temperatures
(Appendix A Figures A1–A4). The peak percentages during the snowmelt season centered
around 12 ◦C. A similar effect was seen with TDMean with a narrowing of the sample
spread around a dewpoint temperature of −2 ◦C. However, the smaller secondary maxima
in the late fall and early winter in TMean and TDMean hint at other processes. Upon
inspection of peak discharge dates at a few select stations in far southwestern Utah, the
peak discharge events occur in the latter half of fall and the winter months. This regional
dichotomy may be a unique finding, at least for the region.

Although sites near large dams and diversion projects were omitted, some of the larger
streams in the study group have reservoirs upstream that may play a role in the interannual
discharge trends. In addition, the background of increasing demand for water and higher
evaporative loss from increasing temperatures could also contribute to downstream dis-
charge declines. The geography and topography of southwestern Utah combine to increase
the chances of rain-on-snow events and high-impact atmospheric river events. The location
being further south allows for moisture transport through atmospheric rivers from the
southwest, which can largely avoid the Sierra Nevada mountains and retain large amounts
of moisture [38]. In addition, the topography in southwestern Utah is characterized by ex-
tensive south to southwest-facing slopes with elevation ranges from 700 m to over 3000 m,
which through orographic processes would greatly enhance precipitation from moisture-
laden air approaching from either the southwest or south. This would give it some of the
West Coast hydrologic characteristics of timing for extreme discharge [26], since it is the first
high-elevation terrain encountered in a southwesterly flow regime. Although atmospheric
rivers do penetrate further north into Utah, the long path over higher elevations and initial
loss of moisture from either the Sierra Nevada or the mountains in southern Utah would
severely limit rain-on-snow and overall event-accumulated precipitation potential.

The consistency of the river discharge and temperature scaling relationships through-
out the diverse climatological and hydrological characteristics of Utah suggest that these
relationships may hold throughout western North America and elsewhere. While large
heterogeneity in watershed characteristics, management practices, and local climate charac-
teristics are present in relatively small spatial scales (sub-continental), our analysis shows
that positive scaling between temperature and river discharge extremes occurs through
different meteorological and hydrological mechanisms. This work, while focusing on ex-
treme discharge scaling with temperature and dewpoint temperature in a changing climate,
enhances the understanding of the effects of climate change on water supply, and could be
applied to risk analysis and adaptation, especially in water management. Future work will
seek to explore relationships between temperature and river discharge extremes on larger
spatial scales and in other regions.
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