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Background: Tuberculosis may reoccur due to reinfection or relapse after initially 
successful treatment. Distinguishing the cause of TB recurrence is crucial to 
guide TB control and treatment. This study aimed to investigate the source of TB 
recurrence and risk factors related to relapse in Hunan province, a high TB burden 
region in southern China.

Methods: A population-based retrospective study was conducted on all culture-
positive TB cases in Hunan province, China from 2013 to 2020. Phenotypic drug 
susceptibility testing and whole-genome sequencing were used to detect drug 
resistance and distinguish between relapse and reinfection. Pearson chi-square 
test and Fisher exact test were applied to compare differences in categorical 
variables between relapse and reinfection. The Kaplan–Meier curve was generated 
in R studio (4.0.4) to describe and compare the time to recurrence between 
different groups. p < 0.05 was considered statistically significant.

Results: Of 36 recurrent events, 27 (75.0%, 27/36) paired isolates were caused by 
relapse, and reinfection accounted for 25.0% (9/36) of recurrent cases. No significant 
difference in characteristics was observed between relapse and reinfection (all 
p > 0.05). In addition, TB relapse occurs earlier in patients of Tu ethnicity compared 
to patients of Han ethnicity (p < 0.0001), whereas no significant differences in the 
time interval to relapse were noted in other groups. Moreover, 83.3% (30/36) of 
TB recurrence occurred within 3 years. Overall, these recurrent TB isolates were 
predominantly pan-susceptible strains (71.0%, 49/69), followed by DR-TB (17.4%, 
12/69) and MDR-TB (11.6%, 8/69), with mutations mainly in codon 450 of the rpoB 
gene and codon 315 of the katG gene. 11.1% (3/27) of relapse cases had acquired 
new resistance during treatment, with fluoroquinolone resistance occurring most 
frequently (7.4%, 2/27), both with mutations in codon 94 of gyrA.

Conclusion: Endogenous relapse is the main mechanism leading to TB 
recurrences in Hunan province. Given that TB recurrences can occur more than 
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4 years after treatment completion, it is necessary to extend the post-treatment 
follow-up period to achieve better management of TB patients. Moreover, the 
relatively high frequency of fluoroquinolone resistance in the second episode 
of relapse suggests that fluoroquinolones should be  used with caution when 
treating TB cases with relapse, preferably guided by DST results.
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tuberculosis, recurrence, relapse, reinfection, whole genome sequencing

1. Introduction

Tuberculosis (TB) remains a major global public health issue, with 
an estimated 10.0 million new cases and more than 1.2 million deaths 
from TB worldwide in 2019 [World Health Organization (WHO), 
2020]. Although most TB patients can be cured after the introduction 
of a standard combination of chemotherapy, some patients who 
complete an appropriate course of treatment still experience a 
subsequent episode, or TB recurrence (Zong et al., 2018). Patients 
with recurrent TB often require longer rounds of treatment with more 
toxic drugs, which reduces the success of treatment, leads to further 
transmission of Mycobacterium tuberculosis (MTB), and increases the 
burden of TB (Liu et al., 2020).

Recurrence of TB can be  caused by relapse, also known as 
endogenous reactivation of the initial infection, or by exogenous 
reinfection with new MTB strains (Ruan et al., 2022). The proper 
discrimination between relapse and reinfection is essential for 
adjusting TB control measures. High relapse rates indicate inadequate 
TB treatment, whereas high rates of reinfection reveal poor TB cases 
management with many missed TB cases circulating in the community 
(Folkvardsen et al., 2020; Du et al., 2021).

The advent of molecular genotyping techniques for MTB has 
made it possible to assess the magnitude of endogenous relapse versus 
exogenous reinfection (Bandera et al., 2001; Lambert et al., 2003). 
These genomic-based typing methods include IS6110 fingerprinting, 
mycobacterial interspersed repetitive unit-variable number of tandem 
repeat (MIRU-VNTR), spoligotyping, and whole-genome-sequencing 
(WGS) (Barbier and Wirth, 2016). However, different genotyping 
methods often affect the reinfection rate due to different resolutions 
(Jagielski et al., 2016). Compared to traditional genotyping methods, 
WGS based on the full-genome of MTB strains has the distinct 
advantage by allowing the discrimination of MTBC strains at the 
highest resolution and simultaneously enabling detailed resistance 
predictions for almost all drugs (Roetzer et  al., 2013; Walker 
et al., 2015).

Despite tremendous progress in TB control, China still has the 
second-highest TB burden worldwide [World Health Organization 
(WHO), 2020]. In addition, the presence of TB recurrence can further 
increase the burden of TB. A better understanding of the sources of 
recurrent TB and its related risk factors is essential for targeted 
interventions and for reducing the frequency of TB (Shen et al., 2017). 
However, limited efforts have been made to identify the major cause 
of TB recurrence in China, particularly in Hunan province, which has 
one of the highest TB burdens in China, with an estimated annual TB 
incidence of 94 cases per 100,000 population (He et al., 2022). To 
address this concern, we  conducted a retrospective study among 

recurrent TB cases from five counties in Hunan province. We used 
WGS to determine whether TB recurrence was mainly caused by 
reinfection or relapse. We performed phenotypic drug susceptibility 
testing (DST) to compare in vitro DST results between the first and 
second TB episodes. We also collected demographic information and 
clinical characteristics of recurrent TB cases to analyze risk factors 
associated with reinfection and relapse.

2. Materials and methods

2.1. Study population

This retrospective study was conducted based on five DRS (drug 
resistance surveillance) sites (5 counties: Hecheng, Yongshun, Qidong, 
Taojiang, and Leiyang) in Hunan province, which were established 
according to the first national survey of drug resistance in China 
(Zhao et al., 2012). In these five counties, all suspected pulmonary TB 
cases from general hospitals or health centers are referred to local 
designated TB hospitals for confirmed diagnosis and treatment. All 
TB cases aged 15 years or older with bacteriologically confirmed 
(sputum-smear positive or culture positive) by local designated TB 
hospitals or clinics between January 1, 2013 to December 31, 2020 
were included in this study. Positive sputum samples were cultured 
and isolated on Lowenstein-Jensen medium at the county-level and 
then sent to National Tuberculosis Reference Laboratory (NTRL). 
Information on these TB cases, including demographic characteristics 
and medical records, is collected at the time of patients’ visits and 
stored electronically in the National Tuberculosis Information 
Management System (TBIMS). To identify recurrent TB cases, the 
medical records of TB patients diagnosed between 2013 and 2020 
were extracted from TBIMS on June 30, 2022 and collated using the 
method described previously (Shen et al., 2017). TB cases with any of 
the followings were excluded from the further study: (1) unsuccessful 
treatment outcomes of their initial TB episode (e.g., lose to follow-up, 
death, treatment failure, etc.); (2) less than 6 months of the recurrent 
interval (the time interval between the recorded end date of the 
treatment and the date of the re-diagnosis of active TB); (3) strains 
with subculture failure or contamination; (4) failed extraction of DNA 
or WGS errors.

2.2. Drug susceptibility testing

All MTB strains isolated from recurrent TB cases were 
previously stored in 7H9 medium containing 25% glycerin 
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at–80°C refrigerator, and then were thawed and re-cultured on L-J 
medium for further study. MTB isolates in the logarithmic phase 
were subjected to drug susceptibility testing against rifampicin, 
isoniazid, ethambutol, streptomycin, ofloxacin, moxifloxacin, 
kanamycin, and amikacin using MYCOTB plate (Thermo Fisher 
Scientific, United States). Previous studies have demonstrated the 
good accuracy and reproducibility of the MYCOTB plate, which 
can be used as an alternative method for DST (Xia et al., 2017; Wu 
et al., 2019). All procedures were performed by trained staff at the 
national TB reference laboratory of China, as described elsewhere 
(He et al., 2022). H37Rv (ATCC 27294) was used as pan-susceptible 
control in each batch of DST. The concentration ranges and 
cut-off values for determining resistance or sensitivity for each 
drug used in this study were depicted previously (He et al., 2022). 
All DSTs were conducted twice to ensure the accuracy of 
DST results.

2.3. DNA extraction and sequencing

MTB strains were scraped from L-J solid slants, and genomic 
DNA was obtained from isolates with the cetyltrimethylammonium 
bromide (CTAB) method as described previously (Shao et al., 2021). 
The quality and concentration of genomic DNA were assessed by 
NanoDrop  2000c spectrophotometer (Thermo Fisher Scientific, 
USA) and Qubit 2.0 fluorometer (Invitrogen, Thermo Fisher 
Scientific, USA), respectively. Whole genome sequencing was 
performed by Annoroad Gene Technology company (Beijing, China) 
using Illumina Hiseq X10 (Illumina, Inc.) with 2 × 150 paired-end 
(PE) strategies.

2.4. Phylogenetic analysis

In brief, the quality control of raw reads was examined by FastQC 
(v0.11.9),1 and reads were filtered with Trimmomatic (v 0.38) using 
default values and minimum Phred Quality score of 20 (Bolger et al., 
2014). Retained paired-end reads were mapped to the reference 
genome H37Rv (GenBank accession NC_000962.3) using BWA-MEM 
software (v. 0.7.17) (Freschi et  al., 2021). Variants information 
including single nucleotide polymorphisms (SNPs) and small 
insertion/deletions (Indel) were detected using SAMtools (v1.3.1) and 
GATK (v.3.8.0) (He et al., 2022). The variants that met the following 
criteria were kept for further analysis: minimum coverage depth of 
10X, Q20 minimum quality score for each variant, and more than 75% 
allele frequency (He et al., 2022).

SNPs located in repeating regions of the genome such as PE/PPE/
PGRs genes, phage sequence, insertions, and mobile elements were 
excluded. The remaining SNPs in each isolate were pooled into a 
sequence based on the position, and SNP positions present in at least 
95% of isolates were integrated into a sequence alignment (Liu et al., 
2022). The maximum likelihood trees were constructed using a 
general time reversible model in MEGA-X (v.10.1.8) with bootstraps 
of 1,000 replicates (He et  al., 2022). The phylogenetic tree was 

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

visualized and annotated using iTOL.2 Snp-dists (v.0.8.2) was used to 
calculate the SNP distance between pairs of isolates. QuantTB  
(v. 1.01)3 was used to identify mixed infection of MTB (Anyansi 
et al., 2020).

2.5. Lineage and genotypic drug resistance 
prediction

Fast-lineage-caller package (v.3.2)4 was used to call lineage and 
sub-lineage information of M. tuberculosis. TB Profiler (v.3.0.8)5 was 
used to predict genotypic drug susceptibility.

2.6. Statistical analysis

Pearson chi-square test and Fisher exact test were used to compare 
differences in categorical variables between relapse and reinfection. 
The Kaplan–Meier curve was generated in R studio (4.0.4) to describe 
and compare the time to recurrence between different groups. All 
statistical analysis was performed in the SPSS version 18.0 software 
(SPSS Inc., Chicago, Illinois). p < 0.05 was considered 
statistically significant.

2.7. Definition

TB recurrence was defined as a patient who was cured or 
completed treatment during the most recent course of treatment and 
then was re-diagnosed with a new TB episode [World Health 
Organization (WHO), 2013]. Reinfection was defined as a recurrent 
disease episode caused by a new TB strain with a genetic distance of 
more than 12 SNPs compared with the strain that caused the original 
episode. Relapse was defined as a genetic distance of 12 or fewer SNPs 
between paired strains isolated from two episodes in TB recurrence 
(Li et al., 2022). The recurrent interval was defined as the time interval 
between the recorded end date of the initial TB treatment and the date 
of the re-diagnosis of active TB (Ruan et al., 2022). Based on the 
phenotypic drug susceptibility testing, Pan-Susceptible was defined as 
MTB strains that were susceptible to all anti-TB drugs tested in this 
study (including rifampicin, isoniazid, ethambutol, streptomycin, 
moxifloxacin, ofloxacin, kanamycin and amikacin), whereas Drug-
resistant was defined as MTB strains that were resistant to at least one 
of these anti-TB drugs but not include the concurrent resistance to 
rifampicin and isoniazid. MDR-TB was defined as MTB resistance to 
at least isoniazid and rifampicin. Pre-XDR-TB was defined as 
MDR-TB with additional resistance to any fluoroquinolones 
(moxifloxacin or ofloxacin) or any second-line injectable drugs 
(amikacin or kanamycin), but not both. XDR-TB was defined as 
MDR-TB with additional resistance to any fluoroquinolones and any 
second-line injectable drugs.

2 https://itol.embl.de/

3 https://github.com/AbeelLab/quanttb

4 https://github.com/farhat-lab/fast-lineage-caller

5 https://jodyphelan.gitbook.io/tb-profiler/
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3. Results

3.1. Description of the study population

A total of 2,416 bacteriologically confirmed TB cases aged 
15 years or older were collected between Jan. 2013 and Dec. 2020. 
Of which, 88.6% (2141/2416) cases were successfully treated, while 
275 (11.4%) patients experienced treatment failure, loss to 
follow-up, treatment interruption, adverse reactions, or death. 
Overall, 117 (5.5%, 117/2141) successfully treated cases that 
experienced TB recurrences, 25 recurrent TB cases were excluded 
due to their recurrent interval being less than 6 months, and finally, 
92 recurrent TB cases were included in further analysis. Among 
them, 56.5% (52/92) had recurrent strains with both episodes. After 
excluding subculture failure or contamination of any paired isolates 
(n = 7) and failure to extract DNA or WGS (n = 6). Finally, 39 
recurrent TB patients with paired strains were enrolled in the final 
analysis. Of these, one patient had a third episode during the study 
period, for a total of 79 MTB isolates and 41 recurrent events 
(Figure 1).

3.2. Patient characteristics

The characteristics of recurrent TB cases at their primary 
episode were described below. Among the 39 recurrent TB cases 
included in this study, the median and mean age of patients was 54.0 
[interquartile range (IQR), 45.0–65.0] and 54.4 ± 12.6 years old. The 
majority of patients were male (84.6%, 33/39) while 15.4% (6/39) 
were female. Almost 90% (89.7%, 35/39) of patients were farmers. 
In terms of treatment history, new cases accounted for 94.9% (37/39) 
of the total. 7.7% (3/39) and 12.8% (5/39) of recurrent TB cases had 
complications of hepatitis B and diabetes, respectively. The chest 
X-ray showed that 30.8% (12/39) of patients had cavitation in the 
first episode of TB. As for HIV status, 12 (30.8%, 12/39) patients 
were HIV-negative, while 27 (69.2%, 27/39) patients had unknown 
HIV infection status.

3.3. TB relapse and reinfection identified by 
SNP distance

The whole genome sequencing data of 79 MTB strains collected 
from 39 recurrent TB cases were first analyzed to determine the 
presence of mixed infections. Five recurrent TB cases (7 strains of 
mixed infections in total) were excluded from further analysis because 
any of their paired strains were identified as having at least two 
different strains. The paired SNP distances were calculated on the 
remaining 34 recurrent TB cases, including one patient (patient 15) 
with three TB episodes (patient 15–1, 15–2, 15–3), thus involving a 
total of 69 MTB strains and 36 recurrent events 
(Supplementary Figure S1). Identical genotypes were defined as 
strains that differed by no more than 12 SNPs (Li et al., 2022). Of 36 
recurrent events, 27 (75.0%, 27/36) paired isolates (patient 1, 2, 3, 4, 
5, 7, 8, 9, 11, 12, 13, 14, 15[1–3], 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
30, 31, 32 and 33) had 5 or fewer SNP differences 
(Supplementary Figure S1), indicating relapse. Nine (25.0%, 9/36) 
paired isolates (patient 6, 10, 15[1–2], 15[2–3], 17, 18, 19, 29, and 34) 
differed by >12 SNPs, suggesting exogenous reinfection with a new 
strain of MTB (Supplementary Figure S1). Comparison with SNP 
differences was also shown in Figure 2, identifying two major groups: 
paired isolates from relapsed cases had five or fewer SNP differences, 
whereas paired strains from reinfected cases had a dramatically higher 
number of SNP differences (range 185–1,074) except for 2 paired 
isolates (patient 17 and 18) with SNP differences of 14 
(Supplementary Figure S1; Figure 2).

3.4. Phylogenetic reconstructions and 
drug-resistant profile

The phylogenetic tree was constructed based on 6,847 high-
quality SNPs (Figure 3). Fast-lineage-caller analysis showed that the 
majority (59.4%, 41/69) of recurrent TB isolates were lineage 2, and 
40.6% (28/69) were lineage 4. All the isolate pairs from relapse cases 
were close together on the tree, whereas almost the reinfected isolate 
pairs appeared quite divergent on the tree (marked in different colors) 
(Figure 3). We also analyzed the community transmission of these 
recurrent TB cases, as demonstrated in Figure 3, TB strains collected 
from different individuals did not show high sequence similarity. 
Among these recurrent TB isolates, pan-susceptible predominated, 
accounting for 71.0% (49/69), with only 8 (11.6%, 8/69) and 12 
(17.4%, 12/69) were identified as MDR-TB and DR-TB, respectively. 
To rationalize these phenotypic drug-resistance, genetic mutations 
were predicted based on WGS data. A total of 9 recurrent TB strains 
were identified as genomic MDR-TB, mainly with mutations in codon 
450 of the rpoB gene and codon 315 of the katG gene (Table  1). 
Moreover, 2 strains had detectable drug-resistant mutations to four 
first-line anti-TB drugs (rifampicin, isoniazid, pyrazinamide, and 
ethambutol) simultaneously. We further compared the drug-resistant 
profiles between paired isolates to clarify the development of acquired 
resistance during treatment. As shown in Figure 3, three relapse cases 
had acquired new resistance during treatment: two (patient 21 and 26) 
to fluoroquinolones were both due to mutations in codon 94 of gyrA 
and one (patient 27) to ethambutol due to a mutation in codon 406 of 
embB, resulting in amino acid substitution from Gly to Asp (Table 1). 
Of note, the strain from patient 21, which was MDR with additional 

FIGURE 1

Flowchart of recurrent TB cases included and excluded from the 
study.
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FIGURE 2

The distribution of SNP differences between paired isolates. Reinfection was defined as a recurrent disease episode caused by a new TB strain with a 
genetic distance of more than 12 SNPs compared with the strain that caused the original episode. Relapse was defined as a genetic distance of 12 or 
fewer SNPs between paired strains isolated from two episodes in TB recurrence. The SNP differences between paired isolates were calculated by using 
Snp-dists (v.0.8.2).

FIGURE 3

Phylogenetic tree and drug-resistant profile of 69 MTB strains from 34 recurrent patients. Inner band indicates TB recurrence classification (reinfection 
represents strain pairs differences >12 SNPs, whereas relapse represents strain pairs differences ≤12 SNPs) and the outer band suggests phenotypic 
drug-resistant type (see legend). Solid circles indicate genetic drug resistance detected by TB-profiler. Reinfected patients are highlighted with different 
colors and curves connecting patients’ samples in the phylogeny indicating paired strains isolated from the same patient.
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TABLE 1 Genetic mutations related to drug-resistance identified in the first and second episodes of recurrent TB isolates.

Recurrence classification Patient ID Drug Episode 1 Episode 2

Relapse Patient 3 SM rpsL K43R rpsL K43R

Patient 15[1–3] RIF rpoB S450L rpoB S450L

INH fabG1_c.-15C > T fabG1_c.-15C > T

ETH fabG1_c.-15C > T fabG1_c.-15C > T

Patinet 16 RIF rpoB H445Y & D435F rpoB Q432P

INH katG S315N katG S315N

Patient 21 RIF rpoB S450W rpoB S450W

INH katG S315N katG S315N

EMB embB D1024N embB D1024N

PZA pncA L85R pncA L85R

FQs WT gyrA D94Y, gyrB Glu501D

Patient 26 FQs WT gyrA D94G & A90V

Patient 27 INH katG Q461P & D94G katG Q461P

EMB WT embB G406D

Patient 28 INH fabG1_c.-15C > T fabG1_c.-15C > T

ETH fabG1_c.-15C > T fabG1_c.-15C > T

Patient 31 RIF rpoB D435V & H445Y rpoB D435V

INH katG S315N katG S315N

Reinfection Patient 10 RIF WT rpoB L430P

INH WT katG S315T

Patient 15[1–2] RIF rpoB S450L WT

INH fabG1_c.-15C > T WT

ETH fabG1_c.-15C > T WT

Patient 15[2–3] RIF WT rpoB S450L

INH WT fabG1_c.-15C > T

ETH WT fabG1_c.-15C > T

Patient 18 INH katG_c.-7G > A katG_c.-7G > A

RIF, rifampicin; INH, isoniazid; EMB, ethambutol; PZA, pyrazinamide; SM, streptomycin; FQs, fluoroquinolones; ETH, ethionamide; WT, wild type.

resistance to ethambutol and pyrazinamide in the first isolate, had 
progressed to pre-XDR in their second relapsed isolate. Interestingly, 
one patient (patient 15) had three TB episodes between 2015 and 
2019, of which the first and third episodes isolated the identical TB 
strain, both MDR-TB, while the new strain isolated from the second 
was pan-susceptible (Figure  3, Table  1). In addition, one patient 
(patient 10) was initially infected with a pan-susceptible strain and 
subsequently reinfected with a new strain that harbored gene 
mutations related to rifampin and isoniazid resistance (Table 1).

3.5. Comparison of the characteristics 
between relapse and reinfection

We analyzed the differences in the characteristics between TB 
relapse and reinfection. As summarized in Table  2, all these 
demographic factors and clinical characteristics of patients, such as 
gender, age, occupation, and comorbidities et al., as well as genetic 
background and drug-resistant type of strains, had no significant effect 
on the proportion of TB relapse (all p > 0.05). In addition, more than 

80% of TB recurrence occurred within three years after completion of 
treatment for the index episode (Table 2). The median of the recurrent 
time interval to relapse was 17.6 months (IQR, 12.9–28.3 months) 
compared with 24.3 months (IQR, 12.9–31.5 months) for reinfection 
cases, and there was no significant association between relapse and 
earlier recurrence (p = 0.51) (Figure 4A). We further assessed the time 
interval to relapse stratified by gender, nationality, pulmonary cavity, 
strain drug-resistant type, and genetic background. As shown in 
Figure 4, TB relapse occurs earlier in patients of Tu ethnicity compared 
to patients of Han ethnicity (p < 0.0001), whereas no significant 
differences in the time interval to relapse were noted in other groups.

3.6. SNPs in relapse isolate

Of 39 SNPs and small indels (insertion–deletion) identified 
between the relapse pairs, 23 were non-synonymous polymorphisms. 
These mutations are located in genes encoding proteins with various 
functions, such as cell wall and cellular process, lipid metabolism, and 
information pathways (Supplementary Table S1). In three and four 
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cases, these mutations were involved in drug-resistant related genes 
and growth advantage regions, respectively. We also identified 6 indels 
differences that result in frame-shifts within protein-coding regions, 
but all of these indels were located in non-essential regions 
(Supplementary Table S1).

4. Discussion

To our knowledge, this is the first longitudinal population-based 
study of sufficient duration to investigate TB recurrence using WGS 
in Hunan, China. The current study found a relatively high frequency 

of mixed infections among recurrent TB cases. After excluding 
patients with mixed infections, our study demonstrated that TB 
recurrence in Hunan province is mainly caused by endogenous 
reactivation of the initial infection (relapse), and reinfection accounted 
for a quarter of recurrent cases. In addition, our study found TB 
recurrence can occur even more than 4 years after treatment 
completion of the most recent episode, mainly within 3 years. 
Evidence of acquired resistance during treatment was also observed 
in this study, with fluoroquinolone resistance occurring 
most frequently.

Understanding the proportion of reinfection and relapse will help 
to implement better post-treatment follow-up and reduce TB burden. 

TABLE 2 Initial episode characteristics in cases with TB relapse and reinfection.

Characteristic
Total Endogenous relapse

Exogenous 
reinfection p-value

N (Column %) n (Row %) n (Row %)

Sex 0.627*

  Male 30 (83.3) 23 (76.7) 7 (23.3)

  Female 6 (16.7) 4 (66.7) 2 (33.3)

Age# 0.869a

  Median (IQR) 51.5 (45.0–63.8) 52.0 (42.0–63.0) 50.0 (47.0–65.5)

Nationality >0.999*

  Han 31 (86.1) 23 (74.2) 8 (25.8)

  Tu 5 (13.9) 4 (80.0) 1 (20.0)

Occupation >0.999*

  Farmer 32 (88.9) 24 (75.0) 8 (25.0)

  Non-Farmer 4 (11.1) 3 (75.0) 1 (25.0)

Pulmonary cavity 0.235*

  Yes 13 (36.1) 8 (61.5) 5 (38.5)

  No 23 (63.9) 19 (82.6) 4 (17.4)

Diabetes 0.255*

  Yes 4 (11.1) 2 (50.0) 2 (50.0)

  No 32 (88.9) 25 (78.1) 7 (21.9)

Hepatitis B 0.558*

  Yes 3 (8.3) 3 (100.0) 0 (0.0)

  No 33 (91.7) 24 (72.7) 9 (27.3)

Time of recurrent episode (after treatment completion of initial episode) 0.651b

  1st year 8 (22.2) 6 (75.0) 2 (25.0)

  2nd year 12 (33.3) 10 (83.3) 2 (16.7)

  3rd year 10 (27.8) 6 (60.0) 4 (40.0)

  4th year or later 6 (16.7) 5 (83.3) 1 (16.7)

Lineages >0.999*

  Lineage 2 22 (61.1) 16 (72.7) 6 (27.3)

  Lineage 4 14 (38.9) 11 (78.6) 3 (21.4)

Drug-resistant type >0.999*

  Pan-susceptible 26 (72.2) 19 (70.4) 7 (77.7)

  Drug-resistant 5 (13.9) 4 (14.8) 1 (11.1)

  MDR 5 (13.9) 4 (14.8) 1 (11.1)

#Age was presented as median and inter-quartile range (IQR); *Value by Fisher’s exact test; aValue by Mann–Whitney U test; bChi-square test for trend.
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Unexpectedly high rates of reinfection suggest that reducing the risk 
of TB transmission is fundamental, while higher rates of relapse 
suggest that TB control should focus on improving the efficacy of the 
first-episode treatment regimen (Folkvardsen et al., 2020; Du et al., 
2021). Numerous studies have shown that the proportion of TB 
recurrence due to exogenous reinfection varies by regions (Bandera 
et al., 2001; Verver et al., 2005; Zong et al., 2018; Liu et al., 2022). It is 
generally accepted that the proportion of reinfection in TB recurrence 
is higher in settings with a high prevalence of TB (Vega et al., 2021; Li 
et al., 2022), but there are exceptions (Shamputa et al., 2007). Studies 
of countries with low to moderate TB incidence found that the 
percentage of reinfection ranging from 10% in Switzerland to 33% in 
Spain (Schiroli et al., 2015), while reinfection was common in studies 
of high-burden countries, ranging from 23% in India to 68–77% in 

South  Africa (Sahadevan et  al., 1995; van Rie et  al., 1999; 
Charalambous et  al., 2008). Our study found that 25% of TB 
recurrence were attributed to reinfection, which was comparable to 
the proportion reported in Jiangsu (28.9%) (Liu et al., 2022), but much 
higher than that reported in Beijing (8.8%) (Du et al., 2021). Several 
reasons could be responsible for such variation of the percentage of 
reinfection. Firstly, the varied duration of follow-up would potentially 
affect the proportion of recurrence due to reactivation and reinfection 
(Liu et al., 2022). In general, relapse occurs earlier than reinfection, 
and if cases were followed up for an insufficient period, reinfections 
would not be captured (Vega et al., 2021), leading to a relatively lower 
proportion of reinfection. Secondly, different genomic-based typing 
methods, such as MIRU-VNTR, IS6110 fingerprinting, and whole 
genome sequencing, have different discriminatory power that can 

A B

C D

E F

FIGURE 4

Kaplan–Meier survival estimates for TB recurrence. Comparison of the time interval required for relapse and reinfection (A). The time interval required 
for relapse to occur by gender (B), nationality (C), pulmonary cavity (D), MDR-TB (E), and Lineage of TB strains (F). dashed line indicate that the time 
interval required for 50% of TB recurrence or relapse to occur. p-value was calculated by Log-rank test.
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make a difference in the classification of TB recurrence (Shao et al., 
2021). In addition, some of the patients’ complications could increase 
the risk from infection to disease, resulting in more reinfection cases 
(Lieberman et al., 2016). Moreover, transmission dynamics were also 
analyzed in our study and community transmission was not observed 
among these recurrent TB cases, which might due to transmission 
occurring in a broader population that was not included in our 
study population.

Mixed infections can complicate TB diagnosis and treatment, and 
it is also one of the potential confounders in distinguishing relapse 
from reinfection (Witney et al., 2017). To reduce the misclassification 
of recurrent TB cases, detection of mixed infection based on whole 
genome sequencing before determining the main source of TB 
recurrence is very essential. By using QuantTB, a method for 
identifying and quantifying individual MTB strains at high resolution 
(Anyansi et  al., 2020), 7 of 79 (8.9%) isolates in this study were 
identified as mixed infections. Although the sampling and culture 
methods used in this study may lower the diversity of strains (Liu 
et al., 2020), a relatively high proportion of mixed infections were still 
detected, which warned of the urgent need for further studies to 
determine the prevalence of mixed infections in different settings and 
its impact on heterogeneous drug-resistance.

Of note, two patients’ pair (patient 17 and patient 18) of isolates 
in this study displayed 14 SNPs (SNP > 12) between two episodes and 
were therefore initially classified as reinfection. However, further 
analysis showed that the strain pairs were located next to each other 
on the phylogenetic tree and shared the same drug-resistant profile 
(Figure 2), suggesting that these two recurrent cases were likely caused 
by relapse. This would leave 7 recurrent cases with paired isolates 
differing by more than 180 SNPs that were clearly identified as the 
result of reinfection, indicating that 80.6% of TB recurrences were 
caused by relapse. The data here was supported by the findings of 
Walker and colleagues that the diversity between the initial and later 
isolates from relapsed patients does not generally exceed 14 SNPs, 
with most cases differing by less than five (Walker et al., 2013). Based 
on these results, it is reasonable to assume that strains with SNP 
differences slightly exceeding the thresholds (commonly 6 or 12 SNPs) 
used to define a cluster may occasionally belong to the same 
transmission chain and should be  taken into account during the 
epidemiological investigation (Liu et al., 2020). More importantly, 
similar to previous studies, our study only found reinfections with 
large phylogenetic distances (range 185–1,074), but nothing at an 
intermediary level (Witney et al., 2017). This suggests that primary 
infection does not provide sufficient immune protection against 
genetically distant strains, which has important implications for future 
vaccine design (Bryant et al., 2013).

The emergence of drug resistance in relapsed TB weakens the 
effectiveness of subsequent treatment. In the present study, we found 
that the acquisition of resistance to fluoroquinolones was the most 
common during treatment, and this observation was further 
rationalized by genotypic resistance prediction based on whole-
genome sequencing. Similar results have been reported elsewhere 
(Zong et al., 2018; Du et al., 2021). Although the exact cause of this 
phenomenon remains unclear, it can be partially explained by the 
abuse and misuse of fluoroquinolones. In China, because of their 
broad-spectrum antimicrobial activity, fluoroquinolones are always 
used as empirical treatment for suspected TB patients and various 
other types of infections (Du et al., 2021). Consequently, the selection 

pressure on MTB generated by residual drugs in the host allows the 
survival and accumulation of drug-resistant strains, resulting in 
strains with drug-resistance becoming the dominant population. 
Consistent with our findings, numerous previous studies have 
confirmed significantly increased prevalence of fluoroquinolones 
resistance in recent years in China (Xia et al., 2021; Mave et al., 2022). 
In addition, experimental data showed that fluoroquinolones activate 
the SOS response, which is likely to be associated with an elevated 
mutation rate. This may be another important factor contributing to 
the high frequency of fluoroquinolones resistance (Iacobino 
et al., 2021).

TB relapse was determined by a wide range of factors, such as 
socio-demographic and clinical features of TB cases, drug resistance 
and genetic background of the bacteria, and the disease burden of the 
study settings (Romanowski et al., 2019). Previous studies have shown 
that patients infected with Beijing genotype or isoniazid resistant 
strains were more susceptible to relapse (Hang et al., 2015; Thai et al., 
2018). Besides, Romanowski et al. already found that despite poor 
predictive ability, cavitary disease and 2-month smear positivity could 
be used as markers for higher risk of relapse (Romanowski et al., 
2019). However, in our current study, the relatively small sample size 
of recurrent TB cases limits our ability to detect significant difference 
between relapse and reinfection. To make follow-up for TB relapse 
more practical, future studies could identify socio-environmental and 
bio-medical factors associated with relapse by using modeling studies 
or genome-wide association analysis (GWAS), so these can 
be addressed or guide care after cure. Understanding the time interval 
distribution of recurrence is important for developing post-treatment 
control strategies and designing clinical trial studies (Marx et  al., 
2014). A meta-analysis reported that relapse occurred mainly in the 
first year after the end of treatment, while late recurrences tended to 
be reinfections (Romanowski et al., 2019). However, in our study, 
there was no significant difference in the time interval between relapse 
and reinfection. TB recurrences, whether caused by relapse or 
reinfection, occur predominantly within 3 years after completion of 
therapy. Therefore, for better management of TB patients in this 
region, we recommend that patients should be followed-up for at least 
3 years after completion of therapy. Moreover, we further assessed the 
time interval to relapse stratified by gender, nationality, pulmonary 
cavity, et al. Despite the small sample size, a correlation was observed 
in the present study between Tu nationality and earlier relapse. 
Further study with an expanded sample size is needed to explore 
whether there is a genuine correlation between nationality and time 
interval to relapse.

A major strength of this study is that we conducted a retrospective 
study of sufficient duration by using whole-genome sequencing data 
of serial strains from recurrent TB patients, which allowed us to get a 
more accurate picture of the proportion of recurrence caused by 
reinfection after excluding mixed infections, as well as to understand 
the drug resistance acquired during treatment. We must acknowledge 
several limitations of this study. First, this study was based on routinely 
collected information and specimens. Some TB recurrent cases might 
be lost due to death or moving out of the region, which would reduce 
the accuracy of our results. Second, recurrent TB cases who were 
excluded from the final analysis due to subculture failure and 
contamination of any paired isolates may introduce selection bias into 
this study. Third, the relatively small sample size of drug-resistant TB 
strains restricted us from exploring the underlying mechanism of 
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acquired drug resistance during treatment. Lastly, the HIV status of 
most recurrent TB cases in this study is unknown, but given the low 
prevalence of HIV in this area, we believe this is unlikely to introduce 
bias to the results of our study.

In conclusion, our data demonstrate that endogenous relapse is 
the main mechanism leading to TB recurrences in Hunan province. 
Additionally, our study found TB recurrence can occur even more 
than 4 years after treatment completion of the most recent episode, 
mainly within 3 years. Therefore, it is necessary to extend the post-
treatment follow-up period to achieve better management of TB 
patients. Moreover, the relatively high frequency of fluoroquinolone-
resistance in the second episode of relapse suggests that 
fluoroquinolones should be used with caution when treating TB cases 
with relapse, preferably guided by DST results.
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