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a b s t r a c t 

Despite theoretical models suggesting developmental changes in neural substrates of cognitive control in adoles- 

cence, empirical research has rarely examined intraindividual changes in cognitive control-related brain activa- 

tion using multi-wave multivariate longitudinal data. We used longitudinal repeated measures of brain activation 

and behavioral performance during the multi-source interference task (MSIT) from 167 adolescents (53% male) 

who were assessed annually over four years from ages 13 to 17 years. We applied latent growth modeling to de- 

lineate the pattern of brain activation changes over time and to examine longitudinal associations between brain 

activation and behavioral performance. We identified brain regions that showed differential change patterns: (1) 

the fronto-parietal regions that involved bilateral insula, bilateral middle frontal gyrus, left pre-supplementary 

motor area, left inferior parietal lobule, and right precuneus; and (2) the rostral anterior cingulate cortex (rACC) 

region. Longitudinal confirmatory factor analyses of the fronto-parietal regions revealed strong measurement 

invariance across time implying that multivariate functional magnetic resonance imaging data during cognitive 

control can be measured reliably over time. Latent basis growth models indicated that fronto-parietal activation 

decreased over time, whereas rACC activation increased over time. In addition, behavioral performance data, 

age-related improvement was indicated by a decreasing trajectory of intraindividual variability in response time 

across four years. Testing longitudinal brain-behavior associations using multivariate growth models revealed 

that better behavioral cognitive control was associated with lower fronto-parietal activation, but the change in 

behavioral performance was not related to the change in brain activation. The current findings suggest that re- 

duced effects of cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing 

brain that underlies better cognitive control performance during adolescence. 

1. Introduction 

In developmental neuroscience research, it is necessary to examine 

relationships between brain function and behavior over time and across 

ages ( Crone and Elzinga, 2015 ; ( Madhyastha et al., 2018 )Madhyastha 

et al., 2019). Only longitudinal research examining within-person tem- 

poral changes as trajectories (as opposed to a cross-sectional snapshot at 

a single time) is able to reveal developmental pathways of adaptive and 

maladaptive brain functioning. However, challenges arise with respect 

to the measurement reliability of neuroimaging data in longitudinal de- 

signs ( Herting et al., 2018 ). The present study employs a latent vari- 

able modeling approach using structural equation modeling (SEM) to 

tackle measurement challenges while studying individual differences in 

∗ Corresponding author at: Department of Psychology (MC 0436), Virginia Tech, Blacksburg, Virginia, 24061, USA. 

E-mail address: jungmeen@vt.edu (J. Kim-Spoon). 

within-person changes in brain activation and behavior during cognitive 

control. Most prior developmental neuroscience research on cognitive 

control has examined differences in the magnitude of brain activation 

across different age-cohorts, thus limiting inferences regarding true de- 

velopmental changes on the individual-level. Here, we used longitudinal 

functional magnetic resonance imaging (fMRI) data to investigate de- 

velopmental changes in brain activation during cognitive control across 

adolescence, and further examined longitudinal brain-behavior associ- 

ations. The current approach attempts to shed light on within-person 

developmental trajectories of cognitive control-related brain function, 

while simultaneously considering age-related behavioral change, which 

may facilitate new conceptualizations of systematic brain development, 

and improve existing neural systems models of cognitive control. 

https://doi.org/10.1016/j.neuroimage.2021.118134 . 
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Although there have been theoretical models regarding developmen- 

tal changes in neural substrates of cognitive control in adolescence, em- 

pirical research has rarely examined intraindividual changes in cogni- 

tive control-related brain activation using multi-wave multivariate lon- 

gitudinal data. In the present study, we focused on cognitive control 

development during adolescence, observed by brain activation and be- 

havioral performance during the multi-source interference task (MSIT; 

Bush et al., 2003 ). The MSIT measures detection and response to con- 

flict associated with both flanker conflict and motor spatial conflict, 

and it was developed by combining multiple dimensions of cognitive 

interference (that are measured by Stroop-like tasks, Eriksen Flanker- 

type tasks, and Simon effect tasks) with decision making ( Bush et al., 

2003 ). Throughout adolescence, prefrontal cortex regions —known to be 

critical in cognitive control —undergo maturation, including increased 

myelination, experience-dependent synaptogenesis and pruning, as well 

as strengthening of connections within prefrontal circuitry ( Liston et al., 

2006 ; Luna et al., 2015 ; Paus, 2005 ). Indeed, the remarkable develop- 

ment and specialization of prefrontal cortex regions that support higher- 

order cognition during adolescence marks adolescence as a neurobiolog- 

ical critical period ( Larsen and Luna, 2018 ). The proposed rapid devel- 

opment of neurobiology related to cognitive control during this critical 

period can be best tested by examining within-person developmental 

trajectories. 

Prior research has identified brain regions, particularly within the 

prefrontal cortex, that appear crucial for cognitive control during child- 

hood and adolescence ( Crone and Steinbeis, 2017 for review). Yet, there 

remains a dearth of research as to how activation in different brain re- 

gions involved in cognitive control change across development (i.e., 

within-person change) and whether there are between-person differ- 

ences in such within-person change. Currently, within cognitive con- 

trol research, neuroimaging studies using longitudinal data measured 

at three or more time points are extremely rare, with one notable ex- 

ception of a cohort-sequential longitudinal study of inhibitory control 

( Ordaz et al., 2013 ). Specifically, Ordaz et al. (2013) examined longi- 

tudinal trajectories of brain activation observed during an antisaccade 

task across ages 9 to 26 years (participants contributing between one 

to six time points). The results indicated no changes in motor response 

control regions (e.g., pre-supplementary motor area), decreases in ac- 

tivation in executive control regions (e.g., dorsolateral prefrontal cor- 

tex), and increases in activation in error-processing regions (e.g., dor- 

sal anterior cingulate cortex; dACC) with age. Among these regions, 

only error-processing activation in the dACC was significantly predic- 

tive of behavioral performance. One of the significant contributions of 

this study is the demonstration of longitudinal trajectories of cognitive 

control-related brain activation which varied across different regions of 

the brain. 

To understand differential developmental changes across brain re- 

gions engaged in cognitive control, we utilized latent growth model- 

ing because of several methodological advantages that are germane 

to this approach. The latent growth model is well suited for delin- 

eating patterns of changes (e.g., linear versus non-linear), and it esti- 

mates not only within-person change, but also between-person differ- 

ences in within-person change. In latent growth modeling, the measure 

should capture the same construct in the same metric across time so 

that scores obtained from the measure can be compared quantitatively 

to track intraindividual changes (see Kim-Spoon and Grimm, 2016 for 

review). For multivariate longitudinal data, measurement invariance 

( Meredith, 1993 ) —i.e., whether the same construct was measured in 

the same metric —can be statistically tested through longitudinal confir- 

matory factor analysis. After confirming that constructs are measured in 

a consistent way across measurement occasions (factorial invariance), 

those factors can be used in a second-order growth model. This model 

involves a theoretically error-free construct, instead of using error laden 

variables and composite scores, thereby improving measurement relia- 

bility and validity ( Grimm et al., 2017 ; Hancock et al., 2001 ; McNeish 

& Wolf, 2020). 

Brain activation is often used to understand cognitive con- 

structs or processes but such inferences are fraught with challenges 

( Poldrack, 2006 ). For example, researchers have raised concerns re- 

garding the reliability of regions of interest (ROI)-based analyses for 

testing individual difference inferences in fMRI ( Elliott et al., 2020 ; 

Fröhner et al., 2019 ; Kragel et al., 2020 ; Lebreton et al., 2019 ). We be- 

lieve that latent variable modeling can be used to improve reliability of 

neuroimaging data, thereby improving between-subjects inferences. In 

theory and in practice, psychometric approaches have shown that aggre- 

gating covarying indicators (i.e., latent variables) produces scores that 

are more reliable and have better predictive validity compared to sep- 

arate indicators when examined alone ( Nunnally and Bernstein, 1994 ). 

Specifically, confirmatory factor analysis using latent variable model- 

ing is a powerful data reduction technique, as it extracts a small num- 

ber of latent variables based on the covariations among a set of ob- 

served variables. In neuroimaging studies, confirmatory factor analy- 

sis can be applied to test a construct validity hypothesis, evaluating 

whether the correlations among the observed variables —e.g., eigenvari- 

ate values of ROIs —can be patterned according to the mathematical ex- 

pectations of a single latent construct. Nevertheless, there have been 

only a few functional neuroimaging studies using confirmatory factor 

analyses to consider latent constructs based on multiple brain regions 

(e.g., Bolt et al., 2018 ; Kim-Spoon et al., 2016 ; Moore et al., 2018 ; 

Nees et al., 2012 ). 

As such, latent variable modeling offers several key advantages: First, 

it optimizes power and reduces type-1 error by reducing the number of 

statistical parameters that are estimated while maximizing sample size. 

Second, it improves reliability by enhancing effect size and predictive 

validity ( Cooper et al., 2019 ; Kragel et al., 2020 ; Poldrack et al., 2017 ). 

Third, for repeated measures fMRI data, longitudinal confirmatory fac- 

tor analysis can be used to ascertain reliability of measured constructs, 

because it allows a quantitative test of whether the construct/process is 

robustly and reliably associated with its manifest indicators (i.e., neural 

activation of multiple ROIs) over time. In developmental neuroscience 

research, there is a particular challenge to assessing reliability in lon- 

gitudinal fMRI data from children and adolescents, because test-retest 

reliability (defined as the consistency in producing stable results at each 

instance; Khoo et al., 2006 ) of fMRI data with longer scan intervals is 

expected to reflect not only consistency of the fMRI measurement it- 

self but also the meaningful changes due to age-related development 

( Herting et al., 2018 ). For example, researchers have interpreted lower 

reliability values (represented by intraclass correlation coefficient) as 

indicating greater developmental changes ( Koolschijn et al., 2011 ). Un- 

like the intraclass correlation approach, testing measurement invariance 

in longitudinal confirmatory factor analysis offers an alternative and 

more rigorous way to determine whether fMRI data yield individual- 

level measures that are consistent in their construct validity across time 

(e.g., equivalent latent factor loadings and intercept means across time) 

while also allowing for estimation of developmental changes (e.g., la- 

tent factor means freely estimated) that are not due to unreliability of 

measurement. 

The primary goal of the present study was to fill in gaps in the 

developmental neuroscience literature by investigating intraindividual 

changes in cognitive control related-brain activation specific to the de- 

velopmental period of adolescence and examining how such changes 

are related to behavioral performance during cognitive control (brain- 

behavior associations). We applied latent variable modeling to multi- 

variate repeated measures data of brain activation (neural cognitive 

control) and behavioral performance (behavioral cognitive control) to 

investigate: 1) measurement models of brain activation patterns dur- 

ing cognitive control, using longitudinal confirmatory factor analyses; 

2) patterns of and individual differences in developmental trajectories 

of brain activation and behavioral performance during cognitive con- 

trol, using univariate growth models; and 3) longitudinal brain-behavior 

associations of cognitive control, using multivariate growth models. 

Specifically, with respect to brain-behavior associations, we examined 
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how levels and changes in brain activation were related to levels and 

changes in behavioral performance across four yearly assessments. 

2. Methods and materials 

2.1. Participants 

The sample included 167 adolescents (53% males) from a southeast- 

ern state in the United States, who participated in annual assessments 

across four years. Adolescents were 13 to 14 years of age at Time 1 

( M = 14.07, SD = 0.54 for Time 1, M = 15.05, SD = 0.54 for Time 

2, M = 16.07, SD = 0.56 for Time 3, and M = 17.01, SD = 0.55 for 

Time 4). About 78% of adolescents identified as White, 14% Black or 

African-American, 6% as more than one race, 1% as American Indian or 

Alaska Native, and 1% Asian. Median annual family income was in the 

$35,000-$50,000 range, with varying levels of family economic status 

(50% “poor/near poor ” and 50% “non-poor ” according to income-to- 

needs ratio). Among the primary caregivers (137 mothers, 21 fathers, 

and 9 others), 34% had a high school degree or less, 24% some college 

education, 24% bachelor’s degree, and 18% graduate degree. Inclusion 

criteria included being age 13 to 14 at Time 1 with vision corrected 

to be able to see the computer display clearly. Exclusion criteria were 

claustrophobia, history of head injury resulting in loss of conscious- 

ness for > 10 min, orthodontia impairing image acquisition, severe psy- 

chopathology (e.g., psychosis), and other contraindications to magnetic 

resonance imaging (MRI). 

At Time 1, 157 adolescents participated. At Time 2, 10 adolescents 

were added (to offset annual attrition) for a final sample of 167 (150 at 

Time 2, 147 at Time 3, and 150 at Time 4). Across all four years, 24 ado- 

lescents did not participate at all four time points for reasons including: 

ineligibility for tasks ( n = 2), declined participation ( n = 17), and lost 

contact ( n = 5) during the follow-up assessments. Rate of participation 

was not significantly predicted by income, sex, race or study variables 

( p s > 0.08). The only exception was the effect of behavioral cognitive 

control at Time 3, but the effect size was small ( 𝜂 2 = 0.08). 

2.2. Procedures 

Data included in the present study were collected as part of a larger 

project. Adolescent participants and their primary caregivers were re- 

cruited via email announcements, newspaper advertisements, postcards, 

and flyers. Data collection was administered at university offices where 

participants completed self-report questionnaires, behavioral and neu- 

roimaging tasks, and were interviewed by trained research assistants. 

The study duration was on average five hours long and participants were 

compensated monetarily for their time. All procedures were approved 

by the institutional review board of the university and written informed 

consent or assent was received from all participants. 

2.3. Task 

We measured detection and response to conflict associated with both 

flanker and spatial interference using the MSIT ( Bush et al., 2003 ) in an 

MRI scanner. In the MSIT, on each trial, the participant was presented 

with three digits and asked to identify the digit that was different from 

the others by pressing the button corresponding to the digit. For trials 

in the neutral condition, the target’s identity was congruent with the tar- 

get’s relative position on the screen, but in the interference condition, the 

target’s identity did not match its relative position (see Fig. 1 A). Four 

blocks of 24 interference trials and 4 blocks of 24 neutral trials were in- 

terleaved with an interstimulus interval of 1.75 s. To assess behavioral 

cognitive control, we used intraindividual variability in response time, 

indexed as intraindividual standard deviations (ISD; MacDonald et al., 

2012 ) for correct responses in the interference condition. Lower ISD 

scores represented better cognitive control. Accordingly, we found a sig- 

nificant positive effect of MSIT interference on ISD response time scores, 

such that intraindividual variability in response time was higher for in- 

terference trials compared to neutral trials [ t (153) = 14.66 at Time 1, 

t (148) = 9.92 at Time 2, t (142) = 9.75 at Time 3, and t (141) = 8.88 at 

Time 4, all p s < 0.001]. 

2.4. Pubertal development 

Pubertal developmental status was assessed annually using adoles- 

cent self-reports on a five-item scale ( Petersen et al., 1988 ). Boys and 

girls answered the same three questions regarding growth spurt in 

height, pubic hair, and skin changes. Additionally, boys were asked 

about facial hair growth and voice change, and girls were asked about 

breast development and menarche. The mean scores across the five 

items were used to indicate stage-normative pubertal timing. 

2.5. fMRI acquisition and preprocessing 

Neuroimaging data were obtained on a 3T Siemens Tim Trio scan- 

ner using a 12-channel head matrix coil. Functional images were 

obtained with TR = 2 s, slice thickness = 4 mm, 34 axial slices, 

FoV = 220 × 220 mm, TE = 30 ms, flip angel = 90°, voxel 

size = 3.4 × 3.4 × 4 mm, 64 × 64 grid, and slices were hyperangulated 

at 30° from anterior-posterior commissure. Anatomical images with a 

1mm 

3 isotropic voxel resolution were acquired using a rapid acquisi- 

tion gradient echo sequence with repetition time (TR) = 1200 ms, field 

of view (FoV) = 245 × 245 mm, echo time (TE) = 2.66 ms and 192 slices. 

SPM8 (Wellcome Trust Neuroimaging Center) was used to preprocess 

the MRI data at all time-points. After correcting the functional scans for 

motion using a six-parameter rigid body transformation, the mean func- 

tional image was co-registered to the corresponding anatomical image 

using a rigid-body transformation estimated to maximize the normalized 

mutual information between the anatomical and mean functional image. 

Next the anatomical image was segmented to produce spatial normal- 

ization parameters which were then used to normalize the functional 

images to MNI-152 template. Normalization produced images resliced 

to an isotropic voxel size of 3 mm 

3 . Finally, the normalized functional 

images were smoothed using a 6 mm full-width-half-maximum Gaussian 

kernel. 

A GLM was fit in SPM8 to the preprocessed imaging data acquired 

from each participant at each time point. The interference and neutral 

task conditions were modeled as alternating boxcars convolved with a 

canonical double-gamma haemodynamic response function (HRF) using 

SPM8 ′ s default parametrization of the gamma functions. The six realign- 

ment parameters obtained during preprocessing were used to model the 

effect of head motion. Framewise displacement (FD) was obtained us- 

ing the realignment parameters, with rotational displacement replaced 

with millimeter equivalents assuming displacement along the surface 

of a sphere with a 100 mm diameter ( Power et al., 2012 ; Siegel et al., 

2014 ). High motion volumes with FD greater than 0.9 mm were cen- 

sored non-destructively by adding a regressor for each censored vol- 

ume in the design matrix of the GLM. A high-pass filter with cutoff of 

0.006 Hz was used to remove low-frequency noise. Finally, for each 

participant at each time point, a contrast map was constructed by sub- 

tracting the neutral condition beta map from the interference condition 

beta map. 

Interference minus neutral contrast maps were entered into four 

second-level GLMs in SPM8, one for each longitudinal time-point, us- 

ing root mean square frame displacement as a regressor of no inter- 

est. To assess how the interference effect on blood-oxygen-level depen- 

dent (BOLD) responses changed with time-point, the first-level interfer- 

ence contrasts across all four time points were entered into a longitu- 

dinal group-level model using the Sandwich Estimator Toolbox, version 

2.1.0 (SwE; Guillaume et al., 2014 ), while controlling for age-correlated 

changes in in-scanner head motion using root mean square frame dis- 

placement as a no-interest regressor ( Satterthwaite et al., 2012 ). This 

SwE method combines ordinary least squares estimates of parameters 
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Fig. 1. Schematic Display of the Multi- 

Source Interference Task (MSIT) and Activa- 

tion Maps Showing Significant Activation for 

the Interference-Neutral Contrast. 

Note: A) Adolescents were instructed to identify 

the different digit while ignoring its position. 

B) Statistical T map showing regions of positive 

and negative linear change in the interference 

effect on BOLD responses with time point using 

the Sandwich Estimator Toolbox after applying 

a gray matter mask. C) Statistical T maps show- 

ing regions of positive (interference > neutral) 

and negative (neutral > interference) interfer- 

ence effect for each time point after applying a 

gray matter mask. 

of interest with estimates of variance/covariance based on a sandwich 

estimator ( Eicker, 1963 ) and thus accounts for within-subject correla- 

tions across time. It has been shown that this method is asymptotically 

robust against misspecification of the covariance model and does not 

depend on the SPM assumption of common longitudinal variance struc- 

ture of the whole brain. We used the SwE whole brain map as a guide to 

select ROIs within each wave so that we could evaluate developmental 

changes in these ROIs over time. 

At each time point, the SPM GLM showed a significant interference 

effect on BOLD responses, consistent with that observed in prior lit- 

erature (see Fig. 1 B; Kim-Spoon et al., 2019 ). Our longitudinal model 

showed significant linear increases and decreases in the interference ef- 

fect on BOLD responses in cognitive control regions identified by the 

MSIT. The SwE derived map of time-related changes in BOLD was used 

to identify nine clusters of interest for an ROI analysis, including bilat- 

eral insula, bilateral middle frontal gyrus (MFG), left pre-supplementary 
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motor area (SMA), left rostral anterior cingulate cortex (rACC), left in- 

ferior parietal lobule (IPL), right precuneus, and left middle occipital 

gyrus (see Fig. 1 C and Supplementary Table S1; for coordinates for peak 

regions within each time point, see Supplementary Tables S2–5). From 

each time point, the first eigenvariate values in the interference minus 

neutral contrast was obtained, after adjusting for an F-contrast of the ef- 

fect of interest. Data and code are available upon request given a formal 

sharing agreement. 

2.6. Data analytic approaches and model fitting preparation 

Prior to analysis, statistical outliers ( n = 20 across all variables and 

all time points) were winsorized to the next value that was not an out- 

lier (i.e., within 3.29 SD ; Tabachnick and Fidell, 2001 ), resulting in all 

variables with acceptable skewness and kurtosis ( < 3 and < 10, respec- 

tively). We performed multivariate GLM analyses to evaluate possible 

effects of demographic covariates on neural and behavioral measures of 

cognitive control (eight ROI variables and one behavioral performance 

scores) at each time point. Predictors included the main effects of age, 

pubertal development, sex, race, and family income, as well as the in- 

teraction effects of sex by age and sex by pubertal development (testing 

whether age or pubertal development effects on cognitive control may 

vary between boys and girls). Across all four time points, these demo- 

graphic covariates were not significant predictors of cognitive control 

variables ( p = .07 - 0.89) and thus were not included in the main anal- 

yses. Table 1 depicts descriptive statistics and correlations for the study 

variables. 

Models were tested using Structural Equation Modeling (SEM) in 

M plus statistical software version 8.4 ( Muthén and Muthén, 1998–2018 ). 

Model fit was assessed by 𝜒2 value, degrees of freedom, corresponding 

p -value, Root Mean Square Error of Approximation (RMSEA) and its 

90% Confidence Intervals (CI), and Confirmatory Fit Index (CFI). RM- 

SEA values less than 0.08 and CFI values greater than 0.90 were taken 

to reflect acceptable fits ( Little, 2013 ). For nested model comparisons, 

we used 𝜒2 difference tests ( Bollen, 1989 ). We ensured that fit values 

for all the models that we interpreted were acceptable and focused on 

nested model fit comparisons, as all of these fit indices have been shown 

to be more effective at identifying differences in misspecification based 

on a comparison of nested model, in contrast to decisions based on com- 

parisons with a priori cutoff values ( Marsh et al., 2004 ). 

We used full information maximum likelihood (FIML) estimation to 

handle missing data ( Arbuckle, 1996 ; Little and Rubin, 2003 ). The FIML 

method relies on the assumption that missing values are missing at ran- 

dom. Missing at random requires that missing data are either missing 

completely at random, or that the missing information depends on vari- 

ables that are included in the model. In longitudinal models of repeated 

measures data, those variables are the previous measurements of the 

same variable ( Ghisletta and Lindenberger, 2005 ). Little’s MCAR test in- 

dicated that the missing data pattern for all neural cognitive control vari- 

ables resembled a Completely at Random pattern ( 𝜒2 = 49.39, df = 54, 

p = .65), whereas the missing data pattern for all behavioral cognitive 

control variables did not ( 𝜒2 = 49.92, df = 19, p < .001). Given the 

superiority of FIML estimation to those obtained with listwise deletion 

or other ad hoc methods ( Schafer and Graham, 2002 ) and that all our 

longitudinal models involved repeated measures of data, thus satisfying 

at least missing at random, we used the FIML estimation procedure to 

address missing data. 

We first performed longitudinal confirmatory factor analyses to ex- 

amine whether the same construct was measured in the same metric 

at each time point. We compared two alternative models testing weak 

(metric) versus strong (scalar) invariance ( Grimm et al., 2017 ). The 

model testing weak invariance constrained factor loadings to be equal 

over time, implying that the same ROIs contributed in the same way 

to the latent factor. The model testing strong invariance additionally 

constrained individual ROI intercepts to be equal over time, implying 
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Fig. 2. Longitudinal Confirmatory Factor Analysis with Strong Invariance for the Fronto-Parietal Regions 

Note. Factor mean/variance are presented in italics. For clarity of presentation, factor loadings are presented for Time 1 only (factor loadings were equal across time), 

and residual correlations across time for the same variable and between left and right insula within the same time point are not presented. L = left; R = right; “= ”
fixed parameters; ∗ p < .05. 

that the scale of the factor does not change across time, which makes it 

possible to compare mean factor scores over time. 

Next, we tested univariate growth models to examine developmen- 

tal trajectories of neural and behavioral cognitive control. The growth 

models allowed us to appreciate (1) patterns of longitudinal changes 

(linear growth versus non-linear, latent basis growth), (2) statistical sig- 

nificance of the change rates (i.e., mean of the shape factor) as well as 

individual differences in the change rates (i.e., variance of the shape fac- 

tor), and (3) statistical significance of the average level and individual 

differences of the initial levels (i.e., mean and variance of the inter- 

cept factor). Linear and nonlinear models were tested to fit the baseline 

model for the observed data patterns across the four time points. The 

first latent factor was the intercept, with all factor loadings fixed to one. 

The second latent factor was the shape, indicating growth of the func- 

tion and change over time. The two growth factors were allowed to 

covary. Nested model comparisons were used to determine the shape of 

the trajectories. Two models were tested as nested models. First, in the 

linear growth model, a linear pattern of change was assumed and factor 

loadings for the linear slope factor were fixed to 0, 1, 2, and 3. Next, 

the latent basis growth model allowed the data to estimate the shape of 

growth by fixing the factor loadings to the first and last time points to 

0 and 1, respectively, and freely estimating the second and third time 

points. 

Finally, we tested multivariate growth models examining longi- 

tudinal brain-behavior associations of cognitive control to determine 

whether changes in brain activation were associated with changes in 

behavioral performance during cognitive control. The latent growth 

factors of brain activation and behavioral performance were estimated 

along with the covariances among the intercept and shape factors both 

within and across brain and behavior. 

3. Results 

3.1. Longitudinal confirmatory factor analysis of neural cognitive control 

Prior to examining developmental changes in neural cognitive con- 

trol, we examined whether the same construct was measured consis- 

tently at each time point by testing longitudinal measurement invari- 

ance using longitudinal confirmatory factor analyses. We first consid- 

ered eight ROIs while excluding the left middle occipital gyrus given 

that it is generally involved in performing tasks that require visual pro- 

cessing, rather than directly engaged in cognitive control functioning 

per se. In this model, the left rACC was not significantly loaded on the 

common latent factor as the other seven ROIs, thus it was not included 

in the longitudinal confirmatory factor analyses. Additionally, modifi- 

cation indices suggested correlating the residual of right insula with the 

residual of left insula within each time point, thus these residual corre- 

lations were included. As suggested by Grimm et al. (2017) , these lon- 

gitudinal confirmatory factor analyses models included correlations be- 

tween residuals for the same variable measured at different time points. 

Constraining individual ROI intercepts to be equal across time in ad- 

dition to factor loadings did not result in a significant deterioration in 

model fit ( Δ𝜒2 = 10.031, Δdf = 18, p = .931). Thus, the model compar- 

ison result indicated that the model with strong invariance was more 

parsimonious version of the model ( 𝜒2 = 534.303, df = 334, p < .001, 

RMSEA = 0.061, 90% CI [.051, 0.071], CFI = 0.924), compared to the 

model with weak invariance ( 𝜒2 = 524.272, df = 316, p < .001, RM- 

SEA = 0.064, 90% CI [.054, 0.074], CFI = 0.921). As reported in Fig. 2 , 

in the strong invariance model, the seven factor loadings were all sub- 

stantial, statistically significant, and the range was relatively narrow 

(standardized 𝜆 = 0.526 - 0.861, all p s < 0.05). Factor means decreased 
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Table 2 

Model fit for univariate growth models of neural and behavioral cognitive control. 

Model Label 𝜒2 df p (exact) RMSEA [90% CI] CFI Δ𝜒2 Δdf p (d) 

Fronto-parietal regions 

a. Linear growth model 555.501 339 < 0.001 0.063 [0.054, 0.073] 0.918 

b. Latent basis growth model 541.413 337 < 0.001 0.062 [0.052, 0.071] 0.923 14.088 2 < 0.001 

rACC 

a. Linear growth model 16.581 8 0.034 0.082 [.021, 0.138] 0.494 

b. Latent basis growth model 2.545 6 0.863 0.009 [.000, 0.054] 1.000 14.036 2 < 0.001 

Intraindividual standard deviations 

a. Linear growth model 30.407 8 < 0.001 0.130 [.083, 0.180] 0.860 

b. Latent basis growth model 4.913 6 0.555 0.000 [.000, 0.090] 1.000 25.494 2 < 0.001 

Note. rACC = the rostral anterior cingulate cortex; RMSEA = root mean square error of approximation; CI = confidence 

interval; CFI = comparative fit index; Δ𝜒2 = difference in likelihood ratio tests; Δdf = difference in df; p (d) = probability of 

the difference tests. Best-fitting model in boldface. 

over time and all factor variances were significant. The strong invari- 

ance finding provides evidence of construct comparability suggesting 

that any observed changes in the construct can be seen as true construct 

differences rather than due to measurement artifacts. 

Following construct validation through longitudinal confirmatory 

factor analysis of neural cognitive control variables, we labeled the com- 

mon latent factor that encompasses seven ROI indicators (left and right 

insula, left and right MFG, left pSMA, left IPL, and right precuneus) as 

“fronto-parietal ” because those seven ROIs were located in the fronto- 

parietal network previously identified as involved in cognitive control 

( Dosenbach et al., 2008 ; Sebastian et al., 2013 ). We clarify that this was 

a label for the regions that load onto a common latent factor, but there 

was no evidence of functional connectivity or this activity actually re- 

flecting FPN. Further analyses involving neural cognitive control were 

conducted separately for the fronto-parietal regions and for the left rACC 

which was not significantly loaded on the same latent factor as the other 

seven ROIs. 

3.2. Developmental trajectories of neural and behavioral cognitive control: 

univariate growth models 

To examine developmental trajectories of cognitive control, we 

tested univariate growth models separately for fronto-parietal activa- 

tion, rACC activation, and ISD response time scores. As shown in Table 2 , 

for the fronto-parietal regions, second-order growth modeling was used. 

In these second-order growth models, the factors for the measurement 

model (as in longitudinal confirmatory factor analysis models) were 

first-order factors and the growth factors were second-order factors, 

so that the second-order growth factors (i.e., intercept and shape) ac- 

counted for the developmental changes of the first-order factors (i.e., 

the fronto-parietal regions) across time. For the fronto-parietal regions, 

the latent basis growth model provided the better fit to the data com- 

pared to the linear growth model (see Table 2 ). The results from the 

fronto-parietal second-order latent basis growth model are reported in 

Table 3 . The mean of the shape factor was significant but the variance 

was not. This result indicated significant decreases in fronto-parietal ac- 

tivation over time with non-significant individual differences in change 

rates. There were significant individual differences in initial levels while 

the mean of the intercept factor was fixed at zero for identification 

( Grimm et al., 2017 ). The intercept and shape factors did not signifi- 

cantly covary with each other. The mean growth curve trajectory (based 

on estimated means) is presented along with the longitudinal plot of 

fronto-parietal activation factor scores across the four times in Fig. 4 -a. 

For rACC, the latent basis growth model provided a better fit to the 

data compared to the linear growth model (see Table 2 ). The results 

from the latent basis growth model for rACC are reported in Table 3 . 

The mean and the variance of the shape factor were significant, indi- 

cating significant increases in rACC activation over time with signifi- 

cant individual differences in change rates. The mean of the intercept 

factor was significantly different from zero, and there were significant 

individual differences in initial levels. The intercept and shape factors 

significantly covaried with each other, indicating that higher initial lev- 

els were associated with smaller increases in change rates. The mean 

growth curve trajectory (based on estimated means) is presented along 

with the longitudinal plot of rACC activation raw scores across the four 

times in Fig. 4 -b. 

For behavioral performance data (ISD scores), the latent basis growth 

model provided a better fit to the data compared to the linear growth 

model (see Table 2 ). The results from the latent basis growth model 

for behavioral cognitive control are reported in Table 3 . The mean of 

the shape factor was significant but the variance was not. The result in- 

dicated significant decreases in intraindividual variability in response 

time with non-significant individual differences in change rates. The 

mean of the intercept factor was significantly different from zero, and 

there were significant individual differences in initial levels. The inter- 

cept and shape factors did not significantly covary with each other. The 

mean growth curve trajectory (based on estimated means) is presented 

along with the longitudinal plot of ISD raw scores across the four times 

in Fig. 4 -c. 

3.3. Longitudinal brain-behavior associations: bivariate growth models of 

brain activation and behavioral performance 

To examine longitudinal brain-behavior associations of cognitive 

control, we used bivariate growth models to estimate dynamic asso- 

ciations among growth factors (intercept and shape factors) of brain 

activation and behavioral performance (see Fig. 3 ). For fronto-parietal 

activation, the overall fit of the bivariate growth model was acceptable 

( 𝜒2 = 688.279, df = 451, p < .001, RMSEA = 0.056, 90% CI [.048, 

0.065], CFI = 0.917). As reported in Table 4 , the initial level of behav- 

ioral performance was significantly related to the initial level of fronto- 

parietal activation, indicating that better behavioral performance (i.e., 

lower ISD scores) was related to lower fronto-parietal activation at Time 

1 when adolescents were 13–14 years. In order to examine whether the 

significant association between the level of neural activation and the 

level of behavioral performance persisted over time, we reran the bi- 

variate growth model with the intercept rescaled at Time 4 (i.e., inter- 

cept factor loadings fixed to − 1 at Time 1 and 0 at Time 4 with Times 

2 and 3 freely estimated). The result revealed that better behavioral 

performance was significantly associated with lower fronto-parietal ac- 

tivation at Time 4 when adolescents were 16–17 years ( Est. = 0.002, 

SE. = 0.001, p = .036). Changes in fronto-parietal activation were not 

associated with changes in behavioral performance. The level of fronto- 

parietal activation (at Time 4) was not related to changes in behavioral 

performance, and the level of behavioral performance (at Time 4) was 

not related to changes in fronto-parietal activation. 

For rACC, the overall fit of the bivariate growth model was accept- 

able ( 𝜒2 = 16.909, df = 24, p = .853, RMSEA = 0.000, 90% CI [.000, 
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Table 3 

Parameter estimates for Univariate growth models of neural and behavioral cognitive control . 

Fronto-parietal regions rACC Intraindividual SD 

Est. S.E. Est/S.E Est. S.E. Est/S.E Est. S.E. Est/S.E 

Shape factor loadings 

Time 1 0 = 0 = 0 = 
Time 2 0.715 ∗ .102 7.010 0.476 ∗ .111 4.289 0.576 ∗ .048 11.976 

Time 3 0.912 ∗ .123 7.402 1.160 ∗ .147 7.889 0.806 ∗ .052 15.431 

Time 4 1 = 1 = 1 = 
Means 

Intercept factor 0 = − 0.526 ∗ .034 − 15.558 0.240 ∗ .003 75.556 

Shape factor − 0.258 ∗ .033 − 7.802 0.223 ∗ .042 5.306 − 0.059 ∗ .004 − 15.896 

Factor Variances 

Intercept factor 0.036 ∗ .013 2.878 0.087 ∗ .023 3.787 0.001 ∗ .000 4.267 

Shape factor 0.009 .016 0.547 0.092 ∗ .034 2.686 0.000 .000 1.375 

Factor Covariance 

Intercept ↔Shape − 0.015 .012 − 1.189 − 0.074 ∗ .025 − 2.931 0.000 .000 0.072 

Note. rACC = the rostral anterior cingulate cortex; Est. = Estimate; S.E. = standard error; “= ” fixed parameters. The 

ratio Est/S.E. can be viewed as a Z value. ∗ p < .05. 

Fig. 3. Bivariate Growth Model for Neural and Behavioral Cognitive Control. 

Note. The model was estimated separately for the fronto-parietal regions and the rostral anterior cingulate cortex (neural cognitive control). For the fronto-parietal 

regions, latent factors were used instead of manifest variables (as shown in Fig. 2 ). CC = cognitive control; T1 = Time 1; T2 = Time 2; T3 = Time 3; T4 = Time 4; 

n_res = neural residual; b_res = behavioral residual. 

0.036], CFI = 1.000). As reported in Table 4 , the association between 

the initial level of behavioral performance and the initial level of rACC 

activation indicated a trend towards poor performance (i.e., higher ISD 

scores) among adolescents with lower rACC activation ( p = .062). Simi- 

lar to fronto-parietal activation, changes in rACC activation were not 

associated with changes in behavioral performance. The initial level 

of rACC activation was not related to changes in behavioral perfor- 

mance, and the initial level of behavioral performance was not related 

to changes in rACC activation. 

4. Discussion 

We aimed to examine intraindividual changes in brain activation 

during cognitive control and further examine how changes in brain ac- 

tivation may be associated with changes in behaviors using multivari- 

ate repeated measures data of adolescents. The current study is the first 

study using longitudinal data from a large sample in a single cohort as- 

sessed annually over four years from 13 years to 17 years; it is also the 

first to estimate these neurodevelopmental trajectory patterns within 
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Table 4 

Parameter estimates for bivariate growth models of neural and behavioral cognitive control. 

Fronto-parietal regions rACC 

Est. S.E. Est/S.E. Est. S.E. Est/S.E. 

Shape factor loadings 

NCC T1 0 = 0 = 
NCC T2 0.718 ∗ 0.102 7.067 0.513 ∗ .115 4.421 

NCC T3 0.899 ∗ .121 7.422 1.189 ∗ .156 7.607 

NCC T4 1 = 1 = 
BCC T1 0 = 0 = 
BCC T2 0.576 ∗ .048 12.006 0.575 ∗ .048 11.996 

BCC T3 0.805 ∗ .052 15.474 0.805 ∗ .052 15.450 

BCC T4 1 = 1 = 
Factor Means 

NCC Intercept 0 = − 0.528 ∗ 0.034 − 15.629 

NCC Shape − 0.259 ∗ .033 − 7.898 0.217 ∗ 0.043 5.096 

BCC Intercept 0.240 ∗ .003 76.566 0.240 ∗ .003 76.601 

BCC Shape − 0.059 ∗ .004 − 15.919 − 0.059 ∗ .004 − 15.902 

Factor Variances 

NCC Intercept 0.036 ∗ .013 2.867 0.083 ∗ 0.023 3.655 

NCC Shape 0.008 .016 0.471 0.093 ∗ 0.035 2.652 

BCC Intercept 0.001 ∗ .000 4.273 0.001 ∗ .000 4.267 

BCC Shape 0.000 .000 1.380 0.000 .000 1.409 

Factor Covariance 

NCC Intercept ↔ BCC Intercept 0.002 ∗ .001 2.032 − 0.003 0.001 − 1.868 

NCC Shape ↔ BCC Shape 0.000 0.000 0.068 0.000 0.002 0.158 

NCC Intercept ↔ BCC Shape − 0.001 0.001 − 1.126 0.000 0.001 − 0.292 

BCC Intercept ↔ NCC Shape 0.000 0.001 − 0.367 0.001 0.002 0.801 

NCC Intercept ↔ NCC Shape − 0.014 .012 − 1.114 − 0.072 ∗ .025 − 2.857 

BCC Intercept ↔ BCC Shape 0.000 .000 0.068 0.000 .000 0.044 

Note. rACC = the rostral anterior cingulate cortex; NCC = neural cognitive control; BCC = be- 

havioral cognitive control, measured by intraindividual standard deviations in response time; 

T1 = Time 1; T2 = Time 2; T3 = Time 3; T4 = Time 4; Est. = Estimate; S.E. = standard error; 

“= ” fixed parameters. The ratio Est/S.E. can be viewed as a Z value. ∗ p < .05. 

adolescence, a developmental period critical to establishing adult-level 

stability of cognitive control processing ( Luna et al., 2015 ). Our uni- 

variate growth modeling results suggested nonlinear patterns of devel- 

opmental changes in neural activation implicated in cognitive control. 

Specifically, we found a decreasing trajectory with non-significant vari- 

ation in fronto-parietal regions and an increasing trajectory with sig- 

nificant variation in rACC. In addition, our bivariate growth modeling 

results suggested that lower activation in fronto-parietal regions was re- 

lated to better cognitive control behavioral performance. 

In processing our longitudinal fMRI data measured repeatedly over 

four years, we identified brain regions activated for the interference mi- 

nus neutral contrast that showed recognizable changes over time us- 

ing the SwE method ( Guillaume et al., 2014 ). The multiple ROIs that 

we identified were consistent with prior findings regarding brain re- 

gions generally involved in cognitive control ( Sebastian et al., 2013 ; 

Spielberg et al., 2015 ). In particular, a meta-analysis of fMRI stud- 

ies using MSIT reported two reliable activation clusters including the 

dACC/medial prefrontal cortex/SMA cluster and the right insula/right 

IFG/right putamen cluster ( Deng et al., 2018 ). Our longitudinal confir- 

matory factor analysis model with strong factorial invariance revealed 

that multiple fronto-parietal regions (including seven ROIs of bilateral 

insula, bilateral MFG, left pSMA, left IPL, right precuneus) were con- 

sistently loaded on the same latent factor and activated in a concerted 

pattern across four years. Those ROIs in the fronto-parietal regions are 

known to be involved in attention to salience (insula), motor control 

(MFG and pSMA), and spatial attention and visuomotor processing (IPL 

and precuneus) ( Sebastian et al., 2013 ; Spielberg et al., 2015 ). In con- 

trast, the left rACC was not loaded on the same latent factor as the fronto- 

parietal regions. The peak of this region fell in Brodmann area 11 (BA 

11) which is known to engage in decision making that involves con- 

flict processing ( Taylor et al., 2006 ; Rogers et al., 1999 ; Sebastian et al., 

2013 ). 

As has been shown in many fMRI studies, a single region can be in- 

volved in a broad range of tasks ( Kanai and Rees, 2011 ). Furthermore, 

brains regions do not function in isolation, but rather as parts of larger 

collections of interacting brain regions ( Bullmore and Sporns, 2009 ; 

Fox et al., 2005 ). Therefore, the use of latent factor modeling in an- 

alyzing multiple ROIs that are related to a particular function during 

a behavioral task is a promising way to address correlations between 

ROIs that reflect neural substrates of a common latent construct. Indeed, 

our findings of longitudinal confirmatory factor analysis based on multi- 

ple fronto-parietal regions illustrate that latent variable modeling using 

SEM is a feasible way of representing associations of functionally related 

brain regions, which complements other functional approaches used in 

the field to assess brain systems and networks (e.g., Woo et al., 2017 ). 

Furthermore, testing for longitudinal measurement invariance enabled 

us to use the repeated measures fMRI data to be compared quantita- 

tively, so that reliable variance in intraindividual changes can be exam- 

ined. 

The longitudinal trajectory of decreasing fronto-parietal activation 

indicated that positive interference effects (i.e., interference > neutral) 

became smaller across adolescence. We found no significant variance in 

change rates for fronto-parietal activation, suggesting relatively homo- 

geneous decreasing trajectories. The observed decreases in the fronto- 

parietal activation are consistent with prior research demonstrating age- 

related decreases in brain activation during cognitive control, reflect- 

ing more refined and more efficient neural functioning with develop- 

ment ( Crone and Steinbeis, 2017 ; Luna et al., 2010 ; Tamm et al., 2002 ). 

We note that our longitudinal data revealed significant intraindividual 

changes in fronto-parietal activation to task-specific interference pro- 

cessing, whereas a cross-sectional study of 8- to 19-year-olds who per- 

formed the MSIT found no age differences in brain activation to interfer- 

ence processing (i.e., interference versus neutral conditions) ( Liu et al., 

2016 ). Instead, Liu et al. (2016) found that older youths showed lower 

pre-SMA activation to overall task processing (i.e., interference plus neu- 
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Fig. 4. Mean growth curve with individual values across four times 

Note. A. Fronto-parietal activation factor scores. B. Rostral anterior cingulate 

cortex (rACC) activation C. Intraindividual variability behavioral performance 

scores. 

tral conditions against implicit baseline). As such, the discrepancy in the 

findings highlight the importance of examining within-person changes 

over time, as opposed to comparing individuals of different ages. 

The decreasing trajectory of fronto-parietal activation across adoles- 

cence observed in the current study appears to be inconsistent with the 

findings from a longitudinal study by Ordaz et al. (2013) , who reported 

no significant changes in growth curves with regard to activation in 

motor response control regions including pre-SMA, bilateral posterior 

parietal cortex, and putamen. One possibility for the inconsistent find- 

ings may be differences in specific neuroimaging paradigms, such as the 

use of cognitive interference (in our study) versus response inhibition 

(in Ordaz et al.). Another possibility for the discrepancy in the findings 

may be the age range of the samples. Our single-cohort sample had a 

narrow age range within each time point and the whole sample was 

assessed annually over four years within the developmental period of 

adolescence, ages 13 through 17 years. In contrast, the sample used by 

Ordaz et al. included participants aged 9 years to 26 years, with partic- 

ipants contributing between one to six time points across yearly assess- 

ments. Given such sample differences, it is plausible that the current 

study could capture the adolescence-specific changes more sensitively 

than the study by Ordaz et al. Further replications are needed for clari- 

fying potentially differential developmental trajectory patterns of task- 

specific neural activation (e.g., cognitive interference versus response 

inhibition) during adolescence. 

The longitudinal trajectory of increasing rACC activation indicated 

that in general negative interference effects (i.e., neutral > interference) 

became smaller across adolescence. In addition, there was significant 

variation in change rates for the rACC growth trajectories. The negative 

interference effects shown in rACC activation is consistent with prior re- 

search using the MSIT that showed decreased rACC activation with de- 

manding cognitive activity (i.e., task-induced deactivation; Bush et al., 

2000 ). Prior research also suggested that rACC activation may play a 

critical role in dynamic regulation of cognitive control via performance 

optimization and error evaluation ( Braver et al., 2001 ; Polli et al., 2005 ). 

Our finding of increasing rACC activation across adolescence, implying 

decreases in reduced rACC recruitment during the interference condi- 

tion compared to the neutral condition, aligns with the prior finding by 

Ordaz et al. (2013) , who reported age-related increases in dACC activa- 

tion for error monitoring during the corrected error trials compared to 

the fixation baseline. Taken together, the findings corroborate the the- 

orized ACC involvement in cognitive control ( Botvinick et al., 2001 ) by 

clarifying that increases in ACC recruitment with development may re- 

flect the maturation of neural cognitive control, particularly in conflict 

and error processing. 

Turning to behavioral performance data, age-related improvement 

was indicated by a decreasing trajectory of intraindividual variability 

in response time across four years. The current finding presents the first 

evidence of within-person developmental changes in cognitive control 

performance based on the MSIT, and the result is in line with prior cross- 

sectional research reporting larger reaction time differences between the 

neutral versus the interference condition among adolescents compared 

to adults during the MSIT ( Fitzgerald et al., 2010 ). 

Overall, we found differential change patterns and individual dif- 

ferences in the developmental trajectories of neural activation and be- 

havioral performance during MSIT. In our examination of developmen- 

tal trajectories of fronto-parietal activation, rACC activation, and MSIT 

behavioral performance, rACC activation was the only construct that 

showed significant variance in change across four years. This finding 

suggested greater individual differences in the developmental trajectory 

of rACC in contrast to the trajectories of fronto-parietal activation and 

behavioral performance. With respect to the pattern of the developmen- 

tal trajectory, all three constructs (i.e., fronto-parietal, rACC, and be- 

havioral) fit non-linear patterns of growth better than a linear pattern. 

For fronto-parietal activation and behavioral performance, the largest 

change (decrease) occurred between Time 1 and Time 2, suggesting 

most rapid change in early adolescence. For rACC activation, the de- 

velopmental trajectory showed a peak around Time 3, with the largest 

change (increase) occurring between Time 2 and Time 3 and thus sug- 

gesting most rapid change during middle adolescence. 

Within the neuroscience literature, correlations between neural and 

behavioral indicators have been frequently used to evaluate brain- 

behavior associations. However, correlations can have problems, es- 

pecially when the goal is to examine longitudinal changes in brain- 

behavior associations ( Cooper et al., 2019 ; Rousselet and Pernet, 2012 ). 
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For example, Pearson correlations are affected by many factors that are 

likely to vary across repeated measurements, including the slope around 

which points are clustered, the magnitude of the residuals, restriction 

of range, heteroscedasticity, and sensitivity to outliers ( Wilcox, 2012 ). 

Instead of using the conventional approach with correlations, we 

evaluated longitudinal brain-behavior associations by testing bivari- 

ate growth models to estimate joint development between neural and 

behavioral cognitive control processes to better understand the way 

their changes are related over time. We found a significant associ- 

ation between the level of behavioral performance and the level of 

fronto-parietal activation, indicating that adolescents with lower fronto- 

parietal activation showed better cognitive control performance. Thus, 

greater cognitive interference demands placed on fronto-parietal regions 

in developing adolescent brains may be related to poor behavioral per- 

formance. The association between the level of behavioral performance 

and the level of rACC activation was weaker and not statistically signif- 

icant, suggesting that individual differences in behavioral performance 

were better accounted for by the magnitude of fronto-parietal activa- 

tion than rACC activation. Finally, the individual differences in changes 

in fronto-parietal and rACC activation were not significantly associ- 

ated with the individual differences in changes in ISD scores, indicat- 

ing that the changes in neural activation and the changes in behavioral 

performance are not dynamically linked across adolescence. However, 

the non-significant associations between brain changes and behavior 

changes are likely due in part to the non-significant variance in change 

rates shown in behavioral cognitive control as well as fronto-parietal 

activation. 

Recent concerns have been raised about the temporal reliability of in- 

dividual differences in brain activation, especially because reliability is 

important for examining brain activation as a biomarker of health risk or 

endophenotypes of clinical outcomes ( Elliott et al., 2020 ; Kragel et al., 

2020 ). In the present study, longitudinal confirmatory factor analyses 

revealed robust measurement models of neural cognitive control based 

on multiple ROIs in the fronto-parietal regions (insula, MFG, pSMA, IPL, 

and precuneus) across four years during adolescence. Thus, our findings 

demonstrated that multiple ROI indicators during the MSIT task could 

be reliably measured across time as shown by longitudinal measure- 

ment invariance. Longitudinal confirmatory factor analysis has a clear 

advantage over intraclass correlation coefficients to measure reliability 

of fMRI data due to the ability to formally test temporal equivalence 

in the measurement structure. With measurement equivalence tested 

and supported, it is then feasible to more directly interpret longitudi- 

nal changes in factor means as real developmental change that is not 

attributable to developmental changes in reliability of measurement. 

Limitations of the current study suggest directions for future re- 

search. First, longitudinal neuroimaging research that uncovers devel- 

opmental changes in the connections between the rACC and the fronto- 

parietal regions (such as functional or structural connectivity) is needed 

to advance our understanding of how those brain regions work together 

to contribute to intraindividual changes in cognitive control develop- 

ment. Second, we used a latent basis growth model to discover the best- 

fitting shape of non-linear change. Although this somewhat exploratory 

approach is deemed to be useful because the growth function of neu- 

ral activation during cognitive control is not clearly known, we note 

that the estimated parameters from the latent basis growth model can 

be difficult to map onto theoretical notions of particular patterns of de- 

velopmental processes, and that the model does not make predictions 

outside the observation period ( Grimm et al., 2011 ). Third, we used 

cut-offs of RMSEA ⟨ 0.08 and CFI ⟩ 0.90 based on Little (2013) who 

provided model fit evaluation guidelines for longitudinal SEM consid- 

ering unique features of longitudinal models (e.g., requiring both co- 

variance and mean structures as opposed to models used for SEM fit 

assessment recommendations that model only covariance). Neverthe- 

less, these were less stringent than the commonly used cut-off criteria 

that have been recommended based on simulations of single-occasion 

covariance structure models (e.g., RMSEA ≤ 0.06 and CFI ≥ 0.95; see 

Hu and Bentler, 1999 ). All of our models satisfied RMSEA ≤ 0.06 and 

the models involving rACC models satisfied CFI ≥ 0.95. However, the 

models involving fronto-parietal indicators had CFIs ranging from 0.91 

to 0.92, pointing out a need for replication to improve the model and 

identify misspecification. We speculate that the worse CFI fit of the mod- 

els involving fronto-parietal indicators may reflect the ‘model size’ ef- 

fect, demonstrating a worsening of CFI as the number of observed vari- 

ables increased ( Shi et al., 2018 ). Finally, replication of our findings 

is needed given that we used the same data set for selecting brain re- 

gions and for testing our statistical models. As an initial inferential step 

in testing a latent growth modeling approach to analyzing multi-wave 

multivariate neuroimaging data, we used functionally defined ROIs de- 

fined from the SwE procedure which may be susceptible to inflated 

effect sizes ( Vul et al., 2009 ), although perspectives on how inflated 

and the extent to which nonindependent ROIs are useful are mixed 

( Lieberman et al., 2009 ). We recommend that future studies ideally use 

independent datasets for selection and analyses to ensure independence 

of the results while preventing circularity (Kriegeskorte et al., 2009). 

5. Conclusion 

Consistent with neurodevelopmental models of adolescent motivated 

behavior that emphasize the regulating role of prefrontal cortex func- 

tioning over limbic functioning, the development of cognitive control 

has implications for risky decision making and health risk behaviors 

during adolescence ( Casey et al., 2008 ; Kim-Spoon et al., 2017 ). As ado- 

lescents age, the decreasing activation trajectory of the fronto-parietal 

regions together with the increasing activation trajectory of rACC may 

reflect maturing neural substrates of cognitive control that improve the 

top-down control by the prefrontal cortex over limbic reward and emo- 

tional processing —top-down control that ultimately drives the decline 

of impulsive decision making from adolescence to adulthood. Given that 

the magnitude of fronto-parietal activation (but not rACC activation) 

was a significant predictor of behavioral performance during cognitive 

control, reduced effects of cognitive interference indicated by fronto- 

parietal recruitment may be a marker of a maturing brain that underlies 

better cognitive control performance during adolescence. Methodolog- 

ically, our work illustrates that latent variable modeling can facilitate 

multivariate repeated measures of fMRI data to be used in complex lon- 

gitudinal models to critically inform our understanding of the neurobe- 

havioral development of cognitive control and many other functions. 
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