
AN EXTENSION OF TRANSFORMER NEURAL NETWORKS IN THE
CONTEXT OF MULTIVARIATE STOCHASTIC PROCESSES

by

MATTHIAS WOLF

B.Sc., The Ohio State University, Columbus, OH, 2000
M.Sc., Carnegie Mellon University, New York, NY, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

DECEMBER 2021

© Matthias Wolf, 2021

ii

ABSTRACT

Increasingly, artificial neural networks are explored to learn relationships among temporal

sequence data for purposes of classification, prediction, and anomaly detection with the

hope of exceeding the performance of more traditional machine learning algorithms. While

the underlying Long Short-Term Memory or Gated Recurrent Unit networks are still the

preferred choices by many researchers, such recurrent networks are sub-optimal to learn

relationships within and across longer sequences. Transformer neural networks, originally

designed to improve the performance of natural language processing tasks, pose an

interesting alternative as their attention mechanisms are more capable of capturing context

and meaning within longer sequences. Such features present opportunities to apply

transformer networks also to temporal sequence data of financial asset prices. This thesis

introduces an extension of the original transformer neural network which is capable of

multivariate time series representation learning in a supervised learning context and

attempts to train temporal sequences of financial asset prices. The prediction accuracy of

the transformer extension exceeds two of the most popular recurrent neural networks used

for temporal sequence data prediction. The experiments are conducted in the context of a

trading algorithm that showcases the practical potential and its implications. As the model

is not input data specific, opportunities to transfer enhancements to other domains exist.

iii

TABLE OF CONTENTS

Abstract .. ii

List of Figures .. v

List of Tables .. vi

Acknowledgements ... vii

Chapter 1 - Introduction .. 1

1.1 Motivation .. 1

1.2 Overview .. 2

1.3 Contribution .. 6

1.4 Outline of Thesis .. 9

Chapter 2 - Related Research .. 11

2.1 Attention is All You Need .. 11

2.2 Benefits of Transformers over RNNs ... 11

2.3 Transformer Extensions .. 13

2.4 Introduction to Asset Pricing Theory .. 16

Chapter 3 – Methodologies .. 26

3.1 Original Transformer Model Architecture .. 26

3.2 Extended Transformer Model Architecture .. 28

3.3 Input Embeddings ... 30

3.4 Encoder Layer .. 31

3.4.1 Positional Encoding .. 32

3.4.2 Multi-Head Attention .. 36

3.4.3 Layer Normalization ... 39

3.4.4 Regularization through Dropout ... 40

3.4.5 Temporal Convolutions .. 42

3.4.6 From Encoder to Classifier ... 44

iv

Chapter 4 – Implementation and Simulation ... 45

4.1 Problem Definition and Goals .. 45

4.2 Hardware and Software Environment ... 47

4.3 Data Pre-Processing .. 48

4.3.1 Data Acquisition & Data Cleansing .. 48

4.3.2 Feature Engineering .. 51

4.3.3 Target Generation ... 52

4.3.4 Data Conversion ... 53

4.3.5 Data Splitting .. 53

4.3.6 Data Normalization ... 54

4.3.7 Sequence Generation and Concatenating of Datasets ... 55

4.3.8 Data Shuffling, Batching, Caching, & Prefetching ... 56

4.4 Extended Transformer Model Implementation and Training .. 57

4.5 LSTM and GRU Model Implementation and Training ... 60

4.6 Model Integration in Trading Algorithm .. 62

4.7 Results and Discussion ... 64

Chapter 5 – Conclusion and Future Research ... 77

5.1 Conclusion .. 77

5.2 Future Research .. 79

References .. 82

v

LIST OF FIGURES

Figure 1 Feature Extraction in Machine Learning vs Deep Learning, provided by [7]........ 5

Figure 2 Original Transformer Architecture (adopted from [10]) 27

Figure 3 Extended Transformer Model Architecture.. 29

Figure 4 Input Shape and Dimensionality... 31

Figure 5 Original Multi-Head Attention & Scaled Dot-Product Attention........................ 36

Figure 6 Attention Layer Shapes & Dimensions ... 39

Figure 7 Training / Validation Accuracy (Transformer Model) ... 67

Figure 8 Training / Validation Accuracy (LSTM Model) .. 68

Figure 9 Training / Validation Accuracy (GRU Model) .. 68

Figure 10 Equity Curve, Transformer Model .. 72

Figure 11 Equity Curve, LSTM Model.. 73

Figure 12 Equity Curve, GRU Model ... 73

Figure 13 Return Distribution, Transformer Model.. 74

Figure 14 Return Distribution, LSTM Model ... 75

Figure 15 Return Distribution, GRUModel... 75

vi

LIST OF TABLES

Table 1 Hyperparameters for Extended Transformer Model ... 60

Table 2 Hyperparameters for LSTM/GRUModels .. 62

Table 3 Classification Accuracy by model and by dataset (Best Weights) 66

Table 4 Classification Accuracy by model and by dataset (Last Weights) 66

Table 5 Portfolio Statistics by Model .. 71

vii

ACKNOWLEDGEMENTS

I give glory to my creator who sustained me throughout this challenging and trying times

of Covid-19 and geographic separation from my beloved wife. He bestowed me with

intellect and the desire to learn and acquire knowledge and I feel extremely privileged that

I was able to undergo education and life lessons that prepared me to perform research like

this. “And my God will meet all your needs to the riches of his glory in Christ Jesus. To

our God and Father be glory for ever and ever. Amen.” (Philippians 4:19-20)

 Much gratitude to my beloved wife, Izumi, for enduring the one-year geographical

separation in our now 18 years of marriage and for patiently waiting to join me in Canada.

You, Izumi, are my best friend and your faithful support especially throughout this past

year kept me motivated to work hard and to do my best.

 Also, a big thanks to all my good friends in and around Prince George. In particular

I like to thank Hamid Shoaraee with whom I spent countless hours inside our lab discussing

and debating different deep learning approaches and methodologies. Also particular thanks

to my friend Reza Tabatabaei from whom I learned a lot.

 Very special thanks finally to my advisor, Professor Liang Chen: You gave me a

shot when you supported my application and you guided me through my research with

helpful suggestions and critique. Without you this work would not be what it is, and

through your tireless efforts in supporting me others can benefit from this work, too.

1

CHAPTER 1 - INTRODUCTION

1.1 Motivation

As a quantitative trader at financial institutions over the past 14 years, it has been my

natural interest to research and develop algorithms that capture relationships among

financial pricing and alternative data that are subject to constant shifts in correlations and

volatility. A large portion of price dynamics is exposed to stochasticity due to the inability

to reliably predict market-impacting events. Plenty of academic research has incorporated

Recurrent Neural Networks (RNN), in particular, Long Short-Term Memory cells (LSTM)

and Convolutional Neural Networks (CNN), to train temporal sequence data for purposes

of classification and prediction of asset prices, often with mixed results. More concerning,

sometimes assumptions, made, particularly trading and execution related assumptions,

skewed results and resulted in better-reported performance than can be reasonably achieved

post-implementation. This motivated me to research a novel deep neural network and to

adopt it to operate on temporal sequence data. The Transformer network turned out to be a

particularly interesting choice because the attention mechanisms inherent in Transformers

appear to be more capable of learning relationships among elements within and across

sequences. However, the original design of the Transformer model relates to linguistic

input that is word-embedded and position encoded, and maps input text sequences to output

text sequences. Well-thought-out modifications and extensions are necessary to adopt

Transformer models to handle multivariate temporal sequence data. The ultimate goal is to

train a Transformer network to classify such time series according to pre-defined categories

for prediction purposes, which leads to the contributions of this thesis.

2

1.2 Overview

The quest to gather, process, and analyze information and to draw meaningful conclusions

from relationships among data has occupied researchers’ minds for a long time. Essentially,

all innovation and progress are at their foundation driven by a better understanding of

relationships among data. Particularly in the past two decades technological innovation in

the areas of the internet, data storage, and computational power has enabled corporations,

governments, public entities, and academic institutions to gather, store, and analyze more

data than ever before. At the same time, the methodologies and resulting algorithms that

process and analyze data have also progressed continuously. While practical

implementations of machine learning (ML) concepts date back to the late 1950s [1], thanks

to the availability of sufficient computational power artificial intelligence in general and

deep learning, in particular, have picked up momentum.

 This technological innovation has also reshaped the entire sell-side financial trading

industry, such as large investment banks. For example, in 2005 virtually all trading at large

financial institutions was conducted by professional traders and analysts who, equipped

with pricing models and spreadsheets priced and transferred risk through agreements with

counterparties. An overhaul of securities regulations, more efficient pricing models, and

vastly faster electronic communication networks resulted in a race for speed that forced all

market participants to replace human traders with algorithms and caused the closure of

virtually every exchange trading floor. Execution traders were replaced by quantitative

analysts, developers, and network engineers. Equally, the buy-side, such as hedge funds,

large mutual funds, and ETF sponsors transformed and nowadays fiercely compete with

3

large IT corporations for talent that come equipped with strong skillsets in the areas of code

development, data analytics, and artificial intelligence [2].

 What makes it so challenging to derive forecasts and to make reliable predictions

in the financial trading domain is the presence of large amounts of uncertainty because a

lot of related economic activities are subject to event risk that is traditionally hard and

sometimes impossible to predict. This renders predictions by definition inaccurate and it

creates a dilemma for decision-makers. On one hand, market practitioners are confronted

with the presence of uncertainty and hence the occurrence of surprises, rendering some

decisions questionable as a function of risk tolerance. On the other hand, a trader’s purpose

of transferring risk from one counterparty to another is an important economic activity

without which many industries would be unable to properly function due to unacceptable

exposure to risk. Most commodities can experience large price fluctuations and airlines,

for example, routinely hedge their exposure to kerosine price fluctuations by entering into

swap agreements with financial intermediaries.

 Most financial asset pricing data are either measurements at regular time intervals

or timestamped at irregular time intervals. The reason for the occurrence of irregular time

intervals is the uncertainty of the arrival time of changes in the bid or offer quotations or

order matches that leads to trades. Quantitative researchers nowadays also peruse

alternative data which by definition are non-pricing temporal data such as labor market or

trade statistics. Sentiment data are also harnessed to improve predictive power. For

prediction and classification purposes, financial time series are generally chosen to be of a

fixed length which lowers the complexity to some degree because variable-length sequence

4

data involve padding and masking data pre-processing to make them suitable for most

machine learning and artificial neural network algorithms.

 Researchers are confronted with a difficult choice of which methodology and

algorithms to choose for time-series prediction and classification purposes. In essence, the

main task is to learn a function that maps inputs to desired outputs. Before artificial neural

networks gained wider acceptance, machine learning models such as Linear Regression,

ARIMA, AdaBoost, K-Nearest Neighbors, Random Forests, Boosted Trees, and Ensemble

models among others ranked high in popularity [3][4][5][6]. More recently, hybrid

machine learning models evolved that combine multiple methodologies to gain finer-

grained control over the exact problem at hand by splitting the problem up into sub-tasks,

each of which is handled by potentially different algorithms. Machine learning models

require the researcher to perform feature extraction from input data before the actual

algorithm processes said features, for example, for classification purposes. This poses a

drawback because it forces the making of assumptions about the importance and hence

weights of each feature relative to other features. On the other hand, deep learning

algorithms perform the feature extraction part on their own during the training/learning

process without the requirement of parameterizing the feature weights [7]. Figure 1

captures this distinction.

5

Figure 1 Feature Extraction in Machine Learning vs Deep Learning, provided by [7]

 With wider adoption of artificial neural networks for image

recognition/classification, speech recognition, and natural language processing, Artificial

Neural Networks (ANN), Convolution Neural Networks (CNN), and Recurrent Neural

Networks (RNN) became the most often used neural networks [8][9]. ANNs are simple

feed-forward neural networks as inputs are only processed in a forward direction, whereas

RNNs exhibit recurrent connections on hidden states that enable them to capture

information from previous elements in a sequence. Long Short-Term Memory (LSTM)

cells and Gated Recurrent Units (GRU) are derivatives of RNNs that have been widely

adopted for the training of temporal sequential data. CNNs implement kernels whose main

purpose is to extract relevant features and through the stacking of multiple such CNN

layers, the network can be trained to learn different types of features of, for example,

images. Over the past ten years, in particular, research in deep learning has expanded into

a wide array of different types of neural networks. Reinforcement Learning (RL) describes

6

a relatively new branch of deep learning that is rapidly gaining attention in many domains.

It describes an algorithm that learns to react to an environment and generates recommended

actions on its own that are either rewarded or penalized based on the qualitative nature of

the action in the context of the environment. In 2017 a team at Google Research published

the paper “Attention Is All You Need” [10] which introduced a novel Transformer neural

network, initially targeted at solving problems in the Natural Language Processing (NLP)

space. Transformers and their extensions are today considered state-of-the-art for NLP

tasks and large pre-trained networks exist that can be re-used through transfer learning for

text generation, translation, and interpretation.

1.3 Contribution

The brilliant approach of solely relying on attention mechanisms in a sequence transduction

model dispensed recurrence and convolutions entirely and led to the introduction of

Transformer models in [10]. The absence of recurrence offers the potential to parallelize

training and inferencing of the model and results in large computational performance gains.

However, as the model was designed to operate on text-based data for both inputs and

outputs in its original form, it did not lend itself well to the training of temporal data sets.

Several extensions evolved that adopted Transformers to operate on univariate time series,

among others, the application of Transformers to the forecasting of influenza cases [11].

[12] introduced a Transformer-based framework to operate on multivariate time series but

focused on unsupervised representation learning. At this point, no research in the public

domain exists that adapts Transformers to the supervised learning of relationships among

7

multivariate temporal sequences of financial asset prices applied to an algorithmic trading

model. The specific contributions of the work in this thesis are as follows:

• The goal of this research is on crafting a classification/prediction framework in the

context of Transformer networks to learn relationships among financial pricing data

that have predictive power. The original encoder/decoder structure of Transformer

networks is well-suited for NLP text generation, translation, and interpretation tasks

which necessitate a decoder. However, for classification/prediction purposes a

decoder is not necessary, and instead pooling and dense layers through Softmax

activations transform encoder outputs to single values for predictions and

categorical values for classification, respectively. This poses a departure from the

original Transformer network implementation and extends the network to predict

and classify instead of mapping input to output sequence-to-sequence data.

• Word vector embeddings were originally designed to transform linguistic meaning

into real-valued input vectors that attention layers within Transformers understand.

As this work focuses on temporal sequence data, word vector embeddings are of

little use in this context. The challenge lies in transforming the multivariate

temporal sequence data to feature embeddings that each attention mechanism in the

decoder understands. This extension, in particular, enables Transformer networks

to be applied to non-linguistic domains as well, such as the training of complex

multivariate temporal sequence models.

• Transformer networks are non-recurrent and instead attention mechanisms process

each element in a data sequence in parallel. The attention mechanisms at the outset

are hence unable to know the position of each element in the sequence, more

8

importantly, the relative positioning of each element to other elements in the

sequence. The original Transformer network proposed a positional encoding that is

added to each word embedding vector in the sequence to embed positional

information that the attention mechanisms can make sense of. While the positional

encoding in [10] is applied only to the raw data sequences before being fed to the

encoder, the proposed network in this thesis will apply positional encoding to each

attention layer in the decoder network separately, resulting in improved training

and inferencing performance.

• Data extraction, cleansing, feature engineering, and the shaping of data suitable for

training a neural network are all part of data pre-processing. Most time is generally

spent on the meticulous execution of each step of the data-preprocessing pipeline.

Particularly, feature extraction and feature engineering play a very important role

in successfully training and inferencing a supervised neural network. The results of

this research will show that intelligent feature engineering and feature extraction

are the largest contributors to successfully train the network, even more important

than the actual network structure and choice of hyperparameters. Hence, the data

pre-processing pipeline in this research, chosen for financial asset price

classification, warrants the explicit mentioning here.

• Currently, no other academic research in the public domain proposes a Transformer

network in the context of financial asset price prediction or classification. The work

of this thesis will go a step further and present a closed-end algorithmic trading

framework that makes realistic assumptions about execution-related cost and

market friction. The Standard & Poor’s 500 (S&P 500) index constitutes a

9

capitalization-weighted stock index of the 500 largest companies, listed in the

United States. The research of this thesis will train the model on the entirety of all

companies in this index ranging from the date each company began to be publicly

traded or from January 2000, whichever comes later, until July 2021, resulting in

over 2,000,000 temporal sequences that are being used for training the extended

Transformer network. To the knowledge of the author of this thesis, no other

academic research in the public domain trains any temporal sequence deep neural

network on such a vast universe of data. Due to the computational requirements of

such a dataset, training had to be performed on a cloud compute instance with 24

CPUs, 448 GB of memory, and 4 V100 Nvidia GPUs in parallel, resulting in

roughly 45 hours of training the network on the entire dataset. The trained network

will be inferenced, and an algorithmic trading model will make intra-day allocation

decisions based on the classifications of the trained network. The experiment will

conclude with a performance comparison between the extended Transformer

network and an LSTM and CNN implementation.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows:

 Chapter 2 discusses related research with a particular focus on Transformer models

applied to temporal sequence data. This includes both, univariate and multivariate sequence

data sets.

10

 Chapter 3 explains in detail the mathematics and implementation of the

Transformer network on which proposed contributions are based and walks in detail

through the proposed extensions of the Transformer network and rounds off with how the

extensions are implemented to result in a complete framework, capable of training

multivariate temporal financial asset pricing data sets in the context of supervised learning.

 Chapter 4 starts with an introduction of the experimental trading architecture in

which the trained Transformer network for inferencing purposes is placed. Next, alternative

LSTM and CNN models are briefly introduced which function as a baseline against which

the performance of the Transformer is measured. Chapter 4 will conclude with a detailed

discussion of the results.

 Chapter 5 concludes this thesis with a summary of this work and a proposal for

future work.

11

CHAPTER 2 - RELATED RESEARCH

2.1 Attention is All You Need

Transformer models were first introduced in the paper “Attention Is All You Need” by

Google Brain in 2017 [10]. The work is based on sequence transduction models with a

specific focus on natural language processing (NLP) tasks. The stated goal was to find a

suitable mapping function between text-based input and output sequences for text

translation, generation, and interpretation. Currently, some of the most advanced and

often used pre-trained neural networks for NLP tasks are based on Transformers: BERT

[13], GPT2 [14], GPT3 [15], and ALBERT [16] are just some of the deep neural

networks that billions of people unknowingly benefit from when they search the internet,

translate text from one to another language, or use modern grammar and spell checkers,

to name just some of the many applications.

2.2 Benefits of Transformers over RNNs

Before the introduction of Transformers, problems with application to deep neural

networks were most often approached through the implementation of recurrent neural

networks (RNN). In particular, Long Short-Term Memory (LSTM) [17] and

Convolutional Neural Network (CNN) [18] models represented state-of-the-art RNNs to

model sequences. Hence it makes sense to spend more time investigating the challenges

and deficiencies of RNNs that led to the evolution of Transformer models. RNNs

typically generate a sequence of hidden states ℎ� as a function of previous hidden states

ℎ��� and the inputs at position �. This sequential nature of the algorithm makes

12

parallelization impossible. This deficiency becomes critical at longer sequence lengths

due to memory constraints that limit batching across examples. Although some research

attempts to circumvent this challenge through conditional computation [19] and

factorization [20], the fundamental constraint of sequential computation, however,

remains. A more pressing issue with RNNs and longer sequences are exposed by the path

this long-term information travels through all cells before arriving at the current

processing cell. The multiplication of that information with very small numbers many

times can corrupt the original information and potentially leads to the problem of

vanishing gradients. LSTMs somewhat mitigate this problem by letting information

bypass units and hence remember longer sequences. However, even LSTMs still expose a

sequential path, and the more complex structure of additive and forget branches taxes

computational efficiency.

The most innovative aspect of Transformers is that they do not operate recurrently

and instead entirely rely on attention mechanisms [10]. Despite this brilliant idea that

dramatically increases the efficiency and accuracy of learning longer sequences at a

lower computational cost (through parallelization), some of the most important basic

building blocks of Transformers are not quite that novel. The encoder-decoder blocks of

transformers have been used in recurrent neural networks since 2014 [21][22][23] and

applied mostly to sequence-to-sequence neural machine translation problems. Equally,

attention mechanisms existed before the advent of Transformers. [23] proposed to use

attention mechanisms in the decoder of a sequence-to-sequence network where a source

sentence is encoded into a fixed-length vector from which the decoder generates

translations. The researchers identified this fixed-length vector as a bottleneck and

13

instead applied attention mechanisms in the decoder part of the network to let the decoder

decide which parts of the source sentence to pay attention to. [23], in particular, caused a

wide-range adoption of attention mechanisms for most NLP neural network tasks and it is

regarded as one of the works that motivated the research that led to the invention of

Transformers [10].

2.3 Transformer Extensions

Since the introduction of Transformers in 2017 [10], research has not paused, and

multiple extensions of transformers have been published. Given the tremendous

improvements in the accuracy and efficiency that Transformers brought to the NLP

domain, it does not surprise that most derivative architectures also focus on linguistic

sequence-to-sequence problems. Besides the multiple pre-trained NLP models

[13][14][15][16] which are based on the original Transformer architecture and now serve

billions of users in as seemingly simple tasks as web searches, particularly two innovative

extensions are worth mentioning.

In 2020 Google Research in collaboration with researchers at U.C. Berkeley

introduced Reformers [24] which was shown to be equally performant than Transformer

models while benefitting from memory efficiency and speedups on longer sequences.

One of the computationally most expensive aspects of Transformers is the dot-product

attention where each attention head relates the element in a given sequence to all other

elements in the same sequence. This leads to a complexity of �(��) where L denotes the

length of the sequence. By replacing the dot-product attention by locality-sensitive

hashing, a time complexity reduction from �(��) to �(� ��� �) was shown.

14

Furthermore, standard residuals were replaced by reversible residuals which resulted in

the storing of activations only once per training process instead of N times, N denoting

the number of layers. This resulted in a dramatic reduction of the memory footprint due

to the reduction of stored activations per training process. The contributions. presented in

the research that led to Reformers, functions as an important steppingstone towards

training and inferencing larger text documents.

 The introduction of Informers [25] in 2021 functions as an additional important

contribution to the extension of Transformers. Informers equally than Reformers reduce

the time complexity from �(��) to �(� ��� �) compared to Transformers and are more

memory efficient, albeit for different implementation reasons. A unique aspect of

Informers is the improvement in the inference performance of long-sequence predictions.

This is achieved through the implementation of a generative style decoder, which predicts

long sequences through a single forward operation rather than through a step-by-step

approach. For the first time, Informers applied training and inferencing a Transformer-

like architecture to univariate time series data rather than NLP problems.

 Another very interesting contribution to generalize the application of

Transformers to non-NLP domains was introduced by [11] in 2020 where the researchers

applied Transformers to create a prediction model of influenza-like illnesses based on

univariate time series. Time series prediction and classification problems have often not

received the same attention from the deep learning research community as, for example,

problems in the domains of image recognition/classification or natural language

processing, which makes this particular contribution all the more important. While the

model architecture has only been slightly modified in comparison with the original

15

Transformer architecture, the work walks in detail through some important data pre-

processing steps and modifications of the input structure for the model to train and

inference based on time series data rather than textual sequences.

 An additional paper that modifies Transformers as applied to multivariate time

series representation learning concludes this related research chapter. IBM Research and

researchers at Brown University co-authored [26] in 2020 where they apply a

Transformer-based framework in the context of unsupervised learning. The interesting

part here is the multivariate nature of the input time-series data. The researchers highlight

the advantage of this model as being capable of training on unlabeled data. Because the

data universe of labeled data available in the public domain is limited this particular

approach of pre-training a Transformer model on unlabeled data is unique and

innovative. To date, most unsupervised learning for multivariate time series data

necessitated the implementation of autoencoders, in essence, algorithms that extract

features from the unlabeled input data before passing the feature encoded data to the

actual layers that learn relationships among elements of sequenced data. However, those

autoencoders require a recurrent neural network, whose deficiencies when applied to

longer data sequences have already been discussed. The core of this extension is

represented by an intelligent transformation to map multivariate time series data to

feature vectors that correspond to word vectors in NLP sequences. In addition, the

researchers of this paper present a time complexity optimization by replacing parts of the

temporal resolution with a convolutional layer that reduces the dimension of the input

data that attention layers see and hence results in a reduction of dot-product operations in

16

the attention mechanisms. While this particular paper was eventually rejected by ICLR in

2021, its focus on multivariate time series, adds value to the research of this thesis.

2.4 Introduction to Asset Pricing Theory

Hundreds of books and even more peer-reviewed academic research explore statistical

properties of asset prices of various asset classes in finance. For brevity’s sake, only a

cursory introduction of financial asset pricing concepts is showcased in this thesis to bridge

the gap between the methodological aspects of the extended Transformer deep neural

network on one hand and the implementation and experimentation part of this research

which applies Transformer networks to temporal sequence data of stock prices. By no

means is the list of pricing concepts and statistical properties which is introduced here

exhaustive; it would necessitate many thousands of pages to come even remotely close to

exploring and reconciling every financial asset pricing concept and theory. The interested

reader is referred to [27], [28], [29], [30], and [31] for a more in-depth exploration of asset

pricing theory. This section will first introduce some of the most important and widely

accepted theories of financial asset pricing. A majority of those theories appear to suggest

that asset prices are impossible to predict. The section will then conclude by looking at

some empirical evidence that partly contradicts some of the claims made in the

aforementioned theories. Without question, there are wide-ranging and opposing opinions

and beliefs in the financial as well as the academic community. Some of those opinions are

biased towards the belief of the unpredictability of future prices while others point to

numerous examples of individuals who have outperformed broad market indices for

17

decades. This suggests that current and past data do contain information with predictive

power, although such information might be very difficult to extract.

• The General Equilibrium Theory highlights how supply and demand interact in an

open, unrestricted, and competitive economy and how a price equilibrium is reached

through the competing levels of supply and demand. Price equilibrium is defined as the

price level at which “market-clearing” occurs, a condition at which a maximum of

supply is matched with a maximum of demand for any given asset at a specific point

in time. Assuming that all buyers and sellers have equal and fair access to all publicly

available information and that there is no friction that limits price changes and

discovery, prices always move towards said price equilibrium. The Capital Asset

Pricing Model (CAPM) was born out of this theory.

• Capital Asset Pricing Model (CAPM): CAPM relates systematic (market) risk to

expected returns of risky assets such as stocks. It defines the expected return of a risky

asset as being the sum of the risk-free market interest rate plus a scaled market risk

premium that rewards an investor for taking on the risk of this asset, with the scaling

factor being a metric that reflects the relationship between the volatility of returns of a

given asset and the volatility of returns of the market as a whole.

• Law of One Price: This concept states that for a given asset, globally the price is the

same under the assumptions of a frictionless market, where there are no legal

restrictions, there is one global currency, no transaction or transportation costs, and an

absence of price manipulation by buyers or sellers. If there existed multiple prices for

18

the same asset under the above assumptions, then those price differences would be

arbitraged away very quickly.

• Discounted Asset Pricing Model: According to this theory, the price of a stock, for

example, is derived by performing financial forecasts of the company’s future

cashflows, which are then discounted at an interest rate that reflects the un-diversifiable

risks of these future cash flows. The aggregate of these present values is then spread

over all the issued shares of such a company and the analyst arrives at the theoretical

share price. The specific discount factor, applied, is in reality unknown or very hard to

estimate. In financial derivative pricing, a random variable’s probability space is

transformed through an equivalent martingale measure and such risk-free probability

measure is applied to the discounting of future cash flows where the present value is

equated to traded market prices. This enables the specification and parameterization of

a pricing model that enables practitioners to price similar assets where the current

market price is not known.

• Rational Pricing Theory: Derivative prices, such as options, futures, swaps, among

others, are derived based on an arbitrage-free assumption. Most financial derivative

products can be broken down into the trading of more basic asset components and in

the absence of arbitrage opportunities, a theoretical price of such derivative instrument

can be determined. For example, Fischer Black, Robert Merton, and Myron Scholes in

1973 proved that under certain assumptions a short European call option can be

replicated by continuously trading a portfolio of the underlying stock and a risk-free

asset, leading to the pricing of such option. Despite various criticism regarding the

made assumptions, the Black-Scholes formula is still used today by market

19

practitioners to translate between traded option prices and their implied volatilities.

Underlying the assumptions, made in the Black-Scholes model, are the First and

Second Fundamental Theorems of Asset Pricing which provide sufficient conditions

for a market to be arbitrage-free and complete (a market where every contingent claim

can be replicated).

• Efficient Market Hypothesis (EMH): Eugene Fama’s paper on EMH in 1965 states

that asset prices reflect all available information. This would preclude anyone from

outperforming the broad market. EMH was later broken down into weak, semi-strong,

and strong forms. The weak form states that current asset prices contain all historical

information, the semi-strong form concerns itself with the claim that current asset

prices reflect all publicly available information, current or past. The strong form makes

the strongest claim that asset prices contain all information, public or private, current,

or past.

• Random Walk Hypothesis: The Random Walk Hypothesis claims that all stock prices

evolve according to a random walk and hence cannot be predicted. The origins of this

theory can be traced back to French mathematician Louis Bachelier and were further

developed by MIT professor Paul Cootner in 1964, Eugene Fama’s work “Random

Walks in Stock Market Prices” in 1965, and Princeton University professor Burton

Malkiel in 1973. Whether stock price returns are purely randomly distributed is a very

challenging question that has been debated for over 100 years, both in academia and

by financial market practitioners. Andrew Lo of MIT and Archie Craig MacKinlay at

the University of Pennsylvania in 1999 coauthored the book “A Non-Random Walk

Down Wall Street” in which they showcase evidence that disproves the Random Walk

20

Hypothesis. Later Peter Lynch, a former mutual fund portfolio manager, who

outperformed the market for several decades, published a book in which he backed up

his claim that the Random Walk Hypothesis is contradictory to the Efficient Market

Hypothesis. If asset prices are rational and based on all available information, then asset

prices should not follow a random walk. But if the Random Walk Hypothesis holds

then asset prices are not rational as the Efficient Market Hypothesis suggests. Both

concepts are still widely taught at business schools without any apparent awareness of

their contradictions.

The above-presented theories hopefully give a glimpse at how contested many of these

concepts and their assumptions seemingly are and that there are intellectuals as well as

market practitioners who are on either side of the fence. The discovery continues but it

should have become clearer by now that financial asset pricing cannot be summarized by

a few mathematical theorems and concepts. The following reflects the author’s almost 20

years of experience as a professional trader at several investment banks and hedge funds.

It was included in the hopes of providing some perspective from a pure market

practitioner’s accumulated experience and skill set. As no rigorous proofs of any of the

claims are provided, it is to be understood as the rationale that motivated the research of

this thesis because in the absence of any predictive power among current and past

information the entire implementation part of this thesis would be negated.

 Financial time series look unpredictable and future values are often claimed to be

impossible to predict. This is not because of a lack of valuable information in financial

21

time series. In fact, the opposite holds, they carry a lot of non-redundant information.

However, the challenge to predict future prices is more a function of the abundance of

information that is difficult to dissect and analyze. When new information arrives, the

market reacts to such information in an inefficient and delayed fashion. This at times allows

the detection of information that has predictive power based on which arbitrage strategies

can be devised, and such inefficiencies last until the market returns to an equilibrium price.

The concept of efficient markets appears to be an idealized system. Real markets are not

perfectly efficient for various reasons. It is perfectly justifiable for researchers to approach

financial markets with the assumption of ideal conditions, meaning, a perfectly efficient

market, and to then develop new theories within this framework. However, the validity of

the results of such studies will have to be judged based on the validity of the assumptions

made.

 According to my experience, financial asset prices are neither perfectly describable

by formulae nor is asset price discovery perfectly efficient. Currently, I cannot find a single

asset pricing model that makes perfectly valid assumptions and is capable of modeling

asset price dynamics correctly at all times. The academic literature speaks a lot of

processes that are driven by random variables regarding financial asset pricing. While there

are important asset pricing models, particularly derivative asset pricing models, that are

based on concepts of stochastic calculus which include processes that are driven by

Brownian Motion and Wiener Processes, those models are at most capable of aiding market

practitioners in pricing assets. They are neither perfect nor do they make perfectly realistic

assumptions. But that is the best we have at the moment. We are a long way from

comprehensively understanding how price discovery works. While it cannot be proven that

22

we will never gain a perfect understanding of the dynamics of financial asset pricing and

that we will never be able to define pricing models that realistically reflect the evolution of

asset prices, it can, however, be empirically proven that a number of the current theories

and assumptions in the academic literature are plain wrong. Sadly, many such disproven

concepts are still taught at numerous business schools today.

 The Strong-Form Efficient Market Hypothesis claims that all information, public

or private, is contained in current stock prices. From a practitioner’s point of view, this can

hardly be true: When politicians decide to wage war on another country but do not declare

so in public just yet, when a company performs its quarterly accounting of performance

before it is communicated to the public, when new public works projects are approved by

bureaucrats, when epidemic case counts are tallied up, all this information is not yet public

but in the private domain. Hardly anyone would deny that the information in the above

scenarios materially impacts many corporations’ stock prices once such information is

made public. The reason that stock prices adjust once the information is made public is that

current stock prices do not yet reflect such private information. Ignoring the behavior of

illegal insider trading there are numerous cases where trading on non-public information is

permitted even in developed and highly regulated markets such as the United States. US

senators are permitted under certain provisions to trade stocks on certain non-public

information. For example, just in February/March 2020, certain US senators congress

members gained knowledge of early COVID-19 assessments by their intelligence

community. Several senators subsequently traded stocks legally based on such non-public

information. Additionally, considering the nowadays high detection rates of illegal insider

trading by enforcement bodies, the motivation of individuals, engaged in illegal insider

23

trading, should be highly questionable if the expected payoff of engaging in illegal insider

trading was not so lucrative. Insider trading only makes sense when there is non-public

information that materially impacts stock prices once made public.

 Even the semi-strong form of the Efficient Market Hypothesis does not seem to

hold. Virtu, a high-frequency trading firm, experienced 1 single day of losses between 2009

and 2014, and data is only available until 2014 because it was the last year that it disclosed

its daily win-loss ratio [34]. Virtu trades on purely publicly available information, it does

not have access to any exchange market data or information that any other participant,

willing to pay for commercial access, does not have access to. The statistical return profile

of Virtu’s trades conclusively contradicts the claim that all information in the public

domain is priced into current asset valuations.

 One might even argue that the weak-from of the hypothesis is questionable because

it depends on what one defines as being “historical”. It can be clearly shown that stock

prices did not adjust within a millisecond after planes crashed into the World Trade Center

towers in 2001, nor did markets immediately reflect the impact and aftermath of the

tsunami and subsequent nuclear disaster in Japan in 2011.

 The Random Walk Theory is equally questionable. To most, who have worked in

a professional capacity in financial asset trading, it does not appear that asset price changes

are random. They might seem and look random, but it appears difficult to comprehend

where the claimed randomness is supposed to originate from. Markets are an amalgamation

of a multitude of participants who meet to transfer risk between counterparties. The prices

of assets are based purely on supply and demand at any given point in time. Such supply

and demand are driven by the assessment of each market participant whether an asset

24

appears as being expensive, cheap, or fairly valued. The assessment of value by each

market participant is driven by rational considerations and the rigorous assessment of an

individual asset’s value, the economic conditions, and the regulatory and political

framework but also by irrational behavior that originates from psychological bias that is

driven by factors such as greed and fear. Accounts of market participants who run a random

number generator to make trading decisions appear hard to come by, although the lack of

existence cannot be proven. The error that seems to be committed here is to confuse the

lack of access to each market participant’s intent with the presence of randomness.

 It appears to the author that financial asset price changes are neither random nor

easy to forecast. Some of the most intelligent humans of various disciplines work very hard

to develop new pricing models, trading algorithms, and approaches to risk management

within financial institutions today. Very few excel as bank and hedge fund traders and are

leaving with a fortune, a few others work independently and extract sufficiently large

returns that justify the painful and time-consuming pursuit of new edges. Most others at

financial institution’s sales and trading desks earn a very decent salary as employees by

facilitating client orders. Carving out an edge in this domain is extremely difficult and

requires intellect, years of experience, hard work, and a unique set of psychological skills,

but some have proven that it is possible to extract value from publicly available

information.

 In conclusion of this section, I would like to present a list of market practitioners

(in no particular order and not an exhaustive list) who all possess an ethical and proven

track record of outperforming the markets for a decade, some for several decades, and those

individuals function as one of the strongest arguments against the claim of markets being

25

unpredictable: Stuart Walton, Michael Lauer, Steve Watson, Mark Cook, Alphonse

Fletcher Jr., Ahmet Okumus, Mark Minervini, Steve Lescarbeau, Michael Masters, John

Bender, Claudio Guazzoni, David Shaw, Ari Kiev, Michael Marcus, Bruce Kovner,

Richard Dennis, Paul Tudor Jones, Garry Bielfeldt, Ed Seykota, Larry Hite, Michael

Steinhardt, William O’Neil, David Ryan, Marty Schwartz, James B. Rogers, Mark

Weinstein, Brian Gelber, Tom Baldwin, Tony Saliba, Bill Lipschutz, Randy McKay,

William Eckardt, Monroe Trout, Al Weiss, Stanley Druckenmiller, Richard Driehaus, Gil

Blake, Victor Sperandeo, Tom Basso, Mark Richie, Joe Richie, Blair Hull, Jeff Yass, Colm

O’Shea, Ray Dalio, Larry Benedict, Scott Ramsey, Jaffray Woodriff, Eward Thorp, Jamie

Mai, Michael Platt, Steve Clark, Martin Taylor, Tom Claugus, Joe Vidich, Kevin Daly,

Jimmy Balodimas, Joel Greenblatt.

This concludes the chapter of related research, and the following chapter will walk

through the methodologies of the Transformer model.

26

CHAPTER 3 – METHODOLOGIES

3.1 Original Transformer Model Architecture

In 2017 a team at Google Brain proposed the Transformer deep neural network architecture

[10], aimed at training networks to solve Natural Language Processing (NLP) problems.

Most state-of-the-art sequence-to-sequence models incorporate an encoder-decoder

structure and likewise does the Transformer. Encoders generally map input sequences � =

 (��, . . . , ��) to representations � = (��, . . . , ��) that are passed to the decoder which in

turn transforms z into an output sequence (��, . . . , ��). The encoder-decoder structure of

the Transformer in [10] possesses auto-regressive properties, meaning, previously

generated elements function as additional input to generate a current element in the

sequence. This feature helps the model to make sense of context in, for example, text

translation. Figure 2 depicts the original architecture which highlights the encoder stack on

the left-hand side of the graph and the decoder stack on the right-hand side of the graph.

27

Figure 2 Original Transformer Architecture (adopted from [10])

 In the original paper, the encoder stack is comprised of � = 6 identical encoder

layers each of which is fully connected. The first encoder layer receives input data, such as

word sequences that are transformed through word embeddings and positional encodings.

The encoder layer is further broken down into two sub-layers, a multi-head self-attention

mechanism followed by a feed-forward network. Residual connections surround each of

the two sub-layers, followed by layer normalization. Regularization through dropout is

28

applied to the output of each sub-layer before the output is added to the sub-layer input and

normalized.

 The decoder equally consists of � = 6 identical layers. In addition to the two sub-

layers of the encoder, the decoder injects a third sub-layer that applies self-attention to the

output of the encoder stack. To prevent the decoder attention from attending to subsequent

positions when making predictions for a position �, the self-attention sub-layer is equipped

with a masking feature that hides positions equal to or larger than �. The output of the

decoder stack is passed to a linear layer that projects that floating-point vector into a logits

vector whose size matches the size of the decoder dictionary. A Softmax function

normalizes the logits vector and outputs a vector of probabilities. The position in the vector

with the highest probability is chosen and the corresponding position in the decoder

dictionary produces the next predicted word in the output sequence.

3.2 Extended Transformer Model Architecture

While the proposed extended Transformer model conceptually derives from the original

Transformer, it differs in several aspects. Most significantly, the decoder part of the

Transformer is disposed of. As the goal of this particular work is to train a Transformer

network for classification purposes, sequence-to-sequence mapping is not applicable and

hence the output vector of the encoder needs to be transformed into a categorical value that

represents the classification. This is accomplished through a dense Softmax layer that maps

the normalized vector to probabilities of all possible classification values. The sequence is

classified according to the highest probability.

29

 The encoder consists of 8 encoder layers that are fully connected, and each encoder

layer is broken down into an attention and feed-forward sub-layer. Residual connections

surround each of the two sub-layers. The output of the encoder is pooled, passed through a

dense layer before regularization through a dropout layer is applied. The resulting vector

is normalized and mapped to probabilities through a Softmax layer, resulting in the desired

classification value. Figure 3 depicts the extended Transformer model architecture. The

remainder of the chapter introduces each component of the architecture and focuses on the

technical methodologies.

Figure 3 Extended Transformer Model Architecture

30

3.3 Input Embeddings

Because the focus of the original Transformer is on solving NLP problems, unsurprisingly

the inputs of the model are text-based, such as sequences that contain words and/or

characters. The output is a sequence of words/characters as well, hence, the term sequence-

to-sequence models. In this work, the task is to present the network with time-series data

that are labeled by a classifier to train the network to learn classifications on its own. While

a comparison with classification problems in the NLP or computer vision domains

conceptually holds, the transformation of multi-variate temporal sequence data into input

embeddings is very different. Input sequences are neither tokenized nor cut into image

chunks. Instead, an extensive data pre-processing pipeline needs to be designed and

executed to transform raw multi-variate time series-based data to input embeddings,

suitable for a Transformer network to understand. While various data pre-processing steps

are discussed in detail in the next chapter, the focus here is on the dimensionality and shape

of the input data.

The input embeddings in this work are of the shape [sequences, timesteps, features].

Figure 4 illustrates this shape. The first dimension denotes the sequences in the batch, the

second dimension the temporally ordered elements in a given sequence, and the third

dimension represents the features. The batch size, sequence length, and the number of

features are all hyperparameters of the model and are a function of the specification of the

model. Interestingly, the shape of the input embeddings of temporal sequence data match

with the shape of the word embeddings for NLP tasks because the temporal sequences are

like sentences, each time step in the sequence is alike a word, and the features are like a

31

word vector. The input embeddings consist of two datasets, the feature data and the target

data, which represent the labels, required for supervised learning.

Figure 4 Input Shape and Dimensionality

3.4 Encoder Layer

The encoder of this research consists of 8 encoder layers that are all fully connected. Each

encoder layer is divided into an attention sub-layer and a feed-forward network sub-layer.

Only the first encoder layer receives the input embeddings in isolation. All other encoder

layers receive a combination of the output of the directly preceding encoder layer and data

from the residual connections. The last encoder layer passes its output to a subsequent

pooling layer. The output shape of each encoder layer matches the shape of the input

32

embedding because intuitively, each encoder layer returns an identically shaped vector that

enriches the input embedding with more complex information about the relationships

among the elements and their positioning in each sequence. The following subsections

describe the components in each encoder layer.

3.4.1 Positional Encoding

Transformer models are designed in a way that attention heads in the multi-head attention

layer attend to each position in the sequence in parallel. That feature opens up the potential

for parallelization and computational efficiency improvements, but it also makes the model

oblivious to the relational structure of each element in the sequence to each other. Recurrent

Neural Networks (RNNs) implicitly know about the positioning of each element in the

sequence because each element is processed in sequence. Fully connected neural networks

assign unique weights to each position in the sequence. In contrast, a Transformer model

can be seen as operating on a bag of unordered, multi-dimensional features. To equip the

Transformer with knowledge of the positioning of each element and its features in the

sequence, input embeddings must be enriched with positional encodings. Positional

encodings can be either learned by the Transformer or can be explicitly added or

concatenated to input embeddings. [10] has shown that explicitly added input embeddings

work equally well as learned ones but that they generalize better to sequences of different

lengths.

33

An important consideration when implementing positional encoding is the need to

equip the Transformer model with the relative positioning of each element in the sequence,

not absolute positioning. One might argue that relative positioning is irrelevant when the

time stamps in a temporal sequence are all equally spaced. While that is true, applying

relative positional encoding, irrespective of whether the sequence length is constant or not,

generalizes the model better and allows for transfer learning where a trained model on a

specific sequence length can be fine-tuned through additional training of data with a

different sequence length. Experiments as part of this research of training models with

various positional encoding techniques have shown that a sinusoidal position embedding

adopted and modified from [10] works best for the particular data and model of this work:

��
(��)

= sin �
�

��
��/��

�

��
(����)

= cos �
�

��
��/��

�

where t represents the position of each element in the sequence, i the dimension of each

feature of the element (1 ≤ � ≤ ��), �� the sequence length (hyperparameter), and �� the

number of features (hyperparameter). The frequencies are decreasing along the vector

dimension and hence form a geometric progression from 2� �� 2� · �� on the

wavelengths. The positional embedding is added to each element �� in the sequence

[��, . . . , ��], resulting in

34

�′� = �� + ��

The addition is possible because the input embedding dimension matches the positional

embedding dimension. One might assume that adding the positional encoding rather than

concatenating it to the input embeddings might make it difficult for the model to discern

which part of the resulting vector embedding represents the actual information and which

the position. However, that does not appear to be the case. The intuition behind this might

be as follows: The information embedding vectors and position encoding vectors are not

related in any way, hence, one might look at the relationship between both as being random.

Vectors that exhibit random relationships to each other are almost always approximately

orthogonal in high dimensions. If each of the vectors forms its own smaller dimensional

subspace, then perhaps the subspaces themselves are approximately orthogonal. Because

they essentially exist on different axes in higher dimensional space, there is reason to

believe that a learned transformation function can treat both the information vector and

positional encoding vector independently. If this holds then this would explain why the

addition of the two vectors rather than concatenation works equally well, with addition

reducing the dimensionality of the data relative to concatenation. Transformer-XL [32], an

extension of the Transformer model, implements its own specific relational embeddings

that appear superior to adding a positional encoding vector.

 I have chosen to make several modifications to the positional encoding

implementation, proposed in [10]. While [10] chose 10,000 as constant for �������, it is

not clear why this particular value was chosen other than through trial and error. Setting a

minimum frequency of
�

�������
 instead of

�

�����
 for �������� �����ℎ� < 10,000 resulted

35

 in earlier accuracy improvements when training the model. A possible reason could be

that with a larger minimum frequency the positional encoding that is added to the input

embedding results in absolutely larger positional differences between each element in the

sequence and this might benefit the model in the early training stages when most weights

were just recently randomly initialized.

 Another major modification to the original positional encoding of [10] was made

by position encoding the inputs of each encoder layer rather than position encoding the

input embeddings of the first encoder layer, only. Even though residual connections allow

the initial positional encoding to feed through the entire encoder network, adding the output

of the previous layer to the input embeddings through residual connections causes a

degradation of the positional information of each element and its features in the sequence.

Adding a “fresh” positional encoding to the input embedding of each encoder layer

accentuates the positional information that each encoder layer receives. The benefit was

measurable in multiple training sessions, resulting in significant increases in the inference

accuracy which suggests that the model learns to better generalize from training data. This

modification turned out to be one of the more prominent contributors to improved

inferencing accuracy.

36

3.4.2 Multi-Head Attention

Attention is a mechanism that helps the model to focus on relative parts of the feature

space. The main task of the attention mechanism is to discern the context of each element

in the input sequence. Self-attention is a derived term that means nothing other than each

element in the input sequence looking at other elements in the sequence to gain information

about the relevancy between itself and each other element. Error! Reference source not

found. depicts the attention layer as originally introduced in [10].

Figure 5 Original Multi-Head Attention & Scaled Dot-Product Attention

37

Since the main contributions of this Transformer extension are not focusing on the attention

mechanism itself, the multi-head attention layer has been adopted from [10] in unmodified

form. However, due to its relevance and importance, it deserves a detailed treatment as

follows.

�(�) = (��,�)�X , �(�) = (��,�)�X , �(�) = (��,�)�X (1)

�������(�)� =
���

∑ �
��

�

 (2)

�����(�), �(�), �(�)� = ������� �
�(�)�(�)�

���
� �(�) (3)

��(�, �, �) = ������ ������(�), �(�), �(�)�, , �����(�), �(�), �(�)�� �� (4)

�ℎ��� ��,� ∈ ℝ������ � ��, ��,� ∈ ℝ������ � ��, ��,� ∈ ℝ������ � ��, �� ∈ ℝ� �� � ������

������ =
�������� �����ℎ

ℎ
, �� =

����ℎ

ℎ
, �� =

512

ℎ
, ℎ = ������ ��������� ℎ����

The first step inside the multi-head attention layer is to derive a Query, Key, and Value

matrix. The Query represents an abstraction of a current element in the sequence, whereas

the Key represents the abstractions of each of the other elements in the sequence. The Value

is the true representation of a given element. Each of the matrices’ shapes is (sequence

length, feature count). The generation of the Query, Key, and Value matrices is

accomplished by multiplying either the input embedding (first encoder layer) or the output

38

 of the previous encoder layer (subsequent encoder layers) with the transpose of the Query,

Key, and Value weight matrices, respectively, as shown in (1). The weight matrices are

initially randomly initialized but are being subsequently trained by the network. The Query,

Key, and Value matrices are then linearly projected to ��, ��, ��� �� dimensions,

respectively. The benefit of those linear projections is not quite obvious because the

matrices are already in the desired dimensions. Further research is warranted to validate

the claimed benefit by the authors in [10].

Equations (2) and (3) compare the Query and Key matrices to generate a relevance

score through a dot product multiplication. The result is scaled by the square root of the

feature dimension. The reason behind this is because the Query and Key represent

independent random variables with a mean of 0 and variance of 1. The dot product produces

values with mean 0 and variance dk (feature count). For large values of dk the SoftMax

operation on the much larger dot products results in extremely small gradients. This is

counteracted by the scaling factor. The SoftMax operation normalizes the resulting self-

attention scores and makes them add up to 1. The normalized self-attention score can be

interpreted as a percentage of focus that is attached to an element in the sequence. High

percentages indicate high relevancy, while low scores indicate low relevancy. The resulting

normalized scores are dot product multiplied with the Value matrix and result in the

encoding of the current element in the sequence.

 Of note here is that the authors of [10] did not implement just 1 attention, but

generated 8 attention heads, each of which with different projected versions of Queries,

Keys, and Values. All 8 heads perform the attention function in parallel and the output of

each is subsequently concatenated (4) and again linearly projected. The 8 attention heads

39

jointly attend to information from different representation subspaces at different positions

[10]. Figure 6 depicts the attention layer from a dimensional and shape perspective.

Figure 6 Attention Layer Shapes & Dimensions

3.4.3 Layer Normalization

Backpropagation in the Transformer model extends to the entire model, including all the

encoder layers. Hence, the gradients with respect to the weights in a given layer are highly

dependent on the outputs of the neurons in the previous layer, particularly when those

outputs change in a highly correlated way [33]. Also, when neurons of the output of the

previous layer vary in a large range the learning process will be skewed. Previously, Batch

Normalization was applied to reduce this so-called “covariate shift”. However, one

40

challenge with Batch Normalization is that it is highly dependent on the size of the mini-

batch size. If it is small, then Batch Normalization has little to no effect. Another problem

with Batch Normalization is that the expectation in Batch Normalization is under the entire

training data distribution which would require forward passes through the entire data set.

This is computationally impractical and hence µ and σ are estimated from the sample of

the current mini batch.

 This led to the invention of Layer Normalization which does not depend on batches.

Instead, µ and σ are derived from the values of all hidden units in the same layer. This

results in all hidden units in the layer sharing the same normalization terms µ and σ:

�(�) =
1

�
� ��

(�)

�

���

 �(�) = �
1

�
����

(�)
− �(�)�

�
�

���

� = given layer, H= number hidden units in layer

In simplified terms, Batch Normalization normalizes input data of the same neuron for all

data in a mini batch. Layer Normalization normalizes input data of all neurons in the same

layer for each data sample in a mini batch. Normalization generally helps to re-scale the

data that help gradient-based optimization algorithms during the training process.

3.4.4 Regularization through Dropout

One of the main concerns for any researcher training a deep neural network is to not overfit

the model to the data the model is training on. Overfitting a model appears to capture the

relationships among training data, which the model has seen, really well. However, an

41

overfit model usually generalizes very poorly to data that the model has not yet seen. An

analogy in machine learning is the overparameterization of a model, for example, a

multivariate polynomial regression with too many parameters. One of the technically

easiest approaches to avoid or at least reduce the potential of overfitting a model is to

increase the size of training data. That makes it harder for the model to learn weights that

fit only a small amount of data and helps with model generalization. However, it is

sometimes impractical to increase the sample size of training data due to the limited

availability of larger datasets for a given problem.

 Besides increasing the amount of data, regularization is often used to reduce the

chances of overfitting a model. Regularization counteracts ill-posed problems and targets

overfitting through a process of adding or eliminating information. The introduction of new

information or removal of existing information prevents the model from adopting its

weights to the training data, only, and instead forces the model to generalize to newly

injected information or an unpredictable removal of information, such as random dropout

of data. Laplacian (L1) and Gaussian (L2) regularization, data augmentation, early

stopping, and Dropout represent just a few of the many techniques of regularization in deep

learning.

Dropout in particular represents a computationally cheap and remarkably effective

way to improve generalization error and counteract overfitting of a model. Dropout appears

to make the training process noisier by forcing random nodes in a layer to probabilistically

shift the weights (or importance) of their corresponding input data. This process makes the

model often more robust in that it better generalizes to data, not yet seen. An interesting

42

side-effect of Dropout is the increase of sparse activations in a given layer, which

encourages the network to better learn how to deal with sparse data representations.

Dropout is implemented by randomly choosing a fraction of nodes and

corresponding activations that are ignored within a given layer during training.

Implementation-wise, the to be ignored nodes have their weights set to zero. This results

in the weights of the nodes that are not ignored to be larger than normal. To counteract this

behavior, the weights are being rescaled by the dropout rate at the end of each mini batch

during training. This is called “inverse dropout” and is how popular deep neural network

toolboxes like Pytorch or Tensorflow implement dropout. While dropout offers multiple

benefits at a seemingly cheap cost, some attention must be paid to some hyperparameter

adjustments. There appears to be a near-linear relationship between the dropout rate and

the number of iterations during training that the model requires, although the training time

of each epoch is somewhat reduced due to the reduced number of neurons that have weights

larger than zero. Hence, it is recommended to increase the number of epochs that the model

is trained on with an increase of the dropout rate, otherwise, the training accuracy at a given

epoch will be lower compared to the accuracy of a model without dropout.

3.4.5 Temporal Convolutions

The fully connected feed-forward sub-layer of each encoder layer is equipped with 2

temporal convolutional layers. Generally, convolutions are networks of filters (kernels)

that are employed to generate feature maps that lead to hierarchical patterns of increasing

complexity by using smaller and simpler patterns than the original data. Therefore,

convolutions can be interpreted as regularized versions of fully connected networks where

43

each neuron in a given layer is connected to all neurons in the next layer. The particular

focus of temporal convolutions is not just on space but time and space, such as video

streams. This makes temporal convolutions also suitable candidates for time series-based

data and related problems. 1-D Convolutions, in particular, limit their focus to data in the

temporal dimension and can map an input sequence to an output sequence of the same

length which is achieved by setting the size of each hidden layer equal to the size of the

input layer. 1-D Convolutions are increasingly used for sequence-to-sequence problems in

the NLP space and for time series prediction purposes.

 Here, however, the purpose of the 1-D Convolutions is not so much the learning of

feature abstractions but the linear transformation of each position in a sequence separately

and identically. This is accomplished by using a 1-D Convolution with a kernel size of 1.

Using two 1-D Convolutions of kernel size 1 with the first convolution applying a RELU

activation to neurons of the output layer replicates a fully connected feed-forward network:

���(�) = max(0, ��� + ��)�� + ��

The dimensionality of the input and output is ������ = 56 (512 in [10]) and the inner

layer has a dimensionality of ��� = 512 (2048 in [10]). This is an example of linear

transformation and subsequent dimensionality reduction.

44

3.4.6 From Encoder to Classifier

The subsequent layers that are applied to the output of the encoder are rather

straightforward. A pooling layer (GlobalMaxPooling1D) is applied to down sample the

input representation of the encoder output by taking the maximum value over the sequence

dimension. The parameterization of the specific pooling layer here specifies the input shape

to be (batch, features, steps) and returns a 2D tensor of shape (batch, features). The purpose

of the MaxPooling layer here is to bridge the convolutional structure of the last part of the

encoder layer with the subsequent neural network classifier. It generates one feature map

for each corresponding category of the classification task. The next Dense layer with RELU

activation in its output applies a non-linear transformation that maps each neuron of the

input to all the neurons of the output. Another dropout layer is subsequently applied for

regularization purposes (as explained in section 3.4.4). Finally, a Dense layer applies a

Softmax activation that normalizes the input vector and maps it to a vector of probabilities.

The position in the vector with the highest probability is chosen and returned. The output

dimension of this last dense layer matches with the number of categories that were initially

specified for this categorization problem. The probabilities can be easily converted to the

category of each sequence by applying an Argmax function on the resulting vector. In the

end, each temporal sequence is being classified according to the various components in the

extended Transformer structure and its learned weights.

45

CHAPTER 4 – IMPLEMENTATION AND SIMULATION

4.1 Problem Definition and Goals

While the proposed extended Transformer network can be applied to temporal sequence

data in various domains such as environmental science, the implementation part of this

thesis concerns itself with applying the Transformer model to temporal sequences of

financial asset pricing data, more specifically US equity, index, and futures pricing data

and their derived features (more on data in section 4.2).

The declared goal of the implementation is to train a Transformer neural network

to classify a given temporal sequence whether the return of a stock that represents that

sequence will either be positive or negative between two points in time. Therefore, the task

at hand is defined as a classification problem. More specifically, for a given stock and its

related sequence data that are represented as “features”, the model is tasked at the open of

each daily exchange trading session to classify whether the closing price in the same

session will be higher or lower than the open price. The problem was formulated in that

way to avoid exposure to large close-open price fluctuations that can be caused by price

fluctuations in overseas markets outside the operating hours of US stock exchanges and

the publication of quarterly earnings, special events, such as mergers & acquisitions,

dividend payment declarations, and stock splits which generally occur outside of active

trading hours. Also, risk exposure over the weekend due to political and other

macroeconomic events is minimized that can expose stocks to large price deviations

between Friday’s market close and Monday’s market open.

46

The accuracy of the model is measured by relating the predicted classifications to

the actual classifications that were determined before the model was trained/inferenced.

Being more often correct than not about the classifications does not guarantee a profitable

trading strategy that can be derived from model inferencing. Hence, besides inferencing

the model and measuring its accuracy to make correct classifications on data that the model

has never seen, this chapter introduces an algorithmic trading strategy that transforms the

classifications, made, into investment decisions that result in a performance profile that

will subsequently be analyzed in the context of statistical expectancy. The implementation

benefits from portfolio diversification by investing in multiple stocks at any given day

rather than treating each stock in isolation. The combination of model inferencing accuracy

and portfolio diversification results in the actual performance on which transaction-related

costs are applied to arrive at a realistic distribution of net returns that are statistically

analyzed.

Subsequently, a stacked LSTM and GRU model are trained and inferenced over the

identical dataset and the results are being compared with the extended Transformer

network. The chapter concludes with an extensive analysis and discussion of the results.

47

4.2 Hardware and Software Environment

The programming code for data pre-processing, model architecture, training, and post-

training analysis is implemented in Python 3.8.7 with the help of Numpy and Pandas

Python libraries, and training and inferencing are aided by Google’s Tensorflow 2.6 deep

learning toolbox.

 Due to the large size of the dataset (more on data in section 4.3) the hardware

requirements exceed the resources provided by standard workstation machines. Microsoft

Azure’s NC24S_V3 virtual machine instance is chosen to pre-process data and to train the

model on the large collection of data. This particular virtual machine offers 24 CPUs, 448

gigabytes of internal memory, and most importantly, 4 NVIDIA V100 graphic processing

units (GPU) that greatly increase the computational power made available to train the

model. The main advantage of a multi-GPU setup is the ability to parallelize computations,

especially in the context of Transformer models which are highly parallelizable. Deep

neural networks usually train on batches of sequences and the memory of the GPU poses

limits to the maximum size of a batch. In [35] Tensorflow describes the distributed

MirroredStrategy mode which offers synchronous distributed training on multiple GPU

devices. The mode creates a virtual replica of all GPUs where each variable in the model

is mirrored across all replicas. The variables are kept in sync with each other by applying

identical updates. Efficient all-reduce algorithms are used to communicate the variable

updates across the GPU devices. The fused algorithm is very efficient and can reduce the

overhead of synchronizations significantly. The chosen all-reduce algorithm is NVIDIA

Collective Communication Library (NCCL). This solution allows for a four-fold increase

of the batch size which speeds up training nearly linearly. Training of the extended

48

Transformer model over the entire dataset with those parallelized optimizations takes

around 45 hours.

4.3 Data Pre-Processing

This section describes the preparation of data that the extended Transformer model can

train on, evaluate its accuracy on, and inference on. The section is subdivided into the

following parts: Data Acquisition & Cleansing, Feature Engineering, Target Generation,

Data Conversion, Data Splitting, Data Normalization, Sequence Generation, and Data

Shuffling, Batching, Caching, and Prefetching.

4.3.1 Data Acquisition & Data Cleansing

The importance of a well-defined data acquisition process as part of research is often

underestimated and undervalued. Nowhere does the concept of “garbage in, garbage out”

apply more than in data science. Careful selection of a proper data source is essential. The

researcher needs to carefully consider which data to extract, of what nature the data is,

whether the data contains missing or erroneous data, and to what degree. This applies even

more so to historical financial sequence data because each asset might be adjusted and

stored in different ways.

The Standard & Poor’s 500 (S&P 500) index constitutes a capitalization-weighted

stock index of the 500 largest companies, listed in the United States. The implementation

part of this thesis will train the model on the entirety of all companies in this index ranging

49

from the date each company began to be publicly traded or from January 2000 (whichever

comes later) until July 2021. In addition, data of several US indices and commodity,

volatility, and short-term/medium-term/long-term interest rate futures contracts are

retrieved. The acquired raw data is represented by the daily open, high, low, and closing

prices of each asset. Refinitiv (formerly Reuters) is chosen as a data source because of its

well-maintained and clean database of historical data. The rationale for the specific choice

of data will be further discussed in section 4.2.2. The chosen data vendor also maintains a

historic schedule of corporate actions such as stock splits and dividends. Stock splits and

dividend payments affect stock prices and to analyze stock returns, adjustments have to be

made for stock splits and dividend payments. Fortunately, the static databases, provided by

the chosen data vendor, make those adjustments relatively easy and save the researcher an

incredible amount of time. “Trust but verify” is a good approach in data science, and hence,

random stocks were chosen to verify that the stock split and dividend adjustments were

performed according to expectation.

A potential pitfall in data science is selection bias and survivorship bias. All

companies currently in the S&P 500 index were chosen, which means any companies that

were in the index in the past but dropped out were not investigated in this research.

Depending on the exact type of research goals, this can lead to a very misguided analysis

of results. However here the focus is not on a cross-sectional analysis, where an individual

stock is compared to its peers. Also, rarely do companies go bankrupt that are in the S&P

500 index. Usually, when a company performs poorly, due to the capitalization weight of

the index, companies drop out of the index and are replaced by companies with higher

market capitalization. Another reason why the stock of a company might drop out is that it

50

is being reorganized or acquired by another company. As already explained in section 4.1

activities and data between a day’s trading session open and close are only considered.

Stocks virtually never declare bankruptcy or drop out of the S&P 500 index during an open

market session. One might argue that this particular research can be enriched by also

including stock price data of those companies that were formerly included in the S&P 500

index but subsequently dropped out. That is a very valid argument, and it indeed appears

to add value by increasing the data repository, available for training a neural network.

However, as the existing amount of data is sufficiently large a decision has been made to

not include stock price data of companies that dropped out of the S&P 500 index.

How futures contract data are stored is also very important when perusing such data

for analytical purposes. Futures contracts are exposed to a limited lifecycle. Hence, when

analyzing futures contract pricing data, individual contracts need to be “stitched together”

to obtain continuous sequences. One problem arises because prices of expiring contracts

are not identical with the prices of the next contract, hence, certain adjustments have to be

made. There are various methodologies for how those adjustments are made, but most often

past contracts are “backward adjusted”, meaning, each past contract’s data sequence is

adjusted by a factor that reflects the price gap between contracts. The date of the adjustment

is generally chosen to be the last trading date of the expiring contract or the day within the

last 2 weeks before expiration on which trading volume was the highest. Some commodity

futures contracts have “first delivery date” provisions, the first date on which a physical

commodity can be delivered which complicates the choice of adjustment date even further.

For purposes of this research, all historical futures data is “backward adjusted” on each of

the contracts’ last trading date. This will alter the absolute price levels of historical data

51

but because of the way the adjustment factor is applied, the return profile of historical data

remains unchanged.

In summary, historical stock price data were chosen of all stocks that were

contained in the S&P 500 index as of July 1, 2021. Historical stock prices were adjusted

for dividend payments and stock splits. Historical futures contract data were backward

adjusted to account for the price gap between contracts. The daily open, high, low, and

closing prices were eventually retained from the adjusted raw data.

4.3.2 Feature Engineering

“Features” are defined as the data that a deep neural network uses to learn relationships

from during the training process. Those features also need to be supplied when a trained

model is inferenced and asked to make predictions or to classify. Besides the choice of raw

data, feature engineering is a crucial step of data pre-processing.

 After retrieving the historical daily open, high, low, and closing prices of all chosen

assets, the high, low, and closing prices are converted to percent deviations from the open

price. This provides the model with information about the intraday maximum price

deviations, a volatility measure that has been shown to improve model accuracy during

training. The model can learn those linear transformations on its own, however, explicitly

providing the model with the transformations results in earlier accuracy improvements.

Additionally, the data is enriched by adding as a feature the percent deviation between a

given day’s closing price and the next day’s opening price. Although including information

about the next day’s open price is added, look-ahead bias is not an issue because the

52

problem is defined from the temporal perspective of being positioned at the time of the

market open on each given day. For example, at today’s market open the model is provided

with a sequence of multivariate features, with the most current feature vector constituting

yesterday’s open, the percent deviations from yesterday’s open and yesterday’s high, low,

and closing prices, and the percent deviation between yesterday’s closing price and the

current opening price. The model is then tasked to classify whether today’s closing price,

which the model does not yet know, to be higher or lower than the current opening price.

Several other engineered features that represent historical realized volatility, among others,

with a rolling window of different parameterizations are also added to enrich the dataset.

At this point, the derived data is two-dimensional, the temporal axis and the feature axis.

This completes the feature engineering task.

4.3.3 Target Generation

For supervised learning, the model also requires “targets”, sometimes called labels, that the

model uses in its optimization step to compare model predictions/classifications to the

actual realization of the to be predicted/classified variable. Just as with supervised image

classification where the model is provided with information about the content of the image,

here the model is provided with the true realizations of the classifier. As previously

mentioned, the classification task is to classify whether a given day’s closing price is higher

or lower than the same day’s opening price of a given stock. Therefore, the target values

are defined as follows:

53

������(�����, ������) = �
 1 �� (

������

�����
) − 1 > 0

0 ����

4.3.4 Data Conversion

In the next step, raw values of each feature, which are not yet expressed in return terms,

are converted to percent returns with a step size of 1 and a stride length of 1:

�������_������(��, ����) = (
��

����
) − 1

This conversion helps the model to generalize. If the model was trained on raw values, then

the model would still learn relationships and its training accuracy will increase as training

progresses, however, the model will overfit the data, as it learns absolute representations

and cannot generalize to data of other price levels. That is why the data is converted to

percent returns, assuming that for large sample sizes the distributional properties of the

return data for all stocks are approximately similar.

4.3.5 Data Splitting

Once the data is generated and appropriately converted, both the feature and target datasets

need to be split into training, validation, and test subsets. It is important to note that both,

the feature, and the target dataset, are split at the same positions. The split ratio between

training, validation, and test subsets was chosen to be 80%, 10%, and 10%, respectively.

The feature and target training subsets will be used for the model to train on, and the model

optimizers adjust their weights according to how good the predictions are compared to the

54

target training subset. The validation subsets are used during training for the model to test

its accuracy on validation data, which the model does not have access to train its network

weights. The validation accuracy metric is used to store the model weights at which the

highest validation accuracy was achieved. That particular model is eventually used after

training to inference on the test datasets or to make predictions on any other data that the

model has not previously seen.

4.3.6 Data Normalization

The data of each training, validation, and test dataset are standardized. The standardization

is applied to each feature vector in isolation. Target data are not normalized because the

target data represent the actual classified values that the model requires for optimizations.

The purpose of standardizing feature data is to change the values to a common scale

without distorting the differences in the ranges of values. One might argue that because the

feature data are already represented as percent returns, standardizing them is not necessary.

However, the range of the percent values across features is very different and

standardization maps the data to a shared scale. To avoid look-ahead bias, a standardizer is

fit to the training data, only. The fit standardizer is then applied to the validation and test

datasets. If the validation and test data were fit individually then knowledge of future data

is required for each standardization to obtain the mean and standard deviation. This would

constitute a look-ahead bias. Therefore, only the training dataset is used to parameterize

the standardizer.

55

4.3.7 Sequence Generation and Concatenating of Datasets

Once each sub-set is normalized, the data need to be transformed into sequences. The

extended Transformer model is specified to operate on temporal sequence data, not

individual data points. A rolling window of 100 temporal positions (=100 trading days) is

applied to each feature training, validation, and test subset. Each sequence is mapped to

one single target value that represents the classifier. For example, if the first sequence

represents features from day 1 until day 100, then the corresponding target value will be

the classifier for day 100. Remember that each day contains features with values that

represent the current day’s open prices and the previous day’s open, high, low, and close.

The target value represents the classifier that was derived from the same day’s open-close

deviation. The window is then moved forward with a stride length of 1 to include features

of day 2 until day 101 and so on. The feature sequences and their targets are then reshaped

to result in a tuple of arrays. The first item in the tuple is a three-dimensional array, where

the first dimension represents the sequences, the second dimension the elements in the

sequence, and the third dimension the features of each element. The second item in the

tuple is a vector that represents the classifiers for each sequence.

The above data pre-processing steps were performed for every stock in isolation.

The purpose of preparing the data this way is to avoid a commingling of values of different

stocks. The tuples of each stock are then concatenated to result in a single tuple of identical

shape. The resulting total number of sequence/target tuples amount to approximately

2,600,000, of which 80% are allocated to the training dataset, 10% to the validation dataset,

and the remaining 10% to the test dataset, just as described in section 4.2.5.

56

4.3.8 Data Shuffling, Batching, Caching, & Prefetching

The last step in the data pre-processing step is to shuffle the data in the training dataset.

This results in a dataset of the same shape but where each sequence/target tuple is randomly

re-ordered. The purpose of shuffling training data necessitates a deeper discussion of how

gradient descent and loss functions inside neural networks operate. I will provide a

summary that will hopefully make it clearer how shuffling training data helps the model

during training: The training process iterates once over the entire dataset per epoch.

Training generally does not operate on the entire dataset per epoch but is broken down into

batches because entire datasets rarely fit into GPU memory. The model during training

calculates the gradient and updates the weights in the model on each batch. Some of the

gradient descent algorithms, especially stochastic gradient descent algorithms, rely on

some sort of randomness to find minima. By shuffling the data to generate batches of

varying sequences, gradients become more variable which can help convergence due to an

increased probability of finding a good direction. This helps to avoid getting “stuck” in

local minima when more optimal minima may exist. Shuffling the data in batches helps the

solver to “bounce” out of those non-optimal, local minima.

 The shuffled sequences are then batched according to a hyperparameter that

specifies the batch size. As described above, training a model does not happen on the entire

dataset at once but batches of data. Generally, the larger the batch size the more memory

is consumed, and the faster training becomes per epoch because more GPU cores can

operate on each batch in parallel.

57

 Tensorflow makes use of caching and prefetching data. Caching means that data

that are passed into the GPU can be stored from the previous iteration/epoch. This is

evidenced by the consumed time on the first epoch being roughly twice as long as the

consumed time on subsequent epochs with caching. Prefetching means that Tensorflow

spins up several CPU worker threads during training whose sole purpose is to prepare a

certain number of batches before the GPU device even requires them. Caching and

prefetching speed up the time it takes before the model starts the actual training process

and training on subsequent epochs, once the dataset used in the first epoch has been cached.

4.4 Extended Transformer Model Implementation and Training

To train the extended Transformer model, it needs to first be compiled and built. The

Transformer model is parameterized according to the hyperparameters Table 1. The input

shape of the first layer in the Transformer model is (batches, sequences, elements, features).

A Sparse Categorical Crossentropy function is chosen as a suitable loss function as it

computes the cross-entropy between the targets and predictions and because it allows for

the targets to be of type integer rather than having to convert targets to one-hot vector

representations.

The choice of optimizer turns out to be a bit more challenging. Initially, the Adam

optimizer and other stochastic optimizers were employed to minimize the loss function.

However, loss and hence accuracy often got “stuck” during training and did not change

anymore for the remainder of iterations. There are two possible explanations for that. Due

58

to memory limitations, the computations within the model are performed in mixed-

precision mode, meaning, computations are performed on half-precision floating-point

numbers, but results are stored at higher precision. The storage of higher precision results

only occurs when matrix operations are performed using Nvidia’s Cuda library which is

not used throughout the entire optimization pass. Updates in the optimizer are still subject

to half-precision floating-point values. The gradient may approach zero as a result of

multiplications of very small half-precision floating-point values (numeric underflow) and

hence the gradient ends up at a saddle point of the loss landscape which is problematic

because saddle points do not represent extrema. Another reason could be that the learning

rate is too small at a certain point to move the gradient out of a local minimum, towards

better minima. Even adopting a custom learning rate scheduler as proposed in [10] does

not improve matters, hinting that numeric underflow in intermediate gradients, when using

half-precision floating-point values, is most likely to be blamed. What solves this

conundrum is to equip the Adam optimizer with a custom learning rate scheduler and wrap

it into a Loss-Scale-Optimizer, essentially an operation that prevents numeric underflow

by adjusting the loss by a “loss scale” which causes intermediate gradients to be scaled by

that loss scale as well. The final gradients are unscaled by the loss scale to return the final

gradients to their original value.

As metric “Sparse Categorical Accuracy” is chosen for the model to compare the

predicted categorical value with the true target categorical value. The subsequent model is

compiled, built, and a summary is generated that highlights each layer in the network and

the aggregate number of parameters of the entire model.

59

Before training begins, so-called model checkpoints are configured. The purpose

of a model checkpoint is to store network weights on a disk during training. Specifically,

those weights are stored which produce the highest accuracy when applying current model

weights in each epoch to the validation dataset. As the model improves in validation

accuracy, the best model weights are continuously updated and stored on a disk. The last

weights upon completion of training are also separately stored on disk.

During training, the entire training dataset is split into batches, subsets of the entire

dataset, according to batch size, which is a hyperparameter. Each batch propagates through

the network and after each propagation, the network’s weights are updated as a function of

the calculated gradient of the loss function with respect to the neural network’s weights.

The benefit of training on batches rather than the entire dataset is two-fold: The entire

dataset might be too large to fit into memory (especially into GPU memory) as in this case.

Another advantage is that the network’s weights are updated after each batch propagated

through the network, whereas the network weights are only updated once when passing in

the entire dataset. This helps the network to train faster. An argument can be made that

faster is not always better especially when the speed of optimizations is not a declared goal

of training the network. However, reaching a high accuracy rate on validation data faster

often proves beneficial because the longer the network trains the higher the chances that

the training accuracy starts to exceed the accuracy of the validation accuracy, meaning, the

model starts to overfit to the data it sees but fails to generalize to data it does not have

access to. Upon training completion, the best weights of the trained model, the last weights

of the trained model, and a visual representation of how training and validation accuracy

progressed over epochs are retained.

60

4.5 LSTM and GRU Model Implementation and Training

Benchmark LSTM and GRU networks were designed and trained to compare the

performance of the extended Transformer with two network implementations that are

currently the most often used for classification and prediction tasks of multi-variate time

series data. The training process of LSTM and GRU models is essentially identical to the

process, described for the extended Transformer in 4.3. Hence, a discussion of the LSTM

and GRU networks will be limited to network parameterizations and implementations.

Table 2 highlights the hyperparameters, used, to parameterize the networks and to

specify training settings. One notices that aside from batch size only the model-specific

hyperparameters differ from the parameterization of the extended Transformer network.

Hyperparameter Value

Data / Training Specific

Sequence Length 100

Number Features (d_model) 56

Train/Validation/Test Ratios 80:10:10

Number Classifiers 2
Shuffle? True

Batch Size 8192

Epochs 300

Learning Rate Warmup Steps 4000

Model Specific

Number Encoder Layers 8

Number Multi Attention Heads 4

Conv1D Filters 512

Dense Units 128

Dropout Rate 50%

Table 1 Hyperparameters for Extended Transformer Model

61

The reason for that is that the input shape between Transformer, LSTM, and GRU networks

is identical which is convenient because the data pre-processing pipeline does not need to

be re-adjusted. The batch size to train the LSTM and GRU networks is doubled which

reflects the much larger memory consumption of Transformer networks due to the attention

heads that store the relationship of each element in the sequence with all other elements in

the same sequence. One also notices the dropout rate for the dropout layer of 60% to be

higher than the dropout rate in the Transformer network. The reason is that LSTM/GRU

networks appear to overfit training data more quickly than Transformer networks. Setting

a higher percentage of neurons in the dropout layer to zero counteracts this tendency.

 The structure of the LSTM and GRU networks is almost identical to each other

aside from the LSTM and GRU cells, of course. The interested reader is referred to [17]

and [18] for an in-depth explanation of LSTM and GRU cells. Both structures are

sequential networks that consist of 3 LSTM/GRU layers that are stacked on top of each

other. The top two layers are configured to return their hidden states which allow the

LSTM/GRU stack to learn relationships with increasing abstraction. The desired increasing

abstraction explains why the layers, higher up in the stack, are parameterized with a larger

number of neurons than lower layers. Such configuration can often also be observed in

computer vision with convolutional layers where later layers are parameterized with a

lower number of units and are tasked to learn higher abstractions. Dropout layers follow

each of the LSTM/GRU layers. A dense layer with 56 neurons follows the LSTM/GRU

layers and the final dense layer with Softmax activation maps the 56 neurons from the

preceding dense layer to probabilities that are assigned to each of the 2 tensors that

represent the categories that the trained model aims to classify.

62

4.6 Model Integration in Trading Algorithm

After each model is trained and its weights are obtained the trained models can be used to

classify sequences in the test dataset. The test dataset includes data between 18 June 2019

and 9 July 2021. The classified sequences of the Transformer, LSTM, and GRU models

will then be applied to an identical trading algorithm.

 The trading algorithm submits buy or sell orders right after the US market opens

each day between 18 June 2019 and 9 July 2021 as a function of the output classifications

of each model. This is done for each stock in the S&P 500 index. Every open position is

subsequently closed at the same day’s market close, and the performance is evaluated.

Because all performance metrics in 4.7 are in relative terms, meaning, returns are expressed

as a percentage of invested notional, relative transaction-related costs can be directly

Hyperparameter Value

Data / Training Specific

Sequence Length 100
Number Features (d_model) 56

Train/Validation/Test Ratios 80:10:10

Number Classifiers 2
Shuffle? True

Batch Size 16384

Epochs 300

Model Specific

LSTM/GRU Layer 1 units 100

LSTM/GRU Layer 2 units 50

LSTM/GRU Layer 3 units 20

Dense Units 56
Dropout Rate 60%

Table 2 Hyperparameters for LSTM/GRU Models

63

subtracted from the obtained gross returns to arrive at a net performance metric. Because

all trades are deemed intraday trades, no financing charges for consumed capital apply.

 When the trading algorithm maps any of the classifications to sell a stock at the

open then it is important to understand whether this will be a long sell or short sell. Long

sell means that an investor currently holds a long position in a stock and subsequently sells

it. Short sell means that an investor wants to sell a stock that he/she does not currently own.

A short sell has important implications such as that the stock needs to be borrowed, sold,

then later bought back in the market, and returned to the lender. In the case of a short sell,

lending fees are charged, and the cost is a function of how difficult it is to borrow the stock.

In this analysis, the assumption of the existence of a long S&P 500 stock portfolio, is made.

This enables the investors to long sell positions rather than having to short sell. Arbitrage

trading desks very often use this approach to circumvent having to short sell during a

trading session. The trading desks hold a certain amount of notional of each stock in the

S&P 500 index and hold a matching short notional amount in S&P 500 index futures

(alternatively, an S&P 500 index-tracking ETF) as a hedge. Of course, this kind of hedge

portfolio also incurs costs such as financing the long stock portfolio and hedge-related

costs. Those costs are non-trivial to estimate and compute because they depend on the exact

size of the portfolio, type of investor, and chosen hedge implementation. For example,

arbitrage trading desks already account for financing charges, while other institutional

investors might have to factor in the additional financing cost. This specific cost factor is

ignored in this analysis because it applies to each large institution differently, and it does

not apply to retail traders who short-sell and buy back US stocks during the same intra-day

trading session.

64

 Therefore, the only considered cost that accrues by trading this particular algorithm

arises from execution-related costs such as commission and slippage (the spread between

the expected price of execution and the realized price). The conservative assumption is

made that the full bid-offer spread is incurred as a cost to open and close a position of stock

in the same trading session. This is a very conservative assumption because it implies that

the algorithm always functions as a pure price-taker and trades most aggressively by always

paying the offer when buying and receiving the bid when selling. This assumption ensures

that the cost analysis that is applied in this research is more realistic by ignoring the benefits

of possible price improvement (receiving a slightly better price than paying the offer price

or receiving the bid price for buys and sells, respectively).

4.7 Results and Discussion

This section first presents the results that are model-specific for the extended Transformer,

LSTM, and GRU networks. An exhibit of the results follows after each model and its

respective weights are applied to an identical trading algorithm.

 Table 3 and Table 4 reflect the accuracy of each model to correctly classify each

sequence separately in the training, validation, and test datasets. Table 3 showcases the

results when the models are inferenced by using the best weights. Best weights are defined

as those weights, obtained during training, which result in the highest accuracy when

applying the then-current weights during training to the validation dataset. Table 4 reflects

the accuracy rates of the models, using the last weights upon completion of training. The

Transformer model is far more complex with its roughly 9 and 12 times as many trainable

65

parameters compared to the LSTM and GRU models, respectively. To understand accuracy

rates better it is important to know the number of possible classification values. As the

models were specified to classify sequences into two categories, an accuracy rate of 50%

represents an accuracy that equals randomly picking one classification value over the other.

All three models learn relationships by training on the training dataset, with the

Transformer network reaching an accuracy rate that is roughly 8% higher than for the

LSTM and GRU models. All three models’ accuracy rates drop by approximately 8% when

applied to the validation dataset as compared to the training dataset. This is expected as the

models overfit the training dataset and understandably perform worse on data sequences

the model has not yet seen. The accuracy drops another 6% when using the trained models

to make predictions on sequences contained in the test dataset. The fact that accuracy rates

for the test dataset are lower than for the validation dataset is explained by the fact that the

models’ weights are chosen which resulted in the highest accuracy rate when applied to the

validation dataset. Despite the models not training on validation data, choosing the weights

that result in the highest accuracy rates for sequences in the validation dataset biases the

results between validation and test data towards the validation dataset. This is a deliberate

choice because the validation dataset’s primary purpose is in finding the model that

produces the highest accuracy rates. The most important metric is the accuracy rate when

the best model is applied to test data that the model has neither seen nor used to determine

the best model.

 The Transformer model performs best and reaches an accuracy rate of almost 58%

while the accuracy rates for the LSTM and GRU models approach a random choice of

picking either classification value. Hence the Transformer model outperforms the LSTM

66

and GRU models for this specific classification task. 58% might not seem high compared

to accuracy rates in many computer vision tasks when accuracy rates in the highest decile

are often reached. However, when the trained model is used in a trading algorithm, the

Transformer accuracy rate of 58% will make a material difference to a rate that equals a

random choice. Table 4 shows that the results between picking the best model weights

during training and picking the last model weights do not differ by much and are not

statistically significant. The reason for that is that the best model weights were found late

in the training process and hence training until the end of 300 epochs did not cause the

model to perform much better, accuracy-wise. In subsequent sections of this chapter, only

the best weights of each model will be considered.

Models / Data Sets
Total / Trainable

Parameters
Train

Dataset
Validation

Dataset
Test

Dataset

Extended
Transformer

875,266 72.20% 64.88% 57.80%

LSTM 99,970 64.78% 56.02% 50.59%
GRU 75,810 64.74% 56.29% 51.88%

Table 3 Classification Accuracy by model and by dataset (Best Weights)

Models / Data Sets Total / Trainable
Parameters

Train
Dataset

Validation
Dataset

Test
Dataset

Extended
Transformer

875,266 72.25% 64.73% 57.69%

LSTM 99,970 64.85% 55.07% 51.23%
GRU 75,810 64.84% 56.15% 52.03%

Table 4 Classification Accuracy by model and by dataset (Last Weights)

67

Figure 7, Figure 8, and Figure 9 reflect the progression of training and validation accuracies

as the models iterate over each epoch. The Transformer model learns a lot faster and

reaches training and validation accuracy rates that approach its best accuracy rates in much

earlier epochs than the LSTM and GRU models. The higher complexity of the Transformer

model is partly responsible for this progress in earlier epochs. Validation accuracy rates for

the Transformer model plateau at around 75 epochs and then fluctuate within a tight range

while validation accuracy rates for the LSTM and GRU network continue increasing

throughout the majority of training.

Figure 7 Training / Validation Accuracy (Transformer Model)

68

Figure 8 Training / Validation Accuracy (LSTM Model)

Figure 9 Training / Validation Accuracy (GRU Model)

69

In the following, all three models are classifying sequences on the test dataset and the

classifications are subsequently mapped to predictions within a trading algorithm. All test

data range between 18 June 2019 and 9 July 2021. Table 5 reflects the statistical results of

the trading algorithm, applied to each model. Despite the Transformer’s test accuracy

“only” being 8% above a random pick, it shines on a large number of classifications. By

the same principle of the theorem of the law of large numbers, high-frequency trading firms

can take advantage of tiny edges (sometimes as small as 0.5-1% edge over random results)

by engaging in a very large number of trades. In this research on average 420 stocks are

traded throughout each of the 520 trading days within the 752 calendar day period, resulting

in 218,400 trades. This 8% edge of the Transformer results in an annualized return of over

78% (note that this is a gross return before any costs are applied). Sharpe ratio is a very

popular financial performance measure that scales the returns by the volatility of the

returns. All else being equal, returns that were generated by taking less risk (lower volatility

of returns) are preferable over those generated by taking more risk. Hence larger Sharpe

ratios are better than lower ones. The Sharpe ratio of the Transformer model of 5.99 vastly

exceeds the ones of the LSTM and GRU models.

As the model opens positions right after the market opens and closes the same

positions right before the market closes, the algorithm incurs twice the commission fee and

requires paying the full spread. As to why the full spread needs to be paid, one can imagine

opening a position by buying and closing it right after by selling. This requires paying the

offer price to buy and receiving the bid price when selling, resulting in the full bid-offer

spread. A conservative estimate of the commission fees is around 1 basis points (basis point

= 1/100 of a percent). An estimate for the average spread is a lot more difficult to determine

70

because it depends on the specific stock under consideration (the stock of Apple is a lot

more liquid and has higher turnover than a company that has a market capitalization of

1/100 the size of Apple), the timing of the order (spreads are wider when markets are more

volatile such as during market open and close), the liquidity that the market provides at the

time (when more market participants want to transact then that results in higher liquidity

on average, all else being equal). The most liquid stocks in the S&P 500 index during

active market hours demand a spread of between 2–3 basis points. Less liquid stocks in the

index demand a spread of between 10–30 basis points. For purposes of this research, an

assumption of around 15 basis points is made, resulting in a total transaction-related cost

of 17 basis points. Transaction-related cost analysis and optimizations are a very hot topic

at liquid financial trading desks with high turnover because transaction-related costs have

such a big impact on the bottom line.

Average daily returns are derived by averaging the returns of all stocks in a given

day and to average across all days. The average daily returns of the LSTM and GRU models

are so low that they cannot keep up with transaction-related costs. Their net profitability

turns out to be negative. Without any cost optimization, the profitability of the Transformer

based algorithm will be reduced by roughly 50%. Even such a significant reduction in

profitability causes the Transformer to still be net profitable by a significant margin. One

notices that any opportunity of paying less than the full bid-offer spread should be pursued

and can have a tremendous impact on net profitability. Because this research focuses on

the neural network architecture and only introduces a trading algorithm to showcase the

applicability and integration into a trading algorithm, net profitability and profit

71

optimizations are not further investigated in this work aside from some suggestions for

future research in the next chapter.

Metrics / Models Transformer LSTM GRU

Date From 18 June 2019

Date To 9 July 2021

Total Calendar Days 752

Total Trading Days 520

Avg Trade Count / Day 420 420 420

Min Trade Count / Day 331 331 331

Max Trade Count / Day 500 500 500

Total Return % 161.51% 11.20% 41.56%

Annualized Return % 78.39% 5.43% 20.17%

Sharpe Ratio 5.992 0.342 1.282

Avg Daily Return % 0.3106% 0.0215% 0.0799%

Std. Daily Returns 0.8228% 1.0003% 0.9897%

Largest Gain % 5.5734% 5.1867% 5.1867%

Largest Loss % -5.0471% -5.6482% -5.6482%

Return Skew 0.2606 -0.0163 0.1551

Return Kurtosis 8.8695 5.8744 5.4428

Table 5 Portfolio Statistics by Model

Figure 10, Figure 11, and Figure 12 translate the daily returns of each model into an equity

curve that reflects the cumulative returns over time. The values are expressed in percent.

One interesting observation is that the equity curve of the Transformer based algorithm is

72

a lot smoother than the ones of the LSTM and GRU algorithms. Also, the Transformer

model seems to have learned well how to classify large market dislocations as evidenced

in the period between March 2020 – April 2021 when stocks corrected by almost 50% due

to the outbreak of Covid-19. The model most likely classified many sequences in that

period as a sell resulting in large profits during that period. The equity curves of the LSTM

and GRU model are a lot more jagged and particularly the LSTM model performed very

poorly during March 2021 – April 2021. The equity curves of each model are also a good

reflection of the standard deviation of returns and hence the Sharpe ratio.

Figure 10 Equity Curve, Transformer Model

73

Figure 11 Equity Curve, LSTM Model

Figure 12 Equity Curve, GRU Model

74

Figure 13, Figure 14, and Figure 15 reflect the distribution of returns of each model. The

distribution of returns of the Transformer model stands out regarding skew and kurtosis.

The distribution is right-skewed, meaning, most values are clustered around the left tail

while the right tail of the distribution is longer, resulting in the following inequality:

���� > ������ > ����. The skew of the GRU model is also positive but only exhibits

less than half the skew of the Transformer model. The skew of the LSTM model is negative.

The kurtosis of the return distributions of all three models is leptokurtic (>3) but the

kurtosis of the Transformer exhibits most peakedness with most values near the mean

which rapidly decline nearby but which result in a heavier tail than the tails of the return

distribution of the LSTM or GRU models. Skew and kurtosis correlate with the respective

levels of average return, the standard deviation of returns, and the Sharpe ratio of each

model.

Figure 13 Return Distribution, Transformer Model

75

Figure 14 Return Distribution, LSTM Model

Figure 15 Return Distribution, GRU Model

76

This concludes the chapter of results and discussion, and the final chapter of this research

will offer a conclusion and suggestions for future research.

77

CHAPTER 5 – CONCLUSION AND FUTURE RESEARCH

5.1 Conclusion

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are still the

preferred neural networks that data scientists and researchers apply to deep learning of

complex non-linear relationships among multi-variate temporal sequence data. The

research in this thesis proposes an extension of the Transformer neural network, originally

developed in the Natural Language Processing (NLP) domain, that is capable of training

supervised models on multi-variate temporal sequence data. The transition from text-based

content to temporal sequence data necessitates multiple changes to the network

architecture.

 The primary contribution of this thesis describes the methodology and

implementation of those modifications in chapter 4.4. The decoder structure of the original

Transformer was replaced by several network layers that receive data from the encoder and

transform network weights to classifiers to transform the extended Transformer from a

sequence-to-sequence model to a classification model. It turns out that the extended

Transformer can be utilized not only for classification but also for prediction tasks.

 Another major extension is the relocation of the positional encoders which equip

the Transformer with knowledge of the relative positioning of each element in the

sequence. Positional encoding in the original Transformer only occurs before the data

entering the first encoder layer. The research of this thesis instead places the positional

encoders ahead of every single encoder layer which was shown to improve positional

78

awareness of the multi-attention heads in each encoder layer. This resulted in improved

training and inferencing performance.

 Successful training and inferencing of trained neural networks hinge to a large

degree on the data on which the networks are trained. Another contribution of this thesis is

the design and implementation of a comprehensive data pre-processing pipeline. Before

data are ready to be trained upon, data acquisition, data cleansing, feature engineering,

target generation, data conversion, data splitting, data normalization, sequence generation,

data shuffling, batching, caching, and prefetching have to take place. This process and its

methodology are described in detail in chapter 4.3.

 Upon the design and implementation of the extended Transformer network, the

question arises about applicability to tasks that require the classification of large datasets

of temporal sequence data. Another contribution of this thesis is represented by the

integration of the extended Transformer network into a financial trading algorithm. 20

years of daily pricing data of 500 stocks in the S&P 500 index and numerous futures

contract pricing data are utilized to train the extended Transformer network and the trained

weights are subsequently applied to a portfolio trading algorithm. The performance is

compared to two other baseline models, an LSTM and GRU network which are both

individually trained on an identical dataset. The implementation of all three models, results,

and the following discussion are presented in chapters 4.4 – 4.7.

 The results demonstrate that the extended Transformer network reaches higher

accuracy rates on training, validation, and test datasets compared to the LSTM and GRU

models. The same performance advantage is even more pronounced in the results after each

model was applied to a portfolio trading algorithm. While the LSTM and GRU models

79

appear challenged to learn relationships that result in accuracy rates that are significantly

higher than random choices, the extended Transformer network not only classifies

temporal sequence with significantly higher accuracy rates but also prevails after

transaction-related costs are applied. This makes the extended Transformer an interesting

candidate to consider for other classification and prediction tasks as well.

5.2 Future Research

Several extensions to the original Transformer network have been proposed by academic

researchers, each of which focusing on different data structures and shortcomings of the

original network. The extension in this research concentrates on enabling the Transformer

network to classify supervised multi-variate temporal sequence data. While the

Transformer modifications in this research appear promising to carry over to solve different

classification and prediction tasks, a lot more research is required to further improve on

some of the challenges that this research exposes. The following showcases some of the

suggestions for further research.

 Each encoder layer in the encoder structure is prepended by a positional encoding

mechanism. The positional encoding implements sinusoidal functions to bestow the multi-

attention heads with relative positional awareness. There are possibilities to apply different

methodologies to impart positional information of each element in a sequence. This poses

an opportunity to potentially improve relative positional encoding and hence equip the

attention mechanism with not only the information about relative positioning but also

weights which positions matter more than others.

80

 The multi-head attention component was mostly adopted from the original

Transformer framework and one of its shortcomings is memory consumption that grows

quadratically with sequence length because the attention heads build relationships between

each element and all other elements in the sequence. Some other Transformer extensions

in the public domain already tackle this issue such as in [36] by proposing sparse

factorization of the attention matrix. This research has shown that memory consumption

reaches several hundred gigabytes during the training of 2,000,000 sequences, each

containing 100 elements. There are certainly a lot of opportunities that might lead to

efficiency improvements in how attention heads operate on data sequences. One such idea

is to pass data through an auto-encoder that implements several layers of convolutional

kernels that augment certain features in temporal sequences which can lead to a dimension

reduction and hence fewer elements that the attention heads need to process.

 There is room for improvement regarding hyper-parameter optimization. A basic

hyper-parameter sweep was performed as part of this research but genetic optimization

algorithms, for example, can be employed to find better hyper-parameter tuples. The

challenge with optimizations, in general, is the risk to overfit the data and that the resulting

network does not generalize well. Each full training iteration is computationally very

expensive which makes the application of even genetic optimization algorithms

challenging at best. Suitable trade-offs have to be found. One idea is to run hyper-parameter

optimizations over subsets of the full sequence dataset.

 The chosen trading algorithm is relatively simplistic. Sequences of all stocks in the

S&P 500 index are classified, resulting in trades of all stocks on any given day. This results

in a larger average cost of execution due to the higher average bid-offer spread. It

81

potentially also includes stocks that the extended Transformer network had difficulties

classifying. Pricing data and relationships with other features of certain stocks might be

more difficult for the extended Transformer model to classify than others. An interesting

idea for future research is to evaluate the accuracy performance of each individual stock

before the portfolio construction stage. For example, stocks whose pricing pattern poses

challenges for the Transformer model to classify correctly can be filtered out and excluded

from the portfolio construction process. Another idea is to build long-short portfolios of

stocks each day where the notional exposure and portfolio beta of the long portfolio is

attempted to be matched with the short portfolio. The intention is to build market-neutral

portfolios where the systematic risk is attempted to be filtered out to result in only exposure

to idiosyncratic risk. Because research has shown that maximum diversification effects

occur with portfolios that hold approximately 30 stocks, long-short portfolios could be

constructed that each hold 15-20 of those stocks with the tightest bid-offer spread, resulting

in significantly lower transaction-related cost.

 This concludes the conclusion and suggestions for future research and the hope of

the author is that this work offers ideas to improve the original Transformer architecture

and how the extended Transformer can be applied to multi-variate supervised learning

tasks of temporal sequence data.

82

REFERENCES

[1] Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). Machine learning: A

historical and methodological analysis. AI Magazine, 4(3), 69-69.

[2] Atak, A. (2011). The future of computer trading in financial markets. Retrieved

from https://openaccess.city.ac.uk/id/eprint/13825/7/

[3] Ciaburro, G., & Iannace, G. (2021). Machine Learning-Based Algorithms to

Knowledge Extraction from Time Series Data: A Review. Data, 6(6), 55.

[4] Santos, T., & Kern, R. (2016). A Literature Survey of Early Time Series

Classification and Deep Learning. In Sami@ iknow.

[5] Boukary, N. A. (2016). A comparison of time series forecasting learning

algorithms on the task of predicting event timing (Doctoral dissertation, Royal

Military College of Canada).

[6] Masini, R. P., Medeiros, M. C., & Mendes, E. F. (2020). Machine learning

advances for time series forecasting. arXiv preprint arXiv:2012.12802.

[7] Aravind, Pai, (2020, 2, 17), CNN vs. RNN vs.ANN –Analyzing 3Types of Neural

Networks in Deep Learning. Retrieved fromhttps://www.analyticsvidhya.com/blog/

2020/02/cnn-vs-rnn-vs-mlp- analyzing-3-types-of-neural-networks-in-deep-learning/

[8] Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep

learning for time series classification: a review. Data mining and

knowledge discovery, 33(4), 917-963.

83

[9] Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A.

(2021). Deep Learning for Time Series Forecasting: A Survey. Big Data, 9(1), 3-

21.

[10] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. In Advances in neural information

processing systems (pp. 5998-6008).

[11] Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep transformer models for

time series forecasting: The influenza prevalence case. arXiv preprint

arXiv:2001.08317.

[12] Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2020). A

 Transformer-based Framework for Multivariate Time Series Representation

 Learning. arXiv preprint arXiv:2010.02803.

[13] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[14] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

[15] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... &

Amodei, D. (2020). Language models are few-shot learners. arXiv preprint

arXiv:2005.14165.

84

[16] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019).

Albert: A lite Bert for self-supervised learning of language representations. arXiv

preprint arXiv:1909.11942.

[17] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

[18] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

[19] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean,

J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-

experts layer. arXiv preprint arXiv:1701.06538.

[20] Kuchaiev, O., & Ginsburg, B. (2017). Factorization tricks for LSTM

networks. arXiv preprint arXiv:1703.10722.

[21] Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the

properties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259.

[22] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN

encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078.

85

[23] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[24] Kitaev, N., Kaiser, Ł., & Levskaya, A. (2020). Reformer: The efficient

transformer. arXiv preprint arXiv:2001.04451.

[25] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021,

May). Informer: Beyond efficient transformer for long sequence time-series

forecasting. In Proceedings of AAAI.

[26] Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2020). A

Transformer-based Framework for Multivariate Time Series Representation

Learning. arXiv preprint arXiv:2010.02803.

[27] Cochrane, J. H. (2009). Asset pricing: Revised edition. Princeton university press.

[28] Duffie, D. (2010). Dynamic asset pricing theory. Princeton University Press.

[29] Munk, C. (2013). Financial asset pricing theory. OUP Oxford.

[30] Campbell, J. Y. (2017). Financial decisions and markets: a course in asset

pricing. Princeton University Press.

[31] Bali, T. G., Engle, R. F., & Murray, S. (2016). Empirical asset pricing: The cross

section of stock returns. John Wiley & Sons.

[32] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019).

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv

preprint arXiv:1901.02860.

86

[33] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv

preprint arXiv:1607.06450.

[34] Leising, Matthew (2016). Virtu Never Loses (Well, Almost Never). Retrieved from

https://www.bloomberg.com/news/features/2016-08-11/virtu-never-loses-well-

almost-never-in-quest-to-upend-markets

[35] Tensorflow Team (2021). Distributed training with TensorFlow. Retrieved from

https://www.tensorflow.org/guide/distributed_training

[36] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long

sequences with sparse transformers. arXiv preprint arXiv:1904.10509.

