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ABSTRACT 

It is well known that the density of plankton populations always increases and 

decreases or keeps invariant for a long time, and the variation of plankton density is 

an important factor influencing the real aquatic environments, why do these situations 

occur? It is an interesting topic which has become the common interest for many 

researchers. As the basis of the food webs in oceans, lakes, and reservoirs, plankton 

plays a significant role in the material circulation and energy flow for real aquatic 

ecosystems that have a great effect on the economic and social values. Planktonic 

blooms can occur in some environments, however, and the direct or indirect adverse 

effects of planktonic blooms on real aquatic ecosystems, such as water quality, water 

landscape, aquaculture development, are sometimes catastrophic, and thus planktonic 

blooms have become a challenging and intractable problem worldwide in recent years. 

Therefore, to understand these effects so that some necessary measures can be taken, 

it is important and meaningful to investigate the dynamic growth mechanism of 

plankton and reveal the dynamics mechanisms of formation and disappearance of 

planktonic blooms. To this end, based on the background of the ecological 

environments in the subtropical lakes and reservoirs, this dissertation research takes 

mainly the planktonic algae as the research objective to model the mechanisms of 

plankton growth and evolution. In this dissertation, some theories related to 

population dynamics, impulsive control dynamics, stochastic dynamics, as well as the 

methods of dynamic modeling, dynamic analysis and experimental simulation, are 

applied to reveal the effects of some key biological factors on the dynamics 

mechanisms of the spatial-temporal distribution of plankton and the termination of 

planktonic blooms, and to predict the dynamics evolutionary processes of plankton 

growth. The main results are as follows: 

Firstly, to discuss the prevention and control strategies on planktonic blooms, an 

impulsive reaction-diffusion hybrid system was developed. On the one hand, the 

dynamic analysis showed that impulsive control can significantly influence the 
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dynamics of the system, including the ultimate boundedness, extinction, permanence, 

and the existence and uniqueness of positive periodic solution of the system. On the 

other hand, some experimental simulations were preformed to reveal that impulsive 

control can lead to the extinction and permanence of population directly. More 

precisely, the prey and intermediate predator populations can coexist at any time and 

location of their inhabited domain, while the top predator population undergoes 

extinction when the impulsive control parameter exceeds some a critical value, which 

can provide some key arguments to control population survival by means of some 

reaction-diffusion impulsive hybrid systems in the real life. Additionally, a 

heterogeneous environment can affect the spatial distribution of plankton and change 

the temporal-spatial oscillation of plankton distribution. All results are expected to be 

helpful in the study of dynamic complex of ecosystems.  

Secondly, a stochastic phytoplankton-zooplankton system with toxic 

phytoplankton was proposed and the effects of environmental stochasticity and 

toxin-producing phytoplankton (TPP) on the dynamics mechanisms of the termination 

of planktonic blooms were discussed. The research illustrated that white noise can 

aggravate the stochastic oscillation of plankton density and a high-level intensity of 

white noise can accelerate the extinction of plankton and may be advantageous for the 

disappearance of harmful phytoplankton, which imply that the white noise can help 

control the biomass of plankton and provide a guide for the termination of planktonic 

blooms. Additionally, some experimental simulations were carried out to reveal that 

the increasing toxin liberation rate released by TPP can increase the survival chance 

of phytoplankton population and reduce the biomass of zooplankton population, but 

the combined effects of those two toxin liberation rates on the changes in plankton are 

stronger than that of controlling any one of the two TPP. All results suggest that both 

white noise and TPP can play an important role in controlling planktonic blooms. 

Thirdly, we established a stochastic phytoplankton-toxic producing 

phytoplankton-zooplankton system under regime switching and investigated how the 

white noise, regime switching and TPP affect the dynamics mechanisms of planktonic 
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blooms. The dynamical analysis indicated that both white noise and toxins released by 

TPP are disadvantageous to the development of plankton and may increase the risk of 

plankton extinction. Also, a series of experimental simulations were carried out to 

verify the correctness of the dynamical analysis and further reveal the effects of the 

white noise, regime switching and TPP on the dynamics mechanisms of the 

termination of planktonic blooms. On the one hand, the numerical study revealed that 

the system can switch from one state to another due to regime shift, and further 

indicated that the regime switching can balance the different survival states of 

plankton density and decrease the risk of plankton extinction when the density of 

white noise are particularly weak. On the other hand, an increase in the toxin 

liberation rate can increase the survival chance of phytoplankton but reduce the 

biomass of zooplankton, which implies that the presence of toxic phytoplankton may 

have a positive effect on the termination of planktonic blooms. These results may 

provide some insightful understanding on the dynamics of phytoplankton-zooplankton 

systems in randomly disturbed aquatic environments. 

Finally, a stochastic non-autonomous phytoplankton-zooplankton system 

involving TPP and impulsive perturbations was studied, where the white noise, 

impulsive perturbations and TPP are incorporated into the system to simulate the 

natural aquatic ecological phenomena. The dynamical analysis revealed some key 

threshold conditions that ensure the existence and uniqueness of a global positive 

solution, plankton extinction and persistence in the mean. In particular, we determined 

if there is a positive periodic solution for the system when the toxin liberation rate 

reaches a critical value. Some experimental simulations also revealed that both white 

noise and impulsive control parameter can directly influence the plankton extinction 

and persistence in the mean. Significantly, enhancing the toxin liberation rate released 

by TPP increases the possibility of phytoplankton survival but reduces the 

zooplankton biomass. All these results can improve our understanding of the 

dynamics of complex of aquatic ecosystems in a fluctuating environment. 
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Chapter 1 GENERAL INTRODUCTION 

1.1. Background 

Plankton populations are floating organisms of many different phyla that live in 

the pelagic of oceans, in freshwater lakes, or in larger rivers, estuaries and reservoirs, 

and they are greatly influenced by water movements (Sommer, 1994, 1996). 

Phytoplankton are the microorganisms and commonly unicellular and microscopic in 

size, requiring some essential elements (such as light, carbon dioxide and a range of 

inorganic and organic nutrients) to photosynthetically produce biomass. Zooplankton 

population includes the animals in the plankton community living on phytoplankton. 

As the foundation of the entire aquatic food webs, plankton populations play an 

important role in the material circulation and energy transportation for real aquatic 

ecosystems, and they are great of global significance for climate regulation and 

biogeochemical cycling (Odum, 1971; Simo, 2001). On the one hand, phytoplankton 

are of fundamental importance in supporting the primary productivity of the real 

aquatic ecosystems (Behrenfeld and Falkowski, 1997; Field et al., 1998; Hoppe et al., 

2002), which contribute to the climate regulation by absorbing carbon dioxide from 

surrounding environments (Duinker and Wefer, 1994) and provide the materials and 

energy for all life in aquatic environments (Kawecka and Eloranta, 1994). On the 

other hand, zooplankton can control the quantity and spatial-temporal distribution of 

phytoplankton by feeding on them (Martin, 1970; Lampert and Taylor, 1985; Lampert 

et al., 1986; Wyatt and Horwood, 1973; Levin and Segel, 1976; Griffin et al., 2001). 

Meanwhile, plankton populations are the main food resources for high-trophic 

organisms such as fish and other larger animals, and their distribution and biomass 

variation can directly affect the status of fishery and other aquaculture (Platt et al., 

2003), which play a critical role in the structures and functioning of aquatic 

ecosystems (Akhurst et al., 2017). Thus, plankton play a significant role in economic 

and social values for aquatic ecosystems. 
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Due to the rapid urbanization, industrialization, intensifying agricultural 

production and the increase of the global population (United Nations Population 

Division, 2008), a large amount of industrial and agricultural wastewater, domestic 

sewage and farming practices are discharged into bays, rivers, lakes and oceans, 

enriching high level of nutrients and minerals in these water bodies, and finally 

resulting in water eutrophication (Webster et al., 2001). Actually, the process of 

eutrophication consists of a continuous increase in the contribution of essential 

biological nutrients, including nitrogen and phosphorus (organic loading), until it 

exceeds the capacity of the water bodies (i.e. the capacity of lakes, rivers or oceans to 

purify themselves), which may contribute to the changes of structures and functions in 

these water bodies. Actually, these changes strongly depend on the use of fertilizers, 

untreated industrial wastewater, aquaculture runoff and discharge, and the reduction 

of self-purification capacity of water bodies. Under the conditions of eutrophication, 

the rates of organic production for real aquatic ecosystems exceed those of 

consumption (Qin et al. 2013), causing the massive accumulation of organic matters 

in water bodies that may seriously destroy the ecological balance of aquatic 

ecosystems and greatly promote the occurrence of HABs (Jager et al., 2017). In 

addition, the eutrophication process can be greatly accelerated due to the effects of 

some factors, for example, a slow current velocity, the poor self-purification capacity 

(Heisler et al., 2008), a suitable temperature (for example, 25℃ or above) (O‟Neil et 

al., 2013), an adequate light exposure (Sheiwastav et al., 2017), and point-source 

discharges and non-point loadings of limiting nutrients. Based on these, the 

Organization for Economic Cooperation and Development (OECD) that was led by 

18 member countries to monitor and carry out the research of the trophic status and 

eutrophication in about 150 lakes, proposed the standard criteria of quantifiable 

indicators for eutrophication in 1982, that is, the average concentration of total 

phosphorus (TP) >0.035 mg/L, the average concentration of Chlorophyll-a >0.008 

mg/L, and the average water transparency <3 m (OECD, 1982). The ecologist 

Jorgensen pointed out that the excessive growth of algae is a key process in the 
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formation of eutrophication (Jorgensen, 1983), and a number of studies showed that 

the water bodies in the areas where algal blooms occur have been seriously polluted, 

and the levels of nutrients (i.e. nitrogen and phosphorus) have greatly exceeded the 

standard criteria from OECD. According to these thresholds, many lakes in China 

have experienced different degrees of eutrophication, which have become one of the 

most important ecological and environmental problems facing China‟s freshwater 

lakes (Qin et al., 2013). 

Eutrophication is an enrichment of essential nutrients in water bodies, which can 

lead to changes in the structures and functions of aquatic ecosystems. For example, 

increasing production of aquatic plants (Rast and Thornton, 1996), consuming large 

amount of dissolved oxygen (Mu et al., 2017), deteriorating water quality (Western, 

2001; Capuzzo et al., 2015), reducing the biomass of the harvestable fish and shellfish 

(Smith, 2003; AI Gheilani et al., 2011), increasing the biomass of consumer species 

(Smith, 2003), and ultimately affecting biodiversity (Nasri et al., 2008). Thus, water 

eutrophication has become an urgent environmental issue worldwide in recent years 

(Nyenje et al., 2010; Liu et al., 2011). Indeed, it was reported that over 75% of closed 

water bodies in the world are associated with eutrophication (Freedman, 2002). 

According to the survey of the state of the World‟s Lakes, a project promoted by the 

International Lake Environmental Committee (ILEC), eutrophication affects 54% of 

Asian lakes, 53% of lakes in Europe, 48% of lakes in North America, 41% of lakes in 

South America, and 28% of lakes in Africa in varying degrees. Due to the degradation 

of water quality caused by eutrophication, many limnological studies on lakes, rivers, 

and streams have been emphasized in recent years (Saxena, et al., 1988). Especially, 

some freshwater lakes in USA, such as 17 lakes of Western Washington, Washington 

(Welch and Crooke, 1987), Lake Okeechobee, Florida (the average water depth of 2.7 

m) (Schelske, 1989), Lake Apopka, Florida (the average water depth of 4.7 m) 

(Coveney et al., 2002), and Lake City Park, Louisia (Ruleya and Rusch, 2002), have 

seriously suffered from eutrophication, and the estimated cost of damage caused by 

entrophication in USA alone was approximately $2.2 billion annually for tourism 
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restoration (Dodds et al., 2009). In China, 25% of drinking sources are lake water or 

reservoir houses, but more than half of lakes have become eutrophic and 

hypereutrophic (Yang, 2009). For example, Lake Taihu (the average water depth of 2 

m), the third largest freshwater in China, experienced the toxic cyanobacterial blooms 

in the summer of 2007, leading to the crisis of drinking water supplies for 2 million 

people in Wuxi City, Jiangsu Province (Qin et al., 2010). According to the work of 

Yang et al. (2008), approximately 30 billion ton of polluted water have been 

discharged directly into the lakes, which may cause all the urban lakes and the most of 

the medium-sized lakes at the urban-rural fringe areas in China facing the problem of 

water eutrophication by 2030. Other cases of lake eutrophication such as Lake 

Kastoria in Greece (Koussouris et al., 1991), Lake Biwa in Japan (Yamashiki et al., 

2003), and Lake Bellandur in India (Chandrashekar et al. 2003), have been reported 

globally in recent years. The main reason for the deterioration of water quality in 

these cases is primarily associated with high nutrient enrichment derived 

from anthropogenic activities. 

Dating back to the 1960s and 1970s, many scientists and researchers have linked 

the issue of algal blooms to nutrient enrichment resulting from human activities such 

as agriculture, industry, and sewage disposal (Schindler, 1974; Hallegraeff, 1993), and 

an obvious and problematic symptom of eutrophication is the increase of harmful 

phytoplankton biomass resulting in the occurrence of algal blooms (Tang et al., 2010). 

More precisely, when phytoplankton blooms occur at the surface or at specific depths 

in the water column, the number of a certain dominant phytoplankton species rapidly 

increases or almost equally rapidly decreases in aquatic ecosystems and then returns 

to its original low level under some conditions (Beltrami and Carroll, 1994). The 

dominant species of algal blooms are different during harmful algal blooms (HABs) 

(Smayda, 1997) due to their living aquatic environments. In this respect, HABs 

mainly include different types of taxa, such as diatom (e.g. Alexandrium), 

dinoflagellate (e.g. Pfiesteria), and cyanobacteria (or blue-green algae), among which 

cyanobacteria are of special importance because of their potential impact on drinking 
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water sources or recreational water bodies (Carmichael and Wayne, 2001; Yang et al., 

2012). Additionally, algal blooms are accompanied by toxin productions from HAB 

species (Paprdimitriou et al., 2012), such as cyanobacterial toxins, which can 

contaminate seafood and fish or kill other higher trophic level organisms (Penaloza et 

al., 1990 and Tencalla et al., 1994), and even directly or indirectly threaten human 

health through the food chain of aquatic ecosystems (Francis, 1878; Hallegraeff, 1993; 

Codd and Bell, 1996). Actually, the events of the death of marine animals or even 

human being caused by toxic algae have been reported globally with an increasing 

frequency (Naiman et al., 1995) since the first case of animal death caused by toxic 

cyanobacteria in 1878 (Francis, 1878). For example, many poisoning episodes caused 

by algal toxins occurred in the United States, Australia, France, Zimbabwe, and other 

countries (Falconer et al., 1983; Gugger et al., 2005; Ndebele and Magadze, 2006; 

Nasri et al., 2008). Significantly, HABs have dramatic consequences for the 

ecological balance of aquatic ecosystems, drinking water resources, economic losses, 

fisheries and tourism (Capenter et al., 1998; Wells et al. 2015; Yang et al., 2012). 

Based on these huge effects of algal blooms, it is urgent and important to find an 

effective way in the aquatic ecology for controlling and preventing HABs. 

1.2. Statement of the problem 

HABs have become one of the most severe problems in real aquatic ecosystems 

worldwide recently, and there have been reported globally with an increasing 

frequency and intensity over the last few decades (Hallegraeff, 1993). The outbreaks 

of algal blooms have and continue to pose a serious threat to the balance and 

stability of aquatic ecosystems, which not only cause profound and deleterious 

effects on water quality (Capuzzo et al., 2015), water landscape (Mitra and Flynn, 

2006), and aquaculture development (Uye, 1986; Wyatt and Horwood, 1973; Levin 

and Segel, 1976), but also pose a serious health hazard to animals and human beings 

(Nasri et al., 2008; Falconer et al., 1983; Gugger et al., 2005; Qin et al., 2010). 

Moreover, excessive growth of algae can be caused by nutrients enrichment, and 
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especially phosphorus which is the primary nutrient necessary for abundant algae 

and aquatic plants growth (Paerl et al., 2001; Mainstone and Parr, 2002). Once a 

water body is eutrophicated, it will lose its primary functions and structures and 

subsequently affect the sustainable development of economy and society. For a 

successful water restoration and the plan of eutrophication mitigation, the basic aim 

is to identify the sources of pollution and their subsequent remediation.  Thus, many 

municipal authorities have passed some relevant legislations and laws to mitigate 

and limit the point sources and non-point sources loading of nutrients, such as 

prohibiting the usage of phosphate-containing laundry detergents (Kundu et al., 

2015), optimizing agricultural land use and best policies (Alvarez et al., 2017; Dai et 

al., 2018), restoring animal and plant communities in local ecosystems (Zhang et al., 

2009), and adapting domestic wastewater treatment and waste classification (Huang 

et al., 2017). But eutrophication and algal blooms are still prevalent on the water 

surface worldwide (Smith et al., 1999; Smith and Schindler, 2009) and some 

refinements are still going on due to the ever-increased complexity and specific 

problems that require wider experience. Therefore, it is important and urgent for 

water resource managers to understand how to minimize the intensity and frequency 

of algal blooms (Paerl and Paul, 2012), and the prevention and control approaches of 

algal blooms have become an important ecological topic in the protection of aquatic 

environments around the world. Actually, many researchers have investigated and 

developed technologies and methods for the prevention and controlling of algal 

blooms since the 1960s, and the purposes of these strategies are to kill harmful algae 

organisms or limit their growth (Schindler, 2006; Carpenter, 2008; Lewis and 

Wurtsbaugh, 2008; Sengco, 2009), but the algal blooms control or suppression 

activities are controversial and challenging. Generally, the most common types for 

controlling and suppressing HABs include physical, chemical, and biological 

technologies (Anderson, 2009). 
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1.2.1. Physical method 

Among the algal control methods, physical method is one of the most applicable 

techniques in freshwater lakes. This method is a technical method to control algae 

pollution through physical engineering measures, such as ultrasonic algae removal, 

flocculants addition, shading algae removal, and other related technologies.  

Ultrasonic algae removal is an important research direction of algae removal 

technology, and ultrasonic technology has been applied for monitoring algae growth 

for water and wastewater treatment (Mahvi, 2009; Wang et al., 2019). Actually, 

ultrasound is a sound wave with high frequencies above the limit of human hearing 

(22 kHz) that can control algae growth at special frequency, and the commonly used 

frequencies for industrial cleaning are those between 20 and 50 kHz (Suslick and 

Price, 1999). In addition, the process of ultrasound is to generate a sound wave layer 

in the top layer of a water body, and then the generated sound wave layer can directly 

destroy the buoyancy of algae cells, causing these cells to sink and eventually die. 

Generally, the ultrasound technology is advantageous to monitor the real-time water 

quality, and predict and control algal blooms. In past decades, a lot of works have 

been done by researchers and some excellent results have been achieved. For example, 

the work of Tang et al. (2003) showed that a high frequency of ultrasound has a great 

influence on the density of cyanobacteria cells at the early stage of its growth, and 

further concluded that the growth rate of cyanobacteria cells after irradiation can be 

reduced to 38.9% of the control group in a short time, while dispersive ultrasound 

irradiation is an effective method to inhibit the rapid growth of cyanobacteria cells. 

Joyce et al. (2010) studied the effect of ultrasonic frequency on the growth of 

Microcystis aeruginosa in an experiment, and the best results were achieved when the 

ultrasonic frequency was set at 580 kHz. Significantly, ultrasonic algae removal has 

been proven the most effective, environmentally and friendly technology to control 

algal blooms in lakes, reservoirs, and ponds, which provide a long-term solution for a 

healthy ecosystem and is harmless to humans, plants, and other aquatic life. However, 

most modern ultrasonic devices strongly rely on transducers which are composed of 



 

8

piezoelectric materials, and it is difficult to implement this technique successfully to 

remove algae from large areas of water bodies due to the high power and determining 

the specific ultrasonic frequency (NEIWPCC, 2015).  

One promising control strategy may be the rapid sedimentation of HABs through 

flocculation with clay (Shirota, 1989; Anderson, 1997; Sengco, 2001; Sengco and 

Anderson, 2004). The mitigation of HABs using clay was first proposed in the 1970s 

(Shirota, 1989), and the addition of clays particles (such as nontoxic and inexpensive) 

or any flocculants can help to carry bloom to the bottom of sediments, which is the 

oldest and most widely used approach to control HABs (Anderson, 1997; Pierce et al., 

2004; Sengco and Anderson, 2004). When sprinkled on the surface of water bodies 

during HABs, these tiny but dense clay particles will „flocculate‟ or combine with 

other particles in water bodies, including HABs cells. The process of flocculation 

formation is to remove these cells through sedimentation, and the rapid sedimentation 

of algae cells may be caused by the flocculation (Jackson and Lochmann, 1993). And 

also, clays have been investigated in some countries as a means of removing harmful 

algae from water column (Shirota, 1989; Yu et al., 1994; Sengco and Anderson, 2004; 

Lee et al., 2008; Song et al., 2010). For example, South Korea, where a fish-farming 

industry worth hundreds of millions of dollars is seriously threatened by HABs, this 

control method has been proved to be a flexible and economically and socially 

feasible method for water treatment, and thus great progress has been made (Na et al., 

1996; Lee et al., 2008; Liu et al., 2010). However, one of the limitations of this 

strategy may need more clay consumption (Sengco, 2001; Yu et al., 2004), resulting in 

excessive sediment siltation and heavy dredging work. Additionally, when algae are 

removed from underwater by the clay coagulant, they cannot be prevented from 

floating in shallow rivers and lakes, and the release of toxic substances from 

decomposition can cause secondary pollution (Lee et al., 2008; Orizar et al., 2013). 

It is well known that the growth of algae is closely related to the photosynthesis 

by the light, and thus light is one of the important factors restricting algae growth and 

diversity (Marra and Heineman, 1982; Nanninga and Tyrrell, 1996). For example, the 
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work of Shen (2002) showed that the growth rate of algae increases with the 

increasing of light intensity, and found that the best situation of algal growth is at the 

luminescence of 4000 lux. Also, the strong or weak light was unfavorable for 

phytoplankton growth, and the function together with suitable temperature, light 

intensity and ample sunlight encouraged algal blooms under the same water quality 

and hydrodynamic conditions (Cao et al., 2011). However, light-shielding can 

significantly inhibit the photosynthetic rate of algae and promote algae extinction due 

to the consumption of dissolved oxygen (Kirk, 1994). For example, Chen et al. (2009) 

concluded that the algae biomass can reduce rapidly under the light-shading condition, 

and also, the reduction efficiency is increased when the light-shading is accompanied 

by aeration, indicating the feasibility of reducing harmful algae by light-shading plus 

aeration. The work of Ye et al. (2007) illustrated that the concentration of 

Chlorophyll-a, turbidity and chemical oxygen demand decrease significantly after 9 

days of light-shading, and their removal rates reach at 80.1%, 68.0% and 93.8%, 

respectively, which verifies the feasibility of the light-shading method, and further 

indicates that the shading of sunlight may still be a viable measure to control algal 

blooms in natural water purification systems. Generally, it seems to be ineffective, 

expensive and impractical to apply this strategy to the large scale and complex 

ecosystems for the proper algal control (Edmondon, 1970), and also the light-shading 

efficiency strongly depends on the temporal and spatial differences of different lakes 

and objectives of algal control. 

Other physical technologies such as membrane filtration (Castaing et al., 2010; 

Liang et al., 2008), air flotation (Teixeira et al., 2010) and electrochemical 

technologies (Rodrigo et al., 2010; Hasan et al., 2016; Chaplin, 2019), have also been 

widely used around the world. For example, electrochemical technologies, the 

methods combining both  physical chemistry and electronic science, can 

simultaneously treat multiple classes of contaminants with high removal efficiency 

through the production of chemicals at the electrode surfaces with low power and 

energy demands, which have proved to be a clean, flexible and environmentally 
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friendly way for wastewater treatment (Giwa et al., 2019; Chaplin, 2019). However, 

the development of the destructive electrochemical technologies requires the 

manufacture of non-toxic, low-cost, and high surface area electrodes, which have long 

service life and can be operated without harmful toxic by-products (Tang et al., 2019; 

Chaplin, 2019). 

1.2.2. Chemical method 

Chemical treatment method involves treating wastewater with various chemical 

additives that inhibit or be lethal to HAB organisms, including chemical agent method, 

electrochemical method and photochemical degradation method. The former is the 

most commonly used method, while the latter two methods are less reported. The 

chemical agents, such as metals (Magdaleno et al., 2014), algaecides and herbicides 

(Nagai et al., 2016), can control the propagation of algal blooms due to its adverse 

effects on the other organisms and the expedited release of Microcystins (EPA of 

China, 2000). In fact, chemical control was attempted in 1957 against the Florida red 

tide organisms using copper sulfate delivered with crop dusting airplanes in small 

lakes and ponds (Rounsefell and Evans, 1958). After that many related works have 

been done. For example, the work of Kaya et al. (2005) found that the combination of 

lysine and malonic acid could selectively control toxic Microcystis blooms and induce 

the growth of Macrophytes.  Li et al. (2007) carried out an experiment to study on 

the emergency treatment of toxic cyanobacteria blooms in basalt lake, and the results 

shown that algaecides may remove cyanobacteria temporally, but it cannot resolve the 

core problem of lake eutrophication. However, the most types of chemicals are not 

species-specific which may have a potential negative impact on ecological balance. 

For example, the use of algaecides, such as copper sulfate, copper chelates, chemical 

Endothall, has been proved to be an effective way to control and prevent HABs in 

small-sized lakes and ponds temporally (Boyd and Tucker, 1998). If the amount of 

required copper sulfate may not be prepared carefully by considering the alkalinity or 

acidity of the reservoir, the copper sulfate will become toxic to fish and other large 
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aquatic animals (Anderson, 2009). Although the use of chemicals is the most common 

and versatile management strategy for controlling nuisance aquatic plant populations, 

this method is neither practical nor advised in large ecosystems, or any waters to be 

used for fishing, drinking and other animal and human use. Also, most chemicals are 

too expensive and need frequent dosing, and they may not resolve the primary cause 

of the problems, or even may pose risks to human being, livestock and wildlife since 

these chemical treatments are often associated with the changes of PH value or 

salinity (Murphy et al., 1999; Hullebusch et al., 2002), in addition to causing damage 

to non-target aquatic organisms that may reappear after treatment, and thus it is 

difficult to find environmentally friendly and acceptable chemical way to help to 

control particular harmful algae (Anderson, 2009). 

1.2.3. Biological method 

The biological method is a way to increase the grazing pressure on toxic 

phytoplankton or to reduce recycling of nutrients by using the principle of the food 

chains of aquatic ecosystems and the relationship between organisms, including 

ecological floating island technology, aquatic plants competition technology, 

filter-feeding fish control technology and harmful phytoplankton control technology. 

Ecological floating island, a biotical-ecological restoration technology, refers to 

hanging biological fillers on the fixed support to make microorganisms, protozoa and 

small zooplankton floating on the surface of the fillers, so as to improve the 

wastewater purification by increasing the biomass per unit volume. Ecological 

floating island technology has drawn increasing attentions in biotical-ecological 

restoration due to its convenient operation, low environmental risks and effective 

treatment (for example, pollutant purification, ecosystem restoration and landscape 

improvement). The existing evidence showed that the effects of water spinach on 

nitrogen and phosphorus removal, and chemical oxygen consumption are great of 

significance for wastewater treatment and can improve water quality of eutrophication 

(Wang, 1997). In addition, Wu et al. (2010) proposed a biopond-wetland system for 
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controlling cyanobacterial blooms in a pond at Kunming City, Western China, and 

shown that when the hydraulic load of the biopond-wetland system is 500 m3 d�  on 

non-rainy days, the efficiencies of the overall average nutrients removal rate are 83% 

(Chl-a), 57% (total nitrogen), 70% (total phosphorus) and 66% (Ammonia), 

respectively, indicating that the biopond-wetland system can significantly control the 

outbreaks of toxic cyanobacterial blooms. However, it is difficult to control the 

hydraulic retention time and the hydraulic loading rate, as well as the selection of 

floating island plants for ecological floating island due to the local climate change and 

the surrounding environments. 

The aquatic plant competition method is to use the competition between aquatic 

plants and harmful algae for light, nutrients, oxygen, and release allele-chemicals into 

water environments to inhibit the growths of harmful algae. The work of Fang et al. 

(2007) showed that the growth of algae can be inhibited by the cultivation of 

beneficial algae or higher aquatic plants in water bodies. The integrated ecological 

floating bed simultaneously used plants (for example, Ipomoea aquatica), freshwater 

mussels (for example, Clam fluminea) and biofilm carriers (in artificial and semi-soft 

assembly) to perform better than the other two floating beds, one of which is 

composed of freshwater mussels and organisms, while the other is made of plants and 

biofilm carriers (Li et al. 2010). However, the decomposition of aquatic plants after 

apoptosis reduces the concentration of dissolved oxygen in the water bodies, resulting 

in emitting a foul smell and accelerating the deposition and inundation of the water 

bodies. 

Macrophytes or algae are important organisms in the aquatic ecosystems, and 

they are the primary food sources for herbivore fishes and other large aquatic 

organisms. Thus, the excessive growth of algae can be controlled by adding 

filter-feeding aquatic organisms, such as silver carp, nile tilapia and bighead carp. 

Actually, the basic premise is that secondary consumers are removed through the 

addition of tertiary consumers, which allows for the dominance of large-bodied, 

generalist grazers to control phytoplankton population. For example, the study of 
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Infante and Riehl (1984) indicated that nile tilapia can swallow large amounts of algae 

and zooplankton by the alteration of a food-chain to restore the health of the 

ecosystem, resulting in the rapid decrease in the biomass of plankton populations. 

Starling (1993) carried out a mesocosm experiment on a medium controlled 

ecosystem in a tropical reservoir in Brazil, and the results showed that silver carp can 

successfully control Microcystis blooms. Godlewsk and Swierzowski (2003) also 

found that aquatic animal community can effectively inhibit the growth of algae in the 

lake, which can improve water quality for the long-term, but the effect of algae 

control is mainly related to the selection of aquatic species, distribution and pollution 

degree of the water bodies. However, when toxic phytoplankton or harmful algal 

blooms have filtered as food resource by fishes, their toxins may accumulate in 

shellfish and the high level of toxins can be lethal to humans or other consumers.  

Significantly, the effect of filter-feeding fish on water quality is typically short-lived 

and most obvious in small and easily managed aquatic ecosystems. 

It is widely recognized that toxin-producing phytoplankton are a group of 

phytoplankton that have the ability to produce toxic chemicals into the aquatic 

environments during harmful algal blooms, which contribute to the negative effects 

on the economic and ecological values, and even pose a health hazard to animals and 

human beings (Hallam et al., 1983). For example, Noctiluca scintillans (Macartney), 

dinofagellates Alexandrium acatenella (Whedon et Kofoid) Balech, diatoms Nitzschia 

pungens f. multiseries Hasle, etc., are harmful to planktonic organisms (Halllegraeff, 

1993). Thus, many researchers have paid much attention to study the effect of TPP on 

the termination of planktonic blooms from their field works and modeling analysis 

over the past decades (Chattopadhayay, et al., 2002; Chattopadhayay, et al., 2004; 

Sarkar et al., 2005; Sarkar and Chattopadhayay, 2003). For example, taking the 

species Noctiluca scintillans (harmful phytoplankton), Chaetoceros sp. (harmful 

phytoplankton) and Paracalanus sp. (zooplankton) as the research objective, and the 

monitoring of plankton populations were carried out from March, 1999 to January, 

2001 in the Northwest coast of Bay of Bengal by Sarkar et al. (2005), the results from 
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the biomass distribution observed in their filed works displayed that the presence of 

harmful phytoplankton leads to the persistence of all species through the termination 

of planktonic blooms and can be used as a controlling agent for the stability of marine 

ecosystem (Sarkar et al., 2005). Although some excellent and interesting results have 

been obtained, the reason for the occurrence of planktonic blooms and their possible 

control mechanisms is still unclear currently. Thus, the progress of such important 

areas urgently requires special attention both from experimental and mathematical 

ecologists, which may greatly stimulate researchers to further explore the possible 

control mechanisms of planktonic blooms. 

As the basis of food chains in oceans, lakes, and reservoirs, plankton populations 

are the natural and essential components of healthy aquatic ecosystems, which can 

provide energy and materials to aquatic life. In most water bodies, there is a fine 

balance between adequate irradiance and nutrient supply that determines the rate of 

production of phytoplankton biomass, or primary productivity (Harris and Piccinin, 

1977; Reynolds, 1984; Cloern, 1999). However, unnecessary and excessive growth 

of phytoplankton may have a harmful impact on the aquatic ecosystems under some 

suitable conditions, and their density levels can significantly affect ecological 

balance by disrupting natural balance and reducing water quality. Thus, to control 

the occurrence of algal blooms and regulate the balance of aquatic ecosystems, some 

common methods technically, such as physical, chemical, and biological strategies, 

have been widely applied to control harmful algae growth and inhibit bloom 

formation. However, these algal blooms treatment methods all have their own pros 

and cons currently. To be more precise, chemical control and physical control may 

have the advantage of efficiency, but the practical observations show that these two 

control methods consume much resources (i.e., labor-intensive and high costs), and 

may cause secondary pollution. The effectiveness of biological control strategy may 

not be as fast as that of the former two control strategies, but some of biological 

control method are successful and environmentally friendly. Significantly, their 

control durability may be better, as these control methods are implemented based on 
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the principle of ecological balance. Although all these three methods have made 

great progress in controlling algal blooms, the process by which harmful algal 

blooms occur is still not completely understood, and understanding of dynamics 

mechanisms of changes in plankton populations becomes much more significant. 

Therefore, the development of the effective methods and technologies for controlling 

and preventing aquatic algal blooms is needed. 

1.3. Objectives of the study 

In recent years, biologists, as well as ecologists, have paid increasing attention to 

explain the influence of some factors on the formation and disappearance of algal 

blooms using a number of experiments (De Baar et al., 1995; Beman et al., 2005), and 

some hypotheses have been established. For example, Critical Depth Hypotheses 

(Sverdrup, 1953) and Dilution-Recoupling Hypotheses (Behrenfeld, 2010). The 

results from experiments indicated that many factors affecting the dynamics of 

plankton growth are bound to exist, for example, iron supply (Boyd et al., 2000; Coale 

et al., 1996) and light (Stomp et al., 2004), but they can only qualitatively explain the 

dynamics of plankton growth. Due to the complexity and openness of real aquatic 

ecosystems and the limitations of the current technology, which contribute to the 

difficulty to understand the mechanisms of plankton growth only depend on 

experimental and field observations, and the key to solve the issue of algal blooms is 

to understand the dynamics mechanisms of algae growth from dynamical analysis. In 

this respect, mathematical modeling of plankton can provide the quantitative insight 

into the dynamics of plankton growth. Moreover, the study of algal blooms is to 

establish dynamics models for the evolutionary processes of blooms formation and 

dissipation according to the dynamics mechanisms of population and water physical 

environments, and thus mathematical modeling is now a classical way to study the 

planktonic blooms (Truscott and Brindley, 1994a). Generally, dynamics modeling can 

be used to analyze and solve the solutions of the models, understand the parameter 

characteristics of the dynamics systems, and finally simulate the models by the means 
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of computer technology.  

Based on the background of the ecological environments in the subtropical lakes 

and reservoirs, the dissertation research mainly takes the planktonic algae as the 

research objective, aiming to model the dynamics mechanisms of plankton growth 

and evolution. In this dissertation, some theories related to population dynamics, 

impulsive control dynamics and stochastic dynamics, as well as the methods of 

dynamics modeling, dynamics analysis and experimental simulation, are applied to 

reveal the dynamics mechanisms of the spatial-temporal distribution of plankton and 

predict the dynamic evolutionary processes of plankton growth. Significantly, the 

objectives of the dissertation are to study some nonlinear problems of population 

dynamics, such as the dynamics mechanisms of the termination of planktonic blooms, 

the dynamics mechanisms of spatial-temporal evolutionary processes of plankton 

growth and the dynamics mechanisms of the dynamic prevention and control of 

planktonic blooms. The specific objectives include: 

Ø Establishing an impulsive reaction-diffusion hybrid system and analyzing the 

dynamics of the proposed system. Several simulation experimental factors, 

for example, impulsive control and the heterogeneity and homogeneity of 

environments, are taken into account to investigate the effects of these factors 

on the survival of species, the dynamics spatial-temporal distribution of 

species, and the dynamics evolutionary mechanisms of species by means of 

the experimental simulation technology. 

Ø Considering a stochastic phytoplankton-zooplankton system with toxic 

phytoplankton. Environmental stochasticity (for example, white noise) was 

firstly chosen as a control parameter, aiming to explore the dynamical 

behaviors of plankton under the environmental fluctuations. And then the 

toxin liberation rate released by TPP was examined to reveal the dynamics 

mechanisms of the formation and disappearance of planktonic blooms, and 

finally the combined effects of two liberation rates on the process 

performance of planktonic blooms were further discussed using the 
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experimental simulations. 

Ø Building a stochastic phytoplankton-toxic phytoplankton-zooplankton system 

under regime switching, and devoting our attention to address the issues 

though studying the dynamics of the system. To be more precise, studying 

the long-time behaviors of phytoplankton-toxic phytoplankton-zooplankton 

system in a fluctuating environment and revealing the effects of white noise, 

regime switching and TPP on the dynamics mechanisms of the termination of 

planktonic blooms. 

Ø Developing a stochastic non-autonomous phytoplankton-zooplankton system 

involving toxin-producing phytoplankton and impulsive perturbations, and 

investigating the effects of these factors on the dynamics of plankton model. 

More precisely, we aim to study how do environmental noise and impulsive 

control influence the survival of plankton populations and what influence in 

the peak of the cyclic outbreaks of planktonic blooms in an impulsive 

perturbations and fluctuating aquatic environments. 

1.4. Organization of the dissertation 

The dissertation is organized as follows: Chapter 2 presented some literature 

review. In chapters 3-6, four different mathematical and biological models of plankton 

dynamics were proposed, respectively, aiming to study some key biological factors 

affecting the growth of plankton populations in aquatic ecosystems and reveal the 

dynamics mechanisms of the termination of planktonic blooms (see Fig. 1.1). They 

mainly include an impulsive reaction-diffusion hybrid system (in chapter 3), a 

stochastic phytoplankton-zooplankton system with toxin-producing phytoplankton (in 

chapter 4), a stochastic phytoplankton-toxic phytoplankton-zooplankton system under 

regime switching (in chapter 5), and a stochastic non-autonomous 

phytoplankton-zooplankton system involving toxin-producing phytoplankton and 

impulsive perturbations (in chapter 6). The conclusion of this research and the 

recommendations for future research were provided in chapter 7.  
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Fig. 1.1. Schematic diagram for the structure of the research. 
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Chapter 2 LITERATURE REVIEW 

2.1. Plankton dynamics model 

The dynamics of plankton studies mainly the dynamics mechanisms of plankton 

and the effects of some internal and external factors on the mechanisms in real-world 

aquatic environments. Dating back 100 years ago, many scientists and researchers 

have investigated the dynamics of plankton models, and the plankton research have 

regularly combined with field observations, laboratory experiments, as well as 

mathematical modeling from the beginning. Due to the strong positive correlations 

between zooplankton and fish abundance, fisheries and climate change have greatly 

stimulated the common interest of researchers in studying the dynamics of plankton 

populations. Actually, since the pioneering work of Fleming (1939), many 

mathematical models have been developed and explored extensively for the 

phytoplankton productivity (Ivlev 1945; Riley, 1946; Odum, 1956). Subsequently, a 

collection of the most frequency used models was presented by Behrenfeld and 

Falkowski (1997), which could be of great help in estimating the productivity of 

marine ecosystems. All these works have greatly lead to the rapid development of 

plankton dynamics models. 

More precisely, the first attempt to study plankton dynamics models by using a 

simple ordinary differential equation can be traced back to the work of Fleming 

(1939), who demonstrated that zooplankton grazing plays a crucial role in the 

controlling of phytoplankton blooms and opened the chapter of the study of the 

dynamics of plankton models. Subsequently, Ivlev (1945) introduced the functional 

response to more realistically describe the interactions between phytoplankton and 

zooplankton populations. And then some other functional responses, such as 

Holling-type response terms (Holling, 1959, 1973), Mayzaud and Poulet (1978), have 

been widely considered to study the dynamics of plankton models (Steele and 

Henderohn, 1981, 1992; Malchow, 1993; Truscott and Brindley, 1994a; Scheffer, 

2004; Garvie and Ttenchea, 2007). Other approaches the researchers are trying to 
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construct the data-fitted functions (Riley, 1963) and apply Lotka-Volterra model to 

describe the interactions of prey-predator for phytoplankton-zooplankton (Dubois, 

1975; Mimura and Murray, 1978; Segel and Jackson, 1972; Gierer and Meinhardt; 

1972; Levin and Segel, 1976). In this respect, the understanding of plankton dynamics 

models has been greatly improved in recently years, which provide a deeper insight 

into solving some ecological problems (Huo and Li, 2004; Mukhopadhyay and 

Bhattacharyya, 2008; Zhang et al., 2014; Priyadarshi et al., 2017; Yu et al., 2018). In 

addition, due to the rapid development of population model and the idea of its 

construction, which have greatly lead to the establishment and development of 

plankton dynamics models. Thus, the following mainly introduces the related research 

progress of population model. 

The study of population dynamics looks back over two centuries of history in the 

mathematical and ecological sciences, and the earliest and simplest population model 

is well-known Malthus population model. Actually, Thomas Robert Malthus 

published his "Principle of Population" thesis in 1798, and proposed the Malthus‟s 

theory that population is always growing in a geometric progression and advocated 

the implementation of population control (Malthus, 1798). It is assumed that the per 

capita growth rate of change in the number of individuals is a constant � and derived 

the following model of the variation of population: 

��

��
= �� (2-1)

with an initial value ��0� = �0, where � is the number of population at the time �. 

Noted that the trajectory of �(�) = �0 exp���� is exponential. Such an exponential 

trajectory is of considerable theoretical significance, as it represents the long-term 

behaviors of age-structured population affected by constant mortality and fertility 

rates (Keyfitz, 1977). But the essence of this model is that each individual generates a 

constant number of offspring, regardless of the crowding (i.e. environmental carrying 

capacity) and the availability of food supply, which is not in line with the reality. In 

fact, the influence of external factors on the population growth is not considered in the 

Malthus model, which makes population growth always a constant. When the typical 
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size of the population is small, the model can make a more accurate prediction, while 

it cannot reflect the real situation for a large human population base. In other words, 

the exponential population growth is incompatible with linear growth of food 

resources. 

Considering that unchecked infinite exponential growth is patently unrealistic 

and the growth of population must be regulated by some biological factors, for 

example, the availability of food supply and the living environments of population. 

Thus, Verhulst (1838) introduced the density constraint to the basis of Malthus 

population model and initially derived the logistic growth model, where the per capita 

rate of change decreases linearly with the population size. Afterwards, Pearl applied 

the logistic growth equation, which has been derived independently by Lotka (1925), 

to model the population growth in US (Pearl, 1920). The equation can be presented as 

follows:  

                         
��

��
= �� �1 −

�

�
�                           (2-2) 

where �(� > 0) is the environmental carrying capacity of population size, which 

means the maximum number of population that the natural environment can 

accommodate. Also, Verhulst assumed that the growth rate of population follows the 

law of logistic growth � �1 −
�

�
�. This implies that the population growth slows down 

as the number of population increases, indicting the environmental resources can 

significantly affect the growth of population. Other models, such as the Gompertz 

growth 
��

��
= �� ln �

�

�
�, can also show many of the same properties, but the logistic 

growth equation is arguably the best-known and most widely applied rate equation for 

the population growth and population invasion (Mendez et al., 2014). 

It should be noted that both Eq. (2-1) and Eq. (2-2) only discussed the single 

population models, but species in nature are not independent of each other, for 

example, predation, competition, and parasitism. The first attempt to establish the 

multi-population prey-predator model by the work of Lotka and Volterra (Lotka, 1925; 

Volterra, 1926), who presented the Lotka-Volterra competition model that describes 
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the population densities of prey � and predator  �. 

                        �

��

��
= ��� − �1��,

��

��
= ���1� − ��.

                           (2-3) 

The construction of the model is based on the following assumptions: the growth rate 

of the prey population density �, given as �−1 �� ��� , should be a decreasing function 

of the predator density � and greater than zero when the predator density is zero. 

Conversely, the predator growth rate �−1 �� ���  should increase with the prey count, 

but be negative when � = 0. In addition, the parameters �,�1, �, and �1 describe the 

prey reproduction rate, predation rate, predator death rate, and conversion efficiency 

of prey into predator, respectively, and all the parameters are positive. This set of 

coupled ordinary differential equations gives rise to characteristic, undamped, 

non-linear oscillations. Generally, the classical Lotka-Volterra model can be given as 

the following form: 

                      �

��

��
= ��� + �1� + �2��,

��

��
= ��� + �1� + �2��.

                       (2-4) 

However, the relationship between predator and prey described by classical 

Lotka-Volterra model is rather realistic, with the most obvious flaw being the 

unchecked growth of the prey in the absence of predator. In the 1930s, consequently, 

Gause proposed a generalized mathematical model in which the rate parameters 

effectively become response function of the respective species, allowing more 

realistic control of populations compared to the original Lotka-Volterra model (Gause, 

1934; Royama, 1971). The Gause type predator-prey model is introduced as follows: 

                       �

��

��
= ����� − �����,

��

��
= −�� + ������.

                                                      (2-5) 

where � is the natural death rate of predator and � is the conversion efficiency of 

prey into predator. Function ���� denotes the growth rate function of the prey and 

�(�)  represents the predation response function. The selections of functional 



 

23

response are of great significance to describe the predator-prey phenomenon in 

different environments and many scholars have done a lot of works to construct a 

more accurate functional response function by field observations and laboratory 

experiments, for example, Michaelis-Menten uptake dynamics (Dugdale, 1967) 

provide a more realistic reflection of nutrient uptake dynamics (Huppert et al.,  2002). 

In this dissertation, we mainly consider Holling-II functional response into the model. 

Actually, Michaelis and Menten (1913) proposed the following functional response 

when studying the saturation models of enzyme kinetics: 

                             ���� =
��

�+�
                          (2-6) 

where � is the maximum growth rate of population and � (� > 0) denotes the 

half-saturation constant. Actually, Holling obtained this function through the 

laboratory experiment (Holling, 1959) and named the function as Holling-II 

functional response. Fortunately, we apply the functional response to analyze the 

dynamics of phytoplankton-zooplankton system in this dissertation. Other functional 

responses such as Crowley-Martin type (1989), Beddington-DeAngelis type 

(Beddington, 1975; DeAngelis and Goldstein, 1975) are also considered in the 

following discussion. 

Plankton models can be regarded as a specific application of predator-prey 

models, and its mathematical structure relies strongly on the generalization or 

improvement of the mentioned population systems. Motivated by the above works, 

the construction of plankton models is based on the following assumptions: the 

natural growth rate of phytoplankton follows the law of logistic growth; the capture of 

phytoplankton by zooplankton needs to be described by an appropriate functional 

response function and consider the natural death of zooplankton populations. 

Moreover, the study of plankton ecology is an important significance of the survival 

of our earth, but the occurrences of planktonic blooms have been reported globally 

with an increasing frequency over the past decades (Hallegraeff, 1993), and TPP are 

among the contributors in these blooms (Hallegraeff, 1993; Philips et al., 2004; 

Hallam and Luna, 1984). Therefore, considerable scientific attention towards harmful 
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phytoplankton when studying phytoplankton-zooplankton systems has been paid 

(Estep et al., 1990; Huntley et al., 1986; Buskey and Hyatt, 1995; Wyatt and Horwood, 

1973). For example, the field observation (Estep et al., 1990) and laboratory 

experiment (Huntley et al., 1986) shown that the toxicity may be as a strong mediator 

in the zooplankton feeding rate. Thus, it is necessary to consider the effect of the 

toxins produced by harmful phytoplankton on zooplankton when studying 

phytoplankton-zooplankton systems. Based on the field observation and model 

analysis, Chattopadhyay et al. (2002) proposed the following nonlinear coupled 

ordinary differential equations: 

                      �

��

��
= �� �1 −

�

�
� − ������,    

��

��
= ������ − �� − ������.

                   (2-7) 

Compared with Eq. (2-5), system (2-7) added an additional term −������ that 

describes the effect of phytoplankton toxins, where � denotes the toxin liberation rate 

produced by TPP and ����  represents the distribution of toxic substances. 

Interestingly, the authors investigated the existence and local stability of positive 

equilibria and the existence of Hopf-bifurcation of the system by considering different 

combinations of functional response ���� and ����, and concluded that TPP may be 

used as a biological way to control the planktonic blooms (Chattopadhyay et al., 

2002). 

Based on (2-7), the dynamical behaviors of plankton systems with harmful 

phytoplankton, such as stability, bifurcation and chaos, have been explored 

extensively in recent years (Saha and Bandyopadhyay, 2009; Sarkar and 

Chattopadhayay, 2003; Luo, 2013; Jang, 2014; Roy et al., 2006; Upadhyay and 

Chattopadhyay, 2005; Chaudhuri et al., 2013). For example, the work of Saha and 

Bandyopadhyay (2009) shown some dynamical properties of the toxic 

phytoplankton-zooplankton system without time delay, and further investigated the 

existence of local Hopf-bifurcation induced by time delay, and studied the existence 

of stability switching phenomena and the stability of Hopf bifurcation and the 

direction of the bifurcating periodic solution. Sarkar and Chattopadhayay (2003) 
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introduced the environmental fluctuations into the phytoplankton-zooplankton system 

with TPP, and the results shown that TPP and the controlling of the rapidity of 

environmental fluctuations are key factors influencing the termination of planktonic 

blooms. In this dissertation, we apply schematic few-species models to demonstrate 

that phytoplankton-zooplankton interactions can give rise to the dynamics 

mechanisms of plankton systems and predict the dynamic evolution process of 

plankton growth. 

2.2. The research of nonlinear dynamics 

The commonality of the above mentioned studies is to investigate the dynamics 

of the nonlinear problems in the plankton dynamics models. Generally, the research of 

nonlinear dynamics system includes: the study of nonlinear dynamics of nonlinear 

phenomena in dynamic systems and the establishment a nonlinear dynamic model 

respect to the practical problems. Due to the development of mathematics and 

computer technology, an increasing attention has been paid to the study of nonlinear 

dynamic systems. Especially, at the end of the 19th century, Poincaré proposed the 

concept of dynamics and established a qualitative theory (the theory that directly 

studies the behaviors of solutions without using the solutions of the equations) when 

studying celestial mechanics, which laid the foundation for the study of nonlinear 

dynamics (Poincaré, 1890). Almost at the same time, Lyapunov published his doctoral 

dissertation "General Theory of Motion Stability" between the year of 1882 and 1892, 

which greatly promoted the development of nonlinear dynamics (Lyapunov, 1966). 

Moreover, Lorentz was the first to discover the strange attractor (or called Lorentz 

attractor) and described it as the famous "Butterfly Effect" (Lorentz, 1963) in 1963, 

which opened the chapter of the study of chaotic dynamics. The discovery of chaos 

has become one of the most important achievements in the field of nonlinear 

dynamics (Lorenz, 1993). In addition, Prigogine (1969) put forward the theory of 

dissipative structure in 1969, which had a great influence on physics, chemistry, 

biology and other disciplines, and pushed the study of nonlinear dynamics to a new 
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high level. Here, we do not full cover the discussions of all the branches of nonlinear 

science. Instead, we concentrate on the brief description of the dynamic methods of 

nonlinear dynamics in related to this dissertation. 

2.2.1. The dynamics of stochastic system 

An important problem in nonlinear and statistical physics is to under the 

underlying laws for various phenomena in dynamical systems forced by random 

environmental fluctuations. Many phenomena in nature are positively or negatively 

affected by environmental fluctuations, which can be called the stochastic phenomena. 

For example, among the modern industrial process, the social economy and other 

fields of a variety of dynamic systems, almost all of them are subjected to various 

random factors. When the intensity of random disturbance is small or the accuracy of 

the system is not high, the system can be generally regarded as a deterministic one. 

On the contrary, the interaction between nonlinearity and stochasticity of dynamical 

systems can give rise to unexpected phenomena which have no analogue in the 

deterministic case (Moss and MeClintock, 2007; Anishchenko et al., 2007). The 

problem is fundamental because it involves the interplay between the modern 

qualitative theory of deterministic dynamical systems and the stochastic analysis. For 

example, some properties of deterministic systems may be lost by using deterministic 

methods to describe some stochastic systems, and it is difficult to achieve the 

expected results by means of the analysis and control methods of the deterministic 

system theory for studying stochastic systems. Thus, it is necessary and important to 

consider the effects of stochastic fluctuations on the systems and take the study of the 

dynamic systems as stochastic systems in these cases (Mao, 1997a). Actually, 

stochastic fluctuations are usually referred to as random noise, and the solutions of the 

equations with random parameters (or stochastic dynamical systems) are called 

stochastic processes. Generally, deterministic systems can be described by ordinary 

differential equations, while the stochastic systems can be presented by stochastic 

differential equations (Mao, 1995, 1997a). 
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Since Kiyoshi Ito� initiated stochastic analysis and introduced stochastic integral 

and stochastic differential equations in 1942, the stability theory of stochastic systems 

has been developed rapidly. In the middle of the last century, the study of stochastic 

dynamics was widely applied to the natural sciences, engineering and social sciences, 

as well as in the study of nonlinear stochastic problems in physics, chemistry, biology 

and medicine. Some related theories, such as stochastic stability, stochastic optimal 

control, stochastic limit cycle, stochastic bifurcation, and stochastic chaos, have been 

established by mathematicians, physicists and mechanics. Subsequently, many 

monographs, anthologies and textbooks on stochastic dynamics have been published 

in the world (Gihman and Skorohod, 1979; Khasminskii, 1980; Meyn and Tweedie, 

1983; Mao, 1994, 1997b; Arnold, 1998; Chueshov, 2002). For example, Mao (1997b) 

introduced stochastic differential equation and its application theory in detail. 

Chueshov (2002) introduced the theory of stochastic differential dynamics system and 

its application. All these results have further lead to the development of the theory of 

dynamics of stochastic system.  

In the real world, there exist many types of random noise and all species have 

evolved in the presence of environmental disturbance. The work of Robert et al. (1998) 

showed that the environmental fluctuations can be divided into the following groups: 

biologically based disturbance of populations (for example, overharvesting, invasion, 

disease, and their interactions) and physically based disturbance such as storm, 

volcanic eruption and forest fire. Generally, the Gaussian noises (Brownian motion or 

Wiener process) can describe the continuous and random amplitude at any time that 

often occurs in reality, which satisfies the Gaussian distribution function based on 

biological disturbance as a whole (Kingman and Feller, 1972). If the governing 

variables are or can be approximated as discrete, one can employ the well-established 

theory of Markov chains (Cox and Miller, 1977; Norris, 1998). There is now 

compelling evidence that the nature is usually assumed to respond to gradual change 

in a smooth way, however, many studies on lakes, coral reefs, oceans, forests and arid 

lands have shown that the smooth change can be interrupted by sudden drastic 
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switches to a contrasting state (Scheffer et al., 2001). To describe such phenomenon, 

continuous discrete state Markov chains can be used to simulate random populations 

switching from one state to another or more (or regime switching) (Mao and Yuan, 

2006). For example, Sun et al. (2018) revealed that the death rate of newborn Little 

Yellow Croaker (Larimichthys polyactis) are 0.53 and 0.84 at 22℃ and 16℃, 

respectively. At the same time, some biological experiments and observational 

evidences illustrated that many populations have scale-free characteristics in spatial 

distribution, which may be strongly related to the discontinuous Levy noise in the 

environments (Levy, 1925; Sato, 1999) (for example, micro-plankton (Reynolds, 2008) 

and bees (Stout and Goulson, 2001)). Therefore, many researchers have applied levy 

noise to describe the sudden and catastrophic interference based on physical 

principles (Cognata et al., 2010; Applebaum, 2009). In recent years, ecological 

models with random disturbances have attracted the interest of many researchers, and 

some excellent results have been achieved. However, most of these models are based 

on the classical Lotka-Volterrs models or the epidemic chamber models, and there are 

few literatures to study the aquatic ecological populations, especially plankton 

populations. Moreover, accumulating evidence showed that the environmental 

fluctuations can play an important role in real ecosystems (Carpenter et al., 2011; 

Meng et al., 2014), and the survival of plankton populations can be significantly 

affected by environmental stochasticity (Melbourne and Hastings, 2008). All the 

results could provide us a deeper understanding for the realistic aquatic ecosystems 

when incorporating environmental fluctuations into the systems. Here the question 

may arises: can environmental fluctuations such as white noise and regime switching 

are a cause of the termination of planktonic blooms? Therefore, in this dissertation, 

we mainly apply the theories of the dynamics of stochastic systems to study the 

temporal and spatial evolution of plankton distribution for plankton ecosystems and 

further reveal the distribution mechanism of plankton populations in fluctuating 

aquatic environments. 
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2.2.2. The dynamics of impulsive control system 

In the real world, the states of systems will change suddenly because of the 

influence of some factors, such as drought, flooding, hunting, planting. Due to these 

changes of relatively short time interval at some fixed times, it is usually regarded as 

instantaneous discontinuous phenomena, which can be represented by impulsive 

effects that may be suitable for such phenomena (Lakshmikantham et al., 1989; 

Bainov and Simeonov, 1993). For example, during the outbreaks of aquatic algae, the 

implementation of mechanical measures, such as algae removal, will result in a 

short-term decrease in the density of harmful algae. In the production of fishery 

resources, the launch of young fish and the harvest of adult fish will cause 

instantaneous changes in fish density. Also, in agricultural production, people usually 

control pests by spraying insecticides or releasing natural enemies regularly, which 

lead to the rapid changes in the number of pests and natural enemies in a short period 

of time. These transients or almost instantaneous behaviors can indeed cause sudden 

and abrupt changes in the state of species, which cannot be described by continuous 

systems. Therefore, the greatest interest for people is what the response of systems to 

experiencing such sudden changes in the real world, and a relatively effective method 

to study such problems is to use the impulsive dynamics systems. The most prominent 

feature of impulsive dynamics systems is that it can fully consider the impact of 

instantaneous mutation on the system states, and profoundly and accurately reflect the 

law of action of things, which seems to be more realistic (Jannash and Mateles, 1984; 

Jin et al., 2004).  

Impulsive dynamics system is a description of the evolution process of sudden 

changes of the states of systems under instantaneous disturbance using impulsive 

differential equations. Actually, since the pioneering work of Minman and Myshiks 

(Mi‟man and Myshkis, 1960), impulsive dynamics systems have been the common 

interest among researchers, who are committed to its theoretical researches 

(Simeonov and Bainov, 1988, 1989; Bainov and Covachev, 1994; Samoilenko and 

Perestyuk, 1995; Chen, 2011, 2013). Especially, the applications of Lyapunov 
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function and Razumikhin technique have given a good explanation of the properties 

of the solutions of impulsive systems, which greatly promoted the development of 

theory and practical applications. For example, the treatment of some diseases 

(Lakmeche and Arino, 2000; Panetta, 1996), pulse immune control and therapy 

(Donofrio, 2002a, 2002b; Shulgin et al., 1998, 2000), Microbial culture (Agur et al., 

1993), population optimal control (Zhang et al., 2003; Mailleret and Grongard, 2008), 

pest control and management (Lu et al., 2003; Jatav and Dhar, 2014) and ecological 

environment management (Martins et al., 1997; Huppert et al., 2002; Liu et al., 2003; 

Dai et al., 2013; Wang et al., 2014). Significantly, the research on the impulsive 

dynamics systems is attractive and challenging because of the combined with the 

characteristics of continuous and discrete systems, but it is not simply a superposition 

of the two systems, but a new system. Additionally, the biggest difference among 

them is the impulsive dynamics system can describe some complex problems that 

cannot be described separately by the continuous or discrete dynamics systems. 

Generally, impulsive dynamics system can be divided into the following systems: 

impulsive dynamics system in which impulse occurs at a fixed time (periodic 

impulsive dynamics system), impulsive dynamics system in which impulse occurs at 

variable time (time-varying impulsive dynamics system) and impulsive dynamics 

system depending on the state of system (state-dependent impulsive dynamics system) 

(Lakshmikantham et al., 1989; Bainov and Simeonov, 1993). In the past decades, the 

periodic impulsive dynamics systems have been widely explored and its theoretical 

systems have been improved (Liu and Chen, 2003; Chen et al., 2009; Liu et al., 2006; 

Wang et al., 2009; Wang et al., 2008; Yu et al., 2011; Xiang et al., 2009). In these 

existing literatures, they mainly studied the impulsive dynamics system in which the 

impulse occurs at a fixed time in the biological system, proved the existence and 

boundedness of the semi-trivial periodic solution of the system, and obtained the local 

and global asymptotic stability of the semi-trivial periodic solution, which are the key 

conditions ensuring the permanence of the biological populations. Significantly, the 

results from experimental simulations showed that chaos can occur in the process of 
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long-time dynamic behaviors, and further discussed how to control the development 

of biological populations so that we can make use of biological resources and thus 

obtain greater economic benefits. As another important branch of impulsive control 

dynamics system, state-dependent impulsive control dynamics system can simulate 

the advantages of the controlling depending on the state of population. Recently, the 

studies on state-dependent impulsive differential equations have become the common 

interest among many researches (Tang and Cheke, 2005; Jiang et al., 2007; Dai and 

Zhao, 2012; He et al., 2015), and some properties of periodic solution, such as the 

existence of periodic solution, stability and periodicity, have been investigated (Nie et 

al., 2009; Dai et al., 2012). In addition, some existing literatures revealed that the 

existence, stability and bifurcation of periodic solutions of state-dependent impulsive 

differential equations using successive functions (Guo et al., 2014; Wei and Chen, 

2014; Zhang et al., 2014; Ji et al., 2015; Xiao et al., 2015), indicating the easier way 

to obtain the economic benefits and practical value by taking the states of populations 

as the impulsive control parameter. For example, in the management of 

disaster-related problems such as pest outbreak, algal blooms and red tide, their 

control implementations strongly depend on the states of species. In recent years, with 

the frequent occurrence of algae blooms, people usually rely on their own experience 

to control them, but the corresponding treatments are not satisfactory and may lead to 

secondary contamination. Here the question may arises: does the impulsive control 

affect the dynamics of plankton systems and further what does role the impulsive 

control play in the formation and disappearance of planktonic blooms? Therefore, in 

this dissertation, we will establish the related plankton dynamics systems under the 

impulsive effects, and try to study the effect of the impulsive control on the dynamics 

mechanisms of the termination of planktonic blooms and predicting the dynamic 

evolution process of plankton growth. 

2.3. Summary of literature review 

Based on the dynamic models of differential equations, especially for the 
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relationship between phytoplankton and zooplankton populations, the influence of 

some different key factors on the dynamics mechanisms of the termination of 

planktonic blooms can be revealed, which can provide a theoretical basis for 

exploring the dynamics mechanisms of the formation and disappearance of planktonic 

blooms. Although many studies on the dynamics of plankton systems have made great 

progress, the dynamics mechanisms of plankton growth are still not completely clear 

recently, especially for the detailed dynamics mechanisms of planktonic blooms. In 

recent years, some biological factors, for example nutrition (Huppert et al., 2002), 

water temperature (Zhao et al., 2020), time delay (Rehim and Imran, 2012), flow rate 

(Dai et al., 2015), predation pressure (Wyatt and Horwood, 1973; Uye, 1986), and 

harmful phytoplankton (Banerjee and Venturino, 2011), have significantly affected the 

dynamics mechanisms of planktonic blooms. However, other biological factors, for 

example population diffusion, impulsive control, environmental fluctuations and TPP, 

can also affect the dynamics of plankton growth, but they are rarely considered into 

the existing literatures. Here some questions may arise: what role does the 

reaction-diffusion effect play in the dynamics of spatial and temporal evolutionary 

process of plankton distribution, and how the impulsive control affect the survival of 

plankton? Also, how the impulsive control and white noise influence on the dynamics 

of plankton, especially the extinction and persistence in the mean of plankton in a 

fluctuating environment and what influence the peaks of the cyclic outbreaks of 

planktonic blooms under man-made factors and fluctuating environment? Moreover, 

what are the potential mechanisms that contribute to the extinction of plankton in an 

evolutionary setting when plankton is subjected to a white noise? Furthermore, 

predicting how the prolonged coexistence of plankton under the effects of white noise 

and regime switching and studying what are the mechanisms that affect the peaks of 

the outbreaks of planktonic blooms in a fluctuating environment? In a word, these 

interesting problems in the dynamics mechanisms of the formation and disappearance 

of the planktonic blooms can be explored in the dissertation, and it is still necessary 

and important to study the nonlinear problems of planktonic blooms. 



 

33

Chapter 3 DYNAMIC ANALYSIS OF A REACTION-DIFFUSION 

IMPLUSIVE SYSTEM1 

Abstract 

In this paper, a predator-prey system with Crowley-Martin functional response, 

which is described by a couple of reaction-diffusion equations with impulsive, is 

studied analytically and numerically. The aim of this research is to analyze how the 

impulsive effect influences on dynamic of the system. Dynamics of the system, 

including the ultimate boundedness, permanence and extinction, are investigated 

firstly under impulsive effects. Significantly, it is found that there exists a unique 

positive periodic solution that is globally asymptotically stable when impulsive effects 

reach some critical state. Additionally, a series of numerical simulations are carried 

out to further study dynamics of the system, which are consistent with the analytical 

results. 

Keywords: Crowley-Martin functional response, Reaction-diffusion equation, 

Permanence, Periodic solution, Impulsive effect 

1 This work has been published as Liu, H., Yu, H.G., Dai, C.J., Wang, Q., Li, J.B., 
Agarwal, R.P., Zhao, M., 2019, Dynamic analysis of a reaction-diffusion impulsive 
hybrid system. Nonlinear Analysis: Hybrid Systems 33, 353-370. DOI: 
10.1016/j.nahs.2019.03.001.
2 This work has been published as Liu, H., Dai, C.J., Yu, H.G., Guo, Q., Li, J.B., Hao, 
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3.1. Introduction  

In real world, the spatial distribution of species seems to be heterogeneity in the 

bounded domain, and each species has a nature tendency to spread to areas where the 

population concentration is much smaller. Moreover, stabilization of predator-prey 

dynamics can be achieved through spatial heterogeneity, whose stabilizing effect of 

partial isolation of habitat patches is very important (Scheffer, 1998; Akhmet et al., 

2006). Then, the reaction-diffusion equations may be a very useful tool to describe the 

spatial dispersal of species. Actually, since the pioneering work of Turing (1952), 

diffusion phenomena have been observed as causes of the spontaneous emergence of 

ordered structures, called patterns, in many non-equilibrium situations (Pearson, 1993; 

Bois et al., 2011; Liu et al., 2012; Hillerislambers et al., 2001). In recent decades, the 

studies on reaction-diffusion equations have made great progress, by which a great 

variety of systems with diffusion process are widely explored, and many excellent 

results have been obtained (Melkemi et al., 2005; Pang and Wang, 2003; Peng and 

Wang, 2005; Hu et al., 2014; Dai et al., 2015; Dai and Zhao, 2014). Those works 

mainly focus on continuous dynamic systems with diffusions. However, there exist 

impulsive phenomena in some diffusion processes, which cause studies on the 

dynamics of the system with diffusion and impulsive to be one of the significant 

research interests currently. 

In reality, practical populations undergo inherent discontinuity of many natural 

and man-made factors, which lead to rapid population decrease or increase over a 

fixed time (for example, fire, drought, hunting, harvesting breeding, etc.). Systems 

with such kinds of discontinuous changes refer to impulsive differential equations, 

which have attracted the interest of many researches in the past decades since they 

provided a natural description of observed evolutionary behavior of certain real-world 

problems (Samoilenko and Perestyuk, 1995; Zavalishchin and Sesekin, 1997). For 

example, many biological phenomena involving thresholds, bursting rhythm models 

in medicine and biology, optimal control models in economics, pharmacokinetics, and 

frequency modulation models can exhibit impulsive effects, and then, impulsive 
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effects have been extensively investigated (Nieto and 'Regan, 2009; Dai et al., 2012c; 

Jatav and Dhar, 2014; Chakrabory et al., 2015; Zhao et al., 2012; Wang et al., 2014). 

Especially, the dynamic of reaction-diffusion system with impulsive have been the 

common area of interest among many researchers (Akhmet et al., 2006; Wang et al., 

2010; Liu et al., 2011, 2014; Zhong and Liu, 2010; Struk and Tkachenko, 2002). 

Akhmet et al. (2006) have investigated the dynamics of an impulsive ratio-dependent 

predator-prey system with diffusion, and they obtained some conditions for the 

permanence of the predator-prey system and for the existence of a unique globally 

stable periodic solution. Liu et al. generalized the impulsive reaction-diffusion system 

to three populations and obtained a series of interesting results (Liu et al., 2011, 2014; 

Zhong and Liu, 2010). All these works have lead to the development of impulsive 

reaction-diffusion systems. 

In addition, functional response plays an important role in the population 

dynamic due to its characterization for the interaction between predator and prey. 

Holling (1959) introduced the concept of the functional response, which describes the 

asymptotic relationship between prey removal rate per predator and the density of 

prey. There exist many functional responses, such as Leslie-Gower, Holling type II, 

ratio-dependent, and so on. One well-known example is the Crowley-Martin 

functional response (Crowley and Martin, 1989), where it is assumed that 

predator-feeding rate decreases with higher predator density even when prey density 

is high. At present, the system with Crowley-Martin functional response have been 

explored extensively (Upadhyay and Naji, 2009; Jazar 2013; Dong et al., 2013; Shi et 

al., 2011; Meng et al., 2011; Liu et al., 2013; Dong and Zhang, 2015), such as a 

delayed Chemostat model (Dong et al., 2013), a stage-structured predator-prey model 

(Shi et al., 2011), a stochastic predator-prey model (Liu et al., 2013), a diffusive 

predator-prey system (Dong and Zhang, 2015), and so on, and many interesting 

results have been shown. Obviously, it is interesting and important to study the 

dynamics of the prey-predator systems with Crowley-Martin functional response. 

Additionally, impulsive effect exists in some diffusion processes in ecosystems. 
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However, the impulsive diffusion prey-predator system with Crowley-Martin 

functional response has rarely been studied, and dynamics of the impulsive 

prey-predator system with Crowley-Martin functional response under diffusion is still 

not very clear currently. Hence, the study of the dynamics on the impulsive reaction 

diffusion prey-predator system with Crowley-Martin functional response is the aim of 

this paper, especially, the influence of the impulsive effect on the dynamics of the 

prey-predator systems with Crowley-Martin functional response under diffusion. 

Motivated by above works, a impulsive diffusion prey-predator system with 

Crowley-Martin functional response, which describes the interaction among a 

top-predator, an intermediate predator and a prey, is presented, as follows: 

  
∂�1

∂t
= �1∆�1 + �1��1��, �� − �1��, ���1� −

�1��,���1�2

1+�1��,���1+�2��,���2+�1�� ,���2�� ,���1�2
(3-1) 

  
∂�2

∂t
= �2∆�2 + �2��2��, �� − �2��,���2� +

�′1�� ,���1�2

1+�1�� ,���1+�2�� ,���2+�1�� ,���2��,���1�2
−

              
�2�� ,���2�3

1+�3�� ,���2+�4��,���3+�3�� ,���4�� ,���2�3
                               (3-2) 

  
∂�3

∂t
= �3∆�3 − �3��, ���3 +

� ′
2�� ,���2�3

1+�3��,���2+�4�� ,���3+�3�� ,���4��,���2�3
            (3-3) 

 �����
+, �� = ����� , ����

���,�1��� , ��,�2��� , ��,�3��� , ���,� = 1,2,⋯        (3-4) 

and 

  
���

��
��� = 0,       � = 1,2,3                                           (3-5) 

where �1 and �2  are the respective intrinsic growth rates of prey and an intermediate 

predator; �1  and �2  are the respective coefficients of intra-species competition of 

prey and intermediate predator; �1 and �2 are the respective maximal predator per 

capital consumption rates, i.e., the maximum number of prey that can be eaten by an 

intermediate predator and maximum number of intermediate predators can be eaten 

by top predators in each time and space unit; �′1 and �′2 are the respective 

conversion of prey to inter-mediate predator and intermediate predator to top predator; 

�3 is the death rate of the top predator; �1, �3 and �2, �4  are the handling time and the 



 

37

magnitude of interference among predators, respectively; �� ��� �� = 1,2�  is the 

respective environmental carrying capacity of the prey and intermediate predator. 

�� ,�� , �� , �′��� = 1,2�, �3 and �� �� = 1,2,3,4� are positive functions. �� = �2 ��1
2� +

⋯ + �2 ���
2�  is the Laplace operator; �1,�2  and �3 are positive diffusion 

coefficients and reflect non-homogeneous population dispersion; Neumann boundary 

conditions (3-5) characterize the absence of migration; � ���  is the outward normal 

derivative, �� = � ∪ ��. 

In addition, it is assumed that prey and predator populations are confined to a 

fixed bounded space domain � ⊂ ��  with smooth boundary and are non-uniformly 

distributed in the domain. Furthermore, they are subjected to short-term external 

influences at fixed time �� , where is a sequence of real numbers 0 = �0 < �1 < ⋯ <

�� < ⋯ with lim�→∞�� = +∞.  

The rest of this paper is organized as follows: Section 3.2 presents the basic 

assumptions and useful theorems firstly, and then, we apply the upper and lower 

solution method and comparison principle of impulsive differential equations to 

obtain the conditions for ultimate boundedness of the solutions, the permanence of the 

system, and the extinction of the top predator, and finally the existence of a unique 

periodic solution by establishing of an appropriate auxiliary function. A series of 

numerical simulations are carried out to further study the dynamics of the system in 

Section 3.3. In Section 3.4, we summarize the results and present our conclusions. 

3.2. Dynamic analysis 

The population survival is an interesting topic in ecology, and the uniform 

persistence, from an ecological viewpoint, means all the species can coexist at any 

time and any location of their inhabited domain. Therefore, in this section, we firstly 

investigate the ultimate boundedness, permanence and extinction of the system, and 

then the existence, uniqueness and globally asymptotic stability of positive periodic 

solutions are studied from dynamic analysis.  
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3.2.1. Preliminaries 

Let �, � and � be the set of all integers, positive integers and real numbers, 

respectively, and denote R+ = �0,   +∞�. Throughout this paper, we always assume that:  

(C1) the functions ����, ��, ����, ��, ����, ��, �′���, ���� = 1,2�, �� ��, ���� = 1,2,3,4�

and �3��, �� are bounded positive-valued functions on  � × �� , continuously 

differentiable in � and �; 

(C2) the functions ��
���, �1, �2, �3�, � = 1,2,3, � ∈ � are continuously differentiable in all 

arguments and positive-valued; 

(C3) the functions ����, ��,����, ��, ����, ��, �′���, ���� = 1,2�, �� ��, ���� = 1,2,3,4�

and �3��, �� are periodic in � with a period � > 0; 

(C4)  there exists a number  � ∈ �, such that ��+� = �� + � for all � ≥ 1; 

(C5) the sequences ��
�  satisfy ��+�

� ��, �1,�2, �3� = ��
���, �1, �2, �3�  for all  � = 1,2,3 , 

� ≥ 1 and �,�1, �2, �3 . 

In order to analyze the dynamics of an ecological system, it is necessary and 

important to consider system with the periodicity conditions (C3)-(C5), which might 

be quite naturally exposed (for example, seasonal effects of weather, food supply, 

mating habits, etc.) (Cushing, 1977) 

In the following, we introduce the following notations: 

                   � = �+ × �, �� = �+ × ��                         (3-6) 

          �� = ���, ��: � ∈ ���−1, ���,� ∈ ��,� ∈ �,� =∪�∈� ��          (3-7) 

          ��
��� = ���, ��: � ∈ ���−1, ���,� ∈ ���,� ∈ �,�� =∪�∈� ��

���         (3-8) 

and denote 
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A vector function ��1��, ��,�2��, ��,�3��, ��� ∈ Ξ × Ξ × Ξ is called a solution 

of system (3-1)-(3-5) if it satisfies (3-1)-(3-3) on �, (3-5) for � ∈ ��, and (3-4) for 

every � ∈ �. 

For a continuous function  ���, �� , we define �� = inf�� ,�� ���, ��  and 

�� = sup�� ,�� ���, ��. 

Definition 3.2.1.1. The solutions of system (3-1)-(3-5) are said to be ultimately 

bounded if there exist positive constants �′��� = 1,2,3�  such that for every 

solution  ��1��,�,�10 ,�20 ,�30�,�2��, �, �10 ,�20 ,�30�,�3��, �,�10 ,�20 , �30�� , there 

exists a moment of time �� = ����10 , �20 ,�30� such that ����, �,�10 , �20 ,�30� ≤ �′�  

for all � = 1,2,3, � ∈ �� and � ≥ ��. 

Definition 3.2.1.2. The system (3-1)-(3-5) is called permanent if there exist positive 

constants ��  and �′��� = 1,2,3� such that for every solution with non-negative 

initial functions �10���,�20(�) and �30(�) that are not identically zero, there exists 

a moment of time �� = ����10 ,�20 , �30� such that �� ≤ ����, �, �10 ,�20, �30� ≤ �′�  

for all � = 1,2,3, � ∈ �� and � ≥ ��. 

     Now, we discuss the existence of the solutions in system (3-1)-(3-5). According 

to the method of upper and lower solution method for quasi-monotone systems (Pao, 

1992), it can be verified that, for continuously differentiable initial functions 

��0���:�� → �+ and ��0��� ≢ 0, � = 1,2,3, there exists a classical solution of system 

(3-1)-(3-3) and (3-5), if it is of class �2  in �, � ∈ �, of class �1  in �, � ∈ �� , of �1 

in �, � > 0, and satisfies the system, then it is the classical one of system (3 -1)-(3-3) 

and (3-5). 

By the existence of solutions of system (3-1)-(3-3) and (3-5), we can verify the 
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existence of solutions for the system (3-1)-(3-5). Actually, if � ∈ �0,  �1�
 , the solutions 

of the system (3-1)-(3-5) are well-defined as classical solutions of system (3-1)-(3-3) 

and (3-5). Impulsive condition (3-4) implies that the functions 

��1��1
+�,�2��2

+�,�3��3
+�� are continuously differentiable in x , and satisfy boundary 

conditions (3-5). Hence, assuming ��1��1
+�,�2��2

+�,�3��3
+��  as a new initial 

functions, we can continue the solution on  ��1,  �2�
 . Proceeding in this way, the 

solution of the system (3-1)-(3-5), for all � > 0, can be constructed. 

Based on the biological interpretation, we just take the non-negative solutions 

into account for the system (3-1)-(3-5), and we firstly discuss and guarantee the 

non-negative and positive quadrants of �3  are positively invariant for system 

(3-1)-(3-5) in the following. 

Suppose that ��1��, �,�10 , �20 ,�30�,�2��, �,�10 ,�20 ,�30�
 , 

 �3��,�, �10 ,�20,�30��  is a solution of system (3-1)-(3-5) with the initial 

condition �10��� ≥ 0 �≢ 0�, �20��� ≥ 0 �≢ 0�,�30��� ≥ 0 �≢ 0�, obviously, we can 

deduce 

∂�1

∂t
= �1∆�1 + �1��1��,�� − �1��, ���1�

−
�1��,���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

≤
∂�1�

∂t
− �1∆�1� −�1� ��1

� − �1
��1� −

�1
�

�2
�
�, 

and 

∂�1

∂t
= �1∆�1 + �1��1��,�� − �1��, ���1�

−
�1��,���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

≥
∂�1�

∂t
− �1∆�1� −�1� ��1

� − �1
��1��. 

We can simply verify that �1���, �� and �1���, �� are lower and upper solutions of 

system (3-1), respectively, where �1���, �� and �1���, ��  are solutions of the 

following equations: 
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∂�1�

∂t
− �1∆�1� − �1���1

� − �1
��1� −

�1
�

�2
� � = 0,   �1��0, �� = �10���,       (3-10) 

and 

        
∂�1�

∂t
− �1∆�1� − �1���1

� − �1
��1��  = 0,             �1��0, �� = �10���.       (3-11) 

Due to  �10��� ≥ 0 �≢ 0�,  �20��� ≥ 0 �≢ 0�, �30��� ≥ 0 �≢ 0� , we can get 

�1���, �� > 0 and �1���,�� > 0 for � ∈ �0,  �1�
  using Lemma A2 (see Appendix A). 

Then, we have �1��, �� > 0 for � ∈ �0,  �1�
  because �1��, �� is bounded below by 

positive function �1���, ��. Obviously, we can repeat the same argument to prove the 

positiveness of �1��, �� for � ∈ ��1,  �2�
  because of the positiveness of the 

function  �1
1 . Similarly, we can obtain that �1��, �� > 0  for  � ∈ �0, +∞� . The 

explanation of species �2��, �� > 0 and �3��,�� > 0 are very similar, which is 

omitted here. Thus, we can obtain that the non-negative and positive quadrants of �3 

are positively invariant for system (3-1)-(3-5) if the conditions (C1)-(C5) hold. 

3.2.2. Permanence of population  

Based on the analysis in the previous subsection, we will discuss and guarantee 

the ultimate boundedness of solutions for the system (3-1)-(3-5) firstly, and then 

investigate the permanence of the system. The following analysis shows that 

impulsive control can influence the permanence of the system directly. 

Firstly, we discuss the ultimate boundedness of population �1��,��. It is readily 

seen from Eq. (3-1) that 

∂�1

∂t
= �1∆�1 + �1��1��,�� − �1��, ���1�

−
�1��,���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

≥
∂�1

∂t
− �1∆�1 −�1 ��1

� − �1
��1�. 

Let �1���(�, �, �10) be a solution of 

                      
∂�1����

∂t
− �1∆�1��� − �1�����1

� − �1
��1���� = 0,              (3-12) 

Then, we have 
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0 =
∂�1����

∂t
− �1∆�1���� − �1���� ��1

� − �1
��1����� ≥

∂�1

∂t
− �1∆�1 − �1 ��1

� − �1
��1�. 

According to Lemma A1 (see Appendix A), we have �1��, �,�10 ,�20 ,�30� ≤

�1���(�, ��1
), if ��10����� = max�∈�� ��10���� ≤ ��1

. From the uniqueness theorem, 

the solution �1(�, ��1
) of (3-12) with initial conditions independent of � does not 

depend on �  for  � > 0 . Therefore, �1���(�,��1
)  is the solution of the following 

ordinary differential equation 

∂�1����

∂t
−�1���� ��1

� − �1
��1����� = 0,      �1�����0,��1

� = ��1
. 

Hence 

��1���
+, �,�10 ,�20 ,�30��C

= ��1��� , �,�10 , �20 ,�30���
1��,�1��� , ��,�2��� ,��,�3��� , ����

C

≤ �1�����,��1
��1 ��1�����, ��1

��. 

Since the corresponding impulsive differential equations  

                      �

∂�1����

∂t
= �1�����1

� − �1
��1����                   

�1������
+� = �1��������1(�1���(�, ��1

))
                (3-13) 

are ultimately bounded (from Lemma B (see Appendix B)), thus, we get ultimate 

boundedness of solutions of Eq. (3-1) and Eq. (3-4), i.e., there exists a positive 

constant �′1 such that �1��, �� ≤ �′1 , starting with some time t1� . 

Secondly, we analyze the ultimate boundedness of population  �2��, ��. For 

population �2 , from Eq. (3-2), we have 

∂�2

∂t
= �2∆�2 + �2��2��,�� − �2��, ���2�

+
�′1��, ���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

−
�2��,���2�3

1 + �3��, ���2 + �4��,���3 + �3��, ���4��, ���2�3

≥
∂�2

∂t
− �2∆�2 −�2 ��2

� − �2
��2 +

�′1
�

�1
�
�. 
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Since there exists a positive-valued function �2���� such that ��
2(�, �1, �2,�3) ≤

�2���� if � ∈ �,�2 ≤ �, �1 > 0,�3 > 0 and � ∈ �� , the same analysis with the 

population �1 , there exists a positive constant �′2 such that �2��, �� ≤ �′2, starting 

with some time t2���. 

Finally, for the top predator population �3 , when � ≥ t2� , we can obtain that 

∂�3

∂t
= �3∆�3 −�3��, ���3 +

�′2��,���2�3

1 + �3��,���2 + �4��,���3 + �3��, ���4��, ���2�3

≥
∂�3

∂t
− �3∆�3 + �3

��3 −
�′2

�
�′2
�4
� , 

and it follows that �3��� , �, �10,�20, �30� ≤ �3�����,��3
� , where �3�����,��3

�  is a 

solution of the initial value problem 

∂�3

∂t
= −�3

��3 +
�′2

�
�′2
�4
�

 

with 

�3����0, ��3
� = ��3

. 

The linear periodic impulsive equation 

                        �

∂�3����

∂t
= −�3

��3��� +
� ′

2
�
�′

2

�4
�

�3������
+� = ��

3��3��������

                      (3-14) 

has the general solution �3������ = �0��� + ��(�) , where �0���  is a � -periodic 

piece-wise continuous function, and � is a constant and 

                      ���� = exp�−�3
� + � ln��

3
0<��<� �.  

(Samoilenko and Perestyuk, 1995). Obviously, if the condition 

−��3
� + � ln sup(� ,�1,�2,�3) ��

3 (�, �1,�2,�3)
�
�=1 < 0 holds, then we have ���� → 0  

as � → ∞. Thus, all solutions of Eq. (3-14) are ultimately bounded. That is, all 

solutions of Eq. (3-3) and Eq. (3-4) are also ultimately bounded.  

To sum up, we can conclude: if the conditions (C1)-(C5) hold, and  
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(i) there exists a positive-valued function �1��� such that 

��
1(�,�1,�2, �3) ≤ �1(�) if � ∈ �,�1 ≤ �,�2 > 0,�3 > 0 and � ∈ �� ; 

(ii) there exists a positive-valued function �2���� such that ��
2(�,�1,�2, �3) ≤

�2���� if � ∈ �,�2 ≤ �,�1 > 0,�3 > 0 and � ∈ �� ; 

(iii) the inequality  

−��3
� + � ln��

3

�

�=1

< 0 

holds, where ��
3 = sup(�,�1,�2,�3) ��

3 (�,�1,�2, �3). Then all solutions of the system 

(3-1)-(3-5) with non-negative initial conditions are ultimately bounded. 

Next, according to the ultimate boundedness of solutions for system (3-1)-(3-5), 

we will analyze the permanence of the system in the following, and further illustrate 

how the population survival under the impulsive effects. 

Since the assumption that there exists a positive-valued function �1���� such 

that ��
1(�,�1,�2, �3) ≤ �1����  if � ∈ �, �1 ≤ �,�2 > 0, �3 > 0  and � ∈ �� , we 

can deduce that there exist �′��� = 1,2,3�  such that  �� ≤ �′� , starting with a 

particular time. Lemma A2 (see Appendix A) implies that if  �10��� ≥ 0 �≢

0�, �20��� ≥ 0 �≢ 0�,�30��� ≥ 0 �≢ 0� , then ����, �,�10 , �20 ,�30� > 0  for all 

� = 1,2,3, � ∈ �� and � > 0, for some small � > 0, considering the solution on the 

interval  � ≥ � , we get the initial conditions have 

��1��, �,�10 ,�20, �30�,�2��, �, �10 ,�20 ,�30�,�3��, �,�10 ,�20 , �30�� separated from 

zero. Without loss of generality, we assume that min�∈Ω� ��0 ��� = ���
>0 for 

all � = 1,2,3. The inequality: 

∂�1

∂t
= �1∆�1 + �1��1��,�� − �1��, ���1�

−
�1��,���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

≤
∂�1

∂t
− �1∆�1 −�1 ��1

� − �1
��1 −

�1
�

�2
� � 
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is valid, so 

0 =
∂�1�

∂t
− �1

�∆�1� −�1� ��1
� − �1

��1� −
�1
�

�2
�
� ≤

∂�1

∂t
− �1∆�1 − �1 ��1

� − �1
��1 −

�1
�

�2
�
�. 

Now, according to Lemma A1 (see Appendix A) for � = 1, �1��, �,�10 , �20 ,�30� ≥

�1�����
� for � ∈ �0, �1�. Applying the last inequality for  � = �1, together with Eq. 

(3-3), we have 

�1��1
+, �,�10 , �20 ,�30� ≥ �1�����

� inf�∈Ω� ,��1,�2,�3�∈�
�1

1 ��,�1,�2, �3�. 

Thus, the solution �1��, �,�10 , �20 ,�30� is bounded from below by a solution of 

periodic logistic equation with impulse: 

              �

∂�1�

∂t
= �1�∆�1� − �1� ��1

� − �1
��1� −

�1
�

�2
� �                            

�1����
+� = �1����� inf�∈Ω� ,��1,�2,�3�∈� ��

1 ��,�1,�2, �3�

         (3-15) 

Obviously, if the condition �1 = � ln inf�∈�� ,��1,�2,�3�∈�
��

1 ��, �1,�2,�3�
�
�=1 +

� ��1
� −

�1
�

�2
� � > 0 holds, where � = ���1,�2, �3�: 0 < �� < �′� , � = 1,2,3� , and by 

Theorem 2.1 (Smith, 1999), then Eq. (3-15) has a unique piece-wise continuous and 

strictly positive periodic solution �1
∗����. Thus, �1��, �, �10 ,�20 ,�30� ≥ �1����1

� →

�1
∗����  as � → ∞ . Therefore, there exists a positive constant �1

∗  such that 

�1��, �, �10 ,�20 ,�30� ≥ �1
∗ for � ≥ �1� . 

For the population �2. Using the inequality 

0 =
∂�2

∂t
− �2∆�2 −�2��2��, ��− �2��,���2�

−
�′1��, ���1�2

1 + �1��, ���1 + �2��,���2 + �1��, ���2��, ���1�2

+
�2��,���2�3

1 + �3��, ���2 + �4��,���3 + �3��, ���4��, ���2�3

≤
∂�2

∂t
− �2∆�2 −�2 ��2

� −
�2
�

�4
�
− �2

��2�. 

If the condition �2 = � ln inf�∈�� ,��1,�2,�3�∈�
��

2 ��,�1,�2,�3�
�
�=1 + � ��2

� −

�2
�

�4
� � > 0 holds, where � = ���1,�2, �3�: 0 < �� < �′� , � = 1,2,3�, and following the 
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same analysis as for  �1 , there exists a positive constant �2
∗ > 0  such that 

�2��,�, �10 ,�20,�30� ≥ �2
∗ for � ≥ �2� . 

For the top predator population �3. When � ≥ �2� , since �2��, �, �10 ,�20 ,�30� ≥

�2
∗, thus, 

0 =
∂�3

∂t
− �3∆�3 + �3��, ���3 −

�′2��, ���2�3

1 + �3��, ���2 + �4��, ���3 + �3��, ���4��, ���2�3

≤
∂�3

∂t
− �3∆�3 + ��3

� −
�′2

�

�3
���3

+
�′2

��3 + �4
��3

2 + �′2
��3

��4
��2

∗�3
2

�3
� + ��3

��2�2
∗ + �3

��4
��3 + ��3

��2�4
��3

. 

Hence, 

     �3��,�,�10 , �20,�30� ≥ �3���, ��3
�, 

where  

                                                                �3��0, ��3
� = ��3

  

is the solution of  

             �

��3�

��
= �

� ′
2
�

�3
� − �3

�� �3� −
�′

2
�
�3�+�4

��3
2�+� ′

2
�
�3
��4

��2
∗�3

2�

�3
�+��3

��
2
�2
∗+�3

��4
��3�+��3

��
2
�4
��3   �

�3����
+� = �3

3��3�����                                                        

          (3-16) 

where �3
3� = inf�∈Ω� ,��1,�2,�3�∈� ��

3 ��,�1, �2,�3� . If �3���� ≤ �3  for some �3 > 0 

and � ∈ �0, �1�, then  

�3���, ��3
� ≥ ��3

exp ��1 �
�′2

�

�3
� − �3

� −
�′2

� + �4
��3 + �′2

��3
��4

��2
∗�3

�3
� + ��3

��2�2
∗ + �3

��4
��3 + ��3

��2�4
��3

�� 

and 

�3���1
+,��3

� ≥ �3
3���3

exp ��1 �
�′2

�

�3
� − �3

� −
�′2

� + �4
��3 + �′2

��3
��4

��2
∗�3

�3
� + ��3

��2�2
∗ + �3

��4
��3 + ��3

��2�4
��3

��. 

Therefore, if �3���� ≤ �3 , for some �3 > 0 and � ∈ �0, ��, and 
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�3���,��3
� ≥ ��3

exp �� ln�3
3� +

�

�=1

� �
�′2

�

�3
� − �3

�

−
�′2

� + �4
��3 + �′ 2

��3
��4

��2
∗�3

�3
� + ��3

��2�2
∗ + �3

��4
��3 + ��3

��2�4
��3

�� . 

If �3 = � ln inf�∈�� ,��1,�2,�3�∈�
��

3 ��,�1,�2,�3�
�
�=1 + � �

�′2
�

�3
� − �3

�� > 0 , where 

� = ���1,�2, �3�: 0 < �� < �′� , � = 1,2,3�, we can take sufficiently small �3 > 0 

such that 

� ln�3
3� +

�

�=1

� �
�′2

�

�3
� − �3

� −
�′2

� + �4
��3 + �′2

��3
��4

��2
∗�3

�3
� + ��3

��2�2
∗ + �3

��4
��3 + ��3

��2�4
��3

� = � > 0. 

For  �3
0 ∈ �0,�3� , there exists a positive integer �3  such that  �3���� ,��3

� ≥

��3���3
≥ �3

0, with the additional condition �3���,��3
� < �3 for all � ∈ �0,�3��. 

Hence, for every solution �3���, �30� � of (3-16) with �30� > 0, there exists a time �� 

such that  �3���,�30� � ≥ �3
0 . Denote �3���, �0,�30� �  as the solution of Eq. (3-16) 

with �3���, �0,�30� � = �30� , and consider a positive number  

σ3
∗ = inf��3���, �0,�30� �: �0 ∈ �0, ��,�30� ∈ ��3

0,�3�, � ∈ ��0, 2���. 

Then, for all � ≥ 2�, one can obtain that, 

                            �3���, �0,�30� � ≥ σ3
∗ .  

Let 

         �� = inf��3���, �0,�30� �: �0 ∈ �0, ��,�30� ∈ ��3
0,�3�, � ∈ ��0, 2��� ≥ σ3

∗ ,  

and consider a solution �3���, �, �30� �  with �30� ≥ �� . If �3���, �, �30� � < �3  for 

all  � ∈ ��0, 2�� , then �3���, �,�30� � ≥ ���3���, �, �30� � ≥ �� . If �3���, �,�30� � > �3  at 

time � ∈ ��, 2��, then �3��2�, �,�30� � ≥ ��  from the definition of �� . Therefore, it is 

enough to consider �3���, 2�, �30� �, � ≥ 2�  with �30� ≥ �� . By construction, these 

solutions are bounded from below by positive constant σ3
∗  for  � ∈ �2�, 3�� . 

Proceeding in this way, it can be proved that the solutions of the system are bounded 

from below for � ≥ 3�.  

Therefore, we can conclude that, if the conditions (C1)-(C5) hold, and further 
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suppose that 

(i) the solutions of system (3-1)-(3-5) are ultimately bounded, i.e., there exist 

positive constants �′��� = 1,2,3�  such that for every solution 

��1��, �, �10 ,�20 ,�30�,�2��, �,�10,�20 , �30�,�3��, �,�10 , �20 ,�30�� , there 

exists �� = ����10 ,�20 ,�30� > 0 such that ����, �, �10 ,�20 ,�30� ≤ �′� for all 

� = 1,2,3, x ∈ Ω� and � ≥ ��; 

(ii) the conditions �1 > 0, �2 > 0 and �3 > 0 hold. 

Then, there exist positive constants ���� = 1,2,3� such that any solution of system 

(3-1)-(3-5) with non-negative initial functions not identically equal to zero satisfies  

       ��1��, ��,�2��, ��,�3��, ��� ∈ � = ���1,�2, �3�:�� < �� < �′� , � = 1,2,3�  

starting with a particular time, i.e., system (3-1)-(3-5) is permanent. 

According to above analysis, we can easily induce the following results:  

Remark 3.2.2.1 If there are no impulses in problems (3-1)-(3-5), then conditions 

�� > 0 (� = 1,2,3) can be taken as the following form: 

                                           �1
� − −

�1
�

�2
� > 0, �2

� −
�2
�

�4
� > 0,

� ′
2
�

�3
� − �3

� > 0,  

which are sufficient to establish permanence for the system. 

3.2.3. Extinction of top predator population 

Are there certain populations in the ecosystem that tend to become extinct after a 

certain time? The extinction of some species is often desirable, such as the extinction 

of pests, while some species are undesirable. For example, in order to protect the 

diversity of species, we should take protection measures for some endangered species. 

Based on the previous analysis, it is interesting to find that the top predator will 

undergo extinction under some a condition, and the result shows that if the condition 

�4 = � ln sup��1,�2,�3�
��

3 ��,�1, �2,�3�
�
�=1 + � �

� ′
2
�

�3
� − �3

�� < 0 holds, then the top 

predator tends to extinction, indicating the impulsive control can significantly affect 



 

49

the dynamics of system (3-1)-(3-5). Now we give a specific analysis. 

Suppose ��3
 is a fixed positive constant such that ��3

≥ �30���  and 

�3�����,��3
� is the solution of initial value problem 

                                                             �

d�3����

��
= �

� ′
2
�

�3
� − �3

�� �3���

�3����0, ��3
� = ��3

      

   

From the inequality 

∂�3

∂t
= �3∆�3 + �3��, ���3 −

�′2��,���2�3

1 + �3��,���2 + �4��,���3 + �3��, ���4��, ���2�3

≥
∂�3

∂t
− �3∆�3 + ��3

� −
�′2

�

�3
�
��3, 

and Lemma A1 (see Appendix A), we can deduce that, for � ≤ �1 

                     �3��, �, �10 ,�20 ,�30� ≤ �3�����, ��3
�  

and 

            �3��1
+,�,�10 , �20 ,�30� ≤ �3�����,��3

� sup��1,�2,�3�
��

3 ��, �1, �2,�3�  

if the impulsive condition (3-4) holds. Proceeding in this way, we conclude that every 

solution of Eq. (3-3) and Eq. (3-4) is bounded from above by the corresponding 

solution of the linear impulses equation 

�

��3���

��
= �

�′2
�

�3
� − �3

�� �3���                                             

�3������
+� = �3������� sup��1,�2,�3�

��
3 ��, �1,�2,�3�

  

Applying the Lemma B (see Appendix B), all solutions of the last equation tend to 

zero as � → ∞ if the inequality �4 < 0 holds. 

Obviously, we can obtain the following results if the system does not experience 

the impulsive perturbations: 

Remark 3.2.3.1 Suppose that the conditions (C1)-(C3) hold, then the top predator  

�3��,�� in system (3-1)-(3-3), (3-5) is extinctive if  

�′2
�

�3
� − �3

� < 0. 
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3.2.4. Periodic oscillations of population density 

In the previous subsection 3.2.2, we have obtained the result that the system is 

permanent. Thus, in this subsection, we will further study the existence of periodic 

solutions in system (3-1)-(3-5) by constructing a proper auxiliary function in the 

following, which implies that all the species can coexist at a stable state for a long 

time. 

In order to study the existence of periodic solutions in the system (3-1)-(3-5), we 

firstly suppose that ��1��, ��,�2��, ��,�3��, ���  and ��1�����, ��,�2�����, ��,�3�����, ��� 

are two solutions of system (3-1)-(3-5) bounded by constants � and � from below 

and above, respectively. Consider the function 

���� = �� �����1,�2,�3� − �����1���,�2���, �3�����
2

Ω

3

�=1

�� 

with derivative  

�����

��
= 2 �� ��1 − ��� � �

��1

��
−

��1���

��
�

Ω

3

�=1

�� = �1 + �2 + �3 + �4, 

where 

�1 = 2 ��� � ��1 − ��� �∆��1 − ��� �
Ω

3

�=1

��,                                                                               

�2 = 2 � ��1 − �1���� ��1��1 − �1�1� −
�1�1�2

1 + �1�1 + �2�2 + �1�2�1�2

− �1�����1 − �1�1����
Ω

−
�1�1����2���

1 + �1�1��� + �2�2��� + �1�2�1����2���
� ��, 

�3 = 2 � ��2 − �2���� ��2��2 − �2�2� −
�′1�1�2

1 + �1�1 + �2�2 + �1�2�1�2Ω

−
�2�2�3

1 + �3�2 + �4�3 + �3�4�2�3

− �2�����2 − �2�2����

−
�′1�1����2���

1 + �1�1��� + �2�2��� + �1�2�1����2���
+

�2�2����3���

1 + �3�2��� + �4�3��� + �3�4�2����3���
� ��,        
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�4 = 2 � ��3 − �3���� �−�3�3 +
�′2�2�3

1 + �3�2 + �4�3 + �3�4�2�3Ω

−
�′2�2����3���

1 + �3�2��� + �4�3��� + �3�4�2����3���
� ��.                                                              

Then, from the boundary condition (3-5), 

�1 = 2 ��� � ��1 − ��� �∆��1 − ����
Ω

3

�=1

�� ≤ −�1 = 2 ��� � �∇��1 − ��� ��2

Ω

3

�=1

�� ≤ 0. 

For the other terms �2, �3, �4, since 

�� − ���� = �� − ��� + ��� − ���� = ��� − ��� + ���� − ��� 

Then 

�2 + �3 + �4 = 2 � ��1 − �1���� ��1��1 − �1���� − �1��1 − �1������1 + �1����
Ω

+ �
�1�1����2���

1 + �1�1��� + �2�2��� + �1�2�1����2���
−

�1�1�2

1 + �1�1 + �2�2 + �1�2�1�2
�� ��

+ 2 � ��2 − �2���� ��2��2 − �2���� − �2��2 − �2������2 + �2����
Ω

+ �
�′1�1����2���

1 + �1�1��� + �2�2��� + �1�2�1����2���
−

�′1�1�2

1 + �1�1 + �2�2 + �1�2�1�2
�

+ �
�2�2����3���

1 + �3�2��� + �4�3��� + �3�4�2����3���
−

�2�2�3

1 + �3�2 + �4�3 + �3�4�2�3
�� ��

+ 2 � ��3 − �3���� �−�3��3 − �3���� +
�′2�2�3

1 + �3�2 + �4�3 + �3�4�2�3Ω

−
�′2�2����3���

1 + �3�2��� + �4�3��� + �3�4�2����3���
� �� 
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                          ≤ 2 � ��1 − �1����
2 ��1

� − �1
�� −

�1
��2

��2 + �1
��

�1 + �1
� + �2

� + �1
��2

��′�2
���

Ω

+ 2 � ��2 − �2����
2 ��2

� − �2
�� +

�′1
��1

��′2 + �′1
��′

�1 + �1
� + �2

� + �1
��2

���2
Ω

−
�1
��4

��2 + �2
��

�1 + �3
� + �4

� + �3
��4

��′�2
��� + 2 � ��3 − �3����

2 �−�3
�

Ω

+
�′2

��3
��′2 + �′2

��′

�1 + �3
� + �4

� + �3
��4

���2
� ��

+ 2 � ��1 − �1������2 − �2����
�′1

��1
��′2 + �′1

��′ − ��1
��2

��2 + �1
���

��1
� + �2

� + �1
��2

���2
��

Ω

+ 2 � ��2 − �2������3 − �3����
�′2

��3
��′2 + �′2

��′ − ��1
��4

��2 + �2
���

��3
� + �4

� + �3
��4

���2
��

Ω

≤ �� � ���1 − �1����
2 + ��2 − �2����

2 + ��3 − �3����
2�

Ω

�� = ������, 

where � and �′ are minimum and maximum value of the system, respectively, ��  

is the maximal eigenvalue of the following matrix 

                           �

�11 �12 �13

�21 �22 �23

�31 �32 �33

�  

and 

�11 = 2 ��1
� − �1

�� −
�1
��2

��2 + �1
��

�1 + �1
� + �2

� + �1
��2

��′�2
�,                                                 

�22 = 2 ��2
� − �2

�� +
�′1

��1
��′2 + �′1

��′

�1 + �1
� + �2

� + �1
��2

���2
−

�2
��4

��2 + �2
��

�1 + �3
� + �4

� + �3
��4

��′�2
�,    

�33 = 2 �−�3
� +

�′2
��3

��′2 + �′2
��′

�1 + �3
� + �4

� + �3
��4

��′�2
� ,�13 = �31 = 0,                                   

�12 = �21 =
�1
��1

��′2 + �′1
��′ − ��1

�� + �1
��1

��2�

��1
� + �2

� + �1
��2

���2    
,                                                   

and 
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�23 = �32 =
�′2

��3
��′2 + �′2

��′ − ��2
�� + �2

��2
��2�

��3
� + �4

� + �3
��4

���2
.                                                 

Then, one can see that 

 ����+1� ≤ ����
+� exp ������+1 − �� ��  

and 

����
+� = �� ����� +1

� ��1, �2,�3� − �����+1
� ��1���,�2���, �3�����

2

Ω

3

�=1

��

≤ �� +1����+1� exp ������+1 − �� �� ����
+�, 

where  

�� = max�∈Ω� ,�1,�2,�3∈�
2 �����

��
2

3

�=1

+ ����′
���

�

���

�

23

�=1

3

�=1

�. 

In the following, let us estimate the variation of the function over the period. We have 

                 ��� + �� ≤ �∗���� = � ��
�
�=1 exp����� ����.  

Obviously, if the condition � = � ln ��
�
�=1 + ��� < 0 holds, then we have �∗ < 1. 

Therefore,  ���� + �� ≤ �∗
����� → 0  as � → ∞ , which implies that �����, �� −

��� ��,��� → 0 for all � = 1,2,3 as � → ∞, where �·� is the norm of space �2���. 

From Lemma C (see Appendix C), solutions of system (3-1)-(3-5) are bounded in the 

space �1+� . Therefore, 

            sup�∈�� �����,�� − ��� ��, ��� → 0, � = 1,2,3, � → ∞.            (3-17) 

Consider the following sequence 

��1���, �,�1���,�2���, �3����,�2���, �, �1���, �2���,�3����, �3���, �, �1���,�2���,�3����� = ����, �0�,� ∈ �. 

From Lemma C (see Appendix C), it is compact in the space ���� × �� × ���. Let ��  

be a limit point of this sequence,  �� = lim�→∞�����, �0�, then ���,��� = ��  . 

Since the fact that 

                     ���,�����,�0�� = �����, ���,�0��  

and as �� → ∞ 

                      �����,���,�0�� − �����,�0� → 0.  
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Then, one can obtain that, for � → ∞, 

����,��� − ����

≤ ����, ��� − ���, �����,�0����

+ ����, �����,�0�� − �����, �0���
+ ������,�0� − ���� → 0 

The sequence ����,�0�,� ∈ � has a unique limit point. Otherwise, suppose the 

sequence has two limit points, that is, �� = lim�→∞�����, �0� 

and �� = lim�→∞�����,�0�. From (3-17) and �� = �����, ���, then we have 

         ��� − ���� ≤ ��� − �����,�0��� + ������, �0� − ���� → 0,� → ∞.  

Hence, �� = ��  and the solution 

��1��, �, �1���, �2���,�3����,�2��, �,�1���, �2���,�3����,�3��, �,�1���,�2���, �3�����  is the unique periodic 

solution of system (3-1)-(3-5), and from (3-17), it is asymptotically stable. Therefore, 

suppose that the conditions (C1)-(C5) and the conditions in Lemma C (see Appendix 

C) hold, system (3-1)-(3-5) has a unique, globally asymptotically stable, and strictly 

positive piece-wise continuous �-periodic solution if � < 0 holds. 

Remark 3.2.4.1 Assume that conditions (C1)-(C3) holds, and the system (3-1)-(3-3), 

(3-5) is permanent. Then the system (3-1)-(3-3), (3-5) has a unique, globally 

asymptotic stable, and strictly positive �-periodic solution if 

�� < 0. 

3.3. Experimental simulations 

Although some interesting results of system (3-1)-(3-5) have been achieved by 

means of modeling analysis, it is difficult to further study the dynamical properties of 

the system due to its complexity. Fortunately, experimental simulations can help us 

provide more in-depth insights on the dynamics of the system. In this section, 

therefore, some numerical simulations are carried out to study the effects of the key 

factors on the dynamics of the system and show the effects of impulsive control and 

environmental heterogeneity on the survival of population and the dynamic 

mechanisms of the spatial and temporal distribution of population.  
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3.3.1 Impact of impulsive control on the dynamics of system (3-1)-(3-5) 

In this subsection, some numerical simulations are carried out to study the effect 

of impulsive control on the dynamics of system (3-1)-(3-5). In these numerical 

simulations, the following parameter values are used: �1��,�� = �2��, �� = �3��, �� =

�3��, �� = 1.5, �1 = �2 = �3 = 1, � = 2,Ω = �−1,1� , �1��, �� = 1.5 cos���� +

1.5 sin���� + 10, �1��, �� = sin���� + 2 sin���� + 6, �1��, �� = 2 cos���� +

2 cos���� + 5,�2��, �� = 2 cos���� + ������� + 8, �2��, �� = 1.5 cos���� +

1.2 sin���� + 4, �2��, �� = cos���� + 0.5 sin���� + 4, �′1��, �� = 0.5 cos���� +

0.5 sin���� + 4, c′2�t, x� = 0.4 cos���� + 0.1 sin���� + 4.5,�3��, �� =

0.5 sin���� sin���� + 0.1, and other parameters are chosen as control parameters. 

Obviously, the conditions (C1)-(C5) in the preliminaries subsection can be verified.

To study how impulsive control affect the dynamical behaviors of system (3-1)-(3-5), 

we firstly consider that the system (3-1)-(3-5) does not have impulsive control, that is,  

��
���, �1, �2,�3��� = 1,2,3,� ∈ �� are identically equal to zero. Thus, the Remarks 

3.2.2.1 and 3.2.4.1 hold by direct computation, which are sufficient to establish 

permanence for system (3-1)-(3-3) and (3-5), that is, all the species can coexist at a 

stable state under some conditions (see Fig. 3.1.). 
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Fig. 3.1 Dynamic behaviors of species �1, �2 and �3 of system (3-1)-(3-5) without impulsive 

effects, and the initial conditions �1�0, �� = 2,�2�0, �� = 2, �3�0, �� = 6.85 for all � ∈ �. (a): 

permanence of species �1; (b): permanence of species �2; (c): permanence of species �3; (d): 

time series of �1, �2 and �3 on the population dynamics with � = 0.

In the following, the impact of impulsive control on the dynamics of the system 

(3-1)-(3-5) will be shown. Choosing ��
1��, �1,�2,�3� = 0.9,��

2��, �1, �2,�3� =

0.95, � = 1,2, ⋯ , �
�
3��, �1, �2, �3� = 0.95 for all � = 1,2,⋯ , � = 8, it is not difficult to 

find that the species �1��,��,�2��, �� and �3��, �� can coexist at a stable state under 

some conditions (see Fig. 3.2). Actually, due to the conditions ���� = 1,2,3� > 0, all 

the species �1��, ��,�2��, �� and �3��, �� are permanent, which are consistent with 

our experimental simulations. Comparing Figs. 3.1 and 3.2, it is obvious to find that 

the impulsive control can affect the temporal spatial dynamics of the system. That is, 

the impulsive control has a profound effect on population dynamic evolution 

mechanism. Furthermore, it is obliged to be stressed that the impulsive control not 

only can aggravate the emergence of pulse oscillation, but also can change the 

periodicity of population density. Thus, it is worth pointing out that the results from 

Figs. 3.1 and 3.2 can support that the reaction-diffusion impulsive hybrid system can 
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depict the interaction mechanism between populations. 

Fig. 3.2 The effects of impulsive effects on the dynamic behaviors of species �1, �2 and �3 of 

system (3-1)-(3-5), here ��
1��, �1,�2,�3� = 0.9, ��

2��,�1, �2,�3� = 0.95, � =

1,2, ⋯ , �
�
3��, �1, �2, �3� = 0.95  for all � = 1,2, ⋯ , � = 8 and initial conditions �1�0,�� =

2, �2�0, �� = 2, �3�0, �� = 4.2 for all � ∈ �: (a): permanence of species �1 ; (b): permanence of 

species �2 ; (c): permanence of species �3 ; (d): time series of �1, �2 and �3 on population 

dynamics with � = 0  permanence of species �1 ; (b): permanence of species �2 ; (c): 

permanence of species �3 ; (d): time series of �1,�2 and �3 on population dynamics with

� = 0.

On the other hand, when we control some a parameter values satisfying the 

condition of �4 < 0, then the species �3��, �� undergoes extinction, but the other 

two species �1��, �� and �2��, �� generate periodic oscillation (permanence), as are 

shown in Fig. 3.3. It is easy to know from Fig. 3.3 (d) that the time series solutions for 

species �1��, �� and �2��,�� have a stable periodic oscillation over time. In contrast, 
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species �3��,�� will rapidly decrease to extinction over time. Moreover, comparing 

Figs. 3.2 and 3.3, it is obvious to find that the dynamical behaviors of the system 

(3-1)-(3-5) have been changed by controlling the value of � �� = 40�. Therefore, it is 

necessary to point out that some critical parameters have a profound impact on the 

persistence and extinction of populations. 

In order to further study how the impulsive parameter � in a period and 

impulsive perturbation constants ��
���, �1,�2,�3� �� = 1,2,3, � ∈ �� affect the 

population density dynamic evolution trend, it is necessary to present a more in-depth 

analysis of the relationship between the parameter value and the population density. 

Fig. 3.4 depicts the variation of species �1��, ��,�2��, �� and �3��, �� with 

increasing �, where the red lines represent the initial value of the corresponding 

population. It is obvious to survey from Fig. 3.4 that the maximum density of species 

�1��, ��  and �2��, �� can remain unchanged, but species �3��, �� will rapidly 

decline and finally will undergo extinction when � increases. Thus, it is easy to see 

that impulsive parameter � has a great influence on the maximum of species �3��, ��, 

but it has almost no effect on the maximum density of species �1��, �� and �2��,��.

Fig. 3.5 depicts how the impulsive perturbation constants ��
3��, �1, �2,�3��� ∈ �� 

affect the density distribution of species �3 , where � > 0 denotes the number of 

species �3��,�� released each time, and the red line represents the initial value of 

species �3��, ��. When  � = 0, species �3��, �� will undergo extinction as � → ∞ 

without impulsive perturbation  ��
3��, �1,�2 ,�3� �� ∈ ��. However, when  0 ≤ � <

0.5, species �3��, �� will develop a periodic oscillation. Thus, it is obvious that the 

impulsive perturbation ��
3��, �1, �2,�3��� ∈ �� has a profound effect on extinction 

of species �3��, ��. These results suggested that the impulsive perturbation constants 

��
3��,�1,�2, �3� �� ∈ �� and impulsive parameter � can play a restrictive role for 

survival of species �3��, ��, which also verifies that the system has potential to be 

applied for actual biological control issues. 
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3.3.2 Impact of environmental heterogeneity on the dynamics of system 

(3-1)-(3-5) 

The distribution of population relies strongly on the heterogeneity and 

homogeneity of their living environments, thus, the dynamical behaviors of 

population distribution in a homogeneous environment are studied. It is obvious to 

find that the system (3-1)-(3-5) exists spatially homogeneous periodic solutions and 

species �1��, ��,�2��, �� and �3��, �� are distributed uniformly over space at the 

same time, as shown in Fig. 3.6. However, when the environment is heterogeneous, 

the system (3-1)-(3-5) can generate a solution which is heterogeneous in space 

direction and periodic in time direction, as it is shown in Fig. 3.7. In such 

circumstances, species �1��, ��,�2��, �� and �3��,�� is heterogeneously distributed 

in space with high density on the edge and cyclical variations over time. From the 

comparative analysis of Figs. 3.6 and 3.7, it is not difficult to find that the living 

environment plays an import role in the spatial distribution of populations. 

 

Fig. 3.3 The effects of impulsive control on the dynamic behaviors of species �1, �2 and �3 of 

system (3-1)-(3-5), here  � = 40 and initial conditions �1�0, �� = 2,�2�0, �� = 2, �3�0, �� =

4.2 for all � ∈ �: (a): permanence of species �1 ; (b): permanence of species �2 ; (c): extinction 
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of species �3  as � → ∞; (d): time series of �1, �2 and �3 on population dynamics with � = 0.

 

Fig. 3.4 The effect of impulsive control parameter � (0 ≤ � ≤ 30) on the density of all species , 

her the initial conditions �1�0, �� = 2, �2�0, �� = 2,�3�0, �� = 4.2  for all � ∈ �.

 

Fig. 3.5 The effect of impulse perturbation constants   ��
��� = 1,2,3, � ∈ �� the density of species 

�3  with fixed � = 1,    ��
3��, �1, �2, �3� = 1 +

�

�3
�0 ≤ � ≤ 0.5�  for all � = 1,2, ⋯ , ; 

�′2��, �� = 0.4 cos���� + 0.1 sin���� + 3, �3��, �� = 0.5 sin���� sin���� + 2  and the initial 

conditions �1�0, �� = 2, �2�0, �� = 2, �3�0, �� = 1 for all � ∈ �.

 

Fig. 3.6 Numerical simulation of spatially homogeneous stable periodic solutions of the system 

(3-1)-(3-5) without spatial representation for � = 8, �1��, �� = 1.5 cos���� + 10, �1��, �� =

sin���� + 6,�1��, �� = 2 cos���� + +5,�2��, �� = 2 cos���� + 8, �2��, �� = 1.5 cos���� +



 

61

4, �2��, �� = cos���� + 4, �′1��, �� = 0.5 cos���� + 4, �′2��, �� = 0.4 cos���� + 4, �3��,�� =

0.5 sin���� + 0.1 and the initial conditions �1�0, �� = 2,  �2�0, �� = 3, �3�0, �� = 1 for all  

� ∈ �.

 

Fig. 3.7 Numerical simulation of spatially non-homogeneous periodic solutions of the system 

(3-1)-(3-5) with � = 8,  �1��, �� = 1.5 cos���� + 1.5 sin���� + 10, �1��, �� = sin���� +

2 sin���� + 6, �1��, �� = 2 cos���� + cos���� + 5,�2��, �� = 2 cos���� + sin���� +

8, �2��, �� = 1.5 cos���� + 1.2 sin���� + 4, �2��, �� = cos���� + 0.5 sin���� + 4, �′1��, �� =

0.5 cos���� + 0.5 sin���� + 4, �′2��, �� = 0.4 cos���� + 0.1 sin���� + 4.5,�3��, �� =

0.5 sin���� sin���� + 0.1 and initial conditions �1�0,�� = 2, �2�0, �� = 2,�3�0, �� = 4.2 for 

all � ∈ �.

4.3. Conclusions 

    An impulsive reaction-diffusion predator-prey system with Crowley-Martin 

functional response is proposed, and we study the dynamics of the system analytically 

and numerically in this thesis. Using the upper and lower solution method and 

comparison theory of differential equations, the boundedness, persistence, and 

extinction are analyzed theoretically, which provided some sufficiency conditions. To 

prove the existence, uniqueness, and globally asymptotic stability of positive periodic  

solutions, compactness theory and a method based on constructing a proper auxiliary 

function are applied. Numerical analysis verifies the theoretical results and further 

indicates that the change of population density is periodic oscillation in time direction 

whether their spatial distribution is heterogeneous or not, but the heterogeneous 

environment indeed has influence on the spatial distribution of populations. 



 

62

Furthermore, it is investigated how the dynamics of system (3-1)-(3-5) strongly 

depends on pulse parameter �  and the impulsive perturbation constants  ��
��� =

1,2,3,� ∈ ��, as well as other parameters. Choosing � and   ��
��� = 1,2,3,� ∈ �� 

as control parameters, the dynamics of the system were analyzed numerically, 

particularly species extinction and permanence. According to the Figs. 3.1 and 3.2, it 

is obvious to find that the impulsive control can significantly affect the temporal and 

spatial dynamics of the system. From Figs. 3.2 and 3.3, by controlling the impulsive 

control parameter �, the dynamical behaviors of the system (3-1)-(3-5) can be greatly 

changed. That is, when � > �∗, the prey and intermediate predator can coexist, while 

top-predator undergone extinction rapidly, where �∗ is some a critical value of �. It 

should be stressed that the top-predator will trend to extinct without impulsive effects 

and a periodic oscillation can be generated by controlling the released number � 

under some conditions. From an ecological viewpoint, uniform persistence implies 

that the prey, intermediate predator and top-predator populations can coexist at any 

time and any location of the inhabited domain. Therefore, we can utilize some key 

arguments to control population permanence and extinction by means of some 

reaction-diffusion impulsive hybrid systems, which are expected to be useful in the 

studies on the dynamic complexity of ecosystems.  
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Chapter 4 DYNAMICS INDUCED BY ENVIRONMENTAL 

STOCHASTICITY IN A PHYTOPLANKTON-ZOOPLANKTON 

SYSTEM WITH TOXIC PHYTOPLANKTON2 

Abstract 

Environmental stochasticity and TPP are the key factors that affect the real 

aquatic ecosystems. To investigate the effects of environmental stochasticity and TPP 

on the dynamics of plankton populations, a stochastic phytoplankton-zooplankton 

system with two TPP is studied theoretically and numerically in this thesis. 

Theoretically, we first prove that the system possesses a unique and global positive 

solution with any given positive initial values, and then derive some sufficient 

conditions guaranteeing the extinction and persistence in the mean of the system. 

Significantly, it is shown that the system has a stationary distribution when toxin 

liberation rate reaches some a critical value. Additionally, numerical analysis shows 

that the white noise can affect the survival of plankton populations directly. 

Furthermore, it has been observed that the increasing one toxin liberation rate can 

increase the survival chance of phytoplankton and reduce the biomass of zooplankton, 

but the combined effects of two liberation rates on the changes in plankton 

populations are stronger than that of controlling any one of the two TPP.  

Keywords: Toxin-producing phytoplankton, Phytoplankton-zooplankton system, 

White noise, Extinction, Stationary distribution 

 

2 This work has been published as Liu, H., Dai, C.J., Yu, H.G., Guo, Q., Li, J.B., Hao, 
A.M., Jun, K., Zhao, M., 2021, Dynamics induced by environmental stochasticity in a 
phytoplankton-zooplankton system with toxic phytoplankton. Mathematical 
Biosciences and Engineering 18(4) 4101-4126,. DOI: 10.3934/mbe.2021206.
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4.1. Introduction 

Plankton, the organisms that the freely floating and weakly swimming in aquatic 

environments, occupy the first trophic level and the second trophic level of any 

aquatic food chains. Phytoplankton are the photosynthetic microorganisms and 

commonly unicellular and microscopic in size, and zooplankton are the heterotrophic 

plankton that live on phytoplankton. In addition to recognizing the importance of 

plankton for the wealth of the aquatic ecosystems and ultimately for the planet itself 

(Huppert et al., 2002), the variation of plankton biomass is an important factor 

influencing the real aquatic environments, and understanding of plankton dynamics 

can be helpful to estimate the productivity of aquatic ecosystems (Behrenfeld and 

Falkowski, 1997; Hoppe et al., 2002) and regulate the balance of plankton ecosystems. 

However, planktonic blooms can occur under some conductive environments, which 

may cause seriously environmental issues and threat to human health. But the 

processes underlying the formation of planktonic blooms are not yet well understood. 

In this respect, thus, the great effort has been made towards the understanding of the 

complex dynamics of plankton, and then mathematical models can be acted as a 

useful tool to investigate the dynamics of plankton ecosystems, which can provide a 

deeper understanding of the dynamic mechanisms of changes in plankton populations.  

Actually, many mathematical models have been constructed to study the 

dynamical behaviors of plankton since the pioneering work of Riley et al. (1949), and 

many physical and biological processes underlying the mechanisms of plankton 

dynamics in the aquatic environments have been investigated (Huppert et al. 2002; 

Dai et al., 2016; Caperon, 1969; Guo et al., 2019; Lin et al., 2005; Liao et al., 2020; 

Zhao et al., 2020). For example, in order to study how the nutrient affects the 

dynamics of phytoplankton blooms, Huppert et al. (2002) presented a simple 

nutrient-phytoplankton model and identified an important threshold effect that a 

bloom will only be triggered when nutrients exceed a certain defined level using 

mathematical model analysis. Caperon (1969) concluded that the time-lag effect 

exists in the growth process of phytoplankton, and further suggested that models play 
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an important role in understanding the growth dynamics of phytoplankton 

characterized by time delays. Lin et al. (2005) used a 

nutrient-phytoplankton-zooplankton model to examine the patterns and consequences 

of adaptive changes in plankton body size and suggested that evolutionary 

interactions between phytoplankton and zooplankton may have contributed to 

observed changes in phytoplankton sizes and associated biogeochemical cycle over 

geological time scales. 

In recent years, the dynamical behaviors of phytoplankton-zooplankton systems 

with various biological factors, such as stability, bifurcation and spatiotemporal 

pattern, have been explored extensively (Caperon, 1969; Zhao et al., 2020; Zhao et al., 

2016; Han and Dai, 2019). Nevertheless, some phytoplankton species are harmful 

phytoplankton that can produce potent toxic or allelopathic substances during 

phytoplankton blooms (Hallam and Luna, 1984), which can affect species interaction 

by suppressing the growth and establishment of other phytoplankton species (Hallam 

et al., 1983). Moreover, some laboratory experiments (Huntley et al., 1986; 

Nejstgaard and Solberg, 1996), as well as field observation (Estep et al., 1990), have 

suggested that the toxicity may be as a strong mediator in the zooplankton feeding 

rate. As a result, some researchers have taken this important factor of toxic production 

released by TPP into account when studying the phytoplankton-zooplankton systems 

(Scotti et al. 2015; Banerjee and Venturino, 2011; Khare et al., 2010). For example, 

Scotti et al. (2015) indicated that a toxic phytoplankton may destabilize the spatially 

homogeneous coexistence and trigger the formation of spatial pattern, and further 

concluded that local blooms more likely occur when the strength of the toxicity is of a 

certain level. Additionally, some results from field observations and model analysis 

concluded that the toxic substances can affect the interaction between phytoplankton 

and zooplankton and reduce the growth of zooplankton, indicating TPP may act as a 

biological control way for the termination of planktonic blooms (Chattopadhyay et al., 

2002; Chattopadhyay et al., 2002; Sarkar and Chattopadhyay, 2003; Chattopadhyay et 

al., 2004). Sarkar et al. (2005) proposed the following mathematical model consisting 
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of two harmful phytoplankton and zooplankton species: 

    

�
�
�

�
�

��1���

��
= �1�1��� �1 −

�1���

�1���
� − �1����1����2��� − ��1�������,                 

��2���

��
= �2�2��� �1 −

�2���

�2���
� − �2����1����2��� − ��2�������,                 

�����

��
= ��1������� + ��2������� −

��1�������

�+�1���
−

��2�������

�+�2���
− �����,        

   (4-1) 

where �1���, �2���  and ���� are the population densities of two harmful 

phytoplankton and zooplankton species at time �, respectively; �1 and �2 denote the 

intrinsic growth rates of two TPP, respectively; �1  and �2  are their corresponding 

environment carrying capacities; �1 and �2  represent be the inhibitory effects of two 

harmful phytoplankton; �  and � are the maximum zooplankton ingestion rates for 

both two TPP species, respectively; �  and �  are the maximum zooplankton 

conversion rates, respectively; � is the natural death rate of zooplankton; �  and � 

are the rates of toxin liberation by two TPP species, respectively; � and � denote 

the half-saturation constants for two TPP species. The authors studied the asymptotic 

stability of the system (4-1) and claimed that the presence of two harmful 

phytoplankton populations has a positive impact for the termination of planktonic 

blooms (Sarkar, 2005). 

In the real world, however, the unpredictability and ubiquity of environmental 

fluctuations in the natural aquatic ecosystems, for example, the necessary nutrient 

availability, water temperature, light and turbulence, can greatly cause the growths of 

plankton populations to experience random fluctuations. Systems with such kinds of 

environmental fluctuations can be described by stochastic differential equations, 

which play a significant role in the population dynamics as they can provide some 

additional degree of realism compared to their corresponding deterministic 

counterparts (Renshaw, 1991). Thus, stochastic population systems, as an important 

application in ecological and biological systems, have attracted increasing attention 

(Sun et al., 2020; Deng and Liu, 2020; Jiang et al., 2020; Yu et al., 2019; Gao and 

Wang, 2019; Liu et al., 2017; Liu and Liu, 2019). Especially, stochastic plankton 

systems with white noise have been the common area of interest among researchers 
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(Liao et al., 2020; Sarkar and Chattopadhyay, 2003a, 2003b; Yu et al., 2019; Zhao et 

al., 2017; Chen et al., 2020; Chen et al., 2020; Liao et al., 2019; Xia et al., 2020; Zhao 

et al., 2020; Yu et al., 2020; Wang and Liu, 2020) in recent years and many interesting 

results have been shown. For example, Sarkar and Chattopadhayay (2003b) proposed 

a toxic phytoplankton-non-toxic phytoplankton-zooplankton with stochastic 

perturbation around the positive equilibrium, and they concluded that TPP and 

stochastic fluctuations can significantly affect the coexistence of species. Yu et al. 

(2018) investigated a nutrient-phytoplankton system with TPP under environmental 

fluctuations, and they obtained some conditions for extinction, persistence and the 

existence of ergodic stationary distribution. All these works greatly stimulate 

researchers to explore the way how environmental stochasticity and toxin production 

affect the coexistence and survival prospect of plankton populations in the presence of 

harmful phytoplankton. Obviously, it is meaningful to further incorporate the 

environmental fluctuations into the underlying model (4-1). Moreover, there are few 

literatures to study the dynamics of the stochastic phytoplankton-zooplankton system 

with two harmful phytoplankton populations, and the dynamics of the stochastic 

phytoplankton-zooplankton system with two harmful phytoplankton is still not very 

clear currently. Hence, we mainly present the influence of the effects of 

environmental white noise and toxic liberation rates produced by two TPP on the 

dynamics of phytoplankton-zooplankton system in this paper. Motivated by the works 

above, we assume that the intrinsic growth rates of two harmful phytoplankton and 

the death rate of zooplankton are influenced by the environmental fluctuations effect, 

and thus introduce the white noise into underlying system (4-1), resulting in the 

following form: 
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�
�
�
�
�

�
�
�
�

��1���

��
= �1�1��� �1 −

�1���

�1���
� − �1����1����2��� − ��1�������                

+�1����1�����1���,
��2���

��
= �2�2��� �1 −

�2���

�2���
� − �2����1����2��� − ��2�������               

+�2����2�����2���,
 

�����

��
= ��1������� + ��2������� −

��1�������

�+�1���
−

��2�������

�+�2���
− �����      

+�3���������3���,

    (4-2) 

where ����� are mutually independent standard Brownian motions with ���0� = 0 

(Gikhman and Skorokhod, 1979), and ������ are standard white noise and ��
2(�) 

are their intensities, � = 1,2,3. 

By now, we have successful introduced a stochastic phytoplankton-zooplankton 

system with two toxic phytoplankton focusing on the effects of environmental 

stochasticity and TPP, and our research questions include: (i) How does the 

environmental stochasticity affects the dynamics of plankton populations? (ii) What 

influences the peak of the outbreaks of planktonic blooms in a fluctuating 

environment? The rest of this paper is organized as follows: Section 4.2 presents the 

basic assumptions firstly, and then we investigate the existence and uniqueness of 

global positive solutions, and apply the Ito's formula to obtain the sufficient 

conditions for the extinction and persistence in the mean of system (4-2), and the 

existence of a unique ergodic stationary distribution by establishing a appropriate 

stochastic Lyapunov function. A series of numerical simulations are carried out to 

further study the dynamics of system (4-2) in Section 4.3. In Section 4.4, we 

summarize the results and present our conclusions. 

4.2. Dynamic analysis 

The survival of plankton populations is a interesting topic in the biology and 

ecology, and phytoplankton population plays an important role in the balance of 

aquatic ecosystems, but the rapid growth of harmful phytoplankton can lead to the 

occurrence of HABs and pose threat to our living environments. Thus, it is necessary 

to discuss the survival chance of plankton populations under some conditions in the 
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model. In this respect, we firstly investigate the existence and uniqueness of global 

positive solutions, and then discuss the evolution process of plankton growth, 

especially for the extinction and persistence in the mean of system (4-2), and the 

positive recurrence and ergodic property of system (4-2) in this section. Before it, we 

introduce some preliminaries for the following discussion. 

4.2.1. Preliminaries 

Denote ℝ+ = �0,  +∞�  and ℝ+
� = ���1,⋯ , ��� ∈ ℝ� :�� > 0, � = 1,2, ⋯ ,�� and 

��� = �� ��
2�

�=1 . Throughout this paper, unless otherwise indicated, we always 

assume that ��, ℱ� , �ℱ���≥0,�� is a completed probability space with a filtration �ℱ�� 

satisfying the usual normal conditions (i.e. it is right-continuous and increasing while 

�ℱ0� contains all �-null sets). For convenience, if ���� is a integrable function on 

ℝ+, we define ��� =
1

�
∫ ����
�

0
��,� > 0. 

Generally, we consider the �-dimentional stochastic differential equation: 

          ����� = ������, ���� + ������, �������,     � ∈ ��0,��           (4-3) 

with initial value ���0� = �0 ∈ ℝ� , while ���� is �-dimentional standard Brownian 

motion defined on the completed probability space ��,ℱ� , �ℱ���≥0,��. Denote by 

�2,1�ℝ� × ℝ+, ℝ�  the family of all non-negative functions �(�, �)  defined on 

ℝ� × ℝ+ such that they are continuously twice differentiable in � and once in �. 

Define a differential operator � associated with Eq. (4-3) by (Mao, 1997b) as follows:  

� =
�

��
+ �����, ��

�

�=1

�

���
+

1

2
������, �����, �����

�

�,�=1

�2

������
. 

Let ��(�, �) ∈ �2,1(ℝ� × ℝ,ℝ), then 

�� = �� + �����, �� +
1

2
����������, ��������, ���, 

where 

�� =
��

��
,�� = �

��

��1

,
��

��2

, ⋯ ,
��

���

� , ��� = �
�2

������
�
�×�

. 
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By Ito�‟s formula, if �(�) ∈ ℝ� , then 

�� = �������, ���� + �������, ��������, �������. 

Next, we introduce the criterion of positive recurrent and the ergodic properties. 

Before it, we consider the stochastic equation: 

                 ����� = ��������� + � �����������
�
�=1                (4-4) 

where ���� is a homogeneous Markov process in �-dimentional Euclidean space 

ℝ� . The diffusion matrix is ���� = ���� ����, and ��� ��� = � ��
�����

�=1 ��
� ���. Thus, 

a lemma which describes the criterion of stationary distribution can be given. 

Lemma 4.2.1.1 (Khasminskii, 2012) Suppose that there exists a bounded open set 

� ⊂ ℝ�  with a smooth regular boundary � satisfying the following conditions: 

(i) the diffusion matrix ���� is strictly positive definite for all � ∈ �; 

(ii) there exists a non-negative �2-function �(�) and a positive constant � such 

that ����� ≤ −� for ∀� ∈ ℝ� ∕ �. 

Then there exists a solution �(�) of the system (4-4) which is a stationary Markov 

process with a stationary distribution �(·) and for any given integrable function �(·) 

with respect the measure �, we have 

� � lim
�→∞

1

�
� ���������

�

0

= � �����(��)
ℝ�

� = 1. 

4.2.2. Existence and uniqueness of global positive solutions 

Before investigating the stochastic dynamics of system (4-2), we should first 

guarantee whether the solution of the system is global and positive. Therefore, based 

on the biological interpretation, in this subsection, we just take the non-negative 

solutions into account for system (4-2) and discuss the existence of global positive 

solutions in system (4-2) for any given initial values in the following.  

Actually, from the method of the Lemma 2.1 in the work of Ji et al. (2009), it is 

obvious to obtain that, for any given initial values ��1�0�,�2�0�, ��0�� ∈ ℝ+
3 , all the 
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coefficients of system (4-2) are locally Lipschitz continuous and the system admits a 

unique local solution ��1���,�2���,����� on  � ∈ �0,  ���
 , where ��  represents the 

explosion time. In the following, thus, we need to illustrate the solution is global, that 

is, we only need to prove �� = ∞, �. �.  Let �0 ≥ 1  large enough such that 

��1�0�, �2�0�, ��0�� ∈ �
1

�0
,�0� and for each integer � ≥ �0, we define the stopping 

time by the following form: 

�� = inf �� ∈ �0,  ���: max  ��1���,�2���,����� ≤
1

�
 or min��1���,�2���,����� ≥ �� , 

and set inf ∅ = ∞ (∅ denotes the empty set). Obviously, one can obtain that ��  is 

increasing as � → ∞ and �� < �� . Thus, let �∞ = lim�→+∞ �� , then �∞ ≤ ��  a.s. If 

we can show that �∞ = ∞ a.s., then �� = ∞ and ��1���,�2���,����� ∈ ℝ+
3  a.s. for 

all � ≥ 0. In other words, to complete the proof, we only need to proof �∞ = ∞ a.s. 

If the statement is false, then there exist two constants � > 0 and � ∈ �0,1� such 

that ���∞ ≤ �� > �. Hence, for all � ≥ �1, there exists an integer �1 ≥ �0  such 

that ���∞ ≤ �� ≥ �. 

Define a �2-function V�: ℝ+
3 → ℝ�+ by 

      ����1, �2,�� =
�

�
��1 − 1 − log�1� +

�

�
��2 − 1 − log�2� + �� − 1 − log��.  

Obviously, the function ����1, �2,�� is non-negative since the inequality � − 1 −

log� > 0 holds for all � > 0. Applying the Ito�‟s formula to ����1,�2, �� yields 

�����1, �2,�� = �����1,�2, ���� +
�

�
�1��1 − 1���1��� +

�

�
�2��2 − 1���2���

+ �3�� − 1���3���, 

where ��� : ℝ+
3 → ℝ is defined by 
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�����1, �2,�� =
�

�
��1 − 1� ��1 �1 −

�1

�1
� − �1�2 − ��� +

�

�

�1
2

2

+
�

�
��2 − 1� ��2 �1 −

�2

�2
� − �2�1 − ������ +

�

�

�2
2

2

+ �� − 1� ���1 + ��2 − � −
��1

� + �1

−
��2

� + �2

� +
�3

2

2

≤ �� −
�2�

�
−

�1�

�
+

��1
2

2�
+

��2
2

2�
+

�3
2

2
+ � + ��

+
�

�
��1 +

�1

�1

+ �2 − ���1 −
��1

��1

�1
2 +

�

�
��2 +

�2

�2

+ �1 − ���2

−
��2

��2

�2
2 + �� + � − ��� ≤ � + �� + � − ���, 

where 

� = �� −
�2�

�
−

�1�

�
+

��1
2

2�
+

��2
2

2�
+

�3
2

2
+ � + ��

+ max
�1∈�0,+∞�

�
�

�
��1 +

�1

�1
+ �2 − ���1 −

��1

��1
�1

2�

+ max
�2∈�0,+∞�

�
�

�
��2 +

�2

�2
+ �1 − ���2 −

��2

��2
�2

2� . 

Notice that � ≤ 2�� − 1 − log�� + 2 log 2 ≤ 2����1,�2, �� + 2 log 2 for all � > 0, 

then one can obtain that 

��� ≤ � + 2�� + � − �� log 2 + 2�� + � − ���� ≤ Υ�1 + ��� 

where  

           Υ = max�� + 2�� + � − �� log 2 , 2�� + � − ���.  

The remainder of the discussion follows that in the Theorem 3.3 (Chen et al., 2020), 

here, we omit it. Therefore, for any given initial values ��1�0�, �2�0�,��0�� ∈ ℝ+
3 , 

system (4-2) exists a unique solution ��1���,�2���,����� on ℝ+ and the positive 

solution will remain in ℝ+
3  with probability one, that is, ��1���,�2���,����� ∈ ℝ+

3  

for all � ≥ 0  almost surely. 
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4.2.3. Extinction and persistence induced by white noise 

The extinction and persistence in the mean are two important aspects in a 

population system and it is vital to discover whether the white noise has important 

effect on the survival of population (Tapaswi and Mukhopadhyay, 1999). Therefore, 

based on the previous analysis, we will further discuss and analyze the extinction and 

persistence in the mean of plankton populations in system (4-2). The following 

analysis shows that white noise intensity can significantly affect the dynamical 

behaviors of stochastic system (4-2). Here we give a detailed analysis: 

Firstly, suppose that ��1���, �2���, ����� be the solution of system (4-2) with the 

initial value ��1�0�, �2�0�, ��0�� ∈ ℝ+
3 . Applying the Ito�‟s formula to system (4-2) 

yields 

       �ln �1��� = ��1 �1 −
�1���

�1
� − �1�2��� − ����� −

1

2
�1

2� �� + �1��1���,  

       �ln �2��� = ��2 �1 −
�2���

�2
� − �2�1���  − ����� −

1

2
�2

2� �� + �2��2���,  

and 

     �ln ���� = ���1��� + ��2��� − � −
��1(�)

�+�1(�)
−

��2(�)

�+�2(�)
−

1

2
�3

2� �� + �3��3���,  

Integrating the above from 0 to � and dividing � on both sides, we have 

1

�

ln �1���

ln �1�0�
= �1 −

1

2
�1

2 −
�1

�1

1

�
∫ �1�����
�

0
− �1

1

�
∫ �2�����
�

0
− �

1

�
∫ ������
�

0
  

         +
�1���

�
                                                   (4-5) 

1

�

ln �2���

ln �2�0�
= �2 −

1

2
�2

2 −
�2

�2

1

�
∫ �2�����
�

0
− �2

1

�
∫ �1�����
�

0
− �

1

�
∫ ������
�

0
    

                    +
�2���

�
                                                   (4-6) 

and 

1

�

ln ����

ln ��0�
= − �� +

1

2
�3

2� + �
1

�
∫ �1�����
�

0
+ �

1

�
∫ �2�����
�

0
−

1

�
∫

��1(�)

�+�1(�)
��

�

0
−

                    
1

�
∫

��2(�)

�+�2(�)
��

�

0
+

�3���

�
                                       (4-7) 

where 

          ����� = ∫ ��
�

0
�� ���������, � = 1,2, �3��� = ∫ �3

�

0
������3���.  
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Moreover, the quadratic variation of �����(� = 1,2,3) satisfy 

              ������,������� = ∫ ��
2�

0
�� ≤ ���

∗�2�, � = 1,2,3.  

By the strong law of large numbers for martingales (Khasminskii, 2012) yields 

                     lim�→∞
�����

�
= 0   �. �. , � = 1,2,3.                 (4-8) 

Thus, according to (4-5), we have 

                     lim sup�→∞
ln �1���

�
≤ � = �1 −

1

2
�1

2 �. �.  

Obviously, we can obtain that lim�→∞  �1��� = 0  �. �. if � < 0, that is, the toxic 

phytoplankton population �1��� tends toward extinction. 

Next, we analyze the persistence in the mean of the toxic phytoplankton 

population �1���. By making some estimation of (4-5), we have 

               
1

�

ln �1���

ln �1�0�
≥ � −

�1

�1

1

�
∫ �1�����
�

0
−

�1�2�

�2
− �� +

�1���

�
         (4-9) 

where � and � will be determined later. In addition, since the fact that 

                  lim�→+∞
ln �1�0�

�
= lim�→+∞

�1���

�
= 0.  

Thus, from the properties of the limit, for arbitrary �2 > 0, there exists a constant 

�2 > 0 such that 

��2���� ≤
�2�

�2
+

�2

�1
, ������ ≤ � +

�2

�
,

ln �1�0�

�
≥ −

�2

2
, and 

�1���

�
≥ −

�2

2
.   

Substituting above inequalities into (4-9) and for all � ≥ �2 , we have 

                   
1

�
ln�1��� ≥ �1� −

�1

�1

1

�
∫ �1�����
�

0
+

�1���

�
,  

where �1 = � −
�1�2

�2
� − �� , � = �2 −

1

2
�2

2 , � = � +
1

2
�3

2 , and � =
��1�

�1
+

��2�

�2
− � From the Lemma 4 (Liu and Wang, 2011), it is obvious to find that, if  

�1 > 0, we have  

                     lim�→∞ inf
1

�
∫ �1���
�

0
�� ≥

�1

�1
�1 > 0.  
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This implies that the toxic phytoplankton �1��� is persistence in the mean. 

For the toxic phytoplankton �2���, the same to analysis of �1���, we have the 

toxic phytoplankton �2��� is extinct if � < 0, while it is persistence in the mean 

under the condition �2 > 0, where �2 = � −
�2�1

�1
� −��. 

In view of the zooplankton, we have 

              lim sup�→∞ ��1���� ≤
�1�

�1
, lim sup�→∞ ��2���� ≤

�2�

�2
       (4-10) 

According to Eq. (4-7), we have 

                
1

�

ln ����

ln ��0�
≤ −� + ���1���� + ���2���� +

�3���

�
.            (4-11) 

Combining with (4-8) and (4-10), and taking upper limit on both sides of (4-11) yields 

               lim sup�→∞
ln ����

�
≤

��1�

�1
+

��2�

�2
− � = �,�. �.  

Obviously, if the condition � < 0, we have limt→∞ ���� = 0. This means that the 

zooplankton is extinct. 

Now, we show the persistence in the mean of zooplankton. Computing 

(4-5) ×
�1

�1
� +(4-6) ×

�2

�2
� +(4-7), we can observe that 

�1

�1
�

1

�
ln

�1���

�1�0�
+

�2

�2
�

1

�
ln

�2���

�2�0�
+

1

�
ln

����

��0�
≥   

                  �
�1

�1
� −

�1

�1

�2

�2
��2� � + �

�2

�2
� −

�1

�1

�2

�2
��1� � − � + � + � −  

               �
�1

�1
�� +

�2

�2
��� ∫ ����

t

0
ds +

��1

�1

�1���

�
+

��2

�2

�2���

�
+

�3���

�
            (4-12) 

By the strong law of large numbers for martingales, we can derive that 

        limt→∞
��1

�1

�1���

�
= 0, limt→∞

��2

�2

�2���

�
= 0, limt→∞

�3���

�
= 0, �. �.  

From the Lemma 2.3 (Zhao, 2016), we can obtain that 

      limt→∞ sup
1

�
ln

�1���

�1�0�
≥ 0, limt→∞ sup

1

�
ln

�2���

�2�0�
≥ 0, limt→∞ sup

1

�
ln

����

��0�
≥ 0.  
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Thus, taking the limit superior in (4-12) and from the lemma 4 (Liu and Bai, 2016), 

and if � =
�1

�1
�� −

��2�2

�2
�� +

�2

�2
�� −

��1�1

�1
� � − � − � − � > 0 , one can see that     

                 limt→∞ inf ���� ≥ �
�1

�1
�� +

�2

�2
���

−1
× 

                     �
�1

�1
�� −

��2�2

�2
� � +

�2

�2
�� −

��1�2

�2
� � − � − � −  �� > 0,  

which implies 

                            limt→∞ inf �(�) > 0.  

That is, the zooplankton is persistence in the mean. 

To sum up, for any initial values ��1�0�, �2�0�, ��0�� ∈ ℝ+
3 , we can obtain the 

following conclusion: 

I. the harmful phytoplankton �1��� is 

(i) extinct if � < 0; 

 (ii) persistent in the mean if �1 > 0. 

II. the harmful phytoplankton �2��� is 

(i) extinct if � < 0; 

(ii) persistent in the mean if �2 > 0. 

III. the zooplankton ���� is 

(i) extinct if  � < 0 ; 

(ii) persistent in the mean if � > 0, � > 0, and  

            � =
�1

�1
�� −

��2�2

�2
� � +

�2

�2
�� −

��1�1

�1
� � − � − � − � > 0.  

4.2.4. The ergodic stationary distribution of plankton 

It is well known that ergodicity is one of the most important and significant 

characteristics for population systems described by stochastic differential equations, 

which means that the system has a unique stationary distribution, providing a 

biological perspective of cycling phenomena of a population system for long time. In 

this subsection, therefore, we discuss the ergodic property for stochastic system (4-2) 

by constructing a suitable Lyapunov function. The following modeling analysis shows 
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that system (4-2) admits the stationary distribution which is ergodic when the white 

noise intensity and toxin released rate are not particularly large.  

Actually, to prove ergodic stationary distribution, we need to verify the 

conditions of Lemma 4.2.1.1. According to the Lemma 4.2.1.1 in preliminaries 

subsection, it is obvious to obtain that the diffusion matrix 

��� (�, �) = diag ��1
2,�2

2, �3
2� of system (4-2) is positive definite, which implies that 

the condition (i) in Lemma 4.2.1.1 holds. 

Next, we prove the condition (ii) in Lemma 4.2.1.1. By constructing a 

�2-function ��: ℝ+
3 → ℝ as follows: 

    �� ��1, �2,�� =
1

�+1
(
�

�
�1 +

�

�
�2 + �)�+1 − ��

��1

�1
ln�1 +

��2

�2
ln�2 + ln �� − �,  

where � is positive constant satisfying 0 < � <
�

3� 2��1
2∨�2

2∨�3
2�

 and � > 0 will be 

determined later. Since the function ����1,�2, �� is continuous, then there exists a 

unique point ��1
� , �2

���,��� in ℝ+
3  which is the minimum value of ����1, �2,��. Thus, 

construct a non-negative �2-function defined �: ℝ+
3 → ℝ by 

���1,�2, �� = ����1,�2, �� − ����1
� ,�2

���, ���

=
1

� + 1
(
�

�
�1 +

�

�
�2 + �)�+1 − � ��

��1

�1

ln�1 +
��2

�2

ln�2 + ln���

− � − ����1
� , �2

���,��� = �1��1, �2,�� + �2��1,�2, �� + �3��1,�2 ,��. 

Using the generalized Ito�‟s formula, one can see that 

��1��1, �2,�� = (
�

�
�1 +

�

�
�2 + �)� �

��1

�
�1 −

��1

��1

�1
2 −

��1

�
�1�2 +

��2

�
�2 −

��2

��
2

�2
2

−
��2

�
�1�2 −

��1�

� + �1

−
��2�

� + �2

− ���

+
�

2
(
�

�
�1 +

�

�
�2 + �)�−1 ��1

2 �
�

�
�1�

2

+ �2
2 �

�

�
�2�

2

+ �3
2�2�

≤
��1

�
�1(

�

�
�1 +

�

�
�2 + �)� −

�2�1

�2�1

�1
�+2

+
��2

�
�2(

�

�
�1 +

�

�
�2 + �)�

−
�2�2

�2�
2

�2
�+2

− ���+1 +
�

2
(
�

�
�1 +

�

�
�2 + �)�+1��1

2 ∨ �2
2 ∨ �3

2�. 
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Noting that the inequality �� ��
�
�=1 �� ≤ ��−1 � ��� �

��
�=1 , we can obtain that 

��1��1,�2 ,�� ≤ −
�2�1

2�2�1

�1
�+2

−
�2�2

2�2�
2

�2
�+2

−
�

2
��+1 −

�

4
��+1

+
3��

2
��1

�+1
+ �2

�+1
+ ��+1���1

2 ∨ �2
2 ∨ �3

2� −
�2�1

2�2�1

�1
�+2

−
�2�2

2�2�
2

�2
�+2

−
�

4
��+1 +

��1

�
�1(

�

�
�1 +

�

�
�2 + �)�

+
��2

�
�2(

�

�
�1 +

�

�
�2 + �)�

= −
�2�1

2�2�1

�1

�+2
−

�2�2

2�2�
2

�2

�+2
−

�

2
��+1 − �

�

4
−

3��

2
��1

2 ∨ �2
2 ∨ �3

2�� ��+1

+ � ≤ −
�2�1

2�2�1

�1
�+2

−
�2�2

2�2�
2

�2
�+2

−
�

2
��+1 + �, 

where 

� = sup(�1,�2,�)∈ℝ+
3 �−

�2�1

2�2�1

�1
�+2

−
�2�2

2�2�
2

�2
�+2

−
�

4
��+1

+
��1

�
�1(

�

�
�1 +

�

�
�2 + �)� +

��2

�
�2(

�

�
�1 +

�

�
�2 + �)�

+
3��

2
��1

�+1
+ �2

�+1���1
2 ∨ �2

2 ∨ �3
2�� < ∞. 

and 

��2��1,�2 ,�� = −
��1

�1

ln�1 −
��2

�2

ln �2 − ln �

= − �
��1

�1
� +

��2

�2
� − � − � − �� + �2

��2

�2
�1 + �1

��1

�1
�2

+ ��
��1

�1
+ �

��2

�2
� �

= −� + �2

��2

�2

�1 + �1

��1

�1

�2 + ��
��1

�1

+ �
��2

�2

� �, 

��3��1, �2,�� = −��1� − ��2� +
��1�

� + �1

+
��2�

� + �2

+ �� ≤
�

�
�1� +

�

�
�2� + ��. 

Thus, 
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����1, �2,�� ≤ −�� +
��2�2�

�2
�1 +

��1�1�

�1
�2 + ��

���1

�1
+
���2

�2
� � + �� �

+
�

�
�1� +

�

�
�2� −

�2�1

2�2�1

�1
�+2

−
�2�2

2�2�
2

�2
�+2

−
�

2
��+1 + �. 

Considering the following compact subset  �: 

� =  ���1, �2,�� ∈ ℝ+
3 : � < �1 <

1

�
, � < �2 <

1

�
, � < � <

1

�
� 

where � is a sufficiently small constant satisfying the following conditions: 

            −�� + �
��2�2�

�2
+

�

�
� � + �1 ≤ −1,                       (4-13) 

            −�� + �2 −
�2�1

4�2�1
�−�−2   ≤ −1,                         (4-14) 

            −�� + �
��1�1�

�1
+

�

�
� � + �3 ≤ −1,                       (4-15) 

            −�� + �4 −
�2�2

4�2�2
�−�−2 ≤ −1,                          (4-16) 

           −�� + ��
���1

�1
+

���2

�2
�� + � +

�

�
+

�

�
� � + �5 ≤ −1,         (4-17) 

           −�� + �6 −
�

4
�−�−1 ≤ −1,                               (4-18) 

where 

�1 = sup(�1,�2,�)∈ℝ+
3 �

��1�1�

�1
�2 +

�

2�
�2

2 + ��
���1

�1
+

���2

�2
�� + �� �

+ �
��

�
+

�

2�
� �2 + ��,                                                                                       

�2 = sup(�1,�2,�)∈ℝ+
3 �

��2�2�

�2

�1 +
�

2�
�1

2 +
��1�1�

�1

�2 +
�

2�
�2

2

+ ��
���1

�1
+

���2

�2
�� + �� � + �

�

2�
+

�

2�
� �2 −

�2�1

4�2�1
�1
�+2

−
�2�2

2�2�2
�2
�+2

−
�

2
��+1 + ��,                                                                       
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�3 = sup(�1,�2,�)∈ℝ+
3 �

��2�2�

�2

�1 +
�

2�
�1

2 + ��
���1

�1

+
���2

�2

�� + �� �

+ �
�

2�
+

�

�
�� �2 + ��,                                                                                       

�4 = sup(�1,�2,�)∈ℝ+
3 �

��2�2�

�2
�1 +

�

2�
�1

2 +
��1�1�

�1
�2 +

�

2�
�2

2

+ ��
���1

�1

+
���2

�2

�� + �� � + �
�

2�
+

�

2�
� �2 −

�2�1

2�2�1

�1
�+2

−
�2�2

4�2�2
�2
�+2

−
�

2
��+1 + ��,                                                                      

�5 = sup(�1,�2,�)∈ℝ+
3 �

��2�2�

�2
�1 +

��

�
�1

2 +
��1�1�

�1
�2 +

��

�
�2

2 + ��,                          

�6 = sup(�1,�2,�)∈ℝ+
3 �

��2�2�

�2

�1 +
�

2�
�1

2 +
��1�1�

�1

�2 + +
�

2�
�2

2

+ ��
���1

�1

+
���2

�2

�� + �� � + �
�

2�
+

�

2�
� �2 −

�

4
��+1

−
�2�1

2�2�1

�1
�+2

−
�2�2

2�2�2

�2
�+2

+ ��.                                                                

Then  

                  ℝ+
3 �� = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5 ∪ �6  

with 

       �1 =  ���1,�2, �� ∈ ℝ+
3 : 0 < �1 ≤ ��, �2 =  ���1,�2, �� ∈ ℝ+

3 : �1 ≥
1

�
�,  

       �3 =  ���1,�2, �� ∈ ℝ+
3 : 0 < �2 ≤ ��, �4 =  ���1, �2,�� ∈ ℝ+

3 : �2 ≥
1

�
�,  

       �5 =  ���1,�2, �� ∈ ℝ+
3 : 0 < � ≤ ��, �6 =  ���1 ,�2 ,�� ∈ ℝ+

3 : � ≥
1

�
�.  

Now, under the condition � =
��1

�1
� +

��2

�2
� − � − � − � > 0, we need to prove the 

negativity of ����1,�2, �� for any ��1, �2,�� ∈ ℝ+
3 ��  in the following cases: 

Case I If ��1,�2, �� ∈ �1, then �1� ≤ �� ≤ ��1 + �2�, and one can obtain that 
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����1,�2 ,�� ≤ −�� +
��2�2�

�2

�1 +
��1�1�

�1

�2 + ��
���1

�1

+
���2

�2

�� + �� �

+
�

�
�1� +

�

�
�2� −

�2�1

2�2�1
�1
�+2

−
�2�2

2�2�2
�2
�+2

−
�

2
��+1 + �

≤ −�� +
��2�2�

�2
� +

��1�1�

�1
�2 + ��

���1

�1
+

���2

�2
�� + �� �

+
�

�
��1 + �2� +

�

�

�2
2 + �2

2
−

�2�1

2�2�1

�1
�+2

−
�2�2

2�2�2

�2
�+2

−
�

2
��+1

+ � ≤ −�� + �
��2�2�

�2

+
�

�
� � + �1 ≤ −1. 

By (4-13), we have ����1,�2, �� ≤ −1 for any ��1,�2,�� ∈ �1. 

Case II If ��1,�2, �� ∈ �2, we have 

����1,�2, �� ≤ −�� +
��2�2�

�2

�1 +
��1�1�

�1

�2 + ��
���1

�1

+
���2

�2

�� + �� �

+
�

�
�1� +

�

�
�2� −

�2�1

2�2�1

�1
�+2

−
�2�2

2�2�2

�2
�+2

−
�

2
��+1 + �

≤ −�� +
��2�2�

�2
�1 +

��1�1�

�1
�2 + ��

���1

�1
+

���2

�2
�� + �� �

+
�

�

�1
2 + �2

2
+

�

�

�2
2 + �2

2
−

�2�1

4�2�1

�1
�+2

−
�2�1

4�2�1

�1
�+2

−
�2�2

2�2�2

�2
�+2

−
�

2
��+1 + � ≤ −�� + �2 −

�2�1

4�2�1

�−�−2 ≤ −1, 

By (4-14), we have ����1,�2, �� ≤ −1 for any ��1,�2,�� ∈ �2. 

Case III If ��1,�2, �� ∈ �3, the similar analysis to case I, we can obtain that 

����1, �2,�� ≤ −�� + �
��1�1�

�1
+

�

�
� � + �3 ≤ −1. 

By (4-15), we have ����1,�2, �� ≤ −1 for any ��1,�2,�� ∈ �3. 

Case IV If ��1,�2 ,�� ∈ �4, the similar analysis to case II, we have 

����1,�2, �� ≤ −�� + �4 −
�2�2

4�2�2
�−�−2 ≤ −1, 

which follows from (4-16), we have ����1,�2, �� ≤ −1 for any ��1 ,�2, �� ∈ �4 . 

Case V If ��1, �2,�� ∈ �5, then �1� ≤ ��1 ≤ ��1 + �1
2�,�2� ≤ ��2 ≤ ��1 + �2

2�, we 
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have 

����1,�2, �� ≤ −�� +
��2�2�

�2
�1 +

��1�1�

�1
�2 + ��

���1

�1
+

���2

�2
�� + �� �

+
�

�
�1� +

�

�
�2� −

�2�1

2�2�1
�1
�+2

−
�2�2

2�2�2
�2
�+2

−
�

2
��+1 + �

≤ −�� +
��2�2�

�2
�1 +

��1�1�

�1
�2 + ��

���1

�1
+

���2

�2
�� + �� �

+
�

�
��1 + �1

2� +
�

�
��1 + �2

2� −
�2�1

2�2�1

�1
�+2

−
�2�2

2�2�2

�2
�+2

−
�

2
��+1

+ � ≤ −�� + ��
���1

�1
+

���2

�2
�� + � +

�

�
+

�

�
� � + �5 ≤ −1. 

According to (4-17), we have ����1,�2, �� ≤ −1 for any ��1,�2, �� ∈ �5. 

Case VI If ��1, �2,�� ∈ �6, we have 

����1,�2, �� ≤ −�� +
��2�2�

�2

�1 +
��1�1�

�1

�2 + ��
���1

�1

+
���2

�2

�� + �� �

+
�

�
�1� +

�

�
�2� −

�2�1

2�2�1
�1
�+2

−
�2�2

2�2�2
�2
�+2

−
�

2
��+1 + �

≤ −�� +
��2�2�

�2
�1 +

��1�1�

�1
�2 + ��

���1

�1
+

���2

�2
�� + �� �

+
�

�

�1
2 + �2

2
+

�

�

�2
2 + �2

2
−

�

4
��+1 −

�2�1

2�2�1
�1
�+2

−
�2�2

2�2�2
�2
�+2

−
�

4
��+1 + � ≤ −�� + �6 −

�

4
�−�−1 ≤ −1. 

From (4-18), we have ����1, �2,�� ≤ −1 for any ��1,�2, �� ∈ �6. 

Hence, the condition (ii) of Lemma 4.2.1.1 is verified. Thus, for any given initial 

value ��1�0�,�2�0�,��0�� ∈ ℝ+
3 , we can obtain that, if � > 0, the system (4-2) 

admits a unique ergodic stationary distribution. 

Note: When the environmental fluctuations are not particularly large, there exists a 

unique ergodic stationary distribution, implying that the biomass of phytoplankton 

and zooplankton can be persistent and coexistence in the long term. Additionally, it 

also shows that the adaptability of plankton to environmental fluctuations is limited.  
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4.3. Experimental simulations 

In the previous subsections, we have analyzed the effects of environmental 

fluctuations and TPP on the dynamics of plankton ecosystem and verified the intensity 

of white noise and the liberation rate produced by TPP can lead to the extinction, 

persistence in the mean and even the stationary distribution of plankton populations 

by modeling analysis. In order to further study how the white noise and TPP affect the 

dynamics mechanisms of the formation and evolution process of planktonic blooms, 

we perform some experimental simulations for system (4-2) based on the Milstein's 

Higher Order Method (Higham, 2001) in this section. In the following experimental 

simulations, unless otherwise specified, we take the initial value as 

��1�0�, �2�0�, ��0�� = �0.5,0.5,0.5�, and the parameter values are always used in 

Table 4.1 and other parameters are chosen as control parameters. 

4.3.1 Impact of white noise on the dynamics of system (4-2) 

Due to in a phytoplankton-zooplankton system that takes toxic phytoplankton 

into consideration, the intrinsic growth rates of two toxic phytoplankton and the death 

rate of zooplankton are parameters that are most susceptible to environmental 

influences and are relatively important. Therefore, we only consider the intrinsic 

growth rates and death rate affected by white noise. In order to study how the white 

noise and two TPP affect the dynamics of system (4-2), we firstly consider the system 

does not experience the white noise, that is, system (4-2) becomes its corresponding 

deterministic system. According to the work of Sarkar et al. (2005), we can obtain that 

the system (4-1) possesses a unique positive interior equilibrium 

�∗�0.8178,1.8066,2.1071�  which is locally asymptotically stable, depicting the 

coexistence of all three species at a stable state and indicating the changes in the 

biomass of plankton populations are static. 

Table 4.1 Parameter values 

Parameters Biological meaning Unit Value Sources 
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�� Growth rate of one TPP day−1 0.55 Sarkar et al. (2005) 

�� Growth rate of other TPP day−1 0.5 Sarkar et al. (2005) 

�� Inhibitory effect ml/nos. 0.005 Sarkar et al. (2005) 

�� Inhibitory effect ml/nos. 0.004 Sarkar et al. (2005) 

� Zooplankton ingestion 

rate 

ml/nos. 0.15 Sarkar et al. (2005) 

� Zooplankton ingestion 

rate 

ml/nos. 0.15 Sarkar et al. (2005) 

� the conversion of one 

TPP into zooplankton 

ml/nos.

/day 

0.09 Sarkar et al. (2005) 

� the conversion of other 

TPP into zooplankton 

ml/nos.

/day 

0.075 Sarkar et al. (2005) 

� Death rate of 

zooplankton 

day−1 0.09 Sarkar et al. (2005) 

� Half-saturation constant ml/nos. 0.1 Sarkar et al. (2005) 

� Half-saturation constant ml/nos. 0.12 Sarkar et al. (2005) 

�� Environmental capacity 

of one TPP 

nos./ml 2 Estimated 

�� Environmental capacity 

of other TPP 

nos./ml 5 Estimated 

Note: the estimated values in the table indicate that the parameter has been 

self-estimated in this thesis or has been selected as a control parameter in 

experimental simulations. 
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Fig. 4.1 The effect of �2  on the stochastic dynamical behaviors of the system (4-2) with 

�1 = 0.1, �3 = 0.1, � = 0.06, � = 0.07, 0 ≤ �2 ≤ 1.2. (a) The dynamical behaviors of species 

�2��� change from persistence in the mean to extinction in different areas of �, �� and ��� 

for 0 ≤ �2 ≤ 1.2. (b) The same path of species �2��� for system (4-2) with respect to Fig. 4.1(a) 

for �2 = 0.1, �2 = 0.8,�2 = 1  and �  on �1000,2000�  and its corresponding deterministic 

system (4-1).

Next, we explore the impact of the white noise on the stochastic dynamics of 

system (4-2). We first fix �1 = 0.1 and �3 = 0.1, and let �2�0 ≤ �2 ≤ 1.2� vary to 

see how the white noise influences the survival of plankton populations. According to 

the condition of � = �2 −
�2

2

2
, we can obtain that all three species of system (4-2) will 

undergo extinction when the white noise reaches some a critical value. Obviously, we 

can find from Fig. 4.1 (a) that the species �2(�) of system (4-2) is always persistence 

in the mean in the area of � and persistence in the mean or extinct alternating in the 

area of ��, but species �2(�) dies out rapidly in the space ��� when �2 is beyond 

�2 = 1. Fig. 4.1 (b) depicts that the stochastic dynamical behaviors of species �2(�) 

with respect to Fig. 4.1 (a) for �2 = 0.1,�2 = 0.8,�2 = 1.1 and � on  �1000,2000�. 

Moreover, we can observe from Fig. 4.1 (b) that, with the increase in the magnitude of 

the environmental fluctuations, the random variation of plankton density becomes 

more significant, which implies that white noise can accelerate the stochastic 

oscillation of plankton density. For example, let �2 = 0.1, it is not difficult to find 

that the two TPP and zooplankton of system (4-2) can coexist at a relatively stable 

state and their densities exhibit oscillation around the deterministic steady state values 
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�1
∗ = 0.8178,�2

∗ = 1.8066, and �∗ = 2.1071, respectively (see Fig. 4.2 (a), (b) and 

(c)). Actually, following the �1 > 0 , �2 > 0 , and � > 0 , then system (4-2) is 

persistence in the mean and has a unique ergodic stationary distribution, which is 

consistent with our experimental simulations. From the stationary distribution of all 

three species, it can be seen clearly that they are distributed normally around the 

values 0.8, 1.8 and 2.1, respectively, which illustrates that the standard deviation  �1,�2  

and �3 can keep processes �1(�) , �2(�) and �(�) moving around the solution of 

deterministic system (4-1). In other words, system (4-2) can preserve some stability in 

the random sense when the intensities of white noise are relatively weak. Now let �2 

vary within some a level, it can be concluded that the weaker the environmental 

fluctuations are, the closer the solutions of system (4-2) are to steady state �∗ (The 

Figures here are not given due to the similarity to Fig. 4.2). However, when we 

increase the density of environmental forcing  �2 > 1, �2 = 1.1, for example, we 

can easily to get that � = −0.105 < 0, which implies that the species �2(�) tends to 

go rapid extinct, even if its corresponding deterministic system (4-1) still presents 

obvious stability, indicating a different phenomenon from its deterministic system (see 

Fig. 4.3). This also shows that white noise intensity can help to control the density of 

toxic phytoplankton. Comparing Figs. 4.1, 4.2 and 4.3, it is obvious to find that the 

intensity of white noise cannot only aggravate the stochastic oscillation of plankton 

density, but also significantly change the dynamics of the plankton system. That is, a 

high-level white noise intensity can accelerate the extinction of the plankton 

populations, which implies that the white noise can help control the biomass of 

plankton populations and may provide a guide for us to the termination of planktonic 

blooms. This is consistent with the results obtained by the work of Sarkar and 

Chattopadhayay (2003), who demonstrated the controlling of planktonic blooms by 

artificial eutrophication or the intensity of white noise from their experimental and 

field observations. Thus, it is worth pointing out that the results from the Figs. 4.1, 4.2 

and 4.3 can support that the plankton systems incorporating white noise can better 

simulate planktonic blooms than its corresponding deterministic counterparts. 
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Similarly, if we impose the intensities of white noise on species �1(�) and �(�), 

respectively, we can easily obtain the similar results, thus here we omit it. 

 

Fig. 4.2 (a), (b), (c) the solution trajectories of system (4-2) and its corresponding deterministic 

system (4-1). (d), (e), (f) the probability density function diagrams of �1���, �2(�) and �(�) for 

the system (4-2) with �1 = �2 = �3 = 0.1, � = 0.06, � = 0.07, and the red smoothed carves are 

probability density functions for system (4-2).

 

Fig. 4.3 Stochastic dynamical behaviors of system (4-2) with �1 = �3 = 0.1, � = 0.06, � =

0.07, �2 = 1.1, and its corresponding deterministic counterparts on � ∈ �0,1000� . (a) The 

persistence in the mean of species �1(�) and �(�) and extinction of species �2(�) of stochastic 

system (4-2). (b) The persistence of deterministic system (4-1).
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4.3.2 Impact of TPP on the dynamics of system (4-2) 

In order to study how the effect of one toxin liberation rate on population density 

dynamic evolution trend under the environmental fluctuations, we choose � as a 

control parameter and all other parameters are the same as Fig. 4.2. Clearly, we can 

observe from Fig. 4.4 that the species �1(�) and �2(�) are persistence in the mean 

and their biomass will increase as the increasing value of �, while the species �(�) 

undergoes extinction when � beyond a certain value, here the color-bars denote the 

biomass of species �1(�), �2(�) and �(�), respectively. Actually, it is easy to obtain 

that � > 0  under the condition of 0 < � < 0.3846  and � = 0  if and only 

if � ≈ 0.3846, which indicates that system (4-2) is persistence in the mean and has 

the stationary distribution under the condition of  � < 0.3846, in contrast, species 

���� of system (4-2) will die out. Therefore, it can be asserted that TPP can 

significantly affect the coexistence of all the three species. For precisely, we take three 

different values of � �� = 0.1,0.2,0.35�, then system (4-2) has a unique stationary 

distribution. Fig. 4.5 depicts the relative frequency density of �1(�), �2(�) and �(�) 

with these different values, respectively, where the smoothed curves are the 

probability density functions of system (4-2). More importantly, we can obtain the 

result from the Fig. 4.5 that with the increasing value of �, the distributions of two  

 

Fig. 4.4 The effect of toxin rate � produced by population �1(�) on the stochastic dynamic 

behaviors of the system (4-2) with �1 = �2 = �3 = 0.1, 0 ≤ � ≤ 1. (a)-(b) The persistence in the 

mean of species �1(�) and �2(�); (c) The persistence in the mean of population �(�) for 

0 ≤ � ≤ 0.3846 and extinction for 0.3846 ≤ � ≤ 1. 
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Fig. 4.5 The effect of one toxin rate � on the dynamics of system (4-2). (a), (b), (c) The 

histograms of probability density functions for �1���,�2(�) and �(�) with different values of �. 

Here, � = 0.07, and �1 = �2 = �3 = 0.1.

TPP appear closer to the normal distribution, but the distribution of zooplankton 

becomes more skewness, which implies that the increase of the liberation rate � can 

increase the survival chance of two harmful phytoplankton but decrease the biomass 

of zooplankton. Additionally, it can be seen from Fig. 4.5 that the peak value of the 

probability density functions of system (4-2) will be higher as � increases. All these 

results indicate that for the value of the toxin liberation rate �  satisfying the 

conditions of � > 0, its enhancement will contribute to the persistence in the mean 

of system (4-2) though the termination of planktonic blooms. In addition, from the 

theoretical analysis, we want to know what happens if � < 0? Selecting � = 0.39, 
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we can easily check � ≈ −0.0054 < 0  and � ≈ −0.0194 < 0 . Although the 

conditions of � > 0 and � > 0 are not satisfied, the system (4-2) has a stationary 

distribution, indicating all the three species are persistence in the mean (see Fig. 4.6). 

However, when we choose � = 0.42, similarly, we can obtain that � ≈ −0.0354 <

0 and � ≈ −0.0494 < 0. Obviously, the two toxic phytoplankton can coexist while 

the zooplankton tends to go extinct (see Fig. 4.7). For the case of � = 0.06 and 

changing the value of �, we can easily get the similar results, which are omitted here. 

In additionally, the combined effects of two toxin liberation rates on the 

dynamics of system (4-2) are studied as well. Fig. 4.8 depicts how the combined role 

of � and � affect the dynamics of system (4-2), where the red smoothed curves are 

probability density functions of system (4-2). By a straightforward computation, the 

condition of � > 0  can be verified, which means system (4-2) has a unique 

stationary distribution (see Fig. 4.8). Comparing Figs. 4.5 and 4.8, one can see that the 

mean values of two harmful phytoplankton populations are larger than the case 

of � = 0.2,� = 0.07, while that of zooplankton is smaller than that case. Thus, we 

can obtain that by controlling any one of the harmful phytoplankton, the mean values 

of both the harmful phytoplankton are smaller than the value observed when 

considering in the case of both two harmful phytoplankton populations, while that of 

zooplankton is larger than the case of both harmful phytoplankton are present. 

Therefore, the introduction of two harmful phytoplankton can be contribute to 

persistence of the system (4-2) and play an important role in the termination of 

planktonic blooms.

Fig. 4.6 The effect of one toxin rate � on the dynamics of system (4-2). (a), (b), (c) The 

histograms of probability density functions for �1���,�2(�) and �(�) with different values of �. 
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Here, � = 0.39, � = 0.07, and �1 = �2 = �3 = 0.1.

Fig. 4.7 Stochastic dynamical behaviors of system (4-2) and its corresponding deterministic 

counterparts on � ∈ �0,1000�. Here,  � = 0.42,�1 = �2 = �3 = 0.1, � = 0.07.

Fig. 4.8 The combined effects of two toxin rates � and � on the dynamics of system (4-2). (a), 

(b), (c) The histograms of probability density functions for �1���, �2(�)  and �(�)  with 

� = 0.2, � = 0.2,�1 = �2 = �3 = 0.1, respectively.

4.4. Conclusions and discussion 

It is now well recognized that stochastic population dynamics play a significant 

role in population dynamics, since environmental fluctuations can affect the growth 

process of species, such as the growth rate and death rate, which can be described by 

white noise (May, 1973). And the Gaussian white noise can be theoretically preferred 

to model environmental fluctuations because of its irregularity and thus a good 

approximation to the phenomena of rapid fluctuations (Jonsson and Wennergren, 

2019). The study of stochastic population dynamics goes back to the pioneering work 

by Haminskii (1980), who introduced two white noise to stabilize a linear system. 

After that, lots of attention has been paid on stochastic population dynamics studies 
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(Mao et al., 2002; Wang et al., 2020; Lee et al., 2020). Mao et al. (2002) pointed out 

that stochastic noise can suppress potential explosion in population dynamics. Wang 

et al. (2020) showed that time-periodic forcing can lead to the transitions from a 

spatially homogeneous stationary state to a periodic oscillation in time. Additionally, 

lots of stochastic plankton growth systems have been derived by numerous 

researchers (Zhao et al., 2020; Wang and Liu, 2020; Zhao et al., 2016), and stochastic 

plankton systems involving toxin-producing phytoplankton have become a hot topic 

in ecological studies due to harmful phytoplankton can significantly affect the 

dynamics of plankton systems (Scotti et al., 2015; Banerjee and Venturino, 2011; 

Khare et al., 2010; Chattopadhyay et al., 2002; Chattopadhyay et al., 2002; Sarkar and 

Chattopadhyay, 2003a, 2003b; Chattopadhyay, 2004; Sarkar et al., 2005; Yu et al., 

2019).  

In this thesis, therefore, we first propose a stochastic phytoplankton-zooplankton 

system with two harmful phytoplankton populations, where the intrinsic growth rates 

of two harmful phytoplankton populations and the natural death rate of zooplankton 

are influenced by the environmental noise, and then we study the effects of TPP and 

white noise on the dynamics of system (4-2) theoretically and numerically. In order to 

ensure that the system is biologically meaningful, the existence and uniqueness of 

global positive solutions of system is discussed, and the results demonstrate that for 

any initial value ��1�0�,�2�0�,��0�� ∈ ℝ+
3 , the solution will remain in ℝ+

3  with 

probability one. Based on this situation, we derive some sufficient conditions for the 

extinction and persistence in the mean of the system. Obviously, those conditions are 

great significance to study the extinction and persistence in the mean for the 

phytoplankton-zooplankton system (Yu et al., 2019; Sarkar and Chattopadhayay, 

2003). Significantly, when the system is persistence in the mean, we also investigate 

the existence and uniqueness of positive recurrent of solution for the system, which 

implies that the system has a unique stationary distribution under some conditions. 

Numerical analysis illustrates our theoretical results and further indicates that both 

two TPP and environmental fluctuations have a significant effect on the controlling of 
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planktonic blooms. 

On the one hand, from our dynamical analysis, which follows that, when the low 

level intensity of white noise satisfies the conditions �1 > 0,�2 > 0 and � > 0, 

system (4-2) is persistence in the mean and exists a stationary distribution which is 

ergodic, indicating the coexistence of all those three species in the random sense for a 

long time (see Fig. 4.2). However, when we increase the intensity of environmental 

forcing satisfying the condition of �2 < 0 holds, the harmful phytoplankton �2(�) 

undergoes extinction although other two species are persistence in the mean, as it is 

shown in Fig. 4.3. Comparing Figs. 4.2 and 4.3, it can be asserted that white noise can 

aggravate the emergence of stochastic oscillation and significantly change the 

dynamics of phytoplankton-zooplankton system. Especially, the strong intensity of 

white noise can accelerate the extinction of the plankton populations. Consequently, 

these results may be more realistic than that of in (Sarkar et al., 2005), which implies 

that the controlling of random environmental fluctuations may be a good way in the 

termination of planktonic blooms. Therefore, it is great ecological significance to 

consider environmental noise when studying phytoplankton-zooplankton interaction 

in the presence of harmful phytoplankton. 

On the other hand, it is investigated how the dynamics of system (4-2) strongly 

depends on TPP. By controlling one toxin liberation rate, the dynamic behaviors of 

system (4-2) can be changed. That is, when the toxin liberation rate is beyond some a 

critical value, two harmful phytoplankton can coexist, while zooplankton tends to 

extinction (see Fig. 4.4). Moreover, when controlling any one of the two TPP, it is 

obvious to survey from Fig. 4.5 that the increasing value of one toxin liberation rate 

can reduce the biomass of zooplankton, while increase the survival chance of two 

phytoplankton populations. In addition, in the presence of both two TPP, it can be 

seen from Figs. 4.5 and 4.8 that the combined effects of two liberation rates on the 

changes in plankton populations are stronger than that of controlling any one of the 

two TPP. Thus, the introduction of two harmful phytoplankton populations is 

conducive to the persistence of the system (4-2) through the termination of planktonic 

blooms. Therefore, TPP has a profound impact on the dynamics of 
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phytoplankton-zooplankton systems and may be used as a biological way to control 

planktonic blooms. 

There are some interesting topics waiting for us to further explore. For example, 

the zooplankton mortality will occur after some time lapse due to the bloom of toxic 

phytoplankton (Chattopadhyay et al., 2002), it seems to more reasonable to study a 

stochastic toxic-producing phytoplankton-zooplankton system with time delay. 

Another problem of interest is to consider impulsive perturbations into the system. We 

leave those for our future research goals. 
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Chapter 5 DYNAMICS OF A STOCHASTIC PHYTOPLANKTON 

–TOXIC PHYTOPLANKTON-ZOOPLANKTON SYSTEM UNDER 

REGIME SWITCHING 

Abstract 

In this thesis, a stochastic phytoplankton-toxic phytoplankton-zooplankton 

system with Beddington-DeAngelis functional response, where both the white noise 

and regime switching are taken into account, is studied analytically and numerically. 

The aim of this research is to study the combined effects of the white noise, regime 

switching and toxin-producing phytoplankton (TPP) on the dynamics of the system. 

Firstly, the existence and uniqueness of global positive solution of the system is 

investigated. Then some sufficient conditions for the extinction, persistence in the 

mean and the existence of a unique ergodic stationary distribution of the system are 

derived. Significantly, some numerical simulations are carried to verify our analytical 

results, and show that a high-level intensity of white noise is harmful to the survival 

of plankton populations, but regime switching can balance the different survival states 

of plankton populations and thus decrease the risk of extinction. Additionally, it is 

found that an increase in the toxin liberation rate produced by TPP will increase the 

survival chance of phytoplankton, while it will reduce the biomass of zooplankton. All 

these results may provide some insightful understanding on the dynamics of 

phytoplankton-zooplankton systems in randomly disturbed aquatic environments. 

Keyword: Stochastic phytoplankton-toxic phytoplankton-zooplankton system, White 

noise, Regime switching, Extinction, Stationary distribution 

5.1. Introduction 

Plankton are the basis of the freshwater and seawater food chains, and their 

importance for the wealth of aquatic ecosystems and ultimately for the planet itself is 
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nowadays widely recognized (Huppert et al., 2002). Phytoplankton, particularly, can 

create energy for the aquatic life through photosynthesis and produce large amounts 

of oxygen by absorbing carbon dioxide from their surroundings. However, the rapid 

growth of phytoplankton can cause large-scale blooms in one area and the 

occurrences of harmful phytoplankton blooms have been reported globally with an 

increasing frequency in the past decades (Hallegraeff, 1993), which are detrimental to 

the public health, fisheries, tourisms as well as the balance of ecosystems (Anderson 

et al., 2000). For example, some freshwater lakes in China, such as Lake Taihu, Lake 

Poyanghu, Lake Chaohu, etc., have suffered varying degrees of toxic cyanobacterial 

blooms in recent years. In 2011, Lake Erie experienced the largest harmful algal 

blooms (HABs) in its recorded history, with a peak intensity over three times greater 

than any previously observed bloom (Michalak et al., 2013). Based on the huge 

effects of planktonic blooms and the mechanisms behind them are not yet clearly 

understood, it is necessary and important to understand the dynamics mechanisms of 

changes in plankton populations. 

Many researchers have attempted different approaches to explain the dynamics 

mechanisms of planktonic blooms in the past decades. The results from experiments 

suggested that the toxic or noxious chemicals produced by blue-green algae may 

reduce the grazing pressure of zooplankton population and even cause their mortality 

for a long time (Fulton and Paerl, 1987; Lampert, 1981), which could be one of the 

key parameters for planktonic blooms (Krik and Gilbert, 1992). Some experimental 

evidence demonstrated that the grazing pressure by micro-zooplankton can represent 

an important factor for the controlling and regulation of HABs (Calbet et al., 2003; 

Johansson and Coats, 2002). In addition, there is an experiment revealing that under 

some suitable conditions, the formation of Microcystis blooms is closely related to the 

presence or absence of zooplankton population and to its selective grazing of the 

naturally occurring zooplankton (Wang et al., 2010). Another approach the researchers 

are trying to explain the bloom phenomenon is the role of toxicity. The result that 

toxicity may be as a strong mediator in the zooplankton feeding rate is found in a field 
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observation (Estep et al., 1990), as well as a laboratory experiment (Huntley et al., 

1986). Moreover, their experimental findings and field study revealed that TPP can 

suppress the grazing pressure of zooplankton and may act as a biological control way 

for the termination of planktonic blooms (Chattopadhyay et al., 2004; Chattopadhyay 

et al., 2002). All these results imply that toxin production plays a significant role in 

the interaction between phytoplankton and zooplankton populations, which may 

greatly stimulate researchers to explore the way these toxin production affect the 

coexistence and survival prospect of plankton populations in the presence of 

non-toxic and toxic phytoplankton. 

Due to the complexity and openness of real aquatic ecosystems, establishing 

mathematical models is now a classical way to study the planktonic blooms (Truscott 

and Brindley, 1994), which can provide quantitative insights into the dynamic 

mechanisms of changes in plankton populations. In recent years, many deterministic 

mathematical models for plankton dynamics, such as delayed nutrient-phytoplankton 

models (Dai et al., 2016; Guo et al., 2019), a diffusive nutrient-toxic phytoplankton 

model (Chakraborty et al., 2015), viral infection nutrient-phytoplankton models (Li 

and Gao, 2016; Chattopadhyay et al., 2003), a phytoplankton-toxin producing 

phytoplankton-zooplankton model (Chattopadhyay et al., 2004), and so on, have been 

developed and studied extensively, and many interesting results have been shown. 

However, plankton populations in the real aquatic environments often fluctuate 

unpredictably because of the unpredictability of environmental stochasticity, and these 

deterministic models do not capture random environmental fluctuations which is an 

important feature of aquatic ecosystems. In fact, some experiments shown that 

environmental noise has a significantly effect on population systems in ecology 

(Richardson and Heilmann, 1995; Carpenter et al., 2011). For example, the work of 

Reichwaldt et al. (2013) demonstrated that the wind can be the most likely driver to 

control the biomass of cyanobacteria. In addition, the growth rate of toxic Microcystis 

and environmental biomass rely heavily on the temperature and nutrient concentration  

(Davis et al., 2009; Fujimoto et al., 2007). Thus, plankton systems with such 
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environmental fluctuations are significantly more reasonable, and the issue of how 

environmental fluctuations affect plankton systems have attracted increasing attention 

and great effort has been made towards the study of the dynamics of stochastic 

plankton systems recently (Yu et al., 2017; Zhao et al., 2020; Sarkar and 

Chattopadhayay, 2003; Pal et al., 2009; Chen et al., 2020; Chen et al., 2020; Wang and 

Liu, 2020). But the study of stochastic phytoplankton-toxic 

phytoplankton-zooplankton system is still in its infancy, especially the dynamics of 

the phytoplankton-toxin producing-phytoplankton-zooplankton system with white 

noise and regime switching is currently unclear. Thus, we mainly present the effects 

of white noise, regime switching and toxic substances produced by TPP on the 

stochastic phytoplankton-toxic phytoplankton-zooplankton system in this paper. 

The rest of this paper is organized as follows. The model is presented in Section 

5.2. Section 5.3 introduces some preliminaries firstly, and then we give the main 

results, including the existence and uniqueness of the global positive solution, 

extinction and persistence in the mean as well as the stationary distribution and 

ergodicity of the system. Some numerical simulations are carried out to study the 

dynamics of the system in Section 5.4. We summarize the results and present our 

conclusions in Section 5.5. 

5.2. Model formation 

In this section, we will establish a stochastic two preys-predator model in which 

the zooplankton feeds on two types of phytoplankton species, including a non-toxic 

phytoplankton (NTP) and a toxic one. The ecological construction of the stochastic 

phytoplankton-toxic phytoplankton-zooplankton system is based on the following 

assumptions: 

1. It is assumed that �1���,�2���,���� are the population densities of NTP, TPP 

and zooplankton, respectively; � is the natural death rate of zooplankton. 

2. It is considered that the growths of NTP and TPP in the absence of the grazer 

zooplankton are generally considered as logistic type with the intrinsic growth 
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rates �1  and �2 respectively, and their corresponding environmental carrying 

capacities �1  and �2 . 

3. It is assumed that �1  and �2  measure the competitive effects of TPP on NTP 

and NTP on TPP, respectively. In fact, these competitions have been introduced 

into ecological systems to explore the properties of plankton dynamics, such as 

stability (Pal et al., 2009), oscillation and chaos (Huisman and Weissing, 1999), 

etc. 

4. Behavior of the entire community is assumed to arise from the coupling of these 

interacting species. Both groups of phytoplankton exhibit Beddington-DeAngelis 

functional response to the grazer zooplankton as given by 

����� �1 + �1�1��� + �2�2�����  and ����� �1 + �1�1��� + �2�2����� , where � 

and � are the attack rates of zooplankton on NTP and TPP, respectively; �1 and 

�2 are the product of attack rate and handling time on NTP and TPP, respectively. 

In addition, the term ��2� �1 + �1�1 + �2�2�� , which describes the resultant 

reduction for the growth of zooplankton due to the ingestion of TPP, where � is 

the inhibition rate of zooplankton growth, while the term 

��1� �1 + �1�1 + �2�2��  can be regarded as the growth form of zooplankton in 

the present of NTP, where �  is the conversion efficiency. The 

Beddington-DeAngelis functional response (Beddington, 1975; DeAngelies et al., 

1975) here is appropriate in the case of plankton population due to the fact that 

the predator individuals either search, consume or interfere with each other (Pal et 

al., 2009). 

5. It is assumed that environmental noise exists in the realistic aquatic ecosystems 

because of the unpredictability of the environmental stochasticity, such as 

nutrients supply, water temperature, and some other small environmental 

fluctuations, which may affect population growths of the system. Actually, the 

work of May (1973) pointed out that these small environmental fluctuations can 

affect the ecological parameters of a model positively or negatively, which can be 

described by white noise. Thus, following the idea of (Yu et al., 2017; Zhao et al., 
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2020; Chen et al., 2020; Chen et al., 2020), the convenient formulations, which 

describe the intrinsic growth rates of phytoplankton populations and the death 

rate of zooplankton population that are influenced by white noise, are taken as  

�� → �� + �������� �� = 1,2� and −� → −� + �3��3���, respectively. Here the 

terms ������ enote the white noises and ��
2��� > 0 are their intensities of white 

noises, � = 1,2,3. 

6. We further consider the regime switching into the model, where the biomass of 

plankton often suffer from switch abruptly to a contrasting alternative stable state 

in the real world due to some kinds of moderate environmental fluctuations, such 

as environmental pollution (Scheffer and Carpenter, 2003), rain falls (Du et al., 

2004; Slatkin, 1978) and biotic exploitation (Scheffer, 2001). The plankton 

population models in this case can be characterized by the telegraph noise or 

colored noise (Mao et al., 2003), which may cause the population systems 

switching from one environmental regime to any other regimes (Mao et al., 2003; 

Luo and Mao, 2007). In addition, the switching is generally memoryless and the 

waiting time between two shifts follows exponential distribution. The convenient 

formulation here is to take ����, � ≥ 0  as regime switching, which is a 

continuous-time Markov chain with state space � = �1,2,⋯ , ��, 1 ≤ � < ∞. 

7. It is assumed that the Markov chain ���� and the Brownian motions ������, � =

1,2,3 are defined on a completed probability space ��,ℱ� , �ℱ���≥0,�� with a 

filtration �ℱ�� satisfying the usual normal conditions, and ���� is independent 

of �����, � = 1,2,3. 

Based on above assumptions, a stochastic phytoplankton-toxic producing 

phytoplankton-zooplankton system under regime switching is presented as follows: 
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 −                                  

 �����������

1+�1�������1���+�2�������2���
� �� + �2�������2�����2���     

����� = ���� �
��������1���−��������2���

1+�1�������1���+�2�������2���
− �������� ��                                          

+�3������������3���                                                                       

  (5-1) 

where�����, �����,�����,����� �� = 1,2�,����, ����,����, ����and�� ��� �� = 1,2,3� 

are all positive constants for each � ∈ �.

5.3. Dynamic analysis 

Due to the sudden and rapid changes of the external environment in a real 

aquatic ecosystem, such as nutrients supply, water temperature and some other small 

environmental fluctuations (white noise), and even rain falls (Du et al., 2004; Slatkin, 

1978), environmental pollution (Scheffer and Carpenter, 2003), biotic exploitation 

(Meijer et al., 1994) and other kinds of moderate environmental fluctuations (colored 

noise or telegraph noise) that can be described by regime switching, which may 

significantly affect the growths of plankton populations. In this section, therefore, we 

will discuss how these changes (white noise and colored noise or telegraph noise) 

affect the dynamics of the system. Before it, we firstly investigate and guarantee the 

existence and uniqueness of global positive solutions of the system, and then discuss 

the extinction and persistence in the mean, and the positive recurrence and ergodic 

property of solution of the system under the effect of environmental fluctuations. 

5.3.1. Preliminaries 

ℝ+ = �0,  +∞� and ℝ+
� = ���1,⋯ ,��� ∈ ℝ� : �� > 0, � = 1,2,⋯ , �� , and 

��� = �� ��
2�

�=1 . For convenience, we introduce the following notations. If ���� is a 

bounded and integrable function on ℝ+ , we define �� = limsup�→∞��� , and 

�� = liminf�→∞���, here ��� =
1

�
∫ ������
�

0
, � > 0. 



 

102

Let ����, � ≥ 0 be a right-continuous Markov chain on the probability space 

��, ℱ� , �ℱ� ��≥0,��  with ��0� = �0 , taking values in a finite-state space � =

�1,2,⋯ , ��, 1 ≤ � < ∞ with the transition rate � = (��� )�×�  of ���� given by the 

following form: 

       ����� + Δ�� = ������ = �� = �
����� + �����,                �� � ≠ �,

1 + ����� + �����,         �� � = �,
   

where  �����  is the infinitesimal of higher order, Δ� > 0  and ��� ≥ 0  is the 

transition rate from � to � if � ≠ � while ��� = −� ����≠� . Throughout this paper, 

we always assume that Markov chain ����, � ≥ 0  is irreductible, which means that 

the system can switch from any regime to any other regime, indicating that there exist 

finite number �1, �2,⋯ , �� ∈ �  such that ��,�1
��1,�2

⋯��� ,� > 0 , for any �, � ∈ � . 

Under this assumption, the Markov chain ����, � ≥ 0  has a unique stationary 

distribution � = �π1, �2,⋯ ,��� ∈ ℝ1×� , which can be determined by solving the 

linear equation �� = 0  subject to � �� = 1�
�=1  and �� > 0,∀ � ∈ � . For any 

vector � = ���1�,⋯ , �����
�

, we define �∗ = max�∈�������  and �∗ =

min�∈�������. 

Now, we introduce some fundamental results on the stationary distribution of 

stochastic differential equations under regime switching. Let �����, ����� be the 

diffusion process described by the following equation: 

           �
�� = ������, ������� + ������, ����������,

��0� = �0 ∈ ℝ� ,   ��0� = �0 ∈ �,                    
             (5-2) 

where ��·� and ��·� are the �-dimentional Brownian motion and right continuous 

Markov chain in the above discussion, respectively. ��·,·�: ℝ� × � → ℝ� , and 

��·,·�: ℝ� × � → ℝ�×� satisfy ���, ������, �� = ���� ��,���, where the superscript 

� stands for the transpose of a matrix or vector. For each � ∈ � and for any twice 

continuously differentiable function ���,�� ∈ ℂ2�ℝ� × ��that are non-negative, we 

define a operator �: 



 

103

       ����, �� = � ��
�
�=1 ��,��

��� ,��

���
+

1

2
� ��� ��, ���

� ,�=1
�2��,��

������
+ Γ��,·����,  

where  

       Γ��,·���� = � ������, ���
�=1 = � �������, �� − ���, ����≠� ,�∈� ,� ∈ �.  

From Theorems 3.13 (Zhu and Yin, 2007), the following lemma which gives a 

criterion for the ergodic stationary distribution of system (5-2) can be presented: 

Lemma 5.3.1.1. If the following conditions are satisfied: 

(i) for � ≠ �, ��� > 0, �, � ∈ �; 

  (ii) for each � ∈ �, ����2 ≤ ����� ��,��� ≤ �−1���2, for all � ∈ ℝ�, with some 

constant � ∈ �0,  1�  for all � ∈ ℝ� ; 

  (iii) there exists a bounded open subset Ξ of ℝ�  with a regular (i.e. smooth) 

boundary satisfying that, for each � ∈ À , there exists a nonnegative function 

��·,��: Ξ� → ℝ such that ��·,��  is twice continuously differentiable and 

that for some ς > 0, ���·,�� ≤ −ς, for any ��,�� ∈ �� × �. 

Then the diffusion process �����, �����  for system (5-2) is ergodic and positive 

recurrent. That is, there exists a unique stationary distribution ��·,·� = ���·, ��: � ∈ ��, 

and for any Borel measurable function ��·,·�: ℝ� × � → ℝ�  such that 

                   � ∫ ����,������, ����
ℝ��∈À

< ∞, 

we have 

           � �lim�→∞
1

�
∫ ������, �������
�

0
= � ∫ ���,�����,����

ℝ�
�∈À

� = 1.   

Lemma 5.3.1.2. Let � = ���� � be irreducible and �, � ∈ ℝ� . Then the following 

linear system: 

                                  �� = �  

has a solution if and only if �� = 0 , where the stationary distribution � =

��1,�2,⋯ ,��� ∈ ℝ1×� . 
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5.3.2. Existence and uniqueness of global positive solutions 

Before investigating the dynamics of system (5-1), we should first guarantee the 

existence of global positive solutions according to the biological interpretation. 

Therefore, in this subsection, we discuss the existence of global positive solutions of 

system (5-1) in the following. 

Actually, from the method of the Theorem 3.15 (Mao and Yuan, 2006), obviously, 

we can verify that all the coefficients of system (5-1) are locally Lipschitz continuous 

and system (5-1) admits a unique local solution ��1���,�2���, ����, �����  on 

� ∈ �0,  ���
  for any given initial value ��1�0�,�2�0�, ��0�, ��0�� ∈ ℝ+

3 × �, where ��  

represents the explosion time. In order to illustrate the solution is global, we only need 

to prove �� = ∞, �. �.  Let �0 ≥ 1  enough large satisfying 

 ��1�0�,�2�0�, ��0�, ��0�� ∈ �
1

�0
,�0� . For each integer  � ≥ �0 , we define the 

following stopping time: 

�� = inf �� ∈ �0,  ���: max  ���1���,�2���,����, ������ 

≤
1

�
 or min���1���,�2���,����, ������ ≥ �� , 

and the set inf ∅ = ∞ (∅ denotes the empty set). Obviously, ��  is increasing as 

� → ∞. Let �∞ = lim�→+∞ �� , then we can obtain that �∞ ≤ ��  a.s. Thus, If we can 

show that �∞ = ∞  a.s. in the following, then  �� = ∞  and 

��1�0�, �2�0�, ��0�, ��0�� ∈ ℝ+
3 × � a.s. for all � ≥ 0. In other words, to complete 

the proof, we only need to proof �∞ = ∞ a.s. Otherwise, the statement is false, then 

there exist two constants � > 0 and � ∈ �0,1� such that ���∞ ≤ �� > �. Hence, 

for all � ≥ �1 , there exists an integer �1 ≥ �0 such that ���∞ ≤ �� ≥ �. 

Define a �2-function V�: ℝ+
3 → ℝ�+ by 

     �� ��1, �2,�, �� = �∗��1 − 1 − log�1� + ��2 − 1 − log�2� + �∗�� − 1 − log��.  

Obviously, the function ����1, �2,�, �� is non-negative. By applying the generalized 

Ito�‟s formula to ����1,�2, �, ��, we have 
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�����1,�2, �, ��

= �����1,�2, ���� + �∗�1��������1 − 1���1���

+ �2��������2 − 1���2��� + �∗�3�������� − 1���3���, 

where ��� : ℝ+
3 → ℝ is defined by 

�����1,�2, �, ��

= �∗��1 − 1� ��1��� �1 −
�1

�1���
� − �1����2

−
��������

1 + �1����1��� + �2����2���
� +

�∗�1
2���

2

+ ��2 − 1� ��2��� �1 −
�2

�2���
� − �2����1

−
��������

1 + �1����1��� + �2����2���
� +

�2
2���

2

+ �∗�� − 1� �
�����1 − �����2

1 + �1����1��� + �2����2���
− ����� +

�∗�3
2���

2

≤ ��∗�
∗ +

�∗�
∗

��2�∗
− �∗��1�∗ − ��2�∗ +

1

2
��∗�1

∗ + �2
∗ + �∗�3

∗��

+ �
�∗�1

∗

��1�∗
+ �∗�1

∗ + �2
∗� �1 −

�∗��1�∗

�1
∗ �1

2 + �
�2
∗

��2�∗
+ �2

∗ + �∗�1
∗� �2

−
��2�∗

�2
∗ �2

2 + ��∗�∗ + �∗ − �∗�∗�� ≤ � + ��∗�∗ + �∗ − �∗�∗��, 

where 

� = ��∗�
∗ +

�∗�
∗

��2�∗
− �∗��1�∗ − ��2�∗ +

1

2
��∗�1

∗ + �2
∗ + �∗�3

∗��

+ max
�1∈�0,+∞�

��
�∗�1

∗

��1�∗
+ �∗�1

∗ + �2
∗� �1 −

�∗��1�∗

�1
∗ �1

2�

+ max
�2∈�0,+∞�

��
�2
∗

��2�∗
+ �2

∗ + �∗�1
∗� �2 −

��2�∗

�2
∗ �2

2� . 
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Notice that � ≤ 2�� − 1 − log�� + 2 log 2 ≤
2

�∗
����1,�2 ,�, �� + 2 log 2  for all 

� > 0, then one can obtain that 

��� ≤ � + 2��∗�∗ + �∗ − �∗�∗� log 2 +
2

�∗

��∗�∗ + �∗ − �∗�∗��� ≤ Υ�1 + ���, 

where  

Υ = max �� + 2 ��∗�∗ +
�∗

�∗
− �∗�∗� log 2 ,

2

�∗

��∗�∗ +
�∗

�∗
− �∗�∗��. 

The reminder of the proof follows that in (Yu et al., 2018), here, we omit it. Therefore, 

for any given initial value ��1�0�, �2�0�, ��0�, ��0�� ∈ ℝ+
3 × �, there exists a unique 

solution ��1���,�2���,����, �����  of system (5-1) on � ∈ ℝ+  and the positive 

solution will remain in ℝ+
3 × �  with probability one, namely, 

��1���,�2���,����, ����� ∈ ℝ+
3 × � for all � ≥ 0 almost surely. 

5.3.3. Extinction and persistence of plankton 

Based on the previous analysis, and the perspective of the study of population 

dynamics, it is necessary and important to consider whether a population can sustain 

development or become extinct in the long time under the effect of the environmental 

fluctuations in the model. Thus, we will discuss the persistence in the mean and 

extinction of system (5-1) in this subsection, and the following analysis shows that the 

environmental fluctuations (white noise and regime switching) can significantly affect 

the persistence in the mean and extinction of plankton populations, which implies that 

the environmental fluctuations can control the growth of harmful phytoplankton 

population using modeling analysis. For convenience of discussion in the following, 

we define 

� = ���

�

�=1

��1��� −
1

2
�1

2���� ,� = ���

�

�=1

��2��� −
1

2
�2

2���� ,�

= ���

�

�=1

����� +
1

2
�3

2����. 
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Now, we discuss the statement. Suppose that ��1���, �2���, ����, �����  is the 

solution of system (5-1) with the initial value ��1�0�, �2�0�, ��0�, ��0�� ∈ ℝ+
3 × �. We 

firstly consider the toxic phytoplankton species �1���. Applying the It ‟s formula to 

system (5-1), one can easily obtain that 

�ln �1��� = ��1������ �1 −
�1���

�1������
� − �1�������2���

−
�����������

1 + �1�������1��� + �2�������2���
−  

1

2
�1

2������� ��

+ �1��������1���. 

Integrating the above from 0 to � and dividing � on both sides yield 

    
1

�

ln �1���

ln �1�0�
= ��1������ −

1

2
�1

2������� − �
�1������

�1������
�1���� − ��1�������2���� 

             −�
�������

1+�1�������1���+�2�������2���
����� +

�1���

�
                   (5-3) 

where 

                        �1��� = ∫ �1
�

0
��������1(�)  

By the strong law of large numbers for martingales (Mao, 1997c) yields 

                          lim�→∞
�1���

�
= 0  �. �.                     (5-4) 

According to the ergodic theorem of Markov chain ���� and (5-3), (5-4), it is obvious 

to find that, if � < 0, we have 

          lim sup�→∞
1

�

ln �1���

ln �1�0�
≤ lim�→∞ ��1������ −

1

2
�1

2������� 

                                                               =  � ��
�
�=1 ��1��� −

1

2
�1

2���� = � < 0,�. �.  

which implies lim�→∞  �1��� = 0,�. �. , that is, the toxic phytoplankton �1���  is 

extinct, which implies that the white noise and regime switching can affect the 

dynamics of the system and provide a biological way to control the growth of harmful 
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phytoplankton.  

For other species phytoplankton �2(�) and zooplankton �(�), similarly, if the 

condition � < 0 holds, we have 

      lim sup�→∞
1

�

ln �2���

ln �2�0�
≤ lim�→∞ ��2������ −

1

2
�2

2�������  

                             = � ��
�
�=1 ��2��� −

1

2
�2

2���� = � < 0,�. �.  

and 

              lim sup�→∞
1

t

ln ����

ln ��0�
≤ − lim�→∞ �������� +

1

2
�3

2�������  

                      = −� ��
�
�=1 ����� +

1

2
�3

2���� < 0, �. �.  

This imply that lim�→∞  �2��� = 0, �. �. and lim�→∞  ���� = 0,�. �. , respectively. 

Namely, phytoplankton �2���  and zooplankton ����  tend toward extinction 

provided that � < 0 .  Thus, for any given the initial value 

��1�0�, �2�0�, ��0�, ��0�� ∈ ℝ+
3 × � , all the populations will undergo extinction 

under the conditions of � < 0 and � < 0. 

Interestingly, we find that the toxic phytoplankton �1��� and non-toxic 

phytoplankton �2���  can coexist at a stable state, while the zooplankton ���� 

undergoes extinction if the conditions �1 = � −
�1
∗��2�∗

�2
∗ � > 0, �2 = � −

�2
∗��1�∗

�1
∗ � >

0, and �3 =
�∗��1�∗

�1
∗ � − � < 0 hold. 

Actually, suppose that ��1���,�2���,����, ����� is the solution of system (5-1) 

with the initial value ��1�0�,�2�0�,��0�, ��0�� ∈ ℝ+
3 × �. From the Lemma 4 (Liu 

et al., 2011; Liu and Bai, 2016), we can obtain  

                                                        ��1�� ≤
��1�∗

�1
∗ �, ��2�� ≤

��2�∗

�2
∗ �                      (5-5) 

We first consider the zooplankton ����. Applying the It ‟s formula to system (5-1) 

and then integrating the above from 0 to � and dividing �, we have 

       
1

�

ln ����

ln ��0�
≤ − �������� +

1

2
�3

2������� + �
�������

1+�1�������1���+�2�������2���
�1����  
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                 − �
�������

1+�1�������1���+�2�������2���
�2���� +

�3���

�
                (5-6) 

Taking upper limit on both sides of (5-6) and using the strong law of large number of 

local martingale yields 

                        
ln ����

�

�
≤

�∗��1�∗

�1
∗ � − � < 0,�. �.  

if the condition �3 < 0 holds, which implies that lim�→∞  ���� = 0 �. �., namely, 

zooplankton ���� is extinct.

Now, we consider the species �1���. By (5-5) and integrating (5-3) on the 

interval �0, �� and making some estimations, one can obtain that 

        
1

�
ln�1��� ≥

1

�
ln�1�0� + � −

�1
∗

��1�∗
��1� −

�1
∗ ��2�∗

�2
∗ � − �∗�� +

�1���

�
,     (5-7) 

In addition, since the fact that 

                    limt→+∞
ln �1�0�

�
= limt→+∞

�1���

�
= 0  

and from the definition of � and �, then we can obtain that for arbitrary �2 > 0, 

there exists a constant �2 > 0 such that 

       ��2� ≤
��2�∗

�2
∗ � +

�2

2�1
∗ , ��� ≤

�2

2�∗
, ��1������ −

1

2
�1

2������� ≤ � −
�2

3
,   

and 

                                                   
ln �1�0�

t
≥ −

�2

3
,
�1���

�
≥ −

�2

3
.  

Substituting the above inequalities into (5-7) and for all  � ≥ �2, we have 

              
1

�
ln

�1���

�1�0�
≥ �� −

�1
∗ ��2�∗

�2
∗ �� � −

�1
∗

��1�∗
��1� + +

�1���

�
.  

Obviously, if �1 > 0 and by (5-5), one can obtain that 

                                              ��1����� ≥
��1�∗

�1
∗ �� −

�1
∗��1�∗

�1
∗ �� > 0.  

This implies that toxic phytoplankton �1��� is persistence in the mean. 

For the species �2���, the same analysis to the species �1���, we have 
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                     ��2����� ≥
��2�∗

�2
∗ �� −

�2
∗��2�∗

�2
∗ �� > 0,  

if the condition �2 > 0 holds. That is, the species �2��� is persistence in the mean. 

5.3.4. Stationary distribution and ergodic property of plankton 

In aquatic ecology, the coexistence of plankton populations is strongly related to 

the sustainable development of aquatic ecosystem and it is important to study the long 

time statistical behaviors of plankton populations under the effect of environmental 

stochasticity in the model, that is, the positive recurrence and the existence of 

uniqueness of stationary distribution of the system. Thus, by constructing a suitable 

Lyapunov function and using Khasminskii's method (Khasminskii, 1980), we will 

discuss and analyze the existence of the stationary distribution and ergodic property of 

the system in this subsection. The following analysis shows that the regime switching 

and toxin released rate by toxic phytoplankton can significantly affect the existence of 

the stationary distribution and ergodic property of plankton populations. 

In order to prove our statement, we only need to prove the three conditions in 

Lemma 5.3.1.1 one by one. Obviously, the condition (i) of Lemma 5.3.1.1 is satisfied 

by the assumption ��� > 0 for � ≠ �, �, � ∈ � in subsection 5.3.1. On the other hand, 

it is easy to verify that the diffusion matrix ��� ��, �� = diag ��1
2���,�2

2���,�3
2���� of 

system (5-1) is positive definite, which implies that the condition (ii) of Lemma 

5.3.1.1 holds. 

In the following, we prove the condition (iii) of Lemma 5.3.1.1. By constructing 

a �2-function �:ℝ+
3 × � → ℝ as follows: 

���1,�2, �, �� = ��1�1 + �2 + �2��

− �ln�1 + 1 + ln �1 + ln�2 + 1 + ln� + 1 + ln �2� + ��� + ����

= �1��1,�2, �, �� + �2��1,�2, �, �� + �3���, 

where �1  and �2  are positive constants and � > 0 satisfying –�� ≤ −1 ,  

� = ��1, �2,⋯ ,���� ,  ��� = ��1
2 + �2

2 + ⋯ ,��
2   and ��  �� ∈ ��  will be 
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determined later and the reason for ���  being here is to make �� + ��� 

non-negative. Obviously, the function ���1,�2 ,�, �� is non-negative. Applying the 

Ito�‟s formula to �1  and �2, we have 

��1��1,�2 ,�, ��

= �1�1����1 −
�1�1���

�1���
�1

2 − �1�1����1�2 −
�1�����1�

1 + �1����1 + �2����2

+ �2����2 −
�2���

�2���
�2

2 − �2����1�2 −
�����2�

1 + �1����1 + �2����2

+
�2�����1�

1 + �1����1 + �2����2
−

�2�����2�

1 + �1����1 + �2����2
− �2�����

≤ −
�1�1���

�1���
�1

2 + �1�1����1 −
�2���

�2���
�2

2 + �2����2 − �2�����

−
��1���� − �2������1�

1 + �1����1 + �2����2

, 

and 

��2��1,�2, �, ��

= −�1��� +
�1���

�1���
�1 + �1����2 +

�����

1 + �1����1 + �2����2

+
�1

2���

2

− �2��� +
�2���

�2���
�2 + �2����1 +

�����

1 + �1����1 + �2����2

+
�2

2���

2

−
�����1 − �����2

1 + �1����1 + �2����2
+ ���� +

�3
2���

2

≤ �
�1���

�1���
+ �2���� �1 + �

�2���

�2���
+ �1���� �2 + ����� + ������

+ �
����

�2���
− �1��� − �2��� + ���� +

�1
2��� + �2

2��� + �3
2���

2
�. 

Thus, 
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��1��1 , �2,�, �� + ��1��1, �2,�, ��

≤ −
�1�1���

�1���
�1

2 + ��1�1��� +
�1���

�1���
+ �2���� �1 −

�2���

�2���
�2

2

+ ��2��� +
�2���

�2���
+ �1���� �2 + ����� + ���� − �2������

−
��1���� − �2������1�

1 + �1����1 + �2����2

+ �
����

�2���
− �1��� − �2��� + ���� +

�1
2��� + �2

2��� + �3
2���

2
�. 

Choosing �1 =
�∗

�∗
�2 and �2 =

�∗+�∗+1

�∗
, one can obtain 

��1��1,�2,�, �� + ��1��1, �2,�, ��

≤ −
�����1�������� + ���� + 1�

���������1���
��1

−
�1����1������������ + ���� + 1� + ���������1��� + ���������1����2���

2������1�������� + ���� + 1��
�

2

−
�2���

�2���
��2 −

�2��� + �2�����2��� + �1����

2�2���
�

2

+
���������1��� �

��������� + ���� + 1�
��������

�1��� +
�1���
�1���

+ �2����
2

4������1�������� + ���� + 1��

+
�2��� ��2��� +

�2���
�2���

+ �1����
2

4�2���

+ �
����

�2���
− ��1��� −

�1
2���

2
� − ��2��� −

�2
2���

2
� + ����� +

�3
2���

2
��. 

Moreover, 

��3��� = � �����

�

�=1

. 

Note that 

���

�

�=1

= 1, ��Λ − ��Λ���� = 0, 

where � = ��1,�2, ⋯ ,���� , �� = �1,1, ⋯ ,1�� ∈ ℝ� . Using the Lemma 5.3.1.2, we 
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can obtain that the following equation �� = � − ��Λ���  has a solution � =

��1,�2,⋯ , ���� ∈ ℝ� , which implies that 

−�� + ������

�

�=1

= −�����

�

�=1

= −Π, 

Then  

                   ����1 ,�2,�, �� ≤ −� + �1��1� + �2��2�,  

where 

� = ���

�

�=1
�
�

�

��1��� −
�1

2���

2
� + ��2��� −

�2
2���

2
� − ����� +

�3
2���

2
� −

����

�2���

−

���������1��� �
��������� + ���� + 1�

��������
�1��� +

�1���
�1���

+ �2����
2

4������1�������� + ���� + 1��

−
�2��� ��2��� +

�2���
�2���

+ �1����
2

4�2���
�

, 

�1��1�

= −
�����1�������� + ���� + 1�

���������1���
��1

−
�1����1������������ + ���� + 1� + ���������1��� + ���������1����2���

2������1�������� + ���� + 1��
�

2

, 

and 

�2��2� = −
�2���

�2���
��2 −

�2��� + �2�����2��� + �1����

2�2���
�

2

. 

Thus, we have 

−� + �1��1� + �2��2�

≤

�
�

�
−� + �1��1� + �2

� → −∞,                                          �� �1 → +∞,

−� + �1��1� + �2
� ≤ −� ≤ −1,                               �� �1 → 0+,   

−� + �1
� + �2��2� → −∞,                                          �� �2 → +∞,

−� + �1
� + �2��2� ≤ −� ≤ −1,                              �� �2 → 0+.

  

if the condition � = � ����
�
�=1 > 0 holds, where  
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�� = ��1��� −
�1

2���

2
� + ��2��� −

�2
2���

2
� − ����� +

�3
2���

2
� −

����

�2���

−

���������1��� �
��������� + ���� + 1�

��������
�1��� +

�1���
�1���

+ �2����
2

4������1�������� + ���� + 1��

−

�2��� ��2��� +
�2���
�2���

+ �1����
2

4�2���
, 

Therefore, we can take � > 0 sufficiently small such that for any ��1,�2, �, �� ∈

�� × �,  

                        ����1 ,�2, �, �� ≤ −1,  

where � = �� ,
1

�
� × ��,

1

�
� × �� ,

1

�
�. Hence, the condition (iii) of Lemma 5.3.1.1 is 

verified. It follows from Lemma 5.3.1.1 that system (5-1) admits a unique ergodic 

stationary distribution for any given initial value ��1�0�, �2�0�,��0�, ��0�� ∈ ℝ+
3 × �. 

5.4. Experimental simulations 

In the previous subsections, we have investigated the effects of environmental 

fluctuations (i.e. the white noise and regime switching) and TPP on the dynamics of 

plankton ecosystem and verified the intensity of white noise, regime switching and 

the liberation rate produced by TPP can lead to the extinction, persistence in the mean 

and stationary distribution of plankton populations using modeling analysis. In order 

to further study how the white noise, regime switching and TPP on affect the 

dynamics mechanisms of the formation and evolution process of planktonic blooms, 

we perform some experimental simulations for system (5-1) based on Milstein's 

Higher Order Method (Higham, 2001) in this section. In the following experimental 

simulations, unless otherwise specified, we always assume that the right-continuous 

Markov chain ����  takes values on state space � = �1,2�  and the values of 

parameters are listed in table 5.1, the initial condition is ��1�0�, �2�0�,��0�� = �1,2,1� 

and other parameters are chosen as control variables. 
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5.4.1. Impact of regime switching on the dynamics of system (5-1) 

In order to study how the white noise, regime switching and TPP affect the 

dynamics of system (5-1), we firstly consider that there is no regime switching in 

system (5-1). Fixed ���1�, ��2�� = �0.2,0.3�  and choose �σ1�1�, σ1�2�� =

�1.5,1.5� , �σ2�1�, σ2�2�� = �1.3,1.4� , �σ3�1�,σ3�2�� = �0.7,0.8� . By direct 

computation, the sufficient conditions of the extinction for both Subsystem 1 and 2 

are easily to verify. Thus, all the species of the Subsystems 1 and 2 tend to extinct (see 

Fig. 5.1). Furthermore, suppose that the generator �  of the Markov chain ���� 

is � = �
−

1

8

1

8
1

12
−

1

12

�, by the irreducible property, we can easily to obtain that the 

stationary distribution of ���� is � = �0.4,0.6�, which satisfies the conditions of 

� < 0, � < 0, and � < 0, then all the species of system (5-1) undergo extinction 

(see Fig. 5.1). This result suggests that the regime switching cannot change the 

extinction behavior of system (5-1) in this case, that is, system (5-1) is extinct if both 

two Subsystems die out simultaneously. 

Table 5.1 Parameter values 

Parameters Biological meaning Units Values 

�1 The intrinsic growth rate 

of NTP 

day−1 �1�1� = 0.8,�1�2� =

0.85 

�1  Environmental carrying 

capacity of NTP 

nos.ml−1 �1�1� = 1.8,�1�2� =

3.8 

�2 The intrinsic growth rate 

of TPP 
day−1 �2�1� = 0.65,�2�2� =

0.8 

�2  Environmental carrying 

capacity of TPP 

nos.ml−1 �2�1� = 2.5 ,�2�2� =

3.5 

�1  The competitive effect of 

TPP on NTP 

ml 

nos.−1 day−1 

�1�1� = 0.01,�1�2�

= 0.01 

�2  The competitive effect of 

NTP on TPP 

ml 

nos.−1 day−1 

�2�1� = 0.28, �2�2�

= 0.08 

� The attack rate of 

zooplankton on NTP 

ml 

nos.−1 day−1 

��1� = 0.85,��2�

= 0.95 
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� The attack rate of 

zooplankton on TPP 

ml 

nos.−1 day−1 

��1� = 0.08, ��2�

= 0.01 

�1 The mutual interference 

between individuals of 

NTP 

nos. ml−1 �1�1� = 0.2,�1�2�

= 0.1 

�2 The mutual interference 

between individuals of 

TPP 

nos. ml−1 �2�1� = 0.5, �2�2�

= 0.8 

� The conversion efficiency 

of NTP into zooplankton 

ml 

nos.−1 day−1 

��1� = 0.6, ��2�

= 0.75 

� The death rate of 

zooplankton 
day−1 ��1� = 0.28,��2� =

0.2 

On the other hand, to illustrate the effect of regime switching on the dynamics of 

system (5-1), we choose ��1�1�,�1�2�� = �0.1,0.05�, ��2�1�, �2�2�� = �0.1,0.05� ,  

��3�1�, �3�2�� = �0.1,1.8� and all other parameters remain unchanged. By a simple 

computation, we can easily verify the conditions of �1 > 0, �2 > 0 and �3 < 0, 

implying that both species �1��� and �2��� of system (5-1) are persistence in the 

mean, while species ���� tends to extinction, as shown in Fig. 5.2. From Fig. 5.2, it 

is clear that Subsystems 1 and 2 have different persistence-extinction behaviors and 

system (5-1) can switch from one state to another state due to the regime shift, which 

implies that regime switching can balance the density of the population under 

different regimes. Significantly, it should be pointed out that the zooplankton of 

system (5-1) is extinct due to the extinction of zooplankton in Subsystem 1. This 

indicates that the regime switching may not change persistence-extinction behaviors 

in this case. So the question may arise: what role does the regime switching play in 

the dynamics of system (5-1)? Changing the generator � to � = �
−

�

100

�

100
100−�

100
−

100−�

100

� 

by controlling the value of  � �0 ≤ � ≤ 100�, it is easy to obtain that stationary 

distribution of ���� is � = ��1,�2� = �
100−�

100
,

�

100
� . From Fig. 5.3 (a), one can 

observe that with the increasing value of �, the dynamical behaviors of species ���� 

change from persistence in the mean to extinction in different areas of �, �� and ��� 
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and Fig. 5.3 (b) depicts the dynamical behaviors of species ���� with respect to Fig. 

5.3 (a) for � = 1,� = 15 and � = 25, respectively. Taking � = 1 for example, we 

can see from the Fig. 5.4 that system (5-1) becomes persistence in the mean, whereas 

other Subsystems remain unchanged and almost all of the sample trajectories of 

system (5-1) are in that of Subsystem 2 due to �1 > �2. This means that plankton 

species can choose a better living environmental state to survive due to Markov chain. 

For the case of � = 25, we can obtain that the zooplankton of system (5-1) becomes 

extinction again (Figures here are not given due to the similarity to Fig. 5.4). Thus, 

under the effect of the regime switching, we can obtain the result from Figs. 5.3 and 

5.4 that even if one population undergoes extinction in one state, it will become 

persistence in the mean in another state because of its staying longer in a better living 

environmental state. Therefore, it can be asserted that the regime switching can 

change the persistence-extinction behaviors of system (5-1) and the distribution of 

Markov chain ���� is beneficial to the survival of plankton. 

 

Fig. 5.1 (a), (b) and (c) denote the solution trajectories of �1���, �2��� and ���� for system (5-1) 

with ���1�, ��2�� = �0.2,0.3�  and  �σ1�1�,σ1�2�� = �1.5,1.5�, �σ2�1�, σ2�2�� = �1.3,1.4�,

�σ3�1�, σ3�2�� = �0.7,0.8�, respectively.
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Fig. 5.2 (a), (b) and (c) denote the solution trajectories of �1���, �2��� and ���� for system (5-1) 

with ���1�, ��2�� = �0.2,0.3�, �σ1�1�, σ1�2�� = �0.1,0.05� , �σ2�1�, σ2�2�� = �0.1, .05�,  and 

�σ3�1�, σ3�2�� = �0.1,1.8�, respectively.

 

 

Fig. 5.3 The effect of regime switching on the stochastic behaviors of zooplankton species ���� 

for system (5-1). (a) denotes the stochastic behaviors between extinction and persistence in the 

mean zooplankton species ���� for system (5-1) with different values of � in different areas of 

�, ��, ��� and other parameters as in Fig. 5.2; (b) denotes the solution trajectories of zooplankton 

species ���� with respect to Fig. 4.3 (a) for � = 1, � = 15 and � = 25, respectively.

 

Fig. 5.4 (a), (b) and (c) denote the solution trajectories of �1���, �2��� and ���� for system (5-1) 

with ���1�, ��2�� = �0.2,0.3�  and  �σ1�1�, σ1�2�� = �0.1,0.05� , �σ2�1�, σ2�2�� = �0.1, .05� , 

�σ3�1�, σ3�2�� = �0.1,1.8�, respectively.
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Fig. 5.5 (a), (b) and (c) denote the solution trajectories of system (5-1) and its corresponding 

deterministic counterparts, and (d), (e) and (f) denote the density function diagrams of system (5-1) 

with ���1�, ��2�� = �0.2,0.3� , �σ1�1�, σ1�2�� = �0.1,0.05� , �σ2�1�, σ2�2�� = �0.1, .05� , 

�σ3�1�, σ3�2�� = �0.1,0.05� in regimes � = 1 and � = 2, respectively. 

 

Fig. 5.6 (a) denotes the movement of Markov chain in the state � = �1,2� over time. (b) denotes 

the probability density function (PDF) of �(�).
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Fig. 5.7 The effect of the toxin released rate  � on the probability density function of system (5-1). 

(a), (b) and (c) denote the histograms of probability density function for �1���, �2��� and ���� 

of system (5-1) with ���1�, ��2�� = �0.5,0.55�, respectively. 

5.4.2. Impact of white noise on the dynamics of system (5-1) 

Does the white noise affect the survival of plankton populations when the system 

has one alternative stable state?  In the following, we see the impact of the white noise 

on the persistence-extinction properties of system (5-1). Choosing ���1�1�,�1�2�� =

�0.1,0.05�, ��2�1�, �2�2�� = �0.1,0.05�, ��3�1�,�3�2�� = �0.1,0.05�� , it can been 

seen from Fig. 5.5 that the NTP, TPP and zooplankton populations can coexist at a 

relatively stable state when the intensities of white noise are comparatively small  and 

all other parameters remain unchanged as in Fig. 5.1. Actually, according to � > 0, 

system (5-1) has a unique ergodic stationary distribution, which are consistent with 

our experimental simulation. Moreover, it is clear to see from Fig. 5.4 (a)-(c) that the 

white noise keeps the stochastic processes �1���,�2��� and ���� moving up and 

down randomly and the solution (the red lines) of system (5-1) fluctuates in a small 

neighborhood of that (the blue lines) of its corresponding deterministic system. Thus, 

we can obtain that white noise can affect the distribution of phytoplankton and 

zooplankton populations. That is, white noise can significantly affect the dynamic 

evolution mechanism of plankton populations. Significantly, we can observe from Fig . 

5.4 (d)-(f) that the probability density functions of NTP, TPP and zooplankton have 

two wave curves that are corresponding to the two states � = �1,2� of the Markov 

switching, respectively. Comparing Figs 5.1, 5.2 and 5.5, it is obvious that a high 
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density of white noise can accelerate the extinction of the plankton populations and be 

advantageous to the rapid disappearance of planktonic blooms, which may help us 

control the density of plankton populations in real aquatic ecosystems. Therefore, it 

can be asserted that the plankton systems incorporating white noise can better 

simulate planktonic blooms than its corresponding deterministic counterparts. Fig. 5.6 

describes that system (5-1) switches from one state � = 1 to another state � = 2 by 

the law of Markov chain ���� over time. 

5.4.3. Impact of TPP on the dynamics of system (5-1) 

The influence of the toxin liberation rate produced by TPP under the effects of 

the white noise and regime switching is also studied. Choosing ���1�, ��2�� =

�0.5,0.55�, a simple computation shows that  � > 0, which means that system (5-1) 

has a unique stationary distribution and the probability density functions of NTP, TPP 

and zooplankton populations have two wave curves due to the regime shift (see Fig. 

5.7). Comparing Figs. 5-5 and 5-7, we can observe that the peak values of the 

probability density functions for �1���,�2��� and ���� of system (5-1) are higher 

than that in the earlier case ����1�, ��2�� = �0.2,0.3��. In addition, we can also 

observe that with the increasing value of �, the mean values of �1��� and �2��� of 

system (5-1) are getting larger, while that of ���� is becoming smaller. Therefore, it 

is clear that the introduction of TPP can be benefic to the persistence in the mean of 

three species through the termination of planktonic blooms and may be used as a 

controlling agent to control planktoic blooms. 

5.5. Conclusions 

The occurrences of harmful phytoplankton blooms have been reported globally 

with an increasing frequency in the past decades (Hallegraeff, 1993), and TPP are 

among the contributors in these blooms (Hallegraeff, 1993; Philips et al., 2004; 

Hallam and Luna, 1984). Moreover, plankton populations in real aquatic ecosystems 

often fluctuate unpredictably because of environmental stochasticity, which plays an 
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important role in the ecosystems (Carpenter, 2011). In order to better understand the 

effects of environmental fluctuations and TPP on the dynamics of plankton systems, 

in this thesis, we propose a stochastic phytoplankton-toxic producing 

phytoplankton-zooplankton system with Beddington-DeAngelis functional response, 

which incorporates with white noise and regime switching, and study how these 

factors affect the dynamics of system (5-1) analytically and numerically. We firstly 

investigate the existence and uniqueness of global positive solutions, and then derive 

some sufficient conditions for the extinction and persistence in the mean of system 

(5-1). To prove the existence of the stationary distribution, the theory of Khasminskii  

(Khasminskii, 1980) for periodic Markov process and a method based on constructing 

a Lyapunov function are employed. Numerical analysis illustrates our theoretical 

results and further indicates that the white noise, regime switching and TPP play an 

important role in controlling planktonic blooms as follows: 

Ø Regime switching plays an important role in the balance of the different survival 

states of plankton populations. On one hand, Subsystem 1, Subsystem 2 and 

system (5-1) have the same persistence-extinction behaviors. Actually, the regime 

switching cannot change the persistence-extinction behaviors of these systems 

(see Figs. 5.1 and 5.5), which means that system (5-1) still becomes persistence in 

the mean (or extinction) if Subsystems 1 and 2 becomes persistence in the mean 

(or extinction). On the other hand, the persistence-extinction behaviors of system 

(5-1) rely heavily on that of Subsystem 1 and Subsystem 2 due to the role of 

regime shifts. In the case of Subsystem 1 is persistence in the mean and 

Subsystem 2 dies out, then system (5-1) will tend to extinction (see Fig. 5.2). 

However, system (5-1) becomes persistence in the mean although one Subsystem 

is extinct by controlling the value of � (see Fig. 5.4). Thus, the presence of 

regime switching in the stochastic system can change the survival of plankton 

populations and reduce the risk of extinction. Therefore, it can be asserted that 

whether the regime switching is conducive to the survival of plankton populations 

or not strongly depends on its staying longer in a 'good' or 'bad' environmental 
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state. 

Ø White noise is adverse to the survival of plankton populations. As the Fig. 5.5 

points out, if the white noise densities are relatively small satisfying the 

conditions of Theorem 5.3.4.1, then system (5-1) has a unique ergodic stationary 

distribution, which means the NTP, TPP and zooplankton can coexist at a stable 

state for a long time. However, by enhancing the intensity of white noise on 

zooplankton only or on all three species simultaneously, the zooplankton of 

Subsystem 2 or all the three species of every system will go to extinction (see 

Figs. 5.1 and 5.2). From Figs. 5.1, 5.2 and 5.5, by controlling the intensity of 

white noise, the dynamic behaviors of system (5-1) can be significantly changed. 

That is, high intensity of white noise is disadvantageous to the development of 

plankton and increases the risk of extinction. This is ecologically meaningful as 

the species deteriorates drastically because of high environmental fluctuations. 

Thus, it is obliged to be stressed that the controlling of the white noise may be 

acted as a possible biological way to control planktonic blooms. 

Ø TPP can increase the survival chance of phytoplankton but reduce the biomass of 

zooplankton. With the increasing value of the toxin liberation rate � ensuring the 

condition of � > 0, system (5-1) has a unique stationary distribution (see Figs. 

5.7), which describes the long time asymptotic behaviors of the system (5-1) from 

a statistical viewpoint. Additionally, comparing Figs. 5.5 and 5.7, we can 

conclude that the toxin liberation rate is conducive to the persistence in the mean 

of phytoplankton but is adverse to the survival of zooplankton population. 

Therefore, TPP plays an important role in controlling planktonic blooms. 
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Chapter 6 DYNAMICS OF A STOCHASTIC NON-AUTONOMOUS 

PHYTOPLANKTON-ZOOPLANKTON SYSTEM INVOLVING 

TOXIN-PRODUCING PHYTOPLANKTON AND IMPULSIVE 

CONTROL 

Abstract 

This thesis describes an analytical and numerical investigation of a stochastic 

non-autonomous phytoplankton-zooplankton system involving TPP and impulsive 

perturbations. White noise, impulsive perturbations, and TPP were incorporated into 

the model to stimulate natural aquatic ecological phenomena. The aim of this thesis 

was to analyze how these factors affect the dynamics of the system. Mathematical 

derivations were utilized to investigate some key threshold conditions that ensure the 

existence and uniqueness of a global positive solution, population extinction, and 

persistence in the mean. In particular, we determined if there is a positive periodic 

solution for the system when the toxin liberation rate reaches a critical value. The 

numerical results indicated that both white noise and the impulsive control parameter 

can directly influence population extinction and persistence in the mean. Enhancing 

the toxin liberation rate of TPP increases the possibility of phytoplankton survival but 

reduce zooplankton biomass. These results improve our understanding of the 

dynamics of complex of aquatic ecosystems in a fluctuating environment. 

Keywords: Stochastic phytoplankton-zooplankton system; Toxin-producing 

phytoplankton; White noise; Impulsive perturbations; Extinction; Periodic solution 

6.1. Introduction  

It is widely recognized that plankton populations play an important role in the 

wealth of aquatic ecosystems and ultimately the planet itself (Huppert et al., 2002). 

Phytoplankton not only generate organic compounds by absorbing carbon dioxide 
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dissolved from their surroundings, but also carry out photosynthesis, which may have 

a significant effect on large-scale global processes such as the global carbon cycle, 

climate change and ocean-atmosphere dynamics (Subhendu et al., 2015). However, 

phytoplankton blooms, a natural phenomenon involving the rapid increase and almost 

equally rapid decrease of a certain dominant phytoplankton species in aquatic 

ecosystems, occur frequently and can persist under certain conditions, disrupting the 

ecological balance of aquatic ecosystems and becoming detrimental to public health. 

Harmful algal blooms (HABs), for example, have been widely reported and have 

become a serious environmental problem worldwide (Anderson, 1997). To understand 

the mechanisms of planktonic blooms and to regulate the ecological balance of 

plankton ecosystems, it is crucial to perform a deeper analysis of the function of 

aquatic ecosystems, and especially the dynamics of plankton populations. 

Mathematical models can be a powerful tool for revealing plankton dynamics. Indeed, 

since the pioneering work of Riley et al. (1949), mathematical models have been 

developed to reveal the dynamic behaviors of plankton populations. In particular, 

researches on phytoplankton-zooplankton systems have made great progress, in which 

various biological factors have been taken into account, yielding important results in 

recent years (Abhijit et al., 2021; Zhao et al., 2016; Han and Dai, 2019; Agnihotri and 

Kaur, 2019; Zhao et al., 2018). 

Toxin-producing phytoplankton (TPP) are a well-known group of phytoplankton 

that have the ability to release toxic chemicals into aquatic environments during 

HABs, which may inhibit predation pressure from zooplankton and other predator 

populations in planktonic systems (Huppert et al., 2002; Falkowski, 1984; Colin and 

Dam, 2003; Fulton and Paerl, 1987). For example, the results from experimental 

observations (Colin and Dam, 2003) indicated that the toxic dinoflagellate 

Alexandrium fundyense can negatively affect the growth rate of the copepod Acartia 

hudsonica, and the toxic effects may have profound implications on the ability of 

grazers to control HABs. Moreover, some experimental evidence has revealed that 

TPP are one of the contributors to the formation of HABs (Hallegraeff, 1993; Philips 
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et al., 2004), which play a significant role in determining the dynamics of plankton 

populations. For example, Roy et al. (2007) suggested that the presence of TPP might 

be a potential reason for the generation of complex interactions between 

phytoplankton and zooplankton populations, which could lead to the long-term 

coexistence of plankton populations in a fluctuating biomass. By analyzing a 

nutrient-plankton model, Jang and Allen (2015) concluded that TPP is conducive to 

the stability of planktonic interaction and plays a key role in bloom termination. 

Based on field observation and a model analysis, Chattopadhyay et al. (2002) 

proposed the following nonlinear coupled ordinary differential equations:  

               �

�����

��
= ����� �1 −

����

�
�− ������������            

�����

��
= ������������ − ����� − ������������

           (6-1) 

where ����  and ����  are the population densities of TPP and zooplankton, 

respectively; �  and �  are the intrinsic growth rate and environmental carrying 

capacity of TPP, respectively; � denotes the natural death rate of zooplankton; � is 

the rate of predation and � is the conversion rate of zooplankton; � is the TPP toxin 

liberation rate; ���� and ���� represent the predation response function and the 

distribution of toxic substances, respectively. A previous study (Chattopadhyay et al., 

2002), investigated the existence and local stability of positive equilibria, and the 

existence of the Hopf-bifurcation of the system, by considering different 

combinations of functional response ���� and ����. It was concluded that TPP may 

act as a biological control for the termination of planktonic blooms. In recent years, 

many studies have incorporated TPP into phytoplankton-zooplankton systems by 

considering various factors, including time delay, plankton diffusion, infected 

phytoplankton, and phytoplankton refuge, yielding interesting results (Wang et al., 

2014; Li et al., 2017; Jia et al., 2019; Agnihotri and Kaur, 2019). 

It should be noted that most previous studies have focused on continuous 

systems; however, in the real world, populations undergo inherent discontinuity 

phenomena due to natural and anthropogenic factors, such as predation, planting, and 

harvesting, which lead to rapid population decrease or increase over a fixed period of 
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time. Systems with such kinds of discontinuous changes relate to impulsive 

differential equations, which have attracted research attention over the past decades, 

since they provide a natural description of the observed evolutionary behavior of 

certain real-world problems (Zavalishchin and Sesekin, 1997; Samoilenko and 

Perestyuk, 1995). For example, many biological phenomena involving thresholds, 

bursting rhythm models in medicine and biology, optimal control models in 

economics, pharmacokinetics, and frequency modulation models can exhibit 

impulsive effects, and considerable research has been conducted into incorporating 

these impulsive effects into models (Tang and Chen, 2002; Shulgin et al., 1998; 

Yenicerioglu, 2019; Jatav and Dhar, 2014; Liu et al., 2019). Furthermore, some 

experimental observations shown that the toxic substances released by TPP is not a 

constant but change over time (Graneli and Johansson, 2003; Johansson and Graneli, 

1999), and seasonal periodicity can either terminate or initiate periodic outbreaks of 

plankton populations (Mcgillicuddy et al., 2003; Phlips et al., 2004). Therefore, it is 

meaningful to introduce the impulsive effects and periodicity into the underlying 

system (6-1). As a result, system (6-1) can be extended into a non-autonomous 

impulsive system as follows: 

  

�
�
�

�
� 

�����

��
= �������� �1 −

����

����
� –������������,          

�����

��
= ������������ − �������� −

��������

����+����
����  

�           � ≠ �� ,� ∈ ℕ,

 ����
+� = �1 + ��������,

����
+� = �1 + ��������.

�                                                            � = �� ,� ∈ ℕ.

     (6-2)

Note that ���� and ���� in system (6-1) adopt a linear and Holling II functional 

response in system (6-2), respectively, which is presented in the case 4 of a previous 

study (Chattopadhyay et al., 2002). Moreover, it is assumed that and system (6-2) is 

subjected to short-term external influences at a fixed time ��, comprising a sequence 

of real numbers with  0 = �0 < �1 < ⋯ < �� < ⋯, and lim�→+∞ �� = +∞. From a 

biological perspective, we impose the following restriction on ��  and �� : 

1 + �� > 0, 1 + �� > 0,       � ∈ ℕ. 

This means that the impulsive perturbations become a descriptive process of species 
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introductions if �� ,�� > 0, while harvesting if �� ,�� < 0 (Liu and Wang, 2012). 

On the other hand, planktonic systems in nature are inevitably influenced by 

environmental fluctuations due to the stochasticity and unpredictability of their 

surroundings. Regarding environmental fluctuations, for example, the availability of 

necessary nutrients, temperature, artificial eutrophication, and many other physical 

factors exist in real-world aquatic ecosystems, which may affect the growth rates of 

plankton populations. For example, some experimental evidence has shown that the 

growth rate of toxic Microcystis spp. and environmental biomass rely heavily on 

temperature and nutrient concentration (Davis et al., 2009; Fujimoto et al., 1997). The 

stochastic model analysis of Melbourne and Hastings (2008) demonstrated that the 

extinction risk in natural populations depends strongly on a combination of factors 

that contribute to stochasticity. Therefore, increasing attention has been paid to 

studying the influence of environmental fluctuations on aquatic ecosystems (Abhijit et 

al., 2021; Sarkar and Chattopadhayay, 2003; Ji et al., 2016; Zhao et al., 2017; Tapaswi 

and Mukhopadhyay, 1999). Thus, it is reasonable and valuable to further incorporate 

environmental fluctuations into system (6-2), which may provide a deeper insight of 

the dynamics of phytoplankton-zooplankton systems in fluctuating environments. 

Based on previous studies (Ji et al., 2016; Zhao et al., 2017), we assume that the 

intrinsic growth rate of HAB phytoplankton and the death rate of zooplankton are 

influenced by environmental factors, and we introduce white noise into the 

deterministic system (6-2), expressed as follows: 

     

�
�
�
�

�
�
�

 

����� = ���� ����� �1 −
����

����
� − ��������� ��    

+�1���������1���        

����� = ���� �−���� + �������� −
��������

����+����
� ��

+�2���������2���       �
�
�

�
�

     � ≠ �� ,� ∈ ℕ,

 ����
+� = �1 + ��������,

����
+� = �1 + ��������

�                                                    � = �� ,� ∈ ℕ.

   (6-3)

where  �����  and ������ (� = 1,2) are mutually independent one-dimensional 

standard Brownian motion and standard white noise, respectively, and ��
2��� >
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0 �� = 1,2� is the white noise intensity. 

In recent years, many researchers have investigated the combined effects of 

stochastic fluctuations and impulsive perturbations on population dynamics (Liu and 

Wang, 2012, 2013; Zhang et al., 2017; Wu et al., 2015; Zuo and Jiang, 2016; Zhang et 

al., 2015). For example, Liu and Wang (2012) studied a stochastic logistic system 

with impulsive perturbations, and obtained some conditions for the extinction, 

non-persistence in the mean, weak persistence, persistence in the mean and stochastic 

persistence of the system. Zuo and Jiang (2016) discussed the periodic solutions for a 

stochastic non-autonomous Holling-Tanner predator-prey system with impulses, and 

obtained some conditions for positive periodic solution. All these studies have 

stimulated further research into the dynamics of stochastic impulsive systems. 

However, studies investigating the effect of environmental fluctuations on the survival 

of plankton populations in an impulsive control environment with seasonal 

disturbance are lacking. Therefore, in this study, we investigated the dynamics of a 

stochastic non-autonomous phytoplankton-zooplankton system involving impulsive 

perturbations and TPP. The aim of the study was to determine the influence of 

impulsive perturbations, white noise, and TPP on the dynamics of this system (6-3). 

Our research questions included: (i) How do environmental noise and the impulsive 

control parameter affect the dynamics of plankton? (ii) What influences the peak of 

the cyclic outbreaks of planktonic blooms in an impulsive perturbation and fluctuating 

aquatic environment? 

The rest of this paper is organized as follows: Section 6.2 presents the basic 

assumptions and useful lemma firstly, and then we investigate the existence and 

uniqueness of global positive solutions by establishing the equivalent system without 

impulses, apply Ito's formula to obtain the sufficient conditions for the extinction and 

persistence in the mean of the system, and the existence of positive �-periodic 

solution are obtained by constructing a suitable stochastic Lyapunov function and 

using the theory of Khasminskii (2012). A series of numerical simulations are carried 

out to verify the theoretical analysis in section 6.3. In section 6.4, we summarize the 
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results and present our conclusions. 

6.2. Dynamic analysis 

Environmental stochasticity and impulsive perturbations are the key factors 

affecting the real aquatic ecosystems, and the growth rates of phytoplankton and 

zooplankton may be affected by the environmental fluctuations (Tapaswi and 

Mukhopadhyay, 1999). Thus, it is interesting to study how these factors influence the 

survival of plankton populations. In this section, therefore, we investigate mainly the 

existence and uniqueness of global positive solutions, the extinction and persistence in 

the mean, and the existence of positive periodic solutions of the system (6-3). 

6.2.1. Preliminaries 

Let ℕ,ℝ be the set of positive integers and real numbers, respectively, and 

denote ℝ+ = �0,  +∞� . Throughout this paper, unless otherwise indicated, we always 

assume that ��, ℱ� , �ℱ���≥0,�� is a completed probability space with a filtration 

�ℱ� � satisfying the usual normal conditions (i.e. it is right continuous and increasing, 

while �ℱ0� contains all �-null sets). Moreover, it is assumed that a product equals 

unity if the number of factors is zero and the following hypotheses are given: 

(H1) the functions ����,����,����,����,����,����, ����,�1���, and �2��� are 

all bounded positive-valued functions on ℝ+ = �0,  +∞� ; 

(H2) the functions ����,����,����,����,����,����, ����,�1���, and �2��� are 

periodic with a common period � > 0; 

(H3) there exists a positive integer �  such that ��+� = �� + �, ��+� =

�� ,   ��+� = �� , � ∈ ℕ and �0,  �� ∩ ��� ,� ∈ Ν� =  ��1, �2,⋯ , ���. 

For convenience, we introduce the following notations. If ���� is a continuous 

�-periodic onℝ+, we define �� = max�∈ℝ+
�, and �� = min�∈ℝ+

�, and if it is an 

integrable function, we define ���� =
1

�
∫ ������
�

0
, � > 0. Moreover, 

                 �1��� = ����� −
�1

2���

2
�� +

1

�
� log�1 + �� �

�
� =1   
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and 

                                      �2��� =
1

�
� log�1 + �� �

�
�=1 − ����� +

�2
2���

2
�� .  

Now, we introduce the Ito�‟s formula for general stochastic differential equations 

and the definitions for the extinction and persistence in the mean of the system. We 

define the �-dimensional stochastic equation as follows (Zuo and Jiang, 2016): 

                  �� = ���, ���� + ���, �������                     (6-4) 

with the initial value ���0� = �0. Here, ���, �� = ��1��, ��,�2��, ��,⋯ , ����,��� is 

a � -dimensional vector function; ����,���
�×�

 is a � × �  matrix function and 

���� = ��1���,�2���,⋯ , ������  is a � -dimensional standard Brownian motion 

defined on the probability space  ��, ℱ� , �ℱ� ��≥0,�� . We define the differential 

operator � associated with Eq. (6-4) 

           � =
�

��
+ � ��

�
�=1 ��,��

�

���
+

1

2
� � �����,�������, ���

�=1
�
� ,�=1

�2

������
.  

Let function ���,�� ∈ ℂ2,1�ℝ� × ℝ,ℝ�, resulting in 

     ����,�� =
��

��
+ � ��

�
�=1 ��, ��

��

���
+

1

2
� � �����,�������,���

�=1
�
�,�=1

�2�

������
.  

Thus, the Ito�‟s formula can be presented. 

Lemma 6.2.1.1 (Tang et al., 2015; Mao, 2008) Let ���� satisfies Eq. (6-4) and the 

function ���, �� ∈ ℂ2,1�ℝ� × ℝ,ℝ�, then  

                ����,�� = ����,���� + ����, �����,�������.  

where  

                   ����, �� = �
���� ,��

��1
,
���� ,��

��2
, ⋯ ,

���� ,��

���
�.  

Definition 6.2.1.2 (Khasminskii, 2012) System (6-4) is said to be extinct if 

lim sup�→∞ ���� = 0 a.s. 

System (6-4) is said to be persistent in the mean if lim inf�→∞ ������τ > 0 a.s. 
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This presents a lemma that describes criteria for the existence of the periodic 

solution of stochastic differential equations without impulses (Li and Xu, 2013; Jiang 

et al., 2008). 

Lemma 6.2.1.3 Suppose that the coefficients of (6-4) are all continuous �-periodic 

function in � and system (6-4) has a global solution, and further suppose that there 

exists a periodic function ���, ����1,2(ℝ� × ℝ,ℝ)  satisfying the following 

conditions: 

(i) there exists a constant �′ such that ℒ���,�� ≤ 0, ��� ≥ �′; 

(ii) inf���>��(�, �) → ∞ as � → ∞. 

Then the system (6-4) has a periodic solution. 

We then consider the following periodic Logistic system: 

     ����� = ���� ����� +
1

�
� �1 + �� �

�
� =1 −

����

����
�1�������� ��  

              +�1����1���������1���                                 (6-5) 

with an initial value ��0� = �1�0� > 0. By the Lemma 2.2 (Mao and Yuan, 2006) 

and the Lemma 2.1 (Liu et al., 2011), we can easily obtain that, if �1
� > 0, then one 

can obtain that 

                                         lim�→∞ sup������� =
���1

�

� ��1
� .                         (6-6) 

6.2.2. Existence and uniqueness of global positive solutions 

Before investigating the stochastic dynamics of system (6-3), we should first 

guarantee the existence of global positive solutions. Therefore, we will discuss the 

existence of global positive solutions in system (6-3) by constructing the equivalent 

system without impulses in the following. 

Actually, suppose that the conditions (H1)-(H3) hold, and consider the following 

stochastic differential equation without impulses:  
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�
�
�

�
���1��� = �1��� ����� +

1

�
� log�1 + �� �

�
�=1 −

����

����
�1����1���

        

 −�����2����1������ + �1����1�����1���        

��1��� = �1��� �−���� +
1

�
� log�1 + �� �

�
�=1 + �����1����1���   

 −
�����1����1���

����+�1����1���
��� + �2����1�����2���       

                (6-7) 

with the initial value ��1�0�,�1�0�� = ���0�,��0��, where 

                  �1��� = �� �1 + �� �
�
�=1 �

−
�

� � �1 + ���0≤��<� ,   

and 

                  �2��� = �� �1 + �� �
�
�=1 �

−
�

� � �1 + ���0≤��<� .  

The remainder of the proof follows that in the Theorem 2.2 of (Zuo and Jiang, 2016), 

here, we omit it. Therefore, for any given initial value ���0�,��0�� ∈ ℝ+
2 , the system 

(6-3) exists a unique solution �����,����� on � ∈ ℝ+ and positive solution will 

remain in ℝ+
2  with probability one, namely �����,����� ∈ ℝ+

2  for all � > 0 almost 

surely. 

Remark 6.2.1.2 From the above equivalent in Theorem 6.2.2.1, we can conclude that 

we only need to consider the asymptotic properties of system (6-7). Then, system (6-3) 

has similar properties. 

6.2.3. Extinction and persistence induced by impulsive control and white noise 

From the perspective of population dynamics, it is necessary and important to 

predict and control the development of populations. Therefore, we are now in position 

to discuss the properties of extinction and persistence in the mean of system (6-3) in 

this subsection, and the following modeling analysis indicates that impulsive control 

and environmental fluctuations can significantly affect the dynamics behaviors of 

plankton populations, such as the extinction, persistence in the mean, and the 

existence of periodic solution of the system, indicating harvesting or artificial remove 
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harmful algae is a better biological way to control algal growth in a fluctuating 

environment. 

Actually, suppose that the conditions (H1)-(H3) hold. Applying Ito�‟s formula to 

the first equation of system (6-7), we have 

         �log �1�t� ≤ ����� +
1

�
� log�1 + �� �

�
� =1 −

�1
2���

2
� �� + �1�����1���.  

Integrating both sides of the above inequality on the interval  �0, �� yields 

                  
1

�
�log �1�t� − log �1�0�� ≤  

1

�
∫ ����� −

�1
2���

2
� ��

�

0
  

                                                                +
1

�
� log�1 + �� �

�
� =1 +

1

�
∫ �1�����1���
�

0
.  

By the strong law of large numbers (Li et al., 2009), one can obtain that  

                                                    lim�→∞
1

�
∫ �1�����1���
�

0
= 0,�. �.  

According to the condition (H2), we have 

                                    lim�→∞
1

�
∫ ����� −

�1
2���

2
� ��

�

0
=

1

�
∫ ����� −

�1
2���

2
� ��

�

0
.  

By comparison principle, and if �1
� < 0, we can easily to get 

                                                   lim�→∞ sup
log �1���

�
≤ �1

� < 0,  

which implies lim
�→∞

�1��� = 0 �. �. , that is, the harmful phytoplankton species 

undergoes extinction. 

Similarly, it can be obtained that 

     
1

�
�log �1�t� − log �1�0�� ≤

1

�
� log�1 + �� �

�
�=1 −

1

�
∫ ����� +

�2
2���

2
� ��

�

0
  

                                                          +
1

�
∫ �����1����1�����
�

0
+

1

�
∫ �2�����2���
�

0
.  

Since  lim
�→∞

�1��� = 0 �. �., and lim�→∞
1

�
∫ �2�����2���
�

0
= 0,�. �. (Mao and Yuan, 

2006), we have 
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lim
�→∞

sup
log�1���

�
≤ �2

� < 0 

provided that �2
� < 0. In other words, lim

�→∞
�1��� = 0 �. �.  

To sum up, for any given initial value ���0�,��0�� ∈ ℝ+
2 , we can conclude that 

if �1
� < 0 and  �2

� < 0 , both harmful phytoplankton �(�)  and zooplankton �(�) 

undergo extinction almost surely. 

Now, we analyze the case of toxic phytoplankton which is persistence in the 

mean, while the zooplankton undergoes rapid extinction by artificial activities in a 

fluctuating environment. 

It is obvious to find that the conditions (H1)-(H3) is satisfied. Note that 

                       ��1��� ≤ �1��� ����� +
1

�
� log�1 + �� �

�
�=1 −

�����1���

����
�1������  

                    +�1����1����1�����1���.  

By the comparison principle of stochastic differential equation and (6-5), we have  

                    lim
�→∞

sup��1����τ ≤
���1

�

���1
� �. �.                       (6-8) 

Taking Ito�‟s formula to the second equation of system (6-7), we one obtain that 

       
1

�
�log�1 − log��0�� ≤ �2��� +

1

�
∫ �����1����1���
�

0
�� +

1

�
∫ �2�����2���
�

0
.  

Together with (6-8) and limt→∞
1

�
∫ �2�����2���
�

0
= 0, �. �. we have 

                      lim
�→∞

sup
log �1

�
≤ �2

� +
���� �1

�

���1
� < 0  

provided that the condition �2
� +

���� �1
�

� ��1
� < 0  holds. That is,  lim

�→∞
 �1��� = 0 �. �. , 

which means the species �1���  dies out. Therefore, for any given initial 

value ���0�, ��0�� ∈ ℝ+
2 , if �1

� > 0 and �2
� +

���� �1
�

���1
� < 0 , then the species �(�) 

will tend to extinction almost surely. 

In the previous discussion, we have obtained that the cases of population 

extinction. Then a certain question may arise and what people usually are interested in 
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is how does all the species of the system coexist in real life under some suitable 

conditions? We now give a another discussion. 

Considering the conditions (H1)-(H3) is satisfied. Applying Ito�‟s formula to the 

first equation of system (6-7) and (6-5), we have 

    
1

�
�log �1�t� − log ��0�� = �1��� −

1

�
∫

�����1���

����
�1���

�

0
��  

                                                      −
1

�
∫ �����2����1���
�

0
�� +

1

�
∫ �1�����1���
�

0
,   

    
1

�
�log Φ�t� − log Φ�0�� = �1��� −

1

�
∫

�����1���

����
Φ���

�

0
�� +

1

�
∫ �1�����1���
�

0
.  

Thus, we have 

          0 ≥
1

�
�log �1�t� − log Φ���� =

1

�
∫

�����1���

����
�Φ��� − �1����

�

0
��  

                                                                             −
1

�
∫ �����2����1���
�

0
��.   

That is, 

                 
1

�
∫ �Φ��� − �1����
�

0
�� ≤

�����2
�

���1
� ·

1

�
∫ �1���
�

0
��.          (6-9) 

Combining (6-9) and applying Ito�‟s formula to the second equation of (6-7), we have 

1

�

log  �1�t�

log  ��0�
≥ �2

� − �� +
1

�
∫ �����1���Φ���
�

0
� −

1

�
∫ �����1����Φ��� − �1����
�

0
��  

                  +
1

�
∫ �2���
�

0
��2��� ≥ �2

� − �� +
���1

�

�
∫ Φ���
�

0
��  

        −
�������2

�

��
·

1

�
∫ �1
�

0
����� +

�2
� �2���

�
.  

By the definition of superior limit of (6-6), that is, ∀ � > 0, there exists �0 > 0 such 

that  

                        
1

�
∫ Φ���
�

0
�� >

���1
�

� ��1
� −

�

���1
�   

for � > �0. Thus, we have 

       
1

�

log  �1�t�

log  ��0�
≥ �2

� − �� +
�����1

�

��
− � −

�������2
�

� �
·

1

�
∫ �1
�

0
����� +

�2
� �2���

�
.  

Thus, 
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      log �1��� ≥ ��2
� − �� +

���1
�

��
− δ� � −

�������2
�

�� ∫ �1
�

0
����� + �2

���2���.  

According to the Lemma 4 (Li et al. (2009)) and for the arbitrariness of �, if the 

condition ��2
� − �����+�����1

�  holds, we have 

                                         lim inf�→∞��1����� ≥
�� ���2

� −�����+�����1
� �

�������2
� > 0  

for any given initial value ���0�, ��0�� ∈ ℝ+
2 , the system (6-3) is persistent in the 

mean provided that �1
� > 0 and  (�2

� − ��)�� + �����1
� > 0. 

6.2.4. Periodic oscillations of plankton density 

For the phytoplankton-zooplankton system, the existence of positive periodic 

solution of the system implies that the populations are persistent. In this subsection, 

we prove that the system admits a positive �-periodic solution by constructing a 

suitable Lyapunov function and using the theory of Khasminskii (Khasminskii, 2012).  

It is sufficient to show that a periodic solution exists for the equivalent system 

(6-7) without impulses. According to the previous discussion, we have obtained that, 

for any given value ���0�, ��0�� ∈ ℝ+
2 , the system (6-3) exists a unique solution.  

Construct a ℂ2-function ���,�1,�1�: ℝ+
2 → ℝ defined by 

                          ���,�1, �1� = � �−�� ln �1 −
��

��
ln�1 + �1��� +

�����2
�

�
�1� +

                                                                 ��2���
����1

��1+���2
� �1�

2

2
  

                            ≜ �1��,�1,�1� + �2��,�1,�1�,                                     

where � > 0 will be determined later and ����� �� = 1,2� satisfy 

                      �′
1��� = �� ����� −

�1
2���

2
�−

��

��
����� −

�2
2���

2
− ���  

                             − ��� ����� −
�1

2���

2
�−

��

��
����� +

�2
2���

2
− ����� ,  

and 

            �′2��� = 2���� − �2
2��� − �2���� − �2

2����� . 

Obviously, we can verify that ����� �� = 1,2� are both �-periodic functions and 
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�′2���  is a bounded function. Thus, there exists a constant � > 0  such that 

��′2���� ≤ � for all � ≥ 0. To proof the condition (ii) of the Lemma 6.2.1.3, we only 

need to prove that 

inf�� ,�1,�1�∈�0,  +∞�×�ℝ+
2 \���

 ���,�1,�1� → ∞ 

as � → ∞, where �� = �
1

�
,�� × �

1

�
, ��, which is clearly established since all the 

coefficients of the quadratic term in ���, �1, �1� are positive, and thus, we have 

proved that the condition (ii) of the Lemma 6.2.1.3 is satisfied. 

Next, we will verify that the condition (i) of Lemma 6.2.1.3 is satisfied. 

Applying Ito�‟s formula to �1��,�1,�1� and �2��, �1,�1�, respectively, one can obtain 

that 

��1��,�1, �1� ≤ � �−�� ����� +
1

�
� log�1 + �� �

�
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−
1

2
�1

2����
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��

��
����� −

1

�
� log�1 + �� �

�
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−
1

2
�2

2��� + ��� + �′
1����

+ � ����
����

����
�1��� −

��

��
��1�����1

+ ��������2��� −
�����2

�

�
����� −

1

�
� log�1 + �� �

�

� =1

���1�

+ �
�����2

�

�
���1

��1�1 

≤ � �−�1 +
������2�1

��2
�

�
�1�1�,                                

and 
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��2��,�1, �1� =
��2���

2
�′

2�����
��1

��1 + ���2
� �1�

2
+ ��2�������1
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� �1�

· ����1
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Then, we can obtain 



 

140

���,�1, �1� ≤ −��1 + �1�1�1 + �2�1
2 − ���2

������1
��2

���1
�

��
�1

3 − ���2
������2

� �
2
�2�1

2 

where 

                �1 = �
������2�1

��2
�

�

+ ���2
� ����1

����2
� �� + �� + �� +

1

�
� log�1 + �� �

�

� =1

+
1

�
� log�1 + �� �

�

� =1

��1�1, 

                                �2 = ���2
� �����1

��2 �
�

2
+ �� +
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�
� log�1 + �� �

�
�=1 +

��1
� �2
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                                         �1 = ���1��� +
��

��
��2��� − ���, �2 = −�2���,  

and 

                         � = �� −
1

�
� log�1 + ���

�
�=1 .  

Let  

� =
2

�1
max��1,�1�∈ℝ+

2 �2,�2�1
2 −

�
�� 2

� �

2
����1

� �2 ���1
�

��
�1

3 −
�
��2

� �

2
����2

� �
2
�2�1

2�. (6-10) 

To confirm the condition (ii) of Lemma 6.2.1.3, we choose a sufficient small 

�, � > 0 such that 

      0 < � ≤
1

4�1
���1, 2

�
��2

� �

2
����2

� �
2
�2, 2

�
��2

� �

2
����1

� �2 � ��1
�

��
�,           (6-11) 

      −��1 + � + 1 ≤ ���2
�� min �

��� �1
��2���1

�

2�3��
,
���2

� �2

2�3
� ,                 (6-12) 

where  

� = max
��1,�1�∈ℝ+

2
�
2

5
�1��1�

5
2 + �2�1

2 −
���2
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����1

��2
���1

�

��
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3 +
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5
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−
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����2

� �
2
�2�1

2� .  

Define the following bounded open set 
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                                       �� = ���1, �1��� < �1 <
1

�
, � < �1 <

1

�
 �.  

and consider 

                     �ℰ
1 = ���1,�1� ∈ ℝ+

2 �0 < �1 ≤ � �,�ℰ
2 = ���1,�1� ∈ ℝ+

2 �0 < �1 ≤ � �,  

                        �ℰ
3 = ���1,�1� ∈ ℝ+

2 ��1 ≥
1

�
 � , �ℰ

4 = ���1 ,�1� ∈ ℝ+
2 ��1 ≥

1

�
 �.  

Obviously, we can obtain that  

�ℰ
� = �ℰ

1 ∪ �ℰ
2 ∪ �ℰ

3 ∪ �ℰ
4. 

In the following, let the conditions of �1 > 0, �2 > 0, and � > 0 hold, we need to 

prove that ����, �1,�1� ≤ −1 on ℝ+ × �ℰ
�, respectively. 

Case 1 If ��, �1,�1� ∈ ℝ+
2 × �ℰ
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2�. 

According to (6-10) and (6-11), we have 

                     ���,�1, �1� ≤ −
��1

4
≤ −1.  

Case 2 If ��, �1,�1� ∈ ℝ+
2 × �ℰ

2, then �1�1 ≤ ��1 ≤ ��1 + �1
3� and we have 
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Similarly, we have 
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                         ���, �1, �1� ≤ −
��1

4
≤ −1.  

On the other hand, by Young inequality, we have  

                                                             �1�1 ≤
2

5
�

1

5

2 +
3

5
�

1

5

3.  

Thus, 

                    ���,�1, �1� ≤ −��1 + � −
�
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2
����1

� �2 ���1
�
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3 −
�
��2

� �

2
����2

� �
2
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2.  

Case 3 If ��,�1, �1� ∈ ℝ+
2 × �ℰ

3 and by (6-12) and (6-13), then we have 

���,�1,�1� ≤ −��1 + � −
���2

� �

2

����1
��2���1

�

��
�1

3

≤ −��1 + � − ���2
� �
����1

��2���1
�

��2�3
≤ −1. 

Case 4 If ��,�1, �1� ∈ ℝ+
2 × �ℰ

4 and from (6-12) and (6-13), then we have 

���, �1,�1� ≤ −��1 + � −
���2

��

2
����2

� �
2
�2�1

2 ≤ −��1 + � −
���2

� �

2�2
����2

� �
2
�2

≤ −1. 

Thus, we obtain that  ���, �1,�1� ≤ −1, for all  ��, �1, �1� ∈ ℝ+
2 × �ℰ

� , namely the 

condition (ii) of Lemma 6.2.1.3 is satisfied.  

To sum up, we can obtain that, for given initial value  ���0�, ��0�� ∈ ℝ+
2  and 

suppose the conditions (H1)-(H3) hold, and further if the conditions of �1 > 0, �2 >

0, and � > 0 hold, then system (6-3) has a positive �-periodic solution.  

6.3. Experimental simulations 

In the previous section, we have studied the effects of environmental fluctuations, 

impulsive perturbations and TPP in a periodic environment on the dynamics of system  

(6-3) using modeling analysis, including the existence and uniqueness of global 

positive solutions, the extinction and persistence in the mean and periodic solutions of 

the system. To find the treatment strategy of planktonic blooms, and the effect of 

artificial interventions on the growth of plankton populations, the white noise, 



 

143

artificial interventions and TPP are chosen as control parameters and other parameters 

are listed as follows: ���� = 0.75 + 0.01 sin
��

40
,���� = 0.75 + 0.05 sin

��

40
,���� =

0.85 + 0.0001 sin
��

40
,  ���� = 0.65 + 0.0001 sin

��

40
, ���� = 0.05 + 0.008 sin

��

40
, 

���� = 0.2 + 0.005 sin
��

4
, ���� = 0.12 + 0.06 sin

��

4
, �� = 0.05 + 0.005 sin

��

40
 

�� = 0.001 + 0.95 ���
��

40
, � = 80, and the initial condition is ���0�, �(0)� = �0.5,0.5�. 

In this section, based on Milstein's method mentioned (Higham, 2001) by 

supplementing impulsive perturbations into it, some numerical simulations are carried 

out to further investigate how the factors influence the stochastic dynamics of system 

(6-3).  

6.3.1. Impact of white noise on the dynamics of system (6-3) 

In order to study how white noise, impulsive control, and TPP affect the 

dynamics of system (6-3), we firstly consider that system (6-3) does not experience 

the white noise  (σ1�t� = σ2�t� = 0), that is, the stochastic system (6-3) becomes its 

corresponding deterministic system (6-2). As mentioned above, the conditions 

(H1)-(H3) can be easily verified. Thus, by simple calculations, we can obtain that 

both phytoplankton and zooplankton populations in system (6-2) are persistent and 

the system has a periodic solution provided that the value of impulsive control 

parameter is small (� = 2), depicting the coexistence of plankton populations at a 

stable state (see Fig. 6.1). 

 

Fig. 6.1 The dynamics of system (6-2) with impulsive control parameter � = 2. (a)-(b): The 
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periodic solutions of phytoplankton population ����  and zooplankton population ����  of 

deterministic system (6-2), respectively.

 

Fig. 6.2 The stochastic dynamics of system (6-3) with �1��� = �2��� = 0.005 + 0.005 sin
��

40
. 

(a)-(b): The periodic solutions of phytoplankton population ���� and zooplankton population 

���� of system (6-3), respectively.

Now we explore the impact of white noise on the persistence-extinction 

properties of system (6-3). Fig. 6.2 shows that phytoplankton and zooplankton 

populations can coexist in a relatively stable state when the white noise intensity is 

comparatively weak ��1��� = �2��� = 0.005 + 0.005 sin
��

40
�. Actually, according to 

dynamical analysis, it is not difficult to find that system (6-3) is persistence in the 

mean and has a positive periodic solution with a period  � = 80, which are consistent 

with our numerical analysis. Comparing Figs. 6.1 and 6.2, it is evident that white 

noise can affect the distribution of phytoplankton and zooplankton populations. That 

is, white noise can significantly affect the dynamic evolution mechanism of plankton 

populations. Furthermore, when  �1��� , the effect of white noise intensity on 

phytoplankton population varies within some critical level, and the amplitude of 

random oscillation for the phytoplankton population increases with an increasing 

value of �1���, while that of zooplankton population decreases (figures here are not 

given because of the similarity to Fig. 6.2). However, when we change the white noise 

�1��� to �1��� = 1.8 + 0.005 sin
��

40
, satisfying the conditions of �1

� < 0 and  �2
� < 0, 

as a result, both phytoplankton and zooplankton population of system (6-3) undergo 
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rapid extinction, whereas the corresponding deterministic system still presents 

obvious periodicity, which is a different phenomenon from that of its deterministic 

system (see Fig. 6.3). Comparing Figs. 6.2 and 6.3, it can be seen that white noise has 

a significant effect on the dynamics of system (6-3), and a large white noise intensity 

can accelerate the extinction of plankton and is advantageous for the termination of 

planktonic blooms. Moreover, it should be emphasized that white noise can not only 

aggravate the emergence of random oscillation, but also change the periodicity of 

plankton density. Therefore, it is worth pointing out that the results from Figs 6.2 and 

6.3 can support the notion that planktonic systems incorporating white noise can 

better simulate plankton blooms than the corresponding deterministic counterparts.  

6.3.2. Impact of impulsive perturbations on the dynamics of system (6-3) 

In order to study how the impulsive perturbations on the dynamical behaviors of 

the system, we control some a parameter values satisfying the conditions of �1
� > 0 

and �2
� +

���� �1
�

���1
� < 0, the zooplankton population of system (6-3) will tend towards 

extinction rapidly, but the phytoplankton population generates periodic oscillation in 

the sense of joint distribution after a period of time and the corresponding 

deterministic system (6-2) shares similar properties, shown in Fig. 6.4. Moreover, 

comparing Figs. 6.2 and 6.4, the dynamical behaviors of system (6-3) are significantly 

altered by controlling the impulsive control parameter value of � �� = 40�. Thus, it 

should be stressed that some critical parameters have a profound impact on the 

persistence and extinction of plankton populations in fluctuating environments. These 

results suggest that the impulsive control parameter value plays a restrictive role in 

the survival of species �(�), which verifies that the system has potential to be applied 

in real-world biological control situations. 
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Fig. 6.3 The stochastic dynamics behaviors of system (6-3) with �1��� = 1.8 + 0.005 sin
��

40
 and 

its corresponding deterministic counterparts with initial value ���0�, �(0)� = (0.5,0.5) , 

respectively. (a)-(b): Blue curves are the extinction of phytoplankton population ����  and 

zooplankton population ���� of stochastic system (6-3), respectively, and red curves represent 

the persistence of phytoplankton and zooplankton populations for its corresponding deterministic 

counterparts, respectively.

 

Fig. 6.4 The stochastic dynamic behaviors of system (6-3) with � = 40 and its corresponding 

deterministic counterparts with initial value ���0�, �(0)� = (0.5,0.5). (a)-(b): the persistence in 

the mean of phytoplankton population ���� and the extinction of zooplankton population ���� 
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of stochastic system (6-3), respectively; (c)-(d): the persistence of phytoplankton population ���� 

and the extinction of zooplankton population ���� of its corresponding deterministic counterparts, 

respectively.

6.3.3. Impact of TPP on the dynamics of system (6-3) 

Finally, the influence of TPP in a periodic environment under impulsive 

perturbations and environmental fluctuations on planktonic blooms was studied. Fig. 

6.5 depicts how the TPP toxin liberation rate �(�) in one period affects the stochastic 

dynamic behaviors of system (6-3), where 0 ≤ � ≤ 1, and the colorbars represent the 

biomass of the corresponding species. Fig. 6.5 clearly shows that the population 

densities of the system (6-3) change periodically and the density of species �(�) 

increases with the value of �, while that of species ���� will rapidly decline and 

finally undergo extinction when �  reaches a critical value �� ≈ 0.2971� . In 

particular, when we select three different values of � and the other parameters 

remain unchanged, as in Fig. 6.2, system (6-3) exists as periodic oscillation solutions, 

and the phytoplankton and zooplankton populations can coexist in a stable state when 

� = 0.06,0.18. For these two cases, one can observe that periodic solutions of system 

(6-3) can fluctuate in a small neighborhood of the periodic solutions of its 

corresponding deterministic counterparts, whereas the overall trend still presents 

obvious periodic oscillatory while considering the effects of impulsive perturbations 

and environmental fluctuations. However, when we continue to increase the value 

of � �� = 0.5�, the zooplankton population will rapidly decrease to extinction, as 

shown in Fig. 6.6. Moreover, Fig. 6.6 shows that the maximum random amplitude of 

the phytoplankton population will increase, while that of zooplankton will decrease, 

and finally declining to zero when � increases. This means that an increase in the 

toxic phytoplankton population leads to massive die-off of zooplankton, depicting an 

unstable situation for some critical values of the system parameters. However, the 

decrease of the toxin liberation rate can reduce the peak of the cyclic breakouts of 

planktonic blooms, but increase the survival of zooplankton. Thus, TPP plays an 
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important role in controlling planktonic blooms. 

 

Fig. 6.5 The effect of TPP on the stochastic dynamic behaviors of system (6-3) with ���� = � +

0.06 sin
��

40
. (a) The persistence in the mean of population  �(�); (b) The persistence in the mean 

and extinction of population �(�).

 

Fig. 6.6 The effect of TPP on the stochastic dynamic behaviors of system (6-3). Panels (a) and (b) 

denote the sample path of phytoplankton �(�) and zooplankton �(�) of the stochastic system 

(6-3) and the periodic solutions of its corresponding deterministic system (6-2) with different ����, 

respectively. ���� = 0.06 + 0.06 sin
��

40
 (green curves), ���� = 0.18 + 0.06 sin

��

40
 (red curves) 

and  ���� = 0.5 + 0.06 sin
��

40
 (cyan curves), and their corresponding deterministic counterparts 

(blue, black and magenta curves). Here, � = 2. 

6.4. Conclusions 

Understanding the dynamic mechanisms of phytoplankton-zooplankton systems 

involving TPP can help guide the control of planktonic blooms, and impulsive 

perturbations and environmental stochasticity can significantly affect real-world 
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ecosystems (Liu and Wang, 2012; Carpenter et al., 2011). Taking these factors into 

account, we proposed a stochastic non-autonomous phytoplankton-zooplankton 

system involving TPP and impulsive perturbations, and studied the dynamics of 

system (6-3) analytically and numerically. By establishing an equivalent system 

without impulses, we initially investigated the existence and uniqueness of global 

positive solutions, and then obtained the sufficient conditions for the extinction and 

persistence in the mean of the system by the comparison principle and Ito's formula. 

In order to prove the existence of positive periodic solutions, the theory of 

Khasminskii and a method based on Lyapunov function construction were employed. 

Numerical analysis verified our theoretical results and further demonstrated that the 

dynamics of the system are intimately associated with white noise, impulsive 

perturbations, and TPP. 

(i) When the densities of white noise are relatively weak, fulfilling the conditions 

of   (�2
� − �� )�� + �����1

� > 0 , �1 > 0, �2 > 0 , and � > 0 , system (6-3) is 

persistence in the mean and has a positive periodic solution, namely, the species 

phytoplankton and zooplankton can coexist in a stable state (see Fig. 6.2). According 

to Figs. 6.1 and 6.2, white noise can affect the distribution of plankton populations. 

Moreover, by enhancing the intensity of white noise, we observed that both 

phytoplankton and zooplankton populations tend towards rapid extinction (see Fig. 

6.3), which are consistent with the analysis of the conditions of �1
� < 0 and �2

� < 0. 

Comparing Figs. 6.2 and 6.3, a high intensity of white noise is disadvantageous to the 

development of plankton populations and increases the risk of population extinction, 

which implies that adjusting the white noise intensity can help control plankton 

population densities. Therefore, controlling white noise is a key factor in the 

termination of planktonic blooms, which is consistent with the results obtained by the 

experimental and field observations (Sarkar and Chattopadhayay, 2003a, 2003b). 

(ii) As impulsive control parameter value of � increases over time, it can be 

seen from Fig. 6.4 that the zooplankton population will undergo rapid extinction, but 

the phytoplankton population can generate periodic oscillation in the sense of joint 

distribution. The impulsive control parameter can change the stochastic dynamic 
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behaviors of the system significantly (see Figs. 6.2 and 6.4). Therefore, this suggests 

that the impulsive parameter value � may play a restrictive role in zooplankton 

survival and has potential application in planktonic bloom control. 

(iii) With increasing toxin liberation rate, the conditions of �1
� > 0  and 

�2
� +

���� �1
�

���1
� < 0 become increasingly difficult to be met. Thus, the zooplankton 

population will tend towards extinction, but the phytoplankton population can 

generate periodic oscillation in the sense of joint distribution (see Fig. 6.5). This 

means that an increase in the toxic phytoplankton population leads to massive die-off 

of zooplankton, depicting an unstable situation for some critical values of the system 

parameters. However, a low toxin liberation rate can reduce the peak of the cyclic 

breakouts of planktonic blooms, but increase the survival changes of zooplankton (Fig. 

6.6). Therefore, TPP may be used as a biological way to control planktonic blooms. 

To sum up, we presents an investigation on the effects of environmental 

fluctuations, impulsive perturbations and TPP on a phytoplankton-zooplankton system. 

Studies on the dynamic mechanisms of phytoplankton-zooplankton interactions have 

been a key topic in theoretical ecology, and can enhance our general understanding of 

real-world aquatic ecosystems. Thus, it would be interesting to further incorporate 

some real-world factors into our proposed model, such as the time-lag effect (Caperon, 

1969), prey refuge (Mullin et al., 1975), and cell size (Hart and Bychek, 2011), and to 

investigate how these factors affect the dynamics of the complex models. We 

recommend this as the focus of future research. 
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Chapter 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

Based on the knowledge and methods of plankton dynamics models, impulsive 

control dynamics and stochastic dynamics, the dissertation adapts the techniques of 

dynamics modeling, dynamics analysis and experimental experiments to study the 

nonlinear dynamics of the growth and evolution of plankton, and discuss the effects of 

some key factors such as population diffusion, impulsive control, environmental 

fluctuations (including white noise and regime switching) and toxins produced by 

TPP on the dynamics mechanisms of the formation and disappearance of the 

planktonic blooms, and predict the dynamics evolutionary processes of plankton 

growth. The main results are as follows: 

(i) To discuss the prevention and control strategies on planktonic blooms, an 

impulsive reaction-diffusion hybrid system was developed. On the one hand, the 

dynamic analysis showed that impulsive control can significantly influence the 

dynamics of the system, including the ultimate boundedness, extinction, permanence, 

and the existence and uniqueness of positive periodic solution of the system. On the 

other hand, some experimental simulations were preformed to reveal that impulsive 

control can lead to the extinction and permanence of population directly. More 

prexisely, the prey and intermediate predator populations can coexist at any time and 

location of their inhabited domain, while the top predator population undergone 

extinction when the impulsive control parameter exceeds some a critical value, which 

can provide some key arguments to control population survival by means of some 

reaction-diffusion impulsive hybrid systems in the real life. Additionally, a 

heterogeneous environment can influence the spatial distribution of plankton density 

and change the temporal-spatial oscillation of plankton distribution. All results are 

expected to be helpful in the study of dynamic complex of ecosystems.  

 (ii) A stochastic phytoplankton-zooplankton system with toxic phytoplankton 

was proposed and the effects of environmental stochasticity and TPP on the dynamics 
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mechanisms of the termination of planktonic blooms were discussed. The research 

illustrated that white noise intensity can aggravate the stochastic oscillation of 

plankton populations density and a high-level intensity of white noise can accelerate 

the extinction of plankton and may be advantageous for the disappearance of harmful 

phytoplankton, which imply that the white noise can help control the biomass of 

plankton and provide a guide to the termination of planktonic blooms. Additionally, 

some experimental simulations were carried out to further reveal that the increasing 

toxin liberation rate can increase the survival chance of phytoplankton and reduce the 

biomass of zooplankton, but the combined effects of those two liberation rates 

produced by TPP on the changes in plankton are stronger than that of controlling any 

one of the two TPP. All results suggest that both white noise and TPP  play an 

important role in controlling planktonic blooms. 

(iii) We developed a stochastic phytoplankton-toxic producing 

phytoplankton-zooplankton under regime switching and investigated how the white 

noise, regime switching and TPP affect the dynamics mechanisms of planktonic 

blooms. The dynamical analysis indicated that both high level of white noise intensity 

and toxin liberation rate released by TPP are disadvantageous to the development of 

plankton and may increase the risk of plankton extinction. Also, a series of 

experimental simulations were performed to verify the correctness of dynamical 

analysis and further reveal the effects of the white noise, regime switching and TPP 

on the dynamics mechanisms of the termination of planktonic blooms. On the one 

hand, the numerical study revealed that the system can switch from one state to 

another due to regime shift, and further indicated that the regime switching can 

balance the different survival states of plankton and decrease the risk of plankton 

extinction when the density of white noise are particularly weak. On the other hand, 

an increase in the toxin liberation rate can increase the survival chance of the 

phytoplankton but reduce the biomass of zooplankton, which implies that the presence 

of toxic phytoplankton may have a positive effect on the termination of planktonic 

blooms. These results may provide some insightful understanding on the dynamics of 
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phytoplankton-zooplankton systems in randomly disturbed aquatic environments. 

(iv) A stochastic non-autonomous phytoplankton-zooplankton system involving 

TPP and impulsive perturbations was studied, where the white noise, impulsive 

perturbations and TPP are incorporated into the system to simulate the natural aquatic 

ecological phenomena. The dynamical analysis revealed some key threshold 

conditions that ensure the existence and uniqueness of a global positive solution, 

plankton extinction and persistence in the mean. In particular, we determined if there 

is a positive periodic solution for the system when the toxin liberation rate reaches a 

critical value. The results from experimental simulations revealed that both white 

noise and impulsive control parameter can directly influence the plankton extinction 

and persistence in the mean. Significantly, enhancing the toxin liberation rate of TPP 

increases the possibility of phytoplankton survival but reduces zooplankton biomass. 

All these results can improve our understanding of the dynamics of complex of 

aquatic ecosystems in a fluctuating environment. 

All these results suggest that population diffusion, impulsive control, 

environmental stochasticity and toxins produced by TPP can significantly affect the 

dynamics of plankton growth, which play a key role in the dynamics mechanisms of 

the formation and disappearance of planktonic blooms. Therefore, it is necessary and 

important to consider the population diffusion, artificial interventions, environmental 

uncertainty and toxic phytoplankton into plankton dynamics models when studying 

and predicting the growth and evolution mechanisms of plankton, which is conducive 

to the better understanding of the interactions and dynamics mechanisms of the 

formation and disappearance of planktonic blooms, and provide theoretical basis for 

the prediction and control strategies of algal blooms. 

7.2. Limitations and Future research 

In this dissertation, we have obtained some interesting results, but considering 

the complexity of stochastic modeling and dynamical behaviors analysis of plankton 

under the effect of environmental fluctuations, there are still some further works in the 
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future to discuss. 

Ø Considering the discrete time-delay or distributed time-delay into the model 

Since the time delay exists in the growth response of some phytoplankton 

populations (Caperon, 1969) and is indispensable for zooplankton population to digest 

phytoplankton population, thus, the introduction of time delay can significantly affect 

the dynamical behaviors of the original plankton systems, which may be a major part 

of the controlling in phytoplankton blooms. For example, the interaction process of 

allelopathic effect. For the stochastic plankton model with discrete or distributed 

delay, whether can we apply some related theories such as the ergodicity theory given 

by Hasminskii, Markovian semi-group theory and Hasminskii's periodic solution 

theory, to study the stationary distribution, and the uniqueness and existence of 

periodic solution of the plankton systems with time delay? which will be an important 

content in our future research.  

Ø Establishing a stochastic plankton dynamics model with Levy noise 

Although the model (5-1) has achieved some excellent results, it cannot describe 

the sudden and devastating disasters that the plankton populations may suffer in the 

nature, such as tsunamis, floods, hurricanes, etc. These disasters can significantly 

destroy the habitat of plankton populations, which may lead to the rapid extinction of 

plankton. To describe the impact of these huge, sudden and devastating disasters, 

therefore, it seems to be more realistic to combine the environmental noise (Levy 

noise) on the basis of the model in this dissertation and study how the environmental 

fluctuations affects the dynamics mechanisms of planktonic blooms. 

Ø The dynamics of a stochastic nutrient-phytoplankton-zooplankton model under 

the influence of environmental fluctuations 

In addition to recognizing the availability of nutrient (nitrogen, phosphorous, etc.)  

and nutrient input are important factors affecting phytoplankton growth (Huppert et 

al., 2002), the litter fall and decomposition processes of dead phytoplankton and other 

litters are also dominant pathways to accomplish nutrients to the aquatic environments. 
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Thus, nutrient input act as a key role in the quick appearance of algal blooms or limits 

their growth. Based on bottom-up and top-down control mechanisms, and considering 

the nutrient recycle and nutrient input in the real aquatic ecosystems, a stochastic 

nutrient-phytoplankton-zooplankton model with environmental fluctuations and TPP 

can be proposed, trying to investigate the effects of nutrient input and TPP on the 

dynamics mechanisms of planktonic blooms  in a fluctuating environment using 

modeling analysis and experimental simulations.  
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Appendix A 

Lemma A1 (Walter, 1997) Suppose that the vector-functions 

���,�� = ��1��, ��,⋯ ,����, ���  and ���, �� = ��1��, ��,⋯ , ����, ���,� ≥ 1, 

satisfy the following conditions: 

(i)  they are of class �2  in �, � ∈ � and class of �1  in ��, �� ∈ �� × � � × �� , 

where � ∈ ��  is a bounded domain with smooth boundary; 

(ii) �� − ��� − ���, �,�� ≤ �� − ��� − ���, �, �� , where ��, �� ∈ �� × � � × � ,

� = ��1,⋯ , ���, and vector-function ���, �, �� = ��1��, �, ��,⋯ ,����, �, ���

is continuously differentiable and quasi-monotonically increasing with respect to 

� = ��1, ⋯ ,��� : ≥ 0, �, � = 1,⋯ , �, � ≠ �; 

(iii) 
��

��
=

��

��
= 0, ��,�� ∈ ��, �� × ��, 

then ���,�� ≤ ���, �� for ��, �� ∈ �� × � � × �� . 

Lemma A2 (Smith, 1999) Suppose that �  and � are positive numbers, a function 

���, �� is continuous on �0,� � × �� , continuously differentiable in � ∈ �� ,, with 

continuous derivatives �2� ������  and �� ���  on �0,  �� × �, and ���, �� satisfies 

the following inequalities: 

��

��
− ��� + ���, ��� ≥ 0, ��, �� ∈ �0,  �� × �, 

��

��
≥ 0, ��, �� ∈ �0,  �� × ��, 

and 

��0, �� ≥ 0, � ∈ �, 

where ���, ��  is bounded on �0,  �� × � , then ���, �� ≥ 0  on �0,  �� × �� , and 

���, �� is strictly positive on �0,  �� × ��  if ��0,�� is not identically zero. 
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Appendix B 

In the following, we consider the following impulsive logistic differential 

equations: 

�

��

��
= ���� − ��,     � ≠ ��

����
+� = ���������            

                                                                                              (�1) 

where � ∈ �+, � and � are positive constants, strictly increasing sequence ��  satisfies 

condition (C4), and ��  � ∈ �, are continuous positive-valued functions such that 

��+���� = ����� for all � ∈ �+, � ∈ �. From condition (C4), we deduce that ��+1 −

�� ≥ � = min�=0,1,2,⋯,p���+1 − ��� , � ≥ 1 . Denote  � = � �1 − �−��� �� ,   � =

� max�=0,1,2,⋯,� max�∈�0,�� �����, and � = max��0, �,��, where �0 is given below. 

Then we have the following useful result.  

Lemma B Every solution ���� = ���, 0, �0�, �0 = ��0� = ��0+� > 0 of the system 

(B1) satisfies 0 < ���� < � for all � ≥ 0. 

Proof For � ∈ �0, �1�, we can obtain that 

���� =
��0

�0�1 − �−��� � + ��−���
. 

Then, it is easy to find that the solution is positive-valued and no larger than 

max��0, �� on the interval. If � ≤ � ≤ �1, then  

���� =
��0

�0�1 − �−��� � + ��−���
≤

�

1 − �−���
= �.                                                  (�2) 

In particular,  0 < ���1� ≤ � , hence, 0 < ���1
+� = ���1��1����1�� ≤ � . Therefore, 

0 < ���� ≤ max��, �� ≤ �  if  � ∈ ��1, �2� , and similar to (B2), we can verify 

that  0 < ���2� ≤ �. In the same manner we can show that 0 < ���� < �   if  � ∈

���
 ,  ��+1�,� = 1,2,3,⋯. This completes the proof of the lemma. 
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Appendix C 

Let ��+�(�)  is the space of �-times continuously differentiable functions 

�: � → � , where �  is a positive integer and 0 < � < 1 , which have � -order 

derivatives satisfying the Holder condition with exponent �, and � = ��1, �2, �3� ∈

����� × ����� × �����,� > � is a positive integer. For some � > 0, let  

�1 = �

�1∆ − � 0 0
0 �2∆ − � 0
0 0 �3∆ − �

�, 
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and 

��������� = �

�1��� , ������, �1��� , ��,�2��� , ��,�3��� , ��� − �1��� , ��

�2��� , ������, �1��� , ��,�2��� , ��,�3��� , ��� − �2��� , ��

�3��� , ������, �1��� , ��,�2��� , ��,�3��� , ��� − �3��� , ��

�. 

Thus, we can rewrite (3-1)-(3-3) in the form 

��

��
= �1�

� + ���, ��, � ≠ ��                                                                                     (�3) 

����
+� = ����� + ���������, � ∈ �.                                                                          (�4) 

The operator �1  has the domain  ���1� = ��: � ∈ �2,��Ω�,
��

��
��Ω = 0� , where 

�2,��Ω� is the Sobolev space of functions from ����� that have two generalized 

derivatives. Functions ���,�����  satisfy  supt����, ������ < ∞ , �����  is 

�-period in � . Denote the spectrum of �1 by σ��1�, then it follows from (Henry, 

1981) that the sectorial operator �1  satisfies Reσ��1� ≤ −�. For any  � > 0, the 

fractional power �−�  is  



 

205

�−� =
1

Γ���
��−��1 ��−1��, 

where Γ is the gamma function. The operators �1
−�  are bounded and bijective, and 

we define �1
�  as ��1

−��−1 , and ���1
� � = ���1

−��, where ��·� is the range of an 

operator, and �1
0  is the identity operator in X. For 0 ≤ � ≤ 1, we introduce the space 

�� = ���1
� � with norm ���� = ��1

���, where, �·�  is the norm in the space � =

����� × ����� × �����. 

From Theorem 9 of (Akhmet, et al., 2006), we have the following lemma. 

Lemma C Assume that the functions �� are continuously differentiable and there 

exists a positive-valued function ���� such that  

sup����≤�
�������� ≤ ����, � ∈ � , 

for some α ∈ �
1

2
+

�

2�
, 1� . Let ���,�0�,� = ��10 ,�20 , �30� ∈ ��  be a bounded 

solution of (C3) and (C4), i.e. 

����,�0��� ≤ �′ , � > 0. 

Then the set ����,�0�: � > 0� is relatively compact in �1+����,�3� for 0 < � <

2� − 1 −
�

�
. 


