
SCHEMA DECISION TREES FOR HETEROGENEOUS JSON ARRAYS

by

Davis Goulet

B.Sc., University of Northern British Columbia, 2018

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

August 2020

c© Davis Goulet, 2020



Abstract

Due to the popularity of the JavaScript Object Notation (JSON), a need has

arisen for the creation of schema documents for the purpose of validating the con-

tent of other JSON documents. Existing automatic schema generation tools, how-

ever, have not adequately considered the scenario of an array of JSON objects with

different types of structures. These tools work off the assumption that all objects

have the same structure, and thus, only generate a single schema combining them

together.

To address this problem, this thesis looks to improve upon schema generation

for heterogeneous JSON arrays. We develop an algorithm to determine a set of

keys that identifies what type of structure each element has. These keys are then

used as the basis for a schema decision tree. The objective of this tree is to help in

the validation process by allowing each element to be compared against a single,

more tailored, schema.
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Chapter 1

Introduction and Motivation

The ever-increasing connectedness of the world has resulted in a vast amount of

machine-to-machine communication. Many applications now involve user au-

thentication and the dynamic updating of content; internet-of-things devices con-

stantly upload data collected to a central server, and web APIs have emerged as a

way for developers to integrate third party services into their applications. Fun-

damentally, the communication and transmission of information is an essential

component of modern software development.

With this, semi-structured data has emerged as the prominent method for struc-

turing the messages used for this communication—largely due to its flexibility and

extensibility. This comes as a result of integrating the structural metadata informa-

tion into the content of the message itself. In this sense, semi-structured data is

often characterized as self-describing. Of this type of data, the JavaScript Object

Notation (JSON) has become one of the leading formats. This format is primarily

based on two data structures: sets of key-value pairs called JSON objects and or-

dered lists of values called JSON arrays. The true flexibility of the format comes

from nesting these structures inside each other resulting in a tree-like structure.
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Due to the fact that messages (i.e. JSON documents) can be received from a

multitude of different sources (oftentimes sources that you do not even have con-

trol over), the need has arisen to first validate the content and structure of a doc-

ument before processing it. Incorrectly formatted documents will, at best, be de-

tected and handled accordingly; at worst they can cause the entire system to crash

or be unknowingly processed and cause logical consistency errors in the applica-

tion or database.

To address this problem, the idea of a schema document emerged as a way

of describing what is considered a valid JSON document. Incoming documents

are then compared against this schema. If their content and structure match that

defined in it, they are passed into the rest of the program to be processed; if not,

they are rejected.

Figure 1.1 illustrates the problem of processing incoming documents with and

without using a schema. Here, a document’s structure is visualised through its

shape, i.e. two circles have the same structure, whereas a circle and a triangle

have different structures. In figure 1.1a, any document received is processed by

the application. Issues may arise if the application is expecting a circle structure

but instead receives an ill-structured triangle document. Comparing this to figure

1.1b, documents are first validated against a schema containing information about

what is an acceptable structure. Documents satisfying these constraints are passed

on to the application.

As creating these schemas are usually tedious and error-prone for humans to

do manually, programs have been created to automate the process (examples being

[2] and [5]). These programs work by accepting one or more JSON documents as

input and generate a schema based on the existing structures found in them. While

these programs do generate valid schemas, they run into ambiguity issues when

documents contain an array of JSON objects with differing structures.

2



Internet

Application

?

(a) An application expecting messages to have a circle structure.

Internet

Schema Application

X

(b) An application that preemptively filters out non-circle structures.

Figure 1.1: An illustration comparing an application using a schema and an appli-
cation not using a schema.

Consider the array of shapes in figure 1.2a, where each element has one of two

possible structure types: square or diamond. Comparing the two types, some parts

overlap (the middle portion), whereas some parts only exist in specific types (the

points of the diamond or the corners of the square). If a schema for this array were

to be generated using current automatic tools, the schema in figure 1.2b would

likely be the result. Here, the portion of the structure that is common to all shapes

is specified as required (denoted in black), with all other parts being specified as

optional (denoted in grey). The reason behind this schema in particular being

generated is that current automated tools work off the assumption that all array

elements should have the same structure, and any deviations from that structure

should be considered optional. These tools do not consider the possibility that

3



[ ]
(a) Array of elements consisting of diamond/square structures.

(b) Generated schema for the array in (a). (c) Shapes that also satisfy the ambiguous
schema in (b).

Figure 1.2: Illustrating the issue with schema design when all elements are as-
sumed to have the same structure.

elements in an array may have different structures that are not related.

While this assumption always results in a valid schema, it also leads to unin-

tended side effects in what other structures the schema also accepts. For example,

the shapes outlined in figure 1.2c also satisfy the schema in 1.2b. They all contain

the portion of the schema that is specified as required with any other components

being part of the optional portion. The main issue here is that the schema in figure

1.2b does not specify the relationship between the different optional components—

resulting in ambiguity. A better option would be to generate two schemas; one

schema for diamonds, and one schema for squares. An element in an array would

then be valid only if it satisfies one of the possible schemas.

One potential solution to this problem could be to apply cluster analysis on

the elements of an array. The result of this clustering process is a set of groups,

where each group contains elements with related structures. A schema can then

be generated based on each group. This problem has previously been explored

in literature; however, previous work has largely only looked at the scenario of

clustering a set containing any JSON documents.

Two downsides exist with this solution. First, the number of groups generated

may not match the number of different types of structures that exist. If two types

4



of structures are very similar to each other, they may get grouped together rather

then be placed into their own groups. Second, an increase in the time it takes to

validate a document may occur. This increase is due to now potentially having to

compare each array element against multiple schemas to determine which one it

satisfies. For example, if there are 100 elements in an array and 10 possible types

of structures, a potential 1000 schema validation attempts may occur.

This thesis introduces a different approach to clustering the elements of a JSON

array. We base this approach off the observation that a JSON array is designed

to be processed as a single entity, i.e. a program takes a JSON array and iterates

over each element—processing it. When all array elements have the same struc-

ture, this is a relatively simple program, as each element is processed in exactly

the same way. When elements have different structures however, the program be-

comes much more complex. Different structures may now require unique ways

of being processed. A common method of specifying an element’s structure is to

include a set of keys within each element whose values identify the type of struc-

ture. We call such keys identification keys. A program can then use these keys to

determine how it should process each element. An example of such a key might

be a version number, where the keys value can be used to determine which version

of a structure an element has.

Using this idea, we cluster the elements of a JSON array by choosing a key com-

mon to all the elements, and partition the elements into a set of groups based on

the value of the key. The main advantage of this approach over previous clustering

methods is that future elements can be assigned to a cluster in constant time. To do

so, a lookup is done on the elements identification keys and, based on their values,

they are assigned to one of the clusters. In the context of schemas, this method

allows each element to be validated against a single schema versus potentially be-

ing compared against multiple schemas. To determine which schema an element

5



should be compared against, we introduce the concept of a Schema Decision Tree

based on decision-tree classifiers. With this, each element starts at the root node of

the tree and moves to a child node based on the value of the key specified at the

current node. This process repeats until the element eventually reaches a leaf node

containing the schema it should be compared against.

To construct this schema decision tree, this thesis designs and implements an

algorithm that takes a JSON array and recursively partitions the elements based

on an operation we introduce called splitting. This operation takes a key that is

common to all elements and partitions them based on what value they have for

that key; all elements with the same value are placed in the same group, and ele-

ments with different values are placed in different groups. As more than one key

may be in common to all the elements, we measure how good a split operation

was by measuring the structural similarity of the resulting groups. This is done

through a calculation based on the Jaccard Similarity Index previously discussed

in literature. Furthermore, this algorithm works recursively, as groups generated

from one split operation may have to be partitioned again. This is to account for

the existence of multiple identification keys.

1.2 Applications

The main motivation for the work done in this thesis is to improve schema gener-

ation for JSON arrays containing JSON objects with differing structures. Thus, the

main application is any problem already involving schema documents. The next

two subsections outline two specific applications that would benefit from better

schema generation.
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1.2.1 NoSQL Databases

One issue with JSON (and semi-structured data in general) is that it can not eas-

ily be stored in traditional relational databases. The reason for this is twofold.

First, its irregular structure means that different documents can contain different

keys. To account for this, a relational table column would have to be created for

each possible key. Null values would then be used for documents not having that

key. Approaching database design this way is not recommended however [6]. Sec-

ond, JSONs tree-like structure does not match the flat table structure found in the

relational model. Existing techniques for storing JSON in relational databases in-

volve either storing the entire document as a single string in one of the columns

or breaking up the tree-like structure and storing each layer separately along with

new fields to keep track of parent-child relationships [7].

To address this issue, another kind of database—commonly known as a NoSQL

database—quickly gained in popularity. The defining feature of this type of database

is that they are able to easily store semi-structured data, as well as provide features

tailored to interacting with / managing it. Of this kind of database, MongoDB is

one of the most prominent. It is built around the concept of storing semi-structured

data in documents contained in collections [8, 9]. Compared to relational databases,

this is analogous to storing rows in tables; the major difference is that a collec-

tion can contain documents with differing structures, whereas a relational table

requires a rigid structure with a set number of specific values. For this reason,

collections in MongoDB are commonly referred to as having a dynamic schema

[9].

While this does give great flexibility in how data can be stored, it also leads

to challenges when designing programs and queries to interact with a collection.

This is because the structure of all the documents in the collection has to be con-

sidered. For example, if a document was entered into a collection with missing
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fields, queries designed to extract documents having those fields would pass over

this document. This is by virtue of the fact that the query requirements did not

account for this ill-structured document. For this reason, MongoDB has a feature

that allows a collection to have a schema defined for it. This schema acts like a

filter to the collection and only allows documents whose structure meets certain

criteria to be entered into it. Improving the schema generation process would be

beneficial in preemptively detecting ill-structured documents.

1.2.2 Similarity Calculations

Another application for better schema generation can be found in the problem of

calculating the similarity between JSON documents. The goal of a similarity calcu-

lation is to take some number of documents and generate a numerical representa-

tion based on some notion of similarity. One common way of doing this is to create

a mapping between related keys found in the documents. The larger the mapping,

the more similar the documents are. A challenge with this approach is how to

handle the scenario of two JSON arrays, as the number of elements in each array

may differ. Not taking this into account can greatly throw off any calculations

even though all the elements in the array have the same structure. To solve this

problem, previous literature first generated a schema for each of the documents

as a way of reducing the elements of an array. Similarity calculations were then

applied to the schemas instead of the documents themselves. Improved schema

generation could be applied here to better capture the different types of structures

found in each array.

8



1.3 Contributions

The work in this thesis has four main contributions.

1. We give a comprehensive overview of XML and JSON. This includes look-

ing at the general syntax, as well as the history and motivation behind their

creation.

2. We define a new problem, related to cluster analysis, based on the idea of

partitioning elements by identification keys.

3. We introduce the concept of a Schema Decision Tree to help validate JSON ar-

rays, and we show how this method of partitioning can be used to construct

this tree.

4. We design and implement an algorithm capable of determining the best par-

tition from which to construct the schema decision tree.

1.4 Thesis Layout

The rest of this thesis is organized as follows. To begin, Chapter 2 overviews what

semi-structured data is and outlines the syntaxes of XML and JSON—the two ma-

jor formats. The history behind each of these is also discussed, along with issues

present in XML that lead to the creation and adoption of JSON. This chapter con-

cludes with a comparison between the popularity of the two formats. Chapter 3

then characterizes and defines the problem addressed in this thesis—namely, bet-

ter schema generation for heterogeneous JSON arrays. We explain the main obser-

vation that this work is based off of and introduce the concept of a schema decision

tree. Based on the problem defined in this chapter, chapter 4 then examines exist-

ing literature involving both JSON and XML. Next, chapters 5 and 6 look at the
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solution we have created. Chapter 5 first discusses the background information

that the solution is based on. This includes how we are measuring the similarity

between JSON objects, as well as a set of criteria for what is considered the best

partition. Chapter 6 then presents an algorithm to compute this partition. To eval-

uate our algorithm, chapter 7 first walks through the algorithm being applied to

a simplified dataset. We then analyze the time it takes the algorithm to run for

varying array sizes, as well as analyze how long it takes arrays of varying sizes to

be validated against the resulting schema decision tree. An analysis of the runtime

complexity is also performed. Finally, this thesis is concluded in chapter 8 along

with a discussion of possible future directions for this research.
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Chapter 2

Overview of Semi-structured Data

A major component of nearly all software applications involves some variation of

storing, manipulating, or transmitting data. Take the example of a banking web

application that makes a request to a server to increase the balance of an account.

In just a single application, the same data is likely being modelled in three different

ways. First, there is the web application itself within the user’s web browser that

has an internal representation of the data it needs. For it to then send a request to

the server, the application has to structure the relevant data in a format that both

the client and server will understand. This involves taking the internally stored

data and representing it in a format that can be serialized for platform indepen-

dence (e.g. a memory pointer cannot be passed in a request since the receiving end

does not have the data stored at the same memory location). The server then pro-

cesses the request by manipulating the data stored in a structured database before

sending a response back.

Data is so important to computer science that entire subfields are dedicated

to studying it in different ways. Database management looks at efficient ways of

organizing, storing, and retrieving data [6, 10]. Data science looks at methods of

extracting patterns and information from potentially unorganized or messy data
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[11]. Big data looks at how to process and analyse large data sets [12]. Parallel

systems looks at methods for processing data simultaneously [13]. Fundamentally,

computer science is a discipline based on data.

2.1 Types of Data

The category of data can be divided into three main types: structured, unstruc-

tured, and semi-structured [14, 15].

Structured data means that the data follows a specific rigid format that has

been predetermined [16]. Having this fixed structure results in data that is ideal at

being stored in a database [14]. In a relational database for example, each row of a

table consists of an n-tuple where the ith element of the tuple has one of the values

specified by the ith column of the relation [6, 10]. This row has a rigid structure

in the sense that it has exactly n elements arranged in a specific order. Swapping

two elements of the row changes their meaning, as each column of the relation

also has a specific real-world context behind what it represents. As all values for

a column follow the same format, the meta-data information associated with it

can be stored a single time outside the table itself. This is in contrast to storing a

copy of it in each row individually. In the context of SQL, this is done through a

data definition language that defines the columns of a table, its connection to other

tables, constraints, data types, etc. [6].

The second type of data is unstructured. This type of data differs from struc-

tured data in that there is no predefined structure dictating what the data consists

of or how it is arranged [12]. Up to an estimated 80% of all data falls under the

unstructured category [17] due to the prevalence of online media formats such as

video, text, photo, and audio. While these formats all have structure dictating how

they encode data in binary, there is no structure regarding what their contents ac-
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tually consists of. To illustrate this, consider the example of a plain text document

[14]. Given a paragraph, specific information may be contained within a sentence;

however, there is nothing outlining where the sentence occurs in the paragraph or

what words were used in it. The same piece of information may even be repre-

sented in two different sentences using completely different words.

Finally, semi-structured data falls in between structured and unstructured data.

While structured data showcased the extreme of rigid guidelines, and unstruc-

tured data showcased the extreme of no guidelines, semi-structured data falls in

between by providing structure through a more flexible format [14, 15]. It is be-

cause of this flexibility that Serge Abiteboul refers to it as irregular data [14]. The

flexibility of semi-structured data comes from including the structural informa-

tion in each instance itself. This way, two instances can have differing structures.

As long as each instance specifies where the common data is located, they can be

treated the same. For this reason, semi-structured data is commonly referred to

as self-documenting [15, 14, 16]; the information needed to interact with the data

is contained within the data itself. This differs from structural data, where the

structural information is stored outside each instance of the data.

To illustrate the importance of semi-structured data, consider the scenario of

having to integrate data related to bank accounts coming from two different bank-

ing sources [14]. Creating a single structured data format that encompasses both

sources is a challenging problem primarily for two reasons. First, while the gen-

eral information related to a bank account is likely to be the same between sources

(eg. account owner, account balance, etc.), some data will differ. One bank, for ex-

ample, may include the field time-since-last-accessed, whereas the other bank may

not. Creating a single data format to encompass both banking sources leads to two

options. Option one is to include all possible fields in the common format, and set

a field as null for any data instance that does not have it. Contrarily, option two is
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to leave the field out and discard it for data that has it. Neither scenario is ideal as

the two data sources are inherently different.

An alternative solution to this problem would be to use semi-structured data.

With this, each data source could maintain its original structure without the need

to combine them together. Two popular formats for representing semi-structured

data are XML and JSON; these are discussed in more details in the following sec-

tions.

This banking example also showcases one of the biggest areas where semi-

structured data is used; that is, in situations where data is transmitted between

machines over a network [14, 16]. In order for two machines (call them A and B)

to communicate, they have to agree on a common format (or “contract”) for how

messages will be sent between them. Machine A needs to know how to send data

that machine B can correctly interpret. Likewise, machine B needs to know what

data is included in a message from machine A and how to process it. One way to

define this communication could be through a hard contract. With this, the exact

structure of a message is set, and both machines know how to construct a message

and extract the information from it. An example of such a contract might be that a

message consists of 20 bits evenly split between two 10 bit values. Now suppose

that machine A wants to add a new field to the message so that it can also send it

to other machines. As machine B is expecting a message with a very specific struc-

ture, any attempts by machine A to change the structure will result in machine B

failing. Thus, machine B would also have to be updated to support the new for-

mat even though the new fields do not affect it. If this communication contract

had been outlined using semi-structured messages, machine A would be able to

include additional fields without it affecting machine B. All the information ma-

chine B needs to work off of would still be included in each message, and it could

ignore the parts it does not need.
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2.2 XML

One of the first major semi-structured formats to emerge was the Extensible Markup

Language (XML). The goal behind this language was to provide a way of arranging

data into structures along with annotations about the data [18]. The creators also

wanted a general purpose format that could be applicable to many types of appli-

cations. In addition, it should also be fast and easy to create concise documents

that both humans and machines could understand [18, 19]. Particular emphasis

was also put on using it to transmit information over the world wide web [18].

To discuss the origin of XML and why it became popular involves first dis-

cussing the history of the web. When Tim Berners-Lee was developing the world

wide web around 1989, he needed a way of marking up documents with hyper-

text (text containing links to other resources that are directly available from the

link itself—usually by clicking [20, 21, 22]). In particular, he needed a format that

would be independent of a particular computer, as previous hypertext packages

were too computer-specific to be used in a global network run on different types

of machines [23].

To solve this problem, he created a computer-independent document format

called the Hypertext Markup Language (HTML). This format had primarily two

functions: (1) a way of specifying hyperlinks in text, and (2) a way of formatting

information for visualization purposes. With this format, an application (ie. web

browser) could be created for any computing system to take an HTML file and

display it to the user. Even today, the HTML format is the ubiquitous way of

displaying information in a web browser.

When Berners-Lee was in the process of creating HTML, rather than inventing

his own format, he chose to base it on a previously established standard called the

Standard Generalized Markup Language (SGML) [23]. This was a standard from

the International Standard Organization (ISO) that outlined a format for defining
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markup languages. SGML allowed for documents to be created that separated the

content of the document from annotations about the content [24, 25]). For example,

the title of a document serves a different purpose then a paragraph; by including

this meta-information in the document itself, whoever/whatever is processing the

document can be aware of what information falls in what category and, as a result,

act accordingly.

The basic structure of an HTML document (and thus an SGML document) con-

sists of a series of elements [25, 23]. For the most part, an element has a structure

defined by

1. an initial start-tag in the format of <TAG-NAME >,

2. followed by some arbitrary content,

3. and closed by an end-tag in the format of </TAG-NAME > . Further, the

TAG-NAME of the end-tag must be identical to the TAG-NAME of the start-

tag for the element to be valid.

Elements can also be nested inside each other as long as each start-tag has a

corresponding end-tag, and that all inner elements are closed before the outer ele-

ments end-tag [26, 25, 24]. For example, figure 2.1 is a valid nesting since the inner

tag is fully contained within the content of the outer tag. Figure 2.2 on the other

hand is not a valid nesting since the inner tag is started within the content of the

outer tag but not closed.

<OUTER−TAG> <INNER−TAG> . . . Content . . . </INNER−TAG> </OUTER−TAG>

Figure 2.1: A valid nested of HTML tags.

<OUTER−TAG> <INNER−TAG> . . . Content . . . </OUTER−TAG> </INNER−TAG>

Figure 2.2: An invalid nesting of HTML tags
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Additionally, elements can have attributes included inside a start tag for data

that is related to the element [26, 25, 24]. For instance, a title tag may have a font

size attribute specifying how large the title should be. Figure 2.3 shows an example

of an element whose start-tag contains one attribute.

<INNER−TAG a t t r i b u t e −name=”value”> . . . Content . . . </INNER−TAG>

Figure 2.3: An element containing attributes.

One of the main distinctions between HTML and SGML involves what is con-

sidered a valid tag name for an element [23]. In SGML, there are no restrictions for

a tag’s name except that it has to consist of characters, begin with a character or

underscore, and contain no spaces; any name satisfying these rules is considered

valid. HTML on the other hand restricts the name of a tag to a small set of specific

strings [26, 23]. The reason for this restricted set is that, in HTML, a tags name has

external influence behind how it is visualized in a web browser. For example, the

< h1 > tag represented a large heading; < p > represented a paragraph of text;

< a > represented an anchor containing a hyperlink. HTML had to restrict the set

of valid tag names in its specification because the companies in charge of the web

browsers had to program this external information into them.

As the world wide web became more popular over time, a need started to arise

for a better format for structuring data. HTML was too limited by its restricted

set of tags to account for all the different data scenarios [23]. Further, having each

HTML tag associated with some aspect of visualization was not needed for the

purpose of strictly structuring data. SGML, on the other hand, was too complex in

what was considered valid syntax [19, 27, 28]. As a result, many software imple-

mentations only ever accounted for a subset of SGMLs entirety. This led to many

implementations not being fully compatible with each other [27]. In essence, both
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HTML and SGML were not suited to being general purpose data formats.

To find a solution, a group known as the SGML Editorial Review Board (later

known as the XML Working Group) was formed in mid 1996 with the aim of cre-

ating a “slimmed-down SGML” [19, 27, 18]. This group consisted of members

such as Jon Bosak from Sun Microsystems, Tim Bray of Textuality and Netscape,

Jean Paoli of Microsoft, Steve DeRose, and other prominent members who either

were experts on SGML or came from various companies in the field [18]. Many of

these individuals had already been working on, and even proposed, more concise

versions of SGML [19, 28]; however, these were contained to more specific applica-

tions and never resulted in widespread adoption or the creation of new standards.

On February 10th, 1998 (about a year and a half after the group’s formation), the

first version of the XML specification was released [18] and quickly gained in pop-

ularity.

Like HTML and SGML, an XML document for the most part consists of a se-

ries of elements each containing a start-tag and corresponding end-tag. Figure 2.4

shows an example of a typical XML file. Here, the library element is known as

the root element since everything else is nested inside it [18]. The content of this

element then consists of the location and books elements. These in turn each have

more inner elements. Further, each book element contains an attribute called id. An

important point to also note is that an element can have multiple inner elements

with the same name; in the case of books, three elements having the name book are

nested within it.

2.3 Moving Beyond XML

From its initial 1.0 specification release, XML would go on to become the dominant

semi-structured data format in the software community [19]. As a result, an entire
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1 <l i b r a r y>

2 <l o c a t i o n>

3 <c i t y>Vancouver</c i t y>

4 <address >123 Park Way</address>
5 </l o c a t i o n>

6 <books>
7 <book id =”472”>
8 < t i t l e >XML in a Nutshell</t i t l e >

9 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

10 </book>
11 <book id =”293”>
12 < t i t l e >The SGML FAQ Book</t i t l e >

13 <a v a i l a b i l i t y >f a l s e </a v a i l a b i l i t y >

14 </book>
15 <book id =”142”>
16 < t i t l e >The SGML Handbook</t i t l e >

17 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

18 </book>
19 </books>
20 </l i b r a r y>

Figure 2.4: A sample XML file containing information pertaining to a library.

ecosystem of tools has been developed around it. Major tools include: XPath (a

query language for finding data within an XML file [29]), XML Namespaces (a way

of preventing collisions between element names in different XML files [30]), and

XML Schema (a way of describing the structure of an XML document for validation

purposes [31]).

Regardless of its popularity, not everyone in the community felt that XML was

the best format for structuring data. One of the main issues with XML stems from

the fact that it is first and foremost a markup language for document formatting

rather then a data format. This distinction can be found in many of the core fea-

tures of XML. Three major ones are discussed next.
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2.3.1 Element vs. Attribute

In the context of markup languages, having a distinction between an element and

an attribute is logical, as attributes can be thought of as properties of the element.

In HTML for example, an element defines the general way the content will be

displayed; attributes can then be added to the element to influence things like font

color, font size, margins, etc.

In the context of only structuring data, this distinction is not nearly important,

as for the most part, elements only serve to arrange data into logical units. To

illustrate this difference, consider figures 2.5 and 2.6 where id is considered an

attribute in one and an element in the other.

1 <book id =”142”>
2 < t i t l e >The SGML Handbook</t i t l e >

3 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

4 </book>

Figure 2.5: An excerpt of figure 2.4 showing one of the book elements.

1 <book>
2 <id>142</id>
3 < t i t l e >The SGML Handbook</t i t l e >

4 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

5 </book>

Figure 2.6: A modified figure 2.5 showing id as an element rather then an attribute.

Both cases make logical sense for modelling the data. Because of this, there is

much debate in the community over what data should be placed in an attribute

versus an element. One option is that elements should be “the essential material

that is being expressed or communicated in the XML” [32]; however, there is no
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hard rules, and much of the choice is left up to the developer. For example, the

title and availability elements could also be modelled as attributes of the book ele-

ments. However, doing this would decrease the readability of the document as all

information is now being stored in a single element.

2.3.2 Support for Arrays

The second issue with XML primarily being a markup language is that there are

no native implementations of common data structures such as arrays. Figure 2.7

shows how a makeshift array can be constructed in XML. An outer element is cre-

ated to act like a wrapper for the array elements. Each inner element then repre-

sents one of the array values. While this method does allow an array to be encoded,

it also requires any people/tools using the document to have this background in-

formation. To illustrate this point, suppose the books element only had a single

inner book element. By just looking at the data, it would be impossible to deter-

mine if books was an array or not without knowing in advance.

1 <books>
2 <book id =”472”>
3 < t i t l e >XML in a Nutshell</t i t l e >

4 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

5 </book>
6 <book id =”293”>
7 < t i t l e >The SGML FAQ Book</t i t l e >

8 <a v a i l a b i l i t y >f a l s e </a v a i l a b i l i t y >

9 </book>
10 <book id =”142”>
11 < t i t l e >The SGML Handbook</t i t l e >

12 <a v a i l a b i l i t y >true</a v a i l a b i l i t y >

13 </book>
14 </books>

Figure 2.7: An excerpt of figure 2.4 showing the books element and its content.
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2.3.3 Restricting an Element’s Content

Finally, XML places no restrictions on what the content of an element can contain.

For the most part, an element’s content consists of either a string or a sequence

of inner elements as shown in figure 2.4; however, this is not a restriction the lan-

guage places on the data, and as a result, a mixture of both can occur and is consid-

ered valid. Figure 2.8 shows a valid XML element that contains a mixture of text

and elements as its content. Again, this syntax is useful in a markup language to

annotate text that appears mid-sentence. As a data format though, it is not needed.

<l o c a t i o n>Located in <c i t y> Vancouver </c i t y> Canada </l o c a t i o n>

Figure 2.8: A valid XML element showing how the content can contain both text
and elements.

2.4 JSON

In 2001, Douglas Crockford was working at a company he co-founded called State

Software. They were attempting to build a web framework for creating dynamic

web pages—an idea that was just staring to emerge in the software community

at the time. Part of this project involved needing a way of structuring data when

transmitting it between the web browser and a server [33]. When considering XML

however, he found that it was an inefficient format because of its lack of data struc-

tures that were common to nearly all programming languages [34, 35]. Instead, he

chose to create a format based on the notation Javascript uses for its data struc-

tures. In this sense, the JSON format is a subset of the ECMA-262 Specification

that Javascript itself is based on [36, 33, 34, 37, 38]. One of the main benefits of this

approach is that it would make parsing JSON very easy on the browser side. When

approaching companies about their framework, they were reluctant to use the for-
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mat because there was no specification attached to it [34, 35, 33]; thus, Crockford

gave it the name Javascript Object Notation (JSON) and created a simple website

(json.org). This website gave a description of what JSON was and provided a sim-

ple grammar outlining the format.

Crockford claims to have “discovered” JSON rather than ”invent” it, as the

main ideas had already existed in various formats before him. For instance, he

knew of Netscape using similar ideas with different syntax as early as 1996 [35].

Crockford’s contributions mainly came in formalizing a specification for it and

giving it a name and website. Besides that however, he did not do any promotion

of the format such as trying to get it adopted at other companies.

JSON’s popularity mainly grew as people came across it and used it for its

simplicity. Because of its small grammar, JSON parsers were quickly created in all

the main programming languages. Further, its two main data structures (sets and

arrays) exist in some form in nearly every programming language; this made it

very easy to encode / decode information [37]. However, Crockford believes the

biggest contributing factor behind its popularity was likely due to its use in AJAX

[35, 33].

2.4.1 AJAX

During the early 2000’s, a series of new tools and techniques were starting to

emerge allowing developers to create more dynamic web applications—similar

to what State Software was doing in 2001. The collective name for this new ap-

proach to web development would become known as Asynchronous Javascript and

XML (AJAX) as a result of a blog post by Jessie James Garrett discussing the new

trend [39].

The goal behind AJAX was to improve the user experience by having the web

page dynamically update with new information received from the server. This
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was compared to the previous approach where an entirely new web page would

be requested for each UI update [39, 40]. For example, Gmail could now refresh

the users inbox seamlessly while the user was reading another email; this gave a

better experience in comparison to the user having to manually refresh it and wait

for a new web page to be displayed.

The basic idea for achieving this was to create a middle man that would act like

a liaison between the web browser and server. Figure 2.9 shows the difference be-

tween the traditional approach (figure 2.9b) and the AJAX approach (figure 2.9a).

In the traditional approach, whenever the web browser wants new information,

it sends a request to the server. The server then returns an entirely new web page

and possibly all of its attached resources (CSS, JavaScript, images, etc) if they were

not cached. Comparing this to the AJAX approach, when the browser makes a

request for new information, it instead calls a JavaScript function that initiates an

asynchronous request. This request being asynchronous is what allows the web

page to still remain active while the request is being processed. Since the web

page will be dynamically updated, the server now only has to return the required

data using a format like XML or JSON. The asynchronous request then receives the

data and manually updates the existing web page’s HTML code.

While AJAX was originally used with XML (the ’X’ in AJAX even standing for

XML), JSON has quickly gained in popularity as a replacement. A large part of

this is due to the synergy JSON has with Javascript and its shared notation for data

structures [33].

2.4.2 JSON Format

JSON is a semi-structured data-interchange format, primarily used for moving in-

formation between different systems. Like XML, JSON is a platform independent

format. This means that different systems can use it regardless of what operating
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system is running, what software is interacting with it, and what programming

language the software was written in [35, 37, 41, 38].

Fundamentally, the format is based on two constructs [37].

1. JSON Object: A set of key-value pairs enclosed within two curly braces. The

order of key-value pairs does not matter. Further, each key must be unique

among all other keys in the object, and a value is accessed by performing a

lookup on the corresponding key.

2. JSON Array: An array of values enclosed within two square brackets. Com-

pared to the JSON object, the order of elements does matter, and a value is

accessed through a lookup on its array index.

While a key is limited to only a character string, a value can be any of the

available data types. This includes the simple data types listed below [37, 38] in

addition to the two complex data types (JSON objects and JSON arrays) discussed

above.

1. Integer: Signed decimal number which may include scientific notation.

2. String: A sequence of zero or more Unicode characters surrounded by double

quotes.

3. Boolean: Either true or false.

4. Null: The empty value designated by null.

This ability to nest objects and arrays within each other is what gives JSON its

tree-like structure so common to semi-structured data. A JSON document then

consists of either a single JSON object or JSON array as the root element.

Figure 2.10 contains an example of a typical JSON document. Here, date, suc-

cessful, and resultCount are examples of key-value pairs with simple data types;
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metadata is a key-value pair whose value is another JSON object, and results is an

array containing two JSON objects as elements. It’s important to note that arrays

in JSON are heterogeneous meaning that all elements in the array do not need to

have the same data type [38].

1 {
2 ”metadata ” : {
3 ” date ” : ”11/17/19” ,
4 ” s u c c e s s f u l ” : true ,
5 ” resultCount ” : 2
6 } ,
7 ” r e s u l t s ” : [
8 {
9 ”kind ” : ”song ” ,

10 ” c o l l e c t i o n I d ” : 585972750 ,
11 ” isS t reamable ” : true ,
12 ” t rackTimeMi l l i s ” : 241562
13 } ,
14 {
15 ”kind ” : ” podcast ” ,
16 ” c o l l e c t i o n I d ” : 394775318 ,
17 ” genres ” : [” Design ” ,” Podcasts ” ]
18 }
19 ]
20 }

Figure 2.10: A sample JSON document inspired by the iTunes Search API [1].

The contents of the JSON document in figure 2.10 are inspired by the results

returned from the iTunes Search API [1] 1—a web API that returns information on

products available in the iTunes store. The main component of the APIs response

is an array of JSON objects, where each object of the array represents a different

product. As iTunes sells more then one type of product (examples being songs,

1Actual results from the API were not included in the thesis due to their sizeable length taking
up multiple pages. Figure 2.10 is instead inspired by the results from the API to showcase the
problem tackled by the thesis in a real world scenario.
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movies, podcasts, etc.), the structure of each object depends on what type of prod-

uct it is trying to model. For example, objects representing songs have a different

structure compared to objects representing podcasts.

2.5 Schema Documents

While the main idea behind semi-structured data formats is that their structure is

flexible in what information can be included and how it is arranged, a need has

still arisen to put restrictions on what classifies a valid structure for within a cer-

tain application. For example, consider the scenario where a document is passed

around to different applications in a distributed system, where each application is

able to modify the document before passing it on to the next application. Once all

the modification have been completed, it would be very beneficial to have a way

of verifying that all the changes have still resulted in a document that the program

knows how to process. The document may syntactically be valid, but its structure

may not be what the program processing it is expecting. If the program were to

process the document, it could potentially produce logical consistency errors or

even crash.

To combat this, the idea of a schema document emerged as a way of specify-

ing what is considered a valid structure for a specific application. Other semi-

structured data can then be compared against this schema to see if their structure

and content match that defined in it. If it does match, the document is considered

valid, and otherwise, it is considered invalid [31, 42].

2.5.1 JSON Schema

The JSON Schema Specification is a working specification that outlines a format for

creating schema documents based on the JSON format. Each schema document
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describes the structure/content that it considers valid. Other JSON documents can

then be compared against the schema to see if their structure and content match.

If it does, the document is considered valid. The JSON Schema Organization is the

organization behind the widely accepted implementation [43]. They are currently

on their ninth draft as of September 2019 with the goal of being standardized by

the Internet Engineering Task Force (IETF) [42].

Figure 2.11 shows part of the schema generated for the JSON document in fig-

ure 2.10—in particular, for the objects in the results array. What this schema out-

lines is that an array object is only valid if all of the keys within it match one of

the five specified. If a key is present in the object, then the datatype of its corre-

sponding value must also match the datatype listed in the schema. Finally, every

object has to have the keys listed in the required section (namely collectionId and

kind) with the others being optional. If an object breaks any of these rules, then the

entire JSON document is rejected, as its structure does not conform to the schema.

This schema was generated using the Quicktype automated program [2]. This pro-

gram is listed as one of the generators on the JSON Schema Organization’s website

[42].
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1 . . .
2 ” Resul t ” : {
3 ” type ” : ” o b j e c t ” ,
4 ” a d d i t i o n a l P r o p e r t i e s ” : f a l s e ,
5 ” p r o p e r t i e s ” : {
6 ”kind ” : {
7 ” type ” : ” s t r i n g ”
8 } ,
9 ” c o l l e c t i o n I d ” : {

10 ” type ” : ” i n t e g e r ”
11 } ,
12 ” isS t reamable ” : {
13 ” type ” : ” boolean ”
14 } ,
15 ” t rackTimeMi l l i s ” : {
16 ” type ” : ” i n t e g e r ”
17 } ,
18 ” genres ” : {
19 ” type ” : ” array ” ,
20 ” items ” : {
21 ” type ” : ” s t r i n g ”
22 }
23 }
24 } ,
25 ” required ” : [
26 ” c o l l e c t i o n I d ” ,
27 ”kind”
28 ] ,
29 ” t i t l e ” : ” Resul t ”
30 }
31 . . .

Figure 2.11: Part of the schema document generated by [2] for the JSON document
in figure 2.10. This schema shows how the results array is getting interpreted. The
array is called Result as an auto-generated title referenced in another part of the
schema that is not shown.
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2.6 Popularity of JSON

Since its initial release in 2001, JSON has slowly become one of the two dominant

formats (the other being XML) for semi-structured data. Further, JSON has likely

overtaken XML as the most popular format based on internet search data.
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Figure 2.12: Data from Google Trends [3] showing the relative interest of JSON and
XML.
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Figure 2.13: Data from Stack Overflow Trends [4] showing the percentage of ques-
tions involving JSON or XML for each month.
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Figure 2.12 shows the popularity of the JSON and XML search terms on Google

Search since 2004. A score of 100 represents the peak popularity of either term,

with all other points being in proportion to it. Likewise, figure 2.13 shows the per-

centage of questions posted to Stack Overflow involving the JSON or XML ques-

tion tags. In general, what these figures show is that JSON has slowly been gaining

in popularity since its creation, while XML has been decreasing in popularity.

As the data does not go back before the creation of JSON, conclusive results

cannot be drawn from it. XMLs large decrease in popularity may have been caused

by influences not related to JSON. For example, in the early 2000s, XML could have

seen exceptionally high popularity due to its novelty and the state of the world

wide web. The sharp decrease in figure 2.12 could then be a result of new trends

emerging, and shifting interests in the development community. Support for this

interpretation also comes from comparing the relatively small interest of JSON in

the late 2010s with XML in the early 2000s; even taking the combination of XML

and JSON at the present date does not match the interest of XML at its peak.
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Chapter 3

Problem Characterization

In the shape motivation presented in Chapter 1, the main issue was that a single

schema was generated for unrelated types of shapes. Consequently, this schema

was ambiguous as it also accepted any combination of the different types. If we

were to instead treat each shape type as a JSON object with a particular struc-

ture, we see that the same problem arises. Existing JSON schema generation tools

work off the assumption that all objects in an array have the same structure, and

thus, generate a single schema by merging together the structures of all the objects.

This process also results in an ambiguous schema as information on the individual

structures is lost.

For example, in the JSON document of figure 2.10, the results array has two ob-

jects with different structures. When a schema was generated using the QuickType

program [2], the two structures got merged together. As a result, objects having the

keys kind, collectionId, isStreamable, and genres are also considered valid, regardless

of the fact that they consist of a combination of both structures. Even worse is

the schema generator in [5] 1 which generates a schema for the entire JSON array

based only on the object in the first position; every other object—regardless if it

has a different structure—is ignored.
1Results are not shown in the thesis due to their length.
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3.1 JSON Arrays and Data Types

The primary issue with existing schema generation methods comes as a result of

treating an array of JSON objects as a homogeneous data structure rather than a

heterogeneous data structure. A homogeneous data structure is a data structure

that contains data of the same type (e.g. arrays in Java or Golang) [44, 45]. In

contrast, heterogeneous data structures can contain data with different types (e.g.

lists in Python or Javascript) [44, 45].

[
5 ,
[ 1 , 2 , 3 ] ,
” array ” ,
true ,
{

” id ” : 123 ,
”on ” : true ,

}
]

(a) Heterogeneous array

[
”XML” ,
”JSON” ,
”SGML” ,
” Java ” ,
”Python ” ,
”C” ,
”C++” ,
”Go” ,

]

(b) Homogeneous array

[
{

”name ” : ”Bob ” ,
”age ” : 35 ,

} ,
{

” id ” : ”123” ,
”name ” : ” Jim ” ,

}
]

(c) Array of unknown type

Figure 3.1: Three JSON arrays illustrating the difference between homogeneous
and heterogeneous data structures.

Figure 3.1 shows three examples of a JSON array. The first is a heterogeneous

array, as it includes a combination of integers, strings, arrays, and objects; the sec-

ond is a homogeneous array containing only strings, and the third is an array of

two objects. This third array could fall into either the homogeneous or heteroge-

neous categories depending on what is considered the data type of a JSON object.

One way to view the data type of a JSON object is to assume that all objects

have the same type; that is, the type of a JSON object is a JSON object regardless of

the contents inside of the object. When viewed this way, the array in figure 3.1c is
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a homogeneous data structure. To construct a schema for the general JSON object

data type then involves taking the union of all possible keys in the objects. This is

how most schema generation tools work due to the fact that it always results in a

valid schema. If an array element is a JSON object, it is valid only if each key in the

object matches one of the keys in any of the objects used to generate the schema.

The issue with this method is that it is possible to have two JSON objects with

no relation to each other. In this scenario, it instead makes sense to treat JSON

objects with different structures as if they were different data types. To illustrate

this scenario, consider two JSON objects: one having the keys city, province, and

country, and the other having the keys title, author, and publisher. It is obvious that

the two objects represent different entities, namely, a location and a book. Thus, it

would be beneficial to treat them as separate data types.

This idea of two JSON objects having different data types captures the princi-

ples found in object oriented programming (OOP). In this paradigm, the object is

the central method of “encapsulating state and behaviour” [46]. This is commonly

implemented through the construction of abstract templates known as classes.

Each class consists of a set of properties used to store data (the state), and a set

of methods used to manipulate data (the behaviour). Objects are then instantiated

from a class, where each object has its own values for the properties. In this re-

gard, all objects created from the same class have the same data type—the class

itself [46]. Two classes can then have the same properties with the same names but

still be treated as different data types.

When converting the data encapsulated within an OOP object directly to a

JSON object, this data type information is lost leading to the creation of hetero-

geneous arrays. The receiving end of the JSON object is then responsible for pro-

cessing each object with the assumption that it knows the data type of the object.

In this thesis, we are assuming that each element of the array given as input
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consists of a JSON object that is associated with a particular structure type. A struc-

ture type represents a particular structure a JSON document can have, along with

some external reason for why that information is grouped together. Two structure

types can have similar structures but still be considered different structure types.

This is due to the different meaning behind what the structures represent. For ex-

ample, as discussed in section 2.4.2, the iTunes Search API returns data containing

a JSON array, where each object in the array represents a type of product available

in the iTunes store. All objects representing the same type of product have very

similar structures, as that structure is used to model that product.

3.2 Problem Overview

A better approach to schema design for JSON arrays would be to generate a schema

for each of the possible structure types. An object in an array would then be valid

if it satisfies at least one of the possible schemas. The benefit of this approach is

that it reduces the chance of ambiguity as keys belonging to different types are

no longer being mixed together in a single schema. If an object now tries to mix

together two structures (as those in the shape example in figure 1.2c), it would be

rejected as it does not satisfy the schema for either type.

A potential issue with this method is that it relies on the structure type of each

object being known in advance. If this information is not known, then the problem

becomes significantly more challenging. This is because there is no completely

accurate method of deducing what structure type an object is trying to model—

largely because objects may contain optional keys. If two objects have different

keys, it cannot be determined whether they represent different structure types or

the same type. In the second case, the differences between their structures are due

to them including different optional keys. For example, the two objects in figure
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2.10’s results array may actually be the same structure with different optional keys.

Without having this external information to influence the decision, any method

can only guess with varying confidence what structure type an object has.

One way to avoid this issue is to draw from the existing field of cluster analysis

[47]. The goal of this field is to “divide [a] set of objects into homogeneous groups

[such that] two arbitrary objects belonging to the same group are more similar to

each other than two arbitrary objects belonging to different groups” [48]. Cluster-

ing algorithms could be applied to a set of objects to partition them into a set of

groups. A schema could then be generated for each group. The assumption behind

this method is that two objects with the same structure type should have structures

that are more similar compared to two objects having different structure types.

This avoids the issue of needing to identify each object’s type, as most clustering

algorithms work off similarity calculations that compare the objects structures.

Applying clustering algorithms alone does not guarantee that each structure

will be identified. If two types of structures are very similar to each other, it is pos-

sible that clustering algorithms may place the objects into the same group. Any

differences between their structures would then be considered optional. How of-

ten this occurs largely depends on the number of groups generated in the cluster-

ing process. Regardless, this method does improve the accuracy of a schema as

multiple tailored schemas are generated rather then a single schema.

Another downside to this approach is that it may come with a decrease in

performance. With a single schema (as in the shape motivation in figure 1.2b or

the JSON schema in figure 2.11), each object only has to be compared against one

schema to determine its validity. By generating a schema for each possible struc-

ture type, an object may have to be compared against multiple schemas to deter-

mine which one it satisfies (if any). For example, if there are 1000 objects and 10

different schemas, up to 10000 schema validation attempts may be performed.
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3.3 Driving Observation

We introduce a different approach in this thesis based on the observation that het-

erogeneous JSON arrays usually contain a set of keys within each object for the

purpose of identifying its structure type. We will call these keys identification keys.

For example, each object may have an identification key containing a version num-

ber in scenarios where the format has changed over time. This is the major differ-

ence between an array of JSON objects and a collection of random JSON objects—

the array is designed to hold related content and be processed as a single unit.

This assumption of the existence of identification keys comes from JSON being

a data interchange format for transmitting information between two machines. Be-

cause of this, a program has to exist on the receiving end to accept the JSON doc-

ument and automatically process it. With a homogeneous array, this is a simple

program as each object has the same data type and can be processed in the same

way. When working with a heterogeneous array, different objects may have to be

processed in different ways. In the iTunes example, song and movie objects con-

tain different keys representing different concepts. How a program processes a

song will be different from how it processes a movie.

One alternative to identification keys could be to hardcode a set of key lookups

into the program. This action is performed before deciding how to process an

object. Based on which keys are present in the object (i.e. considering only if a

key is present or not rather then looking at the value of a key), the program would

process the object accordingly. For example, objects with keys A and B would

be processed one way, whereas objects with keys C and D would be processed

another.

This approach has two disadvantages. First, additional key lookups have to be

performed on each object to check the different scenarios. Second, this method is

not “future proof”. For example, suppose that a new structure type with keys A, B,
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and E is added in the future that requires different processing compared to objects

with just A and B. Not only would every program have to be manually modified

to account for this new structure, missing a program would lead to unintended

errors. Objects with keys A, B, and E will be processed as if they only had keys A

and B. Over time, this method will likely lead to large if-else chains that are needed

to check all possible edge cases that arise. Thus, the easiest method to identify an

objects structure is to use identification keys.

3.4 Schema Decision Trees

In both the clustering approach and the approach discussed in the previous sec-

tion, the result is a set of groups that partition an array of JSON objects. A schema

can then be generated for each group. While both methods ultimately result in a

set of schemas, the second approach has an advantage in that it also determines the

identification keys of the array. In the traditional clustering approach, this infor-

mation is unknown, as each group may not correspond to a single structure type.

Having this information is beneficial because a schema can be generated for each

structure type, and all objects of that type can be validated against that specific

schema. This combines the advantages of the other approaches; each object is only

compared against a single schema, but that schema more accurately represents one

of the possible structure types.

To determine which schema an object needs to be compared against, we in-

troduce the concept of a Schema Decision Tree—based on the idea of decision-tree

classifiers. This type of classifier consists of a tree structure where each leaf node

is associated with a class, and each inner node is associated with a decision. The

process of determining which class a piece of data falls under consists of starting

at the root node and working down through the tree. At each inner node, the data
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is compared against the decision at that node; the result of the decision then effects

which child node the data moves to next [6].

Similar to decision-trees, a schema decision tree is a tree structure that holds

information about the identification keys of a given array as well as the schemas

for the different structure types. Within this tree, each leaf node contains one of the

possible schemas. Each inner node contains a decision involving one of the iden-

tification keys. This decision is based on the value of the given key, where each

possible value is associated with one of the child nodes. An object only needs to

compare its values for the specified keys against those found in the tree to deter-

mine which schema the object should be compared against.

[J1, J2, . . . ,Jn, ]

. . .

Ji

S1 S2 S3 S4 S5

(a) Validating a JSON array through a linear search approach.

[J1, J2, . . . ,Jn, ]

. . .

Ji
S1

wrapperType = “audiobook”

S5

kind = “tv-episode”

S4

kind = “feature-movie”

S3kind = “song”

S2

kind = “podcast”

wrapperType = “track”

(b) Validating a JSON array using a schema decision tree. This tree is part of the final
schema decision tree generated for the iTunes Search API.

Figure 3.2: Comparison between validating an array through a linear search ap-
proach versus validating an array using a schema decision tree.
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Figure 3.2 shows an array of objects being validated using the two different

methods. In 3.2a, each array object Ji is compared against the first schema. If

the object satisfies the schema, the program moves on to the next object in the

array. If the object does not satisfy the schema, the program compares it against

the second schema. This process repeats until the object eventually satisfies one of

the schemas or is rejected. With the Schema Decision Tree in 3.2b though, a lookup

is first performed on the key wrapperType. If that key does not exist or its value

is not one of the possibilities outlined, the object is rejected. Otherwise, the object

moves down the tree based on the value of the key. This process repeats until the

object eventually reaches a leaf node containing the schemas it should be compared

against.

3.5 Problem Statement

The problem explored in this thesis is improving automatic schema generation for

heterogeneous JSON arrays. To do this, we aim to first determine a set of keys that

identifies an object’s structure. A schema can then be generated for each type of

structure that more accurately reflects its content. Based on these keys and result-

ing schemas, we generate a schema decision tree to help in the validation process.

In order to determine an array’s identification keys, we introduce a variation of

cluster analysis based on an operation we define called splitting. Let the notation

val(k, J) represent the value of the key k in JSON object J. A split operation on a

group of objects 2 g is then defined by choosing a key k common to all the objects

in g, and partition g into g1,g2, ...,gn such that the following two properties are

satisfied.

2In this context, a group in considered an array where an objects index position is ignored.
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1. ∀J1, J2 ∈ gi : val(k, J1) = val(k, J2)

2. ∀J1 ∈ gi, J2 ∈ gj, i 6= j : val(k, J1) 6= val(k, J2)

This definition says that based on the value of this key k, the objects are par-

titioned into at least one group. All objects with the same value for the key are

placed in the same group (property 1), and objects in different groups have differ-

ent values for the key (property 2).

Applying the split operation one time assumes that a single identification key

exists. As we have seen from the iTunes example in figure 3.2b though, this is not

a valid assumption. Based on this, we define two issues that have to be addressed.

1. More than one identification key may exist. For example, the combination of

two keys may identify an objects structure.

2. An identification key may only be present in a subset of the objects. For

example, one identification key partitions the objects into a set of groups.

A second identification key then exists for one of these groups to further

partition it. This key may only be present in the objects of that group, and

not in the objects of other groups.

As a result of these issues, any algorithm designed to determine a groups iden-

tification keys needs to be able to recursively apply the split operation; that is,

further apply the split operation to one or more of the groups generated from an-

other split operation. Applying a recursive solution to this problem resolves the

aforementioned issues. For issue one, the split operation would be applied to one

of the keys. Each of the resulting groups could then be partitioned again based on

the second key. This is equivalent to first partitioning on the second key and then

on of the first key. In both cases, the result is a series of groups having the same
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values for the given keys. Furthermore, issue two is solved because the split oper-

ation could be applied to one group in particular. All other groups, not having the

second identification key, would be left alone.

While the split operation tells us how to partition the objects for a given key

k, it does not tell us how to choose this key. Contained within the objects may be

many potential options for k with only a few of these being used for identification

purposes. Other keys may just be common to all structure types. Thus, we need

a way of determining whether a key falls under the identification key category or

the non-identification key category. To solve this problem, we use the assump-

tion that objects with the same structure type should have more similar structures

when compared to objects with different structure types. To illustrate this concept,

suppose all objects have two keys: version and date. Splitting based on the version

key should result in groups where objects in the same group have similar struc-

tures. On the other hand, splitting based on the date key should result in groups of

random objects, as there is no connection between the keys value and its structure

type.

Just considering this assumption alone is not enough to determine if a key is

used for identification purposes. Consider a scenario where all objects in a group

contain an id key that acts like a unique identifier (like a primary key in a relational

database). Due to being unique, splitting on this key results in a partition where

each object is placed into its own group. By only going off the assumption that

splitting on an identification key results in groups of similar objects, id should

be used for identification purposes. Each of the resulting groups has a perfect

similarity score due to only containing a single object (i.e. there is no variance

in the structure of the objects when the group only contains a single object). For

this reason, maximizing the similarly of objects in the same group is not sufficient

for determining whether a key is an identification key. The number of groups
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generated also has to be considered.

Another problem arises if we were to instead strictly focus on trying to mini-

mize the number of groups. By not considering a group’s similarity anymore, the

best way to partition the objects would be to simply not partition them at all, and

instead, leave them in a single group—regardless of if they have the same struc-

ture type or not. This effectively renders no results, as we are back to generating a

single schema for the entire array.

In order to generate useful results, a balance between maximizing the similarity

of each group and minimizing the number of groups needs to be found. To do

this, we introduce a similarity threshold T that represents the minimum similarity

a group must satisfy to be considered valid. This allows the best split to be the

one with the minimum number of groups such that the similarity of each group is

above the threshold.

Furthermore, having a similarity threshold provides a base condition for when

to stop recursively splitting. If a split operation results in all but one group being

above the threshold, only that one group needs to be further partitioned. The rest

of the groups can be left alone, as they have all reached the base condition.

3.6 Assumptions

3.6.1 Common Structures

Related keys have the same name between objects. This removes the need to con-

sider semantic differences when comparing keys. For example, the keys latitude

and lat are assumed to have no relation to one another even though they are se-

mantically related (one is an abbreviation of the other).

Further, related keys will appear in the same location between objects. This

removes the need to match sub-structures that appear in different locations. For
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example, one object containing the keys street, city, and country in the root object

and another containing the same keys nested within an address object are assumed

to have no relation to one another.

We believe these assumptions to be valid because all objects in an array are

originating in the same document from the same source. If a single program is

automatically creating the document, it should have common formats for repre-

senting information. Furthermore, the document is designed to be processed by

a single problem. This means that the program needs to know which keys con-

tain certain information and where they are located in the document. Achieving

this can only be done using common names for keys and storing keys in common

locations.

3.6.2 Existence of Identification Keys

Each object is associated with a particular structure type and has a set of keys

that identifies its structure. The aim of this thesis is to then identify such keys.

Further, we assume that two objects of the same structure type have more similar

structures compared to objects of different structure types. The reasoning behind

this assumption was discussed in sections 3.2 and 3.3. We leave the possibility of

removing this restriction as future work, and we discuss a possible method on how

this could be done in section 8.1.

3.6.3 Complete Input Data

In order to generate the schema, we assume that the input data is complete in the

sense that all possible structure types are included in array. In addition, all optional

keys related to a structure type are included in at least one object of that type.

We believe this assumption to be appropriate because a schema cannot be gen-
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erated for data that is unknown. If we assume incomplete data (i.e. the data does

not include all types of structures), then the possibility arises of the schema reject-

ing objects that should be considered valid. We cannot automatically determine if a

structure that failed to validate against the schema was because the schema did not

include its structure type or if it actually was ill-structured. The only other option

could be to forward invalid objects to an admin to manually decide which scenario

it falls under. Regardless, there is no way of dynamically updating a schema, as

doing so defeats the purpose of having a schema in the first place.

3.6.4 Array of Objects

The JSON array given as input contains only JSON objects as elements. Each object

can have an arbitrary number of keys with arbitrary data types and be arranged in

an arbitrary nested structure.

The reason for this assumption is that each element in an array falls into one of

three categories.

1. The element is one of the simple data types (integer, string, etc.).

2. The element is a JSON array.

3. The element is a JSON object.

In the first category, a schema can be easily generated by looking directly at its

data type. In the second category, the schema for that element would be computed

separately from all other elements—including other JSON arrays. The reason for

this is that we cannot say if two arrays contain the same identification keys or not.

As such, we do not focus on this type of element as generating a schema for it

forms an identical sub-problem. By improving schema generation for an array of

JSON objects, we inadvertently improve schema generation for elements that are

arrays themselves. Finally, the third category is the topic explored in this thesis.
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Based on our observations, the vast majority of situations have an array consist-

ing of either all simple data types or all JSON objects. As computing the schema of

an array of simple data types is trivial, we focus on improving schema generation

for an array of JSON objects, as that is the core problem.
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Chapter 4

Related Works

To our knowledge, no previous work has directly looked at the problem of schema

generation for heterogeneous arrays contained within JSON documents. Thus, the

works analyzed in this chapter mainly fall into the two categories of general clus-

tering of semi-structured data and software tools involving schema generation.

Section 5.1 in the following chapter further discusses different similarity calcula-

tions used; the focus of this chapter is instead on the big picture problem.

4.1 Related Works Involving JSON

The first related work is by Izquierdo and Cabot, and it focuses on generating a

UML-like model for a collection of JSON documents [49]; in particular, documents

returned from the various endpoints of a web API. The goal of their work is to

help developers better understand and visualize the global data model hidden be-

hind the API. Developers do not usually have direct access to this model. Instead,

they interact with it through overlapping snippets of data returned from the APIs

endpoints. By piecing together these related snippets, the authors hope to better

understand the entire data model. The running example they use throughout their

paper is a transportation API. In this API, one endpoint returns identifiers for the
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closest train stops to a given location. These identifiers can then be passed into

a second endpoint to get more details on each stop. Although the information

returned from the two endpoints is different, it is still related due to a common

application domain.

Their algorithm works in three stages. First, each JSON document is converted

into a non-JSON representation they call a model format. Secondly, all the models

from the same endpoint are combined together to create a new model. The dif-

ference with this new model is that it captures the structural variation present in

the documents. For example, some documents may contain optional keys not in-

cluded in other documents. Finally, models from the same endpoint are combined

together based on overlapping substructures. The result of this process should be

a complete view of how the information and endpoints are connected.

This work is then the bases for their online tool called JSONDiscoverer [50].

Of particular note is the first stage where they extract a single schema for a JSON

array. Like other schema generation mechanisms, their tool considers all JSON

objects to represent the same structure type and only generates a single schema for

all of them.

In Klettke et. al.’s work, they develop a schema extraction algorithm targeted

at collections of JSON documents found in NoSQL databases [51]. The first step

of their solution involves taking a group of JSON documents and building a tree-

like graph based on them. The purpose of this graph is to summarize the parent-

child relationships of all the key-value pairs, as well as track which documents

each relationship occurs in. Based on this graph, a schema can be generated that

accounts for all structural variations (e.g. optional key). In addition to this, the

generated graph can also be used for determining structural outliers. These are

defined as patters of keys occurring in only a few of the documents. The database

admin can then use this structural outlier information to classify if the documents

49



are ill-structured or not. Finally, this paper discussed a series of calculations for

measure the similarity of groups of JSON documents. This is further discussed in

section 5.1.

One point of significance briefly discussed in this paper is a preprocessing stage

where the document collection is partitioned into smaller groups based on some

key (date, timestamp, etc). Their algorithm can then be applied to the resulting

groups to improve the accuracy of the generated schemas. This idea is similar to

that presented in this thesis; however, they only mention it as something that can

be done if those keys are already known. They do not discuss any ways of actually

determining said keys.

Next, Spoth et. al. present an OLAP tool called SchemaDrill [52]. The aim of

this tool is to help users visualize a collection of JSON documents. From this vi-

sualization, users can then create a relational mapping of the documents. Their

application works by first displaying a list of all the keys whose value is not a

JSON object or array (i.e. the leaf nodes of the tree). Furthermore, each key in-

cludes the path from itself to the root node. Users then groups together related

keys with these groups forming the bases of a set of relational tables. As the num-

ber of keys in the list could range in the hundreds or thousands and overwhelm

the user, their application preemptively groups the keys based on two calculation

they define. These calculations are called correlation and anti-correlation. Cor-

relation looks at how often two keys appear in the same JSON object. Keys ap-

pearing frequently together should then be placed in the same group. Similarity,

anti-correlation looks at keys that rarely occur together, and instead, tries to place

them in different groups.

While some of the ideas in this paper carry over to our work (such as how they

represent keys), the focus is on flattening JSON documents into relational schemas

rather then on semi-structured data schema generation. A consequence of this is
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that the authors do not give any special consideration for JSON arrays. In fact, they

treat arrays as normal JSON objects where each element in the array is assigned a

key; the name of this key is just the index of the element in the array.

In [53], [54] and [55], Bazizi et. al. look at the problem of schema generation for

very large JSON datasets (in the order of millions of documents). Because of how

time consuming it is to sequentially process a collection this large, they develop an

algorithm capable of generating a schema in parallel using Apache Spark and the

MapReduce paradigm. Their algorithm works in two phases. In phase one (the

map phase), each JSON document has its values reduced down to their datatypes.

For example, the JSON object {”A”:123} is reduced down to {”A”:Num}; similarly,

{”D”: [123, true, ”abc”]} is reduce down to {”D”:[Num, Bool, Str]}. Phase two

(the reduce phase) then takes these simplified documents and repeatedly merges

them together in a process they call fusing. Fusing works by taking the union

of all datatypes at each layer of the documents. If the same key appears in two

documents with two different data types, the key gets assigned the union of the

two data types. The result of phase two is a single simplified document capturing

all the possible structures in the collection. A schema is then generated from this

document.

When their algorithm reaches an arrays, it is first passed through a simplifica-

tion process that reduces the elements datatypes down to their simplest form. This

is done by combining all occurrences of the same datatype together. For example,

an array containing two strings and an integer gets simplified down to one-or-

more strings and an integer. When there is more then one JSON object in the array,

they are merged together into a single JSON object. So while this work does con-

sider heterogeneous arrays, they treat all JSON objects as the same type and merge

them together.
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Next, Perzoa et. al. define a formal definition of the syntactic and semantic

meaning behind the JSON Schema format [43]. The purpose of this formal defini-

tion is to provide a uniform way for applications to interpret schema documents—

especially involving some of the gray areas where interpretation of a schema doc-

ument may vary between implementations (e.g. recursive schema definitions). To

create this formal definition, they create a grammar for the JSON Schema specifi-

cation outlining how the specification’s features should interact with each other.

Finally, DiScala and Abadi design an algorithm to transform hierarchically struc-

tured JSON documents into flat structures suitable for relational databases [56].

Their algorithm works by applying unsupervised machine learning to group to-

gether keys that likely correspond to relational entities. This way, all instances

where those keys occur together can be stored in the same relation.

In order to detect related keys, they first perform functional dependency de-

tection between pairs of keys. The purpose of this is it look for scenarios where

the value of one key effects the value of another, as this may correspond to pri-

mary key–foreign key relationships. Phase two of their algorithm then looks for

reoccurring substructures. Finally, phase three generates a relational schema that

maps substructures to tables and connects them through foreign key relationships.

Regarding arrays, this work treats them as independent sub-problems that are re-

cursively computed.

4.2 Related Works Involving XML

In addition to the above literature on JSON, it is also advantageous to examine

other related work based on different semi-structured data formats. In particu-

lar, we now look at XML due to its widespread popularity in both industry and

academia. While the two formats are not identical in how they represent informa-
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tion, they are similar enough such that work done for one format is still applicable

to the other in some fashion.

To begin, one prominent area of research is developing clustering algorithms to

group related XML documents together. Motivation for this can be found in appli-

cations such as document retrieval systems. These system work by accepting one

or more XML documents as input and return other documents related to them.

As discussed in the overview paper by Piernik et. al., most clustering applica-

tions involve three phases [57]. First, a preprocessing stage occurs to transform the

text-based XML documents into more computationally compatible formats. For

example, an XML document may be turned into a tree data structure that is imple-

mented for a specific programming language. Second, a similarity calculation can

be developed as a way of measuring how related two or more XML documents

are to each other. Finally, a clustering algorithm is applied that uses this similarity

calculation to group related documents [57].

This problem has been thoroughly explored under the context of different sim-

ilarity calculations and clustering algorithms. A few examples of such works in-

clude [47] where they use a tree-edit distance calculation and hierarchical agglom-

erative clustering to group XML documents. [58] also takes a tree-edit distance

approach, except they restrict edit operations to only leaf nodes and not inner

nodes. In [59], the authors also consider the semantic similarity between XML tags

through the use of the WordNet English lexical database. Similarly, [60] considers

the semantics of entire sub-trees rather then just elements themselves. Finally, [61]

approaches the problem by first grouping together all nodes at each level of the

tree. These level structures, as the authors call them, are then compared together

rather then the trees themselves. [62] expands on this idea but instead considers

the edges of the trees rather then the nodes.

53



Related to clustering, [63] and [64] both look at grouping together XML schemas

rather than XML documents. The goal behind their work is to reduce the num-

ber of schemas in a collection by merging related schemas together. To determine

which schemas should be merged, the authors apply a clustering algorithm to cre-

ate groups of related schemas. The similarity calculation they consider here is

based on both the syntactic and semantic aspects of a tag’s name. All schemas

in a group are then merged together into a single schema. This approach can be

recursively applied depending on how many schemas is desired.

The final area of related work discussed in this chapter deals with the prob-

lem of duplicate detection. Based on data cleansing, this problem looks to remove

duplicate elements that appear within an XML document. In terms of JSON, this

problem can be thought of as the removal of duplicate objects in an array. In [65],

two elements are classified as duplicates if they have the same parent element, the

same tag name, and similar content. Their algorithm works through a top-down

approach. When it comes across two elements having the same parent element and

same tag name, their contents are compared using syntactic and semantic similar-

ity calculations. This differs from the approach taken in [66]. In their algorithm,

they instead employ a bottom-up approach by first finding matching leaf nodes.

Substructures are then built up from these leaf nodes to see how similar their par-

ent elements are.

4.3 Related Works Overview

As discussed in this chapter, all related works have either dealt with the general

problem of schema generation, clustering of semi-structures data, or measuring

the similarity of JSON or XML documents. The closest work we have found to the

problem discussed in this thesis is by Klettke et. al. in [51]. In their paper, they
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briefly discuss how the accuracy of a schema can be improved by first partitioning

the documents based on some key. However, they only mention this partitioning

as something that can be done if the key is already known. Furthermore, they do

not consider many of the related problems explored in this thesis. These problems

include actually determining identification keys, connecting the resulting schemas

together (e.g. schema decision tree), or multiple identification keys existing.
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Chapter 5

Solution Details

Based on the problem definition in chapter 3, the main issue to address is parti-

tioning an array of JSON objects into a set of groups by recursively applying the

split operation. The smallest set of groups, such that each group has a similarity

score over a given threshold, is then the best partition. A schema decision tree can

then be generated based on it.

5.1 Syntactic Similarity Scores

The first issue to discuss in our solution is defining the concept of similarity in the

context of JSON objects. A similarity score (or similarity measure) is a function

that takes two or more items as input and returns an integer representing the simi-

larity between them [67]. What similarity is defined as depends on the application

and what type of data the items consists of. To illustrate, consider an application

involving 3D coordinates. One way to measure the similarity between two points

could be to take the euclidean distance between them. Another method could be

to measure the angle between two lines generated by connecting each point to the

origin. Both of these calculations, however, are restricted to this type of data and

could not be used to measure the similarity of semi-structured data without first
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transforming it.

Creating similarity calculations tailored to semi-structured data has been an ac-

tive research problem ever since the concept first emerged. Most of the calculations

created can be classified into either the semantic or syntactic categories.

Syntactic calculations focus on measuring the differences in how the data is

arranged in structures. They usually assume that two keys are related if they have

the same name and not related if they have different names. Similarity is then

based on how often the same keys appear in comparable locations. In figure 5.1 for

example, the keys firstName and lastName are nested within the name key; however,

they could just as easily be placed directly in the author key without the meaning

of the rest of the document drastically changing. Syntactic calculations take this

structural information into account and would likely score this scenario higher

than if firstName and lastName had instead been nested within the location key.

1 {
2 ” l o c a t i o n ” : {
3 ” c i t y ” : ”Vancouver ” ,
4 ” country ” : ”Canada”
5 } ,
6 ” author ” : {
7 ” id ” : 1753 ,
8 ”name ” : {
9 ” firstName ” : ” John ” ,

10 ”lastName ” : ”Smith”
11 }
12 }
13 }

Figure 5.1: JSON document in text-based format.

On the other hand, semantic calculations focus on measuring the differences

between the meaning of the data. Given two keys, these calculations look at prop-
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erties such as their names, values, and locations when trying to measure how simi-

lar they are. Semantic calculations are particularly useful for comparing data orig-

inating from different sources. Different companies often have different naming

practices. Thus, assuming two keys are related only if they have the same name

is no longer sufficient. For example, one company may use the keys latitude and

longitude, whereas another company may use the common abbreviations lat and

long. There is obviously a shared meaning behind what these keys represent even

though they are syntactically different. Semantic calculations look to identify this

commonality.

As a result of key names in JSON being restricted to strings, semantic calcula-

tions are significantly harder to create due to the involvement of human language.

These calculations have to account for different scenarios such as abbreviations (id

vs. identification), synonyms (city vs. town), conjoined words (e.g. firstName),

etc. Furthermore, common techniques used in natural language processing are

based on large data sets. By comparison, semi-structured data often only consists

of a small number of keys. Additional information behind the meaning of the data

may be provided through external resources. For example, one of the keys in the

iTunes Search API data is artworkUrl60 which contains a URL for related artwork

having a size of 60x60 pixels. This meaning behind the key represents is only pro-

vided through external developer documentation not accessible to the similarity

calculation. Even if the documentation is provided—and even exists in the first

place—the formats of these documents range widely with no common page struc-

ture or content. Thus, semantic calculation have to try to extract this information

from the key’s name alone.

For the purpose of this thesis, we are only interested in syntactic similarity cal-

culations. The reason for this is that the primary purpose of a schema document is

to validate the structure of other JSON documents. This involves making sure that
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specific keys appear in specific locations and have specific data types. Their focus

is not on trying to match common meanings as semantic similarity calculations do.

5.1.1 Tree-edit Distance

One of the popular similarity calculations for semi-structured data is the tree-edit

distance. This calculation is based on the inherent tree-like structure that results

from nesting information inside other information [68, 69, 70, 47]. Each time this

nesting occurs, a parent-child relationship emerges that can easily be modelled in

a tree. For example, figure 5.2 shows the JSON document in figure 5.1 as a tree

structure. At the top level, each JSON document consist of a single nameless root

object. This becomes the root of the tree and is given a default name of root. Nested

directly within this root object are the location and author keys, and appropriately,

they become the direct children of the root node. This process repeats itself until

it eventually reaches a node containing a single value rather then more nested

information (these are known as leaf nodes). The value of this node can either be

stored directly in the node itself (as depicted) or as an single additional child node.

Originally introduced for general tree structures in the early 1970’s, the tree-

edit distance between two trees is defined as the length of the minimum sequence

of node insertions and deletions needed to transform one of the trees into the other

[68, 69, 70]. When a node is deleted, all of its children have their parent node set as

the deleted nodes parent. This idea of edit operations has further been expanded

upon over time to include other operations such as renaming a node and the in-

sertion or deletion of entire subtrees as a single operation [70]. Most solutions for

calculating the tree-edit distance are based off of the previously explored string-

edit distance problem [69]. This problem looks at how many character insertions

and deletions are needed to transform one string into another.
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root

location author

city
value = ”Vancouver”

country
value = ”Canada”

id
value = 1753

name

firstName
value = ”John”

lastName
value = ”Smith”

Figure 5.2: Tree representation of the JSON document in figure 5.1.

5.1.2 Disadvantages of Tree-edit Distance

While the tree-edit distance is a popular similarity calculation in previous litera-

ture, we find that it is not suited for the problem explored in this thesis; the major

reasons for this are outlined next.

5.1.2.1 Similarity of More than Two Trees

The tree-edit distance is designed to measure the similarity between two trees. In

previous clustering approaches, this was not an issue as a similarity matrix was

usually first created. This matrix contained the similarity scores for each pair of

trees, thus allowing the tree-edit distance to be applicable. A clustering algorithm

(such as hierarchical agglomerative clustering as used in [47]) would then work off

this matrix when creating the clusters.

This differs from our approach as groups are first generated using the split op-

eration. How good a split operation was then depends on the similarity of these

groups. As such, we need a similarity calculation capable of measuring the simi-

larity of more then two documents simultaneously.
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5.1.2.2 Comparing Unordered Trees

Most algorithms that compute the tree-edit distance are based on ordered trees.

This is a type of tree where, for each node, every child is assigned a value indicating

its position among the rest of the children. Two nodes are then considered equal

only if they have the same children appearing in the same order. On the other

hand, unordered trees would consider two nodes equal as long as they have the

same children—regardless of their order.

Previous literature on XML has used ordered tree-edit distance algorithms be-

cause XML documents are considered ordered trees [18]. XML schemas, for exam-

ple, have separate notation for when the order of elements does not matter. This is

compared to JSON where objects are treated as unordered sets of key-value pairs.

As such, tree-edit distance algorithms for ordered trees cannot be applied.

Creating tree-edit distance algorithms for unordered trees has also been previ-

ously explored [71, 72]; however, these algorithms are more conceptually complex

and computationally expansive. The reason for this is that the assumption that a

node’s children appear in a specific order allows efficient dynamic programming

techniques to be applied. For example, comparing two ordered nodes means that

the first child of each node have to match, the second child of each node have to

match, etc. Compared to unordered trees, the first child of a node may match any

child of the other node. This results in significantly more permutations to consider.

5.1.3 Path Distance

Because of these reasons, we have decided to use a different similarity score that

has also been previously discussed in literature. This score is based off the well

known Jaccard index used for measuring the similarity between two sets [51, 57].

Given two sets, the Jaccard index returns a rational number inclusively between
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0 and 1 based on dividing the size of the intersection by the size of the union. A

score of 1 represents the two sets having exactly the same elements. A score of 0

represents the two sets having no element in common.

Before the Jaccard index can be applied to JSON documents, one problem has

to be addressed; namely, a JSON document takes the form of a tree-like structure

whereas the Jaccard index requires sets as input. To address this, we first apply a

transformation to each JSON object to remove its nested structure and “flatten” it

down to a linear structure. This notion has also been discussed in past literature

[51, 52, 43].

The main concept behind flattening a JSON object is that the useful information

within the object is contained in the leaf nodes (ie. the key-value pairs whose

value is an integer, boolean, string, or null). All inner nodes (ie. keys whose value

is an object or array) mainly exist to arrange the leaf nodes into smaller, more

meaningful, structures. Using this concept, a JSON document can be flattened by

taking each key that is a leaf node and appending onto it the names of the keys

that occur when traversing to it from the root of the tree. For example, the JSON

document in figure 5.1 can be transformed into the set of key-value pairs depicted

in figure 5.3.

1 l o c a t i o n / c i t y : ”Vancouver”

2 l o c a t i o n /country : ”Canada”

3 author/id : 1753

4 author/name/firstName : ” John”

5 author/name/lastName : ”Smith”

Figure 5.3: Path representation of the JSON document in figure 5.1.
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More formally, let a JSON object J, in path notation, be defined by the following

equation.

J = {k1 : v1, k2 : v2, ..., kn : vn | ki 6= kj for i 6= j} (5.1)

Here, ki : vi is a key-value pair in the flattened structure (e.g. in figure 5.3, loca-

tion/city: ”Vancouver” is a key value pair where the key is location/city and the value

is ”Vancouver”). Because J is a set, the set intersection and set union operations can

be defined for it. Let the intersection of two JSON objects be defined by equation

5.2.

J1 ∩ J2 = {ki | ki ∈ J1 ∧ ki ∈ J2} (5.2)

This says that the intersection of two JSON objects is the set of keys common to

both objects. The resulting set is not a JSON object, however, as a key is no longer

associated with a specific value. The reason for this is that while a key may appear

in both J1 and J2, the value of the key is likely to differ between them. Thus, it does

not make sense to include a value in the resulting intersection, as the two values

would either have to be combined together, or two separate key-value pairs would

have to be included.

The union of two JSON objects is defined by equation 5.3.

J1 ∪ J2 = {ki | ki ∈ J1 ∨ ki ∈ J2} (5.3)

This says that the union of two JSON objects is the set of keys appearing in

either of the objects. Similar to the the intersection operation, the union also results

in a set of keys with no values.

With the intersection and union operations now defined, the Jaccard index for
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two JSON objects is defined in equation 5.4. We call this equation sim for similarity.

sim(J1, J2) =
| J1 ∩ J2 |
| J1 ∪ J2 |

(5.4)

5.1.4 Path Notation for Nested Arrays

One concept about path notation that has not yet been discussed is how to rep-

resent nested arrays. When only considering objects, as in figure 5.1, a unique

path can be created for each key, since two keys cannot have the same name in

the same object. As the values in an array are nameless, this property does not

hold. Previous literature has dealt with arrays in different ways. Both [52] and [43]

insert the element’s array index into the path to keep it unique. [51] generates a

single schema for the entire array, and thus, merges all objects together resulting

in unique paths.

Three main ways exist to deal with nested arrays. Figure 5.5 shows the resulting

path notation based on the array in figure 5.4 for each of the three ways.

The first approach is to insert the elements array index into the path (like [43]

and [52] did). Figure 5.5a showcases the resulting path notation. The downside of

this method is that the number of elements in the array then plays a factor when

computing the intersection and union operations. For example, one array con-

taining 10 elements and another containing 100 elements would result in a low

similarity score regardless of if each element had the same structure.

The second approach is to instead take the union of all keys and treat the ar-

ray as a single object (like [51] did). Figure 5.5b shows this option. While this

does solve the issue of having arrays of different sizes, it also introduces its own

problems. First, the value of the key is lost as a result of each key likely having a

different value in each occurrence. Second, by merging together all array elements

and treating it as an object, we lose the distinction on whether a key originally
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existed in an array or an object.

1 {
2 ”books ” : [
3 {
4 ” t i t l e ” : ” I n t r o to JSON” ,
5 ” author ” : ” John Smith ” ,
6 ”numSold ” : 173
7 } ,
8 {
9 ” t i t l e ” : ” I n t r o to XML” ,

10 ” author ” : ” Jane Doe”
11 }
12 ]
13 }

Figure 5.4: JSON document containing an array.

1 books/0/ t i t l e : ” I n t r o to JSON”

2 books/0/author : ” John Smith”

3 books/0/numSold : ”173”

4 books/1/ t i t l e : ” I n t r o to XML”

5 books/1/author : ” Jane Doe”

(a) Path notation that includes an objects array index.

1 books/ t i t l e

2 books/author

3 books/numSold

(b) Path notation that takes the union of the keys.

books : Array

(c) Path notation that treats an entire array as the keys type.

Figure 5.5: Three path notations for the JSON document in figure 5.4.
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The third approach, and the method used in this thesis, is to treat the entire

array as a single JSON array data type and not break it down any further. This

is shown in figure 5.5c. The reasoning for this is that there is an intrinsic differ-

ence between a JSON object and a JSON array. The purpose on an array is to act

like a container for when the number of elements is unknown. An object, on the

other hand, has a more fixed structure with more meaning behind what keys are

included. Furthermore, identification keys are unlikely to exist in a nested array as

they would have to appear in every element. For our purposes, we find it satisfac-

tory that two keys having the same name and an array as a value should represent

the same concept.

5.2 Similarity of a Group

Unlike the tree-edit distance calculation, the Jaccard index can easily be expanded

to measure the similarity of more than two sets. This is a result of the set intersec-

tion and set union operations being associative and commutative. Let a group g of

JSON objects be defined as follows:

g = {J1, J2, ..., Jn} (5.5)

The similarity of g can then be defined by expanding equation 5.4 to consider

the intersection and union of all the sets in g rather than just two sets. In both

cases, 0 6 sim 6 1 as the size of the intersection has a minimum value of 0 and a

maximum value of the size of the union. This expanded equation is defined by:

sim(g) =

|
⋂
Ji∈g

Ji|

|
⋃
Ji∈g

Ji|
(5.6)

Klettke et. al. discuss this equation in the context of JSON [51]. One point they
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bring up is that this equation can be highly influenced by a few objects in a group.

If one object in a group has no keys in common with any of the other objects, the

score will always be 0—regardless of how similar the remaining objects are. The

reason for this is that the equation involves the intersection operation. Thus, if

one object has nothing in common with any of the other objects, the intersection

will always result in the empty set and a size of 0. While the authors argue this

is a downside to the equation for the purpose of measuring a groups similarity,

we consider it an advantage. Schema documents have to consider the structure of

a group as a whole. Whether a group contains 2 objects with identical structures

or 1000, the result is still a single schema. If a group contains two objects with

completely different structures, the resulting schema has to include all the keys

in both. By having a similarity score that considers the differences in structures

within a group rather than how many objects have the same structure, we are able

to generate more accurate schemas.

5.3 Similarity of a Grouping

Based on our assumptions discussed in chapter 3, we assume that an identification

key is a key whose value corresponds to the type of structure an object has. Based

on this assumption, a set of split operations is considered good if the resulting

groups each have a high similarity score. The higher the score, the more accurate

the generated schema for that group will be. We now define a calculation to mea-

sure the similarity among a set of groups which we call a grouping. The definition

of a grouping G is defined as:

G = {g1,g2, ...,gn} (5.7)
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We use the notation of lowercase letters to represent groups and uppercase let-

ters to represent groupings. The similarity of a grouping G is then defined as:

simGroup(G) =



0 if ∃g ∈ G :

sim(g) < T

∑
g∈G

sim(g)

|G|
otherwise

(5.8)

Here, T is the given similarity threshold that a group must satisfy where 0 6

T 6 1. What this equation says is that if all the groups in the grouping meet the

similarity threshold, then the similarity score of the grouping as a whole is just the

average of the similarity scores of the groups. However, if one of the groups does

not meet the threshold, then the similarity score of the grouping is just 0.

The reason for introducing a similarity threshold is that a scenario would arise

where a grouping with one large group of low similarity and many small groups

of high similarity would still have an overall high grouping similarity score be-

cause each group was weighted equally. The large amount of small groups were

artificially bringing up the average. Another option was to have a weighted aver-

age where the score considers the number of objects in each group; however, this

calculation has the opposite issue where a grouping with one large group of high

similarity would ignore small groups of low similarity. Introducing a similarity

threshold gave two advantages:

1. All groups in the grouping must have a satisfactory similarity score.

2. Less groupings have to be considered when computing the best grouping. If

a group does not satisfy the similarity threshold, then we know it is not part

of the best grouping.
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5.4 Refining the Scoring Criteria

Building off these definitions, we can now refine our criteria for selecting the best

grouping. Discussed in the problem statement, the best grouping is the set of

splits that results in the fewest possible groups, such that each group has a sim-

ilarity score over a given threshold. Of all the possible groupings, we find the best

grouping by applying these three filtering criteria in the give order:

1. Filter out groupings whose simGroup score is below the specified threshold.

2. Filter out the groupings that do not have the fewest number of groups.

3. Filter out the groupings that do not have the highest similarity score.

Criteria number one removes all invalid groupings. Criteria number two then

removes all the groupings that are likely to overfit the data to the groups (i.e. it

removes groupings from keys like id that result in one group per object). Criteria

number three then chooses the grouping with the highest similarity score. Al-

though unlikely, it is possible for more then one grouping to meet all three criteria.

In this case, any of the resulting groupings can be used as the basis for the schema

decision tree.

Table 5.1 shows the criteria being applied to 9 different groupings. While the

first 3 groupings have a low number of groups, they do not meet the similarity

threshold and are filtered out in the first criteria. Of the remaining groups, the

last 4 do not have the minimum number of groups and are filtered out in second

criteria. The grouping with the higher similarity score is then chosen as the best

grouping.
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Num. Groups Similarity Score Criteria One Criteria Two Criteria Three

1 0.2 8 — —

5 0.6 8 — —

7 0.72 8 — —

8 0.87 3 3 8

8 0.90 3 3 3

9 0.86 3 8 —

15 0.92 3 8 —

32 0.98 3 8 —

44 0.99 3 8 —

Table 5.1: A table showing the three scoring criteria being applied to 9 different
groupings. The similarity threshold for this example is 0.85.
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Chapter 6

Algorithm

Based on the calculations and scoring criteria defined in the previous chapter, an

algorithm can now be developed that takes an array of JSON objects and computes

the best grouping. One simple approach could be to use a brute force method and

first generate every possible grouping. The filtering criteria could then be applied

to narrow this list of groupings down to only the best one. Generating all possible

groupings could be done by initially placing all objects into a single group and

applying the split operation on each key common to all of them. This process then

repeats for any group with a similarity score below the threshold until every group

is above it, or there are no more keys left to split upon. The possible groupings are

then generated by taking all the combinations of the the different split operations,

such that no two sibling split operations are included (i.e. if two different split

operations are applied to the same group, a grouping cannot contain groups from

both splits, as that would duplicate the objects).

The results of this approach can be visualized as a tree structure exemplified by

figure 6.1. Each layer of this tree alternates between two types of nodes.

• GroupNodes (denoted by gi) that represent a group containing a subset of all

the objects.
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• SplitNodes (denoted by si) that represent the groups generated by applying

the split operation on a specific key.

In figure 6.1, g1 is the initial group containing all the object. Among these, two

keys are in common to all the objects, and a split operation is applied for each one.

Splitting on s1 partitions g1 into g2, g3, and g4, whereas splitting on s2 partitions

g1 into g5 and g10. g5 is then further split based on s3 and s4. Assuming this is the

final tree, three possible groupings can be generated from it. (g2,g3,g4) is gener-

ated by splitting on s1; (g6,g7,g10) is generated by taking all the groups in s3 and

the right group of s2, and (g8,g9,g10) is generated by taking all the groups in s4

and the right group of s2. Note that (g8,g9) alone cannot be a valid grouping, as

it does not contain all the objects in g1. This is because g1 was split into g5 and

g10, but the grouping (g8,g9) is only derived from g5. Furthermore, the group-

ing (g2,g3,g4,g10) is invalid because both (g2,g3,g4) and (g5,g10) contain the same

objects—just partitioned into different groups. Any combination of these groups

then results in objects being duplicated.

g1

s1

g2 g3 g4

s2

g5

s3

g6 g7

s4

g8 g9

g10

Figure 6.1: Visualization of the alternating layers of GroupNodes and SplitNodes.
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While the brute force approach does generate the desired results, more effi-

cient algorithms can be developed based around the same GroupNode/SplitNode

tree structure. Instead of first generating all valid grouping and then applying the

scoring criteria, we instead integrate the criteria into the generation processes it-

self. This allows us to preemptively filter our groupings that we know will not be

the best grouping and reduce the amount of computation required.

To increase the efficiency of the algorithm, we use the optimization that once

a grouping is found whose simGroup score is above the similarity threshold, any

other partially created groupings, already containing a larger number of groups,

can be preemptively discarded. The reason for this is that the second scoring crite-

ria is minimizing the number of groups. Thus, if the size of a grouping is already

larger than a previously found valid grouping, it cannot be the best one. By con-

sidering this optimization, entire branches/subtrees do not have to be generated.

In order to incorporate this optimization, we introduce an upper bound vari-

able into our algorithm that keeps track of the maximum number of groups a

grouping can have. When the algorithm is generating the GroupNode/SplitNode

tree structure, it can compare the current number of groups to the upper bound. If

the number of groups is greater, the algorithm can preemptively stop recursively

splitting down the current branch. Furthermore, if better results are found mid

computation, the upper bound can be lowered to reflect the new maximum.

Another optimization to improve efficiency is to first examine the splits con-

taining the fewest number of groups. The reason for this is that those splits will

initially give the best chance of lowering the upper bound the furthest. For exam-

ple, if two groupings exist containing 2 and 20 groups respectfully, it makes sense

to first examine the split containing only 2 groups. Applying a split operation to

a group always results in an least one group. Thus, the grouping with 20 groups

can only ever result in more then 20 groups. By first examining the grouping with
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only 2 groups, we run the chance of finding a valid grouping with a size under

20. If this occurs, the grouping with 20 groups can then be discarded without com-

puting it, as it will never be the minimum. On the other hand, if we had first

examined the grouping with 20 groups, all of the work would be rendered useless

once the grouping with 2 groups is examined. This optimization of starting with

the smallest groupings can be thought of as working up from a lower bound.

By using the combination of lower and upper bounds, an algorithm can work

up from the lower bound while simultaneously trying to lower the upper bound.

Once the two bounds meet, the best grouping has been found. More details re-

garding the specifics of this method are now explained in the pseudocode shown

in the following sections. Section 6.1 first describes the initialization of the algo-

rithm. Section 6.2 shows the algorithms for initializing a new GroupNode and

generating the possible groupings from it. Section 6.3 then shows the algorithms

for initializing a new SplitNode and generating the groupings from it.

Based on the best groupings generated by the algorithm, we then construct a

schema decision tree. This is shown in section 6.5. Section 6.6 then shows how to

integrate a schema decision tree into the JSON schema specification.

6.1 Starting the Algorithm

When the algorithm is started, a single GroupNode is created and initialized with

all the objects of the array. It is assumed that each object has already been con-

verted into its path notation representation. In addition to the objects, an empty

list is also passed in for the splitKeys parameter. This list represents that no split op-

erations have been applied to the group yet. A function call to the nodes genGroup-

ings function is then performed to generate the best groupings. An initial upper

bound of infinity is passed in as an argument—representing that no best group-
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ings have yet to be generated. Pseudocode for this startup procedure is given in

the following algorithm.

Algorithm 1: Initializing and Starting the Algorithm
Input: objects– List of JSON objects in path notation.
Output: List containing the best groupings.

1 root← A new GroupNode initialized with objects and an empty list for
splitKeys.

2 results← root.genGroupings(∞)

6.2 GroupNode Algorithm

The purpose of a GroupNode is to represent a set of objects. When a split operation

is performed on a GroupNode, the result is a set of GroupNodes. Generating the

possible groupings for a GroupNode consists of performing a split operation on

each key common to all objects in the node. The set of possible groupings is then

the union of possible groupings generated for each split operation.

6.2.1 Initializing a New GroupNode

Algorithm 2: GroupNode: Initialization
Input: objects– List of JSON objects in path notation.

splitKeys– List of keys that have been used to filter all
the array objects down to this group.

1 this.objects← objects

2 this.splitKeys← splitKeys

3 this.similarity← sim(objects)

• Lines 1–2: Initialize objects and splitKeys to those passed into the function.

• Line 3: Calculate the similarity score of the objects in this group. This is per-

formed once on initialization rather then computing it every time the simi-

larity score is needed.
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6.2.2 Generating Groupings for a GroupNode

Algorithm 3: GroupNode: genGroupings()
Input: upperBound– Max number of groups this group can be split into.
Output: List containing the best groupings.
Global : threshold– Minimum similarity requirement.

1 if this.similarity >= threshold then
2 Return 1 and a list containing a list with this group in it.
3 end
4 groupings← empty-list, splits← empty-list
5 splitOptions← (

⋂
J∈this.objects J) – this.splitKeys

6 foreach key in splitOptions do
7 Add a new SplitNode to splits passing in this.splitKeys, key, and

this.objects.
8 end
9 foreach split in splits do

10 if split.similarity >= threshold ∧ split.numGroups < upperBound then
11 upperBound← split.numGroups

12 end
13 end
14 foreach split in splits do
15 if split.numGroups > upperBound ∨ split.numGroups = 1 then
16 Remove split from splits.
17 end
18 end
19 Sort splits in ascending order by numGroups.
20 foreach split in splits do
21 splitNum, splitGroupings← split.genGroupings()
22 if splitNum = 0 then
23 Continue to next iteration.
24 end
25 if splitNum = upperBound then
26 Add splitGroupings to groupings.
27 else if splitNum < upperBound then
28 upperBound← splitNum

29 groupings← splitGroupings

30 end
31 Filter groupings to only contains those with the highest similarity score.
32 if groupings is empty then return 0, empty-list
33 else return upperBound, groupings
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• Lines 1–3: If the group itself already has a similarity score over the threshold,

there is no need to further apply the split operation. Return a list containing a

list with this group inside it. This represents that there is one possible group-

ing consisting of all the objects in one group. If the group does not have a

similarity score over the threshold, then the group has to be split further. In

this case, continue on with the algorithm.

• Lines 5–8: Determine the possible keys to split on by finding the set of keys

that are common to all the objects. Remove keys that have already been split

on to reach this point. For each of these keys, generate a new SplitNode.

• Lines 9–13: Check to see if any of the newly created SplitNodes satisfy the

similarity threshold without needing to be split any further. Of the ones that

due, find the one with the fewest groups, and set the number of groups in it

as the new upper bound.

• Lines 14–18: Remove any SplitNode that results in more groups than the

upper bound. These can be discarded as a better best grouping has already

been found. Also, remove any SplitNode that results in only one group, as

there is no reason to split on a path that results in the same group.

• Line 19: Sort the remaining SplitNodes in ascending order by the number of

groups in the SplitNode. This results in the following loop first examining

the SplitNode with the fewest groups. It then works its way up to the SplitN-

ode with the most groups. This method increases the likelihood of lowering

the upper bound the most, allowing more SplitNodes to be preemptively dis-

carded.

• Line 21: Generate the possible groupings of the given SplitNode by calling

its genGrouping function. Pseudocode for this algorithm is given in algorithm
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5. This function returns the number of groups in the possible groupings and

a list of the groupings.

• Lines 22–24: A return value of 0 for splitNum indicates that all valid group-

ings that can be generated by the current SplitNode have more groups then

the current upper bound. All results from this SplitNode can be discarded as

a better best grouping has already been found.

• Lines 25–26: If the SplitNode has resulted in groupings with the same num-

ber of groups as the upper bound, add these to the list of current groupings.

• Lines 27–29: If the SplitNode has resulted in groupings containing fewer

grounds then the current upper bound, discard the current list of groupings,

and set the list to the list of newly generated groupings. Lower the upper

bound to the value of splitNum to reflect the new best grouping.

• Line 31: Filter out groupings that do not have the highest similarity score.

This satisfies criteria 3 of the scoring criteria.

• Lines 32–33: If all the groupings with a similarity score over the threshold

have more groups then the upper bound, return 0 and an empty list to indi-

cate that this GroupNode cannot generate a better best grouping. Otherwise,

return the new upper bound and the new groupings.

6.3 SplitNode Algorithm

The purpose of a SplitNode is to represent the GroupNodes generated when ap-

plying the split operation on a specific GroupNode for a given key. Generating

the possible groupings for a SplitNode consists of generating the different combi-

nations of the groups resulting from the split. For each group, either the group
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itself can be included, if it satisfies the similarity threshold, or the group can be

partitioned further with the resulting groups being included.

6.3.1 Initializing a New SplitNode

Algorithm 4: SplitNode: Initialization
Input: splitKeys– List of keys that have filtered all of the array objects down

to the group this split operation is being applied on.
key– Key to split objects on.
objects– List of JSON objects in path notation.

1 this.splitKeys← splitKeys

2 this.key← key

3 this.objects← objects

4 this.groups← empty-list
5 foreach group in partition(objects, key) do
6 Add a new GroupNode to this.groups—passing in group and the

concatenation of splitKeys with key.
7 end
8 this.numGroups← |groups|

9 this.similarity← simGroup(this.groups)

• Lines 1–3: Initialize splitKeys, key, and objects to the corresponding value

passed into the function.

• Line 4: Initialize the groups variable to en empty list.

• Lines 5–7: Partition the objects based on the value of the given key. This

means that all objects having the same value for the given key form a group.

Create a new GroupNode for each of the resulting groups—passing in the

objects of the new group, along with a list of the past split keys concatenated

with the new key.

• Line 8: Set numGroups to the number of groups in the partition.

• Line 9: Calculate the similarity score for the set of groups. This is performed

once on initialization and used whenever the similarity score is required.
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6.3.2 Generating Groupings for a SplitNode

Algorithm 5: SplitNode: genGroupings()
Input: upperBound– Maximum number of groups that any group in this

split can be partitioned into.
Output: List containing the best groupings.
Global : threshold– Minimum similarity requirement.

1 if this.numGroups > upperBound then
2 return 0, empty-list
3 end
4 if this.numGroups = upperBound ∧ this.similarity >= threshold then
5 return upperBound, this.groups
6 end
7 numAccounted← this.numGroups

8 groupGroupings← empty-list
9 foreach group in this.groups do

10 bound← upperBound − numAccounted + 1
11 splitNum, validGroupings← group.genGroupings(bound)
12 if splitNum = 0 then
13 return 0, empty-list
14 end
15 numAccounted← numAccounted + splitNum − 1
16 Append validGroupings to groupGroupings

17 end
18 groupings← empty-list
19 Add a list of groups to groupings for each permutation of groups in

groupGroupings.
20 return numAccounted, groupings

• Lines 1–3: If the number of groups in this SplitNode is already greater then

the upper bound, return 0 and an empty list to indicate that no better group-

ing can be generated.

• Lines 4–6: If the number of groups in this SplitNode is equal to the upper

bound, then return a grouping consisting of the groups in this SplitNode.

• Line 7: numAccounted keeps a running tally of the number of groups already

accounted for. Initially, this is set to the number of groups in the SplitNode
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as splitting a group can only in more groups.

• Line 8: groupGrouping stores the possible groupings for each of the groups in

the SplitNode. If a group itself is above the similarity threshold, groupGroup-

ing just stores the group. If the group is below the threshold, it stores the

best groupings for that group. For example, the first element of groupGroup-

ing represents the possible groupings for the first group of the SplitNode, the

second element represents the possible groupings for the second group, etc.

• Line 10: Calculate the new upper bound for the group currently being ex-

amined. This is done by taking the existing upper bound and subtracting

the number of groups already allocated to the previously examined groups.

Add 1 since one group is already accounted for (i.e. taking one group and

splitting it into two groups only yields one additional group). For example,

if the upper bound is ten and the first group examined requires three groups

to get above the similarity threshold, any partition of second group can only

consist of a maximum of seven groups.

• Lines 12–14: A return value of 0 for splitNum from the function indicates that

the group cannot be partitioned into a grouping that is above the similarity

threshold without exceeding the upper bound. Because of this, return 0 and

an empty list indicating that this SplitNode cannot yield better results.

• Lines 15–16: Update the number of groups accounted for and add the list of

possible groupings to groupGrouping.

• Lines 18-20: groupGrouping now contains a list of possible groupings for each

group. To construct the possible groupings for the SplitNode, create a group-

ing for each combination of groups. This is done by choosing one grouping

option for each group in the SplitNode.
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6.4 Algorithm Remarks

A benefit of having the root node contain all objects in the array is that minimal

computation is required for homogeneous arrays (ie. arrays where the objects all

have the same structure). This is because the root node itself will have a similarity

score over the threshold, and thus, return itself as the best grouping right away.

Because of this, there is little overhead for checking most arrays. Only if the array

is heterogeneous does the algorithm start splitting the group.

Another note about the algorithm is that it is possible for multiple best group-

ings to be returned; however, this is rare. The algorithm only returns multiple best

groupings if two groupings have the same number of groups and the same similar-

ity scores. In this scenario, either grouping can be used as the basis for the schema

decision tree.

6.5 Constructing a Schema Decision Tree

Given an best grouping, a schema decision tree can be generated using the list of

splitKeys contained within each GroupNode. The basic idea behind the construc-

tion process is to start with an empty decision tree, and add each group to the tree

one at a time. Adding a group to the tree consists of starting at the initial decision

node and iterating through the GroupNode’s splitKeys list. Every time the group

was partitioned during the generation process, the key used to partition it was ap-

pended to its splitKeys list. This means that the list is, in a sense, ordered; the first

key in every splitKeys list is the key used to partition the initial GroupNode that

contained all the objects.

For each key in a group’s splitKeys, if the key (and corresponding value) is al-

ready present in the tree, then the group moves down the tree to the next decision

node. If the key is not present in the tree, a new branch is added to the current de-
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cision node with the give key. If this was the last key in the list, the branch points

to a schema generated for the objects in the group. Otherwise, the branch points

to another decision node.

Figure 6.2 shows an example of the construction process for the 4 groups shown

in table 6.1. Initially, the schema decision tree starts with an empty decision node

as shown in 6.2a. In figure 6.2b, the first group, g1, is added to the tree by taking

the first key in its splitKeys list and checking if it is already present at the decision

node. Since it is not present, a new branch is created pointing to another decision

node. This process repeats for the second key, except this time, the branch points

to a schema, as it is the last key in the list. This schema is generated by passing

the objects of the group into a traditional schema generation tool. When adding

g2 to the tree in figure 6.2c, the group sees that the first key is already present at

the initial decision node. It instead uses the existing branch to move down the tree

rather then creating a duplicate branch. Once this process has been performed on

every group, the final schema decision tree is generated (as shown in figure 6.2e).

Group splitKeys list from the GroupNode

g1 Key1:A, Key2:1

g2 Key1:A, Key2:2

g3 Key1:B

g4 Key1:C

Table 6.1: A list of the groups in the best grouping, along with their corresponding
splitKeys list.
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(a) Initial decision node.

Sc1
Key1:A

Key2:1

(b) Adding g1 to the schema decision tree.

Sc1

Sc2

Key1:A
Key2:1

Key2 :2

(c) Adding g2 to the schema decision tree.

Sc3

Sc1

Sc2

Key1:A

Key1:B

Key2:1

Key2 :2

(d) Adding g3 to the schema decision tree.

Sc3

Sc4

Sc1

Sc2

Key1:A

Key1:B

Key1 :C

Key2:1

Key2 :2

(e) Adding g4 to the schema decision tree.

Figure 6.2: Constructing a schema decision tree for the groups in table 6.1.

6.6 Integrating into JSON Schema

Based on the schema decision tree constructed in figure 6.2, we now show how it

can be integrated into a JSON schema document. As the actual document would

span multiple pages and be difficult to read, we instead include snippets showcas-

ing the two main components. These components are the definition section where

individual schemas are stored, and decision nodes specifying how to move down

the tree.
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First, the definition section of a JSON schema document is designed for defin-

ing sub-schemas. These can then be referenced throughout the rest of document

using the notation ”$ref”: ”#/definitions/SubSchemaName”. As a schema is gener-

ated for each type of structure, we choose to store these schemas in this section

and reference them throughout the document. The purpose for this is to break up

the document into more manageable pieces and improve readability.

Figure 6.3 contains the definition section for two sub-schemas named Schema1

and Schema2. Schema1 is defined in lines 2–17, and schema2 is defined in lines 18–33.

Lines 3 and 19 specify that each schema is for a JSON object. Lines 4–12 and 20–

28 then contain a list of properties that an object must contain to satisfy the given

schema. The identification keys are specified in lines 5–10 and 21–26. Their cor-

responding enum value specifies the value of the identification key for the given

schema. Lines 11 and 27 are where the rest of the schema for the given structure

type would go. Finally, lines 13–16 and 29–32 specify that the identification keys

are required to appear in the object. Additional keys can be included here depend-

ing on what the rest of the schema consists of.
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1 ” d e f i n i t i o n s ” : {
2 ”Schema1 ” : {
3 ” type ” : ” o b j e c t ” ,
4 ” p r o p e r t i e s ” : {
5 ”key1 ” : {
6 ”enum” : [”A” ] ,
7 } ,
8 ”key2 ” : {
9 ”enum” : [ ” 1 ” ] ,

10 } ,
11 . . .
12 } ,
13 ” required ” : [
14 ”key1 ” ,
15 ”key2”
16 ] ,
17 } ,
18 ”Schema2 ” : {
19 ” type ” : ” o b j e c t ” ,
20 ” p r o p e r t i e s ” : {
21 ”key1 ” : {
22 ”enum” : [”A” ] ,
23 } ,
24 ”key2 ” : {
25 ”enum” : [ ” 2 ” ] ,
26 } ,
27 . . .
28 } ,
29 ” required ” : [
30 ”key1 ” ,
31 ”key2”
32 ] ,
33 } ,

Figure 6.3: The section of the resulting JSON schema document containing the
definitions for the different sub-schemas tailored to the different types of structure.
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Second, each decision node is implemented using a combination of the anyOf

and allOf syntaxes. The anyOf syntax specifies that at least one of the following

schemas has to be satisfied for the data to be valid. Likewise, the allOf syntax

specifies that all of the following schemas must be satisfied for the data to be valid.

By nesting these within each other, we are able to group validation conditions

together.

Figure 6.4 shows the schema for the second decision node in figure 6.2. For any

JSON object to be valid, it has to satisfy either the schema defined in lines 2–17 or

the schema defined in lines 18–33. Both of these schemas then consist of an allOf

syntax with two further schemas defined. Lines 4–10 and 20–26 are first used to

perform a lookup on the given identification key. If its value matches that specified

in the enum, it moves on to the second part of the allOf syntax in lines 13–15 and

29–31. This schema consists of a reference that sends the document on to either

another decision node or one of the schemas defined in the definition section.
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1 ”anyOf ” : [
2 {
3 ” a l l O f ” : [
4 {
5 ” type ” : ” o b j e c t ” ,
6 ” p r o p e r t i e s ” : {
7 ”key2 ” : {
8 ”enum” : [ ” 1 ” ]
9 }

10 } ,
11 ” required ” : [” key2 ”]
12 } ,
13 {
14 ” $ r e f ” : ”#/ d e f i n i t i o n s /Schema1”
15 }
16 ]
17 } ,
18 {
19 ” a l l O f ” : [
20 {
21 ” type ” : ” o b j e c t ” ,
22 ” p r o p e r t i e s ” : {
23 ”key2 ” : {
24 ”enum” : [ ” 2 ” ]
25 }
26 } ,
27 ” required ” : [” key2 ”]
28 } ,
29 {
30 ” $ r e f ” : ”#/ d e f i n i t i o n s /Schema2”
31 }
32 ]
33 }
34 ]

Figure 6.4: Section of the resulting JSON schema document containing a decision
node.
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Chapter 7

Evaluation and Analysis

7.1 Algorithm Walkthrough

To showcase the logic behind the algorithm, we now work through the process the

algorithm takes when partitioning a dataset. This dataset consists of an array of

50 JSON objects returned from the iTunes Search API. To simplify the problem for

explanation purposes, only 5 structure types were included in the dataset; how-

ever, the process is the same regardless of the number of structure types. For this

example, we assume a similarity threshold of 0.70.

To begin, all objects of the array are placed into a single group. As this group

has a similarity score of 0.2 and a simGroup score of 0, we know that the split oper-

ation has to be applied at least once. Common to all the objects are 8 keys resulting

in 8 SplitNodes being generated—one for each key. Table 7.1 shows what key each

SplitNode was generated from, how many groups resulted from the split, what the

average similarity of the groups was, and what the simGroup score was. Looking

at this table, we see that the splits based on collectionExplicitness and wrapperType

each resulted in only a few groups being generated; however, they do not satisfy

the similarity threshold.
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Of the options that do satisfy the threshold, collectionPrice has the lowest num-

ber of groups at 18. As such, this grouping becomes the current best grouping, and

the lower bound is reduced down to 18. Any grouping having more then 18 groups

can be discarded. Two scenarios now exist. Scenario one is that either the groups

generated by splitting on wrapperType or collectionExplicitness can be further split

into less then 18 groups that all satisfy the threshold. In this case, the results from

collectionPrice can be discarded, as better groupings have been found. Scenario two

is that none of the groups generated by splitting on wrapperType or collectionExplic-

itness can be further split. In this case, collectionPrice is the best grouping.

Split Key Num. Groups Average Similarity SimGroup Score

collectionPrice 18 0.905 0.905

artistName 35 0.986 0.986

releaseDate 41 0.984 0.984

collectionExplicitness 3 0.461 0

artworkUrl60 46 0.988 0.988

wrapperType 2 0.672 0

primaryGenreName 24 0.972 0.972

artworkUrl100 44 0.988 0.988

Table 7.1: A list of split operations for a single group containing all objects.

The only way to determine which scenario is true involves further applying the

split operation to the groups generated by wrapperType and collectionExplicitness.

We first start with wrapperType as it has the fewest groups. Splitting on wrapperType

results in two groups. One has an average similarity of 0.391, and the other has an

average similarity of 0.952. As the second group already satisfies the threshold,

it does not have to be split further; only the first group does. Furthermore, since
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the combination of the 2 groups has an upper bound of 18 groups, the first group

can, at most, be split into 17 groups. Because of this, 17 can be thought of as the

new upper bound when examining that group. Table 7.2 shows the different split

operations that can be applied to this group. Of note is the increase in options for

split keys. In addition to the unused keys carried down from table 7.1, additional

keys now exists. This is due to the existence of keys that are in common to all the

objects of this group but not all the objects in general. As such, they did not appear

in the first table but do in this table.

Looking at this table, we see that 6 groupings have resulted in less than 18

groups. Of these, splitting on kind has resulted in only 4 groups that are all over

the threshold. Before we can say this is the new best grouping and return to the

previous recursive layer, we need to check two other options. Both trackExplicitness

and collectionExplicitness resulted in fewer groups but did not meet the similarity

threshold. Thus, we need to verify that they cannot be further split.

We first check to see if trackExplicitness can be split into at most 4 groups. This

grouping consists of 3 groups having average similarity scores of 0.537, 0.600, and

0.914. Both the first and second groups need to be split further as they are cur-

rently below the threshold. However, doing this results in at least 5 groups which

is already above the threshold. As such, splitting on trackExplicitness cannot result

in a better grouping then we have already found. Likewise, splitting on collection-

Explicitness also results in 3 groups having average similarity scores of 0.537, 0.600,

and 0.914. For the same reasons as with trackExplicitness, splitting on collectionEx-

plicitness cannot result in a better grouping either. Thus, no groupings exist with

fewer then 4 groups, meaning that kind is the current best best grouping.
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Split Key Num. Groups Average Similarity SimGroup Score

trackName 28 0.977 0.977

trackViewUrl 30 0.984 0.984

trackExplicitness 3 0.684 0

collectionPrice 9 0.939 0.939

trackCensoredName 28 0.977 0.977

artistName 23 0.978 0.978

kind 4 0.928 0.928

trackId 30 0.984 0.984

trackPrice 6 0.933 0.933

releaseDate 25 0.976 0.976

artworkUrl30 24 0.978 0.978

collectionExplicitness 3 0.681 0

artworkUrl60 24 0.978 0.978

primaryGenreName 17 0.965 0.965

artworkUrl100 24 0.978 0.978

Table 7.2: A list of different split operations for one of the groups generated by the
wrapperType split.

Going back up a layer of recursion to table 7.1, we had originally split wrapper-

Type into two groups. The second group already satisfied the threshold, and we

just found that the first group can be split into 4 groups. This means that a valid

grouping now exists with 5 groups, and the upper bound can be further lowered

from 18 down to 5.

The only remaining option left to check is now collectionExplicitness. It currently

has 3 groups with average similarity scores of 0.295, 0.600, and 0.486. As all these

groups require at least one further split operation, the minimum number of groups
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we could receive is 6. As such, we know that collectionExplicitness cannot result in

a better split then we have already found.

At this point, we have explored every option that could result in fewer groups,

meaning that the lower bound has reached the upper bound. Thus, the best group-

ing is generated by first splitting on wrapperType and then splitting one of the

groups on kind.

7.2 Evaluation

Two main areas exist that we are interested in examining. The first area is the time

it takes the algorithm in chapter 6 to generate the best grouping, and the second

area is the time it takes to validate a JSON array using a schema decision tree.

To analyze these areas, we run our algorithm against three different datasets and

analyze the results in the following sections. Dataset one is based on the iTunes

Search API that has been used as a running example throughout this thesis; dataset

two is based on the Open Movie Database API, and dataset three is based on the

Spotify Search API. Web APIs were the main source of data due to their ability to

generate dataset of differing sizes with relative ease.

For each dataset, we present two graphs. The first graph analyzes the runtime

of the algorithm for various similarity thresholds and array sizes. This is done in

figures 7.2, 7.5, and 7.8. The second graph analyzes how long it it takes JSON ar-

rays of varying sizes to be validated. This is done in figures 7.3, 7.6, and 7.9. In each

of these graphs, each array was validated using one of three different methods.

Method one consists of a single schema. This schema was generated by taking

the schemas created for the different structure types and arranging them in a linear

order. In this sense, the schema for each structure type can be thought of as a sub-

schema. An object is validated against the schema by comparing it to the first
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sub-schema. If that sub-schema does not validate the object, it is compared against

the second sub-schema. This process repeats until the object either satisfies one of

the sub-schemas or is rejected.

Method two again consists of a single schema. Instead of arranging the sub-

schemas in a linear order, this schema integrates the schema decision tree into it.

This is done using the approach outlined in section 6.6. The sub-schemas used in

this tree are the same sub-schemas used in the previous method.

One major drawback with the JSON schema format is that is does not support

variables. This is important because it prevents the full potential of the schema

decision tree from being used. Instead of performing a single key lookup and

reusing the value, the schema in method two can only check to see if a key has a

specific value. Because of this, a key lookup has to be performed for each value an

identification key can have.

Based on this drawback, method three consists of a program that models the

schema decision tree. For each object, the program first performs a lookup on the

identification key and stores the result in a variable. This variable is then compared

against the possible values the identification key can have to determine which

branch of the tree it should take. If the branch leads to another decision node,

the process repeats. If the branch leads to a schema, then that schema is used to

validate the object. This method differs from method two in that there is no longer

a single schema document. Instead, the sub-schemas are kept separate, and the

program decided which schema an object should be compared against.

All experiments were performed on a 2014 MacBook Air containing a 1.4 GHz

Intel Core i5 processor and 8GB memory. Each data point consists of the average

time of 10 runs. Each dataset was also verified to contain all structure types. The

generated schema decision trees are based on the best groupings found using a

similarity threshold of 0.7. This number was chosen based on observations during
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the algorithm development process. We find that it gives a good balance between

determining the best grouping while still allowing the possibility of some variation

within a particular structure type.

7.2.1 Generating the Datasets

For each of the three APIs we are using in our analysis, we first generated a dataset

consisting of 15000 JSON objects obtained from heterogeneous arrays in the API’s

responses. As we are only focusing on JSON arrays, we only extracted the array

from the response and discarded the rest.

Table 7.3 shows the API endpoint URLs used for each of the datasets. For the

iTunes Search API, we used the search endpoint and the term parameter. The value

of this parameter is the search query, and the API will return results that it thinks

are relevant to it. No authentication is required to use this API

Dataset API Endpoint URL

iTunes Search API • https://itunes.apple.com/search?term=<TERM>

OMDB API • http://www.omdbapi.com/?s=<TERM> &apikey=<KEY>

&page=<NUM>

• http://www.omdbapi.com/?i=<ID> &apikey=<KEY>

Spotify Search API • https://api.spotify.com/v1/search?q=<TERM>

&type=album,track,artist,playlist,show,episode

Table 7.3: The API Request Endpoint(s) used for each dataset.

For the OMDB API, we used two endpoints. The first is the search endpoint,

and it returns information that the API thinks is relevant to the given term. Each

response only contains an array of 10 objects with more being available through

subsequent requests. This is done by including the optional page parameter. For
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example, setting page to 2 gives the next 10 results. This endpoint only returns a

few value for each object in the response, namely, a title, year, ID, type, and poster.

To get the rest of the information for each item, we performed an addition request

to their ID endpoint that returns the full JSON object for a given ID. An API key is

required to use this API, and can be obtained for free through their website. This

key is passed in through the apikey parameter in each request.

For the Spotify Search API, we used the search endpoint and the q parameter to

pass in a search query term. In addition, we also specified a type parameter. This

parameter tells the API what type of information we want in our results. As we

are collecting a dataset of all structure types, we list all options so that we receive

information for each type. An API key is required to use this endpoint, and can be

obtained for free through their website. This key is passed in as a HTTP header for

each API request.

Table 7.4 shows the number of request made to each API, as well as the number

of objects returned in a response. For the iTunes Search API, we made 300 requests

and received 50 objects back per response (50 is the default number returned).

Dataset API Requests Objects Per Response JSON Objects

iTunes Search API 300 50 15000

OMDB API 27 23–3080 15000

Spotify Search API 50 300 15000

Table 7.4: An overview of the number of requests made to each API, and the num-
ber of objects returned for each request.

For the OMDB API, we made 17 requests to the search API and received be-

tween 23 and 3080 objects per response. The term blue gave us the largest at 3080,

and the term sponge gave us the smallest at 23. Finally, for the Spotify Search API,
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we made 50 requests and received 300 objects per response (50 objects for each of

the 6 types we listed in the request).

Search terms for all APIs were made to ensure that we got a variety of data that

included all structure types. Furthermore, when selecting which data to pass into

our algorithm, we randomly chose n objects from the dataset and then verified

that all structure types were included. If not, then we repeated the process until

this condition was satisfied.
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7.2.2 iTunes Search API Dataset

The iTunes Search API is a web API that returns information regarding products

available in the iTunes store [1]. Figure 7.1 shows the generated schema decision

tree consisting of two identification keys. Objects are first split based on the wrap-

perType key. Objects then having the value track are split again based on the kind

key.

Ji

S3

wrapperType = “audiobook”

S2

wrapperType = “collection”

S1wrapperType = “artist”

S13

kind = “tv-episode”

S12

kind = “feature-movie” S11

kind = “song” S10

kind = “podcast”

S9

kind = “book”

S8kind = “album”

S7

kind = “pdf”

S6

kind = “software-package”

S5

kind = “music-video”

S4

kind = “podcast”

wrapperType = “track”

Figure 7.1: Schema decision tree generated from the iTunes Search API dataset.

98



7.2.2.1 Schema Generation Time Comparison
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Figure 7.2: Comparing the computation time of the iTunes Search API dataset for
various similarity thresholds (T ) and various input array sizes.

Figure 7.2 shows how long it took the algorithm in chapter 6 to generate the best

grouping for various similarity thresholds and input array sizes. Setting the thresh-

old to 0.2 results in a single group containing all the objects. Because of this, the

only computation involved is a single similarity calculation resulting in a near con-

stant runtime. When the threshold is increased to 0.35, the best grouping consists

of four groups generated by splitting only on wrapperType. A similarity threshold

of 0.5 results in six groups generated by first splitting on wrapperType and then

further splitting one of the groups based on trackExplicitness. Finally, a similarity

threshold of 0.7 results in the groups used to generate the schema decision tree in

figure 7.1.
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7.2.2.2 Schema Validation Time Comparison
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Figure 7.3: Comparing the validation time of the iTunes Search API dataset for
three validation methods.

Figure 7.3 now shows the time it took to validate arrays of varying sizes using the

three methods. Based on this graph, we see a significant improvement when the

schema integrates the schema decision tree compared to when the schema arranges

the sub-schemas in a linear order. This is likely due to a few factors. First, there

is a significant overlap of keys among the different structures. This means that

the time it takes to invalidate an object increases, as the overlapping part may be

checked before the non-overlapping part. Second, having a decision node allows

multiple schemas to be skipped over.

Comparing the schema implementation of the schema decision tree to the pro-

gram implementation, we see another improvement. This is likely due to the re-

duction in key lookups that have to be performed. For example, in the second

decision node, only a single key lookup has to be performed to determine which
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schema the object should be compared against. In the schema implementation, up

to 10 key lookups may have to be performed—one for each sub-schema.

7.2.3 Open Movie Database (OMDb) API Dataset

Dataset two is based on the Open Movie Database API [73]. This is a web API that

provides information about different movies and television series—such as actors,

producers, etc. Figure 7.4 shows the resulting schema decision tree. Compared to

the tree generated for the iTunes data set, this tree is relatively simple with only a

single identification key and three structure types.

Ji

S3

Type = “movie”

S2
Type = “series”

S1

Type = “episode”

Figure 7.4: Schema decision tree generated from the Open Movie Database dataset.
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7.2.3.1 Schema Generation Time Comparison
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Figure 7.5: Comparing the computation time of the Open Movie Database dataset
for various similarity thresholds (T ) and various input data sizes.

Figure 7.5 shows the time it took the algorithm to generate the best grouping.

When the similarity threshold was set to 0.2, 0.35, or 0.5, all objects were placed

into a single group. Because of this, they all have near identical execution times.

When the similarity score was 0.7, a single split based on Type occurred resulting

in three groups.
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7.2.3.2 Schema Validation Time Comparison
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Figure 7.6: Comparing the validation time of the Open Movie Database API
dataset for three validation methods.

Figure 7.6 shows the time it took to validate arrays of varying sizes using the three

methods. We see that the schema decision tree version only had slightly reduced

validation times. We believe the reason for this is due to two factors. First, only

having three structure types means that an object can be invalidated relatively

quickly. Second, the schema decision tree version still has to perform a key lookup

to determine the identification key’s value.

Comparing the program implementation of the schema decision tree to the

other two, we see a significant improvement. This provides support for the second

factor having a major contribution for the similar runtimes found in the schema

versions.
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7.2.4 Spotify Search API Dataset

The third dataset was generated from the Spotify Search API [74]. Like the iTunes

Search API, this API returns information related to different songs, artists, shows,

etc. available on the Spotify platform. Figure 7.7 shows the resulting schema deci-

sion tree. Like in the previous dataset, this decision tree consists of a single identi-

fication key and six structure types.

One note for this dataset is that Spotify does not combine together different

types of structure into a single array. Instead, an API response contains an array

for each type of structure (i.e. an array just for objects of the artist structure type,

an array just for objects of the album structure type, etc). As each structure also

contains a key identifying its type, we still felt this was a useful dataset to evaluate

the schema decision tree concept. Thus, the dataset was generated by combining

together the different arrays into a single array.

Ji

S6

type = “album”
S5

type = “artist”

S4
type = “track”

S3

type = “playlist”

S2

type = “show”

S1

type = “episode”

Figure 7.7: Schema decision tree generated from the Spotify Search API dataset.
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7.2.4.1 Schema Generation Time Comparison
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Figure 7.8: Comparing the computation time of the Spotify Search API dataset for
various similarity thresholds (T ) and various input data sizes.

Figure 7.8 shows the time it took to generate the best grouping for various simi-

larity thresholds and various input array sizes. All similarity thresholds resulted

in roughly equal execution times due to there being very little overlap among the

different types of structures. For instance, only four keys are in common to all the

objects.
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7.2.4.2 Schema Validation Time Comparison
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Figure 7.9: Comparing the validation time of the Spotify Search API dataset for
three validation methods.

Figure 7.9 shows the time it took to validate arrays of varying sizes using the three

methods. Looking at the graph, we see very similar validation times between the

schema implementations. This slight reducing is comparable to the validation

times for the schemas in the OMDB dataset (figure 7.6). We believe this is also

due to similar reasons discussed there.

Unlike the OMDB dataset, however, the validation times for the two schemas

in the Spotify dataset are nearly identical. This is likely due to very little overlap

among the structure types. Because of this, an object can be invalidated in roughly

the same time it takes to check the value of the identification key. This is shown

when looking at the validation times for the program implementation. The pro-

gram used the same sub-schemas but sees a significant improvement due to no

longer having to check each value for an identification key.
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7.3 Runtime Complexity Analysis

The challenge with determining the runtime complexity of the algorithm is that it

is largely dependent on the structure of the data passed into it. Let J be the number

of JSON objects in an array and n be the maximum number of keys in one of the

objects.

The best case scenario occurs when the initial group (containing all the objects)

already has a similarity score above the threshold. In this case, no split operations

have to be performed. Calculating the runtime complexity of the algorithm is then

simply calculating the runtime complexity of the similarity calculation. As each

JSON object is treated as a set of keys, this problem is equivalent to determining

the complexity of the intersection and union of J sets. Both of these operations can

be done in O(Jn) time through the use of data structures that have constant time

key lookups (e.g. hash sets in Java). This process works by treating the first set

as the base set. All other J− 1 sets are then iterated through. Each key within a

set is compared against the base set to see if it is present. In the case of the union

operation, the key is added to the base set if it is not already present. Once all

the sets have been iterated over, the base set contains the union. In the case of the

intersection operation, an integer count is associated with each key in the base set

and is incremented when a lookup on that key is performed. After iterating over

all the sets, the intersection of the sets consists of the keys in the base set having

a count equal to the number of sets. As each set has at most n keys, the runtime

complexity of the similarity calculation is O(Jn).

Based on this, the runtime complexity of a single split operation can now be

calculated. For one split operation, there is a cost of O(J) to partition all the objects

into their corresponding groups. Calculating the similarity score of the resulting

groups then has a cost of O(Jn) as all the objects of the original group are still

present. Adding these two complexities together gives a final complexity of O(Jn).
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When we are dealing with the same dataset, we can treat n as a constant, as

objects of the same structure type have roughly the same number of keys. With

this assumption, the runtime complexity of the entire algorithm would then be

dependent on the number of objects in the array and the number of split operations

performed. We can again assume that the number of split operations will be a

constant value due to the same groups being generated every time. If we let s be

the number of split operations performed for a given dataset, we end up with a

linear runtime complexity of O(Jns) with J and s being constants. This is shown in

figures 7.2, 7.5, and 7.8, where all datasets have a near linear runtime.

Trying to define s in terms of J and n is a significantly more challenging prob-

lem. As such, we leave it as a future research direction and instead discuss some of

the major factors that would need to be considered. The main issue is that multiple

factors influence how many split operations are performed.

The first factor is comparing the size of the intersection to the size of the union

for a given group. This is important because these are the two components of the

similarity score. Maximizing the number of splits for a group involves maximiz-

ing the size of the intersection. If the intersection is too large, the groups similarity

score will already be above the threshold, and thus, does not need to be split fur-

ther. This means that the most split operations occur when the similarity score is

just underneath the threshold.

The issue with only considering this is that a split operation always results in

at least two groups—both having a higher similarity score. If the original group’s

similarity score was just underneath the threshold, it is very likely that the re-

sulting groups will have similarity scores over the threshold, and thus, no further

split operations are performed. This is largely due to the fact that the size of the

union set will shrink, as objects containing unique keys are separated into different

groups.
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Consequently, there is a trade-off between having a high initial similarity score

that results in many split operations occurring early on, and having a low initial

similarity score that results in many layers of recursion. In essence, the first option

results in a wide but short tree, whereas the second option results in a thin but tall

tree.

The second factor that influences the number of split operations is how many

groups are generated for each split. To maximize the number of splits, it is ideal to

have a large number of groups that can each be split further. However, each split

has to partition the same number of objects. This results in either many groups

containing a few objects or a few groups containing many objects. The importance

of this consideration is that the maximum number of split operations that can be

recursively performed on a large group is greater then a small group. This is due

to the fact that a split operation always results in groups of fewer objects. As such,

the number of objects in a group influences the maximum layers of recursion that

could be applied.

Similar to the first factor, initially generating many groups in a split results in

a wide by short tree, whereas generating a few groups with many objects results

in a thin but tall tree. In both factors, the solution that results in the most split

operations is likely somewhere between the two extremes.
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Chapter 8

Conclusion

The Javascript Object Notation document format is one of the prominent formats

for modeling semi-structured data. Because of its popularity, the idea of a schema

document emerged as a method of validating the structure and content of other

JSON documents. While the general problem of schema generation has been pre-

viously explored, the problem of schema generation for heterogeneous JSON ar-

rays has not been adequately addressed. Existing schema generation tools have

worked off the assumption that all JSON objects in an array should have the same

structure. As a result, these tools only generate a single schema that combines all

objects together—regardless of if they have different types of structures.

This thesis looks to address this problem by instead generating a schema for

each of the structures types found in a JSON array. As an array is designed to be

processed as a single unit, objects in a heterogeneous array usually contain a set of

keys whose purpose is to identify the objects structure. This allows programs pro-

cessing the array to know how to proceed for each object. In order to detect these

identification keys, we design an algorithm that recursively partitions the objects

of an array based on a split operation we define. In essence, this operation chooses

a key and partitions the objects based on the value for that key; objects having the
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same value are placed in the same group. Using the identification keys generated

by our algorithm, we build a schema decision tree to help in the validation process.

8.1 Future Work

8.1.1 Validating Identification Keys

The main challenge addressed in this thesis is determining which keys are used

for identification purposes. To do this, we work off the assumption that the groups

generated by splitting on an identification key will have a greater similarity score

when compared to groups generated by splitting on a non-identification key. While

we believe this assumption to be largely valid, it is still possible for the algorithm

to return a grouping that split on a non-identification keys. Determining when this

occurs is predominantly based on the structure and values of the data passed into

it.

One idea to help detect when this occurs is to adopt an approach commonly

used in machine learning and statistics. This approach is where the input data

is first partitioned into two sets. The first set is used to train the model, and the

second set is used to test the accuracy of it [75]. Using this idea, objects of a given

JSON array could be first partitioned into two sets. The first set would be used

to generate the schema decision tree. Objects of the second set would then be

passed through the tree to see if they are validated correctly. If one of the objects

is not validated, then either the resulting grouping applied the split operation on

a non-identification key or the object represented an entity that was not part of the

training data set. How to determine which scenario is true could be based on how

many objects were not validated. If many objects were not valid, option one is

likely. If only a few objects were not valid, option two is more likely.
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8.1.2 Dynamic Similarity Threshold

The algorithm presented in this work assumes a static similarity threshold. This,

however, runs the risk of either being too low and not detecting all identification

keys or being too high and having non-identification keys be part of the best group-

ing. Determining when this occurs is mainly dependent on the dataset. A different

approach could instead be to make the threshold dynamic. This would allow the

threshold to take on different values for different datasets—or even change during

the algorithm itself.

This idea of a dynamic threshold could also be used in conjunction with the val-

idation method discussed above to better refine the results. If it was determined

that the best grouping includes a non-identification key, the dynamic threshold

could be lowered to see if more accurate results can be found. Likewise, if the best

grouping validates all the objects in the test data, the dynamic threshold could

be raised to see if more identification keys could be detected. Furthermore, the

algorithm itself could potentially be extended to return groupings at different sim-

ilarity thresholds.

8.1.3 Expanded API Study

For the analysis done in this thesis, we focused on datasets generated by three web

APIs, namely, the iTunes Search API, the Open Movie Database API, and the Spo-

tify Search API. While these datasets do showcase how our algorithm performs on

real word data, we think it would be beneficial to perform a more in-depth analy-

sis on a larger sample size. In particular, the three data sources for our analysis are

focused on the music / entertainment sectors. We would like to expend this to in-

clude other industries and vendors, as they might use the JSON format in different

ways.
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Furthermore, the focus on our work was on heterogeneous JSON arrays, and as

such, we only generated the schema for that part of the JSON documents. Another

area we would like to look at in the future is on expanding our work to identifi-

cation keys in general rather then focusing on identification keys only present in

arrays. For example, Amazon Web Services (AWS) allows users to define Iden-

tity and Access Management (IAM) policies through JSON documents. Over time,

the format for these documents has evolved, and now, two different version exist.

Users can define which version of the format they are using by defining a version

key in the root of the JSON document that either contains the date 2008-10-17 or

2012-10-17. This key acts like a unique identifier for the JSON document even

though the data is not part of a heterogeneous array. We think it would be very

beneficial to expand our work to also cover scenarios like this as it would open up

more data sources that we could use for analysis.
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