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Abstract  

This dissertation investigates winter accumulation and snow cover change in the Columbia 

Mountains of British Columbia. In chapter 1, I start with an introduction that describes the 

study area, and then outlines the objectives and structure of this dissertation. 

In chapter 2, I examine the performance of two snow evolution models with different 

complexities (SnowModel and Alpine3D) at simulating winter glacier mass balance on four 

individual glaciers using two different forcing datasets, the Weather Research and Forecasting 

model (WRF) outputs and the North American Land Data Assimilation System (NLDAS). My 

results show that both models can simulate winter accumulation with less than 20% bias for 

each glacier, with SnowModel forced by WRF yielding the least overall bias.  

In chapter 3, I study the effect of wind on snow patterns to determine the impact of snow 

redistribution by wind in terms of erosion, deposition, and sublimation on winter mass balance 

estimation. The results demonstrate that modelled redistribution of snow by wind produces a 

visually realistic pattern of snow accumulation when compared to observed snow depth, but 

its impact on the glacier-averaged winter mass balance estimation is negligible (< 4%). The 

results also suggest that drifting snow sublimation is highly time and space dependent. 

Considering the model performance from previous chapters, in chapter 4, I analyzed the future 

snow cover change over the upper Columbia Basin under the Representative Concentration 

Pathway (RCP8.5) climate scenario by the end of the 21st century. I used downscaled climate 

projections of the Community Earth System Model (CESM1) by WRF, along with statistically 

downscaled data provided from the Pacific Climate Impacts Consortium (PCIC) to force 

SnowModel. The simulated snow maps represent a higher dynamically downscaled mean snow 

water equivalent (SWE) reduction – reaching up to 30% by the end of the century - than the 



iii

statistically downscaled SWE reduction. While SWE reduction of more than 60% happens at 

lower and mid-elevations, altitudes higher than 2000 m are less vulnerable to climate change. 

I conclude this dissertation (Chapter 5) with a summary of the progress gained, study 

limitations, suggestions for future research, and research implications.
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Glossary1 

Ablation 

 All processes that reduce the mass of the glacier. 

The main processes of ablation are melting and calving (or, when the glacier nourishes an ice 

shelf, ice discharge across the grounding line). On some glaciers sublimation, loss of 

windborne snow and avalanching are significant processes of ablation. 

Ablation zone 

The part of the glacier where ablation exceeds accumulation in magnitude, that is, where the 

cumulative mass balance relative to the start of the mass-balance year is negative. Unless 

qualified, for example by giving a date within the year, references to the ablation zone refer to 

its extent at the end of the mass-balance year. The extent of the ablation zone can vary strongly 

from year to year. 

Accumulation 

The main process of accumulation is snowfall. 

Accumulation also includes deposition of hoar, freezing rain, solid precipitation in forms other 

than snow, gain of windborne snow, avalanching and basal accumulation (often beneath 

floating ice). 

Accumulation season 

A time span extending from a seasonal minimum of glacier mass to a seasonal maximum. 

 

1 (Cogley et al., 2011)
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Accumulation zone 

The part of the glacier where accumulation exceeds ablation in magnitude, that is, where the 

cumulative mass balance relative to the start of the mass-balance year is positive. 

Albedo 

The ratio of the reflected flux density to the incident flux density. 

The albedos of glacier surfaces exceed 0.8 for freshly fallen snow, are less for aged snow and 

firn, and are significantly less for exposed glacier ice. Snow and ice that are sediment-laden or 

covered by debris can have albedos still lower. The difference between the albedos of snow 

and glacier ice is significant in the seasonal evolution of the energy balance and therefore of 

the rate of surface ablation. 

Alpine glacier 

See mountain glacier 

Altitude 

The vertical distance of a point above a datum. The vertical datum is usually an estimate of 

mean sea level. 

Annual 

Descriptive of a period equal or approximately equal in duration to a calendar year, such as a 

hydrological year or mass-balance year. 

Area-averaged 

Descriptive of a quantity that has been averaged over part or all of the area of the glacier. 
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Avalanche 

A slide or flow of a mass of snow, firn or ice that becomes detached abruptly, often entraining 

additional material such as snow, debris and vegetation as it descends. 

Cirque glacier 

A glacier occupying a cirque. A cirque is a rounded recess with steep sides and back wall, 

formed on a mountainside by glacial erosion. 

Conservation of mass 

The principle that mass in a system is neither created nor destroyed, expressed by the relation: 

the rate of change of mass in an element of the system equals the rate at which mass enters the 

element minus the rate at which mass leaves the element. 

Cumulative  

Descriptive of a quantity that has been summed over a span of time. 

Density 

The ratio of the mass of any substance to the volume that it occupies. Density is expressed in 

kg m–3. 

Deposition 

The process by which a vapour changes phase directly into a solid. 

Drifting snow 

Snow entrained and transported above the surface by the wind. 
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Elevation change 

Vertical change in glacier surface elevation (altitude), typically derived from two elevation 

measurements. 

Energy balance 

A relation describing the change in the amount of energy stored within a defined volume owing 

to flows of energy across the boundary of the volume. 

Equilibrium line 

The set of points on the surface of the glacier where the climatic mass balance is zero at a given 

moment. The equilibrium line separates the accumulation zone from the ablation zone. 

- Transient equilibrium line  

The equilibrium line at any instant, where cumulative ablation balances cumulative 

accumulation relative to the start of the mass-balance year. 

Freezing point 

The temperature, equal to 273.15 K (0 ºC) when the pressure is equal to a standard pressure of 

101325 Pa, at which pure water freezes, releasing an amount of energy known as the latent 

heat of fusion. 

Geodetic method 

Any method for determining mass balance by repeated mapping of glacier surface elevations 

to estimate the volume balance. 

Glacierized 

Of a region or terrain, containing glaciers or covered by glacier ice today. 
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Glacier-wide  

Descriptive of a quantity that, whether or not it is expressed in specific units, has been 

measured or estimated over the entire glacier. 

Glaciological method 

A method of determining mass balance in-situ on the glacier surface by measurements of 

accumulation and ablation, generally including measurements at stakes and in snow pits. 

Surface hoar 

A surface deposit of interlocking ice crystals formed by the deposition of water vapour. 

Internal ablation 

Internal ablation can occur due to strain heating of temperate ice as the ice deforms. However, 

the largest heat sources for internal ablation are likely to be the potential energy released by 

downward motion of the ice and of meltwater. 

Internal accumulation  

Internal accumulation proceeds by the freezing of water that percolates early in the ablation 

season into firn that is still cold, heating the firn in the process, or by the freezing of retained 

pore water during the accumulation season, also releasing latent heat and thus slowing the 

downward advance of the winter cold wave. 

Inversion 

A layer of the atmosphere in which temperature increases with height. 
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Latent heat 

The energy taken up or released per unit mass by a system in a reversible change of phase at 

constant temperature and pressure. 

Mass balance 

The change in the mass of a glacier, or part of the glacier, over a stated span of time; the term 

mass budget is a synonym. See mass-balance units for recommended units. The span of time 

is often a year or a season. A seasonal mass balance is nearly always either a winter balance or 

a summer balance. 

Point mass balance 

Mass balance at a particular location on the glacier, for example at an ablation stake or a snow 

pit. 

Meltwater 

The liquid resulting from melting of ice, firn or snow. 

Mountain glacier 

A glacier that is confined by surrounding mountain terrain, also called an alpine glacier. 

Precipitation 

Liquid or solid products of the condensation of water vapour that fall from clouds or are 

deposited from the air onto the surface. 

Retreat 

Decrease of the length of a flowline, measured from a fixed point. 
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Snow depth 

In the firn area, the vertical distance between the glacier surface and the summer surface; 

outside the firn area, the vertical distance between the glacier surface and the ice surface (which 

may be superimposed ice or glacier ice) at the time of observation. 

Sublimation 

The process by which a solid changes phase directly into a vapour without melting. 

Water equivalent 

A unit, in full the “metre [of] water equivalent”, that is an extension of the SI for describing 

glacier mass in specific units as the thickness of an equal mass having the density of water. 

Windborne snow 

Blowing snow or drifting snow. Windborne snow may be redistributed from one part of the 

glacier to another. 
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Chapter 1: Introduction 

This dissertation investigates the important factors affecting the simulation of snow 

accumulation in alpine terrain in terms of input data, model complexity and the effect of wind 

induced snow transport processes on winter Glacier Mass Balance. The dissertation presents 

results of high resolution physically-based snow model runs forced by High Resolution 

Meteorological (HRM) data applied on four glaciers over the Columbia Basin. Furthermore, 

the future changes in snow depth and SWE by the end of this century over this basin is 

presented using available statistically and dynamical downscaled data. 

 

1.1. Importance of glaciers and snow modelling 

Surface mass balance is a direct response of a glacier to meteorological conditions that 

cause a glacier to accumulate or lose ice or snow over a specified time period. Surface 

accumulation occurs by snow and ice precipitation, refreezing liquid precipitation within the 

snowpacks, avalanches, and windblown snow.  Processes that cause the glacier to lose mass 

include surface melt, surface meltwater runoff, sublimation, avalanching and snow transport 

by wind.  

The close relation of snow and ice melt with air temperature (e.g. Ohmura, 2001) results in 

sensitivity of the cryosphere to temperature fluctuations. According to the IPCC (2019), the 

global annual average of human-induced warming in 2017 reached about 1˚C above pre-

industrial levels and increases at a rate of 0.2˚C per decade, within an expected warming of 3-

4˚C by 2100 (Rogelj et al., 2016). Alpine regions are particularly sensitive to climate 

fluctuations. Precipitation patterns and variability of winter temperatures can significantly 

affect spring and summer river flows in cold regions (Barnett et al., 2005; Adam et al., 2009). 
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The impacts of climate change are already evidenced by snowpack decline and the rapid 

volume losses of many alpine glaciers (e.g. Bauder et al., 2007; Larsen et al., 2007; Schiefer 

et al., 2007; Zemp et al., 2008; Bolch et al., 2010; Menounos et al., 2019). Glaciers and alpine 

snow cover provide an important water resource for Western Canada, and they too are affected 

by climate change. Expected changes in glaciers and snow cover that are affecting the runoff 

regime of alpine rivers result in a significant reduction in summer runoff in lowlands due to 

glacier retreat (Moyer et al., 2016; Shrestha et al., 2017; Brahney et al., 2017). Such changes 

can significantly influence the hydrology of glacierized basins, which affects water availability 

for human consumption, agriculture, tourism, and hydroelectricity generation, posing 

challenges for long-term water management (Khadka, 2013). 

Direct observations provide one approach to evaluate the links between meteorological 

conditions that favour glacier mass gain or loss (e.g. Brock et al., 2000; Hock and Holmgren, 

2005; Andreassen et al., 2008). Prior work examines the relations between climate and winter 

accumulation using statistical (e.g. Trachsel and Nesje, 2015) and geodetic methods (e.g. Sold 

et al., 2013; Beedle et al., 2015; Pelto et al., 2019). In recent decades, scientists have developed 

energy-balance models to simulate glacier mass balance and snow cover forced by 

meteorological and climatological factors. Many studies model surface melt for alpine glaciers 

(e.g. Hock and Holmgren, 2005; Lott and Lundquist, 2008; DeBeer and Pomeroy 2009, 2017), 

whereas far fewer examine seasonal snowpack accumulation (e.g. Winstral et al., 2013; 

Reijmer et al., 2008; Franz et al., 2008; Liston et al., 2008; Mernild et al., 2005). Energy-

balance models are physically-based and improve simulation by considering the spatial and 

temporal contributions of energy into the snowpack (e.g. radiation, sensible and latent heat 

exchange, ground and rain heat fluxes) that result in melting and its response to climate changes 
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and surface conditions. Such studies are important for accurate prediction of summer glacier 

mass balance changes, especially in mountainous areas due to the complexity of topography 

and its influence on radiation (Arnold et al., 1996). However, the calculation of winter 

accumulation, which is influenced by wind and topography, is simplified within these models. 

The distribution of snow in mountainous regions is variable due to spatial differences in factors 

such as topography, shading and redistribution by wind that cause differences in accumulation 

of snow in alpine terrain (Winstral and Marks, 2002; Winstral et al., 2013), leading to variations 

in glacier mass balance (McGrath et al., 2018; Sold et al., 2013). Wind affects snow 

accumulation by transporting it to leeward and sheltered locations; wind also affects 

sublimation and evaporation processes (Gordon et al., 2006; Strasser et al., 2007). Large-scale 

orographic precipitation and local scale processes also play key roles in affecting broad scale 

patterns in snow accumulation (Houze, 2012; Mott et al., 2014).  

Input data uncertainties in terms of both spatial variability and uncertainties in 

parameterizations can lead to a significant loss of confidence in key simulation results related 

to the surface energy and mass budgets (Sauter and Obleitner, 2015). Coarse resolution 

meteorological model outputs or data sets, for example from Global Climate Models or model 

reanalysis datasets, are often unable to properly resolve the topographical details and processes 

important for glacier mass balance. Dynamical downscaling uses a physically-based 

atmospheric model that solves equations for conservation of mass, momentum and energy in 

the atmosphere and typically the land surface to provide a finer resolution of forcing data. 

Dynamical downscaling is capable of providing detailed information on the interaction of the 

land and the atmosphere, especially orographic precipitation, but is computationally expensive. 

Recently, meteorological data from regional atmospheric models have been used to directly 
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drive surface energy balance models, while surface fluxes can directly influence the 

atmospheric modelling when integrated in time (coupled models) (e.g. Mölg and Kaser, 2011; 

Gallée et al., 2012; Collier et al., 2013; Vionnet et al., 2014) or used indirectly by adding a 

simulated wind field to observations as input to the snow models (e.g. Mott et al., 2008, 2010). 

Coupled models are proper tools to study snowpack-atmosphere interactions; however, it is 

important that the modelling approach be consistent with the purpose of its application and 

required temporal and spatial resolution in the simulation (Kirnbauer et al., 1994; Hock and 

Jansson, 2005).  

 

1.1.1.  Snow models 

Many different snow models exist to calculate the vertical and spatial development of snow 

cover (e.g. Pomeroy et al., 1993; Liston and Sturm, 1998; Déry and Yau, 1999; Winstral and 

Marks, 2002; Lehning et al., 2006; Marsh et al., 2020; Vionnet et al., 2020), but only a few 

studies have applied these seasonal snow models to simulate glacier mass balance. These snow 

models vary in complexity and incorporate different approaches to model ablation, and 

accumulation with different requirements in terms of input and calibration data. According to 

Marsh (1999), Liston (2004) and Liston and Elder (2006), most of these models have 

physically-based representations of processes, which can be categorized as one-dimensional, 

two-dimensional, or three-dimensional (Bernhardt, 2008).  

A) One-dimensional models. These models are multi-layer snowpack models. In many cases 

these are used to assess avalanche or flood risk.  These models are developed to accurately 

calculate the vertical stratification of the snowpack and the snow metamorphism and its 

association with mechanical properties such as thermal conductivity, viscosity and strength 
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(Spreitzhofer et al., 1993). Complex and physically-based formulations are necessary for a 

proper description of the above variables. A numerical solution is possible only if extensive 

input information is available. As such, their application is limited to well instrumented 

locations. Some of the 1-dimensional models are: CROCUS (Brun et al., 1989; Brun et al., 

1992), SNOWPACK (Lehning et al., 2002; Bartelt and Lehning, 2002) and SNTHERM 

(Jordan, 1991), among others.  Météo-France created the numerical model CROCUS to predict 

the evolution and stability of snowpack in relation to avalanches. To support avalanche 

warnings in Switzerland, SNOWPACK was created by the Swiss Federal Institute for Snow 

Research and Lawine Research (SLF). SNTHERM was created to predict runoff. 

B) Two-dimensional models are typically used as subroutines in atmospheric models and soil 

vegetation atmosphere transfer schemes, some of which are stand-alone models (e.g. the 

AMUNDSEN model; Strasser, 2007). Two-dimensional models conventionally have one layer 

and do not explicitly simulate the metamorphism of snow crystals.  Lateral wind or gravity 

transport is often ignored, and a sub-scale snow distribution is based on the mean changes to 

albedo due to snow evolution (Liston, 2004). 

C) Three-dimensional models consist of at least two parts, one calculating the evolution of 

snow columns while the other simulates the process of snow transport. The complexity of each 

component determines whether a model can be used to simulate the seasonal snow cover or 

whether it only identifies a short-term snow transport event (e.g. during storm events). The 

ability of the models to simulate seasonal or event-based snow cover depends on the 

complexity of each component. The snow drift models are generally quite complicated and 

computationally intensive. They are often used for basic research, where they are split between 

event-based (more complicated) and seasonal models (simpler). For instance, a snow drift 
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routine was added in Lehning et al. (2002) to the Advanced Regional Projection System (Xue 

et al., 2000) atmospheric model. Compared to event-based models, seasonal snow-transport 

models usually have a medium level of complexity.  They usually use a first order transport 

physics approximation and a single snow evolution model layer. The Prairie Blowing Snow 

Model (PBSM) (Pomeroy et al., 1997) is the first recognized seasonal and physical snow 

transport model. SnowTran-3D (Liston and Sturm, 1998; Liston et al., 2007), which is a part 

of SnowModel, is one of PBSM's successors. ALPINE-3D (Lehning et al., 2006) also is a 

three-dimensional model, which is a combination of SNOWPACK and snowdrift models. 

Recently, a 3‐D advection‐diffusion blowing snow model was presented by Marsh et al. (2020). 

A physically based mass balance model, iSNOBAL (Marks et al., 1999), was used for snow 

cover simulation and implemented in the Canadian Hydrological Model (CHM) (e.g. Marsh et 

al., 2020b; Vionnet et al., 2020). This model utilizes a variable resolution unstructured mesh 

that significantly reduces the total number of computational elements and produces 

heterogeneous snow covers without the need for calibration. 

The pattern of snow accumulation is regulated by (a) preferential deposition of snowfall, (b) 

snow redistribution by wind, and (c) other snow transports such as avalanches, and snow slides 

(Kuhn, 1995; Lehning et al., 2008). Models that simulate such processes are subject to large 

uncertainties due to the lack of accurate solid precipitation data, especially in mountainous 

areas (Sevruk, 1985), and makes it difficult to simulate snow accumulation (Dadic et al., 2010). 

The one-dimensional snow models are able to simulate snowpack evolution near weather 

stations (Etchevers et al., 2002). However, the results are less reliable for 2- or 3-dimensional 

spatially distributed models, especially in areas with complex or alpine terrain (e.g. Liston, 

2006). This is thought to be due to errors and uncertainties in forcing data, as well as the 
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simplification of model formulas (e.g. Lehning et al., 2006). Distributed snow models compute 

snow accumulation using one of three methods: using precipitation data from nearby weather 

stations using a precipitation lapse rate to adjust data for all elevations; from gridded 

precipitation data sets; or from climate model outputs utilizing a threshold temperature to 

differentiate liquid and solid precipitation (Hock, 1999; Finger et al., 2012; Salzmann et al., 

2012). In addition, some snow models also have a simple parameterization for snow 

redistribution processes based on terrain parameters (e.g. Huss et al., 2009; Mayr et al., 2013). 

 In alpine environments, a high frequency of blowing snow conditions with wind speeds higher 

than 3 m s-1 at 10 m height above the surface (Liston and Sturm, 1998) and a lack of vegetation 

to stabilize snow cover (Pomeroy et al., 1997; Pohl et al., 2007) are the main reasons for large 

wind impacts on the snowpack. Due to the complexity of wind fields in steep terrain, drifting 

snow is implemented in the models mainly as a function of terrain parameters (Liston and 

Sturm, 1998; Winstral and Marks, 2002; Winstral et al., 2013). 

 

1.1.2. Downscaling methods 

Many glaciers are located in remote areas, which makes it difficult to measure snow 

properties by direct observation. A modelling approach thus provides one method to estimate 

glacier mass balance. However, in data sparse regions it is challenging to find alternatives to 

stations for forcing data. Global Climate Models (GCMs) are too coarse to address high-

resolution weather conditions at a local scale, thus limiting their applicability for snowpack 

climate impact studies (Radić and Hock, 2006; Radić and Clarke, 2011). Statistical or 

dynamical downscaling approaches can be used to fill the gap between global climate model 

(GCM) resolution and the study area's regional scale.  
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Statistical downscaling uses estimates derived from empirical relationships between GCM 

simulated large-scale atmospheric variables and observed local-scale meteorological variables 

with an assumption that the relationship between variables remains unchanged over time. 

Statistical downscaling is computationally efficient. However, its main disadvantage is its 

assumption that climate dynamics of the past and present will be the same in the future. 

Furthermore, this approach can typically be generalized only to precipitation and air 

temperature due to the limited availability of observed data (Maraun et al., 2010; Teutschbein 

et al., 2011). Dynamical downscaling, on the other hand, uses a Regional Climate Model to 

produce a finer-scale climate projection. This method can represent detailed information about 

interactions between land and atmosphere, including orographic precipitation. The models 

used are generally numerical weather prediction models, often modified to allow for long-term 

climate simulations. This approach, however, does not require a stationarity assumption and 

accounts for regional effects on the climate system such as interaction of air masses with 

mountains. However, computationally, dynamical downscaling costs considerably more than 

statistical downscaling (Erler et al., 2017). Having downscaled data from climate models 

makes it possible to project future snow cover changes over the study area by the end of 

century.  

 

1.2. Dissertation objectives 

In recent decades, snow models have been developed and improved in light of enhanced 

understanding of snow process physics and growth in computational power, leading to higher 

complexity of distributed physics-based snow models. Although snow models have been 

developed and applied in many regions of the globe, some aspects of modelling are not well 
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investigated. Melting processes are centred in most of the research, while winter accumulation 

affects summer ablation directly and has a similar significance. In addition, mostly the 

observed data from weather stations are used to force snow models. Here, not only I am using 

all high-resolution meteorological fields to force the snow models, I examine different models 

to assess the effect of model complexity on winter accumulation. I also investigate how wind 

affects glacier winter mass balance in this region, to determine whether or not the wind effect 

is important to consider given the fact that such processes require high computational and time 

demands. Furthermore, future snow cover changes over the Columbia Basin by the end of the 

21st century are projected based on the RCP 8.5 scenario. Four individual glaciers over the 

Columbia Mountains of British Columbia are selected as test sites to simulate the winter 

accumulation and investigate the effect of wind on the winter mass balance. Furthermore, an 

assessment of global warming on snow cover and water resources in cold regions is a major 

challenge for understanding climate change on the regional scale, which is of great interest in 

modelling impacts and informing strategies for adaptation. Consequently, I project changes in 

future snow cover over the Columbia Basin by the end of the century. Specific objectives of 

this research are to: 

1) Examine the importance of meteorological input data used to force the snow models, 

on winter accumulation in the absence of weather station data,  

2) Investigate the importance of snow evolution model complexity on winter mass 

balance, 

3)  Determine the effect of wind on glacier winter mass balance in terms of snow erosion, 

deposition and sublimation, and  
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4) Assess changes in snow depth and SWE over the Columbia Basin by the end of the 21st 

century using a snow model driven by available dynamically and statistically 

downscaled data. 

 

1.3. Study region 

In this study, I estimate winter mass balance of glaciers and snow change over the Canadian 

portion of the Columbia Basin (Fig. 2.1). The Canadian portion of the Columbia Mountains is 

located in the southern interior of British Columbia and is bounded by the Rocky Mountain 

Trench (east), the Columbia River (south), the Interior Plateau (west) and the Fraser River 

(north) with peaks above sea level (a.s.l.) of 3000 m with complex topographic features that 

influence its climate significantly. The Upper Columbia Basin comprises about 55,000 km2 of 

rivers or lakes, along with population centres of varying sizes. In late summer, snow melt 

induced river discharge decreases rapidly, which plays a key role in the region's water supply. 

The heavy winter snowfall is controlled by mid-latitude cyclones with wet and mild air masses 

from the Pacific Ocean, which are intercepted by the Columbia Mountains. Characteristics of 

this region include high annual precipitation, deep snow accumulations and relatively moderate 

winter temperatures. 

According to Bolch et al. (2010), glacier area (in 2005) of the British Columbia (BC) Southern 

Interior and Southern Rocky regions were reported to be 1910.4 and 1351.7 km2, respectively. 

The Columbia Basin includes a part of the Southern Rocky region in this inventory. The 

recorded number of glaciers over the whole area is 3575 glaciers. This study estimated the 

glacier area changes from 1985-2005 as -342.2±98.9 and -235.3±65.2 km2 for the Southern 
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Interior and Southern Rocky areas, respectively, which equates to -15.2±4.4 % and -14.8±4.1 

% for these areas, respectively. Estimates of glacier areal loss is about 0.7 % yr-1.   

 

1.4. Outline of chapters 

This dissertation contains three main chapters. In chapter 2, I answer the first and second 

research objectives: examining the importance of meteorological forcing data and complexity 

of the snow models, on winter accumulation in the absence of weather station data. Two 

different forcing data sets from the Weather Research and Forecasting model (WRF) and the 

North American Land Data Assimilation System (NLDAS), are used to force two snow models 

with different complexity (SnowModel and Alpine3D). The results are evaluated based on in-

situ observations conducted by the UNBC cryosphere group over four glaciers. In addition, the 

integrated snow depth over the domain is compared with LiDAR measurements. The 

importance of forcing data, and snow model complexity are investigated by comparison 

between the results of each simulation for winter 2015-2016. 

In the third chapter, the effect of wind on the winter accumulation is explored utilizing the 

second chapter results, in terms of selecting forcing data and the snow model. The results of 

this chapter answer the third research question: determining the effect of wind on glacier winter 

mass balance in terms of snow erosion, deposition and sublimation. The wind influence on 

winter mass balance is demonstrated by implementing two simulations for each glacier: with 

and without consideration of wind effects. The results show details of snow deposition and 

sublimation over four glaciers, as well as the magnitude of such effects on winter accumulation. 
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Chapter 4 projects snow cover changes under climate change scenario RCP 8.5 by the end of 

the century to respond to the fourth research objective: assessing changes in snow depth and 

SWE over the Upper Columbia Basin by the end of this century using dynamically and 

statistically downscaled data. Forcing data for the reference period (1979-1994) and future 

projections for two 15-yr periods (2045-2059, 2085-2099) were derived from downscaled 

CESM-WRF for four different ensembles. In addition, for the same periods, statistically 

downscaled data derived from CESM over the region are used to force SnowModel to project 

future snow cover over the whole Columbia Mountains. The effect of each forcing on the snow 

cover projections and the related uncertainties are discussed. 

Chapters 2, 3, and 4 are each based on manuscripts. The paper derived from Chapter 2 is 

accepted in the journal Hydrological Processes. Chapters 3 and 4 are being prepared as 

manuscripts for submission to the Journal of Glaciology and International Journal of 

Climatology, respectively. Each manuscript consists of an introduction, data and methods, 

results, discussion and conclusions sections. The appropriate permissions have been obtained 

to replicate the manuscripts herein.  

As the first author of the papers, I am the primary contributor to the articles including 

modelling, data processing and analysis, and preparing drafts for submission. Other co-authors 

include my co-supervisors (Drs. Menounos and Jackson) as leaders for the project and helping 

to edit the manuscripts. Two other co-authors provided some of the forcing data (Dr. Erler) as 

well as field data (Dr. Pelto).  

Chapter 5 provides a summary of the main results obtained in the dissertation, the study 

limitations, and some suggestions for future research. 
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Abstract 

Glaciers are commonly located in mountainous terrain subject to highly variable 

meteorological conditions. High resolution meteorological (HRM) data simulated by 

atmospheric models can complement meteorological station observations to assess changes in 

glacier energy fluxes and mass balance. We examine the performance of two snow models, 

SnowModel and Alpine3D, forced by different meteorological data for winter mass balance 

simulations at four glaciers in the Canadian portion of the Columbia Basin. The Weather 

Research and Forecasting model (WRF) with resolution of 1 km and the North American Land 

Data Assimilation System (NLDAS2) with ~12 km resolution, provide forcing data for the two 

snow models. Evaluation is based on the ability of the snow models to simulate snow depth at 

both point locations (automated snow weather stations; ASWSs) and over the entire glacier 

surface (airborne LiDAR surveys) during the 2015-2016 winter accumulation. When forced 

with HRM data, both models can reproduce snow depth to within ± 15% of observed values. 

Both models underestimate winter mass balance when forced by HRM data. When driven with 

WRF data, SnowModel underestimates winter mass balance integrated over the glacier area by 

1 and 10%, while Alpine3D underestimates winter mass balance by 12 and 22% compared 

with LiDAR and stake measurements, respectively. The overall results show that SnowModel 

forced by WRF simulated winter mass balance the best. 
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2.1. Introduction 

Runoff from high mountain areas supplement many river systems in the world. 

Precipitation and winter temperature patterns and variability can significantly affect spring and 

summer flows in cold regions (Barnett et al., 2005; Adam et al., 2009). Change in glacier area, 

for example, influence the hydrology of glacierized basins, which affects water availability for 

urban consumption, agriculture, and hydroelectricity generation, posing challenges for long-

term water management (Khadka et al., 2013). 

Climate controls the global distribution of alpine glaciers. A glacier is affected by the 

interaction of weather systems with complex mountain topography (Hofer et al., 2015, 

Gurgiser et al., 2013; Khadka, 2013); this interaction affects energy and mass fluxes that 

control the nourishment and depletion of these ice masses. Direct observations provide one 

approach to evaluate the links between meteorological conditions that favour mass gain or loss 

(e.g. Brock et al., 2000; Hock and Holmgren, 2005; Andreassen et al., 2008). Prior work 

examined the relationship between climate and winter accumulation using statistical (e.g. 

Trachsel and Nesje, 2015) and geodetic (e.g. Sold et al., 2013; Beedle et al., 2015; Pelto et al., 

2019) methods.  

Models that simulate snow accumulation and melt can improve our understanding of 

physical processes that lead to mass accumulation for alpine glaciers, especially those where 

sublimation and calving processes are negligible. Many studies model mass loss during the 

ablation season (e.g. Blӧschl et al., 1991; Arnold et al, 2006; Hock 2003; Lefebre et al., 2003; 

Hock and Holmgren, 2005; Lott and Lundquist, 2008; DeBeer and Pomeroy, 2009, 2017) 

whereas fewer simulate winter accumulation (e.g. Winstral and Marks, 2002;  Winstral et al., 

2013; Reijmer et al., 2008; Franz et al., 2008; Liston et al., 2008; Mernild et al., 2005). Over 
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the last decade, several studies have been conducted to simulate winter accumulation using 

models of different complexities (Bernhardt et al., 2009; Warscher et al., 2013; Mott et al., 

2010; Vionnet et al., 2017). In most studies of winter accumulation on alpine glaciers, 

physically-based models are forced with observed weather station data. In some studies, 

however, meteorological data from regional atmospheric models have been used to directly 

drive surface energy balance models (e.g. Mölg and Kaser, 2011; Gallée et al., 2012; Collier 

et al., 2013; Vionnet et al., 2014). While coupled models are appropriate tools to investigate 

how the snowpack interacts with the atmosphere, uncertainties introduced by downscaling 

atmospheric data directly to the glacier surface may affect spatial and temporal distribution of 

meteorological variables in the snow models which may affect the snow model results 

(Machguth et al., 2006a). On the other hand, the complexity of a given modelling approach 

should be consistent with its application objectives and with temporal and spatial resolution 

required in the simulation (Kirnbauer et al., 1994; Hock and Jansson, 2005).   

Our study goal is to address two primary questions: how do differences in the 

meteorological forcing (HRM data) in modelling snow processes affect the simulated glacier 

mass balance in regions where direct observations are absent? How does the complexity of 

snow models affect the simulation of winter mass balance? 

In this study, we use meteorological fields from mesoscale atmospheric models to simulate 

winter mass balance. We evaluate simulated temporal and spatially distributed time series of 

snow depth and SWE using two distributed snow models with different complexities. The 

paper does not consider the effects of wind transport. We chose four glaciers in British 

Columbia with different characteristics to evaluate the ability of these snow models to simulate 

winter accumulation. 
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2.2. Study area and data used in this study  

 

2.2.1. Study area  

 

The four glaciers studied lie in the Columbia Mountains of British Columbia, Canada (Fig. 

2.1), which are drained by the Fraser, South Thompson, Columbia, and Kootenay rivers 

(Holland, 1976). These glaciers are: Zillmer (52°41' N, 119°35' W), Conrad (50°49' N, 116°55' 

W), Nordic (51° 25' 13'' N, 117° 42' 13'' W) and Kokanee (49° 45' N, 117° 8' 30'' W) that have 

mean elevations of 2094, 2301, 2718 and 2600 m above sea level (m a.s.l.), respectively (Fig. 

2.1). The Conrad, Zillmer, Nordic, and Kokanee glaciers cover an area of 11.45, 5.43, 3.39, 

and 1.8 km2, respectively. In this study, we used a domain larger than each main glacier (the 

main glaciers plus surrounding areas) to evaluate models in glacier-free areas, especially when 

comparing with LiDAR data. The topography surrounding each glacier is characterized by 

steep alpine terrain (elevation range between 420 to 3700 m a.s.l.). The prevailing winds are 

westerly over this area however, the final wind pattern is strongly affected by the complex 

local topographic features. Based on the data from the Parameter-Elevation Relationships on 

Independent Slopes Model (PRISM; 4 km resolution) dataset the annual average temperatures 

are below 0°C and as cold as -4°C in high elevation areas in the central and northern parts of 

the Columbia basin for years 1961-1990 (Murdock & Werner, 2011; Daly et al. 1994). The 

average relative humidity for elevations higher than 1500 m a.s.l. is 74% for the same data 

(1961-1990 normals). The mean winter precipitation over the entire Columbia basin (1900-

2000) is reported to be 350 mm based on the data derived from ClimateBC for areas below 

1500 m a.s.l. (Carver, 2017).  
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Figure 2.1. Top) Study sites: Zillmer, Nordic, Conrad, and Kokanee glaciers and the nearest weather station 
locations to each glacier (Table 2.1). The blue outline represents the Canadian portion of the Columbia River 
basin. Bottom) Topography of each individual glacier with LiDAR footprint boundaries (Yellow outlines) and 
main (ON) glacier boundaries (Red outlines) 
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2.2.2. Input and evaluation data  

 

a) Modelled meteorological forcing data 

Below, we describe the two datasets used to force the snow models. The North American 

Land Data Assimilation System (NLDAS; V002) is a multimodel land modelling and 

assimilation system. The non-precipitation land-surface forcing fields for NLDAS2 are derived 

from the North American Regional Reanalysis (NARR) fields. The precipitation field is a result 

of a temporal disaggregation of a gauge analysis of Climate Prediction Center (CPC) daily 

precipitation which is directly performed on the NLDAS2 grid using an orographic adjustment 

based on the PRISM climatology. The hourly NLDAS2 data have a spatial resolution of 0.125˚ 

(latitude/longitude) (Cosgrove et al., 2003; Mitchell et al., 2004). Hourly surface 

meteorological variables from both datasets used to force the snow models include 

precipitation intensity (mm hr-1), temperature (˚C) and relative humidity (%) at 2 m height, 

wind speed (m s-1) and wind direction (degrees) at 10 m height, as well as incoming shortwave 

and longwave radiation (W m-2).   

The other meteorological driving data used to force the snow models were derived from high 

resolution regional climate simulations that have been conducted with WRF – the Weather 

Research and Forecasting model (Skamarock and Klemp, 2008), version 3.6.1. Due to WRF 

high computation time, a nested domain was used with an outer/inner domain at 7 km and 1 

km horizontal resolution (one-way coupling) (Fig S1.2). The outer domain covers most of 

British Columbia and parts of Alberta, while the inner domain covers only the Canadian Rocky 

Mountains and the Columbia Mountains, which are the primary regions of interest for this 

study. The outer domain is forced by meteorological and sea-surface temperature data from the 

ERA-Interim reanalysis product (Dee et al., 2011) at 6-hour intervals. The WRF simulations 
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were run for an entire model year starting at the beginning of August and integrated 

continuously until the end of August of the following year. The first month of simulations was 

used to spin up the model and not analyzed in this study. Furthermore, nudging was applied 

within nine grid cells of the outer domain boundary and weak spectral nudging was applied 

above the boundary layer. The model was configured with 42 hybrid terrain-following vertical 

layers with a model top at 50 hPa (approximately 20 km above sea level) and a weak damping 

layer starting 8 km below the model top. The following physical parameterization schemes 

have been employed: the Rapid Radiative Transfer Model for GCMs (RRTMG) radiation 

scheme (Iacono et al., 2008), the Thompson micro-physics scheme (Thompson et al., 2008), 

the Noah-MP land surface model (Niu et al., 2011), the MYNN3 planetary boundary and 

surface layer scheme (Nakanishi and Niino, 2006) and the Grell-3 ensemble cumulus 

parameterization with subsidence spreading (Grell and Dévényi, 2002); no cumulus scheme 

was used in the inner domain, since at 1 km convection is explicitly resolved (Liu et al., 2011). 

The column lake model (Gu et al., 2013), topographic shading and slope effects on radiation, 

as well as cloud feedbacks on radiation have also been enabled (Wang et al., 2009). The physics 

configuration is similar to the configuration used by Erler et al. (2015), but a newer version of 

WRF was employed here. 

 

b) Automated Snow Weather Station (ASWS) data 

 

We used data from four ASWS (Fig. 2.1 and Table 2.1) to evaluate the HRM datasets 

and to calibrate the two snow models and optimize their performance by comparing the time 

series of snow depth and SWE obtained from nearby ASWS sites with simulated data. These 

weather stations are distributed throughout British Columbia above valley bottoms from the 
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subalpine to treeline at altitudes between 700 to 2200 m a.s.l.; their measurements include snow 

depth, SWE, cumulative precipitation, and air temperature. We found a few short data gaps 

and a small proportion of data appeared to be outliers. The four ASWS measurement datasets 

were preprocessed by examining data (< 5th percentile and > 95th percentile) to remove outliers 

and values resulting from sensor malfunction; linear interpolation was used to fill small data 

gaps (<5 hours). Outliers and gaps were detected by graphical display of data. End of season 

SWE was evaluated using observed data from ASWSs at the point scale, and by manual 

probing of snow depths over glaciers. 

Table 2.1. Automated snow pillow station characteristics. For the Glacier-NMF station, temperature and 

precipitation are derived from the BC Hydro network (station ID: FDL), while snow depth and SWE are derived 

from Automated snow pillow network from Ministry of Environment (station ID: 2A17). 

 

c) In situ snow measurements  

We measured winter surface mass balance at the four glaciers since 2014 (Pelto et al., 2019) 

using the glaciological method (Cogley et al., 2011). The measurement networks for all four 

Station 

ID 

Station Name Network 

name 

Elevation 

(m) 

Parameters1 Period of 

record 

Frequency Distance to 

Glacier 

1E08P Azure River ENV-ASP2 1630 T, P, S, 

SWE 

2003-2020 Hourly 8.7 km to 

Zillmer 

2D08P East Creek ENV-ASP2 1960 T, P, S, 

SWE 

2003-2020 Hourly 15 km to 

Conrad 

2A17  Glacier Np  

Mt Fidelity  

ENV-ASP2  1850 S, SWE  

 

1963-2020 

 

Daily  

 

20 km to 

Nordic 

FDL Fidelity BCH3  T, P 1982-2020 Daily  

2D14P Redfish Creek ENV-ASP2 2080 T, P, S, 

SWE 

2003-2020 Hourly 3.4 km to 

Kokanee 

1 T: Temperature, P: Precipitation, S: Snow-depth, SWE: Snow water equivalent 

 2 Ministry of Environment - Automated Snow Pillow Network; 3 BC Hydro 
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glaciers including snow depth measurement locations, and snow pit/core locations are shown 

in Fig. 2.2. The glaciological field campaign occurred for the winter in late April to early May 

and for summer in late August to early September (Table 2.2). We used snow pit measurements 

with a 100 cm3 box cutter and snow cores using a 7.25 cm diameter Kovacs corer to quantify 

the mass balance for each glacier. The spring snow density was measured at low, middle, and 

high elevations, three locations, for each glacier (Fig. 2.2) and above the transient snow line 

for the fall season.  

 

 

Figure 2.2. Measurement networks for the (a) Zillmer, (b) Nordic, (c) Kokanee, and (d) Conrad glaciers. Snow 
depth measurement locations (black dots), and snow pit/core locations (blue squares) are identified. Contours 
represent the elevation bands (m a.s.l.) over glaciers. This figure has been adapted from Pelto et al. (2019).   

 



23

Pelto et al. (2019) observed marginally denser snow in snow pits a than measured in snow 

cores (0.2±5.7 %). To calculate glacier-wide mass balance, we used the profile method 

(Escher-Vetter et al., 2009), applied over 100 m hypsometric elevation bins. The area–altitude 

distribution of a given glacier was obtained using our annual late summer LiDAR 

measurements. 

Table 2.2. Glaciological visits (number of locations, dates) and geodetic acquisition information (dates and point 
density) for each glacier. Field dates are the median date of glacier visit. (Derived from Pelto et al., 2019)

Glacier 
Summer 

glac. (m/d/y) N 
Summer ALS 

(m/d/y) 
Points 
(m-2) 

Winter glac. 
(m/d/y) N 

Winter ALS 
(m/d/y) 

Points 
(m-2) 

Zillmer 8/23/2015 23 10/3/2015 2.75 4/14/2016 46 4/18/2016 3.69 

Nordic 8/31/2015 11 9/11/2015 1.99 5/2/2016 28 4/17/2016 3.21 

Conrad 9/5/2015 9 9/12/2015 1.35 4/26/2016 44 4/17/2016 2.45 

Kokanee 8/27/2015 11 9/12/2015 1.04 4/19/2016 33 4/17/2016 2.77 

N: Number of observation locations 

 

d) LiDAR measurements  

The availability of high resolution Light Detection and Ranging (LiDAR) data made it 

possible to evaluate simulated integrated snow depth over the LiDAR footprint and on each 

glacier’s area for the accumulation period 2015-2016. We used LiDAR to monitor elevation 

change over each glacier at a resolution of 1 m and accuracy of better than 15 cm (Arnold et 

al., 2006; Krabill et al., 1995). LiDAR data were collected twice per year for each glacier 

(Table 2.2). To estimate mass balance changes during a year, two surface elevation models 

made from the LiDAR surveys were post-processed, co-registered, bias corrected, and 

differenced. Full details of the LiDAR surveys can be found in Pelto et al. (2019). The observed 

snow density was used to convert changes in snow elevation to changes in mass, which was 

then integrated over each glacier to estimate winter balance. Since the LiDAR maps of snow 

depth include the effects of ice dynamics (emergence and submergence of the ice surface), they 
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do not represent the spatial distribution of snow depth over the glaciers. These data, however, 

can be used to assess the performance of snow models for average snow depth over the glaciers. 

Since the net vertical velocity over the glacier is zero, we can average the LiDAR elevation 

difference (ΔH) over the spatial domain of the glacier to determine the average snow depth, to 

compare with the modelled average snow depth. To make this comparison, we downsampled 

the 1-m LiDAR DEMs to the spatial extent of the model grid cells at 30 m resolution. The 

model integrated surface mass balance over the glacier surface was estimated for each glacier 

and compared to the glacier-wide surface mass balance obtained from the LiDAR 

measurements (Hedrick et al., 2015; Musselman et al., 2015). 

 

2.3. Snow models description and simulation 

2.3.1. SnowModel 

 

SnowModel (Liston and Elder, 2006) is a physically-based snow model, which can be 

applied to simulate snow evolution in different climatic settings. This model can be run on grid 

increments of 1 to 200 m with a temporal resolution of 30 minutes to one day (Liston et al., 

2018).  SnowModel consists of four main sub-models: MicroMet, EnBal, SnowPack, and 

SnowTran3D. (1) MicroMet is a submodel for data preprocessing and distributing 

meteorological forcing data (Liston and Elder, 2005). MicroMet interpolates and distributes 

forcing data over the domain using Barnes objective analysis (Koch et al., 1983). The 

interpolation process is started by interpolating the data from spatially irregular stations to a 

regular grid, using a scheme developed by Barnes (1964, 1973). Then a relationship between 

meteorological parameters and terrain is used to distribute the data set over the domain (Liston 

and Elder, 2005). In MicroMet the elevational gradients of temperature and precipitation (i.e. 
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lapse rates) vary monthly through the year for temperature. Precipitation lapse rates are 

calculated based on a non-linear function of elevation difference. The monthly temperature 

lapse rate and precipitation adjustment factors can be adapted by the user. (2) EnBal is a 

submodel to simulate energy fluxes to and from the snowpack (Liston, 1995; Liston et al., 

1999b). In addition, ablation by non-blowing snow sublimation is calculated in EnBal and used 

to adjust snowpack depth. (3) SnowPack is a simple, user defined multi-layer module to 

simulate snowpack evolution based on density changes (Liston and Hall, 1995). SnowModel 

uses the surface energy balance equation (Liston, 1995; Liston et al., 1999b; Liston and Elder, 

2006), and snowpack evolution occurs based on density changes due to compaction from 

changes in snow temperature and the weight of overlaying snow. SnowPack simulates changes 

in the snowpack in response to the energy fluxes and precipitation input given by MicroMet. 

The energy from MicroMet alters snow density by decreasing snow depth and redistributing 

meltwater through the snowpack until a maximum snow density is reached. Some internal 

processes are taken into account by SnowModel such as refreezing, but the model does not 

consider melting from internal ice deformation, changes in drainage systems, geothermal 

effects, and sub-glacial frictional melting. In addition, SnowModel is a one-way model forced 

by meteorological data at each time step without considering exchanges from the surface back 

to the atmosphere (Mernild et al., 2014, 2017). Within this model, the input liquid equivalent 

precipitation is considered to be snow if the wet-bulb temperature is less than 1°C. (4) The 

SnowTran-3D sub-model, which is deactivated in this study, includes state variables related to 

snow redistribution by wind (Liston and Sturm, 1998, 2002; Liston et al., 2007). SnowModel 

uses a constant albedo of 0.8 for non-melting snow or user defined values for melting snow. 
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2.3.2. Alpine3D  
 

The seasonal and distributed physically-based snow cover model, Alpine3D (Lehning et 

al., 2006), also was used to evolve winter mass balance for the four glaciers of this study. 

Alpine3D simulates surface processes and spatial and temporal variability of snow cover in 

alpine terrain in a multi-layered snowpack. The number of layers is arbitrary, and the model 

can simulate very thin layers like ice crust and hoar. In the present study, we used the snowpack 

evolution module (SNOWPACK), and a 3-D radiation energy balance model, which calculates 

the effects of inclination and terrain exposure on the radiation balance. Alpine3D also 

manipulates input data using statistical methods through the MeteoIO module using transparent 

caching, filtering, resampling, and spatial interpolation (Bavay and Egger, 2014). An altitude-

dependent lapse rate and inverse distance weighting (IDW-LAPSE) was chosen to distribute 

meteorological data to the model domains. MeteoIO distributes the precipitation and 

temperature in complex terrain based on a linear regression of these variables with elevation 

using a constant lapse rate. The albedo is statically calculated by the models based on the 

snowpack parameters during the simulation. In Alpine3D, the snow cover characteristics and 

duration are predicted by the finite-element based SNOWPACK model (Bartelt and Lehning, 

2002; Lehning et al., 2002a, b). This model solves the equations for non-stationary heat transfer 

and settlement in a phase-changing snow cover. The heat transfer, vapour diffusion, water 

transport, and phase changing processes is formulated. In addition, surface hoar and snow 

metamorphism are described by grain form and size, dendricity and sphericity. In 

SNOWPACK, the measured snow surface temperature is considered as an upper boundary 

condition as long as it is below -1.3°C (Lehning et al., 2002b). We did not use Alpine3D’s 

snow transport and hydrology routines. In Alpine3D, in addition to snow metamorphism, the 
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key difference with SnowModel is the development of multilayer snowpacks based on 

meteorological conditions (not user-defined layers) and considering the exchange of heat 

fluxes between layers (Table S1). 

2.3.3. Model simulations 

 

Topographic data for the four sites were obtained from a digital elevation model (DEM). 

We used the Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) dataset in 30-m grid 

cell increments that was merged with high-resolution LiDAR data to construct an updated 

terrain map over glaciers that accounts for elevation change between acquisition of the SRTM 

data (February, 2000) and the present day (September, 2015).  The vegetation cover was 

derived from Global Land Cover database (GLC) (Chen et al., 2015) reclassified based on the 

vegetation cover classification in SnowModel and Alpine3D (Liston and Sturm, 2002; Mernild 

et al., 2006b; Lehning et al., 2006). The nearest grid points from HRM datasets were used as 

input for both snow models. We performed the simulations with a 30-m grid increment and 

one-hourly time step for NLDAS2, and 6-hourly time step for simulations using WRF. We 

found no substantial changes in snow parameters using interpolated hourly time series derived 

from WRF data instead of the 6-hourly timestep (less than 2% difference; Fig. S1.4). The 

simulation spanned two winter seasons, with winter defined as the period including 1 October 

- 30 April. To optimize the models’ performance and agreement between observed and 

simulated SWE in winter, we applied corrections to HRM temperature and precipitation to 

reduce elevation bias between HRM and station data before they were inserted into the snow 

models. We recognize that the optimized elevation correction function may vary in different 

locations (Liston and Elder, 2006b). We used monthly climate normals for 1981-2010 from 

the PRISM dataset (Daly et al., 1994) and applied a linear correction function for temperature 
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(Liston and Elder, 2006b) and precipitation (Pelt et al., 2016) of HRM data to adjust forcing 

data for local topography.  

Model performance was evaluated and optimized for one year (2013-2014) before doing the 

main simulation for winter 2015-2016. We tested different parameters such as lapse rate (Table 

2.3), and snow albedo for both models, but found reasonable agreement with observations 

using default values. Curvature length (curvature length scale is approximately one-half the 

wavelength of the topographic features within the domain) in MicroMet, and different 

interpolation methods within MeteoIO, were also examined. The calibration of snow models 

was done based on minimizing bias, mean absolute error (MAE), and root mean squared error 

(RMSE) of SWE for the 2013-2014 year (Fig. S1.3). Our analysis shows a warmer and drier 

winter for 2015-2016 than in 2013-2014 (calibration period). Observations indicate a below 

normal snowpack in 2015-2016, while the 2013-2014 winter experienced near normal 

snowpacks in the study area. It is noting that although most days are below freezing in the 

simulation period, melt can still occur during the autumn and early spring.  

Table 2.3. The monthly temperature lapse rate and precipitation adjustment factors derived from PRISM, WRF 
and SnowModel default values (Kunkel, 1989). 

 
Temperature lapse rate (˚C km-1) Precipitation adjustment factor (m km-1) 

 
Oct Nov Dec Jan Feb Mar Apr May Oct Nov Dec Jan Feb Mar Apr May 

Default -6.8 -5.5 -4.7 -4.4 -5.9 -7.1 -7.8 -8.1 0.25 0.30 0.35 0.35 0.35 0.30 0.25 0.20 

PRISM -3.5 -3.8 -3.2 -2.4 -3.4 -4.3 -4.8 -4.6 0.32 0.40 0.43 0.45 0.35 0.29 0.20 0.19 

WRF -6.2 -5.2 -4.8 -4.7 -5.6 -5.7 -6.8 -6.6 0.26 0.31 0.34 0.38 0.39 0.20 0.01 0.06 

 

2.4. Results 

In the following, we evaluate temperature and precipitation derived from HRM datasets 

and interpolated by snow model preprocessors, MicroMet and MeteoIO, against observations. 

We then describe the results of the SnowModel and Alpine3D simulations for the accumulation 
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season (1 October to 30 April) during calibration (2013-2014) and validation (2015-2016) 

periods. Model evaluation for the main simulations is done at the point and spatial scales using 

observed data from four ASWSs, stake measurements, and LiDAR data. 

2.4.1. Evaluation of temperature and precipitation 

 

We compared daily average temperature derived from WRF and NLDAS2 datasets before 

and after downscaling with MicroMet and MeteoIO with observations for winter 2015-2016 at 

four ASWS (Fig. 2.3a). We used elevation-corrected data for the comparisons. The relationship 

between observed and modelled temperature for both WRF and NLDAS2 datasets is strong 

(R2 > 0.9) with a similar daily variability for both datasets (Fig S1.1). The measured daily mean 

temperature at all locations that range between -2.4 to -3.3˚C during winter 2015-2016 with 

biases range between -0.4 and -0.27˚C for Azure-River, +1.5 and +0.6˚C for Glacier-NMF, -

0.6 and +0.5˚C for East-Creek, and -1.2 and -0.5˚C for Redfish-Creek with respect to ASWSs 

for WRF and NLDAS2, respectively. A strong relationship exists between observations and 

both MicroMet and MeteoIO downscaled temperature for all stations with coefficient of 

determination higher than 0.81 (p < 0.01), except for slightly lower R2 values at Azure-River. 

Despite the warm bias (1.5˚C) of WRF at Glacier-NMF, downscaling temperature with 

MicroMet and MeteoIO reproduce a colder monthly temperature at this station. MicroMet and 

MeteoIO show a mean cold bias of -1.3 and -1.9˚C, respectively over all stations. In general, 

both preprocessors, especially MicroMet, produce data with a cold bias for monthly 

temperature at all stations, with the highest bias at Glacier-NMF. 

We analyzed the precipitation derived from different datasets against observations to 

determine the influence of the spatialization with MicroMet and MeteoIO on precipitation 

distribution in the snow models. Because the daily simulated precipitation does not necessarily 



30

match the observations according to the location and time of each individual event, adjusted 

monthly total precipitation were evaluated (Fig. 2.3b). While monthly trends are reproduced 

in most months for all datasets, WRF underestimates precipitation at Redfish-Creek (Fig. 2.3b) 

by an average of 34%. Interpolated precipitation by MicroMet and MeteoIO reduces this bias 

by 27% and 12%, which shows the difference between using the nearest WRF grid cell and 

interpolation of WRF data. For the same winter, MicroMet-based precipitation is 

overestimated in East-creek (23 mm) and Glacier-NMF (84 mm). The difference values vary 

for MicroMet and MeteoIO due to using different parameterizations and methods of 

interpolation. The values prepared by the model preprocessors are the final meteorological 

values to force the snow evolution modules within the models.  

 

 

Figure 2.3. a) Mean monthly temperature (˚C) and b) Mean monthly total precipitation (mm) time series for 
the accumulation period 2015-2016 at the station locations. Temperature values are derived from stations, WRF 
outputs, NLDAS2 dataset, and also from pre-processed modules (MeteoIo and MicroMet) of two snow models 
forced by WRF. Statistical values (R2, RMSE, and Bias) of WRF and NLDAS monthly mean temperature and 
monthly mean precipitation against station (refers to Table 2.1) data are shown on the graphs. 
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2.4.2. Evaluation of SWE and Snow depth 

 

a) Point scale 

A pointwise comparison was done to evaluate the simulated daily SWE using ASWS 

observations (Table 2.4). For the average of the four ASWS, both models appear to perform 

well with Bias and RMSE scores less than 0.12 and 0.16 m w.e., especially using the WRF 

dataset, while the largest errors exist for SnowModel and Alpine3D using NLDAS2 data (Table 

2.4).  

Table 2.4. Statistical analysis of daily time series of SWE simulated by SnowModel and Alpine3D forced with 
WRF fields and NLDAS dataset for the accumulation period 2013-2014 (1 October- 30 April). The correlation 
coefficients are calculated based on the p < 0.01 

Station ID Function SM_WRF SM_NLDAS  ALP_WRF ALP_NLDAS 

 R2 0.94 0.88 0.90 0.67 

Azure-river MAE 0.06 0.11 0.06 0.06 

  Bias 0.06 -0.11 0.06 -0.03 

  RMSE 0.08 0.13 0.08 0.10 

 R2 0.98 0.96 0.98 0.96 

East-creek MAE 0.10 0.12 0.04 0.06 

  Bias -0.10 -0.12 0.03 -0.02 

  RMSE 0.13 0.16 0.05 0.07 

 R2 1.00 1.00 1.00 0.98 

Glacier-NMF MAE 0.11 0.05 0.09 0.09 

  Bias 0.11 -0.01 -0.07 -0.07 

  RMSE 0.12 0.06 0.11 0.12 

 R2 1.00 1.00 1.00 0.96 

Redfish-creek MAE 0.03 0.18 0.12 0.34 

  Bias 0.02 -0.1 -0.12 -0.34 

  RMSE 0.04 0.21 0.14 0.40 

 R2 0.98 0.96 0.98 0.88 

Average over all sites MAE 0.08 0.12 0.08 0.14 

 Bias +0.02 -0.09 -0.03 -0.12 

 RMSE 0.04 0.06 0.04 0.16 
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A strong agreement between simulated and observed SWE is indicated. Coefficient of 

determination for all stations are higher than 0.70 (p < 0.01) using WRF-forcing, and are higher 

than 0.60 (p < 0.01) for NLDAS2 forcing in both calibration and evaluation years. Alpine3D 

underestimated NLDAS2-forced SWE at all sites with an average of 0.18 m w.e. (25%), while 

the bias for simulations forced by WRF shows a smaller underestimation of 0.01-0.05 m w.e 

(~3-9%). The largest percent bias occurred for SnowModel and Alpine3D using NLDAS2 data 

at Redfish-creek with -0.28 m w.e (~29.7%). The overall RMSE is less than 0.04 m w.e. for 

all simulations, except NLDAS2-forced SWE by Alpine3D with 0.11 m w.e. Snow 

accumulation is underestimated at Redfish-creek in March and April (Fig. 2.4). NLDAS2-

based SWE is well captured by SnowModel, while Alpine3D underestimates SWE at all 

locations. The largest absolute percent bias in WRF-forced SWE occurs at the East-creek 

(17%) for SnowModel and Glacier-NMF (14%) for Alpine3D. In the evaluation period (winter 

2015-2016), the percent bias in SWE are reduced to 11% at East-creek, but increased to 17% 

at Redfish-creek.

Boxplots of simulated SWE by both snow models with different driving data sets (Fig. 2.5) 

compared with stake measurements show lower median SWE values for most sites. Conrad 

Glacier is an exception, which had greater WRF-simulated SWE relative to observations at all 

elevations. A higher modelled median SWE also is shown by SnowModel forced by WRF 

against observations at the elevations of 2600-2800 m a.s.l. at Nordic Glacier. Both models 

estimate lower-than-observed SWE for Kokanee Glacier at all elevations. There is a strong 

relationship (0.81 < r < 0.99; p < 0.01) between simulated snow depth distributions and terrain 

elevation at all glaciers for both snow models and forcing data due to distribution of 

precipitation by elevation using adjustment factors and neglecting redistribution by wind. Both 
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models simulate a higher amount of SWE at higher elevations at the end of winter 

accumulation.

 

Figure 2.4. Simulated daily SWE time series by SnowModel and Alpine3D forced by NLDAS and WRF data 
compared with observed snow pillow data at station locations for the accumulation period 2015-2016.  

 

Boxplots reveal a higher spatial variability for WRF-forced simulated snow depth by 

SnowModel compared with Alpine3D and NLDAS2 forcing simulations (Fig. 2.5). However, 

the simulated spatial variability of snow depth by both snow models is much lower than 

observations. 
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Figure 2.5. Boxplots comparing snow water equivalent [m] as a function of elevation at the end of the 2016 
accumulation season for four glaciers.  Black boxes - measurements, Blue boxes - SnowModel forced by WRF, 
Green boxes - SnowModel forced by NLDAS, Olive boxes - Alpine3D forced by WRF, and Gray boxes - 
Alpine3D forced by NLDAS. The boxes span the interquartile range and the median is marked by a horizontal 
line inside the boxes. The whiskers are the dashed lines that extend to the highest and lowest values of each 
dataset. For the number of stake observations at each elevation band, please refer to Fig. 2.2. 

 

b) Spatial snow depth and SWE evaluation 

 

Overall, both snow models reproduce observed average snow depth from airborne 

LiDAR campaigns to within 20% for three of four glaciers (Table 2.5).  
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Table 2.5. Comparison of integrated snow depth (m) simulated by models over the whole domain for four glaciers 
with lidar measurement footprints using WRF and NLDAS forcing data for winter 2016. 
 

 WRF_Forcing NLDAS_Forcing 
 

Conrad Nordic Kokanee Zillmer Average  
 

Conrad Nordic Kokanee Zillmer Average  

Lidar 2.9 2.4 3.02 3.16 2.87 2.9 2.4 3.02 3.16 2.87 

SnowModel 3.44 3.19 2.9 3.23 3.19 2.23 2.28 2.99 2.26 2.44 

Alpine3D 2.97 2.98 2.79 3.33 3.02 2.52 2.52 2.59 2.77 2.60 

%Bias_SM 18.6 32.9 -3.9 2.2 11.15 -23.1 -5.6 -0.88 -28.57 -15.0 

%Bias_ALP 2.4 24.1 -7.49 5.3 5.23 -13.1 4.56 -14 -12 -9.41 

 

In terms of forcing data, while distributed snow depth using NLDAS2 data was underestimated 

for all glaciers, WRF overestimated average snow depth for Nordic and underestimated snow 

depth in Kokanee when used to force both snow models. WRF produces more variability than 

NLDAS2 (Fig. 2.6) and appears more similar to the spatial variability in the LiDAR data, but 

future work is needed to determine whether it represents the spatial complexity more accurately 

than NLDAS2. But in terms of the model differences, the comparisons suggest that 

SnowModel captures the snow pattern better than Alpine3D. However, the differences between 

the models are small compared to the uncertainties.  The latter model produces a more uniform 

snow pattern than SnowModel (Fig. 2.6, Table 2.6). Generally, SnowModel produces deeper 

snow at higher elevations and shallower snow at low elevations for all glaciers, while there is 

little difference in snow depth at low and high altitudes in Alpine3D, which is in agreement 

with boxplots of measured snow depth over terrain at point scales (Fig. 2.5). Mean snow depth 

of LiDAR measurements and averaged simulated snow depth for all glaciers are shown for 

both snow models forced with HRM data (Table 2.5). The overall calculated percent 

differences revealed a good approximation of mean snow depth over domains for both snow 

models using both driving datasets.  
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Figure 2.6. First column illustrates the LiDAR elevation-change (ΔH) over all glaciers. ΔH represents the 
difference of two elevation measurements at the beginning and end of accumulation season over each domain. 
The other columns show simulated snow depth distribution at the end of the accumulation period (end of April 
2016) over four glaciers using SnowModel and Alpine3D forced with WRF and NLDAS2 datasets. The black 
outlines represent the main glacier borders where probing of snow depth was completed. Note: LiDAR 
measurements are elevation-change measurements including ice dynamics so do not represent snow depth 
changes at specific points. The wind effects on snow pattern are neglected for the simulations. 

 

Although WRF-forced results demonstrate an improvement of snow depth over all domains, 

an overestimation is clear with the highest percent difference for Nordic Glacier. The overall 

average simulated snow depth over LiDAR footprints by WRF/NLDAS2 is 

overestimated/underestimated, respectively by +11% and -15% compared with LiDAR 

measurements. Alpine3D approximates the average snow depth for both forcing datasets better 

than SnowModel for all glaciers over the LiDAR footprints, while the results are different on 
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glaciers and in glacier-free areas. To examine model performance over both glacierized and 

non-glacierized areas separately (due to availability of LiDAR footprints larger than glaciers, 

but having only stake measurements on the main glaciers), we clipped both WRF and 

NLDAS2-forced modelled snow depth over each domain using the main glaciers shape files 

to calculate the averaged snow depth on each glacier and in glacier-free areas.  

 

Table 2.6. Comparison of integrated WRF-forced and NLDAS-forced snow depth (m) with lidar measurements 
on the glacierized and in free glacier areas (same as Table 5 but separated for glacierized and glacier-free areas). 
 

 
WRF_forced_Integrated snow depth (m) 

Off_glacier 
NLDAS_forced_Integrated snow depth (m) 

Off_glacier 

Conrad Nordic Kokanee Zillmer Average Conrad Nordic Kokanee Zillmer Average 

Lidar 2.86 2.15 2.89 3.10 2.93 2.86 2.15 2.89 3.10 2.93 

Lidar_Sd 1.53 2.03 1.37 1.62 1.54 1.53 2.03 1.37 1.62 1.54 

SnowModel 3.42 3.01 2.87 3.21 3.11 3.42 2.25 2.95 2.26 2.42 

SM_Sd† 0.53 0.57 0.34 0.65 0.52 0.53 0.40 0.43 0.39 0.39 

Alpine3D 2.99 2.97 3.58 3.33 3.21 2.99 2.52 2.60 2.36 2.49 

ALP_Sd† 0.29 0.32 0.42 0.45 0.36 0.29 0.24 0.19 0.20 0.19 

%Bias_SM 19.60 40.00 -0.70 3.50 13.00 19.50 4.65 2.08 -27.00 -7.20 

%Bias_Alp 4.60 38.00 23.00 7.40 16.70 4.55 17.21 -10.03 -23.90 -10.60 

WRF_forced_Integrated snow depth (m) 
ON_glacier 

NLDAS_Forced_Integrated snow depth (m) 
ON_glacier 

Lidar 3.08 3.77 3.55 4.08 3.62 3.08 3.77 3.55 4.08 3.62 

SnowModel 3.50 4.13 3.28 3.37 3.57 2.25 2.39 3.49 2.31 2.61 

Alpine3D 2.92 3.00 2.94 3.32 3.05 2.46 2.52 2.70 2.34 2.50 

%Bias_SM 13.60 9.50 -19.60 -5.07 -1.38 -27.00 -36.60 -1.70 -43.40 -27.90 

%Bias_Alp -5.20 -20.40 -27.90 -6.40 -15.70 -20.00 -33.20 -24.00 -42.60 -30.80 

†Sd: Standard deviation 

 

Averaged over all locations, both models overestimate the snow depth over glacier-free areas, 

while they underestimate snow depth on the main glaciers. There is a considerable difference 

between SnowModel and Alpine3D at different locations on the main glaciers. WRF-forced 

SnowModel underestimated the snow depth overall less than 2%, while Alpine3D 
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underestimated snow depth by about 15% (Table 2.6). The average underestimated snow depth 

reaches to more than 30% when NLDAS2-forced data is used. 

Simulated spatial winter mass balance is also evaluated using calculated mass balance from 

stake and snow pit measurements. Mass balance calculation from LiDAR data was explained 

previously in section 3.2.d. We compared the simulated, geodetic and glaciological mass 

balance across all glaciers for winter 2016 (Fig. 2.7).  

 

Figure 2.7. Comparison of simulated winter mass balance [m w.e.] by SnowModel and Alpine3D with stake and 
LiDAR measurements on the main glaciers for the accumulation period of 2015-2016. The notation ‘_B’ denotes 
the bias (absolute magnitude) of simulated winter mass balance with respect to the observations. 

 

Comparisons at individual glaciers revealed that the least and highest percent difference in 

WRF-forced simulated winter mass balance occurs over Nordic and Kokanee, respectively. 

Overall winter mass balance over glaciers was calculated to be 1.93 m w.e., while WRF-forced 

SnowModel and Alpine3D produced 1.74 and 1.51 m w.e, respectively. NLDAS2-forced data 

reproduced a lower amount of winter mass balance by 0.30 m w.e. averaged over all glaciers. 

Both snow models underestimate the winter mass balance over glaciers. SnowModel 

underestimated winter mass balance against stake measurements by about 10% and less than 
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2% compared with LiDAR data, while the difference between observations and Alpine3D was 

respectively 22% and 13%. Our analysis suggests a better performance for SnowModel by 

12% in both comparisons. It is worth noting that simulations using WRF forcing for the 

accumulation period 2015-2016 decreased the bias by 4% in both models compared to 

NLDAS2 data.   

 

2.5. Sensitivity analysis and potential uncertainties 

 

In this section we investigate the sensitivity of snow amount to several parameters 

including monthly temperature lapse rates and precipitation adjustment factors, rain/snow 

threshold for Alpine3D, and multilayer modelling for SnowModel. We tested sensitivity of 

simulated SWE by Alpine3D using different constant temperature and precipitation adjustment 

factors (Schlӧgl et al., 2016). Monthly temperature lapse rate and precipitation adjustment 

factors derived from PRISM and WRF (Table 2.3) were used within the SnowModel and 

compared with default values to capture the model’s sensitivity to these parameters. Percent 

difference of simulated daily SWE associated with alternate monthly temperature lapse rates 

and precipitation adjustment factors derived from WRF and PRISM averaged over all locations 

is fairly small (< 3%), because forcing the elevation bias corrected data into the snow models, 

effectively over-riding much of the elevation adjustments made within the snow models.  

MicroMet specifies precipitation as snow when wet-bulb temperature is less than 1˚C, while 

snowfall is based on a threshold of 1.2˚C air temperature in Alpine3D (Dai, 2008). The 

threshold value might affect the snow amount and its frequency. To investigate the impact of 

different rain/snow thresholds on the simulated SWE by Alpine3D, we ran the model at two 

locations (Kokanee Glacier and Azure-River station) using a threshold of 2˚C air temperature 
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(instead of the default value of 1.2˚C used in the other simulations) during accumulation 

season. We found no significant differences (about 0.01 and 0.001 m w.e.) averaged over the 

glacier area and at station locations, respectively (Fig. S1.5 and Fig. S1.6). We suspect the lack 

of sensitivity to the rain-snow threshold is because air temperatures are below freezing on the 

majority of days during the accumulation season for these two locations. 

Furthermore, we tested SnowModel with a multilayer snowpack simulation (instead of the 

single layer main simulation) to investigate the effect of increased vertical resolution on 

simulated snow depth and SWE. We employed six layers for our simulations at Kokanee 

Glacier (2800 m a.s.l) and Redfish creek station (2000 m a.s.l) locations. We found a mean 

daily density difference of less than 12 kg.m-3 (~ 2.5%) at both station location and averaged 

over the glacier which occurs in the late accumulation season, with less difference on the 

glaciers (Fig. S1.7 and Table S1.5). The difference in SWE was also found to be less than 0.04 

m w.e. at station locations with almost no difference (~ 2× 10 -5 m w.e.) on the glacier itself 

(Fig. S1.8). 

Uncertainties in forcing data, such as uncorrected bias, and uncertainties in 

parameterizations in WRF and simplified MicroMet downscaling methods, contribute to bias 

in simulated snow patterns. Glacier dynamics transport ice down-glacier resulting in higher 

surface altitudes at the lower elevations and lower surface altitudes at the higher elevations that 

are not considered within this study. Furthermore, the wind influence on redistributed snow 

and preferential deposition of snowfall, and avalanche on winter mass balance are not 

considered in this study and might affect the results, especially on small glaciers. Uncertainties 

in the measurements also need to be considered. One systematic bias in probing data is the lack 

of measurements from inaccessible parts of the glaciers. According to some studies, typical 
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errors reported for individual measurements are 0.1-0.3 m w.e. a-1 for snow accumulation (e.g. 

Gerbaux et al., 2005; Thibert et al., 2008; Huss et al., 2009). Other studies also detected a range 

of 13-30% error in snow accumulation measurements in different study areas (e.g. Jonas et al., 

2009; Sturm and Liston, 2003; Kershaw and McCulloch, 2007). Similarly, errors in mass 

balance calculated from high resolution LiDAR data with a fixed density is reported in other 

studies to be 0.15-0.30 m w.e. a-1 (Jóhannesson et al., 2013; Berthier et al., 2014). We found 

strong agreement between glaciological and geodetic methods for our study glaciers, with 

glaciological winter balance averaging 1.95±0.08 m w.e., about 4% greater than the geodetic 

estimate. This agreement suggests that overall, the field sampling scheme reliably represents 

the glacier-averaged SWE (Pelto et al., 2019). Our findings also revealed a significant 

agreement between simulated mass balance by SnowModel (about -2%) and Alpine3D (-13%)

with geodetic estimates. 

 

2.6. Discussion 

a) Meteorological data 

The derived temperature from HRM data accord with observations but show a cold bias 

for most stations when using WRF data except at one station. We used an identical lapse rate 

for elevation bias correction at all locations, however the lapse rate can vary between different 

sites due to topographic complexity in the area (Gao et al., 2012, 2014b; Liston and Elder, 

2006). Our results are consistent with other studies, which also found a prominent winter cold 

bias for both datasets (e.g. Pan et al., 2003; Erler et al., 2015; Lewis and Allen, 2016; Meng et 

al., 2018), however the NLDAS2 cold bias is lower than the WRF cold bias (refer to Fig. 2.3a). 

MicroMet and MeteoIO (meteorological preprocessors in SnowModel and Alpine3D) also do 
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not simulate local temperature inversions. MicroMet calculates cloud-cover fraction by 

converting near surface air temperature and relative humidity to a 700 hPa equivalent elevation, 

which is not suitable for all conditions, for instance under clear skies at night (Liston and Elder, 

2006). The difference in cold bias between the preprocessors is likely due to different lapse 

rate values and methods utilized for interpolation that cause slightly different meteorological 

outputs. The winter cold bias might affect the winter mass balance simulation due to the 

temperature threshold used to divide precipitation into rainfall and snowfall, especially in the 

beginning and late accumulation season. While this factor could affect the results at station 

locations at the end of the accumulation season, the glaciers of this study are, on average, 500 

m higher than the meteorological stations used in this study and so temperatures there likely 

remain close to or below freezing. The simulated monthly total precipitation for all stations is 

relatively consistent with observations. A lower amount of precipitation extracted from 

NLDAS2 is likely based on the small number of weather stations in these areas of complex 

terrain. These stations are mostly located at lower elevations and do not capture the full 

meteorological variability in mountainous areas (Schultz et al., 2002; Pan et al., 2003; Mitchell 

et al., 2004). An evaluation of WRF performance with the same configuration and 

parameterization, on climatological monthly mean simulations for Western Canada, can be 

found in Erler et al. (2015). The downscaled climate simulations were evaluated against several 

gridded observational datasets: the University of East Anglia Climatic Research Unit (CRU) 

0.5° multivariate monthly time series (Harris et al., 2014) and the Global Precipitation 

Climatology Centre (GPCC) 0.5° monthly precipitation time series (1951-2001), and a 0.25° 

climatology for 1901 to 2012 (Schneider et al., 2014). The cornerstone of their evaluation used 

the high-resolution (1/48° ≈ 3.3 km) Parameter-Elevation Regressions on Independent Slopes 
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Model (PRISM) temperature and precipitation climatology, based on the period from 1979 to 

2009.  

Determining precipitation to estimate winter mass balance is challenging. Vionnet et al. 

(2019) and Quéno et al. (2018) applied a numerical weather prediction system, AROME, to 

generate high resolution forcing data to force a snow model (e.g. Crocus). Their study 

demonstrates the need to improve the ability of high-resolution numerical weather systems to 

produce the precipitation field with higher accuracy for snow and glacier modelling in alpine 

terrain. Precipitation is affected by local topographic features and wind speed and direction as 

well as the type of weather systems. Precipitation does not vary as linearly as temperature with 

elevation (Liston and Elder, 2005; Jarosch et al., 2010), making its extrapolation a more 

challenging problem in atmospheric and snow simulations. We believe that the accuracy of 

input data (coarse resolution data, such as NLDAS2) to snow models can be improved by using 

the power spectral method described by Jarosch et al. (2010) rather than using simple bilinear 

interpolation, which does not add spatial information, or a fixed lapse rate adjustment, 

especially for downscaling precipitation data in mountainous area. They downscaled 

precipitation based on a linear theory for orographic precipitation (Smith and Barstad, 2004) 

including airflow dynamics, condensed water advection, and downslope evaporation, which 

was modified for large study regions by including moist air tracking. In addition, the capability 

and efficiency of snow models can be enhanced by improving solid precipitation prediction at 

high elevations using data assimilation methods (e.g. Winstral et al., 2019). 

b) Snow depth and SWE  

The simulated SWE at the point scale accords with observed data at station locations. In 

terms of point scale comparison, the results emphasize the applicability of SnowModel and 
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Alpine3D using both datasets and demonstrate improved performance with WRF driving data 

with respect to SWE compared to observations. Reducing meteorological forcing bias and 

calibration of models for each station separately could increase the accuracy of the models. 

Underestimation of SWE by both models in some locations is likely due to underestimated 

precipitation, while neglect of snow transport by wind also might affect the results.  

The integrated snow depths derived from the WRF forcing data more closely simulates 

average snow depth than NLDAS2-forced snow depth over the glaciers of this study. This 

might be due to underestimated precipitation in NLDAS2, especially in high elevation areas 

with scarce observations. In addition, NLDAS2 does not correct for gauge undercatch, and 

therefore probably underestimates actual precipitation (Wright et al., 2017). Gauge undercatch 

errors in gridded precipitation data sets can be significant, especially for snowfall and extreme 

events (Adam and Lettenmaier, 2003). 

The distributed snow depth over each glacier and percent bias show that results are 

consistent with meteorological forcing data (sections 3.1.1 and 3.1.2). Overestimated snow 

depth due to overestimation of simulated precipitation by regional climate models is also 

indicated in other studies (e.g. Bellaire and Jamieson, 2013; Parajca et al., 2010). There is a 

smaller range of snow depth variation in Alpine3D than in SnowModel, likely due to different 

meteorological data interpolation methods in MeteoIO compared with MicroMet. Similar to 

our results, Vogali et al. (2016) reported almost a uniform snow depth (higher snow depth in 

lower elevations and a lower snow depth at the higher elevations compared with observations) 

in simulations by Alpine3D. In MeteoIO, the IDW interpolation method used does not include 

the effects of topography on the meteorological data (Schlögl et al, 2016; Sturm and Wagner, 

2010), but vertical changes are considered using a constant lapse rate. Such standard 
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precipitation interpolation methods may not be appropriate to distribute precipitation in 

complex terrain, and usually result in a relatively homogeneous snow cover (Trujillo et al., 

2019). Topography is an important factor in snow accumulation since it regulates the spatial 

distribution of precipitation both vertically and horizontally (Machguth et al., 2006b; Lehning 

et al., 2008; Dadic et al., 2010). Overall, winter mass balance is underestimated by both models, 

compared with the calculated mass balance from stake and snow pit measurements over the 

glaciers. Underestimation of annual mass balance and SWE by physically-based snow models 

forced by weather station data has been reported in other studies (e.g. Bavera et al., 2014; Paul 

and Kotlarski, 2010; Schmucki et al., 2014). In all cases a precipitation correction factor was 

applied to reduce wind induced undercatch leading to reduction of the mean absolute percent 

error of 14% and 19% for snow depth and SWE, respectively. They concluded that the most 

critical part of the modelling process is availability of accurate, gridded precipitation data over 

Alpine terrain.  

Averaged WRF-forced simulated snow depth is overestimated in glacier-free areas, while 

the bias is positive or negative over each individual glacier (Table 2.6). SnowModel neglects 

the geothermal ground heat flux and in Alpine3D, we used a global average value of                     

0.6 W m-2. Neglecting heat flux could explain discrepancies over ice-free terrain, however 

Watson et al. (2006) revealed little sensitivity of Alpine3D to a selected mid-range value (1 W 

m-2) of geothermal heat. The model error also may be induced by inconsistencies resulting 

from the model structure and parameterization, especially the preprocessor methods. Along 

with forcing data, neglecting processes that increase the winter snow mass balance – such as 

avalanches, and wind-driven processes such as preferential deposition of snow and drift, might 

be responsible for underestimation of simulated snow depth on the glaciers. Neglecting wind 

effects in snow simulations also may cause snow density to be underestimated with respect to 
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observations (e.g. Liston and Hiemstra, 2011; Sturm et al., 2010). We found that SnowModel 

underestimates snow density, by less than 1% and 3% against snow pit measurements and 

calculated density from ASWS data, respectively. Alpine3D underestimates density by 23% 

and 24% when compared with observed data from snow pits and ASWS data, respectively 

(Table 2.7). 

 

Table 2.7. Snow density (kg m-3) comparison between simulated density by SnowModel and Alpine3D and 
observed data from snow pit measurements and density calculated from snow pillow data at the end of 
accumulation season (April 2016).  

Density (kg m-3): Snow pit measurements Density (kg m-3): Snow pillow† data  

Conrad Nordic Kokanee Zillmer 

Average over 

E_C G_NMF RF_C A_R 

Average 
over  

all glaciers 
all 

stations 

OBS 480±5 565±10 464±20 413±10 480 500±10 535±5 532±5 549±2 529 

SnowModel 543±5 494±20 446±5 434±5 479 509±5 545±5 528±12 478±5 515 

Alpine3D 405±10 358±10 345±2 352±2 365 433±8 384±5 356±4 382 389 

%B‡-SM 8 -12 -4 5 -0.2 2 2 -1 -13 -2.6 

%B‡_ALP -26 -28 -23 -19 -23 -13 -28 -33 -30 -24 

‡%Bias; †E_C: East_Creek; G_MNF: Glacier-NMF; RF_C: Redfish_Creek; A_R: Azure-River 

 

The results show that both snow models lead to similar relative difference values of snow depth 

when compared to the observations at all locations, with a low variability between the models 

(~ 4% averaged over all glaciers). However, for SWE and density, the snow models are 

somewhat less consistent. In particular, the difference in the simulated snow density by the 

models is considerable (~ 25%), leading to differences in estimating glacier winter mass 

balance. Underestimation of snow density by Alpine3D, could be due to two reasons: 

underestimation of new snow density, or slow compaction rate, or both (Saito et al., 2012). 

Multilayer snowpack in SnowModel does not make a considerable change in the results, 

given the fact that SnowModel considers only thermal conduction between the layers. 

Conduction has less influence on ice-covered areas, certainly not as much as forested floors or 



47

even bare rock. Our results and use of a 1-layer snowpack could be transferrable to other 

glaciers but probably not for alpine/forested areas in general. 

Based on the results obtained, this study suggests that a model with higher order complexity 

may not be required to simulate winter mass balance over large alpine glaciers. We employed 

the snow evolution modules of both snow models (e.g. snow metamorphism, layering, and 

energy exchange between the layers, ground and air), but did not consider effects such as snow 

avalanches or wind and their effects on snow redistribution. Our analysis reveals a degraded 

(< 15%) performance for WRF-forced distributed snow depth, possibly because of factors that 

involve redistribution of snow by gravity and wind, which are probably much more important 

for small glaciers such as Kokanee and Nordic glaciers. In the absence of wind transport, WRF-

forced simulations are better than NLDAS2-forced simulations for both snow models at the 

four glaciers. However, NLDAS2 data still is a valuable and easily accessible dataset for 

estimation of winter accumulation in areas with scarce observations, recognizing there is 

uncertainty due to underestimated precipitation. NLDAS2 might be useful if it could be bias 

corrected, but that would require a much larger domain over which to complete that work. In 

addition, one needs to ensure that meteorological records used for bias correction are not 

directly assimilated by NLDAS2. Our future work will assess the effects of wind on winter 

accumulation in this area.  

Overall, comparison of SnowModel and Alpine3D revealed that the former model better 

captured the variability of snow depth against elevation even though gravitation effects, 

avalanche, and the interaction of wind with terrain were not considered in this study. Different 

methods of data distribution and interpolation within MicroMet and MeteIO also contribute to 

these results. 
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2.7. Conclusion 

The main objective of the study was to evaluate different forcing data and the performance 

of two forcing spatialization and snowpack evolution models with different complexity in 

simulating winter mass balance for alpine glaciers in western Canada and also in free glacier 

areas. Our analysis showed that SnowModel and Alpine3D successfully reproduced short-term 

variations of the observed snow depth (within ± 15%) and SWE (< 10% for SnowModel and 

< 20% for Alpine3D) for four glaciers in BC’s Columbia Mountains over an accumulation 

season with downscaled meteorological forcing data from WRF and NLDAS2. Our results 

imply that with input data consisting of air temperature, relative humidity, wind speed, 

incoming shortwave and longwave radiation and precipitation intensity from HRM data, winter 

mass balance can be estimated with less than 20% bias for glaciers located in remote areas 

where measured meteorological data are not available. The greatest source of uncertainty 

relates to precipitation forcing and its spatial variability as a function of altitude and cloudiness 

(Schmucki et al., 2013). In this study we focused on the accumulation season with limited 

ablation processes, so error related to uncertainty in radiation fluxes and temperature should 

be minor. Our results reveal that WRF-forced snow depth and SWE are closer to the 

observations than snow depth and SWE using NLDAS2 forcing data that has a slightly higher 

underestimation. SnowModel reproduces winter mass balance with less than 10% bias, 

compared with a 22% bias for Alpine3D, which is likely due to a greater underestimation of 

snow density by Alpine3D. The variability of snow depth also is better represented by 

SnowModel than by Alpine3D due to its different interpolation methods. In this study, snow 

redistribution by wind is neglected and influence of wind-terrain-interactions on snow pattern 

should be investigated. 
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Simulations suggest that Alpine3D with a more complex snow evolution module does not 

necessarily produce a better result for this application. Given the time and computational 

demands of Alpine3D versus SnowModel (13-fold increase in execution time) the value of a 

more complex model was not demonstrated for winter mass balance estimation. The accuracy 

of meteorological forcing data, in particular precipitation, is the most important factor in 

accurately simulating snow properties, hence the data downscaling and interpolation methods 

play a key role in simulations when the resolution of input data is not as high as the resolution 

of model outputs.  

WRF is a valuable tool for producing meteorological fields as input for snow modelling 

and can be a good alternative when weather station data are absent or lacking. In addition, the 

spatial snow pattern might be better represented by implementing snow drift modules using 

high resolution wind fields from WRF. This study suggests that a one-layer energy balance 

model is sufficient to estimate winter mass balance, but there may be limitations for simulating 

snowmelt patterns. Similar studies have demonstrated the SnowModel ability to estimate snow 

depth and SWE forced by WRF dataset in Spain and Chile (Alonso-González et al., 2018; 

Réveillet et al., 2020). Therefore, our results suggest that SnowModel can be a better choice 

for estimating winter mass balance in alpine terrain in terms of simplicity, time and computing 

demand and data distribution over the domain.  
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Abstract 
 

We model winter mass balance at four glaciers in the Columbia Mountains of British 

Columbia, Canada using a distributed numerical snow model (SnowModel). The model is 

forced by dynamically downscaled meteorological data from the Weather Research and 

Forecasting Model (WRF) and North American Land Data Assimilation System (NLDAS) for 

winter 2015-2016. The modelling was performed to assess the effects of wind on snow 

redistribution and winter mass balance. The integrated snow depth and winter mass balance 

over the surface area of all glaciers were compared with high resolution light detection and 

ranging (LiDAR) measurements and manual snow probing. Including the snow transport 

module (SnowTran-3D) into the simulation forced by NLDAS has a negligible effect on the 

glacier-averaged mass balance. Wind improves the simulated WRF-forced winter mass 

balance by 2% when compared with glaciological observations. The small-scale snow pattern 

is not represented by NLDAS data resulting in a 6% greater bias compared with the WRF-

forced simulation, which is able to represent the snow pattern with realistic small-scale 

features. Spatial variability of snow drifting sublimation is large and reaches up to 540 mm 

w.e. summed over the winter accumulation period at the small scales. The strongest 

contribution of snow reduction by drifting sublimation is about 8% of the snow water 

equivalent (SWE) with an average of less than 17 mm or 2% over all the sites.  
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3.1. Introduction 

Snow transport by wind affects the temporal and spatial distribution of snow cover in the 

winter season. In complex terrain, wind and precipitation interact with topography and results 

in inhomogeneous snow distribution (e.g. Pomeroy and Gray, 1990; Doorschot et al., 2001; 

Mott et al., 2010; Mott et al., 2018). A non-uniform snow cover results in large uncertainty in 

the estimation of snow water storage and, consequently, hydrological resources of alpine 

catchments (Mernild et al., 2006; Lehning et al., 2008). 

Snow accumulation is an important part of glacier mass balance in alpine areas that has been 

less studied than processes affecting summer ablation. Snow distribution in mountainous areas 

is spatially variable due to spatial differences in factors such as topography, shading, and wind 

redistribution that cause snow accumulation disparities in alpine terrain resulting in mass 

balance variations (Winstral and Marks, 2002; Sold et al., 2013; Winstral et al., 2013). There 

are other processes that affect winter accumulation including avalanching, which has been 

shown to be highly important for smaller glaciers (e.g. Kuhn, 1995; Mott et al., 2019) or wind-

driven snow accumulation processes (Dadic et al., 2010; Vionnet et al., 2017; Mott et al., 

2018). Snow distribution is also strongly dependent on both large-scale orographic 

precipitation and local scale processes (e.g. Houze, 2012; Mott et al., 2014). It is not only 

orographic precipitation that plays an important role but also the effect of the mean wind field 

on the local precipitation field, as discussed by various studies (i.e. Vionnet et al., 2017; Mott 

et al., 2018; Gerber et al., 2019). The main physical processes governing snow accumulation 

include: (a) the transport of deposited snow (snow drift), which includes suspension and 

saltation processes; and (b) the preferential deposition of precipitation due to topographic-

induced wind field perturbations during a snow storm (Lehning et al., 2008; Dadic et al., 2010).  
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The importance of topography on the surface energy balance for a snowpack was investigated 

in several studies (e.g. Hock and Holmgren, 2005; Arnold et al., 2006). The enhanced snow 

accumulation on leeward slopes is due to preferential deposition, which is an important source 

of uncertainty in the surface mass balance of cold regions (e.g. Lehning et al., 2008; Mott and 

Lehning 2010; Comola et al., 2019) and at smaller scales is affected by local topographic 

features and wind characteristics (Mott et al., 2010). Snow accumulation is affected by wind 

redistribution, especially under high wind speed conditions. Such conditions also lead to a large 

amount of drifting snow sublimation (Pomeroy and Gray, 1990; Liston and Sturm, 1998; 

Doorschot et al., 2001; Lehning et al., 2006; Pomeroy et al., 2006; Bernhardt et al., 2009; Dadic 

et al., 2010). Drifting snow also is an important factor to be considered for detailed glacier 

mass balance assessments (Mott et al., 2008). 

 To accurately simulate snow accumulation in alpine terrain, topography and its interaction 

with wind need to be considered (Winstral and Marks, 2002; Sold et al., 2013, Mott et al., 

2018, Vionnet et al., 2018). Various blowing snow models have been developed during the last 

three decades, for example, the Prairie Blowing Snow Model (PBSM) (e.g. Pomeroy et al., 

1993; Pomeroy and Li, 1997b), PIEKTUK (e.g. Déry and Yau, 1999), SnowTran3D (e.g. 

Liston et al., 2007), Snow2blow (e.g. Sauter et al., 2013) and iSNOBAL (e.g. Winstral et al., 

2013). These models cover a wide range of complexity, but generally consist of two 

components: 1) a snowpack module to estimate the threshold wind speed for snow transport 

and erodible snow mass; and 2) an atmospheric component to simulate the spatial and temporal 

evolution of the wind field and snow transport (Liston et al., 2007).  

Wind affects snow accumulation through the transport of snow to leeward sides and sheltered 

areas as well as having an influence on the snowpack due to sublimation and evaporation 
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processes. Some studies estimate a small amount of turbulent sublimation which varies based 

on the site properties such as topographic configuration and vegetation type (Gordon et al., 

2006; Strasser et al., 2007). Sublimation due to snow transported by wind in some cases is not 

negligible, however (e.g. Strasser et al., 2007; MacDonald et al., 2010; Zwaaftink et al., 2011;

Vionnet et al., 2014). These studies demonstrate that drifting snow sublimation has a large 

spatial variability in complex terrain, especially at crests during a winter snowfall. Therefore, 

an accurate representation of drifting snow is needed for a reliable estimate of blowing snow 

sublimation, which can reduce snow accumulation over alpine areas. The main motivation for 

the present study is to estimate the impact of wind on winter mass balance. The simulation of 

wind-induced snow transport in alpine terrain requires high-resolution wind fields in regions 

of complex topography. Consequently, this study applies a distributed snow evolution model: 

SnowModel (Liston and Sturm, 1998; Liston et al., 2007) forced by high resolution 

meteorological fields from the Weather Research and Forecasting model (WRF) to represent 

the effect of wind on the winter mass balance in alpine terrain. We examine snow transport 

effects and quantify the seasonal pattern of drifting sublimation losses at four individual 

glaciers over the Columbia Mountains. 

 

3.2. Study sites  

Four individual glaciers have been chosen in the southeastern interior of British Columbia 

(Fig. 3.1). The mid elevation of these glaciers ranges are 2094, 2301, 2718 and 2600 m above 

sea level (m a.s.l.) for Zillmer (52°41' N, 119°35' W), Conrad (50°49' N, 116°55' W), Nordic 

(51° 25' 13'' N, 117° 42' 13'' W) and Kokanee (49° 45' N, 117° 8' 30'' W), with the areas of ice 

masses of 5.2, 16.2, 3.4, 1.8 km2, respectively. All glaciers flow east with the exception of the 
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north-facing Nordic Glacier (Fig.3.1). The complex features over the interior ranges of BC has 

a significant influence on its climate. The combination of changing topographical factors such 

as elevation, slope, orientation to the mean wind, and topographic exposure alter the local 

climate on small scales. There is a lower average temperature and increased precipitation at 

higher elevations, while in the valleys, inversions resulting from cold air drainage increases 

the occurrence of frost and fog. Moderate temperature, heavy precipitation and snowfall in 

wintertime are characteristics of the Columbia Mountains (Klock and Mullock, 2002).  

 

Figure 3.1. The four glacier locations (stars) over Columbia Mountains, British Columbia, Canada. Red triangles 
represent the station locations used for model evaluation. The topography of each glacier is also displayed using 
contours over each simulation domain. The yellow outline shows the LiDAR footprint and main glaciers are 
represented by red outlines. 

 

3.3. Snow Evolution Model description 

In this study, SnowModel (Liston and Elder, 2006), a distributed energy balance snow 

model is used to simulate the time evolution of the winter snowpack. SnowModel consists of 

a micro-meteorological model (MicroMet) that interpolates and distributes forcing data over 
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the model domain, based on elevation and land cover (Liston and Elder, 2005). The 

interpolated meteorological fields of precipitation, humidity, pressure, and incoming irradiance 

are passed to EnBal (Liston, 1995; Liston et al., 1999) and SnowPack (Liston and Hall, 1995) 

to compute snow evolution. The vertical distribution of the atmospheric under-saturation of 

water vapour with respect to ice is provided by a modification of equations provided by 

Pomeroy et al. (1993), and Déry and Taylor (1996) to describe the vertical variation of relative 

humidity from observations at 2 m. The energy balance is used to calculate the energy available 

for ablation, while internal snowpack processes, forest-snow interactions, snow sublimation, 

and wind-snow interactions are computed by SnowPack and SnowTran-3D (Liston and Sturm, 

1998, 2002; Liston et al., 2007). A full description of each sub-model, governing equations, 

approximations, and assumptions can be found in Liston (1995), Liston and Hall (1995), Liston 

and Sturm (1998), Liston and Elder (2006a, 2006b), Liston et al. (2007), and Liston and 

Hiemstra (2008). 

SnowModel is a one-way model forced by meteorological data at each time step (Mernild et 

al., 2014, 2017). The input water equivalent precipitation is considered to be snow if the wet-

bulb temperature is less than 1°C. Static surface sublimation, which is the turbulent flux of 

latent heat from the surface, is simulated by the EnBal module using an energy balance 

calculation. SnowTran3D (Liston and Sturm, 1998) is a three-dimensional model that 

calculates the saltation, suspension and sublimation of snow being transported by wind. 

Blowing snow transport includes three modes of movement: creep - the rolling movement of 

those particles, which are too heavy for wind to move; saltation - the movement of snow 

particles along the snow surface through jumping; and suspension - the motion of snow 

particles in suspended flow with a mean horizontal velocity close to the air speed (Pomeroy 
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and Brun, 2001). SnowModel solves the mass balance equation for the temporal changes in 

snow depth in the four vertical layers due to melting, precipitation, saltation and suspension 

(Liston et al., 2006).  
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where ζ is the snow depth (m), ρs and ρw respectively, are snow and water density (kg m-3), P 

is the precipitation rate (m s-1), �� and �� (kg m-1 s-1) are the saltation rate, and amount of 

turbulent suspended snow, respectively. Qv represents the sublimation of transported snow 

particles in (kg m-1 s-1).  The amount of transported snow at a given time step depends on the 

shear stress due to wind on the surface. The saltation transport process under equilibrium 

condition is described according to Pomeroy and Gray (1990).  
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where ρa (kg m-3) is the air density. In general, �∗ will vary in space and time, so Q s-max will 

also vary. A sufficient fetch length is required for snow transport to reach equilibrium. For the 

non-equilibrium (and equilibrium) conditions the saltation-transport rate, Qs (kg m-1s-1) is 

assumed to follow  
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where x* (m) is the horizontal coordinate in a reference frame defined by the wind-flow 

direction, Δx* (m) is horizontal grid resolution; μ is a unitless constant, and f (m) is the 

equilibrium-fetch distance, which is assumed to be between 300 m to 500 m. However, the 



58

actual fetch is variable through time and space, and depends on wind speed, surface roughness, 

and snow supply. 

A threshold friction velocity (��∗) must be met to lift the snow for transport. The key 

determining factor for transport is the shear stress on the surface, �∗ (friction velocity) 

produced by the wind which is defined by  

u∗ = u�
�

��
��
��

                                                                                                                                                           (3) 

where ur (m s-1) is the wind speed at the reference height zr (m), the surface roughness length 

is represented by z0 (m), and k is the von Kármán’s constant. To initiate transport, the friction 

velocity of a given wind speed must exceed the threshold friction velocity value (��∗). The 

threshold friction velocity is lower for fresh and dry snow during snowfall (��∗= 0.07-0.25 m 

s-1) and higher for older, wet and dense snow (��∗= 0.25-1.0 m s-1) (Kind, 1981). The threshold 

velocity can be modified by the roughness length of the surface, which depends on the snow 

depth fraction and the vegetation type. In this study we used the pre-defined vegetation types 

with corresponding snow-holding depths. The maximum saltation transport is achieved only if 

there is sufficient distance to transport the full amount of snow that the wind speed is capable 

to carry (Liston and Sturm, 1998). The snow concentration at the top of the saltation layer acts 

as a lower boundary condition for turbulent suspension; in this boundary layer, the snow 

particles move at a velocity equal to average wind speed. The suspension layer is defined by 

the concentration of snow within the layer, which is described by Kind (1992) as the interval 

between the top of saltation layer and top of the suspension layer where snow concentration is 

zero.  

Q� (x∗) = ∫ ϕ�(z) dz
��

�∗
                                                                                                         (4) 
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The integration limits are the top of the saltation layer, h* (m), and the top of the turbulent-

suspension layer, zt (m) where the concentration is zero. ϕt (kg m-3) is the mass concentration 

of the particulate cloud derived from the concentration ϕr at a reference level ztr.  
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where s is the particle-settling velocity (0.3 m s-1 per Schmidt, 1982) and ϕ* is a 

concentration scaling parameter, defined by: 

ϕ∗ = β
�∗

�
ϕ�   ,    ϕ� =

��

�∗��
                                                                                                 (6)                

where β is a unitless coefficient (0.5), and up is a constant horizontal velocity in the saltation 

layer, which is approximated it to be 2.8×u*. Sublimation also is calculated by the following 

equation: 

Q�(x∗) = ψ�ϕ�h∗ + ∫ ψ�(x∗��

�∗
, z)ϕ�(x∗, z)dz                                                                   (7) 

where ψ (s-1) is the sublimation-loss rate coefficient, ϕ (kg m-3) is the vertical mass-

concentration distribution. The sublimation-loss-rate coefficient describes the rate of particle 

mass-loss as a function of height within the blowing snow profile and it is a function of (a) 

temperature-dependent humidity gradients between the snow particle and the atmosphere, (b) 

the energy- and moisture-transfer by conductive and advective mechanisms, (c) particle size, 

and solar radiation intercepted by the particle. In addition, it is assumed that the mean particle 

size declines exponentially with height,  the relative humidity  follows a  logarithmic 

distribution in which it decreases with height, the air temperature in the snow-transport layer 

is well mixed  and constant with height, while the variables defined in the suspension layer 

vary with height, and the solar radiation absorbed by snow particles is a function of the solar-
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elevation angle (latitude, time-of-day, day-of-year) and fractional cloud cover (Liston and 

Sturm, 1998). Although the sublimation rate from the surface is fairly small, it can be 

considerable within the snow transportation zone (Hood et al., 1999; MacDonald et al., 2010).

In SnowModel, feedbacks between the sublimation rate and the humidity field are neglected 

that might exaggerate the sublimation.  

 

3.4. Meteorological data 

SnowModel requires precipitation, air temperature and relative humidity at 2m height, and 

wind fields at 10 m height above the surface. MicroMet is able to estimate incoming short and 

longwave radiation. We provided all required data from both WRF (Skamarock et al., 2008), 

a high resolution, non-hydrostatic model; and NLDAS, which is a product of land surface 

model forced by observations in combination with an atmospheric model with a spatial 

resolution of 0.125˚ (Cosgrove et al., 2003; Mitchell et al., 2004). WRF was set up based on a 

multi-nesting approach with a resolution of 1 km for the inner domain that covers the study 

area. The outer domain was forced by meteorological data (wind, pressure, temperature, 

humidity) and sea-surface temperature data from the ERA-Interim reanalysis data (Dee et al., 

2011). We used the same land/atmospheric schemes as Erler et al. (2015) and described in 

Chapter 2.   

 

a) Temperature and precipitation 

The spatiotemporal meteorological data were derived from WRF (1 km) and NLDAS (~ 

12 km) datasets with temporal resolution of 6-hourly and 1-hourly, respectively. In our 
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previous study (Mortezapour et al., 2020), we evaluated the snow model performance using 

observed SWE time series derived from four snow pillow stations within the study area (Table 

3.1). The analysis of results from the meteorological models shows a good correlation of the 

diurnal cycle for air temperature and precipitation with the coefficient of determination (R2) of 

0.87 and 0.60, averaged over all stations. In general, WRF has a cold bias in winter and 

MicroMet reproduces this colder temperature with a negative bias of about 1.5˚C, while 

downscaled NLDAS data by MicroMet reduces this cold bias to -0.5˚C. WRF represents a 

better estimation of precipitation than NLDAS, but both datasets underestimate precipitation 

in this area (Table 3.1). While monthly trends are reproduced in most months for all datasets, 

MicroMet-based precipitation is underestimated at Redfish-Creek and overestimated in East-

creek and Glacier-NMF. 

Table 3.1. Snow pillow station characteristics. The observed mean temperature and mean monthly precipitation 
compared with simulated data from WRF and derived data from NLDAS for the accumulation period 2015-2016.  

 

b) Evaluation of wind fields 

 

Wind fields are one of the most important meteorological factors in simulating snow transport. 

To evaluate wind fields generated by WRF and NLDAS, the results were compared with 

observations derived from the nearest weather station to each glacier, which cover the period 

  Mean temperature 

[˚C] 

Mean monthly 

precipitation [mm] 

Station ID Station Name Elevation 

[m] 

Distance to 

Glacier 

OBS WRF NLDAS OBS WRF NLDAS 

2D08P East Creek 1960 15 km to Conrad -3.08 -3.59 -3.39 168 124 98 

1173191 Glacier NMF 1850 20 km to Nordic -3.32 -1.56 -2.57 121 100 120 

2D14P Redfish Creek 2080 3.4 km to Kokanee -2.41 -3.27 -3.49 207 143 120 

1E08P Azure River 1630 8.7 km to Zillmer -3.09 -4.07 -3.73 215 140 113 
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of 1 October 2015 to 30 April 2016. The modelled data at the nearest weather station were 

estimated based on the nearest model grid point (Table 3.2).  

Table 3.2. Automated weather station characteristics that have been used for wind evaluation for the 2015-2016 
accumulation period. 

 

The  

 

 

downscaled wind field data by MicroMet (Table 3.3) are the final wind fields are forced into 

the drifting snow model. MicroMet distributes wind over terrain using a weighing function 

based on the slope and curvature of each grid cell. We defined the curvature length scale for 

each individual domain that the curvature calculation is performed on within the wind sub-

model. Curvature length scale is approximately one-half the wavelength of the topographic 

features (from a valley bottom to a nearby peak) within the domain, which varies between the 

sites from 500 to 900 m. All wind speeds less than 1.0 m s-1 are set to 1.0 m s-1 by MicroMet. 

The simulated mean and 95th percentile wind speed from WRF and downscaled by MicroMet 

are underestimated with respect to the measured wind speed, especially at the Tabernacle 

station, which is located at the highest elevation (2438 m a.s.l.) near a ridgetop (Table 3.3).  

Table 3.3. Observed and simulated mean, 95th percentile, and standard deviation of wind speed (m s-1) at 10 m 
height above the surface by WRF and MicroMet at station locations. 

  Winter 2015-2016 
 

 

Mean wind speed  
(m s-1) 

95th percentile of wind speed 
(m s-1) 

Standard deviation of 
wind speed (m s-1) 

AWS OBS WRF MicroMet OBS WRF MicroMet OBS WRF MicroMet 
1 Valemount2 4.43 2.14 1.33 8.95 6.03 2.35 2.66 1.84 0.48 
2 Tabernacle 10.27 1.57 1.50 15.8 4.29 3.38 7.30 1.35 0.88 
3 Duncan 2.93 3.07 1.54 7.25 5.73 2.51 2.41 1.94 0.54 
4 Slocan 4.97 1.15 2.65 9.69 3.25 6.96 2.82 0.96 2.20 
 Average 5.65 1.98 1.76 10.42 4.83 3.80 3.79 1.52 1.03 

 

Station Name** Location Elevation (m) Used Parameters* Distance to Glacier 

Valemount2 52.78˚N, 119.31˚W 1195 WS, WD 20 km to Zillmer 

Tabernacle 51.75˚N, -117.76˚W 2438 WS, WD 31 km to Nordic 

Duncan 50.78˚N, -117.18˚W 1376 WS, WD 12 km to Conrad 

Slocan 49.78˚N, -117.44˚W 1230 WS, WD 20 km to Kokanee 

*WS: Wind speed, WD: Wind direction 

** Data were provided from BC Ministry of Forest, Lands, and Natural Resource Operations. 
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Underestimated wind speed might affect the blowing snow transport rate. The WRF simulated 

wind variability, represented by its standard deviation, is similar to the observed standard 

deviation, but MicroMet estimates lower variability than WRF. This difference might be due 

to the imposition of a minimum wind speed in MicroMet. Wind roses of weather station 

observations and the modelled wind fields (Fig. 3.2) represent the dominant westerly wind 

flows at Tabernacle reasonably well, but the magnitude is too low. Wind field derived from 

WRF is affected by its limited representation of the land morphology (hills, valleys, ridges and 

slopes, etc.) around the stations. In addition, WRF results are influenced by mismatches 

between actual and model terrain elevation in mountains that might affect the accuracy of the 

atmospheric conditions in the lower atmosphere there (Santos-Alamillos et al., 2013; Zhang et 

al., 2013). To summarize, downscaled wind fields represent a reasonable approximation of 

dominant wind at each station with a lower mean wind speed compared with weather station 

data. The MicroMet downscaled wind fields reproduce a similar pattern of wind direction 

compared with WRF wind fields, but with a higher rate of underestimation. The mean percent 

bias of downscaled mean and 95th percentile of wind speed is about -10% and -20%, 

respectively. This underestimation may affect the snow pattern as a result of erosion and 

deposition as well as snow sublimation.  
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Figure 3.2. Wind roses of observations, NLDAS and WRF simulations, as well as downscaled WRF wind data 
(all at 10 m height) by MicroMet at four station locations for the period of 1 October 2015 to 30 April 2016. 
Colors indicate the 6-hourly mean wind velocity (m s-1), the frequency of occurrence is represented in percentage 
circles. 

 

3.5. Model simulation 

For this study, we used spatial fields of terrain elevation (a Digital Elevation Model – 

DEM) from the Shuttle Radar Topography Mission (SRTM) and vegetation cover from Global 

Land Cover (GLC) at 30 m resolution. We updated the DEMs over the glacier surfaces by 
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replacing SRTM surface elevations with elevations obtained from LiDAR surveys in 

September 2015. Due to a difference between actual elevation and simulated meteorological 

data, an elevation bias correction was done on both input datasets (i.e. WRF and NLDAS) 

using a linear regression equation for temperature (Liston and Elder, 2006b) and precipitation 

(Pelt et al., 2016) with elevation. We used a monthly temperature lapse rate and a precipitation 

adjustment factor derived from the monthly climate normal from Parameter-Elevation 

Relationships on Independent Slopes Model (PRISM; Daly et al., 1994) for 1981-2010. More 

details on the model simulations and evaluation can be found in Mortezapour et al. (2020). The 

closest meteorological stations to each glacier (Tables 3.1 and 3.2) provide evaluation data for 

model simulations in winter 2015-2016. Lack of observational data prevents us from 

evaluating modelled incoming shortwave and longwave radiation. To evaluate simulated wind 

fields with WRF and derived wind speed and direction from NLDAS, another four stations 

with wind data were chosen (Table 3.2). The seasonal snow distribution over each glacier was 

measured by LiDAR and in-situ stake probing (Pelto et al., 2019). The simulations were done 

twice for each glacier, with and without consideration of wind effects, for two winter seasons 

2013-2014 (calibration) and 2015-2016 (validation) from 1 October through 30 April. The 

flowchart of simulations is illustrated in Fig. 3.3. The simulated snow depths and winter mass 

balances are evaluated against the probed snow depths and LiDAR measurements over 

glaciers. The average winter accumulation over each glacier was estimated by differencing co-

registered DEMs derived from LiDAR measurements (Pelto et al., 2019) at the end of summer 

(early September 2015), and the end of winter (end of April 2016). Details concerning the 

probing data and LiDAR measurement analysis can be found in Pelto et al. (2019). 
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Figure 3.3. SnowModel flowchart with and without snow transport by wind (SnowTran3D module) 

 

3.6. Results 

3.6.1. Patterns of snow erosion and deposition 

First, we analyze the snow depth time series at the station locations to assess how wind 

might influence the snow depth at specific points. Daily simulated snow depth was compared 

with observed snow pillow data at each station from October 2015 to April 2016. Those 

statistics (Table 3.4) show a negligible difference between the results with and without 

accounting for snow redistribution by wind at the station locations.  
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Table 3.4. Statistical analysis of simulated daily snow depth and SWE time series using SnowModel with and 
without wind for four snow pillows for the accumulation period 2015-2016 

SnowDepth [m] Function/Station ID  East-creek Glacier-NMF Redfish Azure river Average over all  

WRF_forced Correlation (p<0.01) 0.76 0.78 0.71 0.76 0.75 
 With wind Absolute percent bias 11.99 8.26 21.27 13.63 13.79 
  Bias -0.06 0.03 0.05 0.05 0.02 
  Mean absolute error 0.21 0.16 0.44 0.19 0.25 
  RMSE 0.25 0.19 0.56 0.23 0.31 
WRF_forced Correlation (p<0.01) 0.76 0.78 0.72 0.77 0.76 
 Without wind Absolute percent bias 12.03 8.71 21.28 13.43 13.86 
  Bias -0.07 0.005 0.05 0.003 -0.002 
  Mean absolute error 0.21 0.17 0.44 0.19 0.25 
  RMSE 0.25 0.20 0.56 0.22 0.31 
SWE [m w.e.]       

WRF_forced Correlation (p<0.01) 0.72 0.86 0.87 0.75 0.80 
 With wind Absolute percent bias 15.3 7.00 12.6 4.30 9.80 
 Bias -0.09 0.12 -0.04 0.05 -0.08 
 Mean absolute error 0.07 0.11 -0.03 0.04 0.06 
 RMSE 0.12 0.10 -0.03 0.10 0.09 
WRF_forced Correlation (p<0.01) 0.71 0.86 0.85 0.75 0.79 
 Without wind Absolute percent bias 16.2 7.90 18.6 5.20 11.9 
 Bias -0.10 0.11 -0.02 0.06 -0.07 
 Mean absolute error 0.08 0.10 0.02 0.04 0.06 
 RMSE 0.13 0.12 0.04 0.08 0.09 

 

The simulated daily snow depth timeseries forced by WRF are well correlated (r = 0.75; p 

< 0.05) with observed snow pillow data. The model is able to reproduce the snow depth with 

the average mean absolute error and RMSE of 0.25 and 0.31 m water equivalent (m w.e.), 

respectively. Likewise, goodness of fit statistics remained almost the same with or without 

wind with only small differences in percent bias (Table 3.5). Wind still plays a significant role 

in spatially redistributing snow within a glacier, however. Using high resolution LiDAR 

measurements, the snow depth averaged over the area of each glacier around the time of peak 

accumulation was evaluated and compared with the simulated winter accumulation over each 

glacier (Table 3.5). Additional evaluation statistics for the accumulation period 2013-2014 are 

shown in Table S2.1. 
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Table 3.5. Comparison of integrated snow depth forced by WRF and NLDAS over the whole domain of each 
glacier with LiDAR measurements and the related percent bias for the 2015-2016 accumulation period. 

Averaged snow depth (m) Conrad Nordic Kokanee Zillmer Averaged over all 

LiDAR 02.90 02.41 03.02 03.16 02.87 
WRF forcing _with wind  03.31 03.04 02.90 03.19 03.11 
%Bias 14.10 26.12 -03.91 00.98 08.36 
WRF forcing _without wind 03.44 03.19 02.90 03.23 03.19 
%Bias 18.60 32.23 -03.91 02.22 11.15 
NLDAS forcing _ with wind 02.24 02.26 03.00 02.22 02.43 
%Bias -32.51 -06.31 -00.78 -29.93 -15.33 
NLDAS forcing _ without wind 02.23 02.28 02.99 02.26 02.44 
%Bias -32.66 -05.60 -00.88 -28.57 -14.98 

 

The averaged snow depth over each domain simulated by NLDAS forcing is underestimated 

while mean WRF-forced snow is overestimated at all locations, except at the Kokanee Glacier 

(Table 3.5). On average, the snow accumulation results using WRF forcing improve the 

simulation results relative to using NLDAS data (Table 3.5). We found negligible differences 

between glacier-averaged simulated snow depth forced by NLDAS with wind and without 

wind effects for each glacier. Therefore, we continue our discussion of NLDAS forced data 

only with considering wind effects. Caution is required when evaluating the spatial pattern of 

snow accumulation for each glacier (Fig. 3.4) derived from LiDAR since the elevation change 

between the two DEMs is not corrected for ice dynamics (Pelto et al., 2019). Ice dynamics ( 

emergence and submergence ice velocities) would need to be accounted for in order to estimate 

snow depth by differencing the autumn and winter DEMs. Observed winterime submergence 

and emergence velocities for these glaciers respectively averages about 0.6 to 1.8 m for the 

accumulation and ablation zones of the glaciers (Pelto, 2020).  These velocities, however, 

strongly vary in space, and correcting for ice dynamics is beyond the scope of this study.  
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Figure 3.4. Comparison of simulated snow depth forced by WRF with and without wind effects, and simulated 
snow pattern forced by NLDAS with wind, along with LiDAR footprint measurements at four glaciers for the 
accumulation period 1 October 2015 to 30 April 2016. The last column shows the subtracted LiDAR 
measurements from WRF derived simulated snow depth with wind effects. 

 

Considering wind effects improves the integrated snow depth over the area forced by WRF 

data at all locations, while the calibration of the model for each individual glacier separately 

might enhance the results. In this study, the chosen parameters were applied to all sites within 

SnowModel. Overall, WRF performed 6% better than NLDAS in terms of the mean snow 

depth bias averaged over all of the glaciers (Table 3.5), and simulations with wind transport 



70

reduced the averaged snow depth bias by 3%. To remove the complicating effects of vertical 

ice dynamics (e.g. submergence or emergence) affecting apparent snow depth over the glaciers, 

we compared simulated and observed snow depth over ice-free terrain. Boxplots determine the 

simulated snow pattern and the effect of wind on the snow redistribution (Fig. 3.5).  

 

Figure 3.5. Measured vs. simulated WRF-forced snow depth distribution with elevation over glacier free areas, 
surrounding each glacier for the 2015-2016 accumulation period. Box heights denote 25th and 75th percentile. The 
whiskers extend to the highest and lowest snow depth at each elevation band. The sign (×) shows the medians, 
and dots represent the outliers. The sample sizes differ for each glacier and elevation band ranges from 20 (e.g. 
at low-elevations in small glaciers) to more than 8000 samples (e.g. at mid-elevations in large glaciers). 

 

For all locations, snow depths without wind increases with elevation. Comparing visualized 

snow depth distribution with and without wind effects, SnowModel forced by WRF represents 

the main features of snow depth distribution in glacier free areas (Fig. 3.4). The model 

simulates erosion at the ridges and deposition on the lee sides of mountains. However, a snow 
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depth difference map of modelled and LiDAR data (Fig. 3.4) illustrates that deposited snow 

amount on the immediate leeward side of ridges with steep slopes is high in non-glacier areas 

and may be overestimated. The net transport values over each glacier shows the highest snow 

reduction at Nordic (Fig. 3.6), while there is a positive net transport for the Zillmer Glacier 

during the simulation period. The wind graphs (Fig. 3.2) represent the highest westerly monthly 

wind speed which occurred in November and February with the highest wind speed over 

Conrad. The model suggests the wind transport of snow over glacier areas to be -30 mm, -20 

mm and +7 mm for Nordic, Conrad, and Zillmer, respectively, while the Kokanee glacier 

experiences negligible snow transport summed over the accumulation period. However, the 

amount of transported snow within the domains is highly variable. At smaller scales, the 

summed snow transportation reaches more than 14 m in the lee sides of steep slopes with the 

lowest snow deposition for Kokanee and largest snow deposition at Conrad Glacier. We also 

evaluated the simulated SWE distribution with elevation against probing data and pit 

measurements for about 30-50 points for each glacier (not shown). More details of simulated 

snow density and pit measurements can be found in Mortezapour et al. (2020) and Pelto et al. 

(2020). We found that NLDAS-forced SWE was underestimated at all locations with an 

average of 20% relative to WRF forcing data. The integrated variability of WRF-forced SWE 

over each glacier area is slightly underestimated by SnowModel, but it is more realistic 

considering wind transport at all glaciers, than without having wind (Table 3.6). 
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Figure 3.6. Mean monthly drifting snow sublimation, solid precipitation per time step, and mean monthly wind 
speed at 10 m height above the surface (Left); Relative humidity with respect to ice, accumulated transported 
snow, and monthly wind direction (Right) averaged over the main glaciers (Fig.3.8) during the 2015-2016 
accumulation period. 

 

Table 3.6. Winter mass balance (SWE) comparison between simulations and observations (stake and LiDAR 
measurements) on the glaciers for the 2015-2016 accumulation period. 

     With-wind Without-wind 
Winter Mass 
Balance 
(m.w.e) Probing LiDAR 

WRF 
forced with 

wind 

WRF 
forced 

no wind 
%Bias
-Prob 

%Bias-
LiDAR 

%Bias-
Prob 

%Bias-
LiDAR 

Zillmer 1.99±0.23 1.68±0.19 1.75±0.20 1.72±0.12 -12.0 +4.1 -15.3 0.0 

Nordic 1.79±0.14 1.79±0.22 1.92±0.15 1.96±0.10 +7.2 +7.2 +9.5 +9.5 

Conrad 1.88±0.12 1.40±0.18 1.73±0.16 1.62±0.11 -7.9 +17.6 -13.8 +15.7 

Kokanee 2.07±0.13 1.98±0.22 1.65±0.17 1.67±0.09 -20.2 -16.6 -19.3 -15.7 

Average over 
all 

1.93±0.16 
 

1.71±0.20 
 

1.76±0.16 
 

1.74±0.11 
 

-8.8 
 

+1.7 
 

-10.0 
 

+1.57 
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3.6.2. Surface and drifting snow sublimation 

 Due to minor differences between results forced by NLDAS with and without wind, we 

only discuss the simulated sublimation forced by WRF. The highest modelled monthly average 

drifting sublimation rate was 0.12 mm per day at Conrad Glacier (Fig. 3.6). The lowest drifting 

sublimation and snow transport was at Kokanee (Fig. 3.7). The averaged surface sublimation 

over Conrad and Zillmer domains are in a similar range as snow drift sublimation, while 

surface sublimation shows a higher rate at the two other glaciers, especially at Kokanee. 

Drifting snow sublimation is higher in winter than spring, but surface sublimation is stronger 

at the end of the accumulation season (Fig. 3.7). 

 

Figure 3.7. Cumulative mean reduction of SWE (mm w.e.) averaged over the whole domain due to static 
sublimation at the surface (black, dashed), and drifting snow sublimation (black, solid) and the total sublimation 
(red, solid) during the complete simulation for four glacier locations for the 2015-2016 accumulation period. 
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Scatterplots of snow blown sublimation and meteorological data show an expected increase in 

drifting snow sublimation with wind speed (Fig. 3.8). Sublimation of drifting snow is limited 

to some areas with a distinctive pattern of maximum values on the windward slopes and 

minimum values occurring in the valley locations (Fig. 3.9b). The effects of drifting snow 

sublimation occur on the west and northwest- (i.e. windward) facing slopes for all sites, 

whereas the surface sublimation happens throughout the whole domain, where snow is present 

(Fig. 3.9a). 

 

 

Figure 3.8. Scatter plots of daily drifting snow sublimation rate against air temperature, relative humidity with 
respect to ice, wind speed and wind direction at 10 m height above the surface for the 2015-2016 accumulation 
period over four glaciers. 
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The surface sublimation also is higher on the north-facing slopes for all glaciers, except at 

Nordic, which shows the highest values on the west-facing slopes. The highest drifting snow 

sublimation occurs at the ridges (compare the topography in Fig. 3.1 with Fig. 3.9b), where it 

can reach 500 mm w.e. for Zillmer and Conrad glaciers. Peak drifting snow sublimation values 

are lower for Nordic (180 mm w.e.) and the lowest occurs at Kokanee glacier with 45 mm w.e. 

The average drifting snow sublimation over each model domain is 0.34%, 0.90%, 1.7%, and 

2.1% compared with accumulated SWE at the same time for Kokanee, Nordic, Zillmer, and 

Conrad, respectively during the entire accumulation season. In addition, the average of drifting 

snow sublimation over all sites on the glaciers is slightly higher than surface sublimation (35 

vs. 31 mm w.e.) during winter accumulation.   

 

 

Figure 3.9. Summed static surface (a) and drifting snow sublimation (b) at Conrad, Kokanee, Nordic, and Zillmer 
glaciers (from left to right) in [mm w.e.]. Fluxes are cumulated over the simulation period (the 2015-2016 
accumulation period). The black and red outlines show the LiDAR footprint and main glaciers boundaries, 
respectively. 
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Generally, the winter mass balance is underestimated by SnowModel for both WRF and 

NLDAS, with and without wind effects on the glaciers compared with manual measurements 

and LiDAR data (Tables 3.5 and 3.6). The percent difference between winter mass balance 

wind and without wind for the glaciers is less than 4% for all sites, except on the Conrad which 

is 6% compared with stake measurements. The blowing snow sublimation causes an averaged 

reduction of less than 2% winter mass over all glaciers. To summarize, the simulations suggest 

that the high drifting snow sublimation occurs mostly at the ridges and windward slopes and 

is limited to small areas. Consequently, drifting snow sublimation may not affect glacier winter 

mass balance significantly in alpine terrains (Strasser et al., 2007). 

 

3.7.  Discussion 

Wind is a key factor in snow distribution over complex terrain (Dadic et al., 2010). The 

wind field generated by WRF are more representative at alpine sites (e.g. Tabernacle station) 

compared with the stations located in the valleys, where wind is affected by local topography 

and thermally forced winds. The wind speed interpolated by MicroMet is lower on average 

than the forcing data which likely contribute to model error. Underestimation of wind velocity 

by MicroMet was also reported in other studies (e.g. Gascoin et al., 2013; Musselman et al., 

2015; Ravazzani et al., 2016). Therefore, using a more comprehensive method to simulate 

mechanical effects of terrain on windflow (e.g. Marsh et al., 2020; Vionnet et al., 2020) might 

lead to more reliable results. 

3.7.1. Snow transport 

We found a negligible difference between simulated snow depth forced by NLDAS with 

and without wind. This might be due to the coarse resolution of the wind field in NLDAS data 
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which is not able to capture the dominant direction of wind in the complex terrain. 

Comparisons with LiDAR data display more realistic snow patterns, when the snow transport 

module is activated with WRF driven winds (Prasad et al., 2001; Gascoin et al., 2013). The 

WRF forced pattern of snow erosion and deposition is consistent with wind speed and direction 

over each glacier (Fig. 3.10).  

 

Figure 3.10. Downscaled mean wind speed (ms-1) at a height of 10 m above the surface and direction over each 
domain by MicroMet for the 2015-2016 accumulation period. 

 

Snow erosion occurs mostly along west facing slopes that experience stronger wind speeds, 

while snow is deposited in the leeward sides. We showed a negative net transport of snow by 

wind, except at Zillmer where the positive net accumulation may be due to snow from 
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surrounding snow-covered slopes. The spatial heterogeneity of simulated snow depth is 

increased when snow is redistributed by wind. However, the percent bias of integrated mean 

snow depth over area and winter mass balance of glaciers are not reduced considerably. Wind 

also may contribute to the release of avalanches affecting winter mass balance, especially in 

small glaciers. Generally, SnowModel is capable of producing winter mass balance with 

tolerable uncertainties using WRF forcing data. Our results in terms of amount and patterns of 

transported snow and drifting sublimation are consistent with Déry et al. (2010) over the 

Cariboo Mountains, MacDonald et al. (2010) and Musselman et al. (2015) over ridge-tops in 

the Canadian Rockies and Zwaaftink et al. (2011) over the whole simulation domain in the 

Swiss Alps using different models and forcing data. 

3.7.2. Snow sublimation 

Wind speed plays a key role in blowing snow sublimation. Higher wind speeds result in a 

higher rate of mass loss due to drifting sublimation, which is proportional to the square root of 

wind velocity in SnowModel. High-speed winds create a fully mixed layer above the snow 

surface that maintains gradients of vapour pressure and facilitates sublimation (Stigter et al., 

2018).  The strong surface sublimation at the end of the accumulation period is likely related 

to higher air temperature and more energy available from shortwave radiation. The variability 

of drifting snow sublimation over the domains is analyzed with respect to the weather 

conditions, particularly wind direction. The highest rate of drifting snow sublimation occurs 

where there is a combination of conditions with a warmer temperature, lower humidity 

environment, and a higher wind speed (Pomeroy and Jones, 1996; Liston and Sturm, 2004; 

Svoma, 2016) on the windward slopes (N and NW facing slopes) and the top-ridges, where 

snowfall and wind erosion is significant (Fig. 3.9). All these conditions together lead to large 
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vapour deficits where snow particles are present, resulting in a higher rate of sublimation. The 

blowing snow sublimation strongly varied over space and time with a range of 1-45% winter 

mass loss in respect to SWE with the highest rates on the ridges. There is a large range of 

reported percent mass loss (1-90%) due to drifting snow sublimation in alpine areas in different 

studies that might be due to different climate conditions, scales, and using the different model 

setup and resolution (e.g. Pomeroy et al., 1997a; Déry and Yau, 2001; Molotch et al., 2007; 

Strasser et al., 2007; MacDonald et al., 2010; Bernhardt et al., 2012; Gascoin et al., 2013;

Zwaaftink et al., 2013) and less than 6% over an entire domain (e.g. Vionnet et al., 2014). In 

our study, the greatest magnitude of drifting snow sublimation occurs on the windward slopes, 

which is consistent with results from Musselman et al. (2015). In contrast, Zwaaftink et al. 

(2011) demonstrate the strongest blowing snow sublimation occurs on the leeward slopes, due 

to different topographical features and climate conditions in which adiabatic warming and 

drying sustain sublimation. Furthermore, Zwaaftink et al. (2011) used a steady state field of 

the mean wind over the region during a storm event, which could neglect the dominant pattern 

of wind and drifting sublimation on the region. While underestimated wind speed by MicroMet 

might affect drifting snow sublimation rate, it can be compensated with neglecting the self-

limiting aspect of blowing snow sublimation (thermodynamic feedback) within SnowModel

which exaggerates the blowing snow sublimation. 

3.7.3. Limitations 

Uncertainty in the results stems from inadequate information both from model and data 

limitations. In terms of input data, the simulated results are influenced by systematic errors and 

uncertainties associated with parameterizations in regional climate models. Limited 

observations make the performance of the model difficult to evaluate. Specifically, there are 
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few observations of wind in this region, especially over the glaciers we are most interested in. 

Due to the lack of observations, longwave and shortwave radiation from WRF could not be 

evaluated. Furthermore, no observations of sublimation rates exist for the glaciers of this study. 

The model structure and parameterization also might affect the outcomes. Micromet reduces 

the already too low wind speed from WRF, resulting in underestimation of wind speed in this 

region. SnowModel does not take into account preferential deposition of snow during 

precipitation events, and feedbacks between the sublimation rate and the humidity field. 

Furthermore, in SnowTran3D, the effect of suspended snow due to flow separation along steep 

ridges, which occurs in clear, windy days on the mountain peaks is neglected by assuming an 

equilibrium between transport flux with the near-surface winds (Liston et al., 2007). These 

simplifications might affect the amount of drifting sublimation, with the expectation of a higher 

rate of actual sublimation in alpine environments. The findings can be also influenced by 

calibration parameters such as curvature and wind shear in MicroMet. In this study, the model 

sensitivity to the curvature parameter and slope weight was tested for one glacier. The results 

show a slight influence of curvature on the snow transported by wind as well as both static and 

drifting sublimation (<5%), contributing to uncertainty in the model results. In this study, we 

used a constant wind shear threshold to initiate snow transport; evolution of this parameter 

during simulation periods should be tested in future studies that may improve the results. The 

wind shear threshold is a function of wind speed and temperature. The snowpack consolidates 

over time, consequently rising temperature in the spring will increase the minimum wind shear 

stress required to initiate snow transport (Gascoin et al., 2013). In addition, the gravitational 

redistribution (i.e. avalanche and snowslides) and its effect on the winter mass balance 

calculation, have not been taken into consideration. Avalanching is able to redistribute mass 
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from areas above the glacier onto its surface. Gravitational redistribution may be significant 

and should be considered in future research.  

3.8. Conclusion 

 

The main aim of the study was to determine the effect of wind on winter mass balance 

estimation using NLDAS and WRF forcing dataset. We found negligible differences in winter 

mass balance and snow depth when forcing SnowModel and its snow transport module with 

NLDAS data. It is suspected that these minor differences arose from the coarse resolution of 

wind fields. In contrast, SnowModel forced by WRF data reasonably represents the pattern and 

magnitude of snow depth over the alpine terrain. Generally, the averaged simulated winter 

mass balance forced by WRF is underestimated by about 10% and overestimated by 1.7% 

compared with probing and LiDAR measurements, respectively. The inclusion of wind 

improved the simulated winter mass balance by 2%. The simulated maps of snow depth reveal 

windward erosion of snow at the ridges and deposition on the lee sides of steep terrain, which 

appears to be in good agreement with the general pattern of snow accumulation revealed by 

LiDAR measurements over ice-free areas. The variability of simulated snow depth is less than 

stake observations suggest, however. Over the accumulation season, there was a net loss of 

wind transported snow when averaged over all glaciers, with largest losses (8 cm) at Conrad 

Glacier. The model results demonstrate strong drifting snow sublimation occurs for those sites 

with a higher mean wind speed. The greatest reduction of snow is on the windward slopes due 

to the presence of more snow and exposure to the westerly winds. Averaged over the whole 

simulation domain within a winter season, drifting snow sublimation is less than 2% of SWE, 

however at individual locations it can be considerably higher reaching up to 0.5 m (45%) over 

the accumulation period. We currently lack observations to evaluate simulated snow 
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sublimation, however. We suggest that although drifting snow sublimation is not negligible at 

smaller scales and varies significantly in time and space, the effect of wind transport on the 

winter mass balance is not considerable when averaged over the domain and it may be more 

important for smaller (e.g. cirque) glaciers on the leeward side of mountains. Given the fact 

that simulation of these processes is computationally expensive, considering wind effects on 

estimation of glacier-wide average winter mass balance is probably not required for glaciers in 

the Columbia Basin. However, running the model for a full annual cycle, including the ablation 

season, may show different results and may need higher complexity models to better represent 

ablation processes. More accurate modelling of wind fields that captures the local winds, 

higher resolution meteorological fields, in particular precipitation, and a higher resolution of 

simulation that can influence snow transport may lead to a more detailed snow pattern and a 

higher accuracy of winter mass balance. In addition, the effect of gravitational redistribution 

on the winter mass balance estimation needs to be addressed in future research. 
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Abstract 

In western North America, many communities rely on runoff from mountain snowpacks. 

Projections of how future climate change will affect the seasonal snowpack are thus of interest 

to water managers, communities, and policy makers. We investigated projected changes in 

seasonal snowcover under global warming for the 21st century and the Canadian portion of the 

Columbia River basin using a physically-based snow distribution model (SnowModel) at 500 

m horizontal resolution. Forcing data for the reference (1979-1994) and future (2045-2059, 

2085-2099) periods originate from a 4-member initial condition ensemble of global 

Community Earth System Model (CESM1) simulations based on the Representative 

Concentration Pathway (RCP 8.5) scenario. The ensemble has been dynamically downscaled 

(DD) to 10 km resolution using the Weather Research and Forecasting model (WRF). In 

addition, we also evaluated the performance of SnowModel using publicly available, 

statistically downscaled (SD) temperature and precipitation projections. We observe a 38% 

and 30% decrease in WRF-simulated snow depth and SWE, respectively by the end of this 

century relative to the reference period. Snow depth and snow water equivalent (SWE) are 

most affected for elevations below 2000 m asl. The averaged SD-forced snow depth and SWE 

over the area represents a reduction of 28% and 15% toward the end of the 21st century. Our 

results indicate that the projected loss of snowpack depends largely on elevation and season, 

while stronger projected thinning of the snowpack occurs for the dynamically downscaled 

simulations by the end of the 21st century compared to the statistically downscaled simulation. 

Nevertheless, both SD- and DD-forced simulated snow depth and SWE show losses in most 

areas by the end of the century. This has significant implications for water resource availability 

for various sectors and communities living in these areas 
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4.1. Introduction 

High latitudes and altitudes are most affected by recent climate change, and changes in 

seasonal snow is one indicator of this change (Prowse et al., 2006; López-Moreno et al., 2012; 

Milanes et al., 2018). Mountain snowpacks act to store precipitation during winter, and later, 

as the weather warms, melting snow provides water supply for many downstream communities 

in western North America. Therefore, projections of how future climate change will affect 

water resources is of high interest to policy makers (Erler et al., 2017). Global climate change 

and its impact on the cryosphere is reported and summarized in a report by the 

Intergovernmental Panel on Climate Change (2019). Studies indicate that areas of British 

Columbia (BC) have experienced warming at a rate twice the global average (Gayton, 2008; 

Warren and Lemmen, 2014); this warming shrank glaciers and thinned seasonal snowpacks 

during the 20th century (Larsen et al., 2007; Schiefer et al., 2007; Bolch et al., 2010; Menounos 

et al., 2019).  

The climate of BC is influenced by maritime and continental air masses and dominated by 

heavy orographic precipitation (Burn, 2008; Mote and Salathé, 2010). Consequently, climate 

modelling and downscaling for this area is affected by its complex topography and is therefore 

sensitive to model resolution (Salathé et al., 2010). Local climate stems from the evolution of 

weather systems, resulting from the interaction between the atmosphere, land-surface, ocean, 

snow, and ice at the specific location (Gurgiser et al., 2013; Khadka, 2013). Global Climate 

Models (GCMs) are too coarse to resolve these high-resolution meteorological conditions and 

thus, their sole use on understanding how future climate may affect snow and glaciers in 

mountain environments is limited (Radić and Hock, 2006; Radić and Clarke, 2011). In 

addition, the projected snow cover changes that have been investigated by the direct output of 

GCMs has a limited ability to simulate the changes in higher elevations due to their coarse 
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resolution (Mankin and Diffenbaugh, 2015). To bridge the gap between GCM resolution and 

the spatial resolution needed to resolve mass and energy fluxes in topographically complex 

terrain, downscaling strategies are commonly employed (Maraun et al., 2010). Statistical 

downscaling uses statistics derived from empirical relationships between simulated large-scale 

atmospheric variables by GCMs and observed meteorological variables on a local scale. 

Statistical downscaling has low computational demands, and, due to the limited availability of 

observed data, this method is often applied to downscale precipitation and air temperature 

(Maraun et al., 2010; Teutschbein et al., 2011). Furthermore, statistical downscaling assumes 

that the relations between coarse resolution variables and those at a local scale that currently 

exist will also exist in the future. This assumption may not be valid in a changing climate, 

especially if climate change alters regional climate dynamics. In contrast, dynamical 

downscaling uses a physically-based model that solves equations for conservation of mass, 

momentum and energy in the atmosphere and typically includes interactions with the land 

surface to achieve a finer resolution for climate projections. This method is able to represent 

detailed information of land-atmosphere interactions, especially orographic precipitation, but 

is computationally expensive. Given the computational expense, dynamical downscaling has 

been used in fewer studies of snow regime simulations requiring higher resolution, than 

statistical downscaling approaches (Christensen et al., 2007; Bavay et al., 2009; Marty et al., 

2017; Ishida et al., 2018). Energy-balance models are physically-based, improving simulation 

by considering the spatial and temporal contributions of energy into the snowpack (e.g. 

radiation, sensible and latent heat exchange, ground and precipitation heat fluxes) to get the 

required energy for melting and its response to climate changes and surface conditions. Such 

studies are important for accurate prediction of snow cover variability in mountainous areas 

due to the complex topography (Arnold et al., 1996).  
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There are several studies investigating the climate change impacts on the snow cover in 

North America. A declining trend of snow depth between 1948 and 2006 was reported by Park 

et al. (2012) in the Arctic with a stronger negative trend in North America than in Eurasia. 

Using remotely sensed data Choi et al. (2010) revealed that snow area in Western Canada 

decreased from 1972 to 2008, while the core snow season (consistency of snow cover duration) 

has increased by approximately 10 days over extreme Western Canada. Kang et al. (2014) 

report a 19% decline of snow melt contribution to Fraser River runoff over the period 1948-

2006. High-resolution dynamic downscaling using WRF has been used in several studies of 

current and future climate over North America (e.g.  Rasmussen et al., 2011; Liu et al., 2019; 

Musselman et al., 2018). All studies reported snowfall reduction under a future, warmer 

climate. This method was also used by Rasmussen et al. (2014) to project the future changes 

in snowpacks over the Colorado Headwaters under the IPCC A1B scenario by 2050. Their 

results depicted increased precipitation in future winters by 12% with a decrease in snowfall 

fraction from 0.83 to 0.74 resulting in a reduction of SWE with runoff occurring 2-3 weeks 

earlier in the future simulations. More liquid winter precipitation and earlier snow melt in 

Western Canada was also projected by Erler et al. (2015, 2017) using dynamically downscaled 

CESM1-WRF, which is also used in the present study. There are many other studies on snow 

cover projections in the Alps with different Regional Climate Models (RCMs) and emission 

scenarios (e.g. Rousselot et al., 2012; Steger et al., 2013; Marke et al., 2014; Marty et al., 2017). 

The projected impact of climate change on the snow hydrology of the Fraser River Basin 

(British Columbia) and Athabasca river basin (Alberta) has been investigated using different 

statistical downscaling approaches (e.g. Kerkhoven and Gan, 2011; Shrestha et al., 2017; 

Leong and Donner, 2015; Islam et al., 2017). Their findings also indicate an increased mean 

precipitation for the 2050s, while the snowfall is expected to decrease. 
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We investigate how future climate could affect the distribution of snow depth and SWE in 

the Columbia Basin as simulated using SnowModel (e.g., Liston and Elder, 2006a, 2006b; 

Liston et al., 2007). SnowModel is forced by dynamically downscaled data (four ensembles) 

generated by CESM1-WRF and statistically downscaled temperature and precipitation from 

CESM provided by the Pacific Climate Impacts Consortium (PCIC, 2019). The simulations 

are done for a historical period and two projected periods based on the RCP 8.5 climate 

scenario (section 2). The validation of the model and general patterns of climate change are 

provided in section 3. The results are interpreted in section 4, and the possible uncertainties are 

discussed in section 5 followed by a conclusion, which summarizes the results of the study.  

 

4.2. Data and Methods 

4.2.1. Study region 

The Canadian part of the Columbia Mountains is bounded by the Rocky Mountain Trench 

(east), the Columbia River (south), the Interior Plateau (west), and the Fraser River (north) 

with the peaks higher than 3000 m above sea level (a.s.l.) (Fig. 4.1). The study area makes up 

15% of the whole Columbia Basin (668,000 km²), which spans seven US states and the 

province of British Columbia in Canada including rivers and lakes, along with population 

centres of different sizes.  
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Figure 4.1. Digital elevation map of the Columbia Mountains. Weather stations used for simulations are marked 
with points. 

 

The snowmelt-driven discharge of the rivers, which plays a key role in water supply in the 

region, declines rapidly in the late summer. The heavy snowfall in the winter is controlled by 

mid-latitude cyclones with wet and mild westerly air masses coming from the Pacific Ocean 

that are intercepted by the Columbia Mountains. High annual precipitation, deep snow 

accumulation and relatively moderate winter temperatures are characteristic of this region. 

According to the Parameter-Elevation Relationships on Independent Slopes Model (PRISM) 

dataset maps (4 km resolution), which is an estimation based on climate station data (1961-

1990), the annual mean temperature in high altitudes (elevation range between 420 to 3700 m 

a.s.l) in the northern and central Columbia Basin is below freezing and colder than -4˚C. The 
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annual precipitation on the windward side of the ranges has been recorded between 1000 and 

2500 mm yr-1, whereas on the leeward side precipitation is reported between 250 and 750 mm 

yr-1 (Murdock and Werner, 2011). 

4.2.2. SnowModel 

We simulated the evolution of seasonal snow using a spatially distributed modelling 

system, SnowModel (Liston and Elder, 2006b). The model consists of four modules: 

SnowPack, a snow depth and SWE evolution model (Liston and Hall, 1995); surface energy 

exchanges are calculated by EnBal (Liston, 1995; Liston et al., 1999); MicroMet is a sub-model 

to define the meteorological conditions (Liston and Elder, 2006b); and SnowTran-3D 

calculates the snow redistributed by wind (Liston and Sturm, 1998, 2002; Liston et al., 2007). 

SnowTran-3D works for high resolution studies (200 m or finer) but is not used in this study. 

Temporally distributed meteorological data are required for simulations, which we describe in 

the next section. MicroMet was used for spatial interpolation of meteorological data including 

air temperature, incoming long wave radiation, incoming solar radiation, precipitation, relative 

humidity, surface pressure, wind direction and wind speed.  

4.2.3. Input data

Spatially distributed land surface data are required for SnowModel. We used a digital 

elevation model from the Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) at 500 

m resolution and land cover data were taken from the Global Land Cover database (GLC; Chen 

et al., 2015) reclassified based on the SnowModel vegetation cover classification (500 m 

resolution).  

a) Dynamically downscaled data 
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Spatio-temporal meteorological fields were provided from dynamically downscaled GCM 

simulations (Erler et al., 2015, 2017) to force the snow model. Due to high computational 

demand, only one GCM model was used to downscale climate projections for Western Canada. 

The Community Earth System Model (CESM1) was used to generate an ensemble of four 

simulations. CESM1 is a fully coupled global climate model with interactive components of 

the atmosphere, land, ocean, and sea ice with the nominal resolution of the standard 

configuration of about 1˚ (Erler et al., 2015). Dynamically downscaled meteorological 

projections are based on an initial condition ensemble of four independent global forecasts 

from the same GCM. However, the RCM/WRF ensemble members differ in both initial and 

boundary conditions (including sea surface temperatures and sea ice, which are prescribed 

from CESM1). Due to the high computational cost of the regional model, three 15-year 

segments from the GCM were dynamically downscaled with WRF (V3.4.1) (Erler et al., 2017). 

Each ensemble member was downscaled separately over Western Canada, using a nested 

configuration consisting of an outer domain of 30 km resolution and an inner domain at 10 km 

resolution. The ensemble was integrated for a historical validation period (1979-1994: 1980s) 

and two projection periods for mid and end of the century (2045-2059: 2050s and 2085-2099: 

2090s) based on the representative concentration pathway 8.5 (RCP8.5), a high-emission 

scenario, for the future trajectory of greenhouse gases. In this scenario the CO2 and CH4 

concentrations are 541 ppmv and 2740 ppbv in 2050 and 936 ppmv and 3751 ppbv in 2100, 

respectively (Erler et al., 2017). The required dynamically downscaled data (DD) for snow 

simulation derived from WRF include air temperature, precipitation, wind speed and direction, 

and incoming radiation (short and long wave). The 6-hourly downscaled CESM1-WRF values 

were averaged to create daily mean values and the simulations were performed based on the 

daily averaged atmospheric forcing for the whole periods.  
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b) Statistically downscaled data 

In addition to dynamical downscaling, we also forced SnowModel with statistically 

downscaled temperature and precipitation data from CESM1 provided by PCIC (PCIC, 2019). 

The statistically downscaled data are based on historical GCM simulations and gridded 

historical climate station observational data used to develop the statistical downscaling transfer 

functions. Statistically downscaled data are based on the Bias Correction/Constructed 

Analogues with Quantile mapping reordering approach (BCCAQ), which is a combination of 

the Bias Correction/Constructed Analogues (BCCA; e.g. Maurer et al., 2010), and quantile 

mapping (QMAP; e.g. Gudmundsson et al., 2012) methods. Daily gridded downscaled 

precipitation and temperature are accessible at 10 km resolution, which was input to 

SnowModel with a final resolution of 500 m. For statistically downscaled (SD) data, we used 

the daily precipitation rate and calculated the average temperature from daily maximum and 

minimum temperatures downloaded from PCIC. We allowed SnowModel to calculate 

radiation fluxes for the SD approach and the rest of the variables (wind components and 

specific humidity) were kept the same as in the DD data.  

4.2.4. Station data and forcing data correction 

 

The assessment of the changes in temperature and precipitation from DD data is based on 

four ensemble combinations. For this study, we used meteorological stations over the period 

1979-1994, for the entire domain (Table 4.1) to evaluate the performance of downscaled data 

before using them as input for SnowModel. After initial quality checks, we selected 10 stations 

based on their altitude and latitude to cover nearly the entire basin. Erler et al. (2015, 2017) 

provide a validation of the CESM1-WRF simulations for the historical period.  
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Table 4.1. Station information used for meteorological evaluation of forcing projections and evaluation of 
simulated Snow depth by SnowModel for the historical period (1979-1994). 

Station Name Coordinates   Network Name Used data time period Altitude (m) 

Bugaboo Creek Lodge 50.75˚N, 116.71˚W ECCC3 1979-1994 1529 

Cariboo Lodge 52.71˚N, 119.47˚W ECCC 
1980-1994 1095.8 

Duncan Lake Dam 50.23˚N, 116.97W ECCC 
1979-1994 548.6 

East Creek 50.63˚N, 116.93˚W ENV-ASP1 
1980-1994 2030 

Fish Lake 50.04˚N, 117.17˚W MoTIm2 1979-1994 1070 

Fred Laing Ridge* 52.04˚N, 118.57˚W MoTIe4 1989-1994 1080 

Glacier Np Mt Fidelity 51.23˚N, 117.70˚W ECCC 1979-1994 1890 

Nakusp 50.25˚N, 117.8˚W ECCC 1979-1994 457 

Valemount North 52.85˚N, 119.25˚W ECCC 
1979-1989 892 

Yoho NP Wapta Lake 51.45˚N, 116.33˚W ECCC 1979-1994 1646 
*No summer records            

1BC Ministry of Environment - Automated Snow Pillow Network                                                                                                     
2BC Ministry of Transportation and Infrastructure (manual)                                                                                                                     
3Environment and Climate Change Canada                                                                                                                                                                                        
4BC Ministry of Transportation and Infrastructure (electronic) 

 

The winter precipitation is overestimated, and there is a consistent cold bias at higher elevations 

in both CESM1 and WRF (Erler et al., 2015). To bias correct the CESM1-WRF output we 

compared the averaged monthly simulated temperature and precipitation against the monthly 

observed data over all stations (Fig. 4.2). An elevation difference correction was performed on 

DD data in the same way as in our previous work (Mortezapour et al., 2020), before comparing 

them with observations. The average precipitation bias was +30 mm (+27%) and -13 mm           

(-11%) over the whole accumulation period (September-May) for DD and SD data, 

respectively. Estimated temperatures from CESM1-WRF and SD data during the accumulation 

period are about 3˚C and 0.6˚C colder than the observed temperature from stations, 

respectively. The mean monthly bias between simulated (DD) and observed data was added to 

the meteorological forcing to correct the variables before using them as input to SnowModel.  
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Figure 4.2. Mean monthly dynamically and statistically downscaled temperature and precipitation against 
observations for 1979-1994 at station locations (See table 4.1 for station information). The mean monthly offset 
used for precipitation and temperature adjustment for DD forced data for the three simulation periods from 1979 
to 2099.  

 

We forced bias corrected data into MicroMet to downscale the resolution of 10 km to 500 m. 

The evaluation of simulated temperature and precipitation by MicroMet against station data 

for the historical period is presented in Fig. 4.3. We averaged the mean daily recorded data for 

the 15-year baseline at all station data and compared with the averaged simulated values using 

the nearest grid point to a given station (Fig. S3.2). Note that the station data used for SD-

forced model evaluation are not independent of the data used by PCIC to develop the statistical 

downscaling as there were no available independent station data for the historical period. There 

is a strong correlation of 0.93 and 0.98 (p < 0.01) between observations and DD and SD forced 

mean daily temperature (N = 5400), while the correlation coefficient of mean monthly 

precipitation (N = 180) are lower values of 0.78 (DD) and 0.89 (SD) (p < 0.01).  
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Figure 4.3.  Averaged mean monthly simulated temperature, precipitation, and snow depth against observed data 
from 10 stations (Table 4.1) for the reference period 1979-1994. The boxes extend from the 25th percentile to the 
75th percentile. The whiskers extend to the monthly highest and lowest values for each dataset. The sign (×) shows 
the medians, and dots represent the outliers. 

 

Boxplots of monthly precipitation (Fig. 4.3) reveal a higher median for DD-forced data than 

observations in cold months. Median monthly SD-forced precipitation values are lower than 

observed most months. The variability of winter monthly SD precipitation is higher than the 
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variability of DD precipitation. Averaged over all stations for the reference period, there is a 

strong correlation of 0.83 and 0.73 (p < 0.01) between simulated and observed mean monthly 

snow depth (N = 180) for DD and SD, respectively. However, snow depth is underestimated 

in both datasets in some years, especially SD-forced snow depths (Fig. 4.3). Table 4.2 

summarizes the performance of SnowModel for snow depth simulations at all ten stations in 

the Columbia basin for the historical period (1979-1994). The model performance was 

evaluated using three quantitative statistics including Nash-Sutcliffe efficiency (NSE), 

Willmott Index of Agreement (WI) and Percent Bias (PBias).  

 

Table 4.2. The NSE, WI, percent bias and correlation coefficients r (all significant at the p level of 0.01) of DD-
forced monthly mean snow depth simulated by SnowModel for the (1979–1994) period for the 10 specified 
stations. 

Station Name r* PBias+ NSE‡ WI† 

Bugaboo Creek Lodge 0.82 16.41 0.62 0.87 

Cariboo Lodge 0.75 16.73 0.51 0.77 

Duncan Lake Dam 0.98 18.60 0.82 0.99 

East Creek 0.61 11.20 0.52 0.83 

Fish Lake 0.79 17.10 0.50 0.76 

Fred Laing Ridge* 0.65 17.25 0.64 0.86 

Glacier Np Mt Fidelity 0.83 19.50 0.73 0.96 

Nakusp 0.78 23.61 0.78 0.95 

Valemount North 0.67 13.90 0.66 0.88 

Yoho NP Wapta Lake 0.63 33.10 0.51 0.78 

Average 0.75 18.74 0.63 0.87 
                                    *Pearson coefficient      +Percent Bias 
                                    ‡Nash–Sutcliffe efficiency       †Willmott Index of agreement 

 

Overall, SnowModel reproduces the seasonal variability of snow depth with the WI of 0.87 

and NSE of 0.63, using DD-forced data. SD-forced snow depth shows lower values of the WI 

(0.78) and the NSE (0.53). Based on the evaluation guidance provided by Moriasi et al. (2007) 
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and Ritter and Muñoz-Carpena (2013), the model simulations can be judged as satisfactory 

(NSE > 0.50 and PBias < ±25).   

 

4.3. Future projections 

We examined mid- and end-of-century temperature and precipitation changes calculated 

by MicroMet at 500 m spatial resolution over the domain for both DD and SD projected 

datasets. The impact of climate change on the snow depth and SWE was examined by 

computing the temporally and spatially averaged relative changes of the average SWE of four 

climate ensemble projections of DD and one projection for SD data. We also calculated the 

projected solid precipitation difference from the reference period. We then present projected 

changes in SWE over the Columbia Mountains based on the difference between simulated 

values of the past period and two projection time periods for mid and end of the century using 

both forcing data. In addition, interannual variability of snow depth and SWE are presented. 

Twelve separate simulations were done to cover all ensembles of dynamically downscaled 

data, in addition to three simulations for statistically downscaled data covering the three 

periods. All DD-forced values presented and analyzed here represent the average of four 

ensembles.  

4.3.1. Temperature and precipitation 

We compare seasonally downscaled temperature and precipitation data by MicroMet 

forced by both dynamically and statistically downscaled data for 15-year periods centred on 

the 1980s, 2050s, and 2090s (Fig. 4.4). Both datasets show increasing projected temperature 

in winter. The largest temperature increase occurs in spring and autumn for SD and DD data, 
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respectively. Overall, averaged SD and WRF forced temperature increased by 4˚C and 5˚C 

from 1979 through 2099 during the accumulation season (September to May), respectively. In 

contrast, mid-century SD monthly temperatures are colder by ~ 0.2˚C compared to the 

reference period (Fig. S3.1). DD-forcing data show a higher precipitation rate in the autumn 

and winter with less temperature changes in spring compared with SD-forcing data (Fig. 4.4). 

Modelled precipitation rates for both SD and DD forcing data increased in the autumn and 

spring by 10 and 30%, respectively, while precipitation declined slightly (~5%) throughout the 

region in winter.  

 

 

 

Figure 4.4. Downscaled mean daily precipitation rate (left) and temperature (right) by MicroMet over the whole 
area from September to May for the reference and future periods. The boxes extend from the 25th percentile to the 
75th percentile. The sign (×) represents the medians, and dots show the outliers (< 5% and > 95%). The whiskers 
extend to the seasonal highest and lowest values for each dataset. 

 

4.3.2. Mean snow depth and SWE 

The monthly average SWE over the entire domain for the four CESM1-WRF ensembles 

forced into SnowModel show the variance of the ensemble members for the historical period 

(Fig. 4.5). The large differences between ensembles arise from internal variability due to 

different initial and boundary conditions for each ensemble member in downscaling approach 
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within the WRF model. Natural variability (represented by the model-internal variability of a 

single large-scale model) can play a key role in the variability of future climate forecasts, 

depending on the component, season, area and time horizon considered (Trentini et al., 2019; 

Xie et al., 2015, Deser et al., 2012b). 

 

 

Figure 4.5. Monthly averaged SWE [m] over the entire domain from CESM1-WRF forced SnowModel 
simulations for four ensemble members during historical period (1979-1995). Black line with circle marker shows 
the average values.  

 

We also compare simulated end-of-winter snow accumulation and solid precipitation 

changes for the 2050s and 2090s (Figs. 4.6 and 4.7). These comparisons are based on the 

difference between daily averaged projections (2045-2059; 2085-2099) and the reference 

period (1979-1994). Solid precipitation changes in the 2050s show an absolute decline by 0.11 

and 0.19 mm day-1 (~ 7% and 13%) for SD and DD forcing data, respectively over the whole 

domain. The spatial pattern of solid precipitation (Fig. 4.6a and b) indicates a high rate of loss 

in mid-elevations across the entire domain using DD data, whereas despite an overall reduction 

of snow, an increased SD-forced solid precipitation at higher elevations of the northern parts 

of the Columbia and Rocky Mountains is evident at mid-century.  
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Figure 4.6. The averaged solid precipitation rate change between future simulations and reference period for (a) 
mid-century and (b) end of the century using statistically downscaled (SD) and dynamically downscaled (DD) 
forcing. 

 

Solid precipitation decreases by an average of 0.41 (mm day-1) (~ 26%) for SD data over the 

period 2085-2099 with the greatest declines on the eastern side of the Columbia basin, while 

this difference for DD-forced solid precipitation is -0.36 (mm day-1) (~ 27%) with the highest 

reduction at mid-elevations (Fig.  4.6). 
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Changes in SWE (Fig.4.7a and b) vary between -75% at lower elevations to +80% at higher 

elevations by mid-century that indicate an average of 6% and 19% less SWE over the whole 

area for SD and DD forced data, respectively. Greater decreases for DD-forced snow depth 

and SWE are consistent with decreased solid precipitation (Fig. 4.6a and b), especially at mid 

elevations. The snow depth distribution over the Columbia Basin for mid- and end of the 

century is illustrated in Fig. S3.3. 

The distribution of changes in SWE by the end of century is in the range between -91% to 

+64% for SD data, likewise the range of variations for DD-force SWE distribution attains from 

-79% to +80% over the domain. Over the entire domain, an average of 15% of SD-forced and 

30% DD-forced SWE will be lost by end of century. Contrary to the relative decrease, our 

results show a small absolute decrease in low elevation bands, while the greatest snow 

reduction occurs at mid elevations, particularly for DD-forcing data (not shown here). 
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Figure 4.7. Averaged snow water equivalent (SWE) changes between future simulations and reference period for 
(a) mid-century and (b) end of century using statistically downscaled (SD) and dynamically downscaled (DD) 
forcing data averaged over entire water year. 
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4.3.3. Interannual variability and elevation dependence 

Global Climate Model projections contain multiple biases such as an interannual variability 

bias in atmospheric variables. Some studies (e.g. Deser et al., 2012a; Rocheta et al., 2017; 

Pontoppidan et al., 2019) suggest that there is no clear indication of changes in projected winter 

temperature and precipitation variability. Nevertheless, other studies indicate a slight decline 

in temperature variability during winter (Holmes et al., 2016; Rupp et al., 2017; Bathiany et 

al., 2018) and an increase in precipitation variability in a warmer climate in mid-latitudes 

(Pendergrass et al., 2017; Rupp et al., 2017; Musselman et al., 2018). We analyzed the 

difference in snow depth and SWE (average of 15-year simulation) between each projection 

period and the reference period (Fig. 4.8a) over the whole domain based on the future 

temperature and precipitation variability. The snow depth maxima at the mid and end of the 

21st century is lower than the reference mean snow depth maximum, especially for SD forced 

snow depth. The pattern of DD-forced snow evolution is the same for all periods, while SD-

forced snow depth and SWE are deeper during autumn for mid-century and the snow depth 

peak occurs around two weeks earlier with only one half of the SWE compared with the 

reference period (Fig. 4.8b). Our analysis shows an increase in SD-forced snow depth and SWE 

in October and November for mid-century, while an increase in snow depth and SWE occurs 

in April with DD forcing data. The snow depth and SWE changes in the winter season are less 

than in other seasons for both datasets. Relative changes in snow depth is time and elevation 

dependent (Fig. 4.9).  
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Figure 4.8. Mean simulated snow depth and relative difference of snow depth (a) and mean simulated SWE and 
relative difference of SWE (b) averaged over the entire domain. Analysis were done for the reference period and 
two projections for mid-century and end of the century forced by statistically downscaled (SD) and dynamically 
downscaled (DD) forcing data. The sign (_diff) refers to the difference between curves of 2090s and 1980s for 
both SD and DD dataset. 

 

The highest decrease of snow depth happens in lower elevations with a higher percent decrease 

by end of the 21st century. DD-forced snow depths show a higher percent decrease (~20%) 

than SD-forced results for both mid and end of the 21st century, in particular, at low and mid 

elevations (elevations below 1800 m a.s.l.). For low and mid elevations, the percent decrease 

reaches over 70% and 50% for DD and SD forcing by end of century, respectively. Snow depth 

above 2000 m a.s.l. changes least in both simulations (Fig. 4.8). 
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Figure 4.9. Relative changes (%) of the snow depth versus elevation by the mid-century (2050s) and the end of 
century (2090s) averaged over area for the entire water year using two forcing data. The blue represents lower 
and the red shows the higher frequency of snow depth changes. The black line is the average line.  

 

4.4. Discussion 

The temperature trend of the region by the end of the 21st century is toward a markedly 

warmer climate and a higher rate of mean liquid precipitation (Erler et al., 2015; Rupp et al., 

2017). It is known that most mesoscale models produce too much precipitation, largely due to 

frequent, low-magnitude precipitation events (Yhang and Hong, 2008; Gutmann et al., 2011; 

Yhang et al., 2017). Likewise, the climate projections simulated by GCMs are associated with 

several uncertainties due to their different formulations and parameterizations, which influence 

the climate response to the forcing data within the models resulting in different outputs 

(Stocker et al., 2001), in addition to the uncertainty in future emissions. Some of these 

uncertainties can be quantified using simulation ensembles (Fig. 4.5). As mentioned before, 

there is also uncertainty in the RCM downscaling procedure, including WRF (Zubler et al., 

2014). On the other hand, a disadvantage of all statistical downscaling approaches is that they 

depend on the presumption that the historical relationship between predictors and regional 
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climate remains unchanged in future climate conditions (Boé, et al., 2007; Gutmann et al., 

2011). Our results show differences between the SnowModel simulated SD and DD forced 

outcomes, which are due to the difference in forcing data produced by each downscaling 

method. Our bias correction of modelled temperature and precipitation used the mean monthly 

offset between the averaged CESM1-WRF modelled outputs of four ensembles and the 

observed meteorological data. Additionally, we allowed SnowModel to calculate short and 

long wave fluxes for SD data, while CESM1-WRF downscaled radiation values were used in 

DD simulations. Our analysis shows that SD incoming short wave and long wave radiation 

generated by SnowModel are higher than simulated DD-forced radiation by 30 and 100 W m-

2, respectively, averaged over the accumulation season (Fig. S3.4). Underestimation of SD-

forced snow depth in the reference period can be explained by underestimated SD-forced 

precipitation, especially at higher elevations, and a warmer temperature during the 

accumulation season (Fig. 4.3). A higher DD-projected spatio-temporal variation of daily 

precipitation for each season over the entire domain is because of simulating dynamical 

changes in the meteorological fields. However statistical downscaling has less spatio-temporal 

variation because it simply projects changes onto a static dynamical state of the atmosphere, 

as well as the fact that the SD routines are based on observations that do not span the full range 

of elevations (Fig. 4.4). The average DD simulated snow depth accords with observed data 

compared with other studies (Schmucki et al., 2015; Marty et al., 2017), given the fact that the 

comparisons are based on the nearest grid points to the stations, which do not represent the 

actual elevation and local topographic effects. Moreover, the measured snow depths at the 

point scale are for specific locations and elevations that do not generally represent a large area. 

Our results show a 22% underestimation of DD-forced simulated snow depth, which is in the 

same range of the results simulated by Schmucki et al. (2015) at the point scale for 11 weather 
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stations (between -15% and 26%) and less than the range of percent differences indicated by 

Marty et al. (2017) at a regional scale (between -47% and 65%) over the Alps.  

The snow depth projections using the RCP 8.5 scenario decreases by 38% and 28% over 

the Columbia River Basin in British Columbia in the 21st century for the averaged four 

ensemble dynamically downscaled climate projections and for the statistically downscaled 

climate projections. In general, the inferred magnitude of decrease in snow depth and SWE is 

plausible in light of strong warming and negligible increases in precipitation. Increased SD-

forced solid precipitation can be explained by slightly decreased autumn temperature with a 

higher rate of precipitation (Fig. 4.4). A large temperature increase in spring might cause earlier 

snow melting in the future compared with the reference period, resulting in a large signal in 

this season. Pytlak et al. (2018) reported an earlier spring peak runoff for the upper Columbia 

Basin by 2070s under RCP8.5. Our results are consistent with other studies showing that SWE 

and snow depth during winter changes least under a warming climate, while snow depth is 

considerably reduced during autumn and spring (Dye, 2002; Lemke et al., 2007; Ishida et al., 

2018). Overall, future snow depth depends primarily on the increasing temperature of the 

accumulation season as the increase in precipitation is small (Fig. 4.4) (Marty et al., 2017). A 

colder SD air temperature in autumn and a spring cold bias of DD-forcing data might be 

responsible for increased snow depth in autumn and spring by mid-century, respectively. A 

poor representation of snowmelt processes along with excess winter precipitation results in an 

impact of snow–albedo feedback on temperature within WRF simulations (Fig. 4.8; Erler et 

al., 2015). The larger loss of snow in DD scenarios may be due to the snow albedo feedback 

on temperature, which is captured in WRF. The timing of the albedo feedback is not correct in 

the GCM, thus it does not capture the elevation differences, and melt times are too 
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homogeneous across the domain. In this feedback, WRF warms more in specific regions where 

snow cover is more prone to receding (Erler et al., 2015). Overall, consistencies can be found 

in the general decrease of the snow cover depth with solid precipitation patterns for both types 

of forcing data (Fig. 4.6). Islam et al. (2017) projected a decrease of snowfall (by 40%) in the 

2050s with a higher rate of reduction of SWE and snow cover at lower elevations for the Fraser 

River Basin (FRB) in western Canada. The end of century snow reduction by 60% at low/mid 

elevations follows other studies over the Alps (69%-75%) (e.g. Rousselot et al., 2012; Marty 

et al., 2017). Derksen et al. (2019) reported a reduction of 5% to 10% snow cover per decade 

in seasonal snow accumulation by mid-century for a medium emission scenario across Canada, 

while an increase of 2% to 5% per decade is reported for British Columbia. We found a small 

absolute decrease for the end of the century at low elevations, which generally is due to a small 

amount of snow in this elevation zone. In contrast, the greatest absolute decrease in mid-

elevations occurs because currently snow-covered area during winter months are heavily 

impacted by higher temperatures in the future. The snow cover at high elevations mainly 

depends on the precipitation rather than temperature, which cause very small absolute 

decreases and even some increases in some places using SD-forcing data. As mentioned earlier, 

the duration and depth of snow is most susceptible to a warming climate during autumn and 

spring since the snowpack is close to 0˚C. Our findings largely accord with Islam et al. (2017) 

and Erler et al. (2017), which reported the highest snow cover reduction in the spring over 

western Canada and USA (e.g. Mote et al., 2018). Our results also show the highest reduction 

in the autumn season with DD-forcing due to a larger temperature change in the autumn and 

having a cold bias in the spring. Snow depth and SWE are an integrated response to both 

temperature and precipitation (Gui et al., 2005; Ding and Qin, 2009; Shi et al., 2011). A warmer 
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climate along with rain-on-snow events are responsible for significant autumn and spring snow 

changes that elevate the likelihood of rain-on-snow floods (Musselman et al., 2018). Owing 

that daily mean snow depth is decreasing, the total volume of snow must also diminish (Fyfe 

et al., 2017; Mote et al., 2018). The large difference between DD and SD projected SWE, is 

due to differences in forcing data, especially short and long wave radiation (Fig. S3.4). 

Downscaled radiation from WRF was used in the DD projections, while shortwave and 

longwave radiations were calculated by SnowModel for SD projections, based on the other 

meteorological variables. We could not evaluate radiation forcing into the snow model due to 

lack of observed data. However, comparing simulated radiation over the accumulation period 

by both forcing datasets reveal higher shortwave and longwave radiation for SD than for DD.   

4.4.1. Study limitations 

We note several limitations in this study: (a) Dynamically downscaled data used in our 

study represent 15-year epochs and do not reflect century-scale transient simulations of future 

climate. Various RCM and GCM combinations (Giorgi, 2006; Salathé et al., 2010) and 

realizations of a single global model (Deser et al., 2012b) can generate different results. In 

transient simulations, instead of long simulations, the length of the time slices multiple 

realizations (15-year period × 4 ensembles = 60) have to be performed. At this stage it is not 

clear if 60 years (four ensembles for 15-year periods, for three periods) of data are adequate to 

achieve a reliable and stable climatology (Lucas-Picher et al., 2008; Schindler et al., 2015, 

Erler et al., 2017); (b) In statistically downscaled data, there are important feedbacks that 

cannot be captured with non-transient simulations. These approaches depend on the 

presumption that the historical relationship between predictors and regional climate remains 

unchanged in future climate conditions (Boé et al., 2007; Gutmann et al., 2011); (c) Ground 
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heat flux is not simulated with SnowModel. We expect this to be a minor effect based on the 

result of Watson et al. (2006) who analyzed the sensitivity of Alpine3D to geothermal heat in 

the Madison River watershed, USA; (d) MicroMet downscaling methods are simplified in 

terms of atmospheric conditions such as cloud fraction and temperature inversion layers 

(Liston and Elder, 2006b). Moreover, effects of wind on snow transport and sublimation of 

blowing snow is neglected within this study; (e) The SD results used wind components and 

specific humidity derived from DD data due to lack of these statistically downscaled variables. 

Therefore, the results might be different if there were available SD data, especially in terms of 

calculation of surface sublimation and cloudiness within SnowModel; (f) Incoming radiation 

for SD data were calculated by SnowModel based on the forcing meteorological data. We 

found a higher rate of incoming shortwave and longwave radiation than the radiation from 

dynamical downscaling. The lack of observed data prevents us from evaluating simulated 

radiation; (g) Statistically downscaled data are based on interpolated gridded observations, 

which may be different from conditions at monitoring stations as biases can exist at high 

altitudes or other areas with few stations (Eum et al., 2014). The observed data over complex 

topography in alpine terrain are sparse and limited mostly to the atmospheric conditions and 

contain uncertainties. Furthermore, another limitation is the use of a single future climate 

scenario (RCP 8.5) whereas others are also plausible. 

4.5. Conclusion 

We investigated the impacts of climate change (RCP 8.5 scenario) on snow distribution 

over the Columbia Mountains by a distributed snow model (SnowModel) forced by both 

regional climate model data (WRF) and statistically downscaled data (PCIC). The model was 

evaluated by comparing the simulated results with the average of observed data from 10 
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selected stations over the basin. The snow distribution climatology at two future time periods 

and one historical period was analyzed for CESM1 forcing data both statistically downscaled 

and dynamically (four different ensembles) downscaled. SWE and snow depth changes are 

closely related to temperature and precipitation, which differ with latitude and altitude. In 

addition to the synoptic scale variability, sub-grid processes and the pronounced terrain 

variation in the Columbia Basin has a strong impact on its climate. At small scales, the 

changing topographical characteristics such as elevation, orientation to the mean winds, slope, 

and exposure all combine to change the local climate that affects snow cover (Klock and 

Mullock, 2002; Boé et al., 2007; Chen et al., 2012). Therefore, application of the high-

resolution snow model and forcing data (SD/DD dataset) is important to address most of the 

factors and processes affecting snow cover.  

The downscaled climate model outputs for the RCP8.5 scenario used in this study 

demonstrated a clear temperature increase for all time periods using both SD and DD data. 

There is a slight increase in total precipitation by the end of the century, with the largest 

changes in spring for SD data. Future seasonal temperature increase during the accumulation 

season is projected to be highest in spring for SD and in autumn for DD datasets. The snow 

projections show snowpack reduction through the 21st century with the largest changes for the 

beginning and end of the accumulation season. The magnitude of the decrease is larger by 10% 

using DD forcing data. The projected snow depth reduction averaged over the region is about 

25% for mid-century and about 40% towards the end of century using DD data. However, 

under the RCP8.5 scenario the snow depth reduction is projected to reach more than 65% at 

lower elevations. The mid-elevations are the most vulnerable elevation zones due to higher 

sensitivity to temperature increase, while higher elevations are less affected by warming. The 
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results indicate that the projected reduction of snow depends largely on elevation and season. 

Furthermore, other research suggests that there is not a clear preference in using a particular 

method for downscaling. Both SD and DD have advantages and disadvantages, and within 

each category there is a wide range of specific methods (Gutmann et al., 2011; Nover et al., 

2016). Nevertheless, for both methods our results show a snow depth and SWE reduction in 

most areas by end of the century that influence water resources for various sectors and 

communities living in these areas.  

It is worth noting that our research employed one climate model (CESM1), which is 

identified as one of the best GCMs representing climate conditions in this region (Mote and 

Salathé, 2010; Rupp et al., 2017), but is not a comprehensive evaluation of the full range of 

possibilities. Furthermore, in addition to the uncertainties associated with downscaling 

approaches in RCMs in terms of configuration, climate change signal and inter-annual 

variabilities can differ in the various GCM projections. Nonetheless, in such situations, using 

a multi-model ensemble of regional climate models could be a viable option to simulate 

precipitation patterns and variability if there is a reliable observed dataset to use for bias 

correction of RCM outputs, even though they are computationally expensive. Developing 

statistical downscaling functions for other variables (e.g., wind, pressure, humidity, radiation) 

to use in land-surface or distributed snow models would lead to a better comparison (Gutmann 

et al., 2011). 
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Chapter 5: Conclusion 

5.1. Dissertation Summary and lessons learned 

Faced with changing climate conditions, the need for assessment of snowpacks in remote 

areas provides the motivation for my dissertation research. Western Canada relies on seasonal 

snow for runoff (Bawden et al., 2015; Bonsal et al., 2019), so quantifying stored freshwater 

resources is important for adaptation plans. In this dissertation, I investigated glacier winter 

mass balance and snow distribution using two distributed snow models forced with different 

input data. The importance of input data and complexity of snow models on glacier mass 

balance estimation was examined by using high resolution meteorological data from NLDAS 

and dynamically downscaled data from WRF to force both SnowModel and Alpine3D. I then 

assessed the effects of wind on snow distribution and winter accumulation by comparing two 

different simulations of SnowModel, with and without wind transport. I evaluated the results 

based on in-situ observations and LiDAR measurements. Finally, I simulated future snow 

depth and SWE under future climate change for much of the Canadian portion of the Columbia 

Basin using dynamically downscaled CESM1-WRF and statistically downscaled CESM1 from 

PCIC based on the RCP 8.5 future greenhouse gas concentration scenario.  

 

Chapter 2 addressed the first and second research questions that asked how forcing data 

and snow models complexity affect winter mass balance estimation in the absence of weather 

station data. We used two snow models (SnowModel and Alpine3D) with different forcing 

data (WRF and NLDAS) to answer these questions. Both snow models successfully 

reproduced observed snow depth and SWE when driven with gridded reanalysis and 

dynamically downscaled data. WRF-forced snow depth and SWE are closer to the observations 
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than simulations forced with NLDAS data. This finding is likely explained by the observed 

negative precipitation bias observed in NLDAS data over the study area. Our results also 

revealed that averaged WRF-forced simulated snow depth is overestimated, likely because 

mesoscale atmospheric models like WRF tend to simulate too much precipitation. In short, 

these results indicate that accurate downscaling of precipitation data is crucial to correctly 

estimate snow depth and SWE. In terms of glacier mass balance, SnowModel reproduces 

winter mass balance with, on average, less than 10% bias, but with a higher variability of snow 

depth than Alpine3D that had a 22% bias and produced a more uniform snow depth and SWE. 

When compared to observations, I found that both SnowModel and Alpine3D respectively 

underestimates snow density by 3% and 24%. This underestimation might arise from 

underestimation of wind speed (Sturm et al., 2010; Liston and Hiemstra, 2011) by MicroMet 

in SnowModel and inappropriate parameterization of density calculation in Alpine3D for this 

region. These results reveal that winter mass balance for glaciers in complex terrain can be 

adequately simulated with a physically-based model such as SnowModel; higher order-models 

that require large computational demands may not be required to simulate winter mass balance 

over large alpine glaciers. The degree to which these models correctly simulate snowmelt over 

the glaciers remains uncertain, however.  

In terms of study limitations, Alpine3D is computationally more intensive (~ 13-fold more 

time) than SnowModel. Therefore, using Alpine3D in event-based simulations might be a 

better choice than using it in long-term simulations, especially for large areas. In addition, 

SnowModel and Alpine3D utilize different interpolation methods to prepare data for snow 

modelling. Employing the same preprocessor for preparing data to force the snow evolution 

modules makes a better comparison between the models, since the input data have a major 
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influence on simulated snow properties. Since NLDAS data are too coarse to use directly for 

small glaciers, I recommend making it more site-specific by downscaling in a few steps rather 

than using its nearest point to the study area. This chapter neglected snow transported by wind, 

considering wind effects on winter mass balance might lead to a better comparison between 

the results of the two snow models.  

 

Chapter 3 described the effects of wind-topography interactions on snow distribution 

using WRF and NLDAS meteorological forcing data to answer the third research question (e.g. 

investigating the effect of wind on glacier winter mass balance in terms of snow erosion, 

deposition and sublimation). I found that the wind redistribution did not make much difference 

with the NLDAS data. Comparisons of simulated wind fields to observations showed that 

MicroMet underestimates wind velocity, this may affect the snow amount results.  SnowModel 

is able to reproduce the erosion on the ridges and deposition on the lee sides of steep terrain. 

The results indicate negative net transported snow by wind averaged over all glaciers. The 

model results reveal that strong drifting snow sublimation occurs on the windward slopes likely 

due to the presence of snow and exposure to the westerly winds. The highest rate of drifting 

snow sublimation occurs where drifting snow is associated with a higher wind speed, a warmer 

temperature, and lower humidity conditions (Pomeroy and Jones, 1996; Liston and Sturm, 

2004). Although my results show a minor amount of snow loss due to drifting snow 

sublimation over the accumulation period (2% of SWE averaged over all domains), snow loss 

can be considerably higher at the smaller scales summed over the accumulation period 

(reaching up to 500 mm (~100 %) SWE). It is expected that actual sublimation rates would be 

higher since MicroMet was found to underestimate wind speeds. However, neglecting the 
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thermodynamic feedback within SnowModel could compensate a part of that trend. In terms 

of wind impacts on winter mass balance, the analysis showed marginal improvement (2%) 

when averaged for all glaciers with a range of -2.3% to +5.9%.  Generally, this study suggests 

that considering wind effects on the glacier-wide average winter mass balance estimation is 

not necessary over this study area for large glaciers, given the higher computational demand 

for simulating such processes in SnowModel. However, blowing snow is a required process to 

accurately simulate the heterogeneity of winter snow cover in windy environments, especially 

for small glaciers.  

I also encountered limitations in this chapter due to the scarcity of suitable wind 

observations at higher altitudes proximal to each glacier for evaluating simulated wind data. 

The large number of outliers and significant data gaps made selection of wind data during the 

winter periods challenging. In addition, MicroMet tends to underestimate the wind speed. 

Modifying the wind parameterizations in MicroMet may increase the effects of wind 

redistribution at small scales. Overall, modelling of wind fields with higher accuracy that 

captures local winds (Vionnet et al., 2020), higher resolution meteorological fields, particularly 

precipitation (Vionnet et al., 2019), and a higher resolution of simulation that may influence 

snow transport can lead to a more detailed snow pattern and a higher winter mass balance 

accuracy. 

 

Chapter 4 answered the fourth research question and described projected snow 

changes in the Columbia Mountains under greenhouse gas emission scenario RCP 8.5. I 

employed dynamically downscaled CESM1-WRF and statistically downscaled CESM1 

provided by PCIC to force SnowModel. The climatology of the snow distribution was 
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compared for three time periods (1979-1994; 2045-2059; 2085-2099). Snow changes differ 

with both latitude and altitude, which are closely related to temperature and precipitation 

patterns. Both statistically and dynamically downscaled datasets clearly show increased 

temperature by the end of the century with a slight precipitation increase that occurs 

particularly in the spring. The projections show snow depth and SWE decline through the 21st 

century with the largest changes in the beginning and end of the accumulation season with 10% 

more reduction using dynamically downscaled data. The highest projected basin average snow 

reduction is about 25% for the mid-century and slightly less than 40% towards the end of the 

century.  These projections show snow reduction of more than 65% at low elevations (< 2000 

m) as these elevation zones are vulnerable to temperature increases and higher rainfall rates.  

Snow depth at high elevations is projected to remain stable in the winter season. My results 

also demonstrate the least snow depth changes in winter under a warming climate, while the 

most snow depth changes happen during autumn and especially spring. While some locations 

are projected to have increased snow depth through the century. These areas are mostly located 

at higher altitudes using dynamically downscaled data and at higher latitudes using statistically 

downscaled data.  

A bias correction was necessary for the dynamically downscaled data. I used a seasonal 

average of differences between observed and downscaled data to make the bias correction. 

Using gridded observation-based dataset such as the climate data for Western North America 

(ClimateWNA) (Hamann et al., 2013), instead of the 10 stations, may help reduce uncertainty 

and provide a better representation of interannual variability of snow properties. For SD-forced 

simulations, there are only two available variables (temperature and precipitation) to force the 

snow models, while other needed variables are not available. Having statistically downscaled 
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data for wind and humidity may improve snowpack modelling. In addition, I did not evaluate 

forced and simulated short and long wave radiations due to the lack of observations. Errors or 

biases in radiation may affect the results, especially at the end of the accumulation season. 

 

5.2. Suggestions for future research 

I conclude with some recommendations for future work that will help address limitations and 

improve winter accumulation modelling: 

1) Conduct a long-term glacier mass balance simulation along with analysis of each 

component of the surface energy balance equation to determine the sensitivity of glaciers 

to climate change, including temperature and cloud coverage for the study area. The 

climate system is complex, and glaciers respond differently to climatic factors in different 

locations. To improve our understanding of glacier mass balance and its response to climate 

change, understanding mass balance sensitivity to subtle changes in the energy balance and 

accumulation regimes at high altitudes is necessary (Bonekamp et al., 2019).  

2) Apply a data assimilation process using sufficient quality and resolution of satellite-

derived products, that adjusts WRF outputs to better match observations, or use gridded 

observation-based dataset such as ClimateWNA for bias correction. Uncertainties 

associated with meteorological forcing are substantial. A cold bias in WRF is often found at 

high altitudes (e.g., Bonekamp et al., 2018) and would likely impact snowfall and glacier mass 

balance estimation. In addition, precipitation measurements at high altitudes are sparse and 

unable to capture spatial variability and the amount of orographic precipitation (Immerzeel et 

al., 2015).  
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3) Consider the preferential deposition process for winter accumulation simulations. 

Spatially variable fields of precipitation will increase snow heterogeneity (Lehning et al., 

2008). Preferential deposition is an important process in snow patterns (Mott et al., 2014; 

Vionnet et al., 2018; Gerber et al., 2019) in alpine terrain with steep features where snowfall 

occurs during strong wind events. This process reduces deposition of snow on windward 

slopes, while increasing snow deposition on leeward slopes, contributing to the final pattern of 

snow (Mott et al., 2018). However, the importance of preferential deposition on winter mass 

balance is unknown and needs to be studied.  

4) Take into account snow-avalanching, which may be a significant part of glacier mass 

input (Dadic et al., 2010), especially for small glaciers. Avalanches redistribute snow to low 

altitudes, affecting the estimate of mass balance.  

5) Use a more comprehensive method to simulate mechanical effects of terrain on 

windflow. Generating an adequately precise wind field is a key component for accurate 

blowing snow simulation (Mott et al., 2010; Musselman et al., 2015). Investigating application 

of methods upon the terrain-curvature wind models for blowing snow (e.g. Liston and Elder, 

2006) may improve simulating a detailed snow pattern. 

6) Employ a variable horizontal resolution grid (e.g. Marsh et al., 2020) instead of using 

a fixed resolution spatial discretization method (e.g. Liston and Sturm, 1998). This may lead 

to a more accurate outcome with less computational demand. To estimate wind redistribution 

and sublimation of snow at high resolution over large areas, efficient calculation of spatially 

distributed blowing snow fluxes is required.  
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7) Consider glacier dynamics in the simulations that would improve the results and 

enable a better comparison with LiDAR measurements of snow patterns. The movement 

of snow / ice from higher altitudes into the valleys will cause ice and snow to melt faster as the 

temperature in the low elevations is higher (Johnson and Ohara, 2018) and create higher 

thinning rates on glaciers (Dehecq et al., 2019). Therefore, a proper coupling between mass 

balance models and ice flow models (Wijngaard et al., 2019) might make a better estimation 

of glacier mass balance and final snow pattern. In addition, knowledge of glacier submergence 

at high elevations and emergence at low elevations would allow a direct comparison with 

LiDAR measurements at each point on the glacier. 

8) Develop statistical downscaling functions for other variables, especially humidity and 

wind, to make a reliable snow cover modelling in case of using statistically downscaled 

data. For the use of statistically downscaled data, there are only two available variables 

(temperature and precipitation) to force the snow models - other variables are needed too. 

Statistically downscaling wind and humidity would allow us to make snow projections using 

distributed snow models.  

 

5.3. Research implications 

The mountain cryosphere is a major source of fresh water in the mountains themselves and 

in downstream areas. The mountain runoff makes them an important source of freshwater to 

sustain the ecosystem and supports livelihoods both within and far outside the mountains 

(Hock et al., 2019). The Canadian portion of Columbia River Basin covers 15% of the total 

watershed but provides about 40% of the total annual streamflow. The presence of snow, 

glaciers and permafrost significantly influences the quantity, timing and biogeochemical 
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characteristics of runoff (Kohler et al., 2009). The Columbia River originates in British 

Columbia and flows into the Pacific Ocean in Oregon, USA. The river is 2000 km long and 

has over 40 major hydropower stations that generate most of the Pacific Northwest’s electricity 

(U.S. DIBR, 2016). Adequate and secure water supply is crucial for human health, economic 

strength and environmental and ecological protection in the Western North America while 

global climate change poses a major challenge for the sustainability of these resources. 

In brief, it is evident that decreases in glacier and snow cover in many of the snow-dominated 

or glacier-fed river basins have influenced and will continue to alter river runoff in amount and 

seasonality. The average winter runoff is projected to increase, and the maximum spring peak 

will occur earlier, with resulting decreases in runoff in Western North America no later than 

the end of the 21st century (Lee et al., 2016; Madani and Lund, 2010). The expected increases 

in runoff in the near future will affect downstream water management, related hazards and 

ecosystems (Hock et al., 2019). Increased runoff and sediment transport would increase the 

risk of overflow (non-productive discharge), especially during winter and spring melt, with the 

highest impact on run-of-river power plants (Minville et al., 2010; Warren and Lemmen, 2014). 

Snowpack declines also affect species, particularly those that depend on deep snowpacks. For 

instance, in British Columbia, the range of mountain caribou has decreased by 40% from 

historical distribution (Spalding, 2000). Mountain caribou have adapted behaviourally to deep 

snow conditions by seasonal altitudinal migration. In late winter, deep snowpacks provide a 

platform for caribou to access food (mainly arboreal lichen) at high elevation ranges. 

Decreasing snow cover in this region will intensify today's problems for resource managers in 

British Columbia (integrating the needs for caribou and forestry due to timber harvesting at 

lower elevations) (Wittmer, 2004). There are many other expected impacts on different sectors 
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such as fishing, tourism, agriculture, ecosystem management, hydropower generation, etc. 

Therefore, I believe that human society needs to prepare adaptation and mitigation steps for 

the full range of impacts of snow cover declines and glacier shrinkage in the affected regions. 
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Appendix   

1. Supplementary information of Chapter 2 

 

 

Figure S1.1. Scatter plots of daily mean temperature derived from WRF and NLDAS against observations for 
2013-2014 (top) and 2015-2016 (bottom) at four station locations. 
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Figure S1.2. Topography (km) and outline of the outer at 7 km and inner WRF domains at 1 km. 
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Figure S1.3. Simulated time series of daily SWE for the calibration period winter 2013-2014 (top) and snow depth 
for evaluation period for winter 2015-2016 (bottom) against observed data for four stations. 
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Figure S1.4. Comparison of simulated SWE [mm w.e.] by SnowModel averaged over the entire simulation 
domain at East-Creek station for winter 2013-2014. Light-blue line represents SWE forced by hourly data and 
dashed-black line shows simulated SWE forced by 6-hourly data. 

 

 

 

Figure S1.5. Comparison of simulated SWE (Left) and snow depth (Right) using a rain/snow threshold default 
value of 1.2˚C (Light blue) and user defined value of 2˚C (Dashed black) by Alpine3D at a point scale for 
accumulation period winter 2015-2016. 
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Figure S1.6. Spatial scale comparison of simulated SWE [m w.e.] by Alpine3D, averaged over the winter of 2015-
2016 at Kokanee Glacier using different thresholds of 1.2˚C (A) and 2˚C (B). (Same as Fig. S1.4, but at spatial 
scale) 

 

 

 

Figure S1.7. Spatial comparison of simulated snow density by SnowModel at Kokanee glacier using multilayer 
(A) and one-layer (B) methods and their absolute difference (multilayer – 1-layer) (C) for winter accumulation 
2015-2016. 
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Figure S1.8. Spatial comparison of simulated SWE [mm w. e.] by SnowModel with multilayer (A) and one-layer 
(B) averaged over accumulation period 2015-2016. Difference between both methods (A - B) is illustrated in (C). 

Figure S1.9. Time series of daily snow density [kg m-3] simulated by SnowModel (SM) and Alpine3D (ALP) 
for winter 2015-2016. 

 

 



129

Table S1.1. The main differences between snow evolution modules of two snow models, Alpine3D and 
SnowModel 

SNOWPACK  

(Alpine3D’s snow evolution core) 

SnowPack  

(SnowModel’s snow evolution core) 

Soil/Snow/Canopy column – Neglects lateral transfers Snow/Canopy column – Neglects lateral transfers 

The snow is modelled as three phases (ice/liquid water/water 
vapour). It can also simulate layers such as ice lenses permafrost, 
ponding etc. 

Number of layers is arbitrary and can simulate very thin layers 

like ice crust and hoar. 

SnowPack is a simple one-layer model; however, it 
is possible for users to define multiple layers for 
snow evolution. 

State variables include temperature, liquid water content and 

density that must be known for each layer. 

From mentioned variables, four microstructure parameters are 

derived: grain size, bond radius, sphericity and dendricity. 

Equilibrium growth metamorphism and kinetic metamorphism 
will drive the temporal evolution of these parameters according to 

various models. 

SnowPack defines changes in the snowpack in 
response to the melt fluxes and precipitation input 
given by MicroMet. 

Thermal conductivity and viscosity are computed by 
microstructure parameters. Furthermore, it includes pressure 
sintering strain amplification on the necks and its feedback on 

metamorphism as well as linear and non-linear viscosity ranges. 

Compaction-based snow density evolutionclosely 
follows that of Anderson (1976) where density 
changes with time in response to snow temperature 
and weight of overlying snow. snow melting alters 
snow density by decreasing snow depth and 
redistributing meltwater through the snowpack until 

a maximum snow density is reached 

These parameters allow computing mass and energy conservation 
and settling. Energy balance includes solar radiation, 
sublimation/deposition of water vapour, melting refreezing and 

heat conduction. 

The heat transfer, vapour diffusion, water transport, and phase 
changing processes was formulated 

It takes into account refreezing; however, it does 
not consider melting from internal ice deformation, 
changes in drainage system, geothermal effects, and 
sub-glacial friction melting. Non-blowing snow 
sublimation is calculated in EnBal and used to 

adjust snowpack depth 

SNOWPACK has also a detailed description of the interaction 
with the atmospheric boundary layer 

is a one-way model without considering from the 
surface back to the atmosphere 
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Table S1.2. The percent bias and NSE of daily SWE for SnowModel performance using different lapse rates. User 
lapse rate derived from PRISM data and default lapse rates within the model. 
 

  Function East Creek Glacier-NMF Redfish-Creek  Azure-Rive 

Default P&T_LR* NSE 0.95 0.96 0.30 0.93 
 % Bias 11.2 8.2 33.6 13.4 

      

User T_LR NSE 0.96 0.97 0.04 0.93 

Default P_LR % Bias 10.3 8.6 40.5 12.0 

      

User P_LR NSE 0.92 0.93 0.35 0.93 

Default T_LR % Bias 14.6 14.4 32.0 12.6 

      

User T&P_LR NSE 0.93 0.93 0.10 0.95 

 % Bias 14.4 14.1 38.8 11.0 

*T_LR: Temperature lapse-rate, P_LR: Precipitation lapse-rate 
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Table S1.3. Statistics of simulated hourly SWE with respect to the observations at four station locations for the 
accumulation period from 1 October to 30 April 2015-2016.  
 

SWE [m.w.e] Winter (2015-2016) 

Station ID Function WRFOUT SM1_WRF3 SM_NLDAS4  ALP2_WRF ALP_NLDAS 
  PCC 0.99 0.98 0.98 0.98 0.98 
  D 0.99 0.98 0.98 0.99 0.98 
East-creek NSE 0.97 0.93 0.92 0.95 0.94 
 APB 6.24 11.57 8.6 6.57 11.61 
  Bias -0.002 -0.06 0.05 0.02 -0.05 
  MAE 0.04 0.07 0.05 0.04 0.07 
  RMSE 0.05 0.08 0.09 0.07 0.08 
  PCC  0.97 0.96 0.90 0.98 0.83 
  D 0.99 0.97 0.95 0.98 0.80 
Azure-river NSE 0.94 0.86 0.8 0.92 0.30 
 APB 8.84 12.02 12.2 13.47 33.7 
  Bias -0.01 0.05 0.04 -0.06 -0.22 
  MAE 0.06 0.08 0.08 0.09 0.22 

  RMSE 0.09 0.13 0.16 0.10 0.30 

  PCC 0.97 0.96 0.90 0.98 0.83 
  D 0.97 0.97 0.95 0.98 0.80 
Redfish-creek NSE 0.94 0.86 0.79 0.92 0.30 
 APB 8.84 12.02 12.20 13.47 33.7 
  Bias -0.01 0.05 0.04 -0.06 -0.22 
  MAE 0.06 0.08 0.08 0.09 0.22 
  RMSE 0.09 0.13 0.16 0.10 0.30 
  PCC 0.99 0.99 0.99 0.99 0.99 
  D 0.95 0.98 0.99 0.98 0.97 
Glacier-NMF NSE 0.76 0.93 0.98 0.93 0.92 
 APB 24.0 15.6 7.20 14.4 14.7 
  Bias 0.11 0.10 -0.02 -0.07 -0.07 
  MAE 0.12 0.10 0.05 0.09 0.09 
  RMSE 0.15 0.11 0.06 0.11 0.12 

1SM: SnowModel; 2ALP: Alpine3D; 3_WRF: WRF forcing; 4_NLDAS: NLDAS forcing 

 

Table S1.4. Comparison of simulated density and SWE by SnowModel, averaged over Kokanee Glacier during 
winter accumulation 2015-2016 using one-layer and multilayer (6 layers) methods.    

  
  

Density [kg m-3] SWE [m w.e.] 

ON OFF ON OFF 

Multilayer 434.7 457.8 1.4 1.3 

One-layer 426.4 445.1 1.4 1.3 

Diff 8.3 12.6 0 0 
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2. Supplementary information of Chapter 3 

 

Figure S2.1. Flowchart of model simulations with considering wind effects and without wind. 
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Table S2.1. Statistics of daily SWE (m.w.e) forced by WRF, with and without wind, against snow pillow 
observations for the accumulation period from 1 October to 30 April 2013-2014. 
 

SWE 
[m.w. e] Function/Station ID 

East Creek 
2D08P 

Glacier 
NP MT 

Redfish Creek 
2D14P 

Azure River 
1E08P 

WRF_forced Correlation 0.98 0.99 0.90 0.96 

with wind Index of agreement 0.99 0.99 0.94 0.98 

  Nash-Sutcliffe 0.96 0.98 0.78 0.92 

  Absolute percent bias 10.63 7.06 18.66 14.66 

  Bias -0.02 0.00 0.09 0.00 

  Mean absolute error 0.06 0.04 0.15 0.07 

  Root mean square error 0.07 0.05 0.22 0.09 

WRF_forced Correlation 0.98 0.99 0.89 0.96 

without wind Index of agreement 0.99 0.99 0.92 0.98 

  Nash-Sutcliffe 0.96 0.98 0.76 0.92 
  Absolute percent bias 10.67 7.73 24.48 14.26 

  Bias -0.02 -0.01 -0.03 0.00 

  Mean absolute error 0.06 0.05 0.19 0.07 

  Root mean square error 0.07 0.06 0.23 0.09 
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3. Supplementary information of Chapter 4 

Figure S3.1. Daily mean temperature of statistically downscaled (SD) and dynamical downscaled (DD) data from 
GESM1 for three 15-year periods (historical, mid-century and end of century) averaged over the Columbia Basin 
based on RCP 8.5. at resolution of 500 m. 

 

Figure S3.2. Averaged snow depth time series over 10 stations compared with the DD-forced snow depth (mean 
of 4 ensembles) for the historical period 1979-1995. 
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Figure S3.3. Projected snow depth change (%) averaged over the year using statistically downscaled (SD) and 
dynamical downscaled (DD) data from CESM1 for mid-century (a) and end of century (b) over the Columbia 
Basin. 
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Figure S3.4. Simulated incoming short wave (SW) (Right) and long wave (LW) (Left) radiations by SnowModel 
forced by SD and DD datasets for period 1979-1994. The boxes extend from the 25th percentile to the 75th 
percentile. The whiskers extend to the monthly highest and lowest values for each dataset. The sign (×) shows the 
medians, and dots represent the outliers. 
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