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Abstract 
 

Quantum computing is a rapidly advancing field of computer science that is increasingly 

becoming more practical. With these devices becoming more realistic, frameworks are 

needed by which the hardware resources, both quantum and classical, of quantum computers 

can be utilized more efficiently. This research aims to fill gaps in the research examining the 

effectiveness of hardware scheduling on the current generation of quantum computers. A 

hardware scheduling strategy is implemented using the A* search algorithm for routing 

qubits to conform with hardware limitations, and this algorithm is tested against a wide 

variety of quantum programs and devices. The effectiveness of the scheduler is determined 

through analysis of metrics obtained from the scheduling process. This particular scheduler 

proved to be effective for most of the tested algorithms and efficient for some, making it 

useful for general purposes, though some potential sources of improvement could increase 

the number of algorithms it is efficient for.  
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Chapter 1: Introduction 

 Quantum computing is a rapidly evolving branch of computer science, mathematics, 

and physics. In order for quantum computers to be practical, several hurdles need to be 

overcome. One of these hurdles is the development of a portable quantum compiler that can 

take human friendly quantum algorithms and compile them to a wide variety of existing or 

near-future quantum computing hardware. Portable compilers require methods to convert 

from the abstracted computing model used by the programmers to the specifics of a given 

hardware configuration. Hardware scheduling, which rearranges instructions to exploit the 

parallelism of the hardware, is one of these methods. This thesis involves research into the 

development of hardware scheduling strategies in order to create effective quantum 

compilers.  

1.1 Context 

 Before addressing the purpose of this research, one should briefly understand the 

basics of quantum computing and how it is both similar to and different from that of classical 

computing. This background context is important for understanding some of the terminology 

and uses of concepts that are addressed throughout this research. Quantum mechanics is a 

theoretical framework, dating back to 1926, that describes how particles behave and interact 

at microscopic levels [1]. It involves strange phenomena with properties that are not easy to 

understand [2]. Quantum computing is a new computing paradigm that exploits the strange 

behaviours of small physical systems that are governed by the laws of quantum mechanics 

[2]. Because it involves performing computations on quantum computers instead of the 

traditional classical computers that are so widely used today, there is the potential to develop 

much faster algorithms than any classical counterpart. For this reason, many companies have 
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been investing heavily towards the development of these machines, including Microsoft, 

IBM, and D-Wave Systems. 

 Unlike classical computers, quantum computers operate on quantum bits rather than 

classical bits. These are more colloquially referred to as ‘qubits.’ While classical bits are an 

abstraction for electrons flowing through a wire (1 if electricity is flowing, 0 otherwise), 

quantum bits are abstractions of any physical two state system [3]. Common examples of two 

state systems that are used when discussing quantum computers are photon polarity (where 

the two states are represented as horizontal or vertical polarization) and electron spin (where 

the two states are spin up and spin down). At any given instance, a qubit can be in a 

superposition of either of its two states. This means that quantum bits have some probability 

of being 0 and some probability of being 1, with the probabilities summing to 1, which is 

representative of 100% probability. It is this idea of linear superposition that makes some 

quantum algorithms more efficient than currently known classical counterparts because 

computations can be performed in a way where it appears as if each of the possible inputs to 

a computation are evaluated at exactly the same time.  

 Single qubits are not very useful for any real quantum computation. For practical 

computational usage, many more qubits are needed. Similar to how collections of bits are 

called registers in a classical processor, collections of qubits in a quantum computer are 

called quantum registers. Each qubit exists as a linear superposition of two possible states 

and, as such, can be represented as a vector in two-dimensional space. Because of this 

representation, the combination of multiple qubits can be represented by a vector in a space 

that is the Kronecker tensor product1 of all the qubits’ vector spaces [3]. Current generation 

                                                           
1 The Kronecker tensor product is a generalization of the outer product from linear algebra that results 
in a block matrix. 
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quantum computers, like those offered through the IBM Quantum Experience, have fewer 

than 100 qubits. This is still not enough qubits for many practical computations [4].  

 As with classical computers, quantum computers need to have operations applied to 

them to be able to perform work. Basic operations used in quantum computations must be 

“reversible” [5]. In order to be reversible, one must be able to uniquely identify the inputs of 

each operation given only the outputs. These reversible operations, which are referred to as 

quantum gates, are usually represented by unitary matrices on an n-dimensional Hilbert 

space2 whose size is compatible with the size of the vector for all qubits in the system [3]. By 

the nature of being unitary, each operation is its own inverse and is, therefore, reversible by 

definition. Quantum algorithms are created by applying many quantum gates to a qubit in 

sequence, in order to manipulate the probabilities of each outcome so that it favours certain 

values. In the quantum computational model, once a computation is completed, a method 

must be employed to translate and relay the quantum information to either a human or 

classical machine for review or further usage. This process is performed by collapsing the 

possible states to one distinct value so that it can then be used outside of the quantum device. 

The method of obtaining classical data from a quantum computational device is known as 

“measurement,” and it is an irreversible operation that selects a particular state 

probabilistically from each of the possible outcomes [6].  

 Similar to classical algorithms, quantum algorithms are sequences of instructions that 

work together to accomplish a particular task. However, there are some major differences 

between quantum algorithms and classical ones in terms of input, instructions, and output. In 

terms of input, classical algorithms assume that the input is given to the algorithm in a logical 
                                                           
2 An n-dimensional Hilbert space is a generalized notion of Euclidean geometric space with ‘n-’ 
dimensions where ‘n’ is a positive integer. 
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form [7]. For instance, a factoring algorithm could assume that its input is a number which it 

will factor. For quantum algorithms, the input is a little more complicated. First, all quantum 

algorithms begin in a specific state within the state space created by the qubits used. This 

state is usually referred to as the ‘0’ state, as all qubits are said to be 0. Input is then encoded 

onto the state of the qubits using a sequence of unitary gates. This encoding differs for each 

input. As a result, one could say that input is not being passed to an algorithm as it would 

classically; instead, the algorithm is actually changing for each different input [7].  

In terms of instructions, quantum algorithms are composed of quantum gates and 

measurements as described previously, which can direct the computer to perform specific 

tasks. Output is probably the place where quantum algorithms are most different from 

classical ones. For classical algorithms, the output is always definite. Even if parts of the 

algorithm are “random”, each random input determines a single computational path. In 

quantum algorithms, the result of a computation is more equivalent to a slot machine [7]. 

There is some probability of getting each different possible outcome (winning nothing, 

winning a small amount, or winning the jackpot, for instance). Hopefully the instructions in 

the algorithm are designed in such a way as to “hedge one’s bets” to have a higher chance of 

producing the desired output (ie. the jackpot). To obtain output from a quantum algorithm, 

one measures the qubits involved, which collapse to definite states based on their individual 

probabilities, and the values of each qubit are returned. This is much more akin to sampling a 

probability distribution than simply retrieving an output value. Quantum compiler software 

would use and manipulate these quantum algorithms to produce executable programs for 

specific quantum hardware. 
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 At the present time, quantum computing is relegated mainly to the realm of theory, 

mathematics, and simulation. This is because there are currently few physical quantum 

computational devices. The devices that do exist are not yet powerful enough for anything 

but the simplest of computations, since more practical algorithms require more qubits than 

are currently available [4]. When quantum computers were originally envisioned, they were 

independent machines completely separate from classical computers that would be used to 

simulate quantum mechanical phenomena. However, in recent years, this concept has shifted 

due, in part, to the research that has gone into this field noting that a fully universal quantum 

computing machine is not something that can be realized in the near-future. In the new 

quantum computing model, the quantum computing device is considered as a hybrid machine 

that will act as a coprocessor or add-on hardware component controlled by a classical 

machine. In a similar way to graphical processing units (GPU), the quantum device will be 

asked by a classical processor to invoke specific actions or run quantum sub-programs [1, 5, 

8, 9, 10]. Before quantum computers can become a viable tool for use outside of laboratory 

experimentation, many issues need to be resolved, ranging from hardware issues to the 

software toolchain used by perspective quantum software developers.  

 At the present time, there is no standard quantum computing hardware and due to the 

challenges facing quantum computing hardware, there is unlikely to be any standardization 

for a while. Each of the current publicly accessible quantum computers has its own 

programming frameworks and compilers, and no portable solution exists for easily porting 

software from one machine to another.  
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1.2 Motivation 

Research into many aspects of quantum computing is ongoing and rapidly evolving. 

Much of the body of research in this field focuses on the design of quantum programming 

languages, assembly, and hardware specifics. As noted in the previous section, near-future 

quantum computers will most likely not have any hardware standardization and these 

machines will be limited in computing power due to the very limited numbers of qubits and 

low degrees of connectivity between each qubit.  

To date, many quantum compilers exploit existing classical compiler frameworks, 

such as ScaffCC, which uses the LLVM3 framework. It is assumed that optimizations that 

work for classical programs should work just as well for quantum programs. While this may 

be true for the most part, some studies have shown that certain types of optimizations do not 

work as well in a quantum or functional context and other types perform even better [11, 12]. 

This means that more research is needed in analyzing optimization strategies within the 

context of quantum computing. One type of optimization is hardware constrained resource 

instruction schedulers. These particular optimizations would not rely on underlying hardware 

specific implementations but rather on abstract machines and would take into account the 

qubits and connectivity in order to maximize resource usage. By creating good optimizations 

for quantum computers, the limited computing power can be maximized by creating well 

optimized programs that are capable of running on devices of differing underlying hardware 

implementations. This area of research has only recently become more prevalent as quantum 

computers are becoming less theoretical and more practical.  

                                                           
3 LLVM originally stood for (Low-Level Virtual Machine) but now is just the name of the compiler 
framework, as the original acronym is no longer totally representative of the project’s scope. 



7 
 

1.3 Research Question 

This research aims to examine a hardware scheduling algorithm in the context of 

quantum computing and determine its effectiveness. Specifically, the question this research 

addresses is whether utilizing the A* algorithm for hardware routing using the gate model of 

quantum computing is effective for near-future quantum computers. To determine this, the 

effect of a hardware scheduling strategy is examined against various quantum algorithms 

when scheduled for several current generation quantum computing hardware. To the author’s 

knowledge, no other publicly available research has examined the effectiveness of a 

particular hardware scheduling algorithm across a wide variety of quantum algorithms and 

hardware. 

1.4 Methodology 

To address the research question, several steps are taken. First, a simple quantum 

compiler is developed to compile OpenQASM assembly to executable code within a 

quantum computer simulator or the IBM Quantum Experience. This compiler is designed to 

be modular so that a hardware scheduling algorithm can be utilized or swapped out if 

necessary. The second step involves the development of a hardware scheduling algorithm 

which can be tested. In this research, the hardware scheduling algorithm is inspired by the 

works of Gian Guerreschi and Jongsoo Park [13]. This hardware scheduling algorithm takes 

Guerreschi and Park’s [2017] broad steps but uses my own interpretation of the effects of 

those steps. A key difference from their work is that this research uses  the A* search 

algorithm  to support arbitrary qubit connectivity rather than only the five-qubit linear 

arrangement used by Guerreschi and Park. The research involves developing an experiment 

in which various quantum algorithms are scheduled, with multiple trials, for several different 



8 
 

real-world hardware configurations using the previously developed algorithm. The hardware 

configurations range from a single qubit to 5-qubit configurations with differing constraints, 

and to a 32-qubit device with no additional constraints. For each of the trials, data is recorded 

for various metrics and stored in tabular form. These metrics are analyzed to determine if the 

hardware scheduling for a given algorithm on a given hardware is effective or not.  

1.5 Contributions  

This research contributes to the discourse on hardware scheduling and quantum 

computing focused compiler optimizations. Currently, research on the effectiveness of 

compiler optimizations within the context of quantum computing is sparse, particularly 

research on near-future quantum computing. The existing research focuses primarily on 

mathematical analyses of optimization strategies or applies one type of optimization 

technique to only one specific hardware configuration or quantum algorithm.  

This research contributes to this field of research by offering another approach to 

hardware scheduling compiler optimization for quantum algorithms. The hardware 

scheduling algorithm implemented in this research combines readability and clarity of 

implementation with the routing capabilities granted by the A* search algorithm. This allows 

the hardware scheduler to support numerous devices with arbitrary qubit connectivity 

configurations. This approach to hardware scheduling is then examined across a wide variety 

of quantum algorithms and hardware configurations. The benefit is that the overall 

effectiveness of the hardware scheduling strategy can be determined rather than its specific 

effectiveness under certain circumstances. This research could be a foundation for further 

research into quantum algorithm design that would allow for larger and more complex 
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programs to be realized on near-future quantum computers, even considering the limited 

resources they will possess.  

Additionally, there are few comprehensive literature reviews surrounding the topic of 

quantum computing. This research found only one literature review that covered a wide 

range of quantum computing concepts. The literature review provided in this thesis is 

intended to provide an up-to-date comprehensive review of many different aspects of 

quantum computing from hardware to software, including optimization strategies.  

1.6 Outline 

 The thesis is organized into six chapters. Chapter 2 provides a review of existing 

literature covering topics from classical computing and their analogues in the context of 

quantum computing. These topics include “Hardware,” “Instruction Set Architectures,” 

“Assembly Languages,” and “Compilers.” The “Hardware” section provides a brief overview 

of how quantum computing works, some of the core concepts of quantum computing, and the 

current limitations of the quantum computing hardware. “Instruction Set Architectures” 

discusses what an instruction set architecture is and what research has been going on towards 

the development of instruction set architectures for quantum computers. Issues that have 

occurred with designing instruction set architectures for quantum computers are also 

addressed in this section. “Assembly Languages” covers the research on quantum assembly 

languages which are used by programmers to interface with the quantum hardware. This 

section covers the researcher’s thoughts on what is required to make an effective quantum 

assembly language, as well as the advantages and disadvantages of various currently existing 

quantum assembly languages. The last section of the literature review focuses on compilers. 

Specifically, this section discusses how compilers turn programmer friendly high-level 
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languages into executable assembly or machine code. This includes the basic steps that are 

required, as well as many of the auxiliary compiler tasks that a compiler needs to be 

considered a good compiler. These auxiliary tasks mainly take the form of optimization 

strategies, as these are extremely important for producing highest quality programs. Lastly, 

the “Compiler” section compares several existing quantum compilers.  

 Chapter 3 of this thesis covers the methodology behind the experimentation 

performed in this research. This includes the equipment used in the experiment, the process 

used to create the quantum computing framework and compiler used in this research, the 

implementation of the scheduling algorithm being tested, how the experimentation process 

actually works, what kind of data is collected, how the scheduler is validated, how the 

compiler is run, what each of the experimental trials are, how the data from the trials is 

analyzed, and lastly, how the experiment ensures it is rigorous, reliable, and valid.  

 Chapter 4 covers the key findings from the experimental work, as well as the analysis 

of the data. The first section of this chapter discusses the compatibility of each of the 

quantum algorithms being tested with each of the hardware being compiled for. Subsequent 

sections cover findings and analysis for each of the key metrics gathered from the 

experimental data. These metrics include qubit count, instruction count, estimated run time 

before scheduling, estimated run time after scheduling, change in the number of instruction 

stages, the number of added SWAP gates as a result of hardware routing, and lastly, the 

amount of time it took to schedule the algorithm. The final section of this chapter discusses 

the effectiveness of the tested hardware scheduling algorithm, which is derived from 

analyzing each of the key metrics.  
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 Chapter 5 provides a discussion of key findings and analysis from Chapter 4 within 

the context of the literature from Chapter 2. It highlights the advantages and disadvantages of 

the tested hardware scheduling algorithm including its clarity, performance, and limitations. 

Finally, Chapter 6 provides a summary of key findings, as well as concluding thoughts and 

avenues for future research. 

 

  



12 
 

Chapter 2: Literature Survey 

2.1 Introduction 

The literature supporting this proposal comes from several research areas and was 

formatively developed through a literature survey report for CPSC 706: Topics in Computer 

Science Research and Methodology. Since this research involves the construction of a 

quantum assembly language compiler, literature in the areas of quantum computer hardware, 

quantum computer instruction set architectures, quantum assembly languages, and quantum 

compilers is included. The area of quantum compilers includes the many components 

involved with the compilation process, including optimization strategies such as hardware 

scheduling. The hardware scheduling section is particularly relevant to this research.  

The literature that informs this review was identified through multiple sources. First, 

several science journal databases were identified through the University of Northern British 

Columbia’s Computer Science databases, including Access Science, ACM portal: the ACM 

digital library, IEEE Xplore, and Science Direct. These were searched using the terms, 

“quantum” as well as “programming,” “compiling,” and “algorithm verification.”  This 

brought up a limited number of relevant publications, many of which were outdated. To 

supplement the search, the websites for IBM,4 Microsoft,5 and D-Wave Systems6 were 

consulted, as these companies are doing substantial research in the field of quantum 

computing and provide free online access to research undertaken by their own researchers 

and affiliated research partners. The search for relevant literature from these websites was 

limited to items published from 2010 onwards so as to acquire the most recent research on 

                                                           
4  https://quantumexperience.ng.bluemix.net/qx/community?channel=papers&category=ibm 
5  https://www.microsoft.com/en-us/research/lab/quantum/#!publications 
6  https://www.dwavesys.com/resources/publications 
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this topic. Since the majority of articles obtained from these sites linked back to papers 

located at arXiv.org,7 the next stage of the literature search was directed to articles found 

specifically on the arXiv database, using the search terms “quantum” and “programming.”   

After reviewing approximately 40 articles, the search for relevant articles focused 

primarily on filling specific knowledge gaps that were identified in previous articles. 

Additionally, some literature was identified on classical compilers through the same 

databases used for the quantum mechanical research. However, there do not appear to be 

many recent publications on concepts surrounding classical compilers, with the exception of 

a few textbooks from which the relevant areas were included in this review.  

2.2 Quantum Computing Hardware 

While some quantum computing/processing devices exist and are even available for 

public use, at the moment, these quantum devices do not yet satisfy the definition of a 

general purpose computing device [5]. This is because practical quantum computing devices 

require potentially tens of thousands of physical qubits in order to be of any use in solving 

anything but simple problems [4]. The hardware used in quantum computing technologies is 

also much larger than the transistors that make up the basic components of modern classical 

computing devices [10]. Given this situation, the current state of quantum computing can be 

compared to that of classical computers in the 1950s, where the devices are large and not yet 

functional enough for practical uses [11].  

At the most basic level, quantum computing hardware requires a device that is 

capable of performing all the actions described by the quantum computational model. It must 

                                                           
7 arXiv.org is an online archive of research articles administered by Cornell University Library. The 
database provides a free open access e-print repository of scientific research topics, including 
computer science; however, articles must be approved for publication after moderation. 
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be able to prepare physical quantum systems using superposition and entanglement of 

individual qubits, as well as store, process, and manipulate registers of many physical qubits 

[8]. Additionally, since these quantum processing devices will act as coprocessors to classical 

computational devices, they must also be able to exchange messages between themselves and 

a host classical processing unit. This coprocessor model is often described as being similar to 

the modern graphical processing unit where the quantum computer would be able to execute 

entire sub-programs independently [9]. Other versions of this model rely on a classical 

processor to control what gates are applied at the right times. The challenge with designing 

quantum processing hardware that meets all of these requirements is that current methods 

used for quantum processing devices are difficult to make large and accurate enough [10].  

Research is currently going into developing new methods for creating and 

manipulating qubits in order to overcome these difficulties. One area of research interest is 

on how qubits themselves can be physically implemented. There are many different research 

pathways being explored to create physical qubits; for example, some researchers are looking 

at the use of superconductors, trapped-ions, solid state spin, nuclear spin, non-linear 

photonics, and neutral atoms [14]. Each of the current methods for physically realising qubits 

results in inherently fragile qubits that are subject to being disturbed or changed by external 

influences. Better techniques are needed to guard or protect these qubits from external 

environmental influences [10, 11, 15].  

These phenomena, where qubits are disturbed by external forces, lead to an effect 

called quantum decoherence; that is, the loss of computational information from the qubits as 

they become changed and influenced by their environment [16]. The time it takes for a qubit 

to suffer from too much decoherence is referred to as its decoherence time. Dealing with the 
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decoherence of qubits is a task that quantum compilers may need to perform in order to 

minimize the accumulation of computational errors. In current machines, qubits typically 

remain coherent for times that are in the order of 100 microseconds [14].  

Current quantum computers experience a non-trivial amount of noise relative to the 

underlying decoherence rates and this noise severely limits the depth of quantum programs 

[17]. In many qubit implementations, this external noise is dampened somewhat by keeping 

the quantum computing devices at cryogenic temperatures [8]. While this method of 

dampening noise works for devices in the lab, it is not feasible for public computational 

devices.  

Error is also introduced into the qubits whenever quantum operations (gates) are 

applied to them. According to Gambetta et al. [2017], this is because the physical realization 

of any quantum gate is not perfect and, therefore, not completely equal to the mathematical 

definition of the gate [14]. They determined the time it takes to execute a quantum gate, 

based on experiments, is in the range of 10 to 100 nanoseconds. Given the current 

decoherence times of qubits, it is possible to perform several thousand quantum gates before 

a qubit completely decoheres. Errors can also arise when preparing quantum states or during 

the measurement process, and as noted by McCaskey and colleagues [2018], these sources of 

error are currently major causes of performance loss [17]. Given this information, several 

important hardware challenges to quantum computing devices require further research and 

development, including finding ways to increase the coherence times of individual qubits, 

reducing errors from state preparation and measurement, and producing quantum gates that 

are fast and offer high-fidelity computations with optimal control routines. This research is of 

particular importance for quantum gates that require two or more input qubits, as these 
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quantum gates are often more difficult to accurately control and apply than single qubit gates 

and, as such, have the potential for more sources of error [14]. An example of these errors 

can be observed with IBM’s quantum computer, using IBM’s Q-Experience, which has been 

shown to suffer from a high degree of error for anything but the simplest of 

computations [15].  

 Van Meter and Horsman [2013] indicate that the application of quantum gates is 

imperfect and that methods need to be identified to minimize the negative effects of these 

gates [10]. They point to the use of quantum error correction codes as one such method that 

can be used to minimize error buildup from these imperfect quantum gates. Quantum error 

correction codes are a series of techniques that allow for calculations to be performed in a 

more error resistant way. However, error correction codes often require the application of 

many quantum gates and use of multiple qubits rather than just a single gate and single qubit. 

In many quantum error correction algorithms, qubits are often organized into groups of more 

than one qubit. These groups are often used to represent a single error resistant “logical” 

qubit from a higher-level of abstraction [10]. Since these error correction codes do add some 

computational overhead in terms of the number of gates and physical qubits used, new 

quantum error correction codes that have less of an impact need to be developed [18]. Due to 

the number of additional qubits that are used in quantum error correction codes, current 

codes are beyond the ability of the existing quantum computing hardware [17]. It should be 

noted that error correction codes would most likely not be directly used by programmers, but 

instead be applied by a compiler to efficiently map the physical qubits to logical qubits that 

programmers would use [11]. In this way, the programmer would not have to deal with 

adding error correction codes that would result in less readable code.  
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Aside from the fragility of the individual qubits themselves, considerable research is 

also going into determining ways in which quantum computers can be scaled up to contain 

even more qubits, by companies like D-Wave, IBM, and Google. Having a large number of 

qubits is a requirement for many quantum algorithms, but current generation machines 

contain few physical qubits. For an ever-increasing number of qubits, the size of the device 

substrate would need to be increased [14]. While this can be minimized through a creative 

design, this issue will need to be addressed in order to support the number of qubits that are 

needed to perform the types of calculations currently being envisioned by algorithm 

designers.  

Another issue that needs to be addressed with respect to device scalability is the 

degree of connectivity between qubits [8]. Only neighbouring or connected qubits can be 

used in multi-qubit operations. However, in the majority of devices, not all qubits will be 

connected together due to hardware fabrication constraints. This makes the inter-qubit 

connectivity a limiting factor in terms of scalability [8].  

Besides general issues that need to be overcome like those discussed earlier, each 

type of quantum computer implementation has its own specific issues that need to be 

addressed in order to create scalable devices. In quantum computers based on Ion-Trap 

technology, the spectral overlap of normal modes can also contribute to the difficulties in 

scaling up quantum computing devices [18]. In superconductor-based quantum computing 

devices, the number of wires required for biasing qubits affects the degree to which the 

devices can be up scaled [18].  
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2.3 Instruction Set Architectures 

The discussion will now move away from the physical quantum computing hardware 

to instruction set architectures and instruction sets for quantum computers. Instruction set 

architectures are descriptions of supported instruction sets and they provide the first layer of 

abstraction from the hardware. They describe the actions the hardware can perform without 

exposing the hardware specific implementation of each action. The instruction set 

architecture is the main concept that a compiler needs to be concerned with as it abstracts 

some, if not all, of the hardware away from the compiler, giving the compiler a much more 

stable compilation target that can be used on many different machines as long as they all 

implement the same instruction set architecture. In classical computing, there are two main 

categories of instruction set architectures. These categories are the “Classical Instruction Set 

Computer (CISC)” architecture and the “Reduced Instruction Set Computer (RISC)” 

architecture. The main difference between these two is that RISC describes instructions that 

use a fixed bit width and these architectures often contain fewer instructions than a CISC 

device [8]. Both of these architectures come with their own strengths and weaknesses. 

Determining which architecture is chosen for any particular device is primarily influenced by 

what the device will end up being used for.  

Britt and Humble [2017] discuss some of the strengths and weaknesses of both CISC 

and RISC architectures when applied to the context of quantum computers [8]. They argue 

that CISC-based architectures are a good fit for quantum computers from an efficiency 

standpoint because the non-standardized instruction widths are useful when the instructions 

exist as predefined functions implemented as hardware. They also suggest that RISC 

architectures have one feature that gives them an advantage when dealing with non-
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anticipated problem classes — the ability to utilize their standardized widths to execute more 

instructions quickly. Each of these classes of instruction set architectures has a potential 

advantage for use on quantum computers, but neither is completely satisfactory.  

One of the biggest issues with instruction set architectures is the addressable number 

of qubits [8]. One reason why this is an issue is that instructions for both RISC and CISC 

architectures typically consist of an opcode (instruction operation code) and an address as to 

where the data being operated on is stored. For quantum computers, each qubit is able to be 

individually addressed. Consider a two-qubit operation – the format of the instructions would 

be opcode followed by the first qubit’s address, then the second qubit’s address. If we 

consider a 64-bit classical computer controlling a quantum coprocessor, then the width of 

each instruction would be 64 bits. If there are only 16 possible opcodes in the architecture’s 

theoretical instruction set, and if the addresses of the two qubits are stored in equal numbers 

of bits in the instruction, then each address would range from 0 to approximately 1 billion 

(30 bits per address, 4 bits for opcode) [8]. While this number sounds like it would allow for 

a large number of qubits, due to their fragility and the use of error tolerant ‘logical’ qubits, 

this number becomes greatly reduced. The number is also small when compared to the 

number of bits in a classical computer, where one billion bits is actually less than a single 

gigabyte and the majority of computers nowadays have many gigabytes. When taking all of 

these factors into account, Britt and Humble [2017] determine that neither RISC nor CISC 

are perfectly suited for use by a quantum instruction set architecture, as neither fits neatly 

into the hybrid classical-quantum device model, though both types do have important 

features that would be of great benefit for a quantum processing device [8]. They suggest that 

further research into quantum instruction set architectures should focus less on which 



20 
 

category the architecture should fall into and more on developing a new architecture that 

addresses long-term issues such as the addressable number of qubits. As a result, no current 

instruction set architecture can be applied to the next generation of machines.  

2.4 Assembly Languages 

A concept that often goes in tandem with the instruction set architecture and its 

instruction set is that of assembly languages. Assembly languages are at the bottom of the 

software development tool chain but are one of its most important parts. This means that 

assembly level programming is the lowest level of programming that software developers 

will typically need to know. Assembly languages act as an interface between the instruction 

set of the hardware and the programmer, and are most often just text-based, human-readable, 

versions of the instructions provided by the architecture as well as its primitive types 

(integers, floats). This is true in both classical computers as well as quantum computers. 

Quantum assembly languages are similar to their classical counterparts in terms of their 

purpose; however, they use registers of qubits instead of bits [18]. What the exact form a 

quantum assembly language will take when practical quantum computing devices become 

prevalent is currently unknown due to the rapidly changing nature of quantum computer 

hardware. However, a standardized assembly language, as well as a set of software and 

compiler tools, needs to be developed for when quantum computers do become more 

commonplace [14]. Currently, researchers have found designing quantum assembly 

languages and instruction set architectures that support classical feedback and are scalable to 

large numbers of qubits to be difficult [20].  

One of the most popular forms of quantum assembly language today, developed in 

2005 by researchers from the Massachusetts Institute of Technology, is known as Quantum 
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Assembly (QASM) [21]. QASM was originally developed for drawing quantum circuit 

diagrams in LaTeX8 documents. However, modern QASM aims to provide a set of basic 

instructions for use with quantum algorithms that is both compact and expressive at 

describing quantum circuits [21]. Since its inception, researchers have been developing many 

different variations of QASM for different purposes. As many of these variations of QASM, 

as well as other quantum assembly languages, are based on the quantum circuit model, they 

tend to be hardware independent and are thus ideally suited for use as an intermediate 

language during compilation [22]. In these intermediate forms, algorithms can be represented 

by QASM in a way that is close to how they would appear in a quantum circuit diagram. This 

model of computation closely matches the circuit model used in classical computing where 

the input qubits are modelled as wires and a distinct set of elementary operations can be 

applied to the qubits as ‘gates’ that act on the wires. However, the quantum circuit model has 

additional restrictions imposed by the laws of quantum mechanics that the classical circuit 

does not [8]. Some of the most well-known restrictions in quantum computing include the 

no-cloning theorem, which stipulates that qubit states cannot be copied, and the fact that all 

the gates must be reversible. Also, algorithms written in an intermediate form, such as the 

quantum circuit model, typically cannot be executed on real hardware without additional 

processing steps [20]. 

Each of the different variations of QASM is designed to expand upon the original 

QASM and overcome its limitations. The variation used in the publicly available IBM 

quantum computers is referred to as OpenQASM. It is arguably the most common variation 

of QASM at the present time due to the public availability of the IBM machines. Other 

variants of QASM include F-QASM, which was developed to address an emerging need for 
                                                           
8 LaTeX is a domain specific language for easily writing technical or scientific documents. 
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quantum assembly languages to support measurement-based classical feedback [23], and 

Common QASM (CQASM), which was developed specifically to be hardware independent 

and used as an intermediate representation [21]. One of the goals of CQASM is to be usable 

by many different types of software, including compilers, simulators, and diagram generation 

tools. In this way, different programming languages can compile down to CQASM and then 

be executed on simulators or on real hardware without translating the CQASM code into 

another format [21]. Some quantum programming languages already implement compilers to 

CQASM, including ScaffCC, ProjectQ, LIQUi|>, and OpenQL, among others [21].  

Rigetti Labs developed another QASM variant, Quil, which is currently being used 

for their own quantum computers. At the time of writing, they had not yet exposed a public 

API to it but intend to in the near future. Unlike other QASM variants, Quil enables classical 

control of quantum programs, a feature that was absent from the original QASM 

specification [6]. Quil’s classical control concepts extend to conditional and unconditional 

jumps, program counters, halting instructions, and classical interrupts. QASM language 

dialects such as Quil are based on manipulations of three main atomic types: qubits, classical 

memory addresses, and classical memory segments [6]. Other QASM versions include 

QASM-H and QASM-HL [20]. 

Having so many different dialects of QASM can make translation between each of 

them time consuming and the code written in each QASM variation not be easily ported to 

devices that use different QASM variants. As such, some researchers have argued for a 

standardized QASM variant such as CQASM [21]. However, it must also be noted that none 

of these quantum assembly languages are without limitations, and until we begin 

experimenting with them on real hardware, there will likely be even more dialects developed. 
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For example, Liu and colleagues highlighted several limitations with CQASM, including the 

lack of classical control flow, classical and quantum instruction interleaving, and quantum 

circuit reuse [23]. These types of limitations prevent the implementation of some quantum 

algorithms. Due to these issues and others mentioned previously, current variations of QASM 

are unlikely to be scalable to large numbers of qubits [8]. Some researchers have developed 

variations of QASM that minimize these issues through the use of “single-instruction 

multiple-data” systems, as well as techniques developed to address large numbers of bits in 

classical computers [20]. Some of the different variations of QASM are listed in Table 2.1 

below. 

Variant Name Description 

OpenQASM Most common variant used on IBM platforms 

F-QASM QASM with classical feedback 

QASM-H Module based QASM 

QASM-HL Module based QASM with loop support 

Common QASM QASM as a compiler intermediate language 

Quil QASM with classical control of quantum programs 

Table 2.1 Variations of QASM 

During the development of any quantum assembly language, regardless of whether it 

is being used as an intermediate representation or as an executable, it is important to consider 

the functionalities of the device the language is designed for. Rigetti Labs came up with the 

concept of an Abstract Quantum Machine while developing their quantum language, Quil. 

This idealized quantum machine has no hardware specifics and is based on the idea of a 

quantum computer acting as a coprocessor to a classical processing unit. Most assembly 

languages are instruction-based, and in an instruction-based language, each instruction will 

be a single action that will cause a transition on the state of the abstract machine [6]. 
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According to Smith et al. [2016], any quantum assembly language should be able to perform 

all possible actions on the Abstract Quantum Machine [6]. This includes allowing gates or 

sub-circuits to be applied to qubits, measuring a qubit, and performing classical control flow 

such as branching. Any action in a quantum assembly language, based on a particular 

Quantum Abstract Machine, should have well-defined semantics. Additionally, quantum 

assembly languages should allow for the definition of new quantum gates that can be 

decomposed by a compiler into primitive gates, promoting code reuse through the use of sub-

circuits (functions / methods) [6]. 

An important aspect of any quantum assembly language is to provide explicit 

methods that allow programmers to exploit computational properties resulting from the 

quantum mechanical nature of the device. One of the most important of these is 

parallelization, which allows for a large number of gates to be executed at the same time. It is 

well known that quantum computing provides the potential for extremely high degrees of 

parallelization. Some languages, like CQASM, allow parallelization to be controlled by the 

programmer, while others, such as Quil, use implicit parallelization. In Quil’s implicit 

parallelization scheme, the only control the programmer has with respect to how 

parallelization is run is to create parallelization barriers [6]. By using non-parallelizable 

instructions, like the “No Operation” (NOP) operation, instructions before the barrier cannot 

be scheduled to run in parallel with instructions after the barrier [6]. 

2.5 Quantum Compilers 

An area of research interest related to quantum computers and that relies on the 

research that has been done in hardware, instruction set architectures, and assembly 

languages, is the development of quantum compilers. A compiler is a program that translates 



25 
 

code written in one language, often a high-level and programmer-centric language, into 

another language that is able to be directly executed on a physical machine [24]. 

 A compiler follows many different steps as it compiles a program from its source 

language to the target language. The book, “Modern Compiler Implementation in Java,” 

written by Andrew Appel and Jens Palsberg [2002], has, in my opinion, one of the best 

breakdowns of the various compilation steps that are employed by modern compilers [25]. 

Broadly speaking, these steps are broken down into two categories: the front-end and the 

back-end of the compiler. The front-end typically involves all the steps that deal with the 

input source code language, whereas the back-end involves all steps dealing with output 

language.  

In the front-end, a compiler performs lexicographic analysis, parse tree generation, 

abstract syntax tree generation, syntactic analysis, semantic analysis, intermediate 

representation (otherwise known as IR) generation, and machine independent code 

optimization. Lexicographic analysis is the first stage in the compilation procedure. 

Sometimes simply referred to as lexing or scanning, lexicographic analysis is responsible for 

breaking the input source code into a sequence of meaningful symbols known as lexemes 

[26]. The output of this stage will be a list of tuples which contain the value from the source 

file, a type, and any additional meta-data or attributes which will aid in further compilation 

stages. Additionally, this stage will confirm that all the symbols that exist in the source code 

are, in fact, valid for the given language. Many programming languages are only valid for 

sequences of ASCII characters; typically only the letters a-z, the numbers 0-9, and a few 

special symbols such as ‘+’, ’-‘, ’*’, and ‘/’ . If a symbol is found during this stage that 

is not valid for the input language, the compiler has the choice of gracefully handling that 
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symbol via some rule set or stopping the compilation procedure entirely. Aho and colleagues 

[2007] recommend constructing a symbol table at the same time as performing lexicographic 

analysis, as this information is useful for the subsequent semantic analysis and IR generation 

stages [26].  

Parse tree generation, abstract syntax tree generation, and syntactic analysis are three 

stages that are often performed at the same time in a single “parsing” stage. This compilation 

stage takes the lexemes generated in the lexicographic analysis stage and outputs a tree 

shaped data-structure representing the compilation unit’s (source file) structure [26]. This 

tree is formed from the grammatical structure of the language. A parse tree is a literal 

representation of the language’s concrete grammar, whereas an abstract syntax tree is one 

that compresses the parse tree and discards information that is not relevant to subsequent 

stages [26]. While the compiler is forming these trees, it follows the format grammar of the 

language. Syntactic analysis is performed as the tree is constructed to identify incorrect 

grammar. Just as with the lexicographic analysis, the compiler can choose to either cancel the 

remaining compilation stages if incorrect grammar is found, or it can attempt to perform 

some operations in an attempt to repair the grammar.  

Semantic analysis can be performed on the tree that was created in the parsing stage. 

Semantic analysis is the process of analysing instructions to determine their properties and 

verify if the instructions indicated by the grammar actually make logical sense [26]. To make 

sense of this, consider the English language. Just because one can make a syntactically valid 

sentence does not mean that the resultant sentence actually has any meaning. Examples of 

semantic checks could include type checking, null reference checks, and ensuring that 

variables are not being re-defined.  
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With the program now entirely verified, thanks to lexicographic analysis, syntactic 

analysis, and semantic analysis, IR code generation can now take effect. With IR code 

generation, the abstract syntax tree is used to generate new code in what is referred to as an 

intermediate representation [26]. The IR is chosen by the compiler designer. Three-address-

code format intermediate representations are often used in educational materials, including in 

Aho et al.’s [2007] textbook [26]. When represented in the form of three-address-code, 

instructions appear visually similar to those seen in assembly languages, with the restriction 

that each instruction can only contain a maximum of three operands. Many mainstream 

compilers are built off of the LLVM compiler infrastructure and, as such, they use an IR 

representation called LLVM intermediate representation (LLVM-IR), which is an 

intermediate representation that allows a compiler front-end to interface with the LLVM 

compiler back-end. Many intermediate representations are based on the “basic block” 

representation of a program. In this representation, the program is considered as if it were a 

flow-graph, where the edges represent the flow of control from one basic block to another. 

Each basic block is composed of zero or more instructions that are always executed in 

sequential order.  

Finally, the last operation performed by the compiler front-end is the machine 

independent code optimization. These are optimizations that operate entirely on the 

intermediate representation or basic blocks, with no regard for the specifics of the actual 

machine that will be executing the code. Many of the most common optimization strategies 

can be applied at a machine independent level. Technically these kinds of optimizations can 

be done on both the front-end and the back-end of the compiler. It is for this reason that these 

optimizations are sometimes placed as the first step of the back-end instead of the last step of 
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the front-end. Since these optimizations are not directly related to the hardware on which an 

algorithm will run, which is what the back-end is mainly concerned with, for the purposes of 

this discussion, it is included here in the front-end section.  

The back-end of the compiler follows the front-end analysis and is in charge of 

instruction selection, control flow analysis, data flow analysis, machine-dependent code 

optimization, code emission, code assembling, and linking [26]. The first of these stages is 

instruction selection, where the intermediate representation instructions are mapped to the 

specific hardware instructions. Control flow analysis creates graphs that indicate how the 

flow of control changes throughout a program’s lifespan. Sometimes this can mean simply 

annotating the existing basic block graph with additional information. Data flow analysis is 

similar to control flow analysis but tracks how data is moved throughout a program. 

Machine-dependent code optimization attempts to optimize code with the information 

achieved from the aforementioned analysis passes. After some optimizations are applied, 

some analyses may need to be re-run as certain optimizations can expose opportunities for 

other optimizations. Code assembling produces machine code for the target platform, while 

linking takes the machine code produced by the assembly stage and groups the machine code 

together into an executable format for the target machine.   

A quantum compiler will perform this translation from a quantum mechanically-

oriented programming language and “compile” it into a quantum assembly language. These 

compilers must be able to perform many different jobs as they undertake this translation and 

do this while abstracting the low-level concerns and physical limitations of the hardware 

away from the programmer and performing optimizations to code wherever feasible [27].  
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A compiler that allows for input source code to be re-targeted to a number of physical 

devices with a reasonable amount of effort promotes portable code and can be classified as a 

portable compiler; its portability is further aided if the compiler itself can easily be ported to 

other devices [24]. These portable compilers can minimize the issues discussed in the 

“Assembly Languages” section because the compiler can handle translation of quantum 

algorithms to each of the different QASM variants automatically. Chong and colleagues 

[2017] identify some requirements for quantum compilers [11]. One of the most important 

jobs that a quantum compiler can perform is implementing quantum error correction codes 

that help to overcome issues due to the fragility of the qubits. Compilers need to satisfy any 

quantum mechanical restrictions, such as the no-cloning theorem. Quantum compilers also 

need to perform qubit memory management on these logical qubits by efficiently reclaiming 

previously used qubits, as long as they are not in use or entangled to any other qubit in use, 

as there are a limited number of available qubits on the device. 

Quantum compilers require much more knowledge about the problem size of a 

particular program compared to classical compilers. This is because quantum compilers need 

to consider a larger number of ways to organize instructions to provide much more 

aggressive optimizations given the current hardware restrictions for quantum computing 

devices. Quantum compiling also allows for a greater degree of loop unrolling and function 

in-lining (discussed in the “Compiler Employed Code Optimization Strategies” section of 

this chapter) due in part to the higher level of parallelization in quantum computers compared 

to classical ones; however, the decision around the best time to perform loop unrolling is still 

up for debate [11].  



30 
 

As with classical compilers, quantum compilers are restricted in what they can do by 

the physical limitations of the targeted system. Often more quantum gates must be added to 

circuits so that qubits can be moved around the physical device until operational constraints, 

such as applying two-qubit gates to neighbouring qubits, can be satisfied [28]. This qubit 

swapping to satisfy the hardware constraints can impose a significant run time drawback and 

reduce circuit reliability, in part because each of these swaps will result in a little more error 

being introduced to the qubits [28]. IBM currently uses a randomized search in order to 

identify the appropriate mapping of logical qubits onto physical qubits, but other approaches 

such as employing shortest-path algorithms, such as A*, have been shown to be more 

feasible for use on larger programs [28].  

Decoherence times for individual qubits should also be taken into account by 

compilers when deciding how to allocate qubits. Individual qubits often have different 

decoherence times; as such, qubits with shorter decoherence times should be passed over by 

the compiler for available qubits with greater deocherence times [22]. An example of why 

this is important can be seen when using the IBM Q5 device. On this device, the third qubit 

decoheres faster than the others. This means that one cannot perform as many operations on 

this qubit before losing quantum information due to decoherence. As such, compiler 

techniques should be developed to efficiently determine when to use short-decoherence 

qubits and when to avoid using them [22].  

Several methods have been proposed to address the issues involved with efficiently 

mapping higher-level components to elementary operations; however, little work has been 

done to identify effective methods of satisfying any of the additional constraints of real 

quantum mechanical computing hardware [28]. A potential reason why there has been little 
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work done in this area is that there is not enough access to device-level information available 

to researchers outside of the hardware vendor’s direct staff [17]. Compilers for quantum 

computers based on the adiabatic9 model have additional concerns when it comes to 

compiling. This includes considering the compilation process as a “competitive game,” 

where different goals are competing to be the most successful, and finding Nash 

equilibriums10 for a given program by considering the ideal compilation as one which has the 

lowest number of graph edges [29]. A future area of research for adiabatic quantum computer 

compiling includes considering alternative strategies that increase the likelihood of finding 

the Nash equilibrium. 

Auxiliary Compiler Tasks 

Besides optimizing and translating high-level languages to low-level error resistant 

code, compilers are also required to perform many other secondary tasks that aid in the 

software development process. One such task involves the decomposition of arbitrary 

quantum gates into gates from hardware specific universal gate sets. The Solovay-Kitaev 

theorem guarantees that if the hardware set is universal, then there exists an efficient 

sequence of gates from the universal set for approximating an arbitrary gate [5]. However, 

even though this theorem guarantees the existence of such an efficient decomposition, no 

best method has yet been found for actually determining the sequences for arbitrary quantum 

gates. For the decomposition of arbitrary quantum gates, the compiler should allow the 

programmer to specify the precision, accuracy, and tolerance levels to use in order to favor 

                                                           
9 The adiabatic model is a quantum computation model where the algorithms are encoded as the 
lowest energy state of a quantum system and then allowed to evolve over time towards the lowest 
energy solution [8]. 
10 A Nash equilibrium is a solution to a non-cooperative game in which each player is assumed to 
know the equilibrium strategies of other players and each player has nothing to gain by changing 
his/her strategy.  
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faster compilation times or more accurate results [11]. Soeken et al. [2018] state that 

quantum compilers should also perform a task called reversible logic synthesis [19]. With 

reversible logic synthesis, functions of quantum operations can have their inverses 

automatically determined at compile time. They mention that for larger functions, reversible 

logic synthesis methods require additional qubits and cannot be determined ahead of time. 

Synthesis methods that can find a reversible solution without exceeding a certain number of 

qubits must be developed. Soeken et al. [2018] indicate that the state of this research is still 

in its infancy [19].  

Compilers also play an important role in determining the properties of quantum 

programs. They should be able to keep track of programmer-described annotations or 

assertions that can be used in the debugging process to test the correctness properties of 

quantum programs [11]. This is important because full simulation of quantum systems for 

debugging is unfeasible for larger than 40 or 50 qubits on most current machines [11]. As a 

result, the testing of programmer declared assertions about the program’s data on real or 

small-scale virtualized hardware is one of the only ways to currently debug quantum 

programs. Compilers should also be able to provide resource estimates for a given program 

such as the number of qubits required, as well as the estimated run time, in order to aid 

developers in optimizing code fragments [1].  

Compiler Employed Code Optimization Strategies 

A compiler has to deal with all of the restrictions caused by the physical hardware 

while also outputting efficient code, often by minimizing the number of low-level operations 

and maximizing the usage of computational resources such as CPU or memory access. For a 

quantum compiler, this could mean generating code that minimizes the total number of 
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quantum gates that need to be applied [19]. For classical compilers, many different 

algorithms have been developed over the years which take higher level constructs and 

attempt to generate efficient sets of elementary operations that are functionally equivalent. 

These algorithms, sometimes called optimization strategies, can dramatically affect the 

performance of compiled code. While they are called optimization strategies, the resulting 

code may not necessarily be optimal; rather, they are strategies for improving the 

performance of the code, with no guarantees on how much the code will be improved. For 

this reason, the term ‘optimizing’ in this context more accurately means ‘improving.’   

For a compiler to be able to apply an optimization strategy, it should be designed such 

that any transformations made do not alter the code’s meaning from the original program. 

Several optimization strategies exist, some of which work in isolation while others work 

together. Early optimization strategies focused on arithmetic expressions and basic blocks 

(sequential non-branching code). Later strategies included branches, loops, and procedural 

optimizations [30]. While all optimization strategies are important for practical quantum 

compilers, for this research one needs only an understanding of how optimization strategies 

are generally employed, as the research focuses specifically on one type of optimization – 

instruction scheduling. As little is written on optimization strategies within the quantum 

domain and current quantum compilers rely mostly on classical strategies, it is important to 

this work to discuss some of the common classical compiler optimization strategies. Some of 

the strategies that can be applicable to both classical and quantum compilers include strength 

reduction, common subexpression elimination, constant propagation, dead code elimination, 

inlining, register allocation, loop optimization, and instruction scheduling. 
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Strength Reduction 

Strength reduction is one of the simplest optimization strategies performed by many 

compilers at a machine independent level. In strength reduction, sequences of 

computationally expensive11 operations are replaced by cheaper ones. Sometimes these 

replacements can result in the elimination of useless operations, such as is the case with 

algebraic identities like adding 0 or multiplying by 1 [26]. Operations involving 

exponentiation are more expensive in that they take more time than multiplication, which are 

more expensive than addition, which in turn are more expensive than bit-shift operations. 

Strength reduction can take advantage of hardware specific knowledge to determine cheaper 

operations based on specific hardware abilities. In some cases, operations cannot be reduced 

in strength. This depends on whether cheaper operations are available on the hardware and 

the context in which the operations are being performed. While strength reduction is not a 

loop-based optimization strategy, it is particularly effective when used within the bodies of 

loops, especially when the operations in question involve computations with the loop index, 

such as array access, which can sometimes be folded into the target computer’s built-in 

addressing modes [31]. The main improvements that result from strength reduction 

optimizations come from using less costly operations, as well as potentially reducing the total 

number of operations required.  

Some of the main reasons why strength reduction is so commonly used in modern 

compiler design are because it is easy to implement and one of the more effective 

optimization strategies for high-level languages, since code generated from high-level source 

code abstractions often involve non-optimal sequences of instructions which strength 

                                                           
11 Computationally expensive refers to the time it takes to complete an operation, the longer an 
operation takes to complete the more expensive it is. 
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reduction can clean up [31]. When combined with other optimizations, strength reduction can 

reduce the number of loop induction variables, and thus the potential demand on registers, 

decreasing the likelihood of register spilling that can create costly memory access operations.  

Common Subexpression Elimination 

Common subexpression elimination is a well-known standard simple optimization 

strategy that has been used by imperative programming language compilers for many years 

[12]. This optimization strategy is sometimes grouped together with others under a very 

broad category called “redundant code elimination.” In common subexpression elimination, 

expressions are examined to see if they are repeated multiple times throughout a program. 

Often, these repetitions are the result of compiler artifacts as the compiler translates high 

level abstracted structures to a lower level form [32]. If the results are used again, the 

subsequent redundant expressions are eliminated and replaced with references to the original 

computed value.  

There are several conditions which must be met for common subexpression 

elimination to be applied. First, an expression can only be eliminated if, regardless of where 

it is in the program, the expression always produces the same value [26]. Second, the 

expression can only be eliminated if all constituent components of the expression have 

remained unchanged since the original assignment was performed [12]. This kind of analysis 

is often more difficult to do in lower-level programming languages which make use of 

memory pointers that can point to any location in memory whose value can be changed 

outside of the current executing context [12].  

Common subexpression elimination can be performed as either a local or global 

optimization. Since local optimizations take place within the confines of each individual 
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basic block, common subexpression elimination is straightforward when implemented as a 

local optimization. However, implementing common subexpression elimination at a global 

optimization level, across basic blocks, can be more challenging as expressions can only be 

eliminated if they have been computed on every possible path leading to the basic block 

where the expression exists [12].  

While this optimization strategy has become standard, it can have different levels of 

effectiveness for different types of languages. For example, Chitil [1997] notes that 

implementing common subexpression elimination for functional languages does not result in 

much of a performance increase to the resulting program, and given the significant additional 

compilation time needed, its use may not be justified [12]. Since many existing quantum 

programming languages are functional in nature, the effectiveness of using this strategy in a 

quantum computing environment may require additional exploration.  

Constant Propagation 

Constant propagation is another standard optimization technique utilized by many 

compilers. In constant propagation, constant values are identified and then substituted into 

wherever they are referenced in the code body. The main purpose of constant propagation is 

to allow for other optimization strategies to be more effective. In order for constant 

propagation to be effective, constant folding should be performed, as folding can lead to 

opportunities for constant propagation to be employed [33]. In constant folding, expressions 

that are constant at compile time are evaluated into a single value. This folding can lead to 

the creation of new constants from the folded expressions, which constant propagation can 

then propagate through the remainder of the code [33].  
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One of the most commonly used constant propagation algorithms is the sparse simple 

constant propagation algorithm (SSCP). This algorithm operates on a basic block graph 

representation in which the variable assignments are in single static assignment form [32]. 

The SSCP algorithm consists of an initialization phase, where a value is assigned to each 

applicable single static assignment (SSA) name, as well as a propagation phase, where each 

constant is propagated into each expression where it is used. During this latter stage, constant 

folding can be reapplied to potentially create additional constant values that can be further 

propagated through the remainder of the code. Due to its operation on SSA form code, the 

sparse simple constant propagation algorithm can be efficient for both local and global 

optimizations [32]. 

Dead Code Elimination 

Dead code elimination is a type of optimization strategy whereby during compilation, 

branches of code that are never able to be executed are identified and subsequently removed 

from the resultant program [34]. Dead code elimination is one of the optimization strategies 

referred to as local code optimizations. This means that the optimization is usually performed 

within a single basic block or a small connected group of blocks [26]. In a basic block 

directed graph representation, the strategy involves deleting blocks that do not have any live 

variables attached to them. As a result, this optimization requires a live variable analysis to 

be performed before the optimization can be run in order to identify which variables within 

each block are alive or not. Knoop et al. [1994] developed a slightly improved version of the 

basic dead code elimination algorithm that is more effective at optimizing code than older 

approaches which they called partial dead code elimination [34]. Their algorithm checks not 
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only for dead expressions, but also partially dead ones, where the value of the expression is 

unused in at least one branch but used in another. 

Since there are many different types of dead code elimination, ranging from simply 

eliminating dead code to performing code transformation like partial dead code elimination, 

the time complexity of this type of optimization is heavily dependent on the algorithm and 

can exist anywhere from O(n2) to O(n5), depending on the characteristics of the algorithm in 

question [34]. For Knoop and colleagues’ [1994] partial dead code elimination, this time 

complexity is in the order of O(n4) in the average case, but O(n5) in the worst case [34]. 

However, it can be sped up by altering some of the parameters that control the algorithm 

behaviour, though this might result in less optimized code. 

Inlining 

Inlining, known also as function inlining or expression inlining, is a compiler 

optimization strategy whereby the entire body of a function is duplicated, modified for the 

current context, and then inserted into a calling location [35]. Manuel Serrano [1997] 

presents a detailed description of function inlining and believes it to be one of the most 

valuable optimizations a compiler can perform [36]. The direct benefit of performing inlining 

is that the overhead of function invocation is completely removed from the compiled 

executable. Function invocation overhead often involves context save operations, memory 

fetches, program jumps, and context restoration operations. He notes that operations added to 

a program by function invocation can sometimes be more computationally expensive than the 

function body that is intended to be executed. This is why inlining is important as it can 

remove the function invocation overhead. Additionally, function inlining can offer secondary 

benefits to further compilation stages. Inlining, in essence, creates specialized copies of 
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functions for each of the contexts where it is used. This means that other optimization 

strategies can make better decisions because they have more information to base decisions on 

[37]. Instead of having a function call instruction to consider, they can now consider all the 

instructions of that function specialized for the current context. The body of the function 

benefits from knowing the properties of the actual function parameters, which can be used to 

optimize the duplicated function body after the formal parameters are replaced by the actual 

parameters. The invoking function can also be optimized by knowing more about the 

properties of the returned value from the function. Additionally, in the case of languages that 

support polymorphism,12 the polymorphic functions may become monomorphic under the 

application of function inlining. 

However, Serrano [1997] also cautions against overusing function inlining because 

there are several obvious drawbacks to this optimization procedure that need to be balanced 

with the potential gains [36]. The most obvious drawback is the potential for the resultant 

size of a program to increase dramatically. Since functions are being duplicated at each 

invocation point, the number of added operations will be proportional to the number of times 

that a function is inlined. This becomes particularly pronounced when inlining occurs at a 

nested level where an inlined function contains invocations to other functions. Because of the 

resultant larger function bodies, the likelihood of register spilling increases. Additionally, by 

increasing the number of operations, total compilation time will also increase as other 

optimization strategies that run after inlining has been completed now have to process more 

code than they would have before the inlining. Inlined code can also impair code production 

as high level information such as aliasing must be discarded [36].  
                                                           
12 Polymorphism refers to the ability of an object to take many forms. In this context it refers to the 
ability of a subclass to refine the behavior of a parent class’s method and have that refined method 
called instead of the base method whenever an object of the subclass type is used.  
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In many older languages such as C and C++, the choice as to which functions should 

be inlined is left to the programmer [36]. The programmer determines which functions 

should be inlined and then annotates them such that the compiler would know to always 

inline the annotated function. In C++, the “inline” keyword, which is a part of the function’s 

declaration syntax, is one example of such an annotation. Misplaced use of inlining 

annotations can lead to some of the issues noted above. To avoid the potential pitfalls of 

misusing function inlining, it has been suggested that modern languages should perform 

automatic inlining by having the compiler decide which functions are appropriate candidates 

rather than relying on the programmer [36].  

Register Allocation 

Register allocation applies to a number of program transformations aimed at reducing 

the overall pressure of programs on the limited CPU registers available. By reducing the 

pressure on the CPU registers, there is less risk of register spilling and therefore the addition 

of costly memory access operations, that are required to resolve the spill, can be avoided 

[38]. In many modern compiler implementations, register assignment occurs on single static 

assignment (SSA) versions of the control-flow graph representation of the program. Graph-

colouring algorithms are used to perform parts of the register allocation process [26]. By 

making use of the SSA format of the graph, register allocation can be done in polynomial 

time [38]. Register allocation can occur locally, within the confines of a single basic block, or 

globally across several blocks as indicated by the control flow graph. 

Quantum computers have an optimization strategy similar to register assignment but 

using quantum bits rather than CPU registers [39]. In quantum computing, this strategy has 

several names including ‘Qubit mapping’, ‘Qubit routing’, ‘Qubit allocation’, and ‘Qubit 
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movement’ [38, 40]. Unlike classical register allocation, there are no worries about register 

spilling for qubit allocation. In a quantum computer, all qubits are available to be operated on 

at any given time so there is no concept of CPU registers or memory. Instead, qubit 

allocation is mainly concerned with minimizing the number of swaps required to perform any 

given two-qubit operation [41]. Minimizing the number of swaps is important in all near-

future quantum computers because of limited geometric connectivity between qubits, 

meaning that only certain qubits which are considered to be connected or neighbouring can 

have operations performed between them [38, 41, 42]. In order to perform generic operations 

between two qubits that are not neighbouring, swaps must be performed until they satisfy the 

hardware connectivity. However, swapping operations is a slow process and can introduce 

computational overhead leading to qubit decoherence [38]. As such, logical qubits must be 

mapped to hardware qubits so that the numbers of swaps are minimized. In many cases, tree-

like data structures can assist in finding the shortest swap paths when swapping is required 

[42, 43].  

Quantum compilers must take into account different qubit connectivities, decoherence 

times, and other compatibility issues between different quantum computer hardware 

architectures [43]. With the state of current quantum compiler research, most approaches to 

this kind of optimization make use of similar flow-graph representations as the classical 

versions, but additionally make use of heuristics in order to accommodate all of the hardware 

limitations, including the time that instructions take to execute and qubit connectivity [38, 

44]. There are other algorithms that have unique approaches to solving the qubit mapping 

problem such as that of Liu et al. [2019], which uses Markov chains to stochastically perform 

this mapping when compiling quantum algorithms [44]. 
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Loop Optimization 

Since loops are where many programs spend much of their time, loop-based 

optimization strategies are some of the most effective optimization strategies for classical 

computers [11]. Some loops are defined within the structure of the programming language 

itself, such as in Java, C, and C++, with the inclusion of the ‘for’, ‘while’, and ‘do-while’ 

loop constructs. In other contexts, loops simply refer to areas of code that are repeated 

multiple times. These implicit loops can be determined by examining the control flow of the 

program and seeing if a basic block jumps back up to another previously visited block. Loop 

optimization strategies are designed to optimize code within loops by doing things such as 

reducing the overhead required to perform a loop or minimizing the number of instructions 

executed per loop iteration. There are numerous loop optimization strategies, such as 

invariant code motion, unrolling, fusion, fission, and un-switching.  

Like all loop-based optimizations, loop invariant code motion (code motion for short) 

depends on a series of analyses which must be run against the program’s control flow graph. 

Loop invariant code motion also works best when the intermediate representation of the 

program is in single static assignment form, as it becomes easier to analyse and identify 

candidate expressions in this form [45]. This optimization strategy is one that programmers 

themselves can do without much loss of clarity to their original code. Loop invariant code 

motion identifies natural loops in the control flow of the graph that contain expressions 

whose results do not change between iterations of the loop [30, 45]. These expressions are 

referred to as loop invariant code because they do not vary as the loop changes. The invariant 

expressions are then moved out of the loop’s body through a process known as hoisting or 

code motion. The identification of loop invariant code that is suitable for the hoisting process 
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requires the compiler to perform initial analyses such as using the reaching definition 

analysis algorithm [45]. The primary purpose of loop invariant code hoisting is to reduce the 

number of redundant computations in order to increase the program’s speed. By hoisting 

code outside of the loop bodies, any re-calculating of the expressions can be removed, 

allowing them to be performed only once. The speed-up of the program after instruction 

hoisting depends completely on the nature of the hoisted instructions and how many 

instructions can be hoisted. Hoisting more expensive expressions will result in a greater 

speed-up than hoisting trivial expressions [45].  

According to Cooper and Turczon [2012], “loop unrolling is, perhaps, the oldest and 

best known loop transformation” [32, p. 441]. In loop unrolling, the body of a loop is 

repeated multiple times with each copy being specialized for a particular range of input 

values. Each copy must have its boundary logic adjusted for the new ranges. An unrolling 

factor is used to determine how many times to unroll. A loop with a known number of 

repetitions can be completely unrolled such that it is completely eliminated and replaced with 

several copies of the loop body or each of the possible iterations. When applied to nested 

loops, application of loop unrolling can be performed on either the outer loop or inner loop 

first. The order in which the loops are unrolled can result in different generated code. Loop 

unrolling by itself has minimal impacts on the performance of code as it only removes the 

loop overhead if the loop is completely unrolled. This means that complete loop unrolling 

can remove branching and bound checking operations from the original code at the expense 

of a larger resultant program. A larger program will have a larger representation in their IR 

form, which will increase the compile time, as well as a larger executable size, which can 

lead to instruction cache overflows if large enough [32]. In the case of excessive loop 
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unrolling, the performance of the program can actually be degraded, as some modern 

processors effectively perform loop unrolling in the hardware of the machine [46].  

With this in mind, loop unrolling serves mainly to aid the compiler in exposing other 

areas where further optimizations can be applied [30, 33]. It does this by creating a larger set 

of instructions inside the body of the loop, and therefore more contextual information for 

optimization and analysis techniques. Better instruction scheduling and pipelining are some 

optimizations that can be performed for loops once they have been unrolled to produce more 

optimized code than if the loop is untouched [46]. Additionally, unrolling can lead to 

improved data locality, which reduces the latency in accessing consecutive areas of memory, 

expose cross-iteration redundancies that can be eliminated, and change the register allocation 

pattern [32]. Loop unrolling has direct effects on performance, such as the removal of 

branching and bounds checking, as well as indirect effects, such as exposing areas for further 

optimizations. The performance gains of loop unrolling are directly dependent on all of the 

effects, both direct and indirect. The loop unrolling strategy is often applied with other loop 

transformation techniques such as loop un-switching or loop fusion [32].  

When viewed from a quantum computing context, loop unrolling becomes even more 

important than it is for classical computations. In “Programming Languages and Compiler 

Design for Realistic Quantum Hardware,” Chong and colleagues [2017] argue that due to 

quantum computers possessing a much higher degree of parallelization than classical 

computers, it is more important to perform loop unrolling for quantum computers than it is 

for classical computers, particularly when combined with other optimization techniques such 

as function inlining [11]. Some fully-realized quantum compilers, such as the ScaffCC 

compiler used for a C-like quantum programming language, implement some form of loop 
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unrolling when optimizing quantum programs. In the case of ScaffCC, this loop unrolling is 

identical to that performed classically. This is because ScaffCC is built off of the classical 

LLVM compiler infrastructure [41]. For a classical computer, the compiler does not know 

exactly how much parallelization it can apply for any given hardware. However, for an ideal 

quantum computer, the compiler parallelization is equal to the number of quantum bits 

(qubits) within the computer [39]. Additionally, for current quantum computing architectures 

and compilers, all loops must repeat a well-known number of times to give the compiler 

enough information to completely unroll loops to the point of removal if the compiler wishes.  

Together, these two quantum computing concepts lead to the potential for more 

effective use of loop unrolling. This is of particular importance when dealing with quantum 

computing operations that are intended to be applied to every qubit in the system, for 

instance when applying the quantum ‘X’ operator to all qubits by looping over each qubit. 

Consider this as a loop with a single operation within the loop. In a classical loop unrolling 

strategy, this loop could be unrolled once, which reduces the number of iterations in half, or 

it could be unrolled more than once but the compiler may not know the best number of times 

to unroll. This will result in a new loop that performs several operations but repeats fewer 

times. However, for the quantum case, this operation is applied to all qubits and therefore can 

be completely unrolled into a single operation that can be applied to all qubits at the exact 

same time. Not only has the loop been eliminated in the quantum case, but all the operations 

can be amalgamated into a single cycle that can operate on all qubits at once due to the 

parallelism of the machine being equal to the number of qubits [39]. This behaviour can 

result in an even larger change in the number of instruction cycles when loop unrolling for 

quantum computers is combined with instruction inlining, loop fusion, and other 
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optimization strategies. It should be noted that as in the classical context, loop unrolling 

should be used judiciously for quantum computers, as it is not always beneficial to the 

compilation of a quantum program [11]. Loop unrolling should only be performed for a small 

number of iterations or when loops are not nested too deeply, as the number of instructions 

for nested loops are exponential in the number of loops. Research remains ongoing to 

determine when and how much loop unrolling to perform for near-future quantum 

computers. 

 Loop un-switching is an optimization strategy that applies only to loops containing a 

conditional statement. The purpose of loop un-switching is to remove additional overhead 

from conditional statements, including conditional checks and branching [30]. In loop un-

switching, the order of the loop and the conditional are switched such that the conditional is 

performed only once. After the loop and conditional are switched, the loop must be 

duplicated into both branches of the conditional. This technique can only be applied if the 

conditional expression is loop-invariant [33].  

Loop collapsing is an optimization strategy in which nested loops can be compressed 

into a single loop. By doing this, the overhead involved with the nested loop is completely 

removed. Not many compilers support loop collapsing techniques, but there are a few C 

compilers that are targeted towards the scientific market which do [33]. 

Loop fusion is an optimization strategy where adjacent loops can be fused into a 

single loop. The purpose of loop fusion is to reduce loop overhead by completely removing 

the second loop, as well as to increase the potential level of parallelism and data locality. 

However, when fusing loops, additional strain is placed on the hardware registers which may 

cause register spilling [47]. This theoretically improves run time performance; however, in 
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practice this depends on the context of the loops. There are many cases where performing 

two separate loops can be faster than a single loop, especially when dealing directly with 

computer memory and data locality [33]. It is for this reason that loop fusion is not 

commonly supported by many compilers but can be used as a part of different algorithms for 

other optimization strategies. Loop fusion will end up changing the order in which 

instructions are executed and, as such, is only valid if all data dependencies are preserved 

[47]. 

Loop fission, otherwise known as loop distribution or loop splitting, is the complete 

opposite of loop fusion. Where loop fusion fuses adjacent loops into a single loop, loop 

fission breaks a loop up into multiple adjacent loops [47]. Like loop fusion, data 

dependencies need to be preserved since the order in which instructions are executed will be 

changed from the original program. The main advantages of performing loop fission come 

from an increase in the potential for utilizing hardware instruction pipelining or exposing 

groups of operations as vector computations on vector computers. These concepts are 

important for both modern single instruction multiple data (SIMD) machines, as well as for 

potential near-future quantum computers. Besides the main benefits of loop fission, there 

may be a reduction in cache misses and pressure on register allocation [47]. Loop fission also 

enables other strategies such as loop interchange.  

Loop interchange, loop permutation, or loop reordering are loop transformations that 

swap the inner and outer order of loops, particularly nested loops. The main purpose of loop 

interchange is to improve data locality, which depends on the programming language and the 

machine being compiled for [47]. Bacon et al. [1994] states that while this exchange process 

does not directly lead to any immediate performance gains in the compiled program, it can 
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lead to exposing different situations which can allow for the application of other optimization 

strategies [30]. Loop interchange is a legal transformation only if the dependencies of all 

instructions in the loop remain legal.  

Loop inversion is a loop optimization strategy that applies specifically to while13 and 

do-while14 loops within C-like languages. In loop inversion, a while loop is converted to a 

do-while loop, which is then surrounded by a conditional statement that checks for the loop 

entry condition [48]. The main advantage of this optimization is to allow fall through of the 

code from the loop body after the loop condition has been satisfied. In a traditional while 

loop, at the end of a loop the program must jump back to the beginning of the loop, check the 

loop condition and then, if the condition is satisfied, jump to the end of the loop to continue 

the rest of the program. These two additional jumps can be completely removed from the 

while loop by using loop inversion. While this does not result in much direct time savings, 

the effect is compounded for nested loops where the number of jumps can grow 

considerably. Unlike some loop optimizations, loop inversion does not create any negative 

effects or loss of performance, and therefore can be used more liberally than some of the 

other strategies [48]. Additionally, loop inversion, like other loop strategies, creates the 

potential for other optimization strategies to be utilized more effectively. 

In loop skewing, the data dependencies of a loop are altered by skewing the loop 

index, which can remove some blockers to identifying loop code that is parallelizable [49]. 

Loop tiling rearranges loops such that blocks of data can be accessed sequentially with fewer 

jumps in memory. This is done by exploiting the spatial and temporal locality of the data 

involved in the loop body, such as for array accesses [47]. One of the more powerful aspects 
                                                           
13 While loops check a condition and when that condition is true, the code is repeated. 
14 A do-while loop as similar to while loops but the condition is checked after the repeated code rather 
than before. 
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of loop tiling is the ability to target different levels of memory, including caches, RAM, or 

hard drive, allowing for maximum reuse of data at specific levels of the memory hierarchy 

depending on the chosen block size [47].  

Loop parallelization refers to a class of transformations that is designed to restructure 

loops and their content in order to allow them to be executed in parallel on vector machines 

and multiprocessor architectures [50]. These techniques involve both transforming loops to 

expose potential parallelism opportunities, as well as accounting for data distribution and 

communication in order to generate efficient parallel programs. Many loop parallelization 

algorithms focus on transforming nested loops [50]. Loop parallelism algorithms can include 

loop interchange, loop fission and fusion, as well loop skewing and loop tiling. 

A major goal within many optimizing compilers to achieve high-performance is to 

discover and exploit parallelism in loops [30]. As mentioned earlier, quantum computers 

offer the potential for a higher degree of parallelism than most classical computers due to 

being able to operate on most, if not all, qubits at the same time. Taking this into account, 

Chong et al. [2017] indicate that quantum compilers would be able to perform optimizations 

that are more aggressive than their classical counterparts [11].   

Instruction Scheduling 

Instruction scheduling is a compiler optimization that is highly dependent on low-

level information about the system being compiled to and the length of each of the 

instructions that can run on the architecture. Instruction scheduling is a subcategory of 

Automated Planning and Scheduling15 [51]. It is important only for central processing units 

that operate with instruction pipelining, which includes most modern processers [52]. This 

                                                           
15 A set of techniques in which computers automatically plan the based schedule on constraints given 
by each of the events being scheduled, such as the time to complete the event. 
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optimization will have no effect on the overall performance of the program for processors 

that do not have instruction pipelining, as all instructions will be executed entirely 

sequentially. Instruction scheduling will rearrange basic operations in order to reduce the 

frequency of pipeline interlocks [52]. To understand why rearranging these basic instructions 

can increase the overall speed of a program, one must have a basic understanding of how 

pipelining works in a processor.  

When a processor is performing an instruction, what it is doing can be broken down 

into three stages: fetch, decode, and execute. In a traditional processor with no pipelining, 

these stages are executed sequentially for each instruction in the program. Every instruction 

must complete before others can start. In a processor that supports instruction pipelining, 

different instructions could be in different stages of processing because they can be run 

independently without worry about when the other instructions complete. This increases the 

throughput of the processor because it can, in effect, work on three instructions at once, as 

one instruction does not block other instructions from starting the process. However, some 

instructions may still require that other instructions be fully completed before they can start. 

These instructions are referred to as pipeline hazards and are usually in the form of register or 

memory-based instructions [52]. While instruction scheduling can be performed by 

hardware, it is limited in scope and can be expensive, which makes performing this operation 

at compile time much more practical and effective, albeit at the cost of some additional 

compilation time.  

Instruction scheduling algorithms must consider two main issues [52]. The first is 

how to express the constraint that must be satisfied by any legal reordering of instructions, as 

some instructions cannot be reordered without changing the semantics on the program. The 
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second issue is how one can determine which instruction order is the most impactful, subject 

to the aforementioned constraints, without adding too much time to the overall compilation 

process. Some scheduling algorithms have a basis in graph theory.  

Gibbons and Muchnick [1986] developed an algorithm for classical instruction 

scheduling that operates after register allocation rather than at code generation, on a specially 

constructed directed acyclic graph, which is derived from the program’s basic block 

representation [52]. This graph representation contains the instructions as nodes of the graph, 

with the edges between the nodes representing the serialization dependencies. As long as the 

instructions are executed in some topological order, then the semantics of the original code 

remain preserved. With that in mind, Gibbons and Muchnick’s [1986] algorithm begins to 

schedule the instructions so as to reduce number of pipeline hazards [52]. To do this, the 

instructions to schedule are picked such that they do not introduce any new pipeline hazards. 

If that is not possible, then the instruction will be chosen so that it is more likely to interlock 

with subsequent operations based on the assumption that these instructions may be able to 

remove or minimize hazards. Three heuristics govern the selection behavior: 1) whether an 

instruction interlocks with its immediate successor; 2) the number of immediate successors; 

and 3) the length of the longest path from the instruction to the leaves of the graph. The run 

time for Gibbon’s and Muchnick’s algorithm in the worst case is O(n2) for a basic block with 

N instructions, which they claim is faster than other similar algorithms which have a O(n4) 

running time [52]. Their algorithm can also be easily modified to add no-op16 operations in 

order to completely remove hazards.  

                                                           
16 A no-op instruction is an instruction that performs nothing (no operation) and can be used to delay 
subsequent operations.  
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In quantum computing, the task of instruction scheduling has been referred to by 

different names, including Temporal Planning [51] and occasionally Instruction Hardware 

Mapping, since schedulers must also determine which physical qubits are mapped to each 

instruction [53]. When applied to the context of quantum computers, instruction scheduling 

techniques can become even more important than they are in a classical context. In the 

current generation of quantum computers, one of the main obstacles to practical 

computations is the timeframe over which qubits decohere and are no longer applicable to 

use in algorithms [54]. This means that the run time of an algorithm is extremely important 

on quantum computers in order for the computation to be successful. The goal of scheduling 

in the context of quantum computers is to reduce the latency of the program as well as the 

effects of noise to minimize the decoherence qubits experience, thereby increasing the 

chances for the program to return correct results [53]. Classical instruction scheduling 

techniques should still apply to quantum algorithms, at least while the program is being 

represented at the quantum gate level. The reason these techniques can still be used on 

quantum assembly is that it is similar to classical assembly in terms of being laid out by basic 

instructions from a given instruction set architecture. However, it is slightly more 

complicated to perform scheduling for quantum computers mainly because many operations 

can be performed at the same time, similar to many SIMD machines. Given the automated 

nature of instruction scheduling for near-future quantum computers, using artificial 

intelligence to assist in instruction scheduling has become an open problem which has begun 

to attract the attention of researchers within the artificial intelligence community [55]. 

 Instruction scheduling algorithms for quantum computers often operate on sequences 

of instructions that are already compatible with the underlying hardware [13, 56]. It is 
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assumed that an earlier compiler pass would break incompatible instructions down to optimal 

sequences of compatible instructions, such as was done by Booth [2018, 57]. This also 

implies that there are no branches and loops have been completely unrolled [58]. Due to the 

limited error correction17 and quick decoherence times present in these machines, instruction 

scheduling is one of the most important optimizations for quantum compilers to perform, 

especially for near-future quantum computers [39, 41, 59]. In order to minimize the risk of 

decoherence from occurring, quantum algorithms should be optimized to take less time to 

run. Instruction scheduling should be set up to reduce program run time as much as possible 

by optimally scheduling instructions. It operates similarly to how it would in a classical sense 

where valid instruction schedules are limited by the data dependencies of each instruction. 

However, for quantum temporal planning, there are additional constraints that complicate the 

scheduling operation.  

Quantum computer constraints can be grouped into three categories: logical, 

exclusivity, and connectivity [13]. Logical constraints are based on the order and 

dependencies of quantum gates in the algorithms, taking into account that some operations 

commute with each other and can have their order swapped, thus changing the dependencies 

of each operation.18 Exclusivity constraints involve constraining the number of operations 

that can use hardware resources at the same time. For instance, resources such as physical 

qubits can only be involved in one quantum operation at a time. Connectivity constraints deal 

with the underlying qubit communication channels and qubit adjacency of the hardware.  

                                                           
17 A set of techniques which can be used to limit the influence of errors in a quantum system. For 
example, the Steane code uses seven physical qubits to represent one logical one and can tolerate an 
arbitrary error in any one qubit without effecting the computation [57]. 
18 If matrices A and B commute, AB = BA, then the corresponding quantum operations can be 
reordered and thus do not depend on each other [58]. 
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Quantum scheduling should also take into account that some instructions can cancel 

each other out when scheduled next to each other [60]. Additionally, some gates, such as the 

Hadamard Gate, can hinder the commutativity of other gates [60]. Still another constraint is 

determining which instructions can be executed in parallel [51].  

In scheduling algorithms, time can be considered one of two ways. It can be treated as 

either discrete units referred to as CPU cycles, with the run time of a particular instruction as 

the number of CPU cycles needed to complete the instruction; alternatively, time can be 

taken precisely as the exact real-world time of each instruction recorded for the specific 

hardware being used. In Dousti and Pedram’s [2014] algorithm, the latter concept of time is 

used, whereby various operations are given specific completion times in microseconds (μs), 

such as moving a qubit takes 1 μs, a gate takes 10 μs and a multiple-qubit gate takes 100 μs 

[53].  

In contrast the algorithm developed by Guerreschi and Park [2017] uses the former 

concept of time, dealing only in abstract CPU cycles in which operations on single qubits 

take a single cycle to complete, while operations on multiple qubits require at least two 

cycles [13]. In their algorithm, each instruction is recorded in an instruction dependency 

graph. Traversing this graph allows for each instruction to be prioritized based on the number 

of cycles required to complete the operation, as well as the number of cycles used by any 

instructions that depend on it. This prioritization based on the instruction timing is at the core 

of their scheduling implementation. Scheduling instructions then occur in order of priority, 

where graph colouring and subgraph isomorphism are used to resolve hardware connectivity 

constraints [13].  
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Certain classes of quantum algorithms respond better to temporal planning and 

scheduling optimization strategies. The Quantum Alternating Operator Ansatz class of 

quantum algorithms has a very high number of commutative gates, allowing for temporal 

planning and scheduling algorithms to be able to take advantage of this commutativity for 

more aggressive optimizations, though the added commutativity also leads to challenges in 

determining the optimal schedule when there are too many groups of commutative 

operations [51].  

Another approach to instruction scheduling for near-future quantum computers comes 

from the domain of constraint-based programming in which the primary objective is to find a 

scheduling solution given all the constraints, while the secondary objective is to minimize the 

number of added swap operations. While constraint programming is very promising for many 

problems, researchers have shown that pure constraint-based programming does not scale as 

well for instruction scheduling when compared to industrial temporal planning 

algorithms [55]. This has led to the development of hybridized algorithms which combine 

constraint-based programming with temporal planners in order to better utilize the strengths 

of constraint-based programming while removing some of its weaknesses with scalability.  

While the above work indicates that instruction scheduling can work at a gate level, 

some researchers suggest that this is not the best conceptual model for scheduling quantum 

algorithms. This is because the gate model is in itself an abstraction of how quantum gates 

are actually implemented in real quantum hardware [54]. In real quantum hardware, gates are 

not implemented as discrete operations as they would be classically. Instead, these operations 

are actually encoded as electrical pulses that control things such as the magnetic fields that 

will change the state of the qubits [54]. This difference makes temporal planning potentially 
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even more effective in a quantum computing context by taking into account how the 

hardware actually performs quantum operations.  

To deal with this disconnect between the gate model and the underlying gate 

implementations, Shi and colleagues [2019] developed a new strategy for instruction 

scheduling which aggregates multiple operations into a single control pulse and then 

schedules the aggregates [54]. This process involves finding groups of instructions that are 

commutative, creating custom control pulses from those instructions as if they were a single 

instruction, and then schedule sending the control pulses. In their experimental setup, they 

obtain an increased speed in the order of 5-10 times on the algorithms being tested. This 

speed increase is directly related to the level of commutative operations within the algorithm 

in question. From their experiments, Shi et al. find that without creating aggregate control 

pulses, each pulse must be sent individually [54]. This introduces additional latency to the 

program that decreases the output qubit fidelity, which decays exponentially with increased 

latency. Reducing this latency by sending fewer instructions to the quantum computer can 

help ensure that the quantum computations finish before the qubits decohere [54].  

While the algorithm implemented by Shi et al. [2019] does not account for the 

connectivity between qubits, the researchers note that the algorithm could easily be modified 

to account for the qubit connectivity [54]. The biggest challenge with the instruction 

aggregation technique is that it could create conflicts with other instructions such that the 

aggregates cannot be run at the same time, as the aggregated instructions could apply to 

multiple qubits at a time. Parallelism is an important feature of quantum computation and so 

aggregated instruction scheduling should be used carefully, with several analysis passes, to 

avoid causing too many detrimental effects to the potential parallelism. 
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Existing Quantum Compilers 

Quantum compilers are programming language compilers that can read and run 

quantum algorithms. These compilers can rely on all of the above fields, assembly languages, 

instruction sets, and optimization strategies. Several compilers currently exist for the first 

generation of quantum programming languages (including ScaffCC, ProjectQ, Q#, XACC, 

etc.). Most of these compilers support compilation to some variation of QASM, as QASM is 

currently considered the standard for quantum assembly [11]. Since these compilers require 

considerable information about the execution of the program being compiled in order to 

perform such heavy optimizations, many of the existing quantum compilers for quantum 

programming languages fall within the domain of “functional” programming languages.  

Functional languages are often considered to have much richer type systems19 than 

imperative languages do, as well as stricter rules when it comes to side-effects.20 A rich type 

system has data categorized by type and that type contains considerable information about 

the properties of that type. In a rich type system, program data and the use of operations are 

governed by these types and can be verified for correctness by the compiler. These rich type 

systems and restrictions allow compilers to perform better program validity checks at 

compile time rather than relying on runtime systems to handle errors [1, 2]. This may be the 

reason why much of the recent research in quantum programming languages has led to the 

development of functional quantum programming languages like Quipper and Q#.  

Besides the work done by independent researchers to develop quantum programming 

languages and their associated compilers, quantum hardware vendors have also been creating 
                                                           
19 Automated systems that classify data, usually based on programmer annotations, into particular 
“types” (such as integer or object) and perform analysis between types and their usage.  
20 Side-effect: an additional or unexpected alteration to a program’s state which is able to affect the 
rest of a program outside of the current executing scope or method.  
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proprietary languages and frameworks for their devices [17]. This gives rise to concerns over 

the ability to write portable code that can be used on many different physical devices. 

McCaskey and colleagues [2018] believe this may lead to artificial barriers in the adoption 

and performance of quantum programming languages and compilers due to the lack of inter-

operability provided by these proprietary frameworks [17].  

Comparison of Open Source Quantum Compiler Frameworks 

 The proposed research in this thesis requires the use of a quantum compiler 

framework. This section compares the strengths and weaknesses of several existing quantum 

compiler frameworks. Given the lack of availability of proprietary frameworks, only publicly 

available frameworks are under consideration. This limits the discussion of compiler 

frameworks to projects such as ScaffCC, ProjectQ, and XACC.  

ScaffCC is a scalable compilation and analysis framework based on the high-

performance LLVM compiler framework. ScaffCC is the compiler front-end for the scaffold 

programming language designed for quantum/classical hybrid algorithms that output a 

custom type of scalable quantum assembly representing the compiled algorithm [61]. 

ScaffCC is designed to scale effectively to extremely large programs. As with many of the 

other publicly available compilers for quantum computing, ScaffCC operates on qubits at a 

‘logical’ level, which means that the qubits do not accurately represent physical qubits and 

no error correction has been applied. Javadi and colleagues [2019] claim that ScaffCC can 

operate at this level rather than at the physical level because any optimization applied at a 

logical level will likely have a multiplicative effect on the required computing resources for 

the physical level [61]. Given that ScaffCC is based on an extended version of LLVM and 
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Clang, this compiler has access to very mature compilation tools and processes, including all 

of the classical optimization strategies provided through LLVM.  

The ScaffCC compiler has been verified against several different quantum 

algorithms, each possessing elements that are common to many more algorithms. These 

elements include the Quantum Fourier Transforms, classical oracles, state distillation, 

random walks, amplitude amplification, and more.  

One of ScaffCC’s assets is its use of professional quality and mature compiler 

infrastructure technologies available within the LLVM framework. This quantum compiler is 

likely one of the best currently available to the public since it uses efficient, powerful, and 

widely used compiler techniques. However, the use of the LLVM framework may also be 

one of ScaffCC’s biggest weaknesses. LLVM and Clang are very large and complex software 

packages that are only well known by a few developers. As a result, compiler extensions are 

more difficult to develop, drastically reducing the number of extensions that can be 

developed by the community. This is because an extensive working knowledge of the LLVM 

framework would be required in addition to ScaffCC’s compilation process and project 

structure.  

ProjectQ is an open source software solution for designing, testing, and running 

quantum algorithms through the use of an extensible compiler framework. Developed by 

Steiger, Häner, and Troyer [2018], this project is integrated into the Python programming 

language [62]. When executing Python scripts using the ProjectQ framework, quantum 

mechanical operations are cached and then passed through a series of optimization stages and 

transformations as part of the compilation process. The resulting code can then be tested in a 
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quantum computer simulator, analysed using the circuit drawer and resource counters, or run 

on real hardware through API’s provided by IBM’s Q-Experience.  

One of the biggest strengths of ProjectQ is that it is both simple and highly extensible. 

With this framework, developers can create new quantum gates as Python objects, 

controlling how they are decomposed, and they can choose which compiler passes are used 

or tailor the passes for particular needs. This allows programmers using ProjectQ to 

determine the effect of each compiler pass by using a resource counter, circuit drawer, or 

instruction printer before and after each pass [62]. These compiler passes also allow for 

layered abstractions which let developers ignore the specifics of quantum hardware and 

instead focus entirely on the algorithm. Programmers can then develop algorithms without 

having to worry about the hardware that will run the algorithm, and each pass of the compiler 

will slowly manipulate the algorithm to conform to all of the constraints of the backend 

hardware.  

Unlike traditional compilers, ProjectQ cannot examine all possible paths an algorithm 

can take. Instead, each time a quantum operation is called, it gets cached to be processed by 

the compiler. This behavior likely means that in many cases, the classical logic acts more like 

preprocessor directives in C rather than actual parts of the compiled algorithm; potentially 

imposing limits on the types of optimization passes that are possible in this framework. Some 

examples of these limits would be for conditional branches where only one branch would be 

executed and cached by the compiler, or loop structures where the loop is entirely unrolled 

for the given loop conditions rather than treated as a looping structure. Adding compilation 

stages that use branch optimization or loop optimization strategies means that these kinds of 

control structures would need to be emulated as custom Python classes in order for the 
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ProjectQ compiler to be able to operate on these control structures. However, due to the 

simplicity of adding new passes and back-ends, there are several extensions to ProjectQ 

already available on GitHub.   

XACC is a quantum algorithm compilation and execution framework developed 

under the Eclipse Foundation21 umbrella. XACC models quantum algorithm execution as a 

coprocessor model similar to how OpenCL or CUDA (Nvidia GPU parallel computing 

platform) work for graphical coprocessor programming [17]. In this model, the program is a 

classical program which can offload quantum mechanical ‘kernels’ to a supported device. 

This ‘kernel’ offloading allows a classical program to pause and wait for the execution of a 

quantum subroutine to be completed. In XACC, a ‘kernel’ is a small segment of code within 

a quantum programming language that is designed to be executed on quantum mechanical 

hardware. These ‘kernels’ can be written in many different quantum programming languages, 

including Scaffold, Quil and others. XACC is written in C++ with the goal being to make it 

as easy as possible to create bindings for other languages. In this way, developers will not 

have to learn new languages to use XACC. At the time of writing, XACC could be used on 

C++ or on Python bindings; however, plans exist for use with other languages such as 

FORTRAN.  

Of all the compiler frameworks discussed, XACC currently has the largest number of 

supported back-end targets. In XACC, back-end targets are referred to as ‘accelerators’ 

which are used to run compiled scripts. XACC currently supports several public quantum 

computer simulators, as well as several real quantum computers, such as IBM’s Quantum 

Experience and D-Wave’s quantum annealer. The overall architecture is similar to that 

                                                           
21 The Eclipse Foundation is an independent, not-for-profit corporation that acts as a steward of the 
Eclipse open source software development community. 
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employed by Project-Q, where quantum algorithms pass through a chain of optimization 

passes until they get passed off to a back-end interface / accelerator. Unlike ProjectQ, XACC 

supports pre- and post-processing of quantum kernels, which the developers believe could be 

used in error mitigation strategies [17]. One of XACC’s greatest strengths is its ability to 

compile multiple quantum programming languages and run them on multiple supported 

back-ends. XACC does not seem to have the same weaknesses such as ScaffCC’s complexity 

or ProjectQ’s potential to not be able to perform certain types of optimizations; but XACC 

also possesses neither of their strengths, such as the powerful and mature optimization 

framework employed by ScaffCC or the simplicity of use of ProjectQ.  

2.6 Summary 

This literature review identified several issues that need to be resolved before 

practical quantum computers can be developed and fully utilized. The hardware of quantum 

computers is rapidly evolving but still faces some key challenges, and these have an effect on 

every part of the software development toolchain, including compilers. Quantum compilers 

will need to support code portability, especially in lieu of how rapidly quantum hardware, 

instruction set architecture, and assembly languages are changing. Quantum compilers also 

need to consider many hardware details such as the connectivity of qubits, as multi-qubit 

operations often can only be applied to neighboring qubits. This means that not only does the 

compiler need to generate equivalent code for a particular instruction set architecture, it also 

needs to add the smallest number of swaps possible in order to maintain performance while 

still satisfying the neighboring connectivity issue. Quantum compilers should also take into 

account individual qubit decoherence times, apply the correct error correction codes, 

generate sequences of built-in gates for any given arbitrary programmer defined gate up to a 
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configurable level of precision, and estimate the number of qubits and execution time for a 

particular quantum program. More work needs to be put into developing compiler 

frameworks that are extensible and embrace code portability, as little work has gone into this 

area of research. In order to generate efficient machine code, quantum compilers will rely on 

many different optimization strategies.  

Many classical compiler optimization strategies will be applicable to quantum 

algorithms and will likely be used by quantum compilers. While all types of compiler 

optimization strategies will be important, loop optimization strategies and instruction 

scheduling will be particularly important due to the increased levels of parallelism available 

for quantum computers to be able to exploit compared to their classical counterparts.  
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Chapter 3: Methodology 
 

This research involves the creation of a quantum algorithm compiler, based on the 

gate model of quantum computing, which is capable of reading and analyzing quantum 

algorithms, and then conducting an experimental comparison of a specific hardware 

scheduling algorithm and its effects on various quantum algorithms. The goal of this research 

is to assess the effectiveness of this particular hardware scheduling algorithm for general 

usage. This chapter discusses the research methods that were employed, details about the 

hardware and software used to perform this research, and the data analysis methods.  

The chapter starts with a summary of the procedure employed by this experimental 

work, including the development of the framework required to perform the research, the 

experimental set up, and the collection of the experimental data. Next, the implementation 

methodology is discussed to provide insight into the design of the hardware scheduling 

algorithm which is employed for this research. The experimental setup and procedure is 

explained, along with a description of the methods used to analyze the experimentally 

generated data. Additionally, this section discusses how the research ensures rigor, reliability 

and validity. 

3.1 Procedure 

The procedure for this research involves software development, experimental work, 

and some comparative analysis. A quantum compiler for the OpenQASM programming 

language is developed, using a hardware scheduling algorithm inspired by the work of 

Guerreschi and Park22 [2017, 13]. This scheduling algorithm aims to abstract physical qubit 

                                                           
22 Code for Guerreschi and Park’s [2017] scheduling algorithm is not publicly available. All code for 
this version of the scheduling algorithm is based solely on my interpretation of the broad steps 
outlined in their paper. 
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placement away from the developer, allowing him/her to write quantum programs without 

worrying about hardware specific configurations. To test the efficacy of this particular 

hardware scheduling algorithm, experiments are performed in which quantum algorithms are 

optimized for different kinds of real quantum computing hardware, with various metrics 

gathered.  

Equipment 

The majority of the work done for this research is on a standard personal computer 

capable of running code written in C#, with the aid of several software packages. A Dell 

computer running an Intel Core i7 8700K @ 3.70GHz processor with 32 GB of DDR4 Dual 

channel RAM is used to run the experiments. The installed version of C# on the computer is 

.NET Core 3.1.301. On this setup, the Stopwatch class has an accuracy of 10000000 ticks per 

second, or 1 tick every 1·10-7 seconds, as determined by the Stopwatch.Frequency field. 

Development of a quantum computing framework 

The first step in developing a hardware scheduling algorithm is to determine the 

quantum computing framework the scheduler will be developed within since the scheduling 

algorithm relies on the core components of whichever framework is chosen. There are 

several quantum computing frameworks available for developing the hardware scheduling 

algorithm on top of. Some of these frameworks include ProjectQ,23 ScaffCC,24 XACC,25 and 

QisKit.26 Each of these frameworks has their own advantages and disadvantages. ProjectQ, 

for instance, has one of the simplest frameworks to use, in my opinion, but does not contain 

the ability to load quantum programs written in the OpenQASM assembly language, which is 

                                                           
23 Project Q official website at https://projectq.ch/ 
24 ScaffCC official website at https://github.com/epiqc/ScaffCC 
25 XACC official website at https://github.com/eclipse/xacc 
26 QisKit official website at https://qiskit.org  
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how many of the quantum algorithms are commonly distributed. ScaffCC is likely the most 

comprehensive framework of the three as it is based on the LLVM compiler infrastructure 

which, as a result, also makes it the most complicated to understand and modify. 

Additionally, ScaffCC cannot load OpenQASM files or run them against the IBM Quantum 

Experience platform. Instead ScaffCC takes programs written in a special C-based quantum 

programming language called Scaffold and compiles them to an offshoot of OpenQASM, 

which it can run in a local quantum computer simulator. Additionally, many of these 

frameworks are written in either C++ or Python, languages with which I have limited 

experience, potentially slowing down the development of my scheduling algorithm or 

resulting in a scheduling algorithm with lower quality code than using a language I am more 

familiar with. A summary of some of these frameworks can be seen in Table 3.1 below. 

Framework  Compiler Language(s) Complexity Url 

Project Q  Python Python DSL Low https://projectq.ch/ 

ScaffCC  C++ Scaffold High 
(LLVM) 

https://github.com/epiqc/Sc
affCC 

XACC  C++ Many 
(OpenQASM) 

High https://github.com/eclipse/
xacc 

QisKit  Python Python DSL Low https://qiskit.org/ 

Table 3.1 Quantum Computing Frameworks 

 For the reasons discussed above, a custom framework is developed in the C# 

programming language, inspired by the aforementioned frameworks. While not as fully 

featured, this custom framework contains only what is needed to be able to develop a 

scheduling algorithm without layers of additional complexity. This includes the ability to 

load OpenQASM assembly files and create or manipulate the basic operations that are 

applied to quantum circuits. For loading OpenQASM files, a simple recursive descent parser 
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is developed for the language’s grammar, as described by the OpenQASM language 

specification documentation [63]. For manipulating quantum circuits, a class is created 

which, when instantiated, contains all the qubits used, as well as a list of quantum operations 

which are applied to the qubits. This list can have operations added to it, removed from it, or 

be rearranged.  

Implementing the Custom Scheduling Algorithm 

The hardware scheduling algorithm tested in this research draws from the general 

algorithmic steps outlined in Guerreschi and Park’s [2017] work from their paper entitled 

“Gate scheduling for quantum algorithms” [13]; however, my work differs in 

implementation. In their work, the algorithm assumes that other compiler steps, such as 

quantum error correction, have already been performed, thereby simplifying the problem to 

looking only at the scheduling of basic quantum operations to the hardware’s qubits. In their 

algorithm, the process of scheduling quantum operations for specific hardware is broken 

down into four simple steps. Given a list of quantum operations in a circuit, their first step is 

to construct a dependency graph of the operations. An operation relies on a previous one if 

that operation uses any of the same hardware resources. For instance, if two operations use 

the same quantum bits, then the second operation relies on the first. This becomes a little 

more complicated given that quantum gates are unitary matrices and, as such, can be 

commutative with other gates. If the two operations are commutative, then there is no 

dependency between the operations. If two matrices (operations) are commutative, then the 

order of operations does not matter. If the order of operations does not matter, then the 

quantum operations do not rely on one another. 
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Guerreschi and Park’s [2017] second step is to assign a priority value to each 

quantum operation to create a pseudo-ordering of operations [13]. This is performed by 

making sure that each operation has a larger priority than any operation that depends on it, 

but a lower priority than any operation it depends on. Guerreschi and Park accomplish this by 

assigning a priority to each operation that is the maximum of the priorities of all the 

operation on which it depends, added to its own latency,27 which in their work is just an 

integer value of 1 for basic gates and 2 for controlled gates. The ordering of these priorities 

allows one to schedule each operation with the same priority at the same time. Generally, 

each operation in a given group operates on different qubits due to the pseudo-ordering of the 

priorities. However, in algorithms with a high degree of commutativity, a group could 

contain multiple commuting operations acting on the same hardware resources, making it 

ambiguous as to which operation is applied first, creating a conflict.  

The third step in Guerreschi and Park’s [2017] algorithm is to resolve these conflicts 

created when the ordering of instructions is ambiguous [13]. This is done by splitting the 

groups of instructions into subgroups containing no conflicts. The method employed by the 

authors to create conflict-free subgroups is to create a graph whose vertices are logical qubits 

and whose edges are operations, then apply a form of edge-based graph colouring to assign 

different colours to groups of operations such that no group can operate on the same qubits. 

Additionally, they employ subgraph isomorphism as a strategy to minimize the number of 

groups created. The fourth and final step is to perform routing in which each of the groups, 

now unambiguous, are applied to the chosen hardware and qubits are swapped such that the 

operations in question can be performed. In their paper, Guerreschi and Park look only at 

hardware connected as a linear list of qubits, resulting in a simple routing strategy [13]. 
                                                           
27 Latency is defined as the amount of time required for a particular operation to be completed. 
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However, any routing strategy could be employed for more complicated hardware 

configurations. The resulting operations exploit some level of parallelism and are compatible 

with the underlying hardware connectivity.  

My implementation of this scheduling algorithm follows the basic steps outlined by 

Guerreschi and Park [2017] above [13]; however, it differs in the actual implementation of 

each step. One of the major differences in this implementation is that the underlying 

framework in which the scheduling algorithm is implemented on top of was built from the 

ground up for this research. The basic functionality of this framework includes reading 

OpenQASM 2.0 assembly files, creating an object for representing the quantum circuit, and 

manipulating quantum operations on a quantum circuit. These functions are analogous to the 

scanning, parsing, and optimizing stages of compiler design as discussed in Chapter 2.  

The framework in this research utilizes the Cbit and Qubit classes, as classical and 

quantum bits are the fundamental data types of a quantum algorithm. The Cbit class 

represents a classical bit and is used for any OpenQASM 2.0 operations that rely on classical 

values, such as “if statements” or “quantum measurement.” The Qubit class is used to 

represent a quantum bit, which is used in all quantum mechanical operations, such as when 

applying quantum operators. Qubits and Cbits are able to be members of user defined 

registers, which act as arrays for storing a fixed number of bits. OpenQASM only allows 

Qubits and Cbits to be allocated in fixed size registers and so this is why the framework 

replicates this idea. The internal representation of a quantum circuit is managed by the 

Circuit class. This class contains lists of all of the quantum bit registers and all the classical 

bit registers. Additionally, the Circuit class contains an ordered list of all operations to apply 

to qubits, which are generically called in this thesis as ‘events.’ These events are ordered the 
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same as they are in an OpenQASM file, reading from top to bottom. In order to model each 

of these events within the Circuit class, a list is used to store any kind of event that can 

happen to the quantum circuit. This list is called the ‘GateSchedule,’ as many of the events 

are applications of quantum gates. Each event is an object, indicating which classical or 

quantum bits are involved in the operation. Lastly, the Circuit class contains methods to 

dynamically allocate new classical and quantum bit registers. Code Sample 3.1 shows the 

definition of this class.  

public class Circuit { 
 
    private List<Register<Qubit>> quantumRegisters = new List<Register<Qubit>>(); 
    private List<Register<Cbit>> classicalRegisters = new List<Register<Cbit>>(); 
 
    public LinearSchedule GateSchedule {get; set;} 
 
    public Register<Cbit> AllocateCbits(int classicalCount); 
    public Register<Qubit> AllocateQubits(int qubitCount); 
     
} 
Code Sample 3.1: Definition of a quantum circuit within this framework. Circuits contain classical 
registers, quantum registers, and a list of instructions to apply to the qubits stored within the 
‘GateSchedule’ object. 
 

For loading circuits from OpenQASM 2.0 assembly files, a recursive descent parser is 

developed from the grammar provided through the official OpenQASM 2.0 language 

specification document [63]. This parser contains recursive rules based on each of the 

grammar rules within the specification and outputs a syntax tree describing the parsed circuit. 

This syntax tree is then used to translate each instruction within an OpenQASM file into 

either the creation of a register for the circuit or the addition of an event to the circuit’s 

schedule.  

In order to be able to convert the OpenQASM instructions to events for the Circuit’s 

schedule, classes must be made for each OpenQASM instruction, each of which must 
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implement a common interface so that it can be stored within the gate schedule list. The 

GateEvent class is used to represent the application of OpenQASM’s single qubit quantum U 

gate operation. The ControlledGateEvent class is used to represent OpenQASM’s CX 

(controlled not) operation. The BarrierEvent class is used for the barrier instruction. The 

IfEvent class is used to represent OpenQASM’s conditional quantum operation instruction. 

The MeasurementEvent class is for OpenQASM’s measurement operation and the 

ResetEvent is for the reset operation.  

Additionally, OpenQASM supports custom gate definitions as well. The compiler 

recursively unrolls these custom gate definitions until they are only composed of the base 

gates listed. 

With this framework, the scheduling algorithm can be built such that it operates on a 

circuit’s linear sequence of instructions, as parsed from OpenQASM algorithms. At the start 

of the scheduling algorithm, the quantum operations and other events are supplied as a linear 

sequence in a class that implements C#’s IEnumerable interface in order to be enumerated 

over. The base interface that all quantum circuit events implement is entitled ‘IEvent.’ This 

interface provides methods to determine which qubits and classical bits are used by the event. 

Code Sample 3.2 shows how this interface is used with C#’s IEnumerable generic interface 

to create a class for storing the linear sequence of circuit events which will be scheduled by 

this algorithm. 

public class LinearSchedule: ISchedule, IEnumerable<IEvent> { … } 
Code Sample 3.2: Definition of a sequence of quantum operations before hardware scheduling. 
 

For this research, a hardware connectivity graph, like the one seen in Figure 3.1, is 

provided to the scheduling algorithm to describe the physical qubits of the hardware, where 

the vertices of the graph are the physical qubits and the edges are the adjacencies in which 
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events can be performed between. The hardware connectivity graph is used in the routing 

step to determine which qubit swaps are valid. Several different hardware connectivity 

graphs are used across experiments. Graphs representative of real-world quantum computing 

devices are created from hardware descriptions of IBM devices found on IBM’s Quantum 

Experience28 portal. For each of the IBM machines, the hardware connectivity graphs are 

created by copying the configuration shown on the “available devices” list on the homepage 

of the IBM Quantum Experience platform. These hardware connectivity graphs are loaded 

from descriptions provided by YAML files where the connectivity property is interpreted as 

a simplified version of the Graphviz DOT graph description language, as can be seen in Code 

Sample 3.3 for the IBM Burlington machine. One can see the direct comparison between the 

hardware connectivity YAML from Code Sample 3.3 and the hardware description image 

from the Quantum Experience portal in Figure 3.1.  

Name: Burlington 
Alias: ibmq_burlington 
Manufacturer: IBM 
Technology: Superconducting 
Connectivity: >- 
    q0 [] 
    q0 -- q1 [] 
    q1 -- q2 [] 
    q1 -- q3 [] 
    q3 -- q4 [] 
Code Sample 3.3: Hardware description YAML for IBM’s Burlington quantum computer. The 
Connectivity graph is defined here in a domain specific language where qubits are named “q0” – “q4” 
and connections are indicated by either ‘--‘ or ‘->’ for two way or one way connections respectively.  
The “[]” can be used to describe additional qubit properties but are unnecessary for the scheduler in 
its current state. 

                                                           
28 IBM Quantum Experience platform available at https://quantum-computing.ibm.com/ 
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Figure 3.1: The hardware description for IBM’s Burlington quantum computer as seen from the IBM 
Quantum Experience platform. The connectivity graph shown above was used to create the associated 
hardware description Code Sample 3.3. 
 

Additionally, a bijective29 map is used to map the logical qubits in the algorithm to 

the physical qubits available on the hardware. Because the circuit can have fewer logical 

qubits than the hardware has physical qubits, additional “dummy” logical qubits are made 

that can be mapped to the remainder of the physical qubits. This allows the remainder of the 

code to not worry about ‘null’ values, where a physical qubit is not mapped to any logical 

qubit, simplifying the code. The implementation for the construction of these “dummy” 

qubits can be seen in Code Sample 3.4. These “dummy” qubits have no effect on the result of 

the scheduling algorithm and exist only as placeholders to simplify the implementation of the 

scheduling algorithm.  

  

                                                           
29 A bijective map is a one-to-one mapping between elements in two different sets. The 
implementation of a bijective map in this research is a custom implementation using two separate 
instances of C#’s Dictionary class, which is used for one-way mapping.  
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var logicalQubitMap = new BijectiveDictionary<Qubit, PhysicalQubit>(qubitCount); 
var dummyQubits = new List<Qubit>(); 
for (var i = logicalQubits.Count; i < physicalQubits.Count; i++) { 
    dummyQubits .Add(new Qubit(null, i));  
} 
var qubitAssignmentIndex = 0; 
foreach (var logical in logicalQubits.Concat(dummyQubits)) { 
    logicalQubitMap.Add(logical, physicalQubits[ qubitAssignmentIndex++ ]); 
} 
 
Code Sample 3.4: Creating a bijective map between logical qubits and physical qubits, adding 
dummy logical qubits to unused physical qubits in order for all physical qubits to appear within the 
mapping. 
 

For the first step of the scheduling algorithm, one must construct a dependency graph 

with all of the circuit events. To construct this graph, each of the events is iterated over and 

whatever hardware resources they use are recorded. If a prior event uses any of the same 

hardware resources, then that operation becomes a dependency unless the two events are 

commutative quantum gates. This is continued for each of the events until the entire 

dependency graph is filled.  

Next, the latencies for each operation are recorded. This is done simply by taking 

each circuit operation and looking up a latency value from a table. Similar to the work by 

Guerreschi and Park [2017], the latency values in the table are assigned as integer values 

with a value of ‘1’ for single qubit gates, ‘2’ for two qubit controlled gates, and ‘3’ for more 

expensive operations [13]. These values are only used for prioritising the events during 

scheduling and therefore are different from the time estimations used when estimating how 

long algorithms are expected to run. For the run time estimations of each event, the latencies 

are derived from times taken from IBM quantum computers accessible on the qiskit 
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GitHub.30 The exact latencies used for each of the possible quantum circuit operations (as 

defined by the OpenQASM language specification) are recorded in Table 3.2.  

Circuit Event (Operation) Scheduling Latency Run Time Estimate 

Barrier 1 0 

Measurement 3 1ms 

Reset 3 1ms and 150ns  

Classical If 2 1ms and 150ns  

Single Qubit Gate 1 150ns 

Controlled 2 Qubit Gate 2 211ns 
Table 3.2: Latency times for various quantum circuit events. These times are semi-arbitrary. 
Measurements, on average, take drastically more time than gate applications and that is indicated in 
the latency times. Resets are usually a measurement potentially followed by the application of an ‘x’ 
gate. “If” statements require classical control and so are given the same time as a reset. 
 

  With the finalized dependency graph and all event latencies computed, the priority 

values can be calculated. The dependency graph can be traversed depth first, with priorities 

calculated in a post-order fashion. However, experimental trials and resulting errors indicated 

that it is not an optimal method in the case of several algorithms used for this research. Many 

of the dependency graphs contain diamond patterns which, when traversed, naïvely result in 

huge growths in the run time of the scheduling algorithm, as work that has already been 

completed gets recalculated many times. Additionally, with larger graphs, languages with a 

limited stack size such as C# may crash as the stack overflows. A better method in these 

cases is to pre-compute a linear ordering and simply iterate over all graph nodes in that order. 

These linear orderings can be pre-computed during earlier analysis passes and, as such, do 

not require much additional run time when used. By iterating over graph nodes instead of 

using a post-ordered recursive traversal method, the stack depth is minimized and the chance 

                                                           
30 Yorktown Qiskit GitHub accessed March 13, 2022 from https://github.com/Qiskit/ibmq-device-
information/blob/master/backends/yorktown/V1/version_log.md 
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of a stack overflow decreases. A simple choice of linear ordering is to reverse the ordering of 

the original instructions as defined in the source code file. Alternatively, as done in this 

project, a depth value is computed when constructing the dependency graph such that the 

depth of a graph node is equal to the maximum of all the nodes it relies on plus 1; then the 

order is in decreasing depth. This depth-based ordering is very similar to reversing the 

ordering of instructions from the source file. By iterating over a list of graph nodes rather 

than recursively post-order traversing the whole graph, larger graphs can be supported 

without overflowing C#’s stack. This speeds up the computation of the priorities without 

adding additional complexity. Regardless of the method used to compute priorities, the 

priority calculation should be set up in such a way that it creates pseudo-ordering whereby all 

events must have a lower priority than those events they depend on and a higher priority than 

those that depend on it. The exact computation used to compute the priority of each event 

node in the dependency graph is given by Equation 3.1 

(3.1) �� = �� + ���(��� … ���) where �� =  priority of the current event �� = latency of current event ��� … ��� =  priorities of all events that depend on the current event 
Equation 3.1: Priority computation for circuit events. This can be efficiently computed through the 
dependency graph in which the latency of each event is recorded in the graph vertices and the edges 
can be used to find all the events that depend on it for ease of computing the maximum.  
 
Once priorities have been determined, the events can be grouped by their priority values in 

descending order such that those groups of events with the highest priority are scheduled 

first.  

The next step in the scheduling algorithm is to break apart groups where instruction 

scheduling is ambiguous. To determine whether there are ambiguous events within a group, 
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each event is checked to ensure it does not use any of the same hardware resources (qubits, 

classical bits, or otherwise) as any of the other operations in the group. If there are no 

ambiguous conflicting instructions, the group can be scheduled immediately. If there are 

conflicts, the group must be split into multiple unambiguous groups. For this task, an 

interaction graph is defined such that each vertex is a logical qubit and each edge represents 

an event that uses those qubits. If an edge is a “self loop,” meaning that the edge starts and 

ends at the same vertex, then it is a single qubit operation that only depends on that qubit. If 

the edge spans two different qubits, it is a two qubit operation. This is the same kind of data 

structure as employed by Guerreschi and Park [2017, 13]. However, the ambiguity resolution 

in this research’s hardware scheduling algorithm differs from their algorithm in the usage of 

the interaction graph data structure for ambiguity resolution.  

In Guerreschi and Park’s [2017] research, ambiguity resolution uses graph colouring 

along with subgraph isomorphism to allow for the discovery of better unambiguous 

groupings [13]. In my research, a more naïve approach is taken where colours are assigned to 

each edge by iterating over each edge such that no other edges connecting to the same qubit 

vertices share the same colour. This assignment is biased such that operations are more likely 

to be grouped into the first few groups rather than creating new groups. This is performed by 

trying to start with the first colour on each edge rather than simply generating a new colour 

for each edge. This strategy is quick and effective, though not necessarily optimal in terms of 

minimizing the number of colour groups. Code Sample 3.5 below shows the code used to 

implement this naive form of edge colouring. The non-conflicted groupings created are 

passed back to be scheduled along with all of the unambitious groups. The decision to use 
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this more naïve method rather than Guerreschi and Park’s [2017, 13] more intelligent 

strategy is due to the added computational complexity of using their particular strategy.  

foreach (var edge in this.Edges) { 
    // Check if edge is already coloured 
    if (edge.Data.HasColour()) { 
        continue; 
    } 
 
    // Get all edges coming off this edge's endpoints 
    var startEdges = this.IncidentEdges(edge.Startpoint); 
    var endEdges = this.IncidentEdges(edge.Endpoint); 
 
    // Always bias towards 1 (force more things to be 1 than not 1) 
    var colour = 1;  
 
    // Select a list of already used colours 
    var coloursItCantBe = startEdges.Select(e => e.Data.Colour).Concat(endEdges.S
elect(e => e.Data.Colour)).ToList(); 
 
    // Pick a colour that is not already used 
    while (coloursItCantBe.Contains(colour)) { 
        colour++; 
    } 
 
    // Assign colour 
    edge.Data.Colour = colour; 
} 
Code Sample 3.5: Naïve edge colouring algorithm with an attempt to bias towards using the first 
colours as much as possible. 

 
To schedule each of the unambiguous groupings of events, only one other operation is 

required — routing. Routing is the act of inserting swap gates such that qubits can be moved 

around the hardware to facilitate performing each event. This is required due to the fact that 

two-qubit operations can only be performed on neighbouring qubits and current hardware has 

limited connectivity between neighbours [8]. As noted previously, swaps can be an expensive 

quantum operation; as such, the goal of any routing algorithm is to minimize the number of 

added swaps. Reducing the total number of swaps globally, across the entire quantum 
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program rather than for particular pieces, is an open and difficult problem to solve. For 

Guerreschi and Park’s [2017] implementation, the researchers only examined hardware with 

qubits arranged in a linear array [13]. For this linear hardware configuration, routing between 

qubits is simple as qubits can only be swapped left or right along the linear array. My 

research examines hardware scheduling for realistic quantum hardware, of which there are 

many possible qubit configurations. Therefore, unlike Guerreschi and Park’s research, where 

routing is a strictly linear process, in order to allow for more realistic and complicated 

hardware configurations, the A* search algorithm is used for routing.  

The A* algorithm is a graph traversal and search algorithm which can be viewed as 

an improvement or extension of Dijkstra’s shortest path algorithm [64]. This algorithm is 

often used to find the shortest path from one node in a graph to another node. What 

constitutes a node varies depending on the purpose of the graph. What makes the A* 

algorithm an improvement on Dijkstra’s is an additional heuristic function which is used to 

apply additional weighting to each path. Specifically, the heuristic is used in addition to the 

currently explored path lengths in order to sort which paths it should continue exploring. The 

goal of the added heuristic is to attempt to traverse the most promising paths first, resulting in 

a better average run time than other search algorithms. This combined weighting is often 

called the ‘F’ score for a particular node [64]. Code Sample 3.6 shows pseudocode describing 

a simplistic version of the A* search algorithm. 
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def AStar (start, goal) 
    openSet = {start} 
 
    while openSet is not empty 
        current = select node from openSet with min(f-score) 
        if current = goal 
            return backtrack_path(current) 
         
        openSet.remove(current) 
        for neighbour of current 
            g-score = current.g-score + distance(current, neighbour) 
            if g-score < neighbour.g-score 
                neighbour.previous = current 
                neighbour.g-score = g-score 
                neighbour.f-score = g-score + heuristic(neighbour) 
                if neighbour not in openSet 
                    openSet.add(neighbour) 
 
    return failure # no path found 
 
Code Sample 3.6: Pseudocode for simplistic implementation of the A* Search algorithm.  
 

The A* search algorithm, in this case, operates on a qubit connectivity map. Each 

possible mapping of logical qubits to physical qubits is a node of the graph. The edges of the 

graph are represented by swapping particular logical to physical qubits, as restricted by the 

connectivity map. The initial state of the graph is represented by the current mapping 

between logical and physical qubits at the start of the routing stage. This search finds the 

shortest sequence of qubit swaps from the current mapping of logical to physical qubits to a 

new mapping in which all the operations being scheduled can be performed on the hardware. 

For this research, a naïve heuristic is used where the qubits associated with each instruction 

are assigned a colour, and for each qubit that is not connected to others of the same colour, 

then the heuristic value increases by 1. Since the A* search algorithm is guaranteed to return 

the shortest path, this in turn guarantees the shortest number of added swaps for the given 

configuration.  
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Even though the A* search algorithm is guaranteed to return the shortest path after 

searching, this does not mean that the number of swaps is at a global minimum; rather, it 

means that the number of swaps for each individual step is at a local minimum. In order to 

globally minimize the total number of qubit swaps, a lookahead31 strategy must be employed. 

This research, like Guerreschi and Park’s research [2017, 13], leaves this as a problem to be 

solved in future research.  

The setup of this search is as follows. Using the logical to physical qubit mapping and 

the hardware connectivity graph, each of the events for the group is marked onto the physical 

qubit graph. The A* search algorithm is used to search the state-space moving from one 

configuration of qubits to another by applying qubit swapping until there is no longer any 

physical gap between any of the qubits involved in all of the operations. These swaps are 

then added to the schedule and the logical to physical qubit map is updated with the new 

physical positions for each logical qubit. These steps are repeated for each of the conflicting 

groups of circuit events. 

The scheduling algorithm returns a schedule which contains groups of operations that 

are capable of being performed at the same time on realistic near-future quantum computing 

hardware, with additional steps taken to insert swapping, allowing circuits that are not 

designed for a particular hardware to work. In summary, this algorithm follows the broad 

steps outlined by Guerreschi and Park [2017, 13], with my own interpretation of all steps, 

particularly with respect to ambiguity resolution, which uses a more naïve strategy, as well as 

the routing algorithm, which is less hardware limiting due to use of the A* search algorithm. 

                                                           
31 Lookahead is a process in which subsequent passes of an algorithm are examined in order to make 
better decisions on the current pass. 
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Experimentation 

Experimentation for this research involves running a program that performs hardware 

scheduling for selected quantum programs or circuits on a variety of selected hardware 

configurations, using a custom hardware scheduling algorithm. A variety of statistics are 

recorded at each step of the process, stored in different tables for later analysis. Details of the 

overall experimental process are presented in Code Sample 3.7 in pseudo-code. 

for each circuit 
    record circuit statistics 
 
    for each hardware 
        start timer 
        schedule circuit for hardware 
        read timer 
 
        record scheduling statistics 
Code Sample 3.7: Pseudo-code detailing the experimental procedure.  
 

The hardware devices used in the experiments are freely accessible devices accessed 

through IBM’s Quantum Experience, of which there are nine different hardware devices with 

five different qubit arrangements. These include: the Armonk machine (1 qubit); the 

Burlington, Essex, London, Ourense, and Vigo (five qubit T arrangement) machines; and the 

Yorktown (5-Qubit diamond arrangement), Rome (five Qubit linear arrangement), and 32 

Qubit fully connected IBM High Performance Simulator. Each of these hardware devices is 

listed in Table 3.3. 
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Hardware Name Qubits Connectivity Configuration 
Armonk 1 N/A 
Burlington 5 T 
Essex 5 T 
Ourense 5 T 
Vigo 5 T 
Yorktown 5 Diamond 
Rome 5 Linear 
IBM Simulator 32 Fully 
Table 3.3: List of all hardware configurations used with their number of qubits and connectivity. 

For each of the quantum hardwares chosen, 39 different quantum algorithms are 

tested, 21 of which are provided through QisKit’s OpenQASM repository.32 Some of these 

21 algorithms have already been optimized for the Yorktown arrangement (otherwise known 

as ibmqx2), and as such should require minimal, if any, changes after hardware scheduling. 

The remaining 17 tested quantum algorithms were created by generating the circuit for a 

given set of input parameters. These circuit generators were developed by studying the 

algorithm definitions as identified in the June 2020 version of the online QisKit textbook.33 

While most of these circuit generators were built from scratch, parts of them were translated 

from their QisKit Python originals, such as the majority of Shor’s algorithm.34 All algorithms 

being tested, both generated and those provided by Qiskit, are listed in Table 3.4. 

ID Algorithm 
Name 

Arguments Source Purpose 

1 
(1.0) 

Quantum 
Teleportation 

 Generator derived from the 
QisKit textbook 

Teleport the state of one qubit to 
another entangled qubit 

2 
(1.1) 

Super dense 
Coding 

00 Generator derived from the 
QisKit textbook 

Send 2 bits of classical data to 
another party with 1 qubit 

3 
(1.2) 

Super dense 
Coding 

01 Generator derived from the 
QisKit textbook 

Send 2 bits of classical data to 
another party with 1 qubit 

4 
(1.3) 

Super dense 
Coding 

10 Generator derived from the 
QisKit textbook 

Send 2 bits of classical data to 
another party with 1 qubit 

5 Super dense 11 Generator derived from the Send 2 bits of classical data to 

                                                           
32 QisKit repository found at https://github.com/Qiskit/openqasm/tree/master/examples  
33 QisKit textbook found at https://qiskit.org/textbook/ch-algorithms  
34 See 
https://qiskit.org/documentation/locale/de_DE/_modules/qiskit/aqua/circuits/gates/multi_control_u1_
gate.html  
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ID Algorithm 
Name 

Arguments Source Purpose 

(1.4) Coding QisKit textbook another party with 1 qubit 
6 
(1.5) 

Deutsch 
Algorithm  

constant 
true 

Generator derived from the 
QisKit textbook 

Determine if a function f {0,1} 
→ {0,1} is constant 

7 
(1.6) 

Deutsch 
Algorithm  

constant 
false 

Generator derived from the 
QisKit textbook 

Determine if a function f {0,1} 
→ {0,1} is constant 

8 
(1.7) 

Deutsch 
Algorithm  

Identity Generator derived from the 
QisKit textbook 

Determine if a function f {0,1} 
→ {0,1} is constant 

9 
(1.8) 

Deutsch 
Algorithm  

Flip Generator derived from the 
QisKit textbook 

Determine if a function f {0,1} 
→ {0,1} is constant 

10 
(1.9) 

Deutsch Josza  3 qubits , 
balanced 

oracle 

Generator derived from the 
QisKit textbook 

Determine if a function f {0,1}n 
→ {0,1} is constant 

11 
(1.10) 

Bernstein 
Vazrani 

3 qubits, 
value 11 

Generator derived from the 
QisKit textbook 

Determine if the input falls into 
one of two classes based on a 
secret string. 

12 
(1.11) 

Simon’s 
Algorithm 

11 Generator derived from the 
QisKit textbook 

Detect the period of a binary 
function 

13 
(1.12) 

Quantum 
Fourier 
Transform 

3 qubits Generator derived from the 
QisKit textbook 

Quantum version of the discrete 
Fourier Transform for 3 qubits 

14 
(1.13) 

Quantum 
Fourier 
Transform 

4 qubits Generator derived from the 
QisKit textbook 

Quantum version of the discrete 
Fourier Transform for 4 qubits 

15 
(1.14) 

Quantum 
Fourier 
Transform 

5 qubits Generator derived from the 
QisKit textbook 

Quantum version of the discrete 
Fourier Transform for 5 qubits 

16 
(1.15) 

Grover’s 
Search 

9 items, 
phase 
oracle 
search 

Generator derived from the 
QisKit textbook 

Unstructured search of a 
collection of items using a black 
box as a filter 

17 
(1.16) 

Max Cut 
Problem 

Triangle 
plus edge 

graph 

Generator derived from the 
QisKit textbook 

Partition a graph’s vertices  into 
two sets with a maximum cut 

18 
(1.17) 

011_3_qubit_
grover_50_ 

 https://github.com/Qiskit/ope
nqasm/tree/master/examples 

3 Qubit Grover amplification 
repeated twice  

19 
(1.18) 

Adder  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

4 bit quantum ripple carry adder 

20 
(1.19) 

bernstein-
vazirani 

 Quantum algorithm 
implementations for 
beginners, Coles et al, 2018 

Determine if the input falls into 
one of two classes based on a 
secret string. 

21 
(1.20) 

Bigadder  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

8 bit ripple carry adder made 
from 2 4 bit adders 

22 
(1.21) 

Deutsch_Algo
rithm 

 https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Determine if a function f {0,1} 
→ {0,1} is constant 

23 
(1.22) 

inverseqft1  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum Fourier Transform and 
measure 

24 
(1.23) 

inverseqft2  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum Fourier Transform and 
measure second version 

25 
(1.24) 

ipea_3_pi_8  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Iterative phase estimation 

26 
(1.25) 

Iswap  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Swap 2 qubit states and phases 
by amplitude ‘i’ 
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ID Algorithm 
Name 

Arguments Source Purpose 

27 
(1.26) 

pea_3_pi_8  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Phase estimation 

28 
(1.27) 

Qec  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Repetition code syndrome 
measurement 

29 
(1.28) 

qe_qft_3  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum version of the discrete 
Fourier Transform for 3 qubits 

30 
(1.29) 

qe_qft_4  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum version of the discrete 
Fourier Transform for 4 qubits 

31 
(1.30) 

qe_qft_5  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum version of the discrete 
Fourier Transform for 5 qubits 

32 
(1.31) 

Qft  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum version of the discrete 
Fourier Transform for 4 qubits 

33 
(1.32) 

Qpt  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Quantum phase transition 
algorithm 

34 
(1.33) 

Rb  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Randomized benchmarking 
sequence 

35 
(1.34) 

Teleport  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Teleport the state of one qubit to 
another entangled qubit 

36 
(1.35) 

teleportv2  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Improved teleportation circuit 

37 
(1.36) 

W-state  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Prepare qubits in the W state 

38 
(1.37) 

W3test  https://github.com/Qiskit/ope
nqasm/tree/master/examples 

Test of preparing qubits in the W 
state 

39 
(1.38) 

Shor’s 
Algorithm 

15 Generator derived from 
Qiskit Python 
implementation 

Find a factor of the given integer 

Table 3.4: List of all quantum algorithms implemented for this experiment. ID numbers were 
provided for each algorithm used in the experiments; these numbers are used to index the algorithms 
from a list in the experiment program. The source for each algorithm is provided and if the algorithm 
was generated, the parameters used for generating that particular algorithm’s circuit are also shown.  

 
Data collection 

The data collected in these experiments are metrics about quantum algorithms both 

before and after scheduling, stored in Microsoft Excel compatible CSV (comma separated 

value) files, where each row represents a circuit and each column represents a specific 

hardware implementation, with the cell values being that particular metric for that circuit 

when being optimized for that hardware. The metrics recorded are the number of qubits used 

in each algorithm, the number of instructions/steps before and after scheduling, the time 

taken to perform the scheduling optimization, an estimation of how long each algorithm takes 



86 
 

to execute, and the additional number of swaps required to make the circuit compatible with 

the given hardware arrangement. Qubit and instruction counts are easily determined by 

manual analysis of each algorithm’s OpenQASM assembly code. Qubits are declared at the 

top of OpenQASM files and can be summed to get the total number of used qubits. Similarly, 

the number of instructions in the assembly file can be counted before optimization, and the 

number of parallel steps can be counted in the scheduled circuit. The time taken to perform 

the scheduling is captured by the use of C#’s Stopwatch class, which is started before the 

scheduling and then stopped after scheduling. The scheduling time is measured for each of 

the algorithms being tested against each of the different hardware configurations. The run-

time estimations are based on assigning estimated run time values for each type of 

OpenQASM instruction per Table 3.2. Before scheduling, the run time is determined by 

iterating through all the OpenQASM instructions and summing up the operation’s estimated 

run time. After scheduling, the estimation is undertaken by summing up the maximum 

operation estimation from each of the parallel operations within each of the scheduled steps. 

Once all trials have run and the metrics are gathered for each, the averages and standard 

deviations are computed for each metric across hardware and algorithm so they can be more 

easily analysed. 

Program Validation 

Before running the experiments, the experiment program was subjected to several 

tests to ensure the experiments were working. The first test simply attempted to schedule 

each algorithm against a single hardware. It was during this test that Shor’s algorithm was 

noted to be causing a stack overflow within the .NET virtual machine. This indicated an issue 

with the scheduling algorithm created by a recursion issue, resulting in traversing over graph 



87 
 

nodes multiple times, which created too much stack depth. This was subsequently fixed and 

the test redone. Subsequent tests found additional minor issues with the implementation of 

pathfinding and graph colouring algorithms used by the hardware scheduler. When testing 

was completed, the experiment was run and repeated many times to collect enough data. The 

procedure used for analyzing the algorithms is described in the Data Analysis section. 

Performance 

Trials of the experiment took only a few seconds to complete. This meant that large 

numbers of trials could be run over a very short period of time. As a result, 100 different 

trials were run to accumulate enough information. With this much data, analysing the results 

can become a time-consuming task. As a result, an auxiliary program was created which 

could sift through the data and compute averages, sums, as well as standard deviations, 

creating summaries which are easier to analyse. 

3.2 Data Analysis 
 

Each experiment went through the 39 quantum algorithms and scheduled them for all 

10 types of hardware. Each experiment generated nine main files, each containing the data 

for a single metric recorded against each algorithm and each of the compatible hardware. The 

first of these tables is simply entitled “index.csv” and is used to record the algorithms tested 

and the running time of the experiment. The second table, “matrix.qubitCountBefore.csv,” 

records how many qubits are involved in a particular quantum circuit before hardware 

scheduling is performed. The third table, “matrix.estimatedRuntimeBefore.csv,” contains the 

estimated run time of the given algorithm before it has been optimized. This estimate is the 

sum of individual run-time estimates for each of the instructions within the OpenQASM file. 

For single qubit and controlled qubit operations, the instruction run-time estimations are 
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based on performance metrics from IBM quantum computers. Other OpenQASM 

instructions, such as those for barriers, resets, and measurements, are approximations, as no 

official metrics could be found for them on the official IBM documentation repository. These 

estimations are identical to those shown in the “Procedure” section in Table 3.2. The fourth 

table, “matrix.estimatedRuntimeAfter.csv,” contains the estimated run time post-scheduling 

for each algorithm on each hardware configuration. Since scheduling allows for several 

operations to be run synchronously, only the longest time of each synchronous group is used 

for the sum. The “matrix.estimatedRuntimeDelta.csv” table contains the difference between 

the estimated run times after scheduling and before scheduling. The “matrix.eventCount.csv” 

table is a count of the total number of OpenQASM instructions before scheduling. The 

“matrix.eventCountDelta.csv” table shows the difference between the original number of 

instructions and the number of synchronous groups of instructions in the scheduled version. 

The “matrix.eventSwapCountAfter.csv” table shows the number of swap events added to the 

circuit to meet hardware connectivity constraints. Finally, the “matrix.optimizationTime.csv” 

table shows how long it took to schedule each of the algorithms for each hardware device. 

This metric is measured by using C#’s stopwatch object, which tracks how long it takes to 

execute desired parts of a program. Additionally, for verification purposes only, the data 

structures used for the hardware scheduling algorithm, such as the logical data precedence 

graph and the physical data precedence table, are also saved to files.  

Using the auxiliary program mentioned earlier, each metric, across all trials, is 

compiled into a single Excel spreadsheet based on the average of the related data. For each 

spreadsheet, the algorithms are sorted by a “complexity factor” based on how complex the 

quantum algorithm is. The “complexity factor” is computed as the product of the number of 
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instructions and the number of qubits assigned to each algorithm, which is a simple metric 

that may not capture all of the complexities of a quantum algorithm accurately. Once sorted, 

the data can then be plotted in order to see trends for each metric as the quantum algorithms 

increase in complexity.  

3.3 Rigour, Reliability, and Validity 
 

To ensure that this research is rigorous, reliable, and valid, each of these properties is 

addressed through some part of the methodology employed in this research. Cypress [2017] 

defines rigour as “the quality or state of being exact, careful, or with strict precision” [65, p. 

254]. To address this particular quality, the experimental procedures explained in the earlier 

sections required that the scheduling algorithm be run multiple times in order to ensure that 

as many potential sources of error were eliminated as possible.  

Reliability refers to the consistency of a given measure and, in research, refers to 

three different types of consistency. Test-retest reliability refers to how consistent a measure 

is over time, internal consistency refers to the consistency across different items, and inter-

rater reliability refers to how consistent measures are among different researchers [66]. To 

address test-retest reliability, the experiment is repeated multiple times and the recorded 

values are checked to see that they are similar. This validation, therefore, ensures that the 

experiment has been checked for its ability to be repeated. The re-tests occur at a variety of 

different times and days in order to make sure that timing of the test is not influencing the 

results. To address internal consistency, the scheduling algorithm is tested against many 

different quantum computing algorithms to verify that the strategy is reliable for use across a 

variety of circumstances. To address inter-rater reliability, each experimental trial is well 

documented. By using the same steps and documenting every trial, the experiment itself will 
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also be reliable in that it will be reproducible by anyone with the same equipment. 

Additionally, in order to be transparent, after this thesis becomes publicly available, the 

source code for the entirety of this research will be available on my personal GitHub35 or 

Zenodo (DOI: 10.5281/zenodo.6944561). 

Validity is the extent to which scores from a measure represent the variable they are 

intended to measure [66]. Validity is usually categorised as internal or external validity. 

Internal validity refers to the degree to which the results are attributed to the associated 

variable rather than some other explanation. To address this type of validity, experiments are 

executed multiple times across a wide range of hardware and times of the day, thereby 

allowing several variables to be eliminated as potential reasons for the obtained results. 

External validity is the degree to which the results of the research can be generalized or 

applied outside of the research context. Since this research is meant to assess hardware-

independent optimization strategies, it should, by nature, be generalizable. Each of the 

optimization strategies is logically checked such that if a strategy should, in theory, improve 

performance in common use cases, then experimentally this should be observed in the results 

of the experiments.  

                                                           
35 Colin Halseth’s personal GitHub found at https://github.com/qkmaxware/DotQASM   
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Chapter 4: Key Findings & Analysis 

4.1 Introduction 

The purpose of this chapter is to present the results of the experimental work outlined 

in Chapter 3: Methodology. The chapter begins with a section which discusses the 

compatibility of each of the tested quantum algorithms against each of the hardware 

configurations. This is followed by a discussion of each of the subsequent experimentally 

gathered metrics. Sections are provided for “changes in instruction stages,” “added number 

of swap gates,” “estimated algorithm run time change,” and “scheduling algorithm run time.” 

Each metric is introduced, followed by the results for that metric. The results are displayed in 

tabular form, with the metric displayed for each algorithm and for all five of the different 

hardware configurations. Additionally, the metric is shown visually in a chart where the 

algorithms are ordered by their complexity factor to observe how the metric changes as 

algorithms become more complex. The charts are represented with points for each discrete 

measured value, connected by lines for better visualization of trends. For all charts, the 

algorithms are spaced apart uniformly rather than being proportionally spaced by their 

computed complexity. Lastly, each section includes a description summarizing the trends that 

can be gleaned from both the tables and the charts. The final section shows how the metrics 

are used to determine the effectiveness of the hardware scheduling algorithm implemented in 

this research.  

4.2 Algorithm Hardware Compatibility 

Before discussing results for each metric, it is important to document which 

algorithms are able to be run to completion on which hardware configurations, as not all 

algorithms are able to run to completion on all hardware configurations due to some 
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algorithms requiring more qubits than some hardware can support. There are five different 

types of hardware configurations: “single qubit,” which is a hardware composed of only one 

qubit; “5 Linear,” which is a linear array of five qubits in which each qubit is connected to its 

neighbors in the array; “5 T,” which is an arrangement of five qubits in the shape of a ‘T’ 

with 3 qubits across the top and 3 qubits along the vertical; “5 Diamond,” which is a five 

qubit arrangement in the shape of a diamond, with one qubit at each corner and one in the 

centre; and “32 Full Connectivity,” which is an arrangement of 32 qubits in which all qubits 

are connected to all other qubits. As can be seen from Table 4.1 below, only one algorithm 

(1.32, the quantum phase transition algorithm) could be run on the Single Qubit 

configuration as the algorithm itself only uses a single qubit. As a result, values for all other 

algorithms remain empty for the single qubit configuration. Algorithm 1.18, the 4-bit 

quantum ripple carry adder, is only able to be run on the 32-qubit full connectivity hardware, 

due to requiring 8 qubits – 4 for each added number. 

Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.0 No Yes Yes Yes Yes 
1.1 No Yes Yes Yes Yes 
1.2 No Yes Yes Yes Yes 
1.3 No Yes Yes Yes Yes 
1.4 No Yes Yes Yes Yes 
1.5 No Yes Yes Yes Yes 
1.6 No Yes Yes Yes Yes 
1.7 No Yes Yes Yes Yes 
1.8 No Yes Yes Yes Yes 
1.9 No Yes Yes Yes Yes 
1.10 No Yes Yes Yes Yes 
1.11 No Yes Yes Yes Yes 
1.12 No Yes Yes Yes Yes 
1.13 No Yes Yes Yes Yes 
1.14 No Yes Yes Yes Yes 
1.15 No Yes Yes Yes Yes 
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Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.16 No Yes Yes Yes Yes 
1.17 No Yes Yes Yes Yes 
1.18 No No No No Yes 
1.19 No Yes Yes Yes Yes 
1.20 No No No No Yes 
1.21 No Yes Yes Yes Yes 
1.22 No Yes Yes Yes Yes 
1.23 No Yes Yes Yes Yes 
1.24 No Yes Yes Yes Yes 
1.25 No Yes Yes Yes Yes 
1.26 No Yes Yes Yes Yes 
1.27 No Yes Yes Yes Yes 
1.28 No Yes Yes Yes Yes 
1.29 No Yes Yes Yes Yes 
1.30 No Yes Yes Yes Yes 
1.31 No Yes Yes Yes Yes 
1.32 Yes Yes Yes Yes Yes 
1.33 No Yes Yes Yes Yes 
1.34 No Yes Yes Yes Yes 
1.35 No Yes Yes Yes Yes 
1.36 No Yes Yes Yes Yes 
1.37 No Yes Yes Yes Yes 
1.38 No No No No Yes 

Table 4.1: Ability of algorithm to run on specified hardware configuration 

 
4.3 Change in Instruction Stages 

The experimental work captures metrics about the total number of instructions in the 

original algorithms before they are scheduled, as well as the number of scheduled steps in the 

optimized version as determined by the output schedule. Before scheduling, the number of 

steps in each algorithm is equal to the number of OpenQASM instructions in the algorithm, 

as each instruction is run sequentially one after the last. After hardware scheduling, the 

number of steps is the number of columns in the output schedule where each column 

indicates groups of instructions that can be run at the same time. The difference between 
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running the algorithm sequentially on an idealized quantum computer with full connectivity 

and running the version optimized for the given hardware can then be obtained. Ideally, the 

lower this number, the better the result. A negative number indicates that several instructions 

can be performed at the same time, thereby reducing how long it takes the algorithm to run to 

completion.  

Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full Connectivity 

1.0  1 1 0 0 
1.1  -1 -1 -1 -1 
1.2  -1 -1 -1 -1 
1.3  -1 -1 -1 -1 
1.4  -1 -1 -1 -1 
1.5  -1 -1 -1 -1 
1.6  0 0 0 0 
1.7  -1 -1 -1 -1 
1.8  0 0 0 0 
1.9  -2 -5 -5 -8 
1.10  -6 -6 -8 -8 
1.11  -1 0 -3 -5 
1.12  -3 -3 -5 -5 
1.13  -7 -7 -10 -13 
1.14  -18 -17 -21 -26 
1.15  -13 -13 -20 -20 
1.16  -9 -8 -13 -13 
1.17  -17 -17 -40 -40 
1.18  -31 
1.19  -6 -6 -8 -8 
1.20  -92 
1.21  -1 -1 -1 -1 
1.22  0 0 0 0 
1.23  0 0 0 0 
1.24  -4 -4 -4 -4 
1.25  -3 -3 -3 -3 
1.26  -6 -8 -11 -15 
1.27  9 6 3 0 
1.28  1 1 -1 -1 
1.29  -21 -24 -27 -33 
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Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full Connectivity 

1.30  -48 -44 -55 -55 
1.31  -9 -8 -11 -14 
1.32 0 0 0 0 0 
1.33  -1 -1 -1 -1 
1.34  0 0 0 0 
1.35  -1 -1 -1 -1 
1.36  -5 -5 -8 -8 
1.37  -2 -2 -4 -4 
1.38     -8357 

Table 4.2: Decrease in number of schedule stages as a result of hardware scheduling. A lower number 
means fewer scheduled steps in the optimized algorithm compared to the original algorithm (run 
sequentially). 
 

Table 4.2 above shows the differences between the number of instructions in the 

unscheduled algorithm and the number of steps in the scheduled version. As can be seen, the 

single qubit hardware configuration column is mostly empty since most of the quantum 

algorithms tested in this research require more than a single qubit. The algorithms that most 

benefitted from hardware scheduling appear to be Experiment 1.38, Shor’s algorithm, and 

Experiment 1.30, which is a five qubit Quantum Fourier Transform (QFT) (qe_qft_5), with 

other QFT variants such as 1.29 and 1.31 closely following. Other algorithms, such as 1.17 

(011_3_qubit_grover_50_), show considerable changes to the instruction change count, 

especially for the diamond and full connectivity hardware. There are also several algorithms 

which show no changes across each of the hardware configurations, including Algorithm 1.6 

(constant false Deutsch algorithm), 1.8 (flip function Deutsch Algorithm), 1.22 (inverseqft1), 

1.32 (QPT), and 1.34 (teleport). In the case of the Deutsch Algorithm variations, the lack of 

change most likely reflects the fact that these algorithms are already very small and therefore 

do not allow for any parallel task scheduling. The QPT, inverseqft1, and teleport algorithms 

suffer from a lack of parallelizable instructions. In some cases, this is the result of barrier 
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instructions which explicitly limit parallelization; in other cases, it is the result of a large 

number of subsequent measurements which also serve to limit parallelization.  

 

Figure 4.1: Decrease in number of schedule stages as a result of hardware scheduling plotted in order 
of each algorithm’s algorithmic complexity.  
 

The change in algorithm steps is then plotted in order of each algorithm’s complexity 

value, the results of which can be seen in Figure 4.1, with the exception of Algorithm 1.38 

(Shor’s Algorithm). This is because its change is so large compared to the other algorithms 

that including it in the figure would change the scale such that all other algorithms would no 

longer be visibly discernable from each other. The algorithms are indicated by their ID 

number and sorted from left to right, along the x-axis of the chart, by their algorithmic 

complexity value (see Chapter 3). Each hardware configuration is represented as a different 

coloured line. When shown in this way, it can be seen that there is a general trend across all 

hardware configurations that the more complex an algorithm is, the more it benefits from 
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hardware scheduling. There is a general pattern of decreasing instruction stages in the 

scheduled algorithms and increasing complexity as one moves from left to right. Despite this 

general trend, the lines are not smooth, resulting in many peaks and dips. The peak on 

algorithm 1.27 is most likely the result of the small size of the algorithm, combined with 

controlled operations, resets, and measurements, leaving little room for any parallelism to 

save on algorithmic run time; as a result, the only changes in instructions will be additions 

due to routing. The peaks and dips of other algorithms are most likely the result of sorting by 

the algorithmic complexity factor, which may not completely capture the true complexity of 

the algorithm as it does not include any information about the relationship between 

instructions and their dependencies, which does play a role in how effective hardware 

scheduling can be. 

4.4 Added SWAP gates 

Another metric obtained from the experiments is the number of SWAP gates that 

were added to schedules in order to conform to the underlying hardware connectivity. The 

routing step of the hardware scheduler created in this research adds additional SWAP gates if 

qubit states need to be exchanged in order to satisfy hardware connectivity constraints. From 

the literature review, it was noted that SWAP gates are one of the most time-consuming 

quantum gates, so minimizing the number of these is important for hardware scheduling 

algorithms [38]. Table 4.3 below shows the number of SWAP gates that this scheduler adds 

to each algorithm to make them compatible with each of the five different hardware 

configurations. Like Table 4.2, empty cells in Table 4.3 are the result of the quantum 

algorithm not being able to be scheduled on the specific hardware. This occurs mainly for the 

Single Qubit hardware which can only run one algorithm, as all the other algorithms require 
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more qubits. However, these empty cells also occur for Algorithm 1.18 (adder) and 1.20 (big 

adder, each of which could only be run on one of the hardware configurations.  

Circuit 
ID 

Single 
Qubit 

5 Linear 5T 5 Diamond 32 Full 
Connectivity 

1.0 2 (25%) 2 (25%) 0 0 
1.1 0 0 0 0 
1.2 0 0 0 0 
1.3 0 0 0 0 
1.4 0 0 0 0 
1.5 0 0 0 0 
1.6 0 0 0 0 
1.7 0 0 0 0 
1.8 0 0 0 0 
1.9 12 (67%) 6 (33%) 6 (33%) 0 
1.10 4 (29%) 4 (29%) 0 0 
1.11 8 (67%) 10 (83%) 4 (33%) 0 
1.12 4 (22%) 4 (22%) 0 0 
1.13 12 (35%) 14 (41%) 6 (18%) 0 
1.14 20 (36%) 18 (33%) 10 (18%) 0 
1.15 14 (11%) 14 (11%) 0 0 
1.16 8 (18%) 12 (27%) 0 0 
1.17 46 (37%) 46 (37%) 0 0 
1.18 0 
1.19 4 (12%) 4 (12%) 0 0 
1.20 0 
1.21 0 0 0 0 
1.22 0 0 0 0 
1.23 0 0 0 0 
1.24 0 0 0 0 
1.25 0 0 0 0 
1.26 22 (22%) 18 (18%) 8 (8%) 0 
1.27 20 (182%) 16 (145%) 6 (55%) 0 
1.28 4 (21%) 4 (21%) 0 0 
1.29 32 (44%) 20 (28%) 12 (17%) 0 
1.30 14 (13%) 24 (22%) 0 0 
1.31 10 (26%) 14 (37%) 6 (16%) 0 
1.32 0 0 0 0 0 
1.33 0 0 0 0 
1.34 0 0 0 0 
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Circuit 
ID 

Single 
Qubit 

5 Linear 5T 5 Diamond 32 Full 
Connectivity 

1.35 0 0 0 0 
1.36 6 (18%) 6 (18%) 0 0 
1.37 4 (31%) 4 (31%) 0 0 
1.38     0 

Table 4.3: Number of SWAP gates added to each algorithm when scheduled for each of the 5 
different hardware configurations. Beside each cell entry is a percentage showing the percent increase 
in instructions by adding SWAP gates. 
 

As can be seen in Table 4.3 above, Algorithm 1.17 (two qubit Grover) needs the most 

SWAP gates for both the Linear (5 Linear) and the T shaped (5 T) hardware configurations, 

but none are needed for the higher connectivity diamond and fully connected configurations. 

Surprisingly, Algorithm 1.29 (four qubit QFT) requires the most SWAPS for the diamond 

configuration, for which very few other algorithms even needed SWAPS. Interestingly, a 

large number of algorithms require no additional SWAP gates. This could be due to the fact 

that many of these algorithms are already designed for such limited connectivity hardware. In 

particular, this is true for the five-diamond arrangement, as many of the algorithms tested in 

these experiments were originally designed for this configuration by IBM researchers before 

they were used in this research. This means that the algorithms are unlikely to require any 

SWAP gates as they were designed with the restrictions of the five-diamond hardware in 

mind.  

Additionally, Table 4.3 shows the percentage increase in algorithm instructions as a 

result of adding SWAP gates. For instance, Algorithm 1.19 (Bernstein-Vazirani) has four 

added instructions, which creates a 12% increase in the total number of instructions in the 

algorithm. For the most part, these percentages are fairly small with the exception of 

Algorithm 1.27 (QEC Repetition code syndrome measurement), which more than doubles the 

number of instructions after SWAP gates are added (106% - 128%). This makes sense as the 
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algorithm exposes very few opportunities for parallelism and is quite short, such that any 

number of added SWAP gates would constitute a larger percentage change [67].  

 
Figure 4.2: The number of added SWAP gates introduced to the algorithms by the routing step of 
hardware scheduling. A larger number indicates more SWAP gates added to the algorithm.  
 

Figure 4.2 shows the number of SWAP gates added to each algorithm, ordered by its 

computed algorithmic complexity. As can be seen, there is a visible trend towards more 

complex algorithms requiring more SWAP gates to be added as there are generally higher 

peaks on the chart as you move from left to the right (increasing complexity). However, this 

trend is not as pronounced as the one for instruction stages in Figure 4.1, particularly with 

some algorithms, such as 1.11 and 1.27, creating several spikes earlier than any of the others 

with similar magnitudes. This is most likely due to the fact that the algorithmic complexity 

value does not take into account how instructions interact with each other. For instance, the 

complexity metric could be improved by taking into account the number of qubits that each 

instruction uses or by accounting for instructions that block or rely on others to be completed.  
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Additionally, there is a large difference in the number of added SWAP gates between 

the various tested hardware configurations. In general, it appears as if the more connected 

hardware configurations require fewer SWAP gates to be added to the scheduled algorithm. 

This makes sense in that SWAP gates are only required to conform to hardware restrictions 

[28]. Less restrictions means that less SWAP gates are required. The 5-qubit ‘T’ 

configurations requires the most SWAPs, followed by the five qubit linear arrangements, the 

five qubit diamond arrangement and lastly, the fully connected 32-qubit arrangement, which 

does not add any SWAPs to the algorithms tested. This finding is expected as per the existing 

literature, as routing is only important in near-future quantum computing due to the fact that 

qubit connectivity is still very much constrained [8]. Quantum computers like the 32-qubit 

machine used in this research have such a high degree of qubit connectivity that they require 

minimal to no hardware scheduling. This is visible for all the quantum algorithms tested in 

this research. However, devices with full connectivity, like the 32-qubit machine, will most 

likely not be widely available for near-future computers [8]. 

4.5 Estimated Run Time 

Another metric that is gathered through the experiments is an estimation of how long 

each quantum algorithm takes to run. These estimates are made both before scheduling, by 

assuming that each instruction is run sequentially to the last, as well as after scheduling. Each 

type of instruction has an estimated run time as determined by other literature, including 

IBM’s device specifications as described in Chapter 3, and the total run time is just the sum 

of all the individual instruction estimates. For more details about how these run time 

estimations are determined, refer to Chapter 3. Using these estimated times, the amount of 

time saved by using the scheduled version of the algorithm over the original can be 
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estimated. This is important due to the decoherence experienced by qubits. Since qubits 

decohere so quickly, saving as much time as possible is important to ensure quantum 

algorithms are able to successfully complete before they decohere [54]. The shorter the time 

it takes to complete a quantum algorithm, the better that algorithm will perform on near-

future quantum computers.  

Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.0 0.0006 0.0006 0 0 
1.1 -1 -1 -1 -1 
1.2 -1 -1 -1 -1 
1.3 -1 -1 -1 -1 
1.4 -1 -1 -1 -1 
1.5 -0.0001 -0.0001 -0.0001 -0.0001 
1.6 0 0 0 0 
1.7 -0.0001 -0.0001 -0.0001 -0.0001 
1.8 0 0 0 0 
1.9 -1.997 -1.9988 -1.9988 -2.0006 
1.10 -1.9993 -1.9993 -2.0005 -2.0005 
1.11 -2.9979 -2.9973 -2.9991 -3.0003 
1.12 0.0007 0.0007 -0.0005 -0.0005 
1.13 0.0021 0.0021 0.0003 -0.0015 
1.14 0.0016 0.0022 -0.0002 -0.0032 
1.15 0.0022 0.0022 -0.002 -0.002 
1.16 -3.9985 -3.9979 -4.0009 -4.0009 
1.17 -1.99 -1.99 -2.0038 -2.0038 
1.18 -4.003 
1.19 -0.9995 -0.9995 -1.0007 -1.0007 
1.20 -8.0097 
1.21 -0.0001 -0.0001 -0.0001 -0.0001 
1.22 0 0 0 0 
1.23 0 0 0 0 
1.24 -0.0004 -0.0004 -0.0004 -0.0004 
1.25 -1.0002 -1.0002 -1.0002 -1.0002 
1.26 -2.996 -2.9972 -2.999 -3.0014 
1.27 0.0054 0.0036 0.0018 0 
1.28 0.0011 0.0011 -0.0001 -0.0001 
1.29 0.0031 0.0013 -0.0005 -0.0041 
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Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.30 -0.0025 -0.0001 -0.0067 -0.0067 
1.31 0.0014 0.002 0.0002 -0.0016 
1.32 0 0 0 0 0 
1.33 -0.0001 -0.0001 -0.0001 -0.0001 
1.34 0 0 0 0 
1.35 -1 -1 -1 -1 
1.36 -1.9988 -1.9988 -2.0006 -2.0006 
1.37 -1.999 -1.999 -2.0002 -2.0002 
1.38     -8.03 

Table 4.4: Estimated run time savings for each algorithm, measured in milliseconds, after hardware 
scheduling across all 5 hardware configurations. Negative values indicate that the scheduled 
algorithm was faster than the original by the given amount. 
 

Table 4.4 shows the results of computing the estimated time saved by performing 

hardware scheduling on each of the tested algorithms across each hardware configuration. 

The raw data for the before and after run-time estimates can be found with my source code, 

but are too difficult to show cleanly on the table. Algorithm 1.18 (adder) only runs on the 32-

qubit hardware and, as such, only has run-time estimates for that hardware configuration. A 

negative time from the table indicates that the optimized version is faster than the original, 

whereas a positive value indicates that the scheduled version is slower than the original by 

that amount due to the addition of the SWAP instructions. Zero indicates that the algorithm 

takes the same amount of time to run before hardware scheduling as it does after hardware 

scheduling. For the most part, all the algorithms benefit in terms of estimated run time by 

undergoing hardware scheduling. Algorithm 1.38 (Shor’s Algorithm) and algorithms 1.16 

(the max cut problem) and 1.18 (the adder) seem to benefit the most from hardware 

scheduling even though they only run on the 32-qubit machine. This is most likely because 

they are quite large algorithms and possess more opportunities for parallelism. However, 

there are some algorithms which, on certain hardware configurations, do not benefit from 
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scheduling. This could be because there are very few operations which are parallelizable, 

meaning they could not be scheduled at the same time as other operations, or because a lot of 

SWAP gates are added to the algorithm through hardware routing to be compatible with the 

underlying connectivity of the quantum computer.  

Figure 4.3 shows the estimated run-time savings as a result of applying the hardware 

scheduling algorithm to each input quantum algorithm. The results in the chart have been 

sorted in order of increasing algorithmic complexity. Unlike the previous comparisons, there 

does not appear to be much of a correlation between the algorithmic complexity and the 

estimated run-time savings. It appears as if the run-time savings is more dependent on the 

implementation specifics for each quantum algorithm rather than on any kind of generalized 

trend around an abstract definition of complexity. This makes sense in many respects because 

the choice of instructions is up to the programmer and there are likely several different 

sequences of instructions which create equivalent results. A sequence could be chosen such 

that it uses more parallelizable instructions over one that makes use of barriers, 

measurements, or other instructions which can limit parallelization. However, even 

considering that, some of the more complex algorithms that benefitted from this scheduling 

seem to benefit more than some of the simpler ones. This is emphasized by Algorithm 1.20 

(big adder), which has a much larger peak than any of the other algorithms.  
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Figure 4.3: Difference between estimated run time before and after hardware scheduling for all 
experimented algorithms on all five hardware configurations. A negative value indicates that the 
scheduled algorithm is that much faster than the original sequential algorithm. 

 

4.6 Scheduling Algorithm Run Time 

The last metric gathered by the experimental work is how long the hardware 

scheduling optimization takes to perform. Intuitively, it is desirable for this time to be as 

small as possible so that compiling large quantum algorithms would not be too time 

consuming. Table 4.5 below contains a list for how long each scheduling pass took (on 

average) for each algorithm on each of the five hardware configurations.  

Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.0 1.8251 2.0426 1.7782 1.8393 
1.1 1.7601 1.8483 3.7205 1.7110 
1.2 1.6959 1.7286 1.7071 3.6003 
1.3 1.8558 1.7796 1.7631 1.7201 
1.4  1.8035 2.1585 1.7969 1.8362 
1.5  1.8717 1.7975 1.8861 1.7891 
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Circuit Id Single 
Qubit 

5 Linear 5 T 5 Diamond 32 Full 
Connectivity 

1.6  1.6916 2.9826 1.7535 2.1182 
1.7  1.7955 1.7533 1.7864 1.9535 
1.8  1.8029 1.9694 2.1931 1.9091 
1.9  2.0938 2.0024 1.9751 1.9440 
1.10  2.0125 2.0095 1.9732 1.9886 
1.11  2.0830 2.4467 2.2388 1.9285 
1.12  2.0072 2.0771 1.8872 2.0331 
1.13  2.4174 2.6492 2.5436 2.1987 
1.14  2.9430 3.3876 2.7554 2.6383 
1.15  4.0355 4.2812 3.7617 4.1300 
1.16  2.3743 2.4139 2.4416 2.3891 
1.17  4.3804 5.2432 4.5246 4.3519 
1.18     5.1424 
1.19  2.4053 2.4509 2.5699 2.3142 
1.20     10.1794 
1.21  1.7230 1.8018 1.7267 1.7688 
1.22  2.0383 12.1105 2.1668 2.5940 
1.23  2.0024 2.1174 1.9864 2.0387 
1.24  3.7081 3.9219 3.4061 3.7924 
1.25  1.8969 1.9118 1.8662 1.8984 
1.26  3.6271 4.1528 3.6565 3.8832 
1.27  2.1257 1.9774 1.9208 1.8737 
1.28  1.9522 2.0631 1.9406 2.1116 
1.29  3.8121 3.5147 3.1090 8.4315 
1.30  3.6569 4.1657 3.2881 3.4693 
1.31  2.3598 2.6799 2.7155 2.2130 
1.32 1.6691 1.5868 1.6313 1.5659 1.6026 
1.33  1.8650 1.9880 1.8425 1.9452 
1.34  1.7567 2.5974 1.7232 1.8330 
1.35  1.7813 1.8797 1.7060 1.8552 
1.36  2.2176 2.1496 2.2185 2.1693 
1.37  1.8030 1.8410 1.7601 2.1340 
1.38     24296.24 

Table 4.5: Compilation times for the hardware scheduling compiler pass applied to each algorithm in 
the experiment for each of the five different hardware configurations. All of the times in the table are 
measured in milliseconds.  
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From Table 4.5, it should be noted that all the algorithms take quite a bit less than a 

second to perform hardware scheduling, except for the longest, which is 1.38 (Shor’s 

algorithm) at 24s. As for the rest of the algorithms, the longest running are algorithms 1.22 

(the inverse Quantum Fourier transform) on the T-configuration, and 1.20 (the big adder) and 

1.29 (Quantum Fourier transform) on the 32 qubit fully connected hardware. In the case of 

Algorithm 1.20, this time can be explained by it being the largest and most complicated of 

the algorithms, with the exception of Shor’s Algorithm. For Algorithms 1.29 and 1.20, these 

seem to be outliers in the data. In the case of 1.29, the slow scheduling time is on the 32-

qubit hardware, which should be the fastest hardware due to its full connectivity. 

Additionally, 1.29 is scheduled quickly on all other hardware. This indicates that the 

comparatively large scheduling time for this algorithm on the 32-qubit hardware may be the 

result of something external that might be slowing down the experiment’s run time, such as 

garbage collection or computer updates. In the case of Algorithm 1.22, the scheduling time is 

short on all hardware with the exception of the T configuration. This may be due to that 

algorithm being poorly suited for that particular hardware configuration, thus requiring more 

time in the routing algorithm portion of the scheduler. Even with both of these algorithms 

being outliers to the general curve, it should be noted that their scheduling times are still 

much less than a second, meaning the added scheduling time should not be overly apparent to 

the end user. 
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Figure 4.4: The amount of time taken by the hardware scheduling algorithm for each algorithm across 
each of the five hardware configurations. 
 

Figure 4.4 above shows the compilation times from Table 4.5, sorted in order of 

algorithmic complexity, with the exception of Shor’s algorithm since it would skew the chart 

too much. From the figure, one can see the same trend as with the table. The majority of 

algorithms take virtually no time to perform hardware scheduling on. Generally speaking, 

increased complexity results in increased time required to perform the scheduling operation.  

Algorithm 1.22’s outlying behavior on the T configuration can be easily discerned from the 

graph compared to its behavior on the other hardware configurations. Additionally, it should 

be noted that algorithms 1.20 and 1.18 only work on the 32-qubit simulator, resulting in their 

data dropping to 0 at the right-hand side of the chart. 
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4.7 Effectiveness of Hardware Scheduling 

In order to determine how efficient or effective this particular hardware scheduling 

algorithm is at scheduling various quantum algorithms, an “efficiency” measure needs to be 

defined. The dictionary defines efficiency36 as an activity performed in the best possible 

manner with the least waste of effort or time, while effectiveness37 is described as an activity 

adequate for accomplishing a goal. While both effective and efficient actions aim to 

accomplish a goal, an effective action does not have to be the best or most efficient one. For 

this research, the efficiency measure is defined according to the following equation.  

(4.1)                         

efficiency =  max ��� − ���� , 0�      where 
�� = running time of the algorithm after scheduling �� = running time of the algorithm before scheduling �� = compilation time 

Equation 4.1: Definition of the efficiency measure. 

The measure is defined such that it is a positive value if any amount of run time is 

saved through the application of the hardware scheduling algorithm (tf < ti). If the value is 

equal to ‘1,’ then there is an equal amount of run time saved to the amount of additional time 

spent compiling the algorithm with this researcher’s hardware scheduler. The maximum 

function (max) will return the value of the division if the value is greater than 0. The purpose 

of the application of the maximum function is to limit the results to strictly positive values 

for the case where algorithms actually become longer to run after hardware scheduling. For 

these cases, applying the hardware scheduling algorithm is considered to not be efficient at 
                                                           
36 Definition is derived from dictionary.com 
37 Definition is derived from dictionary.com 
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all and is set to 0. Both run time and compilation time are important to quantum computing 

as the run time saved helps avoid the issue of qubit decoherence whereas the compilation 

time spent is important because it is experienced each time the algorithm input is changed as 

the input gets compiled into the algorithm.  

Table 4.6 below shows the computed normalized efficiency values for each of the 

tested quantum algorithms for all five hardware configurations. With this measure, values 

greater than 0 are considered effective because they do optimize the original quantum 

algorithms; however, they may not the most efficient since it takes more time to optimize 

them than is saved. Values greater than 1 are considered efficient because more time is saved 

when running them than is spent optimizing them. 

Circuit Id Single 
Qubit 

5 Linear 5 T 5 
Diamond 

32 Full Connectivity 

1.0 0 0 0 0 
1.1 0.5681 0.5410 0.2688 0.5844 
1.2 0.5897 0.5785 0.5858 0.2778 
1.3 0.5388 0.5619 0.5672 0.5813 
1.4 0.5545 0.4633 0.5565 0.5446 
1.5 5.34E-05 5.56E-05 5.3E-05 5.59E-05 
1.6 0 0 0 0 
1.7 5.57E-05 5.7E-05 5.6E-05 5.12E-05 
1.8 0 0 0 0 
1.9 0.9538 0.9982 1.0120 1.0291 

1.10 0.9934 0.9949 1.0138 1.0060 
1.11 1.4392 1.2250 1.3396 1.5557 
1.12 0 0 0.0003 0.0003 
1.13 0 0 0 0.0007 
1.14 0 0 7.26E-05 0.0012 
1.15 0 0 0.0005 0.0005 
1.16 1.6841 1.6562 1.6386 1.6747 
1.17 0.4543 0.3795 0.4429 0.4604 
1.18 0.7784 
1.19 0.4155 0.4078 0.3894 0.4324 
1.20 0.7869 
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Circuit Id Single 
Qubit 

5 Linear 5 T 5 
Diamond 

32 Full Connectivity 

1.21 5.8E-05 5.55E-05 5.79E-05 5.65E-05 
1.22 0 0 0 0 
1.23 0 0 0 0 
1.24 0.0001 0.0001 0.0001 0.0001 
1.25 0.5273 0.5232 0.5359 0.5269 
1.26 0.8260 0.7217 0.8202 0.7729 
1.27 0 0 0 0 
1.28 0 0 5.15E-05 4.74E-05 
1.29 0 0 0.0002 0.0005 
1.30 0.0007 2.4E-05 0.0020 0.0019 
1.31 0 0 0 0.0007 
1.32 0 0 0 0 0 
1.33 5.36E-05 5.03E-05 5.43E-05 5.14E-05 
1.34 0 0 0 0 
1.35 0.5614 0.5320 0.5862 0.5390 
1.36 0.9013 0.9298 0.9018 0.9222 
1.37 1.1087 1.0858 1.1364 0.9373 
1.38     0.0003 

Table 4.6: Normalized efficiency metric for all quantum algorithms on all five hardware 
configurations. Values greater than 1 mean that more time was saved during run time than was lost 
due to the compilation procedure. 
 

As can be seen in Table 4.6, there are many algorithms for which hardware 

scheduling appears to be efficient. Examples of such algorithms include 1.9 (Deutsch Josza), 

1.10 (Bernstein Vazrani algorithm), 1.11 (Simon’s algorithm), 1.16 (Max Cut Problem), 1.20 

(8 bit ripple carry adder), 1.25 (Iterative phase estimation), and 1.37 (W3test algorithm), 

since their efficiency metric is greater than ‘1’ for all, or most, hardware configurations. This 

means they save more run time than is spent in scheduling, and are thus classified in this 

research as efficient. However, there are other algorithms where hardware scheduling is 

effective, though not necessarily efficient. These algorithms contain positive efficiency 

values between 0 and 1. For these algorithms, run-time benefits are received as a result of 

hardware scheduling, but it takes longer to schedule them compared to the amount of run 
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time saved. Most of the algorithms benefit somewhat from hardware scheduling. Examples 

of algorithms in which hardware scheduling is considered effective, but not necessarily 

efficient, include 1.1, 1.2, 1.3, 1.4 (superdense coding), 1.33 (benchmark), 1.35 (improved 

teleport), and 1.36 (w state).  

When each algorithm is ordered by their algorithmic complexity and the efficiency 

measure is plotted (Figure 4.5), one can see that the hardware scheduling algorithm 

developed for this research is effective for the majority of the algorithms. There is very little 

pattern with respect to how effective hardware scheduling is when compared to the 

complexity metric of the algorithm. More of the effective algorithms are in the middle of the 

graph (middle complexity) rather than the edges. However, it appears that the effectiveness 

of hardware scheduling is more dependent on the algorithms themselves rather than any 

generalized concept of complexity. That being said, it does appear that lower complexity 

algorithms have a more likely chance to be considered not effective at all. This is most likely 

due to the simpler algorithms being so small that they do not expose many optimisation 

opportunities. This could also indicate that as algorithms become more complex, there is a 

greater likelihood of hardware scheduling being effective on it.  
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Figure 4.5: Efficiency measure for each quantum algorithm for all five hardware configurations, 
ordered by algorithmic complexity. 

 
4.8 Summary 

From this research, one can see the benefits and disadvantages of applying this 

particular hardware scheduling strategy to various quantum algorithms across a variety of 

publicly available quantum computer hardware configurations. It has been shown that as 

quantum algorithms get more complex, they are more likely to expose potential parallelism 

opportunities, resulting in a larger decrease in total instruction stages. When looking at the 

added number of SWAP gates, one can see how the number of SWAPs is greater for lower 

connectivity hardware compared to hardware with higher degrees of connectivity. The 

estimated run-time savings of each of the tested algorithms seems more dependent on 

specific algorithm implementation, though there does appear to be a general trend of more 

run time being saved through hardware scheduling as algorithms increase in complexity. 
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Lastly, for this particular hardware scheduling algorithm, the scheduler is determined to be 

effective for most of the algorithms, with a few that it is very efficient for, and some for 

which the scheduler is not effective at all, particularly the simplest algorithms. This may be 

due to a lack of opportunities to apply optimizations.  
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Chapter 5: Discussion 

5.1 Introduction 

For the practical realization of quantum computing, several issues need to be 

addressed, both in terms of viable hardware containing enough qubits for practical 

computations and in terms of software and compilers to produce efficient programs that are 

able to make full use of the available hardware. Since authors such as Häner et al. [2018, 39] 

and Murali et al. [2019, 41, 59] have indicated that instruction scheduling is one of the most 

important optimizations than can be employed by near-future quantum compilers, this 

research intends to add to the body of research on the effectiveness of a particular hardware 

scheduling algorithm for various quantum algorithms across a wide variety of different 

quantum computing hardware. To the author’s knowledge, this kind of experiment, in which 

a scheduling algorithm is examined using many different input algorithms across a wide 

variety of quantum hardware, has not been performed before. For this purpose, a quantum 

compiler is developed in the C# programming language for OpenQASM 2.0 quantum 

assembly code in which a hardware scheduling algorithm is implemented. Data for key 

metrics is collected while running the scheduling algorithm on various quantum algorithms 

and hardware configurations.  

This section discusses the research provided within this framework, including the 

clarity with which the scheduling algorithm can be implemented, the effects it has when 

applied to quantum algorithms, and the performance of the scheduling algorithm. The 

discussion within these sections draws on the analysis presented in Chapter 4, “Key Findings 

& Analysis.” Lastly, this chapter addresses the limitations of this particular scheduling 

algorithm.  
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5.2 Clarity of Implementation 

The hardware scheduling algorithm employed by this research is based generally on 

the ideas behind Guerreschi and Park’s [2017, 13] scheduling algorithm. This algorithm was 

chosen specifically from other scheduling algorithms, such as the one implemented by Shi et 

al. [2019], due to the ease in understanding the steps involved and the effects of each step 

[54]. Similarly, the algorithm employed in this research is also designed around ease of 

implementation and understanding. The algorithm is broken up into distinct stages and 

passed from one stage to the next until the scheduling is done. These stages are: determining 

the dependencies of each quantum algorithm, assigning priorities such that one can create a 

preliminary ordering of operations and schedule operations with the same priorities at the 

same time, resolving ambiguous instruction orderings within groups, and lastly, adding 

routing to ensure the instructions are compatible with the underlying hardware connectivity.  

 Given the clarity of the hardware scheduling algorithm, improvements and 

modifications are easy to perform. The author considers this to be one of the most important 

aspects for any algorithm to possess.  

5.3 Effect on Quantum Algorithms  

While a clear and concise algorithm possesses the advantages of being easy to change 

or improve upon, such an algorithm does not always make the fastest algorithm and so the 

effect it has on its inputs must be examined. From the works of various researchers such as 

Shi et al. [2019], hardware scheduling for quantum algorithms is one of the most important 

optimizations to perform [54]. This is due, in part, to the limited connectivity offered by 

near-future quantum computers [8], as well as the short decoherence times which qubits 

experience [22]. In order to satisfy underlying hardware connectivity constraints, the 
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hardware scheduling algorithm is forced to add SWAP gates to move information around the 

hardware and into compatible spots to perform subsequent operations [38]. At the same time, 

the hardware scheduler needs to groups multiple operations that can run at the same time 

together so that the total run time of the algorithm can be reduced in order to be performed 

within the hardware’s qubit decoherence times [54]. Since these two operations are partially 

in contrast to each other (reduce sequential operations by scheduling vs. add operations by 

routing), it is important to reduce the number of total SWAP gates that are added to the 

quantum algorithm so that more effort is focused on scheduling parallel operations as 

opposed to adding many new sequential SWAP operations.  

From the research of Gambetta et al. [2017], we know that the current generation of 

quantum computers experience qubit decoherence in the order of 100 microseconds [14]. 

Based on Figure 4.3 from the analysis section, we can see that many of the algorithms tested 

in this experiment are estimated to be faster after hardware scheduling than before. The 

largest amount of time saved is around 8 milliseconds for Shor’s algorithm. Given the qubit 

decoherence rate mentioned earlier, a savings of 8 milliseconds would be helpful for being 

able to run those algorithms on near-future quantum computers. This speed increase is the 

largest for higher connectivity hardware configurations like the 32-qubit fully connected 

configuration and the diamond configuration. This is most likely due to not requiring as 

many SWAP gates to meet the underlying hardware connectivity constraints. By not adding 

SWAP gates, which add run time to quantum algorithms, the scheduling algorithm can focus 

entirely on parallel scheduling of operations, thereby reducing the overall algorithm run time. 

While the 8 milliseconds saved is quite a substantial amount of time saved when compared to 

qubit decoherence times, that amount of time only applies to the fully connected 32-qubit 
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machine, with the other machines having less substantial time savings. This means that this 

kind of performance increase will not be practically achieved for near-future quantum 

computers. Britt and Humble [2017] identified that the degree of connectivity between qubits 

will continue to be an issue for near-future quantum computers [8]. Considering this, the 

performance increase as a result of applying this particular hardware scheduling algorithm 

will more likely be in line with the increases for the Diamond and T hardware configurations 

as opposed to the fully connected configuration. There would be an increase in performance, 

but this increase would be better with an increasing degree of connectivity between qubits. 

Authors such as Gambetta et al. [2017] have noted that quantum gate 

implementations are not perfect on the current generation of quantum computers [14]. Each 

instruction not only consumes some of the coherence time for the qubit, but additionally 

introduces some error into the system. In this respect, not only is the algorithm run time 

important for executing quantum algorithms, but so is the total number of instructions. The 

hardware scheduling algorithm used in this research does not reduce the number of 

instructions; instead, it groups operations together that can be executed in parallel. Since no 

instructions are removed via hardware scheduling, any change in instructions will be the 

result of adding new instructions. For this particular implementation, instructions can only be 

added to quantum algorithms as a result of the routing stage of hardware scheduling, which 

adds SWAP gates to make groups of operations compatible with the underlying hardware. 

This routing occurs before each group of parallelizable operations. The largest amount of 

additional SWAP gates was 46 and occurred for quantum Algorithm 1.17 (3 qubit Grover). 

Since Algorithm 1.17 started off with 126 instructions originally, an addition of these 46 

SWAP gates amounts to a total increase in instructions by 37%. Of the algorithms that 
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required SWAP gates, this increase is consistent with the majority of other increases. While 

these increases are a little higher than were hoped for, the increase in instructions is still quite 

small with the largest increase being 46 SWAP gates. Since Shor’s algorithm only ran on the 

32 Qubit hardware, it did not require any SWAP gates, though it would likely have overtaken 

Algorithm 1.17 if the hardware was not fully connected.  

One of the reasons that the increases are higher than expected might be due to this 

hardware scheduling algorithm not taking into account the best possible qubit mappings, 

partially due to a lack of lookaheads in the algorithm, as pointed out by Guerreschi and Park 

[2017, 13]. This leads to situations where, locally, the number of SWAP gates are minimized 

between scheduled stages but may not be globally minimized. For a globally minimized 

solution, all the stages should be considered at the same time, including those before and 

after the current stage. However, one notable exception to this is Algorithm 1.27 (QEC), 

which experienced an increase of over 100% as a result of hardware scheduling. Due to this 

algorithm having a small number of instructions (11), any increase as a result of added 

SWAPS constitutes a large percentage. Given that Algorithm 1.27 is an outlier in terms of 

added SWAP gates, it can be assumed that it is not well tailored for the limited connectivity 

hardware, particularly the Linear and T shape hardware, with which Algorithm 1.27 

experienced the largest percent increases.  

Given that SWAP gates have been found to potentially impose significant run time 

drawbacks and reduce reliability [28], it is important to examine how much of a run time 

impact routing has for this particular hardware scheduling algorithm. One would expect that 

more complex algorithms would require more SWAP gates, which would result in 

detrimental changes to the estimated run time. However, Figure 4.3 shows an increase in 
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time saved as algorithms become more complex, even though the number of SWAP gates 

also increases (Figure 4.2). This means that a hardware scheduler which can maximize the 

number of instructions that can be performed in parallel could, in theory, offset any added 

run time as a result of qubit routing. In this way, more time is saved through parallelization 

than is added through the use of SWAP gates needed to satisfy hardware connectivity 

constraints.  

5.4 Performance 

 From the previous section, we can see that the hardware scheduling algorithm, on 

average, saves algorithmic run time despite adding operations necessary to satisfy hardware 

connectivity constraints. However, the performance of the hardware scheduler was not 

addressed in the previous section. This section summarizes how the hardware scheduling 

algorithm performs for the various experimental test cases and determines if the usage of this 

hardware scheduling algorithm is effective given both its effect on the scheduled algorithms 

and the scheduler’s performance. 

Even though each of the experiments for this hardware scheduling algorithm resulted 

in faster estimated run-time performance, the scheduler is not considered efficient for many 

quantum algorithms due to how much additional time is required to perform the scheduling 

when compared against the run time saved. By increasing the performance of the scheduling 

algorithm (decrease the run time of the scheduler), more algorithms may switch from being 

effective to being efficient. One possible avenue for improvement is to improve the heuristic 

used in the A* routing stage. The heuristic employed for the A* search used in this research 

is a very simple one, which means that the pathfinding algorithm will probably take longer 

than its “best-case” performance, which is heavily influenced by the heuristic chosen. Even 
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though this scheduler may not be considered efficient for many algorithms, the individual 

compilation times are still less than a second in most cases. This means that almost all 

algorithms benefit from hardware scheduling and, while not efficient, are still fast enough for 

users of the compiler to not notice any major delays. This is most likely true because the 

hardware configurations used in this research are quite small. However, as hardware becomes 

larger and more complex, the state space for the A* search will rapidly increase, making the 

heuristic play a larger role in determining the search’s run time. While a better heuristic is 

not needed now, it may be required for future hardware configurations. 

The hardware scheduling strategy employed by this research does appear to decrease 

the run time of various quantum algorithms, in some cases by a significant amount, even 

after requiring SWAP gates to match hardware connectivity, without requiring too much 

additional compilation time to perform. There is a trend towards this algorithm being at least 

effective, if not efficient, for larger algorithms and given that quantum algorithms are likely 

to become even more complex over time in order to solve larger problems, this particular 

scheduler could be an effective tool for scheduling on those kinds of algorithms because it 

does create a positive run time benefit without costing too much in additional compilation 

time. 

5.5 Limitations 

This research is subject to several limiting factors. These factors come both from the 

environment in which the algorithm was developed and the environment which performed 

the experiment, as well as from issues encountered through experimental testing. This section 

will discuss these limitations beginning with those that resulted from the various 
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environments which were used for the research, followed by the limitations from 

encountered issues.  

Since the research was performed using C# .NET Core 3.1.301, on a single thread of 

an i7 8700K processor, the prior discussion related to the performance of the hardware 

scheduling algorithm is specific to that particular device and software configuration. As a 

result, changes to any of these could greatly impact the performance of hardware scheduling. 

For instance, a different version of .NET could result in different performances as the 

compiler may perform different optimizations or the run-time environment could implement 

base functions differently, thereby changing how they perform. Faster processors or 

modifications to the scheduling algorithm enabling it to make full use of multiple threads 

would greatly affect the overall performance of the hardware scheduling.  

This hardware scheduling algorithm was also only tested theoretically against 

hardware configurations like those provided by the IBM Quantum Experience platform. 

Ideally, it would be better to have been able to verify these findings on real quantum 

computer hardware. Originally, the plan was to compare the estimated run-time estimates 

after hardware scheduling with the actual run times of the algorithms run through the IBM 

Quantum Experience API to determine the accuracy of the analysis. This was unable to be 

performed for this particular research due to several unexpected issues that arose with using 

the IBM Quantum Experience API. Firstly, there was no publicly available documentation 

describing the API’s available service URLs and the expected parameters of each service. 

This meant that the interface had to be reverse engineered from their official Python library. 

Some documentation suggested that the IBM Quantum Experience API had its own compiler 

for submitted algorithms, which would behave differently from the one in this research, thus 
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making any results incomparable. Additionally, undocumented behaviour occurred during 

testing in which algorithms that were not compatible with the IBM quantum computers 

seemingly ended up getting stuck in a queue on IBM’s server rather than returning some kind 

of failure or cancellation code, preventing further algorithms to be run on that machine for 

my IBM profile. 

  Lastly, this hardware scheduler was only really tested against five different hardware 

configurations. As such, the findings are only applicable to those hardwares. As new 

hardware is developed with potentially greater numbers of qubits, it will be important to 

examine the performance of this scheduler under those conditions.   
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Chapter 6: Summary & Conclusion 

 This chapter provides a summary of the research performed and the key findings. It 

then discusses future avenues for research and offers some concluding remarks. 

6.1 Research Summary 

For this thesis, the goal was to examine the effectiveness of a particular hardware 

scheduling algorithm when applied to real quantum algorithms across a variety of currently 

existing and publicly available quantum computing hardware. In order to do this, an 

OpenQASM compiler was developed in the C# programming language, which included a 

hardware scheduling algorithm inspired by the previous work of Guerreschi and Park [2017, 

13]. This hardware scheduling algorithm followed the same broad steps as those indicated in 

Guerreschi and Park’s work, but differed in the implementation of each of the algorithm’s 

steps. Of particular note is the difference to the routing stage of the hardware scheduler in 

which this research used the A* graph search algorithm to perform routing on arbitrary 

hardware qubit connectivity configurations. The compiler was used to test 39 quantum 

algorithms, chosen from various sources, against nine different quantum hardware 

configurations, chosen from the IBM Quantum Experience, spanning five different 

connectivity configurations. This research was intended to have the scheduled algorithms run 

on real quantum computing hardware through the IBM Quantum Experience, though 

complications with this API prevented this from being done within the time frame of this 

research.  

 To accomplish the task of developing a quantum compiler, literature was reviewed 

covering topics across the field of quantum computing and compiler design. This included 

how quantum computer hardware works, the kinds of instruction sets that are currently being 
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used or researched for quantum computers, what assembly languages exist for quantum 

computing, as well as existing quantum compilers and compiler optimization strategies 

including instruction scheduling. This literature was fundamental in the development of the 

compiler which was implemented in the C# programming language for the IBM OpenQASM 

2.0 quantum assembly language. This research’s hardware scheduling algorithm provides a 

clear concise implementation which is broken up into distinct stages that are easy to 

understand and modify.  

 In order to test the effectiveness of the implemented hardware scheduling algorithm, a 

testing strategy was developed which involved several experimental trials. A select subset of 

the 39 quantum algorithms was chosen for each trial. Each algorithm was analyzed and then 

scheduled on a subset of the nine different quantum computing devices. Since the IBM 

Quantum Experience API was not actually used to run the scheduled algorithms, results from 

several machines were identical due to there being only five distinct qubit connectivity 

configurations. Data were collected for eight different metrics, including the qubit count, 

estimated run time before scheduling, estimated run time after scheduling, change in the 

estimated run time, the number of instructions, the change in the number of instructions 

before and after scheduling, the number of swaps that were added to the algorithm through 

routing, and lastly the time taken to perform the hardware scheduling. These metrics were 

summarized in a series of tables, converted into charts, and used in equations to analyze the 

effect of the hardware scheduling on each algorithm for all five qubit configurations and to 

determine the effectiveness of the hardware strategy.  

 By analyzing the results of the experimental trials, the research showed that the 

particular hardware scheduling algorithm implemented in this research provided varying 
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levels of effectiveness for the tested quantum algorithms. Certain algorithms were unable to 

be scheduled for certain hardware configurations. For instance, Algorithm 1.18 (adder) was 

only able to be scheduled on the 32-qubit quantum computer since it requires more qubits 

than the other hardware configurations could support. When examining how the number of 

algorithm stages change when hardware scheduling is applied, Algorithm 1.38 (Shor’s 

Algorithm) and Algorithm 1.30 (five qubit Quantum Fourier Transform) benefitted the most 

from scheduling, saving a large number of stages over all hardware configurations (8357 for 

1.38, 50 for 1.30). Other Quantum Fourier Transform variants also showed a large change in 

the number of algorithmic steps. This research found that as the complexity of algorithms 

increased, the potential for saving algorithmic steps through hardware scheduling also 

increased. Most algorithms required a small number of added SWAP gates to meet the 

connectivity constraints of the underlying hardware, many of which only needed 20 percent 

more instructions than the original algorithm. However, Algorithm 1.27 was a glaring 

exception to this as the added SWAP gates nearly doubled the number of instructions in the 

algorithm. This was most likely due to the algorithm being an error correction algorithm, 

which other researchers have noted could introduce significant run-time overhead [67]. Even 

though the number of algorithmic steps decreased with increasing complexity, the estimated 

amount of time saved by hardware scheduling was more dependent on the individual 

algorithm rather than on the complexity trend. For the most complicated algorithm, Shor’s 

algorithm, the performance increase was about 8 milliseconds faster than the original 

unscheduled algorithm. While Shor’s algorithm showed considerable run-time savings, the 

numbers were much smaller for the less complicated algorithms, likely due to fewer 

opportunities for parallelism. Besides less complicated algorithms showing less change in 



127 
 

their run times, the savings were dependent on the connectivity of the hardware, with larger 

run time savings for higher connectivity hardware. This makes sense as fewer SWAPs would 

be required to move qubits around the hardware in order to perform multi-qubit instructions. 

By observing the number of case where scheduling was not effective, there was an indication 

that as algorithms increased in complexity, they were more likely to benefit in some way 

from hardware scheduling.  

 Considering all the compiled metrics, the hardware scheduling algorithm can be 

considered effective for most cases since there was almost always some amount of run-time 

savings. For algorithms 1.9 (Deutsch Josza), 1.10 (Bernstein Vazrani algorithm), 1.11 

(Simon’s Algorithm), 1.16 (Max Cut Problem), 1.20 (8 bit ripple carry adder), 1.25 (Iterative 

phase estimation), and 1.37 (W3test algorithm), hardware scheduling can be considered not 

only effective, but efficient as well, since the algorithms, when scheduled, saved more run 

time than they spent during the scheduling. For other algorithms of middling complexity and 

Shor’s algorithm, the scheduler was quite effective but not necessarily efficient. However, 

for algorithms that were too simple, this particular hardware scheduler could not be 

considered effective at all. For simple algorithms, there were simply not enough instructions 

to rearrange in order to gain performance increases. Even for the cases where the scheduling 

was not considered effective, the scheduling procedure was fast. This implies that this 

scheduling algorithm would benefit any quantum compiler due to its potential for improving 

quantum algorithms without much of a noticeable impact to the users of the compiler. 

6.2 Future Research 

 This research adds to the body of research on the effectiveness of hardware 

scheduling since, to the author’s knowledge, no other experiment has been performed 
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examining hardware scheduling across different algorithms on a wide variety of current 

generation quantum computers. This research suggests several different avenues for pursuing 

further investigations on the topic of hardware scheduling for near-future quantum 

computers. Some of these avenues come from the limitations posed by this research; other 

avenues come from alternative approaches to the problem of hardware scheduling.  

 One obvious avenue for future research comes in the form of testing this particular 

hardware scheduling strategy across different computer configurations, .NET versions, or 

even across different programming languages entirely in an effort to determine if there is 

potential for even better performance of the scheduler under different conditions or 

environments. Different .NET versions could have different performance costs or compiler 

optimizations that could lead to changes in the algorithm’s performance. Different languages, 

such as Rust, could help determine if garbage collection created any impact on the 

scheduling times, since manual memory management avoids any overhead that garbage 

collection might incur on program execution. Another avenue for future research would be in 

modifying the scheduling algorithm used within this research, such as running it in parallel. 

By making full use of the number of processors available in the computing environment, 

performance could be drastically changed. With a faster scheduling algorithm, even more 

quantum algorithms could be considered efficient under this research’s metric.  

Another possible modification to the scheduling algorithm would be to modify the A* 

search heuristic, as different heuristics could allow for more efficient qubit routing. This is 

especially true since the heuristic involved in this research was quite basic and could have 

impacted overall run-time performance of the scheduler. Testing several heuristics and 

comparing time taken by the heuristic to total time taken to perform the hardware routing 
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search could lead to a better choice of heuristic that could further increase the performance of 

the hardware scheduler. While a better heuristic is not needed now, it may be required for 

future, more complicated, hardware configurations. This research also does not address any 

lookahead strategies which could be used to make globally better routing choices and further 

reduce the number of added SWAP gates that are required in order to allow algorithms to 

meet the connectivity constraints for a given hardware, which might allow for compiled 

algorithms to have further reductions in run time.  

 Another idea for future research comes in the form of testing hardware scheduling 

with more complicated algorithms and a wider variety of hardware configurations. This 

research only covered five different hardware configurations, but more complicated and 

powerful hardware is being created all the time which could drastically impact the results of 

the experiments. As for the algorithms being tested, researchers are making increasingly 

more complicated algorithms, much more complicated than Shor’s Algorithm, and this 

research does not cover the hardware scheduling effects of these kinds of quantum 

algorithms. 

 This research is also only done from a theoretical perspective. It would be a benefit to 

this field of research to actually be able to verify these performance changes against real 

quantum computing hardware, either by integration with the IBM Quantum Experience API, 

overcoming the challenges like queuing or compilers changing the algorithms, or using some 

other service in which those issues are non-existent.  

 Lastly, other researchers such as Shi et al. [2019] have identified that the gate 

approach, as is utilized in this research, might not be the best model for implementing 

hardware scheduling [54]. In the gate approach, the problem of hardware scheduling is 
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similar to that of instruction scheduling in classical computing where discrete gates are 

reorganized according to how long they take and which resources they need exclusive access 

to. Shi et al. [2019] argue that because quantum computers do not operate using gates but use 

electrical control pulses instead, other methods of hardware scheduling using these control 

pulses could be more effective [54]. This avenue of research would involve the design of 

computing models, either as abstractions of the control pulses or the control pulses 

themselves, or the design of new hardware scheduling strategies unlike those used for the 

gate model.  

6.3 Concluding Remarks 

 This thesis investigated the effectiveness of a hardware scheduling algorithm for 

quantum computers that employ the A* search algorithm in order to support arbitrary 

hardware qubit configurations. For this, a compiler was developed which used the 

implemented hardware scheduling strategy and a methodology was designed to test this 

strategy to determine its effectiveness. The strategy implemented in this research was 

effective for the majority of quantum algorithms, with the potential to continue to be 

effective as the algorithms get more complicated. However, the scheduling algorithm 

implemented in this research was not effective for the most basic complexity quantum 

algorithms and it was only really efficient for the middle complexity algorithms. This means 

that additional research is required in order to further improve scheduling performance for 

near-future quantum computers to make this algorithm not only effective, but efficient for 

larger and more complex algorithms considering algorithms are quickly growing more 

complex as time progresses.  
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