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a b s t r a c t

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced
flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to
avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based
on insights from a physics-based thermal simulation model. The motivation being to replace

https://doi.org/10.1016/j.matdes.2022.111351
0264-1275/� 2022 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Grado Department of Industrial and Systems
Engineering, Virginia Tech, Blacksburg, VA, USA.

E-mail address: ariensche@vt.edu (A. Riensche).

Materials & Design 224 (2022) 111351

Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier .com/locate /matdes

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2022.111351&domain=pdf
https://doi.org/10.1016/j.matdes.2022.111351
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ariensche@vt.edu
https://doi.org/10.1016/j.matdes.2022.111351
http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes


Accepted 6 November 2022
Available online 15 November 2022

Keywords:
Feedforward process control
Laser powder bed fusion
Thermal history simulations
Graph theory
Physics-based parameter optimization

cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The
approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution
of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the
model-derived thermal trends were analyzed to isolate layers of potential heat buildup. Third, heat
buildup in affected layers was corrected before printing by adjusting process parameters optimized
through iterative simulations. The effectiveness of the approach was demonstrated experimentally on
two separate build plates. In the first build plate, termed fixed processing, ten different nickel alloy 718
parts were produced under constant processing conditions. On a second identical build plate, called con-
trolled processing, the laser power and dwell time for each part was adjusted before printing based on
thermal simulations to avoid heat buildup. To validate the thermal model predictions, the surface tem-
perature of each part was tracked with a calibrated infrared thermal camera. Post-process the parts were
examined with non-destructive and destructive materials characterization techniques. Compared to fixed
processing, parts produced under controlled processing showed superior geometric accuracy and resolu-
tion, finer grain size, increased microhardness, and reduced surface roughness.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Goal and motivation

The goal of this work is to develop and apply a model-driven
feedforward control approach for mitigating thermal-induced flaw
formation in metal parts made using laser powder bed fusion
(LPBF) process. In this work, temperature predictions from a
physics-based computational simulation model are used to adjust
the processing parameters layer-by-layer before the part is printed
with the intent of avoiding heat buildup and subsequently reduc-
ing thermal-induced flaw formation. The motivation is to replace
cumbersome and expensive build-and-test empirical optimization
with a physics-guided strategy.

In LPBF, as shown in Fig. 1(left), metal powder is raked or rolled
onto a build plate and selectively melted layer-by-layer using
energy from a laser [1]. Despite its demonstrated potential to
reduce lead time and overcome design-related constraints, LPBF
has yet to displace conventional manufacturing, particularly in
precision-driven industries, owing to its tendency to create flaws,
which eventually leads to large variability in functional properties
[2-5].

The spatiotemporal temperature distribution in the part during
the LPBF process, also called the thermal history, is reported to be
the major cause of such flaw formation scenarios as sub-standard
geometric integrity; poor surface finish; build failures, e.g., recoa-
ter crashes and collapse of supports; cracking and distortion;
inconsistent microstructure, among others [2,3,6-9].

Recently, Sames et al. [7] provided a comprehensive review of
research efforts linking thermal history to flaw formation and
physical properties of LPBF parts. For example, Li et al. [10] associ-
ated heat buildup with grain coarsening, which in turn results in
reduced microhardness. Likewise, Paulson et al. [11] established
the effect of heat buildup in single track deposits on keyhole poros-
ity. Similarly, Yavari et al. [9,25] correlated excessive heat buildup
in samples to part warpage leading to recoater crashes, microstruc-
ture heterogeneity, and porosity. Therefore understanding, predict-
ing, and controlling the thermal history is essential to ensure
industrial-scale viability of the LPBF process [12].

The thermal history of LPBF parts is influenced by several fac-
tors such as: processing parameters; part design; part orientation,
layout and build plan; other parts on the build plate; and feedstock
materials aspects [7,8]. Moreover, the thermal history of a part
may vary substantially from layer-to-layer due to the changing
surface area of the part [9]. Hence, thermal-induced flaw formation
can occur despite using empirically optimized processing
conditions.

The causal effect of thermal history on part quality is illustrated
in Fig. 1(right), which shows a LPBF build plate consisting of seven
identical stainless steel parts printed under manufacturer-
optimized processing conditions. The parts differ only in their ori-
entation and were made under the same processing conditions
that remained constant throughout the build. Out of the seven
parts printed, only two were observed to be nominally flaw-free,
the rest of the five parts were afflicted with thermal-induced flaws,
such as cracking and warping.

Fig. 1. (Left) Schematic of the laser powder bed fusion (LPBF) metal additive manufacturing process (Right) The LPBF process is prone to flaw formation despite extensive
empirical optimization of processing parameters. For example, the same part when built under identical parameters in different orientations results in various types of flaws,
such as warping, cracking, poor surface finish, and recoater crash.
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The flaws exemplified in Fig. 1(right) can be attributed to the
existing empirical approach to process optimization. In current
LPBF practice, simple cuboid or cylinder-shaped coupons are
deposited under different processing conditions (e.g., laser power,
velocity, hatch spacing, scan pattern). Subsequently, the test cou-
pons are examined post-process, typically with non-destructive
X-ray computed tomography and destructive metallographic anal-
ysis [13-15]. Based on these empirical tests, practitioners identify
optimal processing parameters for obtaining a desired physical
characteristic, such as porosity, part density, surface finish, or
mechanical property, e.g., tensile strength [16,17].

While specific flaws, such as porosity, may be prevented with
optimized processing conditions, other types of non-conformities
such as distortion and inconsistent microstructure often occur in
intricate parts due to underlying complex process physics, part
design and orientation interactions [18]. Therefore once processing
parameters are optimized for a particular material, experienced
practitioners further adapt these parameters for making complex
geometries [6].

Such subjective geometry-specific, build-and-test empirical
optimization is expensive and laborious given there are over 50
critical-to-quality LPBF process variables, prohibitive cost of pow-
der feedstock materials, and small production batch sizes [19].
Consequently, there is an urgent need to supplant empirical pro-
cess parameter optimization with a physics-guided predictive
strategy that encompasses the causal relationship between param-
eters, part design, thermal history and part quality [12,20-22].

1.2. Objective and approach

1.2.1. Concept of model-based feedforward control
The objective of this work is to demonstrate that model-driven

feedforward process control mitigates thermal-induced flaw for-
mation in LPBF parts. The key idea of feedforward control imple-
mented in this work is to avert heat buildup in an LPBF part by
optimizing the process parameters layer-by-layer before printing
based on insight from a computational thermal simulation model.
The approach consists of three steps, as summarized in Fig. 2.

(Step 1) Predict the thermal history (temperature distribution)
of a LPBF part using a fast and computationally tractable graph the-
ory approach [9,23,24].

(Step 2) Analyze the predicted thermal history trends and iden-
tify layers where excessive heat buildup is likely to occur. The con-
trol target is the rate of change, or slope, of end-of-cycle surface
temperature. The end-of-cycle temperature is the surface temper-
ature of the part after a layer is deposited and a fresh layer of pow-
der is placed above, but prior to melting of the next layer. The goal
is to maintain the slope at 0 �C per layer. Control is only initiated
when the rate of change of end-of-cycle temperature exceeds
20 �C per layer.

The threshold of 20 �C per layer was determined based on our
previous work detailed in Ref. [9,25] for identical material and
LPBF system. In these previous studies an increase in end-of-
cycle surface temperature greater than 20 �C between successive
layers was correlated with build failures, such as distortion and
recoater crashes [9].

(Step 3) Correct heat buildup in layers identified in Step 2 by
adjusting the laser power layer-by-layer or by increasing the dwell
time between layers, thus allowing the part to cool. These process-
ing conditions are optimized through iterative simulation of the
thermal history using the graph theory approach.

The prediction of thermal history and changes to process
parameters are guided by a experimentally validated graph theory
thermal simulation approach detailed in prior publications
[9,23,25-28]. This mesh-free computational thermal modeling
approach converges approximately 7 to 10 times faster than exist-
ing non-commercial finite element-based LPBF simulations on a
desktop PC, and the thermal history is predicted with error less
than 10% [9,23,25-28].

The computational advantage of the graph theory approach
allows practitioners to rapidly iterate and simulate the effect of
changing processing conditions on the thermal history before a
part is printed. Thus, this model-driven feedforward control strat-
egy can significantly reduce the need for extensive empirical opti-

Fig. 2. This model-driven feed forward control of additive manufacturing approach consists of three steps. (Step 1) Prediction of thermal history using the graph theory
computation model. (Step 2) Analysis of the predicted thermal history trends to identify heat buildup. (Step 3) Correction of heat buildup by adjusting process parameters
layer-by-layer optimized through iterative simulation of the thermal history.
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mization and testing to mitigate flaw formation, and thereby accel-
erate the time-to-market of LPBF parts.

To demonstrate the effectiveness of the feedforward approach
two identical build plates were used. Each build plate consisted
of 16 parts encompassing 10 types of geometries parts made from
Nickel Alloy 718 material. In the first build plate - fixed processing -
all parts are printed under identical, powder manufacturer-
recommended processing parameters, and these parameters are
maintained constant throughout the process for all layers of the
part. In the literature, fixed processing is also referred to as tradi-
tional processing [29].

The second build plate - controlled processing - has identical
parts printed under matching conditions except the laser power
was changed layer-wise depending on the geometry of each part,
and the dwell time between layers was increased to mitigate heat
buildup. Preventing heat buildup was the target of the feedforward
control approach presented in this work due to its correlation with
flaw formation The parameter changes for the controlled process-
ing case are optimized a priori through thermal simulations. Each
part on the controlled processing build plate is printed with a
unique, build strategy aimed at minimizing heat buildup specific
to the part geometry. For the parts in this work, the graph
theory-based thermal simulations converged in between 2 and
10 minutes on a desktop PC.

Post-process the physical properties of parts built under fixed
and controlled processing conditions are compared using a variety
of ex-situ non-destructive and destructive characterization tech-
niques. Specifically, non-destructive X-ray computed tomography
was used for measurement of porosity, surface texture and geo-
metric accuracy. The Archimedes method was used for relative
density measurements. Destructive metallography characteriza-
tion involved optical and scanning electron microscopy, and mea-
surement of microhardness.

1.2.2. Limitations
A limitation with the feedforward control approach developed

in this work stems from the objective of mitigating heat buildup
at the bulk part-scale. Controlling the heat buildup at the part-
scale was successful at reducing various types of scale-
transcending flaw formation, such as microstructure grain size,
surface finish, and geometric accuracy. However, an alternative,
and more focused approach, would be to target scale-specific out-
comes, e.g., type and texture of microstructure evolved, residual
stresses, and feature resolution, among others. These could be
achieved by controlling certain thermal phenomena, such as cool-
ing rate and spatial thermal gradients. A second drawback of the
presented approach is that heat buildup in the part is mitigated
between layers, and not within a layer due to limited resolution
of the graph theory model.

Further, in this work, the adjustment of process parameters are
identified through trial-and-error iterative simulation of the ther-
mal history trends from the graph theory model. The mitigation
of heat buildup is achieved by adjusting only two process parame-
ters in the model, namely, laser power and dwell time between
layers. In other words, the control design is heuristic and based
on observation. In our future work, the process parameter adjust-
ment will be automated through purpose-built optimization algo-
rithms with a broader scope of control variables.

1.3. Prior work and novelty

A brief literature review concerning process control for LPBF is
provided herewith. Review articles detailing process control strate-
gies are available in Ref. [30-33]. As summarized in Fig. 3,
approaches for process control in LPBF can be categorized into

two broad classes – closed-loop feedback control, and open-loop
feedforward control.

1.3.1. Review of prior work in Closed-loop feedback control in LPBF
In closed-loop control, the process dynamics, e.g., meltpool

temperature or part temperature, are observed using a sensor, such
as a pyrometer or thermal camera, and process drifts are corrected
based on data acquired from the sensor [29,34-36]. For example,
Renken et al. [37], installed a pyrometer in the LPBF machine to
measure the intensity of the meltpool during processing. Subse-
quently, a data-driven control algorithm was used to maintain
the meltpool intensity within a tight window by adjusting the laser
power. The control schema described above falls under the cate-
gory of empirical sensor-based closed-loop control, since the cor-
rection strategy was not guided by a physics-based model.

In the same work, Renken et al. [37] implemented a hybrid
empirical and physics-guided closed-loop control strategy wherein
a finite element (FE) model is used to guide the process corrections.
In other words, the meltpool intensity tracked by the pyrometer is
used as an input to an FE model which, in turn, determines the con-
trol action, i.e., reduce or increase laser power. Renken et al. [37]
report, based on experiments with bridge-shaped parts (similar
to one of the parts studied in this work, see Table 2, Sec. 2.2.1), that
the hybrid feedback control approach outperforms sensor-based
feedback control, in that the meltpool temperature has a smaller
deviation when processing certain overhang features of the part.

Recently, Vasileska et al.[38] successfully demonstrated a feed-
back control approach based on real-time imaging of the meltpool
in LPBF. The aim was to control the meltpool shape and size by
changing the duty cycle of a pulsed laser, which in turn resulted
in improved feature resolution of overhang bridge-shaped parts.

From a bulk part temperature perspective, Zhong et al. [29]
developed a neural network machine learning-based feedback
mechanism for controlling the thermal history in LPBF parts. The
inputs to the neural network were surface temperature images
from a thermal camera and certain derived process signatures.
Similar to this work, the aim was to minimize heat buildup in
the part by altering the laser power layer-by-layer. Zhong et al.
[29] demonstrated the utility of the feedback control approach in
the context of tensile test specimens and a large (1 m � 1.65 m)
LPBF part. The authors reported that the feedback control mecha-
nism reduced the variation in tensile strength across coupons to
within 10%, compared to over 30% for fixed processing. Notably,
Zhong et al.’s [29] work was carried out on a quad-laser LPBF sys-
tem, and the material used was resin-coated sand.

There are two challenges in applying closed-loop feedback con-
trol strategies to LPBF. First, there is an inherent delay in the sens-
ing and feedback loop which can potentially hinder early detection
and correction of process drifts. Second, sensors for temperature
measurement in LPBF, such as imaging pyrometers or thermal
cameras, only provide surface temperature information and cannot
capture the temperature distribution of the entire part beyond the
top layer.

1.3.2. Review of prior work in open-loop feedforward control in LPBF
In the open-loop feedforward control category, the process state

is not adjusted online based on feedback from a sensor. Instead,
changes are made to the process parameters before printing to
compensate for predicted process deviations based on model-
derived predictions [39-47]. Feedforward control is, therefore,
proactive in nature. These feedforward process models can be
empirically derived [39-41], physics-based [42-44,46], or a hybrid
of physics and empirically derived models [45]. This work is an
example of open-loop feedforward control with process parameter
optimization executed offline via a physics-based model before the
part is built.
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As an example of empirical feedforward control in LPBF, Heung
et al. [40] used a shape-related factor called the geometric correc-
tion factor (GCF) to reduce the laser power when scanning a part
with overhang regions. As a consequence, Hueng et al. [40] demon-
strated that the overhang regions are not overheated, which
resulted in improved surface finish [40]. A drawback with such
an empirical feedforward control strategy is that the model is
restricted to certain shapes and features representative of the
available data, i.e., application of the GCF to other features beyond
overhangs, such as thin walls, remains to be investigated.

From the perspective of model-driven feedforward control, a
physics-based computational or analytical model is used to adjust
the process parameters. In the literature, feedforward control
based on physical thermal models both at the bulk part-level
[44] and track-level have been implemented [46]. Further,
approaches that couple high-fidelity simulations with a low-
resolution empirical model have also been proposed [47].

To reduce the computational burden involved with physics-
guided feedforward control, researchers often employ a simplified
abstraction of a high-fidelity model. For example, Ramani et al. [46]
used radial basis functions to approximate the heat transfer simu-
lations at the scan-level obtained from a finite difference model.
Based on one-layer thick scans of area 600 mm � 600 mm, Ramani
et al. [46] show that a scanning pattern derived from their model-
based approach (termed SmartScan) significantly reduced distor-
tion compared to conventional, empirically derived strategies, such
as chessboard and rectilinear scanning patterns.

Druzgalski et al. [44] optimized the laser power and velocity
settings at the hatch-level using a physics-based model. For this
purpose, Druzgalski et al. [44] leveraged the ALE3D FE code devel-
oped by Lawrence Livermore National Laboratory [48]. Hatch-level
thermal simulations were used to prevent heat buildup within a
layer by changing the laser scanning parameters in a heuristic
manner. To demonstrate the effectiveness of their approach, Druz-
galski et al. built a complex geometry with internal channels and
overhang features with fixed conditions, and their model-
optimized layer scan strategy. Through post-process characteriza-
tion, Druzgalski et al. [44] demonstrated that compared to fixed
processing, model-optimized processing resulted in parts with
superior resolution and improved surface integrity.

Our work differs from Druzgalski et al.’s approach in one conse-
quential aspect. Druzgalski et al.’s approach relies on high-
resolution hatch-level FE simulation to optimize the laser parame-
ters within a layer. Instead of hatch-level temperature control, the
current work is concerned with avoiding heat buildup at the over-
all bulk part-level by adjusting the laser power and dwell time
between layers. A rapid and relatively low-resolution graph theory
approach is used in this work for predicting the heat buildup.
Moreover, the current work demonstrates the advantages of feed-
forward control in the context of four different part shapes with
post-process measurements ranging from quantification of
microstructure in terms of grain size, surface finish, dimensional
integrity, and microhardness.

A data and model-driven hybrid feedforward process control
strategy is implemented in the work of Ogoke et al. [45], who use
an empirical machine learning model (deep reinforcement learn-
ing) to optimally adjust the process parameters at the hatch- or
track-level. The machine learning model is user trained from theo-
retical finite element simulations. Recently, Wang et al. [43] used
an analytical model to predict and control the meltpool depth for
avoiding keyhole and lack-of-fusion porosity in LPBF.

In closing this section, we note that a hybrid feedforward and
feedback control of the LPBF process is being studied as part of
our future work. The concept is to augment sensor-based feedback
control to correct local within layer heat buildup based on data
from an in-line sensor, with model-based feedforward control to
mitigate between layer heat buildup.

1.3.3. Novelty
This work has two unique aspects that differentiate it from the

existing model-based feedforward process control approaches
reported in the literature. First, previous work in the literature
employed computationally demanding part-scale FE-based ther-
mal simulation models that require several hours to converge, this
work uses a mesh-free graph theory model that converges within
minutes (<15 min) on a desktop PC [9,49,50]. Although commercial
FE-based solutions for thermal modeling can drastically reduce the
computation time, they do not currently incorporate the ability to
automatically prescribe adjustment of parameters to compensate
for potential heat buildup and related process drifts [51]. However,
we note that certain commercial solutions (ANSYS Additive Print)
do provide the ability to modify the part design to compensate
for thermal-induced distortion [51].

Second, current efforts in feedforward control in LPBF are lar-
gely restricted to single track and meltpool-scale process control,
with a few focusing on part-scale thermal modeling [43-46]. The
presented approach is scalable to a variety of relatively complex
and large, multi-layer parts. Within this context, the thermal
model and effect of feedforward control are validated through in-
situ thermography measurements.

1.4. Organization of the paper

The rest of this paper is organized as follows. In Sec. 2, we
describe the experimental methodology and graph theory simula-
tion approach. Results are reported in Sec. 3 which includes model
validation, and comparison of physical properties, such as part res-
olution, surface finish, microstructure, and microhardness for mul-
tiple parts built with and without model-based feedforward
control. Finally, the conclusions and avenues for future research
are summarized in Sec. 4.

2. Methodology

This section is organized as follows. Sec. 2.1 details the experi-
mental LPBF setup. Sec. 2.2 reports the build plan and provides the

Fig. 3. There are two approaches for process control in LPBF implemented in the literature. (left) closed-loop feedback control, and (right) open-loop feedforward control. The
present work employs part-level model-based feedforward control.
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rationale for choosing the various test parts studied in this work, as
well as details the post-processing steps used for characterization
of part properties. Sec. 2.3 explains the procedure for measurement
and calibration of the in-process temperature measurements
obtained from the thermal camera. Finally, Sec. 2.4 elucidates the
graph theory-based feedforward process control approach imple-
mented in this work.

2.1. Experimental setup

Parts were manufactured using the open architecture LPBF sys-
tem at Edison Welding Institute (EWI, Ohio). A schematic and pic-
ture of the sensor instrumented LPBF system is presented in Fig. 4
(a) and (b) respectively; its specifications are provided in Table 1.
This LPBF system allows critical processing parameters, such as
laser power, dwell time between layers, scan path, and laser veloc-
ity among others to be independently altered, layer-by-layer, for
each part on the build plate.

The system is equipped with a SCANLABS HurryScan20
galvanometer-mirror scanner, a 700 W 1062 nm Yb-fiber laser
(IPG Photonics YLR – 700WC) and a precision motion control sys-
tem (Aerotech A3200) driven by CNC G-code that can be edited
by an operator. The system produces a nominal spot size of
68 lm at 370 W – measured by a laser beam profiling system
(Ophir BeamWatchAM).

A Micro-Epsilon model le thermoIMAGE TIM 640 longwave
infrared (LWIR) thermal camera with an operating wavelength of
8 to 14 lm is installed inside the machine chamber. The camera
is inclined at 80� to the horizontal and acquired data at 10 Hz.
The optical resolution of the camera is 640 pixels � 480 pixels.
The camera settings are also summarized in Table 1. The thermal
camera was positioned to capture an approximately
125 mm � 125 mm central area of the build plate resulting in a
spatial resolution �20 pixels per mm2. The camera was triggered
by a G-code command before the laser began scanning a layer
and was stopped after the laser completed that layer. Hence, data
was only acquired when the laser was actively melting material.

As will be detailed in Sec. 2.3.1, the IR camera measurements
are calibrated offline using an industry-standard approach to abso-
lute temperature with reference contact thermocouple readings.
Recently, Wang, et al. [52] developed a similar approach to mea-
sure the top surface temperature using infrared thermography.

Additionally, a Hall effect current sensor is connected to the
recoater to capture the recoater motion. This sensor provides an
estimate of the recoating time and detects load on the recoater
blade, which is valuable for detecting recoater impact. The time
for recoating a layer with fresh powder is measured to be 15 sec-
onds and remained fixed irrespective of the process conditions or

Fig. 4. (a) Schematic, and (b) photograph of the open architecture LPBF system at EdisonWelding Institute (EWI). An infrared thermal camera inclined at 80� to the horizontal
was installed in the chamber to monitor the surface temperature of the parts during processing.

Table 1
Nominal process parameter settings and material properties. Also included are the
settings used for the IR thermal camera.

Process Parameter [Units] Values

Laser type and wavelength. Ytterbium fiber, wavelength 1070 nm
continuous mode (manufacturer IPG), 700 W
max power

Nominal Laser Power (P0)
[W]

285

Scanning Speed (V) [mm
s�1]

960

Hatch spacing (H) [mm] 0.1
Layer thickness (T) [mm] 0.04
Stripes overlap [mm] 0.08
Stripe width [mm] 10
Volumetric global energy

density Ev [W/mm3]
73

Laser spot size [lm] 68
Scanning strategy Meander-type scanning strategy with 45�

rotation of scan path between layers.
Build atmosphere Argon
Build plate Preheat

temperature [�C]
85

Recoater Cycle Time [sec] 15
Powder Material Properties Values [units]
Material type Nickel Alloy 718 (Ni718); corresponding to UNS

N07718 (Carpenter Additive)
Particle size range [lm] 15–45 (D10 – D90)
IR Thermal Camera

Specifications
Values

Brand and model Micro Epsilon – thermoIMAGER TIM 640
Resolution [pixels], [pixel

per mm2]
640 � 480, 20

Frame rate [Hz] 10
Spectral range [lm] 8 to 14
Spatial resolution of object

in image [lm/pixel]
20

Camera On trigger event Laser Start
Image size [mm] 125 � 125
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number of parts on the build plate. In this work, no recoater impact
was detected by the Hall effect sensor.

2.2. Build plan

2.2.1. Test parts
Two build plates with identical parts were created in this work,

one termed fixed processing and the other termed controlled pro-
cessing. The nominal settings for the build plate with fixed process-
ing conditions are reported in Table 1. For fixed processing,
nominal process parameter settings for Nickel Alloy 718 material
were implemented based on recommendations from the powder
manufacturer. These process parameters were optimized to avert
porosity. Nickel Alloy 718 was chosen given its wide use in the
aerospace and energy generation industries [53].

As shown in Fig. 5, each build plate consists of 16 parts encom-
passing 10 unique types of geometries. All the parts are 25 mm tall
to prevent abrupt change in the time between layers resulting from
early completion of certain parts, which can cause flaw formation
[9,54]. Parts were placed near the center of the build plate to pre-
vent flaw formation from lens aberrations, and a spacing of
�10 mm was maintained between parts to reduce the potential
for inter-part thermal interaction. Total build time was approxi-
mately 15 h. Additionally, the build plate was preheated to 85 �C
to mitigate residual stresses.

Four representative parts were selected for analysis in this
work. Referring to Fig. 5, the parts selected are labeled: cone, vase,
frame, and bridge. These four parts were selected for further anal-
ysis because their relatively compact size was conducive for post-
process X-ray CT analysis and metallurgical characterization. The
rationale for the design of these parts is described in Table 2, along
with their respective post-processing steps.

After the fixed processing build plate was completed, the IR
data from the cone-shaped part was used to calibrate the graph
theory model. The model predictions are subsequently used to
alter the processing conditions for the controlled processing build
plate. The model calibration steps along with the approach for
altering process parameters for the controlled processing build
plate are explained in Sec. 2.4.

2.2.2. Time between layers (TBL) or Inter-layer time (ILT)
The X-Y area scanned by the laser varies substantially over the

course of the build. The time between layers (TBL), also called
inter-layer time (ILT), varies in proportion to the scanned surface

area. The ILT is defined as the time elapsed between the beginning
of melting one layer to the beginning of the succeeding layer.

The ILT is obtained from the slicing software before starting the
build and verified with data from the recoater current sensor. Fig. 6
tracks the ILT as a function of build height and layers. The ILT varies
from 80 ± 5 s for the first 5 mm (125 layers) to 70 ± 5 s thereafter.
The ILT is a critical input, represented as s [s], in the graph theory
model, (Eqn. (4), Sec. 2.4). The ILT includes the 15 s constant time
to recoat a fresh layer of powder.

In Fig. 6, the first sharp decrease in ILT occurs at 3 mm (layer
75). This decrease was caused by the completion of the large bases
of several parts. Another decrease occurs at 10 mm (layer 250),
where the surface area of several large parts was reduced. Beyond
20 mm build height (layer 500) the surface area of the cone
increases in relation to the other parts, which proportionally
increases the time to scan the layer. Therefore, the ILT gradually
increases from layer 500 until the build was completed (Layer
625).

2.2.3. Post-process part characterization
After processing, the parts were examined ex-situ using a vari-

ety of non-destructive and destructive metallurgical characteriza-
tion techniques. Non-destructive analysis included X-ray
computed tomography (X-ray CT, Nikon XTH-225) for nominal-
to-actual metrological analysis, and porosity measurements. The
X-ray CT scanning resolution for these parts was 10 lm per voxel.
The CT Pro 3D software was used to reconstruct the 3D volumes
from the 2D projections acquired from the X-ray CT. The Volume
Graphics software (VGSTUDIOMAX 3.3.4) was used for nominal-
to-actual part comparison (NAC) and porosity analysis. The poros-
ity content in each part is reported in terms of defect volume ratio
(DVR).

In addition, the relative density of the parts was quantified
using Archimedes measurements. Relative density is the ratio of
the density of the sample compared to a fully dense sample of
the same material. Samples with a relative density less than
100% are likely to be affected by porosity or other flaws [55]. The
surface roughness of as-built parts was measured using laser scan-
ning microscopy (Keyence VK-X200K). The surface roughness is
quantified in terms of the average areal surface roughness (Sa),
and is reported as the mean of 6 different sample regions, each
of area 1 mm � 1.4 mm.

For microstructure characterization, the parts were cross-
sectioned using wire electro-discharge machining. The cross-
sectioned samples were ground using silicon carbide abrasive

Table 2
The four parts selected for analysis, their underlying rationale, and post-process characterization.

A. Riensche, B.D. Bevans, Z. Smoqi et al. Materials & Design 224 (2022) 111351

7



paper, polished using diamond paste (3, 1, 0.5 lm) and etched with
aqua regia for �10 seconds. Subsequently, optical and scanning
electron microscopy (Helios 660 NanoLab, FEI) were used to ana-
lyze the microstructure. Microhardness measurements (Vickers,
HV0.5) were then acquired at 0.5 kg and dwell time of 10 s (Tukon
2500 Hardness Tester).

2.3. Temperature measurement

2.3.1. Calibration of IR thermal camera measurements
It is necessary to calibrate the thermal camera readings because

IR thermography provides a relative measurement and not an

absolute temperature reading [52,56,57]. The temperature mea-
surements captured by the IR camera consider thermal emissivity
to be constant. However, emissivity is not constant, but depends on
the temperature of the body, angle of inclination of the body to the
IR camera, and surface finish of the body [56]. In LPBF, the surface
temperature varies considerably, and the surface texture trans-
forms as the material changes from powder to a consolidated part.
Accordingly, LPBF researchers have created rigorous calibration
procedures to convert temperature readings obtained by the IR
thermal camera to an absolute scale [57].

In this work, we conducted an offline two-point calibration after
the parts were built to offset emissivity differences between un-

Fig. 5. (a) Top view of the build plate with detailed view of the 16 geometries created in this work. Four geometries (cone, vase, frame, and bridge) are analyzed in depth. (b)
Actual fixed processing build plate upon completion.
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melted powder and solid metal parts. The temperature readings
from the IR camera were converted to an absolute scale through
direct correlation to temperature recorded by a contact thermo-
couple welded to two of the five cube-shaped parts which was
selected for calibration (see Fig. 5). This industry-standard proce-
dure, used in previous publications, is summarized as follows
[8,23,58]. The following procedure is similar to the calibration
methods recently reported by Wang et al [52].

After completing the first fixed processing build, two of the
cube-shaped parts (Fig. 5) were removed from the build plate
and a K-type thermocouple was resistance spot-welded to the sur-
face of each part. The parts were placed on a fixture with a car-
tridge heater, which was bolted on the build plate of the
machine. The calibration setup is shown in the inset of Fig. 7(b).

The build plate was lowered to place the top surfaces of the
cubes at the level of the processing plane and the parts were placed
in the same location as would be seen by the IR camera during the
actual build, essentially recreating the process conditions inside
the chamber during the build. Metal powder was deposited on
top of the part to simulate the state of the process before laser
melting. This is because the thermal emissivity values of an as-
printed LPBF surface and a surface with powder spread on top dif-

fer significantly [9,26]. The temperature of the parts was gradually
raised using the cartridge heater and the absolute temperature
response of the thermocouple as well as the relative temperature
response of the IR camera were recorded. The process was repeated
without powder on top of the part to simulate the condition after a
layer has been processed.

A calibration function was obtained by fitting a regression func-
tion to the recorded data for both the bare-metal and powder-
deposited conditions. The result of the calibration and the fitted
regression function are presented in Fig. 7(a) and Fig. 7(b) for the
powder-deposited and bare-metal conditions, respectively. To
reduce the effect of measurement noise, the IR reading was aver-
aged over a 9 pixel � 9 pixel (180 lm � 180 lm) region, centered
on each cube. The calibration functions shown in Fig. 7 range from
25 �C to 250 �C. Temperature measurements over the upper limit
would be inaccurate as it would saturate the IR camera readings.
These obtained calibration functions were applied to all IR mea-
surements for this work.

We note that the calibration curves in Fig. 7 are valid for fixed
intrinsic and extrinsic status of the IR camera. A change in the
intrinsic state of the IR camera, i.e., the various software settings
of the camera, such as exposure time, would void the calibration.

Fig. 6. The time between layers (TBL), or inter-layer time (ILT) changes significantly during the build. The ILT varies continually throughout the 625 layers (25 mm), from 85 s
at the start of the build to 70 s at the end, reaching a minimum of �65 s near 20 mm. The total build time was 15 h.

Fig. 7. Calibration functions for converting the IR thermal camera readings to absolute temperature measurements. (a) The calibration function for powder deposited on the
part. (b) Calibration function for the bare-metal condition. Inset. The fixture used for calibration of the temperature readings.
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Likewise, a change in the extrinsic state of the IR camera, i.e., angle
of inclination, position, stand-off distance from the build plate,
would also invalidate the calibration functions. Given the sensitiv-
ity of the sensor to both internal and external settings, using a part-
level infrared thermal camera for closed-loop feedback control
would further compound measurement errors.

In this work, measurement of the liquidus temperature was not
attempted, as the focus is to predict and control the end-of-cycle
temperature gradient after solidification, as opposed to local melt-
ing phenomena, and moreover, the temperature of the liquid state
metal was beyond the saturation range of the camera sensor.

2.3.2. End-of-cycle surface temperature
An example of the IR thermal camera images acquired during

the fixed processing build are shown at select intervals in Fig. 8.
The temperature scale bar in Fig. 8 is obtained after applying the
calibration function discussed in Sec. 2.3.1. These IR images, taken
at the end of each layer, visually depict the variation in surface
temperature observed in the various parts. For example, despite
printing under identical processing conditions, Fig. 8 shows the
prominent increase in surface temperature throughout deposition
for the cone-shaped part compared to the other parts. Thus, the
thermal history varies layer-to-layer for the same part, as well as
between parts at the same layer. Hence, to avoid heat buildup, it
is necessary to tailor the processing conditions both part-by-part
and layer-by-layer.

The thermal history of the parts is quantified in terms of the
end-of-cycle surface temperature. The end-of-cycle surface tem-
perature, visually explained in Fig. 9, has been used in our previous
works [99,22,24]. It is the average of the IR camera thermal read-
ings after calibration over a 3 pixel � 3 pixel (60 lm � 60 lm)
region on each part. The end-of-cycle surface temperature is plot-
ted in Fig. 10 for each of the four parts studied in this work.

Fig. 9(a) shows an example of the selected 3 pixel � 3 pixel
(60 lm � 60 lm) region of interest for the cone part. The surface
temperature response for this region of interest over all 625 layers
is shown in Fig. 9(b). We note that the temperature readings in
Fig. 9(b) are obtained after converting the IR temperature readings
to an absolute temperature scale using the two calibration func-
tions described in Sec. 2.3.1.

On closer examination of the data from Fig. 9(b), periodic spikes
are observed. In Fig. 9(c), spikes labeled (A) are caused by the laser
scanning over the region of interest on the part. This is followed by
a rapid cooling and slight increase after the powder bed is lowered
and a new layer of powder is deposited. The rationale is explained
in the schematic pictures on the last row of Fig. 9. The end-of-cycle
temperature, demarcated at the temporal location (B) in Fig. 9(c), is
recorded 0.5 s before the laser strikes a new layer of powder. The
end-of-cycle temperature (B) is plotted as a function of the build
layer for the cone-shaped part in Fig. 9(d).

The end-of-cycle temperature reported over the 60 lm� 60 lm
region of interest for each of the four parts is shown in Fig. 10. This
region of interest was chosen to enable measurement of thin cross-
section regions in the vase and frame parts. Measurements near
part edges were avoided to preclude errors due to image blurring
between the part and surrounding powder. In Fig. 10, the temper-
ature for the first 5 mm (125 layers) is not reported since the IR
thermal camera readings are affected by transients from the car-
tridge heater used to preheat the build plate.

In Fig. 10(a), the end-of-cycle surface temperature for the cone-
shaped part increases significantly due to the 45� overhang on the
edge. In Fig. 10(b) for the vase part, the surface temperature
increases after the narrow neck region due to the insulating nature
of the powder trapped in the narrow internal cavity, the increase in
overall surface area being consolidated, and the thin-wall nature of
the part. Similar rapid increases in the end-of-cycle surface tem-
perature for the frame part is evident in Fig. 10(c) at the overhang-
ing section at the end of the build from � 22 mm build height
(layer 550) until completion. In the bridge-shaped part (Fig. 10
(d)), the surface temperature increases sharply after a build height
of 15 mm (layer 375) as the relatively thin legs are poor pathways
for conduction of heat trapped by unmelted powder in the gaps.

We note that the surface temperatures reported in Fig. 10 do
not exceed 200 �C, which is well below the melting point of the
material (Nickel Alloy 718, 1600 �C). This is because, as explained
in the context of Fig. 9, the end-of-cycle surface temperature is
obtained after a new layer of fresh powder has been deposited
by the recoater, and 0.5 s before this new layer is melted. Since
the inter-layer time (ILT) in this work (Fig. 6) was between 65
and 85 s, and given the rapid cooling rates observed in LPBF, the

Fig. 8. Surface temperature images obtained from the IR camera during the fixed processing build. These images are taken after a layer is melted. Despite processing with
constant processing conditions, the surface temperature during the build varies between parts at the same layer, as well as layer-to-layer for the same part. The scale bar is
calibrated to absolute temperature.
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end-of-cycle surface temperatures are well under the melting
point of the material.

2.4. Model-driven feedforward process control

2.4.1. Graph theory thermal modeling
2.4.1.1. Background – Solving the heat diffusion equation with graph
theory. To predict the thermal history, it is necessary to solve the
heat diffusion equation (Eqn (1)) [12,49,50,59]. In the heat diffu-
sion equation, the temperature T at a point (x,y,z) at time (t) is,

qcp
@T x; y; z; tð Þ

@t
� k

@2

@x2
þ @2

@y2
þ @2

@z2

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Laplacianoperator

T x; y; z; tð Þ

¼ P
v � h � d � t0 ð1Þ

Fig. 9. Obtaining the end-of-cycle surface temperature from the IR camera. (a) a 60 � 60 lm (3 � 3 pixel) region of interest is selected for each part. (b) The temperature
trends for each part are plotted. In this case, the trends for the cone are shown. (c) A zoomed-in view shows a prominent spike (A) caused due to laser events depicted in the
two pictures. (d) The end-of-cycle temperature (B) is plotted across all layers. End-of-cycle temperature is extracted after a fresh layer of powder is deposited but 0.5 s before
the next laser strike (A).
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The right-hand side of the heat diffusion equation captures the
effect of processing parameters such as scan speed (v, [m�s�1]),
hatch spacing (h, [m]), laser power (P, [W]), layer height (d, [m]),
and characteristic time (t0, [s]). The characteristic time is the pulse
time of the laser.

The right-hand side is further simplified as EV ¼ P
v�h�t�t0

[W�mm�3], which is called the volumetric energy density and is
defined as magnitude of energy supplied by the laser to melt a unit
volume of powder [55,60,61]. This form of the heat diffusion equa-
tion is commonly used for thermal modeling in LPBF [50].

The left-hand side of the heat diffusion equation includes mate-
rial properties: density (q [kg�m�3]), specific heat (cp [J�kg�1��K�1])
and thermal conductivity (k [J�m�1�s�1��K�1]). The second deriva-

tive term in the heat equation, @2

@x2 þ @2

@y2 þ @2

@z2, called continuous

Laplacian operator, is expressed in terms of spatial coordinates of
the body, and thus captures the effect of part shape on the heat
flow.

The heat diffusion equation is solved by adding the following
boundary and initial conditions, and by replacing the heat source
term EV with an initial temperature distribution T0 x; y; zð Þ. In Eqn.
(2), below, the continuous Laplacian operator is represented as
r2 and the thermal diffusivity as a ¼ k

qcp
[m2

�s�1].

@T x; y; z; tð Þ
@t

� ar2T x; y; z; tð Þ ¼ 0 ðFor one heating cycleÞ:

T x; y; z; t ¼ 0ð Þ ¼ T0 x; y; zð Þ ð2Þ

@T x; y; z; tð Þ
@n

¼ 0 ðOn boundaryÞ

Shifting the heat source to the initial condition is reasonable for
the LPBF where the laser scan is rapid compared to the long dwell
time before the next layer is melted. The initial temperature distri-
bution T0ðx; y; zÞ contains the melting temperature of the material,
and the initial temperature in the remainder of the body is the

temperature distribution from the previous heating cycle. Initial
node temperatures are assumed to be the preheat temperature of
the build plate (85 �C).

Lastly, the boundary condition implies no heat is lost to the sur-
roundings from the boundaries of the body; @T x;y;z;tð Þ

@n is the outward
normal vector. Heat loss at the boundaries is addressed in a sepa-
rate step (Step 3) during practical implementation as discussed
later in Sec 2.4.2. We note that the forgoing simplification is com-
mon to thermal modeling in LPBF [50].

The graph theory approach approximates the continuous Lapla-
cian with the graph Laplacian matrix L, in effect, r2 ¼ �L as dis-
cussed in depth in our previous work [28]. The solution is
obtained by discretizing the heat diffusion equation over N nodes
and by replacing the continuous temperature with a discrete tem-
perature vector (T),

@T x; y; z; tð Þ
@t

þ aLT x; y; z; tð Þ ¼ 0 ð3Þ

The above first-order ordinary linear differential equation has
the following solution,

Tðx; y; z; sÞ ¼ /e�agKs/
0
T0ðx; y; zÞ ð4Þ

Eq. (4) frames the heat diffusion equation in terms of eigenval-
ues K and eigenvectors / of the graph Laplacian L; T0 [K] is the
input temperature of the model, which is determined by the laser
heating and temperature of previously deposited layers; s [s] is the
inter-layer time (ILT, Fig. 6); and g is a tunable gain factor [unit-
less], which controls the rate of heat diffusion and is discussed in
depth by Cole et al. in[28].

The graph theory solution in Eqn. (4) is semi-analytic in nature,
it is analytic in time and numeric in space. To avoid truncation
errors, the entire eigen spectrum consisting of N (number of nodes)
eigenvectors (/) and eigenvalues (K) are considered. The input
temperature (T0 x; y; zð Þ) is estimated as a function of the laser
power (P) as follows.

Fig. 10. Observed surface temperature from IR camera plotted as a function of layer height for: (a) cone, (b) vase, (c) frame, and (d) bridge. Also shown are corresponding
locations where surface temperature are reported. A 60 lm � 60 lm region of interest corresponding to 3 pixel � 3 pixel in the IR camera image is selected for tracking the
surface temperature across the layers.
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T0 x; y; zð Þ ¼ Tnom � Pnew

P0
b ð5Þ

where Tnom = 1600 �C is the melting temperature of nickel alloy 718
at the nominal laser power of P0 = 285 W; Pnew is the altered laser
power, and b = 0.95 is a constant. The value of b was obtained
through tuning of the graph theory model; it remains constant for
all parts on both the fixed and controlled build plates. The value
for Pnew is bounded between 200 W and 370 W. The rationale, as
described in Sec. 2.4.4, is to avoid lack-of-fusion porosity on the
lower end and keyhole melting on the higher end of the laser
power.

The variable for time s in Eq. (4) serves as the effective time for
cooling between laser strikes over the course of the build. Time is
bounded from the time of laser strike s = 0 to the interlayer time
for the experiment (Fig. 6, Sec. 2.2.2) for a single layer. The gain fac-
tor (g) is added to calibrate the model for the specific machine and
material. The value of g = 1.7 is functionally identical to our previ-
ous works, and its significance is discussed in detail in Yavari et. al.
[23,26].

The graph theory approach to thermal modeling has the follow-
ing advantages compared to traditional finite element analysis
(FEA) based techniques in the context of LPBF [27].

(1) Mesh-free Modeling. The graph theory technique discretizes
the part geometry into point nodes and does not need to
mesh the part into volumetric elements. Whereas FEA
requires repeated meshing and remeshing to simulate
layer-by-layer deposition of LPBF, the graph theory model
activates discrete nodes, saving computation time.

(2) Matrix inversion-free computation. Unlike FEA, the graph the-
ory solution does not involve cumbersome matrix inversion
steps. Instead, the eigenvalues (K) and eigenvectors (/) of
the Laplacian matrix (L) are used, which further reduces
computation time.

(3) Time-step free calculation. The FE approach is a fully numeric
computational solution which requires time steps to be
small for the solution to converge. The graph theory solution
is analytic in time, hence the time step (s) in the graph the-
ory solution, shown in Eqn. (4) can be set to any value with-
out losing precision [27,28]. Thus, the graph theory
simulation does not require stepping through time.

2.4.1.2. Prior work in graph theory thermal modeling. Our prior pub-
lications have compared the computational accuracy and efficiency
of the graph theory approach in relation to exact Green’s function-
based analytical solutions, finite element, and finite difference
methods for benchmark 1D and 3D heat transfer problems
[24,28]. These prior works also delineate the effect of number of
nodes and influence of boundary conditions. From a computational
perspective, the approach typically converges to within 1% of the
exact analytical solution approximately 2.5 to 5 times faster than
finite element models.

Prior work has also involved practical application of the graph
theory approach to thermal modeling of the LPBF process, includ-
ing: (1) verification of the graph theory model predictions with
proprietary (Netfabb) and non-proprietary FE software [27]; (2)
validation of model predictions with experimental temperature
observations for several part shapes, including large complex LPBF
parts [23,26]; and (3) correlation of thermal history predictions
with porosity, microstructure evolved, and thermal-induced fail-
ures [9,25]. Recently, the graph theory approach was extended to
thermal modeling of the directed energy deposition process [62].
These prior works affirm that the graph theory solution converges

in �1/10th of the time of non-proprietary FE models, with error
less-than 3%.

2.4.2. Thermal modeling of LPBF parts using graph theory
Fig. 11 shows the four steps in the application of the graph the-

ory approach to model the thermal history of LPBF parts. In Step 1,
the part geometry is discretized into point nodes. These nodes are
sampled with a uniform random distribution throughout the part
geometry.

The node density (n, nodes�mm�3) impacts the convergence of
the model as shown in previous work [26-28]. A higher node den-
sity (n) results in a more accurate convergence, albeit at the
expense of computation time. The computation scales exponen-
tially (n3) to the number of nodes [23,27,28].

In Step 2, the nodes are connected by edges, whose weight
depends on the Euclidean distance to neighboring nodes. From this
connectivity information, the Laplacian matrix (L) is obtained,
wherefrom the eigenvectors (/) and eigenvalues (K) are com-
puted. In step 3, the deposition process is simulated for each layer.
Step 3 involves solving the heat conduction equation in Eqn. (1) for
a layer using the graph theory approach (Eqn. (4)).

After heat diffusion via conducted, heat loss at nodes on the
boundary of the part due to convection and radiation from the part
to the surrounding powder, and from the part to the substrate is
accounted by applying lumped capacitive theory to the tempera-
ture, as follows [9].

Tb ¼ e�hDt Tbi � Tp
� �þ Tp ð6Þ

Here, the temperature of the surroundings Tp is considered as
constant, Tbi is the boundary node temperature obtained by the
heat diffusion alone in Eq. (4), Tb is the resulting boundary node
temperature incorporating convection and radiation heat loss, Dt
is the time step between the calculation of the heat diffusion
within a layer, and h [W�m�2��C�1] is the bulk coefficient of heat
loss for convection (via Newton’s law of cooling) and radiation
(via Stefan-Boltzmann law) from the boundary nodes to the sur-
rounding powder and air. The heat loss coefficient is stratified
between part to surrounding powder (hw), and part to substrate
(hs). In addition to convection and radiation, heat loss via conduc-
tion between the part and the substrate is also included in hs. After
convection and radiation are adjusted at boundary nodes, the tem-
perature at various nodes obtained from graph theory at each node
located at position (x, y, z) at time step Dt is T x; y; z;Dtð Þ.

Lastly, in Step 4, Steps 1 – 3 are repeated as required to simulate
the layer-by-layer process. At the end of each iteration, the tem-
perature of the previous layers is carried forward. Hence, residual
heat from deposition of previous layers is retained in the nodes.
The simulation parameters used in this work are reported in
Table 3. At the end of Step 4, the thermal history of all node loca-
tions is obtained and recorded. The result is a 3D rendering of the
thermal history. The graph theory thermal model used here makes
the following simplifying assumptions:

(1) Several layers are deposited at once to reduce computation
time. This so-called super layer or meta layer assumption
is commonly used in both research and commercial FE-
based thermal simulation implementations [49,51].

(2) The entire super layer is assumed to be deposited at the
input (melting) temperature T0. The shape and temperature
distribution of the laser beam is ignored, and the laser is
considered as a point source.

(3) Each part is considered independent from the others on the
build plate, and parts are considered insulated from one
another; the temperature of one part does not affect others.
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(4) Heat loss through conduction, convection both free and
forced, and radiation are considered, however, the effect of
latent heat of fusion due to transformation of material from
solid to liquid and back to solid is ignored. Therefore,
meltpool-scale phenomena are ignored.

2.4.3. Model calibration
To utilize the graph theory thermal modeling approach (Eqn.

(4)), three modeling parameters must be calibrated, these are the
gain factor (g), the number of nodes (n), and super-layer thickness
(s). The super layer or meta layer assumption, where several layers
are assumed to be deposited at once, is used commonly in thermal
simulations of LPBF to speed computation [12]. The data obtained
for the cone-shaped part was chosen for model calibration. Based
on previous work for the same material, the gain factor was fixed
as g = 1.7 [unitless] [9].

The graph theory solution was obtained for various values of
node density (n) and super layer thickness (s) and compared with
the IR data. The error with respect to the IR data is reported in
Table 4 in terms of the mean absolute percentage error (MAPE,
%), and root mean squared error (RMSE, �C). The values of n and
s resulting in the least MAPE, and RMSE are selected. The effect
of node density (n) with s = 0.5 mm on convergence is shown in
Fig. 12(a) and Table 4(a). Likewise, the effect of layer thickness
(s) with node density n = 0.5 nodes�mm�3 is shown in Fig. 12(b)
and Table 4(b).

Referring to Fig. 12(a) and Table 4(a), increasing the node den-
sity (n) results in accurate convergence at the cost of computation
time. Similarly, from Fig. 12(b) and Table 4(b), reducing the super
layer thickness (s) improves the model accuracy, but involves a
tradeoff in computation speed. Based on extensive offline tuning,
in this work we select n = 0.5 nodes�mm�3 and s = 0.5 mm (Table 3).
With these settings, the MAPE and RMSE with respect to the end-
of-cycle surface temperature measurements for the cone-shaped
part are 1.16% and 4.5 �C, respectively, and the simulated thermal
history was computed in under five minutes on the desktop com-
puter specified in Table 3.

2.4.4. Implementation of feedforward process control

(a) Control design
This work implements a heuristic feedforward control

approach. The approach has three steps, namely, (Step 1) predict;
(Step 2) analyze; and (Step 3) correct. The approach is summarized
in Fig. 13 in the context of the cone-shaped part.

First, in Step 1, the thermal history of the part is predicted using
nominal processing conditions. As depicted in Fig. 13(a), it is
observed that the end-of-cycle surface temperature increases
rapidly after 12 mm of build height (layer 350). In this work, an
increase in end-of-cycle surface temperature greater than 20 �C
between successive super layers was considered as a potential
onset of heat buildup [9]. This threshold was selected based on
previous work with the same material and LPBF system. Based
on this criteria, in Step 2 (analyze, Fig. 13(b)), the surface temper-
ature after 12 mm (300 layers) is flagged as a point of heat buildup.

In Step 3, the steep rise in end-of-cycle surface temperature was
remedied by reducing the laser power and increasing the dwell
time between layers. For this purpose, the thermal history was
simulated iteratively using the reduced laser power as an input
for the graph theory model (Sec. 2.4.1). An increase in dwell time
is considered and tested in the simulation, only if decreasing the
laser power to 185 W does not mitigate heat buildup.

(b) Parameter bounds

For this work, it was determined that the laser power should be
maintained within ± 30% of the nominal laser power (P0 = 285 W)
to ensure suitable levels of consolidation and density; these limits
translate to 200 W (-30% P0) and 380 W (+30% P0). These bounds
were based on the porosity and relative density analysis results
from five cube-shaped parts (10 � 10 � 25 mm) shown in Fig. 5.

Each of the cubes were printed with varying laser power levels
while the rest of the processing parameters were identical to the
parameters listed in Table 1. The laser power levels tested were,

Fig. 11. Application of graph theory thermal modeling in LPBF showing four steps in simulating the thermal history of the frame part. A 2D map is shown here for explanation
purposes, a 3D temperature distribution is obtained in practice for each layer.

Table 3
Simulation parameters used in the graph theory thermal simulation [9].

Simulation Parameters Values

Heat loss coefficient part to powder,
hw [W�m�2� �C]

2.8

Heat loss coefficient part to
substrate, hs [W�m�2� �C]

80

Thermal Conductivity (k) [W�m�1��C] 19.47
Density (q) [kg�m�3] 8,193
Specific Heat (cp) [J�Kg�1��C�1] 435
Melting Point (T0) [�C] 1,600
Ambient chamber temperature, Tp

[�C]
85

Characteristic length [mm] 2
Neighborhood distance (e) [mm] 5
Maximum number of nearest

neighbors (n)
6

Superlayer thickness [mm] 0.5 (12.5 actual layers)
Gain factor (g) [unitless] 1.7
Computational hardware AMD Ryzen 3970X CPU, @3.70 GHz

with 128 GB RAM.
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385 W (+35% P0), 342 W (+20% P0), 285 W (P0), 228 W (-20% P0),
185 W (-35% P0). The parts were examined using X-ray CT and val-
idated using the Archimedes method of density measurement. The
porosity in the samples, in terms of the defect volume ratio (DVR),
and the results of the Archimedes relative density measurements
(qrel), are presented in Fig. 14.

Lack-of-fusion porosity was observed when the laser power was
set to 228 W (-20% P0), resulting in a 0.87% DVR and qrel = 95.3%;
the lack-of-fusion porosity becomes severe at 185W (-35% P0) with
a DVR of 1.37% and qrel = 93.6%. Consequently, to avoid severe lack-
of-fusion porosity during the model-driven feed forward control
approach, the lower limit for laser power was found to be �30%
P0 = 200 W. To reduce overheating and keyhole mode operation,

the upper limit for laser power was found to be + 30%
P0 = 370 W [63].

As evidence of the suitability of these laser power bounds and
other constant processing parameters, none of the parts studied
in this work, either produced under fixed or controlled processing
conditions, showed evidence of lack-of-fusion porosity when
examined with non-destructive X-ray CT and destructive
metallography.

(c) Application

Having established the upper and lower limits of laser power
for Nickel Alloy 718 in the context of porosity, each part was sim-
ulated iteratively as a function of laser power and dwell time. The

Table 4
(a) Convergence results for the graph theory model as a function of node density (n), the super layer height was fixed at s = 0.5 mm. (b) Convergence results for the graph theory
model as a function of super layer thickness with node density was fixed at n = 0.5 node�mm�3. The number in parenthesis is the std. dev over 10 iterations.

Node Density (n) (node�mm�3) n = 0.2 n = 0.3 n = 0.4 n = 0.5 (selected)

MAPE (%) 5.42 (1.05) 4.73 (1.24) 3.44 (0.95) 1.16 (1.01)
RMSE [�C] 24.0 (4.6) 19.7 (5.4) 13.2 (3.8) 4.5 (3.5)
Average Run Time [s] 83 140 221 305
Layer Size (s (mm) s = 0.5

(selected)
s = 0.6 s = 0.8 s = 1.0

MAPE (%) 1.16 (1.01) 2.46 (2.93) 5.50 (2.93) 5.67 (3.05)
RMSE [�C] 4.5 (3.5) 14.5 (15.3) 62.7 (16.3) 39.2 (19.9)
Average Run Time [s] 305 208 184 141

Fig. 12. Calibration of graph theory parameters, node density (n) and super layer thickness (s) using the cone part as reference. The IR measurements are used as ground
truth, and plotted in in black. (a) The effect of changing node density (n) with super layer thickness fixed at s = 0.5 mm. (b) Effect of super layer thickness (s) with number of
node n = 0.5 nodes�mm�3.

Fig. 13. The model-driven feedforward control of additive manufacturing approach applied to the cone-shaped part. (Step 1) Prediction - The graph theory thermal model is
used to predict the thermal history of the part. (Step 2) – Instances of rapid increases in temperature (heat buildup) are identified from analysis of the thermal history
predictions. (Step 3) – Thermal history is corrected to avoid steep temperature gradients and heat buildup by changing the laser power.
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control target is the rate of change of end-of-cycle temperature,
and is set at 0 �C/layer. The control is initiated when the rate of
change (slope) exceeds 20 �C/layer. For ease of practical implemen-
tation, the dwell time and laser power were changed only once for
each of the four parts, since these parameter changes are manually
implemented by altering the G-code. The laser power and dwell
time alterations for controlled processing of each of the four parts
is unique and summarized in Fig. 15.

As an example, referring to Fig. 13(c), in the graph theory sim-
ulations the laser power for the cone-shaped part was reduced to
200 W from 285 W beginning at layer 300 (build height 12 mm).
The reduced laser power was maintained until the end of layer
625 (25 mm). However, it was predicted that the steep increase
in temperature of the cone-shaped part would not overcome
despite reducing the laser power to 200 W (-30% P0).

Decreasing the laser power below 200 W would risk severe
lack-of-fusion porosity. Consequently, a 10 s dwell time was added
to the inter-layer time (ILT) after the first 12 mm (300 layers) of
build height. Likewise, for the vase and bridge-shaped parts, the
power is reduced to 228 W from layer 375 onwards (15 mm). Sim-
ilarly, the laser power for the frame was reduced to 228 W from
layer 500 (20 mm) onwards.

While addition of a dwell time between layers can mitigate heat
buildup, it also affects the thermal history of all the parts on the
build plate. Moreover, increasing dwell time increases the produc-

tion time. For example, adding a 10 s dwell time after each layer
from layer 300 onwards until layer 625 increased the build time
by 1 h to approximately 16 h. Hence, from a productivity perspec-
tive the addition of the dwell time must be utilized sparingly. The
thermal history, as a result of reduced laser power (200 W) and
increased dwell time, is shown in Fig. 13(c).

3. Results and discussion

3.1. Cone

3.1.1. Thermal history
In Fig. 16(a) and (b), respectively, the model-derived end-of-

cycle surface temperature trends are compared to the IR-
measured end-of-cycle surface temperature measurements for
the cone-shaped part produced under fixed and controlled process-
ing. The significant increase in the end-of-cycle top surface tem-
perature for the fixed-processed cone beyond layer 300 (12 mm),
evident in Fig. 16(a), is accurately predicted by the graph theory
model (MAPE 1.6%, RMSE 7 �C). Moreover, the simulation required
approximately 4 min (234 s) of computation time.

The controlled processing of the cone involved reducing the
laser power at layer 300 (12 mm build height) to 200 W from
285 W. Further, the recoater dwell time is increased by 10 s from
layer 300 onwards. In Fig. 16(b), these two aspects substantially
arrested the end-of-cycle surface temperature increase for con-
trolled processing. Consequently, the end-of-cycle surface temper-
ature is restricted to a maximum of 150 �C (Fig. 16(b)) for the
controlled processing condition, compared to 200 �C for fixed pro-
cessing (Fig. 16(a)).

The simulated spatial temperature distribution for the fixed and
controlled processing of the cone-shaped parts at select layers is
graphically compared in Fig. 17. In accordance with the temporal
thermal history trends discussed in the context of Fig. 16, con-
trolled processing significantly reduced the heat buildup in the
bulk part. Further, the spatial temperature gradient of the
controlled-processed part is relatively smaller compared to its
fixed-processed counterpart.

3.1.2. Part quality – surface roughness, microstructure evolution, and
microhardness

The reduction in surface temperature, as well as the spatial
temperature gradient achieved on account of controlled processing
(Fig. 16 (b)) has a significant impact on: part surface finish,
microstructure grain size, and microhardness. For example, shown
in Fig. 18 is an X-ray CT slice of the two cones, along with an optical
microscope image of the slanted overhang edges. Both samples had
no detectable levels of porosity using X-ray CT, resulting in a DVR
of 0.00%. In the case of the fixed-processed cone, Fig. 18(a), the
excessive heat buildup caused partially melted satellite powder

Fig. 14. Porosity levels (DVR) from X-ray CT and relative density (qrel) from
Archimedes measurements are plotted as a function of laser power (P) used for five
the parameter cubes (Fig. 5). The nominal laser power, P0 = 285 W. Severe lack-of-
fusion porosity is observed when reducing laser power to 185 W (-35% P0). Hence in
this work, the minimum allowable laser power reduction for controlled processing
was set to 200 W (-30% P0). The maximum allowable power was set to 380 W (+30%
P0) to avoid overheating and keyhole melting. None of the four parts studied in this
work, created either in fixed or controlled conditions, showed presence of porosity.

Fig. 15. Summary of process parameters adjusted for controlled processing of the four parts. Once the laser power is reduced at a layer it is maintained until the end of
processing.
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particles to adhere to the overhang edge. However, the occurrence
of satellite powder particles is mitigated for the controlled-
processed cone (Fig. 18(b)).

As a result of partially melted powder adhered to the surface,
the average areal surface roughness (Sa) at the overhang edge for
the fixed-processed cone was assessed to be Sa � 52 lm compared
to Sa � 34 lm for the controlled-processed cone. The foregoing

areal surface roughness measurements are averaged over 6 sample
regions spaced along the overhang section (demarcated with Sa in
Fig. 18), each region having an area of 1 mm � 1.4 mm. We also
note that no lack-of-fusion porosity was observed in Fig. 18 for
either the fixed-processed or controlled-processed cone.

The effect of temperature distribution on the microstructure of
the fixed and controlled processing cone-shaped parts is presented

Fig. 16. (a) Predicted surface temperature trends overlaid on IR derived observation of the cone for. (a) fixed processing, (b) controlled processing. Note the steep increase in
temperature in (a) compared to (b) after � 12 mm build height (layer 300). These simulations required less than 4 min of computation time with error less than 2% (MAPE).
The graph theory simulation is repeated 10 times and the ± 1r prediction bands are plotted. The gray area in the background represents the shape of the part in terms of the
build height.

Fig. 17. Spatial temperature distribution for the cone part predicted using the graph theory thermal model for fixed processing (top) and controlled processing (bottom). In
controlled processing heat buildup and spatial temperature gradients are significantly reduced by decreasing the laser power to 200 W from layer 300 onwards.

Fig. 18. X-ray CT and optical images of the cone-shaped parts. (a) Fixed processing resulted in a rougher surface finish (Sa � 52 lm) due to partially fused particles (satellites)
attached to the overhang edge. (b) Controlled-processed cone has a smoother surface finish (Sa � 37 lm) without satellite particles.
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in Fig. 19. It was anticipated that heat buildup and an increased
spatial temperature gradient in the fixed-processed cone-shaped
part would result in larger grain size compared to the controlled
processing parts. After cross-sectioning the parts with electro-
discharge machining and polishing and etching the surface as
described in Sec. 2.2.3, the microstructure was examined at differ-
ent locations using scanning electron microscopy (SEM).

To quantify the grain size, the primary dendritic arm spacing
(k1) was measured. The primary dendritic arm spacing (k1) is
inversely proportional to the cooling rate, and hence provides an
indirect means to verify the effectiveness of the controlled process-
ing [9,64]. These measurements were made over a length of 20 lm,
perpendicular to the dendrite growth direction. Four of the loca-
tions where the primary dendritic arm spacing (k1) was measured

is visualized in Fig. 19. These locations are demarcated as A, B, C,
and D.

Until the 300-layer mark (12 mm), both the controlled and
fixed-processed samples were measured to have k1 � 0.68 lm.
However, after the laser power is changed from 285 W to 200 W
at layer 300 (12 mm), k1 at locations for the controlled samples
were consistently smaller than their fixed-processed counterparts.
The k1 for the controlled-processed samples (200 W) was mea-
sured to be 0.49 lm ± 0.02 lm (Fig. 19(b)). By contrast, for fixed
processing (285 W), Fig. 19(a), k1 = 0.69 lm ± 0.02 lm. Indeed,
enlarged images of the overhang locations in Fig. 19(a) show the
presence of secondary dendrites in the fixed-processed samples,
symptomatic of excessive heat buildup [65].

Continuing with the analysis, k1 measured for the four locations
A, B, C, D are plotted in Fig. 20(a). The k1 measurements are signif-

Fig. 19. Primary dendritic arm spacing (k1) measured along the build height for the (a) fixed, and (b) controlled processing cone-shaped parts at four locations (A), (B), (C), and
(D). The mean primary dendritic arm spacing (k1) for the fixed processing part was k1 � 0.65 lm compared to k1 � 0.50 lm for controlled processing after the laser power was
reduced to 200 W at layer 300 (12 mm) and a dwell time was increased by 10 s.
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icantly different for the fixed and controlled-processed samples at
locations B, C, and D. This difference in k1, in turn, translates to a
large difference in microhardness. As evident in Fig. 20(b) the
smaller grain size of the controlled-processed samples results in
a significantly higher average microhardness (HV05 greater
than 320) compared to the fixed-processed cone part (HV05 � 290).

3.2. Vase

3.2.1. Thermal history
The predicted and IR-observed surface temperature trends for

the vase part built under fixed and controlled processing are
shown in Fig. 21(a) and (b), respectively. As evident from Fig. 21
(a), a steep increase in the end-of-cycle surface temperature of
the fixed-processed cone was predicted after 15 mm build height
(layer 375). To arrest this heat buildup, in the controlled processing
vase part, the laser power was reduced to 228 W (from 285 W)
after layer 375 until the end of the build (layer 625). In Fig. 21,
the thermal history trends for the vase parts were accurately cap-
tured by the graph theory approach with MAPE less than 2% and
RMSE ranging from 4 �C to 6 �C. The graph theory simulation com-
putation time is less than 3 min (161 s).

The spatial temperature distribution at select layers is mapped
in Fig. 22. Compared to its fixed-processed counterpart, in the
controlled-processed vase, decreasing the laser power to 228 W
from the nominal 285 W from layer 375 onwards mitigated heat

buildup, particularly in the narrow neck region, and resulted in a
smaller temperature gradient in the bulk part.

3.2.2. Part quality – Geometric integrity and feature resolution
While the difference in end-of-cycle surface temperatures

between the fixed and controlled-processed vases shown in
Fig. 21 are smaller compared to those between the cone-shaped
parts (Fig. 16), the relatively complex shape of the vase produces
a pronounced effect on the geometric integrity. In Fig. 23(a), it is
evident visually, and subsequently affirmed on cross-sectioning
the part parallel to the build direction, that the central cavity of
the fixed-processed cone is sintered closed. This is because the ele-
vated bulk part temperature, especially in the narrow neck region,
during fixed processing (Fig. 22) fuses the powder trapped within
the cavity. By contrast, as shown in Fig. 23(b) the central cavity
for the controlled-processed vase is intact.

Further, in Fig. 23, dimensional analysis conducted from a
nominal-to-actual comparison of the CAD model and from X-ray
CT measurements revealed that the outer surface of the fixed-
processed vase is larger than its nominal CAD model; the deviation
exceeds +0.1 mm for the majority of the surface. The positive devi-
ation, shown in a red hue on the figure, indicates that the part is
larger than the CAD model. Also, in Fig. 23(a), partially fused satel-
lite powder was adhered to the inner, as well as the outer, surfaces
of the fixed-processed vase. By contrast, the vase produced under
controlled processing maintains its geometric integrity (Fig. 23

Fig. 20. (a) Primary dendritic arm spacing (k1) for controlled processing (blue) and fixed processing (red) conditions at the four positions A-D demarcated in Fig. 19. Reduction
in laser power for sections B-D during controlled processing results in finer grain structure (smaller k1). (b) The microhardness (HV0.5) is inversely related to k1 - the larger the
grain size, smaller the microhardness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Comparison of predicted and observed surface temperature for the vase-shaped parts. (a) fixed processing, and (b) controlled processing. The simulation was
computed in less than 3 min with an error of less than 2%. The ± 1r prediction interval is shown for both cases.
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(b)) and is largely free of partially fused satellite particles adhered
to the surface.

Comparison of the thermal history in Fig. 21 suggests there is
less than a 15 �C difference in the end-of-cycle surface temperature
between the fixed and controlled processing cases. By contrast, the
corresponding difference for the cone was more than 50 �C
(Fig. 16). Despite this relatively smaller difference in end-of-cycle
surface temperature, the controlled processing sample has an
intact cavity, while the cavity is blocked for the fixed processing
case. As seen from the spatial temperature distribution map in
Fig. 22, reducing the laser power in higher layers beyond 15 mm
build height (layer 375) during controlled processing not only

decreased the surface temperature of the current layer, but also
diminished the extent of reheating in preceding layers and the
overall heat flux through the bulk part.

The increased temperature of the previous layers in fixed pro-
cessing is evident in Fig. 24, where the thermal history is tracked
at a specific location on the surface of the part at a build height
of 13 mm (layer 325). Each peak in Fig. 24 corresponds to the melt-
ing of the subsequent layers above. The image shown in the inset of
Fig. 24 is the predicted spatial temperature distribution at layer
325 when layer 425 is being deposited. In Fig. 24(a), the elevated
bulk temperature of the fixed-processed vase melts the powder
trapped in the cavity. Controlled processing (Fig. 24(b)) reduces

Fig. 22. Visualization of the temperature distribution in the vase parts predicted by the graph theory modeling approach for the fixed- and controlled-processed scenarios. In
the controlled processing scenario, there is a distinctive reduction in the part temperature due to reduction of the laser power to 228 W after 15 mm (375 layers).

Fig. 23. (Top) Optical cross-section micrographs and (bottom) nominal-to-actual X-ray CT dimensional analysis of the vase-shaped parts. (a) In fixed processing the central
cavity of the vase is fused and has satellite particles adhered to the internal and external surfaces on account of overheating. The nominal-to-actual dimensional computation
to CAD (from X-ray CT analysis) reveals that the fixed-processed vase has a positive deviation larger than 0.1 mm consistent with over-melting of powder. (b) The controlled-
processed cone has an intact cavity, negligible satellite powder is adhered to the surface, and there is minimal deviation from the design dimensions.
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the bulk temperature, and consequently mitigates over-melting of
powder particles within the cavity.

The foregoing observation underscores the importance of con-
trolling the thermal history of not just the topmost layer, but also
that of the bulk part. Such control of the bulk part temperature
would not be feasible using purely reactive feedback process con-
trol mechanisms based on infrared thermal camera measurements
of only the part end-of-cycle surface temperature.

3.3. Frame

3.3.1. Thermal history
The graph theory simulated thermal history prediction and the

experimentally observed surface temperature trends for the frame
parts are shown in Fig. 25. For the fixed processing condition
(Fig. 25(a)), a rapid increase in surface temperature was observed
towards the last 2 mm of the frame part (layers 575 to 625) during
melting of the horizontal overhang section at the top. Heat buildup
in the overhang region occurs due to the restricted thermal con-
duction pathway – the powder contained within the hollow frame
acts as an insulator and impedes heat transfer to the build plate.

To counteract this sharp increase in temperature of the over-
hang region, in the controlled processing frame, the laser power
is reduced to 228 W for the last 5 mm of processing (layer 500
to 625). The resulting thermal history derived from the graph the-
ory simulation and observed from the infrared thermal camera are

shown in Fig. 25(b). Wherein the error between the simulated and
observed thermal history is within 1.5% (MAPE) and the predic-
tions were obtained in less than 10 min (557 s). The steep heat
buildup toward the last 2 mm in the fixed-processed part is visu-
ally corroborated in the spatial thermal simulation snapshots
shown in Fig. 26. As in previous cases, controlled processing
reduces the bulk part temperature, and the spatial temperature
gradient.

3.3.2. Part quality – geometric integrity and microstructure evolution
The result of the controlled processing strategy on geometric

integrity for the frame is shown in Fig. 27. The increased tempera-
ture in the fixed-processed part causes geometric inaccuracies and
inferior surface finish. From the X-ray CT dimensional analysis of
the fixed-processed frame in Fig. 27(a), the poor resolution of the
overhang region is evident.

Further, satellite particles from partially melted powder are
adhered to the inner and outer surfaces of the part. For the con-
trolled processing condition, shown in Fig. 27(b), these geometry
and surface flaws are reduced significantly.

Further, the wall thickness of the two frame parts was mea-
sured from the X-ray CT slices. As observed in Fig. 28, the mean
wall thickness of the fixed-processed frame part is � 1.68 mm,
viz., 0.18 mm larger than the designed thickness of 1.5 mm. In con-
trast, the mean wall thickness for the controlled processing is � 1.
57 mm, i.e., a deviation of only 0.07 mm from the nominal.

Fig. 24. Thermal history at a fixed location (13 mm, layer 325) for (a) fixed processing, and (b) controlled processing. Controlled processing reduced the temperature in
previous layers compared to fixed processing thus mitigating melting of powder trapped in the cavity.

Fig. 25. Comparison of observed and predicted surface temperature trends for the frame shape (a) fixed processing and (b) controlled processing. The steep increase in
temperature observed in the last 2 mm of build height near the top of the fixed-processing case in (a) is mitigated in the controlled processing case (b) by reducing the laser
power to 228 W from the nominal 285 W. The simulation was calculated within 10 min with error less than 2% (MAPE). The ± 1r prediction interval is shown for both cases.

A. Riensche, B.D. Bevans, Z. Smoqi et al. Materials & Design 224 (2022) 111351

21



3.4. Bridge

3.4.1. Thermal history
The comparison of the predicted and observed thermal history

for the fixed and controlled-processed bridge-shaped part are
shown in Fig. 29(a) and (b) respectively. The temperature in the
bridge part after 15 mm build height (layer 375) increases consid-
erably due to the insulating properties of the un-melted powder
beneath the overhang span regions.

In the case of the controlled-processed part, at layer 375 and
beyond the steep increase in temperature is mitigated by reducing
the laser power to 228 W (from 285 W). For example, at layer 500
(20 mm build height) the steady state end-of-cycle surface temper-
ature for the fixed-processed bridge exceeds 120 �C (Fig. 29 (a))
compared to � 100 �C (Fig. 29(b)) for the controlled-processed
part. These surface temperature trends are accurately predicted
by the graph theory approach (MAPE less than 3% and
RMSE � 7 �C). The simulation converged in just over 2 min.

The foregoing temporal thermal history trends are corroborated
in the spatial temperature distribution plots in Fig. 30. A significant
heat buildup in the bulk part is noted for the fixed processing sce-
nario, particularly in the region of the overhang sections of the

Fig. 26. Comparison of the temperature distribution between the fixed and controlled processing frame parts at select layers. The reduction of laser power to 228 W in the
controlled processing sample beyond 20 mm build height (layer 500) mitigated heat buildup, and resulted in a smaller variation in the spatial temperature gradient.

Fig. 27. X-ray CT nominal-to-actual comparison for (a) fixed and (b) controlled processing. In the case of fixed processing (a), the overhang region has satellite particle
adhered to the part underside, and the external surfaces are symptomatic of heat buildup. These result in relatively degraded overall dimensional integrity and rougher
surface finish on the underside of the overhang. In contrast, the controlled-processed frame (b) has improved surface finish and resolution in the overhang region.

Fig. 28. Effect of fixed and controlled processing on the thickness (width) of the
wall of the frame. The nominal designed wall width was 1.5 mm. The wall thickness
for the controlled-processed sample was 1.57 mm, and 1.68 mm for the fixed
processing case.
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bridge. Controlled processing substantially suppresses the heat
buildup in the overhang span.

3.4.2. Part quality – geometric integrity and feature resolution
The differences in the temperature distribution of the bridge

part produced under fixed and controlled processing, translate into
prominent differences in geometric integrity. The gap between
each of the six spans between the legs is assessed visually using
optical microscopy.

Visual examination of the fixed and controlled-processed parts,
as shown in Fig. 31, reveals that compared to controlled-
processing, for the fixed processing condition, the finest 0.5 mm
gap was smaller than designed and the resolution of the inset let-
tering is inferior. The reduction in the gap in the fixed-processed
sample is due to over-melting of powder trapped underneath the
span (similar to the vase and frame parts) on account of the ele-
vated bulk part temperature.

4. Conclusions and future work

We developed and applied model-driven feedforward control to
mitigate heat buildup and prevent subsequent flaw formation in
parts made using the laser powder bed fusion (LPBF) additive man-
ufacturing process. As opposed to printing the entire part at a con-
stant parameter set, the key idea was to adjust two process
parameters, namely, laser power and dwell time between layers,
to mitigate heat buildup based on predictions from a computa-
tional thermal model.

The effectiveness of the process parameters optimized based on
the feedforward control approach was demonstrated by printing
two build plates, each consisting of Nickel Alloy 718 parts of 10 dif-
ferent types of geometries. Extensive post-process characterization
was conducted on these parts to quantify their microstructure,
microhardness, surface finish, and geometric integrity. It was
observed that feedforward control produced parts with finer grain
size, increased microhardness, improved geometric integrity and
resolution, and reduced surface flaws.

From an industry vista, using this approach, practitioners can
anticipate potential quality issues due to heat buildup in the part
before it is printed, and accordingly modify (optimize) the process-
ing parameters or part design. Such a proactive, physics-aided pro-
cess parameter and design optimization approach can significantly
reduce the need for expensive build-and-test experiments, and
thus accelerate the time-to-market of additively manufactured
parts.

In our future research, the feedforward approach will be auto-
mated so that potential regions of heat buildup are identified and
corrected autonomously during the process planning stage
through purpose-built algorithms. Further, instead of the broad
strategy of reducing heat buildup across layers, forthcoming
research will focus on controlling specific process outcomes, such
as residual stresses and microstructure heterogeneity.

Data availability

Data will be made available on request.

Fig. 29. Comparison of the model derived surface temperature trends and IR data for (a) fixed processing, and (b) controlled processing. Note the steep increase in thermal
history in (a) beyond 15 mm (325 layers) due to un-melted powder in the gaps which act as a thermal insulator. This steep increase in surface temperature is mitigated by
reducing the laser power to 228 W. The simulation converged in a little over 2 min (122 s) with error less than 2.5% (MAPE). The ± 1r prediction interval is shown for both
cases.

Fig. 30. Comparison of the thermal history for fixed and controlled processing for the bridge. The laser power is reduced to 228 W at layer 375 (15 mm) for the controlled
processing condition, and consequently, the steep increase in temperature in the overhang span region is reduced.
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