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Invasive annual grasses—Reenvisioning 
approaches in a changing climate
D. Archer, D. Toledo, D.M. Blumenthal, J. Derner, C. Boyd, K. Davies, E. Hamerlynck, R. Sheley, P. 
Clark, S. Hardegree, F. Pierson, C. Clements, B. Newingham, B. Rector, J. Gaskin, C.L. Wonkka, K. 
Jensen, T. Monaco, L.T. Vermeire, and S.L. Young

Abstract: For nearly a century, invasive annual grasses have increasingly impacted terres-
trial ecosystems across the western United States. Weather variability associated with climate 
change and increased atmospheric carbon dioxide (CO2) are making even more difficult the 
challenges of managing invasive annual grasses. As part of a special issue on climate change 
impacts on soil and water conservation, the topic of invasive annual grasses is being addressed 
by scientists at the USDA Agricultural Research Service to emphasize the need for addi-
tional research and future studies that build on current knowledge and account for (extreme) 
changes in abiotic and biotic conditions. Much research has focused on understanding the 
mechanisms underlying annual grass invasion, as well as assessing patterns and responses from 
a wide range of disturbances and management approaches. Weather extremes and the increas-
ing occurrences of wildfire are contributing to the complexity of the problem. In broad 
terms, invasive annual grass management, including restoration, must be proactive to consider 
human values and ecosystem resiliency. Models capable of synthesizing vast amounts of diverse 
information are necessary for creating trajectories that could result in the establishment of 
perennial systems. Organization and collaboration are needed across the research community 
and with land managers to strategically develop and implement practices that limit invasive 
annual grasses. In the future, research will need to address invasive annual grasses in an adap-
tive integrated weed management (AIWM) framework that utilizes models and accounts for 
climate change that is resulting in altered/new approaches to management and restoration.

Key words: drought—ecology—extreme—resilience—resistance—restoration

Distribution and Impacts of Invasive 
Annual Grasses with Climate Change 
Millions of hectares of rangeland in the west-
ern United States are either dominated by 
or under threat of degradation from invasive 
annual grasses (Bradley and Mustard 2006; 
Bromberg et al. 2011; Brooks et al. 2016; 
Brunson and Tanaka 2011; D’Antonio and 
Vitousek 1992; Davies 2008, 2010; Davies et 
al. 2021a; Germino et al. 2016; Knapp 1996; 
Svejcar et al. 2017). The USDA National 
Resources Inventory, the largest inventory of 
nonfederal US lands, estimates that nation-
ally between 2011 and 2015, nine invasive 
annual grass species were present on 30% of 
nonfederal rangelands. Ventenata (Ventenata 
dubia [Leers] Coss.) was observed on 8% 

of nonfederal rangelands in Oregon with 
trace amounts in Idaho and Washington. 
Medusahead (Taeniatherum caput-medusae [L.] 
Nevski) was present on nonfederal lands in 
Idaho (24%), Oregon (23%), California (18%), 
and Washington (9%) (USDA NRI 2018). 
The Bureau of Land Management (BLM) 
Greater Sage Grouse Plan Implementation 
Rangewide Monitoring Report estimates 
that percentage canopy cover of invasive 
annual grasses, such as cheatgrass (Bromus tec-
torum L.) and medusahead, is approximately 
15% on BLM-administered lands (Herren et 
al. 2021). Although annual bromes, ventenata, 
and medusahead are just a few of the many 
invasive annual grasses on US rangelands, to 

date this group of three has the most cover 
and associated research. 

Origins for the most prevalent invasive 
annual grasses in the United States can be 
narrowed down to Europe, northern Africa, 
and central to southwest Asia (Whitson 1991). 
Annual grass introduction to the United 
States likely occurred as seeds inadvertently 
transported in packing materials, ship bal-
last, the hair of livestock, or as contaminants 
of crop seeds (Salo 2005). Invasive annual 
grasses are well adapted to arid and semiarid 
western rangelands that are characterized by 
high variability in seasonal and interannual 
precipitation and temperature (Hardegree 
et al. 2018). Specific adaptive traits to this 
environment include prolific seed produc-
tion, rapid establishment response to short 
periods of resource availability, rapid growth, 
preemptive utilization of site resources, and 
annual or winter-annual life cycles that 
facilitate survival during periods of seasonal 
drought (Arredondo et al. 1998; Balch et al. 
2013; Davies 2008; Hardegree et al. 2010, 
2013; Harris and Wilson 1970; Humphrey 
and Schupp 2001, 2004; Kulmatiski et al. 
2006; Littell et al. 2009; Mangla et al. 2011; 
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Mazzola et al. 2011; Melgoza et al. 1990; 
Reichenberger and Pyke 1990; Rimer and 
Evans 2006). 

Landscape-level transformation from 
native to invasive annual grass communi-
ties has major negative environmental and 
economic effects on natural resource values, 
land management costs, and societal benefits 
from rangelands (Brunson and Tanaka 2011; 
Duncan et al. 2004; Epanchin-Niell et al. 2009; 
Maher et al. 2013; Riggs et al. 2001). Major 
impacts include (1) the loss of compositional, 
functional, and species diversity (Davies and 
Sheley 2011; Nasri and Doescher 1995); (2) 
disruption of forage cycles for livestock and 
wildlife through changes in seasonality and 
magnitude of herbaceous production (Bradley 
and Mustard 2006; Clinton et al. 2010); (3) 
a major increase in both the frequency and 
intensity of wildfires (Balch et al. 2013; 
Brooks et al. 2004; D'Antonio and Vitousek 
1992; Davies and Nafus 2013; Eiswerth et 
al. 2009; Knapp 1996); (4) increased risk of 
postfire erosion (Pierson et al. 2011; Wilcox 
et al. 2012; Williams et al. 2014); and (5) 
degradation of wildlife habitat (Coates et al. 
2016; Connelly and Braun 1997; Crawford et 
al. 2004; Garton et al. 2011). Invasive annual 
grasses can self-perpetuate by causing changes 
in abiotic and biotic conditions that reinforce 
site dominance and hinder the reestablishment 
of native perennial species (Balch et al. 2013; 
Blank et al. 2013; Bradley et al. 2018; Brooks 
and Matchett 2006; Boxell and Drohan 2009; 
Gasch et al. 2013; Norton et al. 2004; Owen 
et al. 2013; Pierson et al. 2011; Rau et al. 2011; 
Wilcox et al. 2012; Williams et al. 2014). For 
example, low-elevation perennial rangelands 
in deserts that span from the warm western 
to cold mountain and intermountain regions 
of the United States have been transformed to 
annual grasslands by cheatgrass, medusahead, 
and ventenata, along with red brome (Bromus 
rubens), Arabian schismus (Schismus arabicus), 
and common Mediterranean grass (Shismus 
barbatus) (Davies et al. 2021a; Fusco et al. 
2019; Germino et al. 2016; Horn et al. 2017; 
Salo 2005; Suazo et al. 2012; Underwood et 
al. 2019). Economic impacts from the loss 
of productivity, wildfire suppression, costs of 
wildfire damage, decreased ecosystem services, 
and restoration costs have increased propor-
tional to the impacts (BLM 2020; Brunson 
and Tanaka 2011; Davies et al. 2021b; Pilliod 
et al. 2021; USDA NRCS 2018).

Climate projections show elevated atmo-
spheric carbon dioxide (CO2) levels will lead 

to warming and more variable precipita-
tion patterns, which could allow for further 
expansion of invasive annual grasses in the 
western United States, as shown in figure 
1. Belowground, warmer temperatures and 
decreased water availability have been linked 
to less resistant and resilient native plant com-
munities, increasing vulnerability to invasive 
annual grasses (Chambers et al. 2014b). In 
some regions, analyses have found cheat-
grass moving up in elevation and increasing 
on north-facing slopes (Smith et al. 2022). 
Particularly in the western United States, an 
increase in fire frequency often favors the 
annual invader, producing a positive feedback 
cycle that is expected to accelerate as warm-
ing and drought lengthen fire seasons (Balch 
et al. 2013; Fusco et al. 2019; Underwood et 
al. 2019). Additional pressures from a rapidly 
warming climate and changing precipita-
tion distributions could lead to widespread 
extinction of local native plant ecotypes in 
western regions, as these communities have 
insufficient time to evolve or migrate in an 
increasingly disturbed and fragmented land-
scape (Abatzoglou and Kolden 2011; Bradley 
2010; Knapp 1996). Uncertainty in climate 
projections and the response of invasive 
annual grasses to these changes pose a greater 
challenge to the sustainability of invaded 
areas. Current and historical rehabilitation 
and restoration efforts in areas infested with 
invasive annual grasses have been relatively 
unsuccessful, particularly in the drier and 
lower-elevation range of the sagebrush steppe 
(Arkle et al. 2014; Brooks and Chambers 
2011; Chambers et al. 2014a, 2014b; Davies 
et al. 2015; Knutson et al. 2014; Monaco et 
al. 2017; Pyke et al. 2013; Shackelford et al. 
2021). As the climate becomes warmer and 
drier, even habitats that have been easier to 
rehabilitate, such as in the Great Plains, are 
likely to become more challenging.

A Mechanistic Understanding of Annual 
Grass Invasion
Perennial grasses provide the foundation for 
stability, resilience, and productivity of semi-
arid grassland and steppe ecosystems of the 
world (Chambers et al. 2017; Sanaei and Ali 
2019). The perennial life history, in combina-
tion with relatively slow growth rates, allows 
these species to use limited water and nutri-
ents efficiently, and to better resist drought 
(Ruppert et al. 2015; Wilcox et al. 2021). 
Unlike perennial grasses that must produce 
biomass to persist more than a single year, 

invasive annual grasses display a broad array 
of adaptive and functional traits to establish, 
spread, and persist in semiarid ecosystems 
(Chambers et al. 2007; Reisner et al. 2013; 
Seabloom et al. 2013). In particular, annual 
brome species exhibit transient but large seed 
banks, capitalize on altered soil resource avail-
ability and litter production, and contribute 
to frequent disturbance and the displacement 
of native plant species (Monaco et al. 2016). 
These impacts are possible because annual 
grasses are fast growing, rapidly acquire soil 
resources, maximize seed production, and 
senesce prior to seasonal resource-limit-
ing periods (D'Antonio and Vitousek 1992; 
Norton et al. 2007). Thus, annual grass 
invaders are preadapted to thrive in semiarid 
ecosystems with recurrent and compounded 
disturbances that favor their persistence rel-
ative to perennial species, primarily at early 
growth stages (Mack 1981). 

The capacity of invasive annual grasses 
to dynamically respond to resource avail-
ability in ways superior to perennial grasses 
is attributed to high phenotypic plasticity 
(Davidson et al. 2011), which is considered a 
primary mechanism allowing invasive annual 
grasses to expand their distribution and 
impacts in semiarid ecosystems (Drenovsky 
et al. 2012b; Funk 2008; Grime and Mackey 
2002). For example, many invasive annual 
grasses display higher acquisition plasticity 
for mineral nitrogen (N) in heterogeneous 
conditions (James et al. 2009) and under vari-
able growing temperatures, illustrating their 
ability to exploit transient warm periods in 
autumn and spring (Leffler et al. 2011). Thus, 
invasive annual grasses are adept at exploit-
ing soil nutrients when seasonally available, 
after disturbance, or through atmospheric 
N deposition (Bilbrough and Caldwell 
1997; Brooks 2003). At early growth stages, 
highly plastic invasive annual grasses acquire 
soil resources, which allows for competitive 
displacement of native species in a chang-
ing environment and co-opted successional 
dynamics through altered nutrient cycling 
(Evans et al. 2001; Hirsch-Schantz et al. 
2014; Leonard et al. 2008).

Invasive plants often gain advantages by 
growing at different times of the season than 
native species (Wolkovich and Cleland 2011). 
In rangelands dominated by native peren-
nials, annual bromes occupy a late-autumn 
through early-spring phenological niche, 
which can give them an advantage under the 
right climatic conditions, allowing access to 

http://www.swcs.org
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water and nutrients before being utilized by 
competitors. In cooler parts of annual brome 
geographic ranges, warming temperatures 
are likely to expand this autumn-spring 
phenological niche, thereby increasing 
competitiveness (Bradley 2009). This pre-
diction is supported by studies showing that 
experimental warming facilitates cheat-
grass invasion (Blumenthal et al. 2016; 
Compagnoni and Adler 2014; Zelikova et 
al. 2013). Shifts toward more winter relative 
to summer precipitation can similarly favor 
annual bromes (Bradley 2009; Prevey and 
Seastedt 2014; Zheng et al. 2019).

Invasive annual grasses have shown traits 
consistent with a drought-escape strat-
egy for persisting during periods of low 
moisture availability, where species flower 
and reproduce early, completing their 
entire life cycle before drought conditions 
worsen (Blumenthal et al. 2020; Sherrard 
and Maherali 2006). This early flowering 
is facilitated by increased photosynthesis 
and attendant greater water-use-efficiency 
(Kimball et al. 2017). The strategy likely 
provides an advantage to invasive annual 
grasses in arid environments by providing 

a means of resource hedging under condi-
tions of prolonged severe drought that are 
expected to become more common with 
climate change in many regions (Nguyen 
et al. 2016). Drought escapers are also more 
capable of quickly responding to pulses in 
plant available moisture than drought toler-
ators or avoiders because their physiological 
traits allow for rapid upregulation of photo-
synthates during pulse moisture events. 

Current Approaches for Management and 
Restoration of Invasive Annual Grasses
Invasive annual grass management options 
depend on the stage of invasion (DiTomaso et 
al. 2017). Prevention is employed prior to and 
at the introduction stage, whereas containment 
and control (to limit dominance) are manage-
ment components administered during spread. 
Typically, at a later stage, restoration is designed 
and implemented to reduce impacts. Given 
the scope of invasive annual grasses and the 
impacts, successful management necessitates 
an ecosystem perspective that considers inva-
sion as an ecological process, integrating the 
components of management through a com-
prehensive understanding of dynamics. 

While prevention is often highlighted 
as the most effective and important step 
in managing biological invasions, both 
research and application of preventative 
measures against invasive annual grasses lag 
behind reactive crisis (e.g., postfire) manage-
ment associated with containment, control, 
and rehabilitation. Prevention techniques 
include minimizing seed sources and dis-
persal, increasing ecosystem resilience and 
resistance, and developing spatially explicit 
prioritization plans to increase the adaptive 
capacity of land managers (Maestas et al. 
2022). Preventative measures to minimize 
seed sources include controlling movement 
of livestock and people from invaded areas, 
using certified annual-grass-free forage, and 
monitoring travel corridors for wildlife-as-
sisted dispersal of invasive annual grass seeds.

Most of the invasive annual grass manage-
ment research and application is focused on 
containment and control, coupled with res-
toration, primarily seedling establishment, to 
improve ecosystem structure and function 
(Monaco et al. 2017). These management 
components address invasion reactively once 
invasive annual grasses have established and are 

Figure 1
From Bradley et al. (2016), an example of invasive annual grass spread based on (a) current and (b) future climate conditions for cheatgrass (Bromus 
tectorum) and red brome (Bromus rubens). Note: current climate conditions are interpolated to a 4 km spatial resolution, while future climate condi-
tions are scaled to a 12 km spatial resolution.
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focused on limiting or reducing dominance 
and further spread, which can be costly and 
time-intensive as depicted in figure 2. There 
remains a strong emphasis on single-use con-
trol approaches, such as herbicides, which have 
been effective to an extent at limited spatial 
and temporal scales, but can have associated 
trade-offs, such as nontarget effects of herbi-
cide on native vegetation and other trophic 
guilds (e.g., pollinators). Additionally, herbi-
cide effects can be short term. Furthermore, 
where annual grass invasion is driven by 
underlying environmental conditions (e.g., 
loss of perennial competitors), using herbicides 
is analogous to treating symptoms rather than 
the underlying problem and likely necessitate 
perpetual reapplication. Given the multiple 
ecosystem impacts of invasive annual grasses 
(e.g., altering processes and competitive inter-
actions of perennial plant communities), they 
do not often recover after simple removal 
of invasive annual grasses, but also need the 
establishment of native plants (Chambers et al. 
2007). As a result, there is an increasing focus 
on resilience-based control and restoration 
that occurs over the long term. 

Ecological resilience is an emergent prop-
erty of the abiotic and biotic components 
of the ecosystem and is governed by multi-
scaled processes; process-based management 
focuses on maintenance and restoration of 
these processes at the scale of their function 
(Krueger-Mangold et al. 2006). A number of 
steps are required to restore the resilience of 
the invaded ecosystem and limit reinvasion or 
secondary invasion (Krueger-Mangold et al. 
2006). For instance, in the Great Plains, cheat-
grass and Japanese brome abundance varies 
considerably among years due to fall and early 
spring moisture relationships with germina-
tion and growth, respectively (Rinella et al. 
2020). Control methods designed to increase 
invasion resistance, such as altering the tim-
ing of prescribed fire to provide a competitive 
advantage to native perennial grasses, have been 
effective in the Great Plains (Harmoney 2007; 
Vermeire et al. 2011, 2014, 2021). In sage-
brush-bunchgrass communities of the Great 
Basin, prescribed grazing can increase the resil-
ience to fire and subsequently improve postfire 
resistance to invasive annual grasses under cer-
tain conditions (Davies et al. 2015, 2017, 2020, 
2021a). However, in areas where annual bromes 
have caused state-shifts of sagebrush shrublands 
to invasive annual grass dominated systems 
with modifications to ecosystem processes, the 
typical approach is restoration and revegetation 

with native species following intensive annual 
grass control or removal (Davies et al. 2021b; 
Freund et al. 2021).

Climate change and invasion are also alter-
ing the benchmarks for restoring resilient 
ecosystems. In some cases, invasions have cre-
ated novel systems with only small fragments 
of historical ecosystems remaining intact 
(Hobbs et al. 2009). Plant communities, soils, 
and hydrology are sometimes changed so dra-
matically that it can be difficult to manage for 
a previously desirable assemblage. In addition, 
present and future climate conditions add to 
the novel dynamics, increasing resistance to 
attempts to restore historical species compo-
sitions (Coates et al. 2016; Hobbs et al. 2009; 
Seastedt et al. 2008). In landscapes with these 
conditions, managers have learned to priori-
tize getting the most goods and services from 
the existing situation, and this will need to 
continue with more urgency (Davies et al. 
2021b). A greater number of managers may 
need to adapt to living with invasive annual 
grasses and find ways to increase the value of 
these invaded grasslands (e.g., limited graz-
ing). Programs are needed to expand current 
education efforts and create new opportuni-
ties to help guide land managers on setting 
realistic targets based on research (Davies et 
al. 2021b; Ehrenfeld 2000). Because climate 

change is increasing the potential spread of 
invasive annual grasses, particularly in cooler 
microclimates (Smith et al. 2022), managers 
must be prepared to be more proactive even 
in areas where invasive annual grasses have not 
previously been problematic. 

Addressing Invasive Annual Grasses 
using an Adaptive Integrated Weed 
Management Framework
The ecological impacts and related socio-eco-
nomic effects of invasive annual grasses present 
a complex and expanding problem for range-
land ecosystems, especially under the threat of 
increasing weather extremes due to climate 
change. In the future, management and res-
toration will likely consist of a science-based 
iterative process, such as adaptive integrated 
weed management, that leads land managers 
toward strategies with the highest probabil-
ity of creating a desired plant community for 
a specific site (Hardegree et al. 2019; James 
et al. 2013; Sheley et al. 2006; Svejcar et al. 
2017). To be sustainable, management and res-
toration strategies must be based on repairing, 
replacing, or establishing fundamental condi-
tions and ecological processes that direct plant 
community change (James et al. 2010, 2013). 
The combining of adaptive management and 
integrated weed management (IWM) into 

Figure 2
Using Davies et al. (2021b) decision tree, the labor (h) and financial (US$) inputs needed and 
land area covered (ha) on a relative scale if (1) maintaining a native perennial community, (2) 
restoring a native perennial community, (3) revegetating with competitive plants (i.e., crested 
wheatgrass), or (4) managing an annual grassland.
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a new “AIWM” framework will shape how 
practitioners approach the management and 
restoration of lands infested and threatened 
by invasive annual grasses and increasingly 
impacted by climate change. Several exciting 
areas of research within the AIWM frame-
work are emerging and include models and 
scalability, novel control methods, and adapta-
tion to climate change. 

Models and Scalability. Conceptual 
models that link site assessments to ecolog-
ical processes/conditions and ecologically 
based principles can facilitate management 
for diverse, perennial plant communities 
in invasive annual grass dominated range-
lands (Sheley et al. 2009). These models are 
based on identifying and repairing ecologi-
cal conditions and processes that drive plant 
community change (James et al. 2010). Once 
an optimum series of treatments is identi-
fied and employed in an IWM-restoration 
program, adaptive management may alter 
treatments based on vegetation responses to 
prior activities (Hardegree et al. 2018; Leffler 
and Sheley 2012; Reever-Morghan et al. 
2006; Sheley et al. 2009; Williams et al. 2009). 
Models are developed that compile old and 
new knowledge into a user-friendly AIWM 
framework for managing invasive annual 
grasses on rangelands (James et al. 2013).

Modeling situations and actions that allow 
for the prediction of desired outcomes need to 
be scaled to match the spatial extent of man-
agement. In an AIWM framework, annual 
grass invasions begin locally, but with wide-
spread establishment, broaden to landscape 
scales. Networks of metapopulations across 
the landscape increase propagule pressure 
with invasion success dependent on size, con-
nectivity, and dispersal mechanisms (Lurgi et 
al. 2016). Propagule pressure is an extremely 
important component of plant invasion 
dynamics (Colautti et al. 2006) that is active 
at the landscape level, but often managed 
at far smaller scales (Firestone and Jasieniuk 
2013). Models should assess scaling with the 
appropriate management, which may include 
prevention, especially as climate change 
impacts invasions at large scales (Abatzoglou 
and Kolden 2011). An added component 
should be the matching of invasion dynam-
ics and management scales with economic 
impacts. Newly developed inventory tools 
should accelerate research in matching scales 
of ecological data to processes driving annual 
grass invasions (Jones et al. 2020). 

New Tools: Potential Biological Control 
with Endophytes. The future of invasive 
annual grass management stands to benefit 
profoundly from genomics research and trans-
genic applications. Cheatgrass has been shown 
to benefit from associations with New World 
endophyte species that increase invasiveness 
(Aschehoug et al. 2014; Baynes et al. 2012). 
Fundamental research conducted on the biol-
ogy and genomics of a New World endophyte 
would provide the basis for transformation to 
produce an RNAi (or other) molecule that 
is specifically deleterious to cheatgrass when 
colonized by the transformed endophyte. A 
genetic-drive mechanism (e.g., CRISPR-
Cas9) could be employed to promote the 
spread of the introduced construct, curtailing 
cheatgrass throughout the geographic range 
of the endophyte. Other future applications 
of new and as yet developed technologies 
will be applied to the challenge of managing 
invasive annual grasses and reducing or elim-
inating their economic, environmental, and 
social impacts. 

Climate Change Adaptation: Using 
Weather Forecasting. A major issue compli-
cating invasive annual grass management and 
restoration is highly variable and extreme 
weather (Hardegree et al. 2018). Effective 
invasive annual grass management requires an 
understanding of how precipitation patterns, 
for example, direct plant community estab-
lishment and assembly. Extreme variability 
complicates all aspects of IWM and espe-
cially the restoration of areas infested with 
invasive annual grasses. Short-term weather 
forecasting will be essential to decide when 
to implement invasive annual grass manage-
ment, particularly for projects that include 
restoration (Hardegree et al. 2013, 2018). 
Federal restoration priorities are focused 
largely on abiotic resistance and resilience 
concepts, which relate primarily to long-term 
climatic patterns (Boehm et al. 2021; Pyke et 
al. 2013). However, variable weather patterns, 
particularly in the early stages (resistance) 
and postestablishment (resilience), need to be 
accounted for when implementing grazing, 
prescribed fire, chemical or biological con-
trol strategies, and the introduction of new 
sources of plant material.

Climate Change Adaptation: Plant Traits. 
Advances in plant trait research provide 
opportunities to improve both invasive spe-
cies management and restoration (Laughlin 
2014; Reich 2014). As climate changes, spe-
cies with traits that allow adequate resource 

capture are a necessary component of the 
plant community. Thus, identifying such 
species and ecotypes with traits that estab-
lish in a predicted future environment could 
increase success rather than using species in 
restoration seed mixes that focus only on 
(functional) diversity (Clark et al. 2012). 
Trait-based approaches that link invasion 
dynamics with ecosystem processes are 
essential when addressing uncertain climate 
futures. Linking response traits of invasive 
plant species to changes in biotic and abiotic 
environmental factors will enable increased 
accuracy in plant trajectory predictions with 
rapid global change (Drenovsky et al. 2012a). 
Especially important is an understanding of 
trait plasticity and how it will contribute 
to invasions under current and future cli-
mates. Quantifying the level of plasticity will 
allow researchers to know the mechanisms 
of spread, which will help land managers to 
make more accurate assessments of preven-
tion and restoration strategies (Zheng et al. 
2019). The increasing availability of plant 
trait data also promises to help improve res-
toration success. Models are being tested that 
use widely available plant trait information 
to design restoration with particular eco-
system functions, such as drought resistance 
(Laughlin 2014).

Conclusion
Effective management of invasive annual 
grasses requires an extensive understanding 
of the ecological dynamics of both inva-
sion processes and ecosystem resistance 
and resilience. Since global change drivers, 
including increased temperatures, CO2, N 
deposition, as well as altered precipitation 
and drought, are dynamic, addressing invasive 
annual grasses will require an AIWM frame-
work with a strong integration of research 
and management, as represented in figure 
3. The integration of extensive and diverse 
data into models can inform assessments of 
invasion risk and spread, assist in prioritizing 
management resources, and aid in monitor-
ing management outcomes across various 
scales. An AIWM framework would greatly 
enhance the capacity of managers to adapt to 
the changing landscape of invasion, which in 
some cases may mean accepting the current 
condition. Regardless, an effective AIWM 
approach will require strategic planning that 
incorporates prevention, control, and resto-
ration via sustainable integrated tactics that 
increase ecosystem resilience and resistance.
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