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A B S T R A C T   

Outdoor recreation provides societal benefits that are often measured by the amount of use natural resource 
systems receive. Still, the amount of resource use natural resource systems receive is often unknown or un
studied. Monitoring and quantifying resource use is often logistically difficult and costly but is paramount to 
optimize societal benefits. Identifying a simple and readily available metric that can indicate the quantity of 
recreational use of natural resource systems would benefit natural resource management. Using recreational 
angler participation data during an 11-year study period from 73 public waterbodies in Nebraska, USA, we 
developed a resource size-use model that demonstrates the ability of natural resource system size to indicate the 
quantity of recreational use they receive. We demonstrate how resource size-use models can estimate use for 
unsampled systems, produce broad-scale estimations of use, guide the allocation of resources, and predict how 
changes in resource system size may affect use. Resource size-use models provide opportunities to manage 
recreational use, which has been previously elusive for social-ecological systems.   

1. Introduction 

Size-based metrics, such as population size or corporate firm size, 
often dominate decisions and policy in social systems. For example, the 
amount of federal funding a town or city receives in the USA is based on 
population size. Yet, size-based metrics have not been fully appreciated 
or adopted in the management of coupled social and ecological systems. 
A size-based metric could assist with quantifying resource use within 
complex social-ecological systems and improve management. Resource 
use is often related to public and political support, ecosystem services, 
social conflicts, and ecological disturbances (e.g., Thomas and Reed 
2019; Arlinghaus et al., 2020; DaRugna et al., 2022). For example, 
congressional acts, such as the Wild and Scenic Rivers Act and the Na
tional Trails Act were passed due to the close ties of public land pro
tection and outdoor recreational use (Clawson and Knetsch, 1996; 
Thomas, 2009; Thomas and Reed, 2019). Increases in outdoor recrea
tional use can also lead to elevated environmental impacts (Monz et al., 
2013; Jedd et al., 2018; DaRugna et al., 2022). To this end, managing 
outdoor recreational use is paramount for retaining the many benefits 

and key ecosystems services that natural resource systems (a specified, 
designated managed area containing forested areas, wildlife, or water 
systems, such as a reservoir, mountain, or wildlife refuge; Ostrom, 2009) 
provide. 

Estimating and monitoring resource use in social-ecological systems 
is logistically difficult and costly (e.g., Post et al., 2002; Hadwen et al., 
2007; Trudeau et al., 2021). The spatial distribution and composition of 
natural resources across the landscape contributes to the difficulty of 
quantifying use across multiple resource systems (e.g., Carpenter and 
Brock, 2004; Parry et al., 2009; Wilson et al., 2016). Not all resource 
systems receive the same amount of use (e.g., Steffe et al., 2008; Askey 
et al., 2018; DaRugna et al., 2022). The users of these resource systems 
also contribute to the variation in use, as users represent diverse and 
heterogeneous groups (e.g., Holland and Ditton, 1992; Connelly et al., 
2001; Watkins et al., 2018). For example, recreational anglers are 
geographically diffuse, diverse in their motivations, and behaviorally 
dynamic (e.g., Arlinghaus, 2006; Golden et al., 2019; Kane et al., 2020). 
Similarly, hunters are heterogeneous in where they hunt, how 
frequently they hunt, and their motivations to hunt (e.g., Hunt et al., 

* Corresponding author at: 404 Hardin Hall, 3310 Holdrege Street, Lincoln, NE 68583-0984, USA. 
E-mail address: dkane@huskers.unl.edu (D.S. Kane).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2022.109711 
Received 22 August 2022; Received in revised form 15 November 2022; Accepted 19 November 2022   

mailto:dkane@huskers.unl.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2022.109711
https://doi.org/10.1016/j.ecolind.2022.109711
https://doi.org/10.1016/j.ecolind.2022.109711
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2022.109711&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 145 (2022) 109711

2

2005; Kerr and Abell, 2016; Hinrichs et al., 2021). Despite the impor
tance of recreational use, the difficulties in quantifying use precludes 
effective management – which is a problem that could be remedied with 
the ability to predict recreational use. 

Studies have aimed to predict recreational use patterns using a wide 
variety of social and ecological variables (e.g., Hunt 2005; Post et al., 
2008; Johnston et al., 2010). Many have highlighted that resource sys
tem size (e.g., surface area) can reliably predict resource use (e.g., Lyach 
and Čech, 2018; Kaemingk et al., 2019; Trudeau et al., 2021). None of 
these studies, however, attempted to predict resource use using solely 
resource system size. Size of the resource is an important metric that 
influences ecological and social aspects of natural resources, and thus, 
may serve as an important indicator for predicting resource use. For 
example, the size of floodplain waterbodies, along with depth and water 
clarity, is important for structuring fish assemblages (Miranda and 
Lucas, 2004; Lubinski et al., 2008; Miranda, 2011). Larger waterbodies 
typically have greater species richness for a variety of taxa and can offer 
more diverse recreational opportunities compared to smaller water
bodies (e.g., Post et al., 2000; Hunt, 2005; Nikolaus et al., 2021). 
Similarly, land area determines the habitat management and conserva
tion costs (Armsworth et al., 2011), and larger land fragments often 
produce more ecosystem services (Hartter, 2010). Size can also be 
related to systems thinking and resilience properties such that larger 
resource systems may also function as buffers and can withstand 
increased amounts of recreational use and disturbance (Gunderson and 
Pritchard, 2012). Furthermore, resource size may serve as a composite 
variable in that it represents several coupled social-ecological relation
ships that are strongly correlated with resource size. Our previous work 
identified that fish stocking patterns and angler use were best explained 
by waterbody size; small waterbodies received more fish stocked and 
angler effort (Kaemingk et al. 2022). We therefore posit that the size of a 
resource system could be used as a proxy to infer resource use, based on 
the empirical relationships between resource size and resource use. 
Therefore, the development of resource system size-use models could 
provide the groundwork for managers to better optimize the social and 
ecological benefits of these systems. 

Using resource system size as an indicator of recreational use is 
attractive because it is 1) cost-effective compared to traditional onsite 
surveys, 2) readily available or can be quantified using GIS and remote 
sensing techniques (Pekel et al., 2016), and 3) likely to be widely 
adopted by managers because of the aforementioned properties and 
simplicity. Resource size-use models can produce broad-scale estima
tions of use, providing a baseline for management by enabling natural 
resource managers to predict the amount of use at all resource systems 
within their management region. Another utility of resource size-use 
models is guiding the allocation of management resources according 
to expected use. Resource size-use models can identify deviations from 
expected resource system use, highlighting priority systems in the 
allocation of limited resources. Finally, natural resource managers can 
also use developed resource size-use models to predict changes in 
resource use caused by changes in resource size, such as forecasting 
whether anthropogenic changes, like climate change, will ultimately 
influence the quantity of resource use based on changes in the size of 
natural resource systems (e.g., drought and deluge periods). 

Our goal is to develop a simple resource size-use model that can be 
used to improve the management of social-ecological systems, using a 
large recreational fishery dataset with information on angler use of 
waterbodies from Nebraska, USA. We then illustrate the utility of this 
model by applying it to three fisheries management case scenarios that 
allow: 1) Estimation of angler use on unsampled waterbodies across 
multiple spatial scales; 2) Identification of under- or over-used water
bodies; 3) Prediction of how angler use would respond after a change in 
waterbody size. Our hope is to demonstrate that the benefits of using 
size-based metrics go beyond social systems by also improving our un
derstanding of social-ecological systems (Kaemingk et al., 2019; Kae
mingk et al. 2022). Resource size-use models could provide natural 

resource managers the opportunity to predict natural resource use and 
leverage these predictions to influence all aspects of natural resource 
management. With resource size-use models, managers are equipped 
with a necessary tool to effectively manage resource use, a critical 
shortcoming of most social-ecological systems management. 

2. Methods 

2.1. Study area 

We assessed recreational angler use (i.e., angler effort in hours) at 73 
public waterbodies throughout Nebraska, USA from 2009 through 2019 
(Table S1 in Appendix S1), which ranged in size (i.e., surface area) from 
1 to 12,141 ha (mean = 593 ha; standard deviation = 2,028 ha). The 
waterbodies were reservoirs constructed for a variety of purposes 
including flood control, irrigation storage, hydropower generation, and 
community recreation. These waterbodies were spatially distributed 
throughout Nebraska and represented a diversity of fishing opportu
nities (Pope et al., 2016; Kaemingk et al., 2020). 

2.2. Angler use estimations 

We obtained estimations of angler use (hours spent fishing) from 
instantaneous counts of bank anglers and angling boats at each water
body. Counts occurred between sunrise and sunset from April through 
October. Angler-count days and times were randomly selected following 
a stratified multi-stage probability-sampling regime (Malvestuto, 1996). 
Angler-use estimations were calculated using previously described 
methods (Malvestuto et al., 1978; Pierce and Bindman, 1994; Pollock 
et al., 1994; Malvestuto, 1996; Pollock et al., 1997). We conducted 
angler counts for 10 to 24 days per month, depending on the size of the 
waterbody and logistics (Kaemingk et al., 2018). During each month, 
angler counts were stratified by day type (i.e., weekdays and weekend 
days, holidays were either treated as weekend days or their own day 
type) and day periods (i.e., morning and afternoon). The number of 
anglers counted was multiplied by the number of hours in each survey 
period and divided by the probability of selecting a day period (0.5) to 
produce a daily use estimation, which was multiplied by the number of 
days within a day type present in the month and summed across all day 
types to produce a monthly angler use estimation. Monthly angler-use 
estimations were summed to estimate angler use from April through 
October, from here on referred to as annual angler use. For waterbodies 
that were sampled multiple years, annual angler use was averaged 
across all years sampled. 

2.3. Analysis 

We used linear regression, one of the simplest methods of linking 
explanatory and response variables (Milton et al., 2019), to test for an 
expected resource system size-use relationship between annual angler 
use and waterbody surface area. We then used the coefficient of deter
mination (r2) and corresponding p-value to evaluate the strength and 
determine significance (α = 0.05) of the resource system size-use rela
tionship. Waterbody surface area was determined from the surface area 
at conservation pool. We loge-transformed annual angler use and 
waterbody size to reduce heteroscedasticity and represent the expected 
diminishing effect of increasing waterbody size on annual angler use 
(Parsons and Kealy, 1992; Woolnough et al., 2009; Hunt and Dyck, 
2011). When predicting angler effort based on our resource system size- 
use relationship, we used the predicted value from our model and the 
associated 95 % confidence interval. We conducted all analyses in R (R 
Core Team, 2017). 

3. Results and discussion 

Waterbodies included in our assessment varied in annual angler use, 
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ranging from 81 h to 161,774 h (mean = 23,560 h; standard deviation =
30,793 h). Linear regression analysis revealed that waterbody size was a 
significant predictor of annual angler use (r2 = 0.60, p < 0.01; Fig. 1). 
Angler use was positively correlated with waterbody size (ln[use] =
7.1861 + 0.5338 × ln[size]). The y-intercept of 7.19 indicated that each 
1-ha waterbody in Nebraska received about 1,330 h of annual angler 
use. 

Resource size-use models have many potential management benefits. 
We anticipate that estimating resource use from random subsamples 

across the entire range of resource system sizes can be used to develop 
these resource size-use models. For example, we measured resource use 
at 73 out of the 646 public waterbodies in Nebraska to build our 
resource size-use model. The waterbodies we sampled ranged from 1 to 
12,141 ha in size, vary in their location on the landscape (e.g., vary in 
their distance from population centers or other waterbodies), and each 
represent unique angling opportunities. Thus, these waterbodies were 
representative of all public Nebraska waterbodies. We expect that 
resource size-use models will be stable for several years, but should be 
re-calibrated if major changes in population distribution or availability 
of resource systems on the landscape occurs (Hunt et al., 2019a; Hunt 
et al., 2019b; Kaemingk et al., 2021). We anticipate that the develop
ment of resource size-use models for different regions, resource user 
groups, and across different spatial (e.g., local, regional, national) and 
temporal (e.g., seasonal, annual, decadal) scales will improve the 
management of other social-ecological systems, beyond recreational 
fisheries. Further research is needed to determine how many natural 
resource systems should be sampled to build an appropriate model and 
whether the strong resource size-use relationship for Nebraska holds in 
other regions with higher or lower availability of resources. 

Whilst we expected a significant relationship between angler use and 
waterbody size, the amount of variation explained in angler use by 
waterbody size is somewhat surprising. Nebraska has a unique social- 
ecological landscape, with much of its population residing in the 
eastern half of the state and most of the larger waterbodies in the 
western half of the state. This mismatch in urban proximity to large 
resources (that are expected to receive greater use) could have limited 
our ability to develop a resource size-use model, given that distance and 
associated travel costs often predict recreational use (Berman and 
Kofinas, 2004; Hunt et al., 2011; Wilson et al., 2020). Similarly, there 
are likely heterogenous socio-economic conditions across the state that 
could have introduced a large amount of variation in angling use to 
further weaken this relationship (Searle and Jackson, 1985; Shores et al., 
2007). Additionally, the values (data) used to develop the resource size- 
use model contained uncertainty (i.e., not measured without error or 
variance) in both x- and y-axes. However, we demonstrate that this 
approach is robust to Nebraska’s social-ecological landscape and data 
uncertainty, thus warranting testing in other areas. Future development 
of other resource size-use models will determine how robust this 

Fig. 1. Model displaying the relationship (r2 = 0.60) between annual angler 
use (natural log of the annual extrapolated use in hours) and waterbody size 
(natural log of hectares). Points represent individual waterbodies sampled 
either once or across multiple years, and the ribbon represents a 95 % confi
dence interval. 

Box 1. Estimation of use on unsampled resource systems across multiple spatial scales. 

Resource size-use models can provide resource use estimation for unsampled waterbodies across designated management units. Nebraska’s 
public lakes and reservoirs are divided into four fishery management districts. In the map above, each circle represents a publicly managed 
waterbody, its size represents the amount of angling effort it is predicted to receive, and its color represents the corresponding management 
district. Based on the size-use relationship, annual angler use in the 4 districts ranged from 852,090 (95 % CI: 598,703 – 1,213,920) hours (SE) to 
1,506,952 (95 % CI: 1,039,618 – 2,186,471) hours (NW) per district (mean = 1,187,638 h per district; standard deviation = 331,212 h). Effort 
estimates from each district can be summed to predict that there are about 4,750,551 (95 % CI: 3,271,489–6,911,228) hours of annual angler use 
on Nebraska’s public waterbodies (excluding streams and rivers). The aforementioned 95 % CI’s represent the models residual uncertainty.  
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approach is. 
The resource system size-use model provides an easy and cost- 

effective method of obtaining broad-scale use estimations. Natural 
resource managers can estimate use for all the resource systems within 
their management region, including systems that have not been sampled 
(Box 1). 

Estimates of resource use can provide meaningful baseline infor
mation about how much use an average system of a specific size should 

receive. Natural resource managers could produce statewide, nation
wide, and ultimately worldwide estimations of resource use through 
existing social-ecological datasets (Lynch et al., 2021) and remote 
sensing techniques (Pekel et al., 2016). These broad estimations of 
resource use can provide utility in the extrapolation of benefits that 
natural resource systems provide, such as economic benefits (e.g., 
Bergstrom et al., 1990; Lazarow, 2007; Spirk et al., 2008). Caution must 
be taken, however, to not estimate outside the bounds of the model. Our 

Box 2. Identification of under- or over-used resource systems. 

Resource size-use models can provide information about expected angler use, such as whether waterbodies are receiving more or less use based 
on size. Natural resource managers can compare predicted levels of use with measured levels of use to highlight resource systems that deviate 
from the predictions based on their size (positive or negative residuals). The above map represents publicly managed waterbodies in and around 
Lancaster County, Nebraska, circle size represents the amount of angling effort each waterbody is predicted to receive, and its color indicates the 
amount of angling use the waterbody receives compared to the amount predicted by its size. The most under-used waterbody received 9,842 h of 
use less than predicted and the most over-used waterbody received 58,612 h of use more than predicted, based on the developed resource size- 
use model. Natural resource managers can then use this information to help determine where to allocate specific management resources.  

Box 3. Prediction of use after a change in resource system size. 

Resource size-use models can provide predictions of how angler use would respond after a change in waterbody size. In 2009, a Frontier County, 
Nebraska reservoir decreased in size from 659 ha (represented by the white area; right panel) to 240 ha (represented by the black area; right 
panel) to allow for dam repair (Chizinski et al., 2014). We used our resource system size-use model to attempt to predict how use could have 
changed with the reduction in resource system size (left panel). In this case, we predict that use of the 659-ha waterbody would drop from 
42,222 (95 % CI: 28,275–63,076) hours of annual angler use to 24,600 (95 % CI: 16,759–36,206) hours of annual angler use if the waterbody 
remained at 240 ha in size. Indeed, Chizinski et al. (2014) documented a decrease in annual angler use in the years following the drawdown 
(right panel). Although the actual use was less than predicted by the model both pre- and post-drawdown, the model provides insight into how 
the quantity of recreational use may change as a result of a change in resource size.  
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model was constructed to predict resource use among recreational 
fisheries in Nebraska, thus, it may not be appropriate to use elsewhere. 
Instead, the development of additional resource size-use models for 
different types of resource use and in different areas is needed. 

The resource system size-use relationship also provides utility in the 
prioritization and allocation of natural resource management funds. 
Identifying resource systems that receive less use than predicted by size, 
for instance, may provide managers with insight about specific mecha
nisms that deter recreational use. Additionally, if managers identify a 
resource system that is receiving less use than predicted by size, they 
may decide to invest more resources in that system to increase use. For 
example, angler use typically increases after a fish stocking event (e.g., 
Loomis and Fix, 1998; Baer et al., 2007). Fish stockings could be directed 
at resource systems that are receiving less use than predicted based on 
their size. Alternatively, when funding is limited, managers may utilize 
the resource system size-use relationship to help determine which 
waterbodies may receive a decrease in funding. At the landscape-scale, 
natural resource managers can compare regional resource systems in 
terms of their predicted (Box 1) and measured levels of use and utilize 
this information to guide the allocation of resources across multiple 
resource systems (Box 2). On one hand, large deviations from predicted 
use, for systems where the quantity of use has been sampled, may 
represent the potential occurrence of social conflicts or ecological dis
turbances, such as overcrowding and declines in native biodiversity (e. 
g., Cole, 2001; Dudgeon et al., 2006; Thompson, 2015). Further in
vestigations into these systems may provide insights into additional 
metrics that may improve future, more complex models. Developing 
more complicated models, however, may limit their utility among nat
ural resource managers. 

Another benefit of creating resource system size-use models is the 
ability to predict how resource system use might change if the size of a 
resource system were to change (Box 3). For instance, water may be 
drained from a reservoir to manage fish populations or to repair physical 
structures of a waterbody (e.g., Chizinski et al., 2014). Future changes to 
the size of waterbodies and other natural resource systems may occur 
because of anthropogenic influences such as climate change, irrigation, 
and wildfires; (e.g., Gao et al., 2011; Bawa, 2017; Zou et al., 2017). 
However, there are additional reasons why recreationalists may be 
attracted to, or repelled from, resource systems that have undergone a 
change in size. For instance, the draining of a reservoir may condense 
fish populations, attracting catch-focused anglers. That same manage
ment action may result in a muddy shoreline, repelling away those 
wanting to use the reservoir for aesthetic purposes (e.g., Moeller and 
Engelken, 1972; Hunt, 2005; Hunt et al., 2019a; Hunt et al., 2019b). To 
this end, caution is required when using a simple model to make pre
dictions on dynamic systems. Consideration must be given to both the 
type of resource system and how changes in its size might affect the 
specific group of users being considered. 

Developing resource system size-use models can change how our 
natural resources are managed by providing broad-scale estimations of 
resource system use, guiding the allocation of management resources 
according to expected use, and revealing how different user groups 
interact with natural resources. Resource system size-use models will 
allow natural resource managers the opportunity to quantify, predict, 
and manage use across all resource systems, enabling a landscape 
approach to resource use management (Matsumura et al., 2019; van 
Poorten and Camp, 2019) that was previously costly and logistically 
difficult. Building resource size-use models, at the appropriate scales, 
provides natural resource managers with a tool to improve the man
agement of resource use in complex social-ecological systems. 
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