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The use of unmanned aerial vehicles (UAVs) in construction sites has been widely

growing for surveying and inspection purposes. Their mobility and agility have en-

abled engineers to use UAVs in Structural Health Monitoring (SHM) applications

to overcome the limitations of traditional approaches that require labor-intensive

installation, extended time, and long-term maintenance. One of the critical ap-

plications of SHM is measuring bridge deflections during the bridge operation

period. Due to the complex remote sites of bridges, remote sensing techniques,

such as camera-equipped drones, can facilitate measuring bridge deflections. This

work takes a step to build a pipeline using the state-of-the-art computer vision

ArUco framework to detect and track ArUco tags placed on the area of interest.

The proposed pipeline analyzes videos of tags captured by stationary cameras and

camera-equipped UAVs to return the displacements of tags. This work provides

experiments of the ArUco pipeline with stationary and dynamic camera platforms

in controlled environments. Estimated displacements are then compared with

ground truth data. Experiments show the significance of pixel resolution, platform

stability, and camera resolution in achieving high accuracy estimation. Results

demonstrate that the ArUco pipeline outperforms existing methods with stationary

cameras, reaching an accuracy of 95.7%. Moreover, the pipeline introduces an ap-

proach to eliminating the noised cause drone’s motion using a static reference tag.



This technique has yielded an accuracy of 90.1%. This work shows promise toward

a completely targetless approach using computer vision and camera-equipped

drones.
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Chapter 1

Introduction

1.1 Motivation

Deflection measurement for bridges is useful in structural health monitoring (SHM)

during the bridge service life [3] [4]. Throughout the years, conventional contact

sensors, such as Linear Variable Differential Transducers LVDTs [5], accelerometers

[6], and global positioning system (GPS)-based systems [7], have been the main

techniques for displacement measuring. Despite the success of the traditional

sensor-based methods in monitoring the response of structures, they pose several

practical challenges. In addition, they involve time and labor-intensive installation

processes and seek substantial maintenance to achieve long-term monitoring and

maintenance. Moreover, the structure of interest might not be accessible for

installing instruments due to complex site conditions. These limitations affect

the repeatability, practicality, and automation of such systems. Thus, the critical

need for remote sensing techniques, such as camera platforms, to estimate bridge

displacements has emerged. These techniques have the ability to provide non-

contact inexpensive, and reliable alternatives to measure displacements.

Over the past decades, unmanned aerial vehicles (UAVs) have been used

in many real-world applications; package delivery, remote sensing, and remote
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video surveillance are among the most popular. Additionally, Unmanned Aerial

Vehicles (UAVs) have been deployed for inspecting bridges [8]. Combining the

UAV technology with remote sensing techniques can significantly improve the

efficiency of the entire bridge inspection process ranging from data collection and

analysis to decision-making [9].

This research pursues to combine the use of computer vision techniques with

camera-equipped UAVs to enhance the process of estimating bridge displacements.

This improvement can occur by creating a pipeline of capturing videos of the

structure of interest, analyzing it, and outputting the changes in displacements.

As shown in Figure 1.1, a camera-equipped UAV is deployed to measure tag

displacements moved by an arbor press using computer vision ArUco framework.

The videos captured by the UAV are entered into a pipeline to return the tag

displacements in inches. We expand on this setup more in Chapter 5.

Figure 1.1: Experimentation setup for estimating tag displacement using a camera-
equipped drone (Mavic Air 2)
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However, several complicated challenges are associated with building such

a platform. First, the drone’s motion introduces noise into the estimated bridge

displacement. Second, as the bridge displacements are minute, in millimeters,

the system’s accuracy must be within a millimeter. Third, environmental changes

such as illumination changes, angle of perspective, and surface conditions can

affect the estimation performance of computer-vision-based techniques. Prior

work has proposed frameworks that try to overcome these challenges through

various scenarios. However, none were able to overcome some of these challenges

completely. We discuss these techniques and their limitations in Chapter 2.

Most existing vision-based displacement measurement methods assume that

the camera is stationary [10]. Unlike prior work, this thesis aims to employ a

state-of-the-art ArUco Fiducial Marker System pipeline to track tags placed on

structures of interest in videos captured by camera-equipped drones. To reach this

goal, several research questions have been proposed in section 1.2.

1.2 Research Questions

1. Can we develop a proof-of-concept pipeline that utilizes state-of-the-art

computer vision techniques to track bridge displacements captured from

camera-equipped drones? As an emerging technique in tracking and local-

ization for many robotics applications, we hypothesize that leveraging fiducial

markers can show promise in estimating displacements with a drone. This

will be accomplished by employing ArUco fiducial marker system to place

tags on the area of interest. In consequence, we deploy a low computa-

tional, robust to illumination changes, high detection rate fiducial system.

These advantages will enable us to achieve better accuracy in estimating the
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displacements of the targeted area.

In addition, we track the marker by engineering a pipeline of analyzing

the video captured by the drone, tracking the ArUco tag in each frame and

reporting the pixel location, getting the pixel displacements, and finally

converting from pixels to inches to get the actual displacements in inches.

We compare the results with the achieved ground truth and report the root

mean square error (RMSE) of the recorded displacements. Such a system

needs to be robust and hardened to detect minimal displacements. Chapter 3

explains the pipeline approach with specifications of the used tools. Chapter

5 answers this question in detail and show the steps taken to overcome the

challenges accompanied by this problem.

2. While fiducial marker systems have proven successful in tracking and

localization of several robotics applications, how accurate are they in

tracking such minimal displacements? In order to answer this question, we

take a step back from initially testing the ArUco pipeline on a drone. Instead,

we perform an extensive study of experimenting with the ArUco detector

on videos captured by stationary cameras. We use two different types of

cameras in two different ways to track ArUco tags. The first approach uses

Canon Vixia HF G50 to record videos of the marker placed on the targeted

area of measuring. These videos are then entered through the ArUco detector

pipeline to analyze each frame and report the pixel locations of the tag.

The second approach utilizes the ArUco real-time detector by integrating

a Blackfly S camera sensor with an ArUco Robot Operating System (ROS)

node. This approach detects ArUco tags on demand and reports the pixel

location of the tag in each frame. We then take these locations to get the pixel
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displacements and convert them to inches. We deploy these approaches in

laboratory studies for Stationary Experimentations. Chapter 4 expands on

these studies and answers this question.

Experimenting with stationary cameras aims to report the highest obtained

accuracy from this approach. Things will only get worse when operating the

pipeline on videos captured by a drone. These studies give us the boundary

of how well the ArUco detector can estimate such small displacements. Thus,

we benefit from these studies’ conclusions to deploy the ArUco pipeline on a

UAV. Chapter 5 talks about the experiments performed using a UAV.

3. What pixel-to-inch ratio is required to accurately detect tags with small

displacements? Does the camera platform’s resolution, zoom level, distance

from the target, and motion on the platform affect the robustness of the

estimation? As these two questions are related, we hypothesize answering

both by replicating the Stationary experiments mentioned in the previous

answer at different distances and with various recording settings. In doing

this, we acquire the pixel-to-inch ratio required to detect the displacement

needed. The pixel-to-inch ratio is changeable based on the lens zoom level,

the camera’s resolution, and the distance from the target. Thus, we need to

adjust these factors to learn the required ratio. Additionally, we do the same

with drone experiments. We replicate the same test at different distances and

zoom levels to understand how that affects the total robustness of the system

in estimating displacements. Chapters 4 and 5 answer these questions in

detail and expand on the related topics.

4. How can the drone’s motion noise be removed to reach the true estimated

displacement of the tag? Drone stability depends on several factors, such as
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wind speed, the robustness of the drone’s controller, calibration of the drone

sensors, and the hardening of the drone’s camera gimbal to compensate for

the drone’s movements. We show how these factors can affect the estimation

of displacements by comparing the results of deploying two different drone

types to detect a stationary tag in Chapter 5.

To compensate for the drone’s motion, we compare the two approaches. The

first approach is to track the drone’s movements with Vicon motion-capturing

system and clear the motion noise from the tracked tag displacements. For

the second approach, we place a stationary reference tag in the drone’s

camera field of view. We also track the static tag in our ArUco pipeline

and subtract the noise of the stationary tag from the moving tag. These

two approaches are distinct as the first one uses the drone’s raw motion

to estimate the tag’s actual displacements, while the other counts for the

estimation error of the detector in detecting the markers. Chapter 5 compares

the two approaches and shows the different results each one gives.

1.3 Research Contributions

This research mainly contributed the following to the area of utilizing UAVs to

estimate bridge displacements:

1. Development of a novel pipeline leveraging the state-of-the-art ArUco

fiducial marker system to measure bridge displacements in videos captured

by stationary camera platforms as well as camera-equipped UAVs.

This pipeline returns the bridge displacements in inches to compare with

ground truth with accuracy of 95.7% using a stationary camera and 90.1%

using a camera-equipped drone.
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2. Laboratory experiments and results to demonstrate the accuracy level of

estimating displacements by stationary cameras and drones.

These studies include the effect of zoom level, camera resolution, and the

distance to the target on the pipeline’s accuracy. In addition, these studies

deliver the pixel-to-inch ratio required to get the accuracy level needed to

capture the targeted displacement.

3. Development of an approach compensating for UAV’s motion to estimate

the targeted area’s displacements using a static reference tag with an

accuracy of 90.1%.

This development is a result of a comparison study conducted to compare

two different techniques to clear the noise created by the UAV’s motions and

vibrations.

1.4 Document Overview

This thesis is organized as follows: Chapter 2 provides a literature review of

published related work, Chapter 3 discusses and analyzes the different components

of the proposed pipeline. Chapter 4 provides results of testing the pipeline with

stationary camera platforms to answer research questions 2 and 3, Chapter 5 covers

research questions 1 and 4 by showing the experiments of using camera-equipped

drones, and Chapter 6 summarizes the discussion of all results and provides

conclusions of the work done.
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Chapter 2

Related Work

Structural Health Monitoring of bridges using traditional contact measurement

sensors, such as Linear Variable Differential Transducers (LVDTs) [5] and ac-

celerometers [11] [6] [12], has always been challenging as they require personnel

to climb the bridge and install them. LVDTs require the installation of scaffolds

next to the bridge [5], which may not be possible in some inaccessible locations.

In some unique locations, like high-speed railway bridges, it is not allowed to

install the measurement equipment during the operation period [13]. On the

other hand, accelerometers are used to measure displacement through double

integration. However, they are usually accompanied by numerical integration

errors [14]. Thus, to avoid these limitations, bridge inspectors are interested in

new non-contact reference-free methods to measure the displacements. Global

positioning systems (GPS) [15] offer potential advantages due to their non-contact

nature, but they are limited in application due to the high cost of these systems.

Prior work offers promising cost-effective non-contact approaches to measuring

vertical displacements of bridges during the bridge operation period.

Stationary cameras and Unmanned Aerial Vehicles (UAVs) can be used as

remote sensing techniques to develop non-contact methods. The aid of computer

vision and machine learning has facilitated full-field monitoring of structures [16]
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[17] [18] [19]. However, measuring vertical displacements generally depends on

the camera’s resolution, the motion of the camera platform, target or targetless

feature point extraction, and the choice of vision algorithms for measurement

extraction [16] [17] [18] [19]. Using deep-learning-based full-field optical flow is

proposed in [20] by utilizing the CNN FlowNet and FlowNet2.

UAV-based analysis monitoring has gained momentum, over stationary cam-

eras, for bridge monitoring in recent years due to improved accessibility and cost

efficiency, avoidance of traffic closure, and reduced safety hazards during the

inspection process [21] [22]. However, one limitation of UAVs is the introduction

of motion into measured displacements. One way to overcome this limitation is

by tracking the movement of the UAV using a fixed reference and eliminating it

from the displacement measurements, as done in [13] by a coplanar laser indica-

tor. Another way is to eliminate the UAV translations and rotations through a

Normalized Cross Correlation approach [14].

Techniques for monitoring bridge displacements using computer vision can

be grouped into two categories: Target-based and Targetless approaches. In the

following subsections (2.1, 2.3), we introduce some advancements in prior work in

each category and their limitations. In subsection 2.2, we review the state-of-the-art

fiducial marker systems to evaluate their potential use as trackable targets.

2.1 Target-based Vision Frameworks

Target-based frameworks mainly use traditional feature extraction algorithms

to extract features and then are combined with template-matching algorithms

or classifiers for target recognition [23]. They often rely on placing a trackable

target on the targeted plane, such as printed markers or LED targets [18] [19].
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These targets are then detected and tracked for estimating vertical displacements.

Other target frameworks are to track targets within pre-recorded videos and extract

displacements. [19] analyzes each video frame for detecting the target using Digital

Image Correlation. The displacement is then measured in terms of pixel relations.

Finally, the algorithm calculates this distance corresponding to real-world space

and is validated using a magnetostrictive displacement sensor as ground truth

[24]. Similarly, [25] uses attached markers for monitoring bridge displacements

with a stationary camera. Using multiple targets was considered to characterize

bridge displacements using an algorithm that could predict positions within a

millimeter range [19]. This paper achieves a displacement monitoring accuracy of

3 mm error at a 10 m monitoring distance. Such error ranges cannot be tolerated

when using form bridge displacements with 2 mm. Moreover, this is achieved in

stable, controlled room conditions with a fixed camera and at large displacements

(π/8). In another approach, UAVs were deployed to extract displacements of

a multistory laboratory-scale structure [21]. The proposed algorithm applied a

high-pass filter to remove the effect of the UAV’s rigid body motion. However, this

approach requires a strong assumption about the appropriate cutoff frequencies.

Despite promising results, these approaches often require high computational

resources, leading to a lack of real-time response. Moreover, most of the techniques

utilized stationary cameras for tracking targets. Those who leveraged UAVs have

implemented approaches focusing on eliminating drone noise while ignoring

putting more effort into advancing the robustness of detecting the targets. None of

the above approaches have utilized state-of-the-art fiducial markers (i.e., ARTag,

AprilTag, ArUco, and STag), mainly used for localization and tracking in the

robotics field [26]. Adopting such frameworks can help set a clear boundary

of how accurately computer vision can detect millimeter displacements. In the
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Figure 2.1: Examples of the different patterns of Fiducial Marker Systems [1]

following subsection 2.2, we present prior work done on fiducial markers.

2.2 Fiducial Marker Systems

Fiducial markers are patterned objects printed on paper and placed on the targeted

area in the camera’s field of view. These markers are mainly utilized for pose

estimation, tracking, localization, providing a reference point, or measurement

in the scene. In some cases, markers can carry simple messages through their

encoding to provide meaning when detected. These patterns are designed to stand

out in the environment for easier detection. While these patterns can be in circles,

lines, squares, dots, etc., the three major pattern categories are circular [27] [28]

[29], square [30] [31] [32], and topological [33] [34], as shown in Figure 2.1. The

fiducial marker system comprises a set of valid markers and an algorithm that

detects and possibly corrects images [35]. As the applications of fiducial markers

range across various disciplines, from medical imaging to PCB manufacturing [26],

the current state-of-the-art systems are ARTag, AprilTag, ArUco, and STag [26].

ARTag [30] [36] was the first to introduce a built-in forward error correction for
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its encoding system. Additionally, it uses a 2D barcode within a six-by-six grid of

cells in the interior of the marker to make encoding easier. This made the detection

much faster than prior marker systems. In addition, as their detection algorithm

was based on the image gradient, it is robust to changes in lighting and occlusion.

However, its detection mechanism was outperformed by AprilTags [31] in later

studies.

AprilTag [31] fiducial system has undergone two phases of development: the

initial phase of introducing the system [31] and advancing the system for robust

and efficient detection [37]. It is the first system to introduce a lexicode-based tag

generation method to enhance the detection algorithm and reduce false positive

detections [38]. AprilTag is primarily used in robotics applications that involve

tracking cars by UAVS [39], robotic arms [40], and system calibrations [41]. As

AprilTags has been one of the most popular systems, it still has some limitations in

computing time and is prone to errors with the angular rotation of cameras. Thus,

for tracking and detecting tags in a reduced computing time, the ArUco markers

system is introduced [35].

The ArUco system has been widely used in robotics applications for its ad-

vantage of reduced computing time, real-time detection approach, and accurate

detection and tracking [42]. [43] utilizes ArUco tags to position UAVs during aerial

inspections accurately. This work has shown promise in precise positioning using

ArUco markers. In addition, the ArUco markers system has outperformed the

AprilTags system in accurate UAV landing due to its higher detection framerate,

reduced computation, and robust detection in complex environments [44]. In

addition, It adapts to non-uniform illumination by utilizing Mixed Integer Linear

Programming [45]. One of the main advantages of the ArUco framework is its abil-

ity to be tweaked based on the application. For instance, while STag outperforms
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all systems in robustness to occlusion [46], ArUcoTag has the option to enable

robustness to occlusion. These options allow the user to use the same system of

ArUco as needed for the application. Robustness to occlusion has the disadvantage

of slow processing time and low detection frame rate (10 fps) than required for

detecting bridge displacements [47]. Lastly, the open-source code available for

ArUco allows for real-time tracking or video tracking.

Based on the previous work, utilizing state-of-the-art fiducial markers as targets

for estimating displacements of bridges might outperform existing techniques in

detecting such small displacements. This will give us a clear vision of what to

expect when implementing a targetless vision framework for detecting displace-

ments. In the following subsection, we will talk about the current targetless vision

frameworks.

2.3 Target-less Vision Frameworks

Targetless frameworks essentially focus on utilizing imagery information to spot

the differences between pixels and employ that to measure the displacements. For

instance, [48] [49] [50] introduce targetless optical flow-based approaches. As these

approaches solely rely on the image intensity information, the results are sensitive

to different lighting conditions, changes in perspective, and surface conditions.

Moreover, [51] uses complex-steerable pyramids to extract phase and amplitude

information for each video frame as a phased-based approach. Using phased-

based motion estimation and video magnification algorithms. The work in [51]

[52] successfully extracted the full-field operational deflected shapes and natural

frequencies of different structures (i.e., cantilever beams and wind turbine blades).

However, this was done using a stationary camera platform in a controlled, stable
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environment. Other approaches exploit the structure’s natural targets in imageries

within each frame. For instance, [53] has employed an object-tracking technique

based on the Kanade–Lucas–Tomasi (KLT) tracker to detect the structure’s points

of interest. This was tested on a laboratory-scale six-story structure.

Several Frameworks, such as [13] [47] [54], utilize laser points to develop a

contactless measurement technique. To start, [13] leverages deep learning methods

to track bridge features from image sequences collected by multiple UAVs. Laser

indicators are utilized to eliminate the motion of UAVs. However, this approach’s

limitation is the algorithm’s performance not meeting the real-time requirement.

On the other hand, the reliance on a stationary camera in the approach of [47]

makes it challenging to utilize for remote bridges and highly complex structures.

In addition, [10] introduces a novel vision-based displacement measurement ap-

proach, using only one UAV and a motionless laser spot projected from a distance

away as a reference. However, the proposed method depends on tracking a pre-

designed marker of known size installed on the structure and assumes appropriate

frequency.

Reviewing the recent related work on Targetless displacement estimation, There

needs to be a robust, ready-to-use, completely targetless UAV framework to extract

such small displacements of bridge deformations. Thus, it is essential to develop a

target-based framework for UAV capturing and follow it with a targetless one.
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Chapter 3

Pipeline Development

This chapter discusses and analyzes the different pipeline components used for

measuring displacements. With slight changes in each component depending on

the experiment, this pipeline is composed of six main components: capturing

videos of the area of interest (3.1), analyzing the captured videos (3.2), getting

pixel displacement values (3.2), converting from pixels to inches (3.3), adjusting

the results (3.4), and ground truth comparison (3.5). Figure 3.1 shows the different

parts of the pipeline to get the inch-displacements data and compare it with ground

truth. The following subsections will address each component and discuss the

tools used across all experimentations.

3.1 Capturing Videos

During each study, the first step is to capture the displacements of the tag. These

tools have been mainly used to capture the displacements of the tag placed on the

area of interest. For the Static and Dynamic experimentations, we used an audio

signal to start the ground truth capturing sensor, the Canon camcorder, and the

Blackfly camera at once. This is to ensure that all platforms are collecting data in

sync.
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Figure 3.1: The general flow diagram of the proposed pipeline
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Figure 3.2: (Left) Blackfly S USB3 Camera Sensor (Right) An example of picture
taken by the Blackfly camera

Although most of the camera platforms were used for video capturing, the

Blackfly S camera captured the tag in real-time and only recorded the pixel

locations. This is because there was a huge lag when trying to record the video as

a whole. This lag caused the detection frame rate to decrease significantly. Thus,

we only had rosbag recordings with pixel locations of the markers in the field

of view with their IDs. In doing this, we study the effect of real-time detection

versus video recordings. After capturing data, we move to the pipeline’s second

component, analyzing the captured videos.

3.1.1 Tools

Blackfly S USB3 Camera Sensor This Monochrome camera sensor, Figure 3.2,

was manufactured by Teledyne FLIR with a 5.0 MP (resolution of 2448 px × 2048

px) equipped with a Sony IMX250 sensor. This camera was integrated with ROS

to operate a real-time ArUco detector and record tag displacements using a rosbag

package. This camera was leveraged in the Static and Dynamic experiments to

capture and record real-time displacement.

Canon Camcorder This Canon VIXIA HF G50 4K30P Camcorder has the capa-

bility to capture videos at 4K UHD 30 fps. It also includes a 20x Optical Zoom
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Figure 3.3: (Left) Canon VIXIA HF G50 4K30P Camcorder (Right) An example of
picture taken by the Canon camera

Lens. This Camcorder has been used to capture tag displacements in Static and

Dynamic experiments. It has been used, along with the Blackfly S camera, to study

the effect of zoom level and camera resolution on detecting the tag. Figure 3.3

shows a replica of the used camera as well as a frame of the video recorded.

DJI Mavic Pro and DJI Mavic Air 2 Drones Both camera-equipped drones are

manufactured by DJI and operated by the DJI Fly and DJI Go mobile applications.

The Mavic Air 2 is a more modern drone than the Mavic Pro. The Mavic Air 2

has the capability of capturing videos with 4K resolution at 30 fps with 2x zoom.

In addition, the camera’s gimbal has a wider angle for mechanical range with a

focussing option on the targeted area. While the Mavic pro is a less capable drone

with no zoom and lower gimbal robustness, both drones were used to study the

effect of the drone’s specifications on estimating the tag displacements. Afterward,

the more robust drone is utilized for experimentation on displacements at different

distances and zoom levels. Figure 3.4 shows pictures of both drones used through

this research.



19

Figure 3.4: (Left) DJI MAVIC Pro (Right) DJI MAVIC AIR2

Figure 3.5: ROS communication flow diagram [2]

Robot Operating System (ROS) ROS is an open-source robot operating system

that provides a structured communications layer above the host operating system

[55]. ROS is widely used across the robotics community due to its convenience

and ability to handle several common problems across robotics software develop-

ment. Figure 3.5 demonstrates the standard communication method in ROS. Our

pipeline integrates ROS with the Blackfly S Camera Sensor to capture real-time

displacements of tags and record the pixel locations using the ROSBAG package.
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Figure 3.6: A screenshot of real-time ArUco detection using Aruco Real-Time
Detector

ArUco Real-Time Detector This software package was developed, by PAL

Robotics, as a ROS wrapper based on the open-source ArUco detection code.

As this package is compatible with ROS, we use it to integrate with the Blackfly

S camera ROS driver to capture ArUco tags in real-time. This package has the

advantage of high framerate tracking of the markers (≈ 26 fps). Additionally, it

includes enhanced precision tracking with a given tag size and is optimized for

minimal perspective ambiguity. Figure 3.6 shows a screenshot of the static test of a

real-time tracked tag.

ArUco Tags The ArUco Tags are the targeted markers placed in the camera’s field

of view to be tracked. Across all studies, we primarily use two tags a stationary

tag and a moving tag. The moving tag is placed on the area of interest to capture

the tag’s displacements, hence, the area’s displacement. The stationary tag is used
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Figure 3.7: (Left) ArUco Tag with ID 2 (Right) ArUco Tag with ID 10

as a reference to capture the movements of the camera platforms. If the camera is

not moving, it can be used to measure the error distribution of the ArUco detector.

To differentiate between them, we use two different encoded ArUco tags. The

moving ArUco tag has an ID of 2, while the stationary has an ID of 10. These ids

can be identified by the ArUco detector. Figure 3.7 shows two examples of the

ArUco tags used in these studies.

3.2 Videos Analysis and Obtaining Pixel Displacements

For analyzing the captured videos by the Canon camera and the UAVs at 29.97

fps, we do several necessary steps to get the pixel displacements of the tags:

1. Marking the starting time of the test by listening to the audio signal in

the video. As there is no audio in the videos captured by the UAVs, hand

gestures are used in the video to mark the starting point of the experiment.

2. Utilizing FFmpeg software to crop the video from the test starting point

to the end. Additionally, FFmpeg extracts 30 frames per second from the

trimmed video.
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Figure 3.8: Screenshot of the ArUco Detector output after cleaning

3. A bash script of the ArUco detector runs on the extracted frames to record

the pixel locations of the tags in the fields with their ids and save them in a

CSV file.

4. CSV file is imported into a python script to analyze and get the pixel dis-

placements.

As shown in Figure 3.8, the ArUco detector tracks the pixel locations of all four

corners of the tag. As the tag displacements are vertical, we choose the y coordinate

of the top left point of the tag to get the pixel displacements. Lastly, we loop

through pixel locations of that y coordinate and subtract each pixel location, in the

y direction, from the maximum. This gives us the pixel differences between each y

coordinate of the top left point across all the frames. In other words, now we get

the vertical displacements of the tag across a specific video.

For the recorded rosbag files, it takes fewer steps to get the pixel locations as

the ArUco ROS package records them:

1. Importing the files into the python script to read and decode using the bagpy

python package. This python package outputs a CSV file with the timestamps

of the tags ids and the pixel locations of each edge point of the tag.
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2. Marking the starting point of the experiment and crop the data captured for

experimentation.

3. Looping through these pixel locations in the same fashion as mentioned

before to get the pixel locations.

3.2.1 Tools

FFmpeg FFmpeg [56] is a free and open-source software for handling videos,

audio, and other multimedia files. For our project, we use the command-line

FFmpeg tool to crop our videos and extract them into frames. For cropping, we

use a command like:

f f mpeg − i f ilename − ss starttime − to endtime − c : v copy − c : a copy outputname

to crop a video and export the trimmed video into a separate file. To extract frames

off of a video at 30 fps, we use this command:

f f mpeg − i f ilename − r 30 test%02d.png

ArUco Detector Bash Script We developed this bash script based on the ArUco

open-source project [42] to loop through frames of videos, detect the tags in the

frame, and save the pixel locations in a CSV file with the tag id. The bash script

helped detect the markers in the frames of the videos, see B.1.

bagpy package This package was developed by The Compositional Systems Lab

(CSL) at Vanderbilt University to facilitate the reading of rosbag files based on
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semantic datatypes. This package helps differentiate between the different ROS

topics and the associated messages.

3.3 From Pixels to Inches

After fetching the pixel displacements of the tags, we need to acquire the displace-

ments in inches to compare them with the ground truth values. As the size of

each side of the square tag in the video is known, a simple pixel-to-inch ratio is

calculated to get the inch displacements. As each row in the CSV file represents a

whole frame, we loop through the rows of the CSV file with the pixel locations

to get the euclidean distance of the left side of the tag in pixels. As we have the

tag left side size in inches, we can get the pixel-to-inch ratio by dividing it by the

know tag size. We use the pixel-to-inch ratio in each frame and multiply that by

our pixel displacements. Finally, we have the inch displacements of the tag across

all frames.

Figure 3.9: Tag size in inches and pixels in one frame
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To explain how this is done for just one frame, Figure 3.9 shows the size of

the tag in inches and pixels for one frame of the camera. We get the tag size in

pixels by subtracting the pixel coordinate points of the tag returned by the ArUco

detector. Afterwards, we get the displacement of the deflection of the specimen in

pixels, as shown below:

[
Tag side size (inches)
Displacement(inches)

]
=

[
Tag side size (pixels)

Displacement (pixels)

]

[
2.5inches
0.1inches

]
=

[
833.6634pixels

Displacementpixels

]

Displacement (pixels) =
[

833.6634pixels ∗ 0.1inches
2.5inches

]
= 33.3465 pixels

0.1 inches =̂ 33.3465 pixels

(3.1)

This step is vital as it delivers the pixel resolution required to capture the

targeted displacement at the same accuracy level. For instance, one of the tests

gives an accuracy of 90% with a pixel resolution of 6 pixels per 0.1 inch using a

stationary camera. This means that to detect the motion of x inch, we need a pixel

resolution of 6 pixels per x inch to achieve the same accuracy.

3.4 Adjusting Results

So far, the inch displacements for the tags across the captured video are stored

in a CSV file. No further analysis or adjustments must be performed on the

data captured by the stationary cameras. However, the UAV motion needs to be

removed for the data captured by UAVs to get the truly estimated displacements by
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the ArUco detector. We do that in two approaches. The first way is by subtracting

the drone’s motion from the moving tag’s displacements. The drone motions

are captured and reported by the Vicon system. As the drone was moving, the

movements of the drone were reflected on the stationary tag. Thus, the second way

is subtracting the stationary tag displacements from the moving tag displacements.

In later sections, we present and discuss the results of each approach.

3.5 Ground Truth Comparison

For pipeline evaluation, the estimated inch displacements are compared with the

ground truth captured for each experiment. Although the approach for capturing

ground truth differs per experiment, ground truth data is always captured at a

higher frequency than the results. Thus, we make use of a downsampling method

to lower the sampling rate to match the captured data’s rate. Leveraging the

python-pandas-resampling approach reduces the frequency rate of the ground

truth to the desired rate to fit the testing data. This method is utilized for frequency

conversion and resampling of time series data. In addition, this method applies

a lowpass filter to the input sequence to prevent aliasing during resampling.

The same downsampling technique is utilized to downsample the UAV’s motion

before subtracting it from the moving tag displacements. Due to timing errors,

further adjustments such as shifting or stretching are performed on the data to

achieve better results. After aligning the data, we get the accuracy of the estimated

displacements with the ground truth by calculating the data’s root mean square

error (RMSE), 3.2. RMSE was utilized as the metric reference for this research and

prior work as we are interested to see the frequency distribution variance of error

magnitudes. Later, we discuss the different ways of obtaining the ground truth in
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each experiment.

RMSE =

√
Σ
(yest − yre f

N

)2
(3.2)
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Chapter 4

Stationary Testing

This chapter answers Research Questions 2 and 3 in section 1.2: ”While fiducial

marker systems have proven successful in tracking and localization of several

robotics applications, how accurate are they in tracking such minimal displace-

ments?” and ”What pixel-to-inch ratio is required to accurately detect tags with

small displacements? Does the camera platform’s resolution, zoom level, dis-

tance from the target, and motion on the platform affect the robustness of the

estimation?” by experimenting with the ArUco pipeline with stationary cameras.

Additionally, this experiment includes different studies at different distances and

zoom levels. The stationary experimentations in this chapter were conducted with

markers with a size of 2.5 inches. It is called stationary experiments, as they were

conducted with stationary camera platforms.

Before starting the stationary testing, a preliminary investigation was conducted

to adjust the ArUco pipeline on the Blackfly camera with manual tag movements.

The setup is shown in Figure 4.1. We utilized a Lathe machine to stick a marker

on and moved it manually while capturing the displacements with the Blackfly

camera. A lathe machine was helpful as it gave a way to manually adjust the

tags with known displacements and see the reflection of these displacements in

the ArUco pipeline. This was done to finalize camera lens settings or modify any
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Figure 4.1: Trial experiments of the ArUco pipeline with manual tag movements

needed code in the ArUco ROS node by conducting any experiments.

This chapter is organized as follows: experimentation overview (4.1), experi-

mental setup (4.2), Very Close Test (4.3), Close Test (4.4), Far Test (4.5), and overall

conclusion (4.6).

4.1 Experimentation Overview

As the Stationary Experimentation’s goal is to imitate actual bridge deformations

and estimate them using the proposed pipeline. This experiment has three different

tests. Although the experimental setup is the same across all tests, each test has a

different distance between the target and the camera with a distinct zoom level.

These variations generate various pixel-to-inch ratios with different accuracies.

Each test is conducted with the Canon Camcorder and the Blackfly Camera. The
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Figure 4.2: Potentiometer data (ground truth) reported for the specimen displace-
ments

following subsection talks about the experimental setup. Figure A.1 shows a copy

of the experimentation sheet used for the experimentation day.

4.2 Experimental Setup

To imitate the dynamic movements of a truckload passing over a bridge, we deploy

a 220 kip actuator on a concrete rectangular specimen to perform a uniform stress

cross-section. The thickness of the specimen was about 8 inches at a 38-inch height

from the ground. The goal of the actuary is to exert a 12.00 kip force on the

specimen at a frequency of 1 Hz, causing the specimen to deform in the shape of a

sinusoidal wave. With a force of 12.00 kip exerted by the actuator on the specimen,

the resulting displacements were within 0.1 inch; see Figure 4.2.

These studies aim to capture and report the sinusoidal displacements resulting

from the actuator. For ground truth, a potentiometer sensor with a sample rate

of 50 is connected to the middle point of the specimen with the moving target

stuck on, as shown in Figure 4.3. In addition, a reference stationary tag is placed

in the field view of the cameras. The cameras are both placed at the same distance

from the target. However, since both cameras have different resolutions, they show

different pixel-to-inch ratios. Three tests are conducted for this experimentation:
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Figure 4.3: Experimentation setup for the Very Close Test

Very Close, Close, and Far. The Close and Very Close tests represent the targeted

pixel-to-inch ratios from close distances. However, the Far Test was to investigate

the minimal pixel resolution and report the RMSE. Figure 4.3 shows the setup

of an experiment for the Very Close Test. The marker placed on the specimen is

number 2, while the stationary marker is number 10.

4.3 Very Close Test

4.3.1 Overview

As shown in Figure 4.3, both cameras are placed 55 inches from the target. How-

ever, the Canon Camera is zoomed in 10 times with no zoom on the Blackfly

camera. Thus, there is more pixel resolution per 0.1 inch for the videos captured
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Figure 4.4: Very Close Test - Cameras field of view of tags (Left) Blackfly Camera
(Right) Canon Camera

by Canon. The Canon Camera had a pixel resolution of 38.1640 pixels per 0.1

inch, while the Blackfly had 8.5774 pixels per 0.1 inch. Figure 4.4 shows tags

in the field of view of both cameras. The testing duration was seven minutes of

moving the specimen.

4.3.2 Results

Utilizing the pipeline mentioned in Chapter 3, Table 4.1 shows the results of

running the Very Close Test of capturing 0.1 displacements using Blackfly and

Canon Cameras. These results were reported after postprocessing and aligning

the data. For comparison with the Canon Data, the ground truth data were

downsampled from 50 Hz to 30 Hz to match the 30 fps of the camera. For

comparison with the Blackfly data, the ground truth data were downsampled from

50 Hz to 26 Hz, as this is the ArUco real-time detection rate. The downsampling

was performed using the steps shown in section 3.5.
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Table 4.1: Results of Blackfly and Canon Cameras for the Very Close Test - Tag 2

(moving) Displacements

4.3.3 Discussion

Analyzing the video captured by the Canon has shown blurry detections of tags

at tracking times, which resulted from the camera auto-focus recalibration. This

blurriness has affected detection accuracy, hence displacement estimation (see

Figure 4.5). This blurriness did not happen for the ArUco online detection, as the

Blackfly had manual focusing. This caused the RMSE for both cameras to be the

same, even though one had more pixel resolution than the other. In an ideal case,

Canon would be expected to show better accuracy. In addition, the lower pixel

resolution for the Blackfly camera has compensated for the ArUco detection error.

To explain, we show the ArUco detection error in tracking the static tag 10 for

both cameras. Looking at Table 4.2, we see that the error rate for the Canon was

much lower (within 0.0650 inches). On the other hand, the detection error range

for detecting the static with the Blackfly was within 0.0030 inches. This shows that

having lower pixel resolution can sometimes be beneficial in compensating for the
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Figure 4.5: A frame of the Canon video showing that the ArUco detector is
detecting two markers (10 and 89) on the left even though there is only one marker.
This happens due to blurriness

ArUco detection error.

Table 4.2: Results of Blackfly and Canon Cameras for the Very Close Test - Tag 10

(static) Displacements

Overall, this pixel-to-inch ratio has shown remarkable results of 0.0054 inches
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Figure 4.6: Close Test - Cameras field of view of tags (Left) Blackfly Camera (Right)
Canon Camera

in RMSE for 7 minutes of tracking. This was about 94.6% accuracy. For the next

test, we decide to lower the pixel-to-inch ratio for two reasons: to further challenge

the detector and to avoid over-fitting problems. Having a lower pixel-to-inch ratio

can sometimes help compensate for the Aruco detection error.

4.4 Close Test

4.4.1 Overview

In this experiment, we adjust the camera’s distance from the target and the zoom

lens for the Canon to lower the pixel resolution. The camera’s distance to the

target was 70 inches with a zoom of 13x on the Canon. These adjustments yielded

a pixel resolution of 32.8298 pixels per 0.1 inch for the Canon. On the other hand,

the Blackfly had a pixel resolution of 6.0718 pixels per 0.1 inch. Figure 4.6 shows

both tags in the field view of the cameras. Lastly, we change the auto-focus of the

Canon to manual focus to avoid auto-focusing in the middle of the video.
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4.4.2 Results

The results for this test were conducted similarly to the Very Close Test with the

same downsampling rates. Table 4.3 shows the Canon and Blackfly estimation

results for capturing 0.1 inch displacements of the specimen.

Table 4.3: Results of Blackfly and Canon Cameras for the Close Test - Tag 2

(moving) Displacements

4.4.3 Discussion

Comparing the Canon results of this test to the previous one, we find that the RMSE

has improved to be 0.0043 inches, even with reduced pixel resolution. This raises

the pipeline’s overall accuracy by 1.1% to be 95.7%. This is because the blurriness

of auto-focusing has been eliminated. However, we find that things did not change

for the Blackfly data, as the change in pixel resolution was not significant (94.7%).

This test shows that the camera platform’s stability significantly influences the

overall accuracy of the system.
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Figure 4.7: Experimentation setup for the Far Test

4.5 Far Test

4.5.1 Overview

This test was conducted to examine the pipeline with a significantly low pixel

resolution of 1.0279 pixels per 0.1 inch for the Canon. And 1.6090 pixels per 0.1

inch for the Blackfly. These resolutions were achieved by placing both cameras 25

feet from the target without zooming. To be able to detect tags at such a distance,

both tags were swapped with larger tags with a size of 7.5 inches. Figure 4.7 shows

the experimental setup for this test. Such scenarios could take place if the camera

platform is farther away from the bridge than in previous tests.
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4.5.2 Results and Discussion

The results in Table 4.4 are produced using the same steps as the previous two tests.

As expected, the RMSE for the Canon and the Blackfly has increased to be 0.0708

and 0.0146, respectively. This shows that accuracies for Canon and Blackfly are

29.2% and 85.4%, respectively. For this test, the Blackfly outperformed the Canon

as it had a higher pixel resolution per 0.1 inch. This shows that pixel resolution

is vital to achieving high accuracy for estimating displacements. At such long

distances, It is also demonstrated that slightly higher pixel resolution, as for the

Blackfly, can significantly enhance the accuracy of the estimation.

Table 4.4: Results of Blackfly and Canon Cameras for the Far Test - Tag 2 (moving)
Displacements

4.6 Overall Conclusion

This chapter shows how accurate the ArUco detector is in estimating bridge-like

displacements. We deploy the pipeline to test displacements captured by stationary
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Table 4.5: RMSE values summary for all stationary tests

cameras. The Stationary Test was conducted to mock bridge deformation in the

lab using an Actuator and concrete specimen. The ArUco detection has shown

remarkable results through all the performed tests. However, the Close Test

showed the best results for both cameras, with an accuracy of 95.7% for the Canon

and 94.7% for the Blackfly. Eliminating blurriness by changing the Canon to

manual focus has improved the estimation accuracy by 1.1%, even with lower pixel

resolution than the Very Close Test. As shown in Table 4.4, the Close Test had

32.8298 pixels per 0.1 inch for the Canon and 6.0718 pixels per 0.1 inch for the

Blackfly.

Additionally. the Far test has shown the effect of pixel resolution, distance, and

zoom level on the accuracy of estimating the structure’s displacements. The Far

Test had the lowest accuracy results dues to its low pixel resolution (≈ 1 pixel) per

0.1 inches. However, the pipeline still showed excellent results with the Blackfly

camera at such a distance from the target (25 feet).
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Lastly, to answer the proposed research question 2, the ArUco tags has shown

success in measuring small displacements, using a stationary camera platform,

with an accuracy above 94%. For research question 3, this study teaches us that

we need at least 32.8298 pixels per 0.1 inch to estimate small displacements with a

targeted accuracy above 94%. More pixel resolution per inch is required to achieve

the best estimation accuracy under the condition of stable video conditions (no

blurriness). This can be achieved by adjusting the distance to the target and zoom

level.
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Chapter 5

Drone Testing

This chapter answers Research Questions 1 and 4 in section 1.2: “Can we develop

a proof-of-concept pipeline that utilizes state-of-the-art computer vision tech-

niques to track bridge displacements captured from camera-equipped drones?”

and “How can the drone’s motion noise be removed to reach the true estimated

displacement of the tag?” by deploying the proposed pipeline to analyze videos

of displacements captured by a camera-equipped drone. Additionally, we propose

two ways to eliminate the drone’s noise from the estimated displacements. The

first way is to utilize the reference stationary tag in the scene. The second way

is by using the drone’s positions of motion. Before deciding on the drone choice,

we compare two drones with different capabilities to see the effect of the drone’s

resolution, zoom level, and stability.

For this chapter, we present two studies. The first study compares the DJI

Mavic Pro and the DJI Mavic Air 2 (Figure 3.4) in detecting a stationary tag. Each

drone has different capabilities regarding zoom level, resolution, focusing, and

stabilization. After showing that the Mavic Air 2 is more robust. We deploy it in

a second study to detect the various tag displacements at different distances and

zoom levels. The experiments in this chapter are all conducted in a controlled lab

environment.
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This chapter is organized into two main sections: Drones Comparison (5.1),

and Detecting Displacements using Mavic Air 2 (5.2). The later section is split into

the following subsections: Experimental Setup (5.2.1), 0.5-inch Sinusoidal Testing

(5.2.2), 1.0-inch Sinusoidal Testing (5.2.3), 2.0-inch Sinusoidal Testing (5.2.4), and

Stepping Testing (5.2.5). Finally, we present the overall conclusion of these studies

(5.2.6).

5.1 Drones Comparison

This study compares the DJI Mavic Pro and the DJI Mavic Air 2 drones in detecting

a static tag placed in the camera’s field of view. This study aims to show the

effect of the stability of the camera-equipped drone on detecting the tag, hence

estimating the displacement. The drone’s stability will minimize the drone’s noise

incorporated in the tag displacement estimation. This can facilitate the approach

of eliminating the drone’s noise using the drone’s motion.

Each drone has different capabilities in capturing and stability hardening. The

DJI Mavic Air 2 has the option of doubling the zoom lens at 4K video capturing.

On the other hand, the DJI Mavic Pro does not have a zoom option at such a

resolution. As we learned the importance of increasing the pixel resolution per

inch in the studies of Chapter 4, the zoom option in Air 2 will increase the accuracy

of the system.

In addition, the DJI Mavic Air 2 has an additional option of stabilizing the

camera’s gimbal by focusing on a specific area to minimize. This aids the drone

in hovering within the same space. This is not available in the Mavic Pro. Lastly,

the DJI Mavic Pro had recent crashes that affected the drone’s overall calibration,

which could affect its stability. On the other hand, the Mavic Air 2 has never
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Option DJI Mavic Pro DJI Mavic Air 2

4K resolution Available Available
Zoom at 4K resolution NA Available (2x)

Gimbal stabilization NA Available
Platform stabilization crashed multiple times no crashes

Table 5.1: Options available in the DJI MAVIC Air 2 vs the DJI Mavic Pro

crashed. Table 5.1 compares the options offered by each drone.

Results This experiment has two studies. In the first study, we set the distance

to the tag at 2 ft. We place a static tag on the field of view of each drone. Then,

we take two videos for each drone: one with a 2x zoom and another at 1x zoom.

We repeat that in the second study but at a 6 ft distance from the target. For this

experiment, we set the altitude for the drone and leave the remote’s throttle for

the drone to hold its position. Both drones are at an altitude of 4 ft. We capture

a video of each study for 25 seconds and enter it through our pipeline. We then

compare the range of the movements and the RMSE for each drone as shown in

Table 5.2.

Analyzing Table 5.2, at the 2 ft distance, the Mavic Air 2 has shown better

results at 1x zoom. In addition, it delivers significantly better results at 2x zoom,

which is not available in the Mavic Pro. We also see that the range of motion of the

drone decreases as the zoom level is lowered. However, both tests show a lower

range of motion for the DJI Mavic Air 2 than for the Mavic Pro. This indicates that

the Air 2 is more stable and has better accuracy than the Pro.

At the 6 ft distance, the Mavic Air 2 has shown slightly better results (10%

less) than the Mavic Pro. In addition, the Mavic Air 2 appeared to be more stable

than the Mavic Pro with a lower range of motion. Lastly, the Mavic Air 2 has the
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DJI Mavic Air 2 DJI Mavic Pro

Distance from tag (ft) 2 ft 2 ft
Resolution / Zoom Level 4K / 2x zoom -
Range of motion (inches) 2.853 -

RMSE (inches) 0.1611 -

Distance from tag (ft) 2 ft 2 ft
Resolution / Zoom Level 4K / 1x zoom 4K / 1x zoom
Range of motion (inches) 1.2824 3.0772

RMSE (inches) 0.8259 1.2877

Distance from tag (ft) 6 ft 6 ft
Resolution / Zoom Level 4K / 2x zoom -
Range of motion (inches) 2.0551 -

RMSE (inches) 1.3031 -

Distance from tag (ft) 6 ft 6 ft
Resolution / Zoom Level 4K / 1x zoom 4K / 1x zoom
Range of motion (inches) 2.032 2.5911

RMSE (inches) 1.4613 1.5762

Table 5.2: RMSE and Range of motion results for each drone on capturing a static
tag

additional option to have better pixel resolution, which outputs a lower RMSE.

Conclusion Conducting this experiment, we conclude that the Mavic Air 2 has

better stability in the air than Mavic Pro. This is shown through the lower range of

motion it generates while hovering. This impacts the RMSE of the captured static

tag to be lower for the videos captured by the Mavic Air 2 drone. In addition, The

Mavic Air 2 has the advantage of achieving higher pixel resolution through its

2x zoom lens. While this is not available for the Mavic Pro, this has significantly

improved the RMSE. Based on these conclusions, we deploy the Mavic Air 2 in the

following experiment to capture displacements of a moving tag.
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5.2 Detecting Displacements using Mavic Air 2

This experiment aims to evaluate the ArUco’s pipeline on videos captured by

a drone. This experiment deploys the Mavic Air 2 drone to detect an ArUco

tag (target) moving at different displacements. In addition, the drone hovers

at varying distances from the target. Moreover, this experiment compares two

approaches to eliminate the noise in detection caused by the drone’s motion. One

approach uses a static reference tag placed in the camera’s field of view to reflect

the drone’s movements. We then subtract the reflection of the noise from the

target’s displacements estimations. The other approach uses the raw drone’s

motion and removes it from the target’s estimations. These two approaches are

different as the first one includes the estimation error by the ArUco pipeline while

the other doesn’t. In addition, the raw drone’s motion is relative to the space,

while the static tag’s pixel position is relative to the moving tag.

5.2.1 Experimental Setup

Unlike previous experiments in Chapter 4, the tag displacements for this experi-

ment are all performed manually using an Arbor Press. As shown in Figure 5.1,

the target tag (tag 2) is placed on an Arbor Press. Such a tool is easy to move in

specific displacements. The static tag (tag 10) is placed close to the moving tag.

The Air 2 drone hovers at different distances to capture the various displacements.

We attain the ground truth movements for the Arbor Press and the drone positions

using the Vicon motion-capturing system. We place Vicon markers on the drone,

as shown in Figure 3.4 (right), and on the Arbor Press, as shown in Figure 5.1. The

Vicon cameras track those markers in the region. The Vicon system has millimeter

accuracy for position estimation.
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Figure 5.1: Experimentation setup for estimating tag displacement using drones
videos

This experiment tests two main types of movements: sinusoidal and stepping.

The sinusoidal test is conducted for three different displacements: 0.5-inch, 1.0-

inch, and 2.0-inch. The drone captures each displacement at two different distances

ranges. Each distance range has two tests, one with 2x zoom and another with 1x

zoom. The stepping test has also been captured in the same fashion of distances

and zoom levels. The stepping test goes from 0 to 4 inches in 0.5-inch increments.

These variations of distances and zoom levels will cause different pixel resolutions

per inch. We perform different displacements as this will indicate the accuracy of

the ArUco pipeline in estimating different displacements from drone videos. In

addition, this will provide help in determining the pixel-to-inch ratio required. For

this experiment, all videos are captured at 4K resolution. In addition, we utilize

the gimbal stabilization option by focusing the area of interest on the static tag to
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minimize the drone’s noise.

The following tests are for estimating tag displacements in sinusoidal and

stepping movements. For each test, we report and compare the RMSE of the

displacement estimation of the pipeline with the two approaches of eliminating

the drone’s noise. We report the pixel-to-inch ratio for each distance range. There

are mainly two distance ranges from the target to the drone: 1.8-2.5 feet and 5-6

feet. We capture the displacement for each range with 2x zoom and 1x zoom.

5.2.2 0.5-inch Sinusoidal Test

Analyzing Table 5.3, we see that the table compares the two previously mentioned

approaches to eliminating the drone’s motion noise from the estimations of the

displacements. The left column shows the estimation after eliminating the drone’s

movements reported by Vicon. The right column shows the estimation after

removing the static tag 10 estimations. We compare the results to the ground truth

obtained by Vicon and report the RMSE.

We can see that the lowest RMSE reported is for test a2 using the static tag

approach, which is 0.1903. This gives 61.94% as the best accuracy for this test. To

achieve such accuracy, the drone was about 2 feet from the target resulting in a

pixel resolution of 112 pixels per 0.5 inch. This test reported better results than the

a1 test, which has more pixel resolution. The a1 test has an accuracy of 58.52%,

which is 3.42% less.

The drone gets unstable as it gets closer to objects due to the obstacle avoidance

feature in the drone. Interestingly, the worst overall RMSE was for the a2 test using

the raw drone’s movements approach. This is interesting as it shows how different

the two methods of eliminating the drone’s noise are. The a2 test had the worst

RMSE using the drone’s motion approach as the drone for this test was the least
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Figure 5.2: 0.5-inch Sinusoidal Test - Mavic Air 2 Inch Positions in Z direction

stable with a motion range of 2.2 inches, see Figure 5.2. The drone was most stable

in the b2 test, which has the best RMSE using this approach with a range of 0.7

inches. This is because the drone was further from the target in b2 than in a2.

Throughout this test, the tag 10 approach always reports better RMSE values

than the drone’s motion approach. The drone’s motion did not report accurate

results for several reasons:

1. The drone’s motion is different from the camera’s motion due to the stabi-

lization feature of the camera’s gimbal.

2. Using the tag 10 approach includes the ArUco estimation error, which might

positively compensate for the drone’s motion error.

3. The drone gets unstable as it gets closer to objects due to the obstacle

avoidance feature.
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Figure 5.3: 1.0-inch Sinusoidal Test - Mavic Air 2 Inch Positions in Z direction

5.2.3 1.0-inch Sinusoidal Test

For the 1.0-inch sinusoidal test, the a1 test was not reported as tags were constantly

getting out of the frame and hence were not detected by the ArUco pipeline. The

lowest reported RMSE (0.2581) was for the a2 test using the tag 10 approach, see

Table 5.4. This achieves an accuracy of 74.19%. This accuracy was better than the

0.5-inch test as this a2 has a better pixel resolution of 190 pixels per inch.

Similar to the previous test, the a2 test had the worst RMSE using the drone’s

motion approach as the drone for this test was the least stable with a motion range

of 2.2 inches. Not only the range, but the drone movements within this range are

also unstable, as seen in Figure 5.3. Again, the drone was most stable in the b2 test,

which has the best RMSE using this approach with a range of ≈ 0.7 inches.

For this test, using the tag 10 approach to eliminate the drone’s noise has shown

better results across all sub-tests. However, for b1 and b2 tests, the difference gap

between the RMSEs of the two approaches is less than the gap for the closer tests

in a1 and a2. This is because the drone is further from the target in the b1 and b2

tests and hence more stable.
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5.2.4 2.0-inch Sinusoidal Test

This test has shown the best accuracy so far at 90.1% for the a2 test using the

tag 10 approach for noise removal; see Table 5.5. The pixel resolution was 264

pixels per 2.0 inches. This means that in order to achieve the same accuracy for

other displacements, we need to achieve a pixel resolution of around 264 pixels.

For instance, if we are capturing a displacement of 0.5 inches, we need a pixel

resolution of 264 pixels per 0.5 inches in order to get a 90% accuracy. Surprisingly,

the a1 test did not report a better accuracy even though it had high pixel resolution.

However, this shows that more pixel accuracy could sometimes be harmful as it

will magnify the ArUco estimation error itself. While less pixel resolution sounds

worse, it could be better to cover the estimation error resulting from the ArUco

pipeline.

Additionally, this test confirms that using the static tag approach to eliminate

the drone’s noise shows better results than using the drone’s raw data. Using the

drone’s raw movement positions has reported higher RMSEs than when using the

static tag approach.

Lastly, the drone for this test also gets stable as it gets away from the target.

Thus, the gap RMSE difference gap between the two approaches decreases for the

b1 and b2 tests.
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5.2.5 Stepping Testing

For this test, the tag moves in a stepping function instead of a sinusoidal. The tag

goes from 0 inches to 4 inches in 0.5 inches increments. This test aims to show

if the movement shapes of the tag affect the estimation accuracy. As shown in

Table 5.6, the static tag approach still shows better results than using the drone’s

motion, even though the distance from the target has increased. This test shows

that even though utilizing the drone’s raw movement has shown better results

than previous tests as the drone is further away from the target, the static tag

approach still shows better results overall. The lowest RMSE reported is 0.0481 for

a1. This offers an accuracy of 90.38%. While this accuracy is close to that reported

for the 2.0-inch test, the pixel resolution is much lower with 108 pixels instead of

264 pixel.

These results show that the type of movements could report different results

for using a static tag. This is because a stepping function is more stable in motion

than a sinusoidal one. Thus, it was easier for the ArUco pipeline to estimate even

with lower pixel resolution. In addition, it would be better to use the static tag to

eliminate the drone’s noise.
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5.2.6 Conclusion

In conclusion, this experiment uses Mavic Air 2 drone to detect tag displacements

in sinusoidal and stepping movements. The sinusoidal tests had different tag

displacements of 0.5 inches, 1.0 inches, and 2.0 inches. The stepping function

was from 0 inches to 4 inches in 0.5-inch increments. We test two approaches to

eliminate the noise created by the drone’s movements. The first approach uses

the drone’s raw positions obtained from Vicon and subtracts it from the estimated

displacements to get the actual estimations. The second approach removes the

reflection of the drone’s noise on the static tag estimation from the moving tag.

Each test compares and reports the RMSE for the two methods. The ground truth

of the tag displacements is also obtained from Vicon.

While the stepping test had the smallest RMSE difference gap between the

two approaches, using the static tag to eliminate the drone’s noise has shown

lower RMSEs across all tests. This is because the drone’s motion is not a good

representation of the camera’s movements because of the gimbal stabilization. The

stepping function had better results than previous tests in using the drone’s raw

positions because the drone was further away from the target. Thus, the drone’s

motion was close to the camera’s motion. However, it was still not as good as

using the static tag. In addition, the reflection of the drone’s noise on the static tag

accounts for the estimation error in the Aruco pipeline.

To answer research question 1, these tests also show the significance of pixel

resolution in capturing tag displacements. To capture tag displacements in the

sinusoidal form, the experiments show that there needs to be about 264 pixel

per displacement to get an accuracy of 90%. For instance, to capture a 0.5-inch

displacement, one would need 264 pixel per 0.5 inches to achieve an accuracy of
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about 90%. This pixel resolution can be achieved by adjusting the zoom, distance

from the target, and camera resolution. In addition, these tests show the importance

of drone stability in capturing displacements.

To answer research question 4, the drone’s motion noise can be removed by

utilizing a static reference tag as a reflection of the drone’s motion and subtracting

the estimated displacements of this tag from the moving tag displacements.

These experiments show that the type of movement of the tag could affect

the estimation accuracy. For instance, the pixel resolution required to get a 90%

accuracy for the stepping test was much less (108 pixels) than the sinusoidal. This

is because the stepping test has a more stable movement to track in the ArUco

pipeline than the sinusoidal. The stepping function has a waiting period after

each increment until the next increment. This wait helps the ArUco detector to

estimate the pixel position and hence get a correct position even with a lower pixel

resolution.
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Chapter 6

Discussion & Conclusions

This chapter summarizes the discussions presented in the previous chapters and the

conclusions derived from the conducted experiments in section 6.1. Additionally,

It discusses the assumptions included in building and utilizing the pipeline, along

with its limitations, in section 6.2. We also present the final conclusions of this

work in section 6.3. Lastly, section 6.4 offers the future direction of this future and

its impact.

6.1 Discussion

This section reiterates the proposed research questions and how chapters 3, 4, and

5 attempted to answer them. Each of the proposed research questions is presented

in a subsection along with the related findings and discussion.

6.1.1 Can we develop a proof-of-concept pipeline that utilizes state-of-the-art

computer vision techniques to track bridge displacements captured from

camera-equipped drones?

Findings: We were able to develop a proof-of-concept pipeline that is able to

analyze captured videos of moving tags and return the estimated tag displacements
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in inches. This pipeline was then utilized to analyze videos captured by a camera-

equipped drone (Mavic Air 2).

Discussion: Chapter 3 was written to answer this research question by developing

the ArUco pipeline to be used to estimate displacements using ArUco tags. Chapter

3 analyzes the different phases of the pipeline and the tools utilized for each

phase. The proposed ArUco pipeline is divided into five main components:

capturing videos of the area of interest, analyzing the captured videos, getting

pixel displacement values, converting from pixels to inches, adjusting the results,

and ground truth comparison. This pipeline utilized ArUco tags and detectors to

estimate the displacements of a targeted area by placing an ArUco tag on it. The

proposed pipeline was tested with stationary (Chapter 4) and dynamic (Chapter 5)

camera platforms (drones).

6.1.2 While fiducial marker systems have proven successful in tracking and

localization of several robotics applications, how accurate are they in

tracking such minimal displacements?

Findings: The lowest reported RMSE was 0.0043 for the Close Test of the station-

ary experiments using the Canon Camcorder. This test gave the highest accuracy

of 95.7%. For the drone experiments, the lowest RMSE within the sinusoidal tests

was 0.1971 for the 2.0-inch test. This RMSE gave an accuracy of 90.1%.

Discussion: To answer this question, Chapter 4 conducts three experiments

to capture videos of an ArUco tag placed on a concrete specimen. The three

conducted experiments are: Very Close, Close, and Far. Each experiment had

a video recording of 7 minutes. An actuator exerted a force on the specimen
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generating 0.1-inch displacements. Two stationary camera platforms (Canon

Camcorder - Blackfly camera) were used to capture videos of the moving tag.

These videos were compared to the ground truth through the pipeline, and the

RMSE was reported for each experiment. The highest RMSE reported was 0.0708

for the Far test using the Canon Camcorder. This gave an accuracy of 29.2%. On

the other hand, the lowest RMSE was 0.0043 for the Close Test with an accuracy

of 95.7%.

Chapter 5 deploys the Mavic Air 2 drone to conduct three experiments of

capturing different tag displacements in sinusoidal movements. The three si-

nusoidal experiments are performed for three different displacements: 0.5-inch,

1.0-inch, and 2.0-inch. An additional experiment was conducted to capture the tag

displacements in stepping movements from 0 to 4 inches in 0.5-inch increments.

Each experiment has four tests with different pixel resolutions. The highest RMSE

reported was 0.325 for the 0.5-inch. This gave an accuracy of 35%. On the other

hand, the lowest RMSE was 0.1971 for the 2.0-inch Test with an accuracy of 90.1%.

6.1.3 What pixel-to-inch ratio is required to accurately detect tags with small

displacements? Does the camera platform’s resolution, zoom level, dis-

tance from the target, and motion on the platform affect the robustness

of the estimation?

Findings: To reach an accuracy of 95.7% using a stationary camera, the pixel

resolution needed is 32.8298 pixels per 0.1 inch. Using Mavic Air 2, the pixel-to-

inch ratio needed is 264 pixels per 2.0 inches to get an accuracy of 90.1%.

Discussion: To answer this question, each experiment in chapters 4 and 5 had a

different pixel resolution per inch to show the impact of pixel resolution on the
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overall accuracy. The pixel-to-inch resolution resulted from the camera’s distance

from the target and the zoom level. These experiments showed that there are

several factors to impact the resulting accuracy. These factors are the blurriness of

the lens, pixel resolution per inch, and camera resolution.

In addition, Chapter 5 conducts a comparison between two drones with differ-

ent capabilities to capture the displacements of a static tag. These two drones are

the Mavic Pro and the Mavic Air 2. We compare the estimation errors resulting

from the videos captured by both drones. This is done by entering the videos from

both drones into the ArUco pipeline. The Mavic Air 2 outperforms the Mavic Pro

in terms of zoom level, stability (a small range of motion while hovering), and

camera resolution.

6.1.4 How can the drone’s motion noise be removed to reach the true estimated

displacement of the tag?

Findings: We find that the best way to remove the estimation noise created by

the drone’s motion is by utilizing a static reference tag in the scene. Then, subtract

the displacements estimation of the static tag from the estimation of the moving

tag.

Discussion: To answer this question, Chapter 5 proposes two approaches to

eliminate the drone’s noise. The first approach removes the drone’s raw motion

from the ArUco estimation. The second approach utilizes a stationary tag (tag 10)

placed in the camera’s field of view to reflect the drone’s noise. We compare the two

approaches for each experiment and report the RMSE values. All experiments show

that the second approach has outperformed the first approach in displacement

estimation. The lowest RMSE within the sinusoidal tests was 0.1971 for the 2.0-
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inch test. This RMSE gave an accuracy of 90.1% using the second approach of the

stationary tag with a pixel resolution of 264 pixels per 2.0 inches. Throughout

this test, the tag 10 approach always reports better RMSE values than the drone’s

raw motion approach. The drone’s raw motion did not report accurate results for

several reasons:

1. The drone’s motion is different from the camera’s motion due to the stabi-

lization feature of the camera’s gimbal.

2. Using the tag 10 approach includes the ArUco estimation error, which might

positively compensate for the drone’s motion error.

3. The drone gets unstable as it gets closer to objects due to the obstacle

avoidance feature.

6.2 Assumptions & Limitations

Although this work has shown progress over some related work in utilizing

state-of-the-art technologies, several assumptions were made, and considerable

limitations were discovered along the way. We go over some of these notes in this

list:

1. Tags utilized in this work must be placed on the area of interest. This can be

challenging in remote bridge sites. As the process is simply sticking the tag

on the bridge, clever approaches could be followed. However, there is the

step of placing a target in the scene.

2. The different light conditions affect the ArUco tag detection system. Oc-

clusion due to light conditions could be a roadblock in several scenarios.

However, this could be tackled with the trade of lower detection frequency.
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3. We assume that no challenges will be faced using a stationary camera when

conducting experiments outdoors. However, when the pipeline was briefly

tried outdoors using the Canon Camcorder, several challenges were found.

For instance, stepping around the stationary camera while placed in an

uneven space will affect the camera’s stability and hence the estimation

accuracy. Additionally, rain and wind might affect the camera’s stability

directly on indirectly. As shown in Figure 6.1, the umbrella tied to the camera

was moving due to the wind which affected the camera’s stability. Lack of

accurate ground truth can also be a challenge when reporting the RMSE of

the proposed pipeline outdoors. These challenges all led to an unsuccessful

experiment.

Figure 6.1: An outdoor setup for testing the proposed pipeline

4. As shown in Chapter 5, a stationary tag needs to be placed in the scene to

eliminate the drone’s noise. This extra step is not always easy to achieve if

the bridge is remotely located. As shown in Figure 6.1, there is no static place
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in the scene to hang a stationary tag on. Although a way around it would be

to locate a stationary number of pixels in the video and use it as a reference,

this adds an extra step to the pipeline.

5. We assume we can use the Mavic Air 2 for all applications. However, this

drone might not always be used for security purposes.

6. As the drone experiments were conducted indoors, the drone stability was

excellent. However, for outdoor testing with wind currents, the drone’s

stability will differ from indoor experiments.

6.3 Conclusions

A novel proof-of-concept pipeline was proposed to utilize bridge displacements

using ArUco tags. The pipeline was successfully developed, tested, and showed

promise using stationary and dynamic (drone) camera platforms. Stationary

tests consisted of three experiments, each with two stationary camera platforms.

Dynamic experiments had a total of 16 tests. These experiments exhibit the

pipeline robustness and ability to achieve accuracy of 95.7% and 90.1% using a

Canon camcorder and a Mavic Air 2, respectively. The pixel resolution for the

stationary test was 32.8298 pixels per 0.1 inch. The pixel resolution for the drone

test was 264 pixels per 2.0 inches. These experiments ensure the significance of

high pixel resolution per the targeted displacement, stability of the platform, and

camera resolution. However, it is important not to have a higher pixel resolution

than required, as this might magnify the error estimation caused by the ArUco

pipeline. It has been proven empirically that using a reference tag is more robust

than using the drone’s raw motion to eliminate drone noise. One of the main

reasons is that the drone’s motion is different from the camera’s motion due to
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the stabilization feature of the camera’s gimbal. Additionally, using the tag 10

approach includes the ArUco estimation error, which might positively compensate

for the drone’s motion error. Lastly, the obstacle avoidance feature makes the

drone unstable as it gets closer to objects.

In conclusion, the key contributions of this work are:

1. Development of a novel pipeline leveraging the state-of-the-art ArUco fiducial

marker system to measure bridge displacements in videos captured by

stationary camera platforms as well as camera-equipped UAVs. This pipeline

returns the bridge displacements in inches to compare with ground truth

with accuracy of 95.7% using a stationary camera and 90.1% using a camera-

equipped drone.

2. Laboratory experiments and results to demonstrate the accuracy level of

estimating displacements by stationary cameras and drones. These studies

include the effect of zoom level, camera resolution, and the distance to the

target on the pipeline’s accuracy. In addition, these studies deliver the pixel-

to-inch ratio required to get the accuracy level needed to capture the targeted

displacement.

3. Development of an approach compensating for UAV’s motion to accurately

estimate the targeted area’s displacements using a static reference tag. This

development is a result of a comparison study conducted to compare two

different techniques to clear the noise created by the UAV’s motions and

vibrations.
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6.4 Future Work

As this research tested ArUco tags in detecting small displacements as a state-of-

the-art localization method, it indicates what to expect as the potential of using

the targetless computer vision algorithms to detect small displacements. Moving

forward, the use of computer vision in estimating bridge displacements using

camera-equipped drones can be further improved. A targetless solution would be

the goal of tracking bridge features without relying on reference points, such as

laser points. This will allow for a more instant estimation without any preliminary

steps to prepare the targeted area. In addition, such a solution will not face

the same occlusion problem caused by the lighting conditions. However, high

pixel resolution will be required for such a platform to report low RMSE values.

Moreover, adding a fully automated pipeline to track outstanding features of

the bridge and report the displacements online would be an ideal solution for

estimating displacements.
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cation of full-field vibration modes and large rigid-body motion of output-only

structures from digital video measurements,” Engineering Structures, vol. 207,

p. 110183, 2020. 2.3

[51] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based

video motion processing,” ACM Transactions on Graphics (TOG), vol. 32, no. 4,

pp. 1–10, 2013. 2.3

[52] J. G. Chen, N. Wadhwa, Y.-J. Cha, F. Durand, W. T. Freeman, and O. Buyukoz-

turk, “Modal identification of simple structures with high-speed video using

motion magnification,” Journal of Sound and Vibration, vol. 345, pp. 58–71, 2015.

2.3

[53] H. Yoon, H. Elanwar, H. Choi, M. Golparvar-Fard, and B. F. Spencer Jr,

“Target-free approach for vision-based structural system identification using

consumer-grade cameras,” Structural Control and Health Monitoring, vol. 23,

no. 12, pp. 1405–1416, 2016. 2.3

[54] P. Garg, R. Nasimi, A. I. Ozdagli, S. Zhang, D. D. L. Mascarenas, M. Reda Taha,

and F. Moreu, “Measuring transverse displacements using unmanned aerial

systems laser doppler vibrometer (uas-ldv): Development and field valida-

tion,” Sensors, vol. 20, no. 21, p. 6051, 2020. 2.3

[55] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y.

Ng, et al., “Ros: an open-source robot operating system,” in ICRA workshop on

open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5. 3.1.1



75

[56] S. Tomar, “Converting video formats with ffmpeg,” Linux Journal, vol. 2006,

no. 146, p. 10, 2006. 3.2.1



76

Appendix A

Research Media:

A.1 Pipeline Experiments

Stationary Testing - Close Test:

https://youtu.be/i818gew7g6o

Drone Testing - 2.0 Sinusoidal Experiment:

https://youtu.be/SFM3tAFJ7C0

https://youtu.be/i818gew7g6o
https://youtu.be/SFM3tAFJ7C0
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Appendix B

Code Scripts:

B.1 ArUco Detector Bash Script

1 # !/ bin/bash

2

3 f o r f in ˜/ vid frames / * . png

4 do

5 echo ” Process ing $f f i l e . . . ”

6 # take a c t i o n on each f i l e . $ f s t o r e current f i l e name

7 ./ aruco −3 .1 .12/ build/ u t i l s /aruco simple ” $f ” >>

DJI 0092 a lone . csv

8 done

B.2 Code File for Drone Testing - 2.0 Sinusoidal test



Drone Testing - 2.0 Sinusoidal test

December 26, 2022

0.1 Import

[1]: import sys
print(sys.executable)
import math
import pandas as pd
import numpy as np
import bagpy
from bagpy import bagreader
import matplotlib.pyplot as plt
import plotly.express as px
import datetime
import time
from sklearn.metrics import mean_squared_error

/home/juba/.local/share/virtualenvs/juba-6MYV_K5R/bin/python

0.2 Vicon
[2]: vicon = bagreader('/home/juba/displacement tests/drone_tests/

↪mavic_air2_displacement_indoor_testing/vicon/test2.c2_2022-11-17-11-06-47.
↪bag')

[INFO] Data folder /home/juba/displacement tests/drone_tests/mavic_air2_displac
ement_indoor_testing/vicon/test2.c2_2022-11-17-11-06-47 already exists. Not
creating.

[3]: vicon.topic_table

[3]: Topics Types Message Count Frequency
0 /vicon/air2/air2 geometry_msgs/TransformStamped 13848 202.242345
1 vicon/tag2/tag2 geometry_msgs/TransformStamped 13848 201.697716

[4]: mavic_messages = vicon.message_by_topic(topic='/vicon/air2/air2')
tag2_messages = vicon.message_by_topic(topic='vicon/tag2/tag2')

[5]: mavic = pd.read_csv(mavic_messages)
tag2 = pd.read_csv(tag2_messages)

1



[6]: mavic['corrected_time'] = [datetime.datetime.fromtimestamp(x).strftime('%H:%M:
↪%S') for x in mavic['Time']]

tag2['corrected_time'] = [datetime.datetime.fromtimestamp(x).strftime('%H:%M:
↪%S') for x in tag2['Time']]

[7]: mavic = mavic.round(decimals = 4)
tag2 = tag2.round(decimals = 4)

[8]: mavic['displacement_meter'] = mavic['transform.translation.z'].max() -␣
↪mavic['transform.translation.z']

mavic['displacement_inch'] = (mavic['displacement_meter'] * 39.3701 * -1) + 0.
↪06319999999999992

tag2['displacement_meter'] = tag2['transform.translation.z'].max() -␣
↪tag2['transform.translation.z']

tag2['displacement_inch'] = tag2['displacement_meter'] * 39.3701

[9]: (mavic['displacement_meter'] * -1).min()

[9]: -0.06319999999999992

[10]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5 inch) - Tag2 Inch Positions in Z direction')
plt.xlabel('Time (epochs)')
plt.ylabel('Position (inches)')
plt.plot(tag2.index.values, tag2['displacement_inch'], color='green')

[10]: [<matplotlib.lines.Line2D at 0x7f6a288b5a30>]

[11]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5 inch) - Mavic Inch Positions in Z direction')
plt.xlabel('Time (epochs)')
plt.ylabel('Position (inches)')

2



plt.plot(mavic.index.values, mavic['displacement_inch'], color='green')

[11]: [<matplotlib.lines.Line2D at 0x7f6a28898be0>]

0.3 Drone
[12]: drone = pd.read_csv("/home/juba/displacement tests/drone_tests/

↪mavic_air2_displacement_indoor_testing/csv_files/DJI_0098 - DJI_0098.csv")

[13]: drone.shape

[13]: (4230, 9)

[14]: drone

[14]: tag top_left_coord_x top_left_coord_y top_right_coord_x \
0 10 1574.80 560.808 1908.26
1 10 1572.63 561.276 1905.87
2 10 1571.58 562.610 1904.64
3 10 1569.73 565.573 1902.54
4 10 1568.37 569.400 1901.36
… … … … …
4225 10 1619.01 713.323 1950.81
4226 2 2248.02 798.816 2578.38
4227 10 1618.34 713.494 1949.77
4228 2 2247.83 799.054 2577.79
4229 10 1617.93 713.425 1949.78

top_right_coord_y bottom_right_coord_x bottom_right_coord_y \
0 552.043 1917.06 886.461
1 552.216 1915.41 886.506
2 554.332 1914.18 887.734
3 556.671 1911.79 890.416
4 561.288 1910.95 893.726
… … … …

3



4225 704.258 1960.25 1036.520
4226 797.144 2577.68 1129.490
4227 705.125 1959.35 1036.900
4228 797.209 2577.40 1128.930
4229 705.212 1959.17 1036.890

bottom_left_coord_x bottom_left_coord_y
0 1585.21 895.411
1 1583.43 895.610
2 1582.88 897.719
3 1581.18 900.328
4 1580.12 904.056
… … …
4225 1629.70 1046.690
4226 2247.87 1128.810
4227 1628.44 1046.990
4228 2247.48 1127.830
4229 1628.54 1046.830

[4230 rows x 9 columns]

[15]: drone = drone[119:4080] #from second 4 to 1:08

[16]: drone.tag.value_counts()

[16]: 10 1951
2 1951
89 32
170 24
162 2
0 1
Name: tag, dtype: int64

[17]: drone.loc[drone['tag']==2].index[0]

[17]: 120

[18]: drone = drone[['tag', 'top_left_coord_x', 'top_left_coord_y',␣
↪'bottom_left_coord_x', 'bottom_left_coord_y']]

[19]: drone.tag.value_counts()

[19]: 10 1951
2 1951
89 32
170 24
162 2

4



0 1
Name: tag, dtype: int64

[20]: drone_tag2 = drone[drone["tag"] == 2].reset_index().drop(columns=['index'])
drone_tag10 = drone[drone["tag"] == 10].reset_index().drop(columns=['index'])

[21]: drone_tag2['displacement_pixel_y'] = drone_tag2['top_left_coord_y'].max() -␣
↪drone_tag2['top_left_coord_y']

px_list = []
displacement_of_target = 2
tag_size = 2.5
for index, row in drone_tag2.iterrows():

px_euclidean_dist = math.dist([row['top_left_coord_x'],␣
↪row['top_left_coord_y']], [row['bottom_left_coord_x'],␣
↪row['bottom_left_coord_y']])

px = (px_euclidean_dist * displacement_of_target) / tag_size
px_list.append(px)

drone_tag2['px_list'] = px_list
print(px_list[0:10])
drone_tag2['displacement_inch_y'] = ((drone_tag2['displacement_pixel_y'] *␣

↪displacement_of_target) / drone_tag2['px_list'])
drone_tag2 = drone_tag2.drop(['px_list'], axis=1)

[264.5186672326927, 264.22000048444477, 264.4056533725404, 264.05128834648775,
263.99812800427196, 264.3969017863863, 264.0896347482044, 264.6930670566193,
264.2157436774728, 263.79280194091723]

[22]: drone_tag10['displacement_pixel_y'] = drone_tag10['top_left_coord_y'].max() -␣
↪drone_tag10['top_left_coord_y']

px_list = []
displacement_of_target = 2
tag_size = 2.5
for index, row in drone_tag10.iterrows():

px_euclidean_dist = math.dist([row['top_left_coord_x'],␣
↪row['top_left_coord_y']], [row['bottom_left_coord_x'],␣
↪row['bottom_left_coord_y']])

px = (px_euclidean_dist * displacement_of_target) / tag_size
px_list.append(px)

drone_tag10['px_list'] = px_list
print(px_list[0:10])
drone_tag10['displacement_inch_y'] = ((drone_tag10['displacement_pixel_y'] *␣

↪displacement_of_target) / drone_tag10['px_list'])
drone_tag10 = drone_tag10.drop(['px_list'], axis=1)

[267.9975808320665, 267.7540960938599, 267.9548156536844, 267.92466375277957,
267.25753202901507, 267.3965550365973, 267.60407140221173, 267.50362174265985,
267.27532634165834, 267.4368777095634]
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[23]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (2 inch) - Tag 2 (moving) Inch Displacements␣

↪(Drone)')
plt.xlabel('frame')
plt.ylabel('Displacement (inch)')
plt.plot(drone_tag2.index.values, drone_tag2['displacement_inch_y'],␣

↪color='blue')

[23]: [<matplotlib.lines.Line2D at 0x7f6a28435d00>]

[24]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (2 inch) - Tag 10 (static) Inch Displacements␣

↪(Drone)')
plt.xlabel('frame')
plt.ylabel('Displacement (inch)')
plt.plot(drone_tag10.index.values, drone_tag10['displacement_inch_y'],␣

↪color='blue')

[24]: [<matplotlib.lines.Line2D at 0x7f6a283b99a0>]
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0.4 Tag2 detection minus Drone Vicon movements

[25]: mavic

[25]: Time header.seq header.stamp.secs header.stamp.nsecs \
0 1.668705e+09 880454 1668705369 408511171
1 1.668705e+09 880455 1668705369 413375300
2 1.668705e+09 880456 1668705369 418451141
3 1.668705e+09 880457 1668705369 423347992
4 1.668705e+09 880458 1668705369 428365845
… … … … …
13843 1.668705e+09 894297 1668705438 624199413
13844 1.668705e+09 894298 1668705438 629113220
13845 1.668705e+09 894299 1668705438 634266531
13846 1.668705e+09 894300 1668705438 639154165
13847 1.668705e+09 894301 1668705438 644133367

header.frame_id child_frame_id transform.translation.x \
0 /world vicon/air2/air2 1.3099
1 /world vicon/air2/air2 1.3099
2 /world vicon/air2/air2 1.3099
3 /world vicon/air2/air2 1.3100
4 /world vicon/air2/air2 1.3101
… … … …
13843 /world vicon/air2/air2 1.3238
13844 /world vicon/air2/air2 1.3236
13845 /world vicon/air2/air2 1.3235
13846 /world vicon/air2/air2 1.3234
13847 /world vicon/air2/air2 1.3232

transform.translation.y transform.translation.z transform.rotation.x \
0 0.9538 1.4023 -0.0114
1 0.9538 1.4022 -0.0113
2 0.9537 1.4022 -0.0121
3 0.9536 1.4023 -0.0147
4 0.9537 1.4023 -0.0141
… … … …
13843 0.9517 1.4392 -0.0134
13844 0.9518 1.4391 -0.0139
13845 0.9519 1.4391 -0.0153
13846 0.9520 1.4391 -0.0162
13847 0.9522 1.4391 -0.0156

transform.rotation.y transform.rotation.z transform.rotation.w \
0 0.0254 0.0128 0.9995
1 0.0245 0.0119 0.9996
2 0.0243 0.0116 0.9996
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3 0.0251 0.0137 0.9995
4 0.0238 0.0113 0.9996
… … … …
13843 0.0330 0.0271 0.9990
13844 0.0329 0.0252 0.9990
13845 0.0337 0.0251 0.9990
13846 0.0337 0.0238 0.9990
13847 0.0335 0.0227 0.9991

corrected_time displacement_meter displacement_inch
0 11:06:47 0.0603 -2.310817
1 11:06:47 0.0604 -2.314754
2 11:06:47 0.0604 -2.314754
3 11:06:47 0.0603 -2.310817
4 11:06:47 0.0603 -2.310817
… … … …
13843 11:07:57 0.0234 -0.858060
13844 11:07:57 0.0235 -0.861997
13845 11:07:57 0.0235 -0.861997
13846 11:07:57 0.0235 -0.861997
13847 11:07:57 0.0235 -0.861997

[13848 rows x 16 columns]

[26]: mavic.loc[mavic['corrected_time']=="11:06:47"].index

[26]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64')

[27]: mavic.loc[mavic['corrected_time']=="11:06:50"].index

[27]: Int64Index([412, 413, 414, 415, 416, 417, 418, 419, 420, 421,
…
602, 603, 604, 605, 606, 607, 608, 609, 610, 611],
dtype='int64', length=200)

[28]: mavic.loc[mavic['corrected_time']=="11:07:54"].index

[28]: Int64Index([13212, 13213, 13214, 13215, 13216, 13217, 13218, 13219, 13220,
13221,
…
13402, 13403, 13404, 13405, 13406, 13407, 13408, 13409, 13410,
13411],
dtype='int64', length=200)

[29]: #print(mavic.loc[[10000]])

[30]: #mavic[10000:]
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[31]: mavic_vicon = pd.DataFrame()
mavic_vicon = mavic[412:13411].reset_index().drop(columns=['index'])

detected_tag2 = pd.DataFrame()
detected_tag2 = drone_tag2

[32]: mavic_vicon

[32]: Time header.seq header.stamp.secs header.stamp.nsecs \
0 1.668705e+09 880866 1668705371 468516877
1 1.668705e+09 880867 1668705371 473439946
2 1.668705e+09 880868 1668705371 478482658
3 1.668705e+09 880869 1668705371 483391483
4 1.668705e+09 880870 1668705371 488490676
… … … … …
12994 1.668705e+09 893860 1668705436 439314416
12995 1.668705e+09 893861 1668705436 444317318
12996 1.668705e+09 893862 1668705436 449307145
12997 1.668705e+09 893863 1668705436 454350234
12998 1.668705e+09 893864 1668705436 459369901

header.frame_id child_frame_id transform.translation.x \
0 /world vicon/air2/air2 1.3400
1 /world vicon/air2/air2 1.3401
2 /world vicon/air2/air2 1.3402
3 /world vicon/air2/air2 1.3402
4 /world vicon/air2/air2 1.3403
… … … …
12994 /world vicon/air2/air2 1.3170
12995 /world vicon/air2/air2 1.3171
12996 /world vicon/air2/air2 1.3171
12997 /world vicon/air2/air2 1.3170
12998 /world vicon/air2/air2 1.3170

transform.translation.y transform.translation.z transform.rotation.x \
0 0.9510 1.4032 0.0038
1 0.9509 1.4033 0.0039
2 0.9510 1.4033 0.0062
3 0.9508 1.4036 0.0047
4 0.9507 1.4037 0.0053
… … … …
12994 0.9503 1.4443 -0.0324
12995 0.9503 1.4443 -0.0317
12996 0.9500 1.4442 -0.0327
12997 0.9503 1.4443 -0.0324
12998 0.9504 1.4442 -0.0318

9



transform.rotation.y transform.rotation.z transform.rotation.w \
0 0.0193 0.0403 0.9990
1 0.0196 0.0405 0.9990
2 0.0181 0.0395 0.9990
3 0.0207 0.0415 0.9989
4 0.0194 0.0405 0.9990
… … … …
12994 0.0188 0.0282 0.9989
12995 0.0191 0.0277 0.9989
12996 0.0190 0.0258 0.9990
12997 0.0198 0.0281 0.9989
12998 0.0188 0.0274 0.9989

corrected_time displacement_meter displacement_inch
0 11:06:50 0.0594 -2.275384
1 11:06:50 0.0593 -2.271447
2 11:06:50 0.0593 -2.271447
3 11:06:50 0.0590 -2.259636
4 11:06:50 0.0589 -2.255699
… … … …
12994 11:07:54 0.0183 -0.657273
12995 11:07:54 0.0183 -0.657273
12996 11:07:54 0.0184 -0.661210
12997 11:07:54 0.0183 -0.657273
12998 11:07:54 0.0184 -0.661210

[12999 rows x 16 columns]

[33]: detected_tag2['sec_num'] = detected_tag2.index // 30 + 1
mavic_vicon['sec_num'] = mavic_vicon.index // 202.242345 + 1

[34]: detected_tag2 = detected_tag2.assign(time=detected_tag2.groupby('sec_num').
↪cumcount())

[35]: print(detected_tag2.groupby(['time']).size())

time
0 66
1 65
2 65
3 65
4 65
5 65
6 65
7 65
8 65
9 65
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10 65
11 65
12 65
13 65
14 65
15 65
16 65
17 65
18 65
19 65
20 65
21 65
22 65
23 65
24 65
25 65
26 65
27 65
28 65
29 65
dtype: int64

[36]: detected_tag2.drop(detected_tag2.loc[detected_tag2['sec_num']==66].index,␣
↪inplace=True)

detected_tag2 = detected_tag2.dropna()
detected_tag2 = detected_tag2.reset_index().drop(columns=['index'])

[37]: print(detected_tag2.groupby(['time']).size())

time
0 65
1 65
2 65
3 65
4 65
5 65
6 65
7 65
8 65
9 65
10 65
11 65
12 65
13 65
14 65
15 65
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16 65
17 65
18 65
19 65
20 65
21 65
22 65
23 65
24 65
25 65
26 65
27 65
28 65
29 65
dtype: int64

[38]: # detected_tag2.loc[detected_tag2['sec_num']==58].index

[39]: # detected_tag2.drop(detected_tag2.index[1710:1890], inplace=True)
# detected_tag2 = detected_tag2.dropna()
# detected_tag2 = detected_tag2.reset_index().drop(columns=['index'])

[40]: detected_tag2.shape

[40]: (1950, 9)

[41]: detected_tag2

[41]: tag top_left_coord_x top_left_coord_y bottom_left_coord_x \
0 2 2271.54 519.506 2271.07
1 2 2270.60 522.100 2270.62
2 2 2269.78 524.172 2269.99
3 2 2268.65 526.775 2268.38
4 2 2267.17 530.332 2266.51
… … … … …
1945 2 2250.81 892.741 2253.00
1946 2 2255.00 901.000 2254.99
1947 2 2259.00 913.000 2257.64
1948 2 2262.00 925.000 2259.51
1949 2 2261.17 939.817 2261.13

bottom_left_coord_y displacement_pixel_y displacement_inch_y sec_num \
0 850.154 590.714 4.466331 1
1 852.375 588.120 4.451745 1
2 854.679 586.048 4.432946 1
3 856.839 583.445 4.419179 1
4 860.329 579.888 4.393122 1
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… … … … …
1945 1218.000 217.479 1.671545 65
1946 1227.780 209.220 1.600618 65
1947 1237.320 197.220 1.520244 65
1948 1251.150 185.220 1.419704 65
1949 1264.770 170.403 1.310982 65

time
0 0
1 1
2 2
3 3
4 4
… …
1945 25
1946 26
1947 27
1948 28
1949 29

[1950 rows x 9 columns]

[ ]:

[42]: #mavic_vicon = mavic_vicon.assign(time=mavic_vicon.groupby('sec_num').
↪cumcount())

[43]: #print(mavic_vicon.groupby(['time']).size())

[44]: mavic_vicon.shape

[44]: (12999, 17)

[45]: t = pd.to_timedelta(mavic_vicon.Time, unit='T')
s = mavic_vicon.set_index(t).groupby('sec_num').resample('1.9S').last().

↪reset_index(drop=True)
s = s.assign(time=s.groupby('sec_num').cumcount())
mavic_vicon = s

[46]: print(mavic_vicon.groupby(['time']).size())

time
0.0 65
1.0 65
2.0 65
3.0 65
4.0 65
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5.0 65
6.0 65
7.0 65
8.0 65
9.0 64
10.0 64
11.0 64
12.0 64
13.0 64
14.0 64
15.0 64
16.0 64
17.0 64
18.0 64
19.0 64
20.0 64
21.0 64
22.0 64
23.0 64
24.0 64
25.0 64
26.0 64
27.0 64
28.0 64
29.0 64
30.0 63
31.0 60
32.0 5
dtype: int64

[47]: after = mavic_vicon.groupby('sec_num').size()
after[after < 30]

[47]: sec_num
65.0 9
dtype: int64

[48]: mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==30.0].index, inplace=True)
mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==31.0].index, inplace=True)
mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==32.0].index, inplace=True)
mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['sec_num']==65.0].index,␣

↪inplace=True)
# mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==37.0].index,␣

↪inplace=True)
# mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==38.0].index,␣

↪inplace=True)
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# mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==39.0].index,␣
↪inplace=True)

# mavic_vicon.drop(mavic_vicon.loc[mavic_vicon['time']==40.0].index,␣
↪inplace=True)

mavic_vicon = mavic_vicon.dropna()
mavic_vicon = mavic_vicon.reset_index().drop(columns=['index'])

[49]: print(mavic_vicon.groupby(['time']).size())

time
0.0 64
1.0 64
2.0 64
3.0 64
4.0 64
5.0 64
6.0 64
7.0 64
8.0 64
9.0 64
10.0 64
11.0 64
12.0 64
13.0 64
14.0 64
15.0 64
16.0 64
17.0 64
18.0 64
19.0 64
20.0 64
21.0 64
22.0 64
23.0 64
24.0 64
25.0 64
26.0 64
27.0 64
28.0 64
29.0 64
dtype: int64

[50]: # mavic_vicon.drop(mavic_vicon.index[1953:2134], inplace=True)
# mavic_vicon = mavic_vicon.dropna()
# mavic_vicon = mavic_vicon.reset_index().drop(columns=['index'])
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[51]: mavic_vicon

[51]: Time header.seq header.stamp.secs header.stamp.nsecs \
0 1.668705e+09 880872.0 1.668705e+09 498460392.0
1 1.668705e+09 880878.0 1.668705e+09 528511001.0
2 1.668705e+09 880884.0 1.668705e+09 558477856.0
3 1.668705e+09 880891.0 1.668705e+09 593477174.0
4 1.668705e+09 880897.0 1.668705e+09 623439306.0
… … … … …
1915 1.668705e+09 893772.0 1.668705e+09 999365777.0
1916 1.668705e+09 893778.0 1.668705e+09 29421214.0
1917 1.668705e+09 893785.0 1.668705e+09 64311930.0
1918 1.668705e+09 893791.0 1.668705e+09 94353273.0
1919 1.668705e+09 893798.0 1.668705e+09 129403384.0

header.frame_id child_frame_id transform.translation.x \
0 /world vicon/air2/air2 1.3404
1 /world vicon/air2/air2 1.3402
2 /world vicon/air2/air2 1.3401
3 /world vicon/air2/air2 1.3399
4 /world vicon/air2/air2 1.3398
… … … …
1915 /world vicon/air2/air2 1.3194
1916 /world vicon/air2/air2 1.3190
1917 /world vicon/air2/air2 1.3185
1918 /world vicon/air2/air2 1.3181
1919 /world vicon/air2/air2 1.3175

transform.translation.y transform.translation.z transform.rotation.x \
0 0.9505 1.4039 0.0043
1 0.9521 1.4046 0.0117
2 0.9515 1.4057 0.0041
3 0.9510 1.4070 0.0014
4 0.9501 1.4077 -0.0030
… … … …
1915 0.9486 1.4429 -0.0254
1916 0.9488 1.4432 -0.0271
1917 0.9488 1.4436 -0.0308
1918 0.9490 1.4440 -0.0327
1919 0.9491 1.4443 -0.0338

transform.rotation.y transform.rotation.z transform.rotation.w \
0 0.0197 0.0397 0.9990
1 0.0161 0.0169 0.9997
2 0.0204 0.0127 0.9997
3 0.0171 0.0058 0.9998
4 0.0184 0.0043 0.9998
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… … … …
1915 0.0181 0.0209 0.9993
1916 0.0190 0.0222 0.9992
1917 0.0213 0.0234 0.9990
1918 0.0222 0.0231 0.9990
1919 0.0237 0.0236 0.9989

corrected_time displacement_meter displacement_inch sec_num time
0 11:06:50 0.0587 -2.247825 1.0 0.0
1 11:06:50 0.0580 -2.220266 1.0 1.0
2 11:06:50 0.0569 -2.176959 1.0 2.0
3 11:06:50 0.0556 -2.125778 1.0 3.0
4 11:06:50 0.0549 -2.098218 1.0 4.0
… … … … … …
1915 11:07:54 0.0197 -0.712391 64.0 25.0
1916 11:07:54 0.0194 -0.700580 64.0 26.0
1917 11:07:54 0.0190 -0.684832 64.0 27.0
1918 11:07:54 0.0186 -0.669084 64.0 28.0
1919 11:07:54 0.0183 -0.657273 64.0 29.0

[1920 rows x 18 columns]

[52]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5 inch) - Mavic Inch Positions in Z direction')
plt.xlabel('Time (epochs)')
plt.ylabel('Position (inches)')
plt.plot(mavic.index.values[412:13411], mavic['displacement_inch'][412:13411],␣

↪color='green')

[52]: [<matplotlib.lines.Line2D at 0x7f6a21edb640>]

[53]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5 inch) - Mavic Inch Positions in Z direction')
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plt.xlabel('Time (epochs)')
plt.ylabel('Position (inches)')
plt.plot(mavic_vicon.index.values, mavic_vicon['displacement_inch'],␣

↪color='green')

[53]: [<matplotlib.lines.Line2D at 0x7f6a21e933a0>]

[54]: true_tag2_frm_drone = pd.DataFrame()
#true_tag2_frm_drone['Time'] = mavic_vicon['Time']
true_tag2_frm_drone['tag2_disp'] = detected_tag2['displacement_inch_y']
true_tag2_frm_drone['drone_disp'] = mavic_vicon['displacement_inch']

true_tag2_frm_drone['true_tag2_disp'] = ((true_tag2_frm_drone['tag2_disp'] -␣
↪true_tag2_frm_drone['drone_disp'] ).abs())

true_tag2_frm_drone = true_tag2_frm_drone.dropna()
true_tag2_frm_drone = true_tag2_frm_drone.reset_index().drop(columns=['index'])

[55]: (true_tag2_frm_drone['true_tag2_disp']).min()

[55]: 0.23816964170694668

[56]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5)- Tag 2 (moving) Inch Displacements ( After␣

↪Subtracting Drone Movements)')
plt.xlabel('Time (epochs)')
plt.ylabel('Displacement (inch)')
plt.plot(true_tag2_frm_drone.index.values␣

↪,true_tag2_frm_drone['true_tag2_disp'], color='blue')

[56]: [<matplotlib.lines.Line2D at 0x7f6a21e191f0>]
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0.5 Aligning Tag2 (after subtracting drone movements) with vicon tag2

[57]: true_tag2_frm_drone_1 = pd.DataFrame()
true_tag2_frm_drone_1 = true_tag2_frm_drone

[58]: true_tag2_frm_drone_1

[58]: tag2_disp drone_disp true_tag2_disp
0 4.466331 -2.247825 6.714156
1 4.451745 -2.220266 6.672011
2 4.432946 -2.176959 6.609905
3 4.419179 -2.125778 6.544957
4 4.393122 -2.098218 6.491341
… … … …
1915 0.878611 -0.712391 1.591002
1916 1.013957 -0.700580 1.714537
1917 1.137326 -0.684832 1.822158
1918 1.305313 -0.669084 1.974397
1919 1.470916 -0.657273 2.128189

[1920 rows x 3 columns]

[59]: vicon_tag2 = pd.DataFrame()
vicon_tag2 = tag2[412:13411].reset_index().drop(columns=['index'])
vicon_tag2['sec_num'] = vicon_tag2.index // 201.697716 + 1

[60]: t = pd.to_timedelta(vicon_tag2.Time, unit='T')
s = vicon_tag2.set_index(t).groupby('sec_num').resample('1.9S').last().

↪reset_index(drop=True)
s = s.assign(time=s.groupby('sec_num').cumcount())
vicon_tag2 = s

[61]: print(vicon_tag2.groupby(['time']).size())

time
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0.0 65
1.0 65
2.0 65
3.0 65
4.0 65
5.0 65
6.0 65
7.0 65
8.0 65
9.0 65
10.0 65
11.0 65
12.0 65
13.0 65
14.0 65
15.0 64
16.0 64
17.0 64
18.0 64
19.0 64
20.0 64
21.0 64
22.0 64
23.0 64
24.0 64
25.0 64
26.0 64
27.0 64
28.0 64
29.0 64
30.0 64
31.0 62
32.0 4
dtype: int64

[62]: after = vicon_tag2.groupby('sec_num').size()
after[after < 30]

[62]: sec_num
65.0 15
dtype: int64

[63]: vicon_tag2.drop(vicon_tag2.loc[vicon_tag2['sec_num']==65.0].index, inplace=True)
vicon_tag2.drop(vicon_tag2.loc[vicon_tag2['time']==30.0].index, inplace=True)
vicon_tag2.drop(vicon_tag2.loc[vicon_tag2['time']==31.0].index, inplace=True)
vicon_tag2.drop(vicon_tag2.loc[vicon_tag2['time']==32.0].index, inplace=True)
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vicon_tag2 = vicon_tag2.dropna()
vicon_tag2 = vicon_tag2.reset_index().drop(columns=['index'])

[64]: print(vicon_tag2.groupby(['time']).size())

time
0.0 64
1.0 64
2.0 64
3.0 64
4.0 64
5.0 64
6.0 64
7.0 64
8.0 64
9.0 64
10.0 64
11.0 64
12.0 64
13.0 64
14.0 64
15.0 64
16.0 64
17.0 64
18.0 64
19.0 64
20.0 64
21.0 64
22.0 64
23.0 64
24.0 64
25.0 64
26.0 64
27.0 64
28.0 64
29.0 64
dtype: int64

[65]: true_tag2_frm_drone_1 = true_tag2_frm_drone_1[20::]
true_tag2_frm_drone_1 = true_tag2_frm_drone_1.reset_index().

↪drop(columns=['index'])

[66]: true_tag2_frm_drone_1.shape

[66]: (1900, 3)
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[67]: vicon_tag2.shape

[67]: (1920, 18)

[68]: vicon_tag2_1 = vicon_tag2[0::]
vicon_tag2_1 = vicon_tag2.reset_index().drop(columns=['index'])

[69]: true_tag2_frm_drone_1 = true_tag2_frm_drone_1[170:1100]
true_tag2_frm_drone_1 = true_tag2_frm_drone_1.reset_index().

↪drop(columns=['index'])

vicon_tag2_1 = vicon_tag2_1[170:1100]
vicon_tag2_1 = vicon_tag2_1.reset_index().drop(columns=['index'])

[70]: vicontag2_tag2afterdone = pd.DataFrame()
#vicontag2_tag2afterdone['Time'] = vicon_tag2['Time']
vicontag2_tag2afterdone['tag2_minus_drone'] =␣

↪(true_tag2_frm_drone_1['true_tag2_disp'] * 0.95) - 3.1
vicontag2_tag2afterdone['vicon'] = vicon_tag2_1['displacement_inch']

[71]: vicontag2_tag2afterdone = vicontag2_tag2afterdone.dropna()
vicontag2_tag2afterdone = vicontag2_tag2afterdone.reset_index().

↪drop(columns=['index'])

[72]: vicontag2_tag2afterdone['rmse'] = np.
↪sqrt(mean_squared_error(vicontag2_tag2afterdone['vicon'],␣
↪vicontag2_tag2afterdone['tag2_minus_drone']))

vicontag2_tag2afterdone['diff'] = vicontag2_tag2afterdone['vicon'].
↪sub(vicontag2_tag2afterdone['tag2_minus_drone'], axis = 0)

vicontag2_tag2afterdone = vicontag2_tag2afterdone.round(decimals = 4)

[73]: vicontag2_tag2afterdone.describe().round(decimals = 4)

[73]: tag2_minus_drone vicon rmse diff
count 930.0000 930.0000 930.0000 930.0000
mean 1.0874 1.1286 0.6332 0.0411
std 0.8801 0.7679 0.0000 0.6322
min -0.9021 0.0000 0.6332 -1.7423
25% 0.4048 0.2894 0.6332 -0.3797
50% 1.0854 1.1418 0.6332 0.0352
75% 1.8184 1.9242 0.6332 0.4857
max 2.6284 2.2559 0.6332 1.4730

[74]: #(vicontag2_tag2afterdone['tag2_minus_drone']* -1).min() + 1.9277
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[75]: plt.rcParams.update({'font.size': 22})
plt.rcParams['figure.figsize'] = [25, 6]
# plt.title('Sinusoidal Test (0.5) - Vicon Tag2 vs Drone Tag2 detection (after␣

↪clearing drone noise)')
plt.xlabel('Time (s)')
plt.ylabel('Displacement (inch)')
plt.plot(vicontag2_tag2afterdone.index.values,␣

↪vicontag2_tag2afterdone['tag2_minus_drone'], color='blue', label = "Detected␣
↪Tag2 Displacements (After drone noise)")

plt.plot(vicontag2_tag2afterdone.index.values,␣
↪vicontag2_tag2afterdone['vicon'], color='orange', label = "Vicon Tag2␣
↪Displacements")

#plt.plot(vicontag2_tag2afterdone['Time'], vicontag2_tag2afterdone['rmse'],␣
↪color='red', label = "RMSE (0.4189)")

#plt.plot(vicontag2_tag2afterdone['Time'], vicontag2_tag2afterdone['diff'],␣
↪color='green', label = "Difference")

plt.legend()
plt.show()

[ ]:

0.6 Tag2 detection minus Tag10 movements

[76]: detected_tag2_1 = pd.DataFrame()
detected_tag2_1 = drone_tag2
detected_tag10 = pd.DataFrame()
detected_tag10 = drone_tag10

[77]: detected_tag10['sec_num'] = detected_tag10.index // 30 + 1
detected_tag10 = detected_tag10.assign(time=detected_tag10.groupby('sec_num').

↪cumcount())

[78]: print(detected_tag10.groupby(['time']).size())

time
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0 66
1 65
2 65
3 65
4 65
5 65
6 65
7 65
8 65
9 65
10 65
11 65
12 65
13 65
14 65
15 65
16 65
17 65
18 65
19 65
20 65
21 65
22 65
23 65
24 65
25 65
26 65
27 65
28 65
29 65
dtype: int64

[79]: detected_tag10.drop(detected_tag10.loc[detected_tag10['sec_num']==66].index,␣
↪inplace=True)

[80]: detected_tag10.shape

[80]: (1950, 9)

[81]: detected_tag2_1['sec_num'] = detected_tag2_1.index // 30 + 1
detected_tag2_1 = detected_tag2_1.assign(time=detected_tag2_1.

↪groupby('sec_num').cumcount())

[82]: print(detected_tag2_1.groupby(['time']).size())

time
0 66
1 65
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2 65
3 65
4 65
5 65
6 65
7 65
8 65
9 65
10 65
11 65
12 65
13 65
14 65
15 65
16 65
17 65
18 65
19 65
20 65
21 65
22 65
23 65
24 65
25 65
26 65
27 65
28 65
29 65
dtype: int64

[83]: detected_tag2_1.drop(detected_tag2_1.loc[detected_tag2_1['sec_num']==66].index,␣
↪inplace=True)

[84]: detected_tag2_1.shape

[84]: (1950, 9)

[85]: true_tag2_frm_tag10 = pd.DataFrame()
true_tag2_frm_tag10['tag2'] = detected_tag2_1['displacement_inch_y']
true_tag2_frm_tag10['tag10'] = detected_tag10['displacement_inch_y']

true_tag2_frm_tag10['true_tag2_disp'] = ((true_tag2_frm_tag10['tag2'] -␣
↪true_tag2_frm_tag10['tag10'] ).abs()* -1) + 2.1422534784496516

true_tag2_frm_tag10 = true_tag2_frm_tag10.dropna()
true_tag2_frm_tag10 = true_tag2_frm_tag10.reset_index().drop(columns=['index'])
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[86]: (true_tag2_frm_tag10['true_tag2_disp']*-1).max()

[86]: -0.0

[87]: plt.rcParams.update({'font.size': 15})
plt.rcParams['figure.figsize'] = [25, 6]
plt.title('Sinusoidal Test (0.5)- Tag 2 (moving) Inch Displacements ( After␣

↪Subtracting Tag10 Movements)')
plt.xlabel('Time (epochs)')
plt.ylabel('Displacement (inch)')
plt.plot(true_tag2_frm_tag10.index.values␣

↪,true_tag2_frm_tag10['true_tag2_disp'], color='blue')
#plt.plot(true_tag2_frm_tag10.index.values ,true_tag2_frm_tag10['tag10'],␣

↪color='red')
#plt.plot(true_tag2_frm_tag10.index.values ,true_tag2_frm_tag10['tag2'],␣

↪color='green')

[87]: [<matplotlib.lines.Line2D at 0x7f6a21d83d60>]

0.7 Aligning Tag2 (after subtracting tag10 movements) with vicon tag2

[88]: vicon_tag2_1 = pd.DataFrame()
true_tag2_frm_tag10_1 = pd.DataFrame()
vicon_tag2_1 = vicon_tag2
true_tag2_frm_tag10_1 = true_tag2_frm_tag10

[89]: vicon_tag2_1.shape

[89]: (1920, 18)

[90]: true_tag2_frm_tag10_1.shape

[90]: (1950, 3)

[91]: true_tag2_frm_tag10_1
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[91]: tag2 tag10 true_tag2_disp
0 4.466331 2.491478 0.167400
1 4.451745 2.478311 0.168820
2 4.432946 2.460049 0.169357
3 4.419179 2.444478 0.167552
4 4.393122 2.425294 0.174425
… … … …
1945 1.671545 1.273231 1.743939
1946 1.600618 1.289776 1.831411
1947 1.520244 1.299370 1.921379
1948 1.419704 1.300326 2.022875
1949 1.310982 1.298484 2.129756

[1950 rows x 3 columns]

[92]: true_tag2_frm_tag10_1

[92]: tag2 tag10 true_tag2_disp
0 4.466331 2.491478 0.167400
1 4.451745 2.478311 0.168820
2 4.432946 2.460049 0.169357
3 4.419179 2.444478 0.167552
4 4.393122 2.425294 0.174425
… … … …
1945 1.671545 1.273231 1.743939
1946 1.600618 1.289776 1.831411
1947 1.520244 1.299370 1.921379
1948 1.419704 1.300326 2.022875
1949 1.310982 1.298484 2.129756

[1950 rows x 3 columns]

[93]: vicon_tag2_1

[93]: Time header.seq header.stamp.secs header.stamp.nsecs \
0 1.668705e+09 1016941.0 1.668705e+09 503463584.0
1 1.668705e+09 1016947.0 1.668705e+09 533425073.0
2 1.668705e+09 1016953.0 1.668705e+09 563456402.0
3 1.668705e+09 1016960.0 1.668705e+09 598455899.0
4 1.668705e+09 1016966.0 1.668705e+09 628527595.0
… … … … …
1915 1.668705e+09 1029806.0 1.668705e+09 829342841.0
1916 1.668705e+09 1029813.0 1.668705e+09 864349289.0
1917 1.668705e+09 1029819.0 1.668705e+09 894387350.0
1918 1.668705e+09 1029825.0 1.668705e+09 924375108.0
1919 1.668705e+09 1029831.0 1.668705e+09 954350954.0
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header.frame_id child_frame_id transform.translation.x \
0 /world vicon/tag2/tag2 1.3883
1 /world vicon/tag2/tag2 1.3883
2 /world vicon/tag2/tag2 1.3883
3 /world vicon/tag2/tag2 1.3883
4 /world vicon/tag2/tag2 1.3884
… … … …
1915 /world vicon/tag2/tag2 1.3882
1916 /world vicon/tag2/tag2 1.3882
1917 /world vicon/tag2/tag2 1.3880
1918 /world vicon/tag2/tag2 1.3880
1919 /world vicon/tag2/tag2 1.3880

transform.translation.y transform.translation.z transform.rotation.x \
0 1.7267 1.3459 0.0113
1 1.7267 1.3459 0.0107
2 1.7267 1.3458 0.0104
3 1.7267 1.3458 0.0121
4 1.7266 1.3458 0.0119
… … … …
1915 1.7263 1.3355 0.0010
1916 1.7262 1.3354 0.0019
1917 1.7264 1.3355 -0.0014
1918 1.7262 1.3355 0.0019
1919 1.7262 1.3358 0.0024

transform.rotation.y transform.rotation.z transform.rotation.w \
0 -0.0206 -0.0773 0.9967
1 -0.0213 -0.0772 0.9967
2 -0.0204 -0.0778 0.9967
3 -0.0210 -0.0767 0.9968
4 -0.0206 -0.0772 0.9967
… … … …
1915 -0.0276 -0.0890 0.9957
1916 -0.0266 -0.0885 0.9957
1917 -0.0292 -0.0878 0.9957
1918 -0.0273 -0.0888 0.9957
1919 -0.0274 -0.0883 0.9957

corrected_time displacement_meter displacement_inch sec_num time
0 11:06:50 0.0021 0.082677 1.0 0.0
1 11:06:50 0.0021 0.082677 1.0 1.0
2 11:06:50 0.0022 0.086614 1.0 2.0
3 11:06:50 0.0022 0.086614 1.0 3.0
4 11:06:50 0.0022 0.086614 1.0 4.0
… … … … … …
1915 11:07:54 0.0125 0.492126 64.0 25.0
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1916 11:07:54 0.0126 0.496063 64.0 26.0
1917 11:07:54 0.0125 0.492126 64.0 27.0
1918 11:07:54 0.0125 0.492126 64.0 28.0
1919 11:07:54 0.0122 0.480315 64.0 29.0

[1920 rows x 18 columns]

[94]: true_tag2_frm_tag10_1 = true_tag2_frm_tag10_1[53:1950]
true_tag2_frm_tag10_1 = true_tag2_frm_tag10_1.reset_index().

↪drop(columns=['index'])

[95]: true_tag2_frm_tag10_1.shape

[95]: (1897, 3)

[96]: vicon_tag2_1 = vicon_tag2_1[0:1897]
vicon_tag2_1 = vicon_tag2_1.reset_index().drop(columns=['index'])

[97]: true_tag2_frm_tag10_1 = true_tag2_frm_tag10_1[5:1255]
true_tag2_frm_tag10_1 = true_tag2_frm_tag10_1.reset_index().

↪drop(columns=['index'])
vicon_tag2_1 = vicon_tag2_1[0:1250]

[98]: vicontag2_tag2aftertag10 = pd.DataFrame()
#vicontag2_tag2aftertag10['Time'] = vicon_tag2_1['Time']
vicontag2_tag2aftertag10['tag2_minus_tag10'] =␣

↪true_tag2_frm_tag10_1['true_tag2_disp'] * 0.97
vicontag2_tag2aftertag10['vicon'] = vicon_tag2_1['displacement_inch']

vicontag2_tag2aftertag10 = vicontag2_tag2aftertag10.dropna()
vicontag2_tag2aftertag10 = vicontag2_tag2aftertag10.reset_index().

↪drop(columns=['index'])

vicontag2_tag2aftertag10['rmse'] = np.
↪sqrt(mean_squared_error(vicontag2_tag2aftertag10['vicon'],␣
↪vicontag2_tag2aftertag10['tag2_minus_tag10']))

vicontag2_tag2aftertag10['diff'] = vicontag2_tag2aftertag10['vicon'].
↪sub(vicontag2_tag2aftertag10['tag2_minus_tag10'], axis = 0)

vicontag2_tag2aftertag10 = vicontag2_tag2aftertag10.round(decimals = 4)

[99]: vicontag2_tag2aftertag10

[99]: tag2_minus_tag10 vicon rmse diff
0 0.1435 0.0827 0.1971 -0.0609
1 0.1420 0.0827 0.1971 -0.0593
2 0.1330 0.0866 0.1971 -0.0464
3 0.1368 0.0866 0.1971 -0.0502
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4 0.1281 0.0866 0.1971 -0.0415
… … … … …
1245 0.0593 0.4291 0.1971 0.3698
1246 0.1034 0.5591 0.1971 0.4557
1247 0.1694 0.7205 0.1971 0.5511
1248 0.2281 0.8425 0.1971 0.6145
1249 0.3148 0.9606 0.1971 0.6458

[1250 rows x 4 columns]

[100]: vicontag2_tag2aftertag10.describe().round(decimals = 4)

[100]: tag2_minus_tag10 vicon rmse diff
count 1250.0000 1250.0000 1250.0000 1250.0000
mean 0.9784 0.9755 0.1971 -0.0029
std 0.7475 0.7902 0.0000 0.1971
min 0.0000 0.0000 0.1971 -0.5246
25% 0.2402 0.1732 0.1971 -0.0911
50% 0.8165 0.8189 0.1971 -0.0192
75% 1.7823 1.8140 0.1971 0.0887
max 2.0777 2.2559 0.1971 0.6458

[101]: plt.rcParams.update({'font.size': 22})
plt.rcParams['figure.figsize'] = [25, 6]
# plt.title('Sinusoidal Test (0.5) - Vicon Tag2 vs Drone Tag2 detection (after␣

↪clearing tag10 noise)')
plt.xlabel('Time (s)')
plt.ylabel('Displacement (inch)')
plt.plot(vicontag2_tag2aftertag10.index.values,␣

↪vicontag2_tag2aftertag10['tag2_minus_tag10'], color='blue', label =␣
↪"Detected Tag2 Displacements (After tag10 noise)")

plt.plot(vicontag2_tag2aftertag10.index.values,␣
↪vicontag2_tag2aftertag10['vicon'], color='orange', label = "Vicon Tag2␣
↪Displacements")

#plt.plot(vicontag2_tag2aftertag10.index.values,␣
↪vicontag2_tag2aftertag10['rmse'], color='red', label = "RMSE (0.2168)")

#plt.plot(vicontag2_tag2aftertag10.index.values,␣
↪vicontag2_tag2aftertag10['diff'], color='green', label = "Difference")

plt.legend()
plt.show()
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