
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Mechanical & Materials Engineering Faculty 
Publications 

Mechanical & Materials Engineering, 
Department of 

10-26-2022 

Finite Element-Based Machine Learning Model for Predicting the Finite Element-Based Machine Learning Model for Predicting the 

Mechanical Properties of Composite Hydrogels Mechanical Properties of Composite Hydrogels 

Yasin Shokrollahi 

Pengfei Dong 

Peshala T. Gamage 

Nashaita Patrawalla 

Vipuil Kishore 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/mechengfacpub 

 Part of the Mechanics of Materials Commons, Nanoscience and Nanotechnology Commons, Other 

Engineering Science and Materials Commons, and the Other Mechanical Engineering Commons 

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of 
at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mechanical & Materials 
Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - 
Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mechengfacpub
https://digitalcommons.unl.edu/mechengfacpub
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengfacpub?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/283?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/284?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/284?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.unl.edu%2Fmechengfacpub%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr 
Mozafari, and Linxia Gu 



Citation: Shokrollahi, Y.; Dong, P.;

Gamage, P.T.; Patrawalla, N.; Kishore,

V.; Mozafari, H.; Gu, L. Finite

Element-Based Machine Learning

Model for Predicting the Mechanical

Properties of Composite Hydrogels.

Appl. Sci. 2022, 12, 10835. https://

doi.org/10.3390/app122110835

Academic Editor: Dae-Ki Kang

Received: 10 October 2022

Accepted: 24 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Finite Element-Based Machine Learning Model for Predicting
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Melbourne, FL 32901, USA

2 Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA
* Correspondence: gul@fit.edu

Abstract: In this study, a finite element (FE)-based machine learning model was developed to predict
the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the
experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000
microstructural images with randomly distributed BG particles were created. The BG particles have
diameters ranging from 0.5 µm to 1.5 µm and a volume fraction from 17% to 59%. FE simulations
of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000
microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio
by FE simulation were used for training and testing a convolutional neural network regression model.
Results showed that the network developed in this work can effectively predict the mechanical
properties of the composite hydrogels. The R-squared values were 95% and 83% for Young’s modulus
and Poisson’s ratio, respectively. This work provides a surrogate model of finite element analysis
to predict mechanical properties of BG-COL hydrogel using microstructure images, which could be
further utilized for characterizing heterogeneous materials in big data-driven material designs.

Keywords: composite hydrogels; mechanical properties; machine learning

1. Introduction

In tissue engineering, biocompatible materials (i.e., biomaterials) are employed to
generate hydrogels or other scaffolds for use in the repair or replacement of damaged and
diseased tissues. To reduce the risk of scar tissue formation at the interface with the host
tissues, biomimetic materials that match the physicochemical properties of native tissue are
commonly desired. Collagen (COL) is the most abundant protein in mammals [1], which
could be reinforced by bioglass (BG) to formulate composite scaffolds with improved me-
chanical properties for bone tissue engineering applications [2]. Specifically, Kajave et al. [3]
showed that incorporating BG into COL reduced the swelling and improved the stability
and rheological properties (i.e., yield stress) of COL hydrogels. Gurumurthy et al. [4]
reported, in a review paper, that the stiffness of COL scaffolds significantly increased
upon adding BGs. The mechanical properties of BG-COL composite scaffolds have been
estimated from either a mathematical model or finite element (FE) method [5]. Homoge-
nization methods, such as the double inclusion method, Mori–Tanaka mean field method,
and self-consistent approaches, are generally practical for simple microstructures [6–9]. The
representative volume element (RVE) technique in the FE method has been well utilized
to estimate the effective properties of composite materials [10–12]. Prior work has shown
that the mechanical properties of BG-COL scaffolds depend on the concentration, spatial
distribution, and particle size of the BG, as well as the fabrication process [13].

Machine learning methods, especially deep learning methods, have been well utilized
in solving engineering problems, e.g., predicting atomic and molecular properties, crystal
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structures and stability, stent expansion, and retinal mechanics [14–17]. Specifically, deep
neural network (DNN) approaches have proven efficient in uncovering unique structures.
With sufficient training data, DNN uses the high-dimensional feature vector from the
original data and learns the feature vector’s nonlinear relationship with the expected out-
put [18,19]. Ye et al. [20,21] demonstrated that DNN could efficiently provide an accurate
mapping between the effective mechanical properties (Young’s modulus and Poisson’s
ratio) and the microstructures of composites. A supervised ML was presented by Ford
et al. [22] to predict the homogenized elastic properties of two-phase materials. Yang
et al. [23] predicted the stress–strain curve of binary composites by using a combination of
principal component analysis and convolutional neural networks (CNN). Hamel et al. [24]
presented a FE-based evolutionary algorithm to design active composite structures for
4D printing that can achieve target shape shifting responses. Ponnusami et al. [25] intro-
duced a deep learning approach for predicting unidirectional fiber-reinforced composites’
transverse elastic and plastic properties. Wei et al. [26] utilized different machine learning
methods, including CNN, support vector regression (SVR), and Gaussian process regres-
sion (GPR), to predict the effective thermal conductivity of composite materials. Rong
et al. [27] employed 2D CNN to predict the effective thermal conductivity of 3D composites
using 2D cross-section images. Kim et al. [28] predicted the transverse mechanical behavior
of composites in terms of the stress–strain curves by implementing CNN. They considered
the volume fraction (Vf ) percentage of the particles as 40%, 50%, and 60%. However, the
ML models have not been applied for predicting the mechanical properties of composite
hydrogels. The current study is the first attempt to adopt an FE-based ML approach for
predicting the mechanical properties of BG-COL. The integration of FE and ML methods,
a.k.a. FE-based ML approach, is still in its early stage. The FE input (imaging) and outputs
(any filed variables including Young’s modulus and Poisson’s ratio) are used to train the
ML models and predict the FE outputs in test cases. This study can serve as a surrogate
model for predicting Young’s modulus and Poisson’s ratio of composite hydrogels.

In this work, a CNN regression method was used to predict Young’s modulus and
Poisson’s ratio of BG-COL composites. First, 2000 images of BG-COL microstructures were
generated. Then, the mechanical properties of the BG-COL composite were calculated using
the FE simulation software. These FE obtained data were used to train a CNN regression
model for predicting the mechanical properties of BG-COL based on its microstructural
image. We demonstrated that our CNN regression model could predict the mechanical
properties of BG-COL and hence can aid in overcoming the challenges of predicting these
properties with traditional homogenization methods. This work could guide the design of
BG-COL and other composite hydrogels.

2. Materials and Methods

The overall workflow of our framework that integrates FE analysis with the CNN
model to predict composite material properties is illustrated in Figure 1. Based on ob-
serving the microstructural images of BG-COL composite, we first generated 2000 virtual
microstructural images of BG-COL with various structures consisting of circular shapes
of BG. The microstructural images of BG-COL were then imported into the simulation
software, Abaqus/Explicit software version 2019 (Dassault Systems Simulia Corporation,
Providence, RI, USA). Then, their effective mechanical properties were extracted by us-
ing python script. The data acted as the foundation for developing our DNN prediction
approach. Then, by training a CNN regression network, the mechanical properties of the
composite were predicted.
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Figure 1. The overall framework combines FE analysis with an ML method to predict the mechanical
properties of composite.

2.1. Simulation-Based Datasets

Bioglass particles were circular based on the experimental results and scanning electron
microscope (SEM) images, as shown in Figure 1 (depicted by red circles). Periodic two-
phase microstructures were created using a synthetic two-dimensional (2D) microstructure
generation algorithm we developed using Python (Python Software Foundation, DE, USA).
This algorithm can generate non-overlapping circles of varying sizes and Vf (Table 1).
Additionally, a python script was developed to calculate the BG-COL material properties
from preliminary RVE data. Python code developed in-house was used to organize, create,
and link sets necessary for attaining deformable periodic boundary surfaces, which can
distort and no longer remain plane, and compute homogenized properties, including
Young’s modulus and Poisson’s ratio. Then, the periodic RVE homogenization method
concepts were automatically assigned. First, the python code determines the boundary
surfaces and RVE dimensions; then, by building nodal sets and applying the boundary
conditions and the displacement needed for each property, FE analysis was performed. The
interface between the BG and COL was considered to be perfectly bonded for simplicity.

Table 1. Microstructural images of BG-COL parameters.

Two-Phase Microstructure Python Parameters Material Parameters

COL COL size = 20 × 20 µm E = 3 kPa, ν = 0.49

BGs
BGs radius = 0.5 to 1.5 µm

BGs Vf % = 0.17 to 0.59
BGs number = 30 to 120

E = 76.7 GPa, ν = 0.261 [29]

The Young’s modulus (E) and Poisson’s ratio (ν) of the BG were adopted as E =
76.7 GPa and ν = 0.261, respectively [29]. The elastic properties of the COL were tested
using our atomic force microscopy (AFM) as E = 3 kPa and ν = 0.49. Two-dimensional
generalized plane stress elements (CPS4R) were used for the BG and COL meshing. A
uniform displacement of 4 µm, i.e., an average strain of 20% [30], was applied at the
boundary surface of the RVE.

To calculate the Young’s modulus and Poisson’s ratio of the BG-COL hydrogel, the
reaction forces were computed as the sum of boundary nodal forces along the loading
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direction. The average stress was calculated as the reaction force divided by the boundary
surface area. Then, Young’s modulus of BG-COL was calculated by dividing the stress
value by the applied axial strain of 20%. The transverse strain is simply a ratio of the change
in height to the original height, and Poisson’s ratio is estimated as the ratio of the transverse
strain to the applied axial strain of 20%. The FE modeling framework was validated by the
3D RVEs in [12,31].

2.2. Machine Learning Approach

A CNN regression model was trained to estimate the effective mechanical properties
of the BG-COL composite from microstructural images. The TensorFlow and Keras library
were used to create the CNN model architecture [32]. CNN is a class of DNN that applies a
series of computationally nonlinear layers to analyze visual imagery. CNN can gradually
extract representations of images with higher-level generalizations by operating on two
functions that produce a third function, which expresses how the shape of one is modified
by the other. The current CNN model was selected after trying many architectures and
tuning hyperparameters. The tuned graph of the CNN regression used is depicted in
Figure 2. It contains convolutional layers (first five layers) merged by fully connected layers
(last four layers). The convolution features (or kernels) are memorized hierarchically and
comprised of low-level features to build more complex patterns. The input to the CNN is
the 2D BG-COL composite gray images of 200 × 200 pixels. A learnable kernel was applied
to the input images to extract the convolved feature. This convolved feature is computed
through a rectified linear unit (ReLU) [33] function and passed on to the following layers.
The respective mechanical properties (Young’s modulus and Poisson’s ratio) are emanated
at the outputs layer. The first five layers of architecture involve 3 × 3 convolutional layers
using a stride of 2 in both the x and y directions; 2 × 2 maximum pooling layers; and 512,
256, 128, 64, and 32 feature maps, followed by four fully connected layers with 1000, 100,
50, and 10 units. To enhance the precision of the CNN’s prediction, 20% dropout [34] was
used in four fully connected layers to prevent overfitting. The Adam optimizer was used
to speed up the convergence of the network [35]. Linear activation function and sigmoid
in the output layer of the CNN were chosen for Young’s modulus and Poisson’s ratio,
respectively, by using functional API. A loss function was used to estimate the differences
between CNN’s prediction results and the real mechanical properties of the images. The
loss function is minimized via backpropagation by optimizing the CNN parameters, such
as biases and kernels, in the convolutional layers and the weights in the fully connected
layers, as depicted in Figure 2. The loss function is defined using the mean square error
(MSE) since the prediction is a regression problem. MSE is denoted as:

MSE = L[Y, f (X)] =
1
n

n

∑
i=1

[Y − f (X)]2 (1)

where X denotes the input image describing the microstructure of the BG-COL, n represents
the batch size, and f (X) indicates the prediction of the CNN. Y denotes the mechanical
properties of BG-COL, which includes both Young’s modulus and Poisson’s ratio. Per-
forming verification to prevent overfitting during every training epoch was also done
to select the best model. The CNN model was run on a workstation with the following
specifications: Ryzen 9 5950X processor, 128 GB DDR4/2666 MHz memory, and Nvidia
GeForce RTX 3090 GPU.
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Figure 2. The CNN regression schematic for predicting Young’s modulus and Poisson’s ratio of
BG-COL.

3. Results

The training and testing datasets contain 1600 and 400 images, respectively, and the
corresponding mechanical properties (using an 80–20 split). We randomly chose 20% of
the dataset as a validation set to assess performance when selecting model architecture
and hyperparameters. By 20 repeated epochs, we trained our network, as demonstrated
in Figure 3. The training and validation loss converge to a similar value, indicating
insignificant overfitting.
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Figure 3. Training and validation loss over 20 epochs display convergence and behavior of model
training.

The Young’s modulus and Poisson’s ratio of the test set predicted by the CNN plotted
against those obtained by the FE simulation are shown in Figure 4. It is clear that our
network can efficiently learn and map the microstructure images to the mechanical prop-
erties. Additionally, these results indicate that our model works well for testing images.
The ranges of Vf were illustrated in different colors to estimate the influence of BG on the
mechanical properties. Results demonstrated that Young’s modulus will increase with a
larger Vf of BG. In contrast, Poisson’s ratio decreased with a larger Vf. The MSE for Young’s
modulus is 0.135, and Poisson’s ratio is 0.000162. The R-squared for Young’s modulus is
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0.95, and Poisson’s ratio is 0.83, which shows how well our model fits. Our prediction is
similar to the accuracy by Ye et al. [20].
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From all 400 testing cases, two representative cases were further delineated regarding
the prediction error in Young’s modulus and Poisson’s ratio. The case in Figure 5a with a
Vf of 27.73% illustrated that the prediction error of Young’s modulus and Poisson’s ratio is
0.32% and 3.61%, respectively. Moreover, the case in Figure 5b with a larger Vf of 47.85%
showed that the prediction error of Young’s modulus and Poisson’s ratio is 1% and 1.7%,
respectively. Additionally, the von Mises stress (kPa) distribution in the BG-COL composite
demonstrated that the stress concentrations are generally around BG, with the maximum
stress magnitude as 3.952 kPa for the case with the Vf of 27.73%, and increased to 11.28 kPa
for the case with a larger Vf of 47.85%.
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4. Discussion

A FE-based CNN regression network method was used for predicting the effective
mechanical properties of BG-COL composite hydrogel. From the microstructure images, we
can efficiently and accurately predict the mechanical properties of BG-COL, by considering
various BG numbers, sizes, and Vf. In total, 2000 2D RVE microstructural images were
generated with various circular shapes of BG and Vf. This RVE of BG-COL was then
imported into the FE simulation software to calculate its effective mechanical properties.
Subsequently, a python script in Abaqus was developed to extract the effective mechanical
properties, including Young’s modulus and Poisson’s ratio. Finally, a CNN regression
network was trained and tuned to predict the mechanical properties of the composite with
95% and 83% accuracy for Young’s modulus and Poisson’s ratio, respectively.

The FE input (imaging) and outputs (Young’s modulus and Poisson’s ratio) are used
to train the ML models and then predict the FE outputs in 400 test cases. A sufficiently large
number of BG-COL images were generated to represent various composite configurations
based on our experimental observations. Specifically, we effectively developed a framework
to generate geometries, solve the FE computations, and then create a substantial database
of input–output pairs. Similarly, Ford et al. [22] used three common two-phase materials
(UD-CRTS [36], UHP mortar [37,38], and MPR paste [39]), including fibers of circular shape
with the same diameter, but they used different fiber Vf, median sizes, and particles in
a robust cementitious matrix and a metallic particulate-reinforced (MPR) cement mortar.
They used artificial neural network (ANN) and forest ensemble MLs methods to predict
Young’s modulus and Poisson’s ratio of materials by using geometrical features of particles
and Vf inputs. CNN regression was chosen in this work considering that our dataset is
200 × 200 gray images with corresponding mechanical properties.

The FE-based CNN method to predict the mechanical properties of the composite
hydrogel is still lacking in the literature [22,36,40]. The prediction of BG-COL properties
herein was motivated by the work of Ye et al. [20]. They used a CNN regression method
to predict the mechanical properties of an artificial composite consisting of two different
components (matrix and inclusions). The uniqueness of our dataset is that it is based on the
observations of the microstructural images of the BG-COL composites (Figure 1). In addi-
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tion, we adopted the Vf ranging from 17% to 59% based on the published experiments [3].
The range of our Vf is wider than the one by Kim et al. [28]. Our results have shown
that a larger Vf significantly increased Young’s modulus and reduced the Poisson’s ratio.
Subjected to the same deformation, a larger Vf is associated with a larger force load and a
higher peak stress in the BG-COL (Figure 5). This trend was also observed by Yi et al. [9].

The most critical parameters to achieve the prediction accuracy of 95% and 83% for
Young’s modulus and Poisson’s ratio, respectively, were the number of feature maps in
the convolutional layers and the number of units in the fully connected layer. A total of
nine ML architectures with different layers (number of convolutional layers and feature
maps in these layers, and fully connected layers and units in each layer), and different
activation functions, including ReLU, sigmoid, and linear, were picked and trained. In the
first architecture, our network was created by three convolutional layers with 256, 128, and
32 feature maps in each layer, respectively. The last convolutional layer was then connected
to the first fully connected layer as the input in the vector form. Additionally, three fully
connected layers with 500, 100, and 10 units were considered. The initial accuracy was 80%
for Young’s modulus and 72% for Poisson’s ratio. By adding more layers and feature maps
in the convolutional layers and units in the fully connected layers, our network had more
trainable parameters and could learn more details and extract more features about images
and their following material properties. It must be noted that overfitting can occur in a
network with more layers, although more layers can increase the performance to a certain
extent. The optimal number of layers and nodes in a given configuration should be decided
to avoid falling into the situation of overfitting.

The tuned model in this work consists of learnable kernels applied to the input images
for extracting convolved features. These convolved features were computed through a
rectified linear unit (ReLU) function and passed on to the following layers. With 512
different kernels (the sizes of 3 × 3, using a stride of 2 in both x and y directions) at the
first layer, similar procedures were repeated in layers 2, 3, 4, and 5 with 256, 128, 64, and
32 kernels, respectively. The last convolutional layer was then connected to the first fully
connected layer as the input in the vector form. In the fully connected layers, learnable
weights were calculated for each layer. We used the dropout technique after every fully
connected layer. The last layer was a linear function for Young’s modulus and a sigmoid
function for Poisson’s ratio. To minimize the prediction error, the kernels mentioned above
were learned and will be activated when a similar feature appears in the input.

This study utilized two-dimensional RVE datasets. However, the framework could be
expanded to predict the three-dimensional mechanical properties of BG-COL. Additional
properties of the composite hydrogel, such as thermal conductivity, thermal expansion
coefficients [27], fatigue life, toughness, and stress–strain curves [23], could be predicted
using our framework. Moreover, it must be mentioned that this work did not consider the
impact of COL crosslinking, which is typically done for these hydrogels [3]. When the COL
and BG are crosslinked, the effect of BG on the mechanical properties of COL can change
depending on what COL crosslinking method was used and how much crosslinking
was done. For example, COL crosslinking can mask the effect of BG such that the BG
incorporation does not impact the mechanical properties of the COL hydrogels.

5. Conclusions

In this work, the FE input (imaging) and outputs (Young’s modulus and Poisson’s ratio)
were used to train a CNN regression network for predicting the mechanical properties of
BG-COL composite hydrogel, including Young’s modulus and Poisson’s ratio. Randomly
distributed spherical BGs with diameters ranging from 0.5 µm to 1.5 µm and volume
fractions from 17% to 59% were considered. The mechanical properties of 2000 images of
the BG-COL microstructure were calculated in the FE simulation software utilizing an in-
house python script. The prediction accuracy was 95% and 83% for Young’s modulus and
Poisson’s ratio, respectively. The FE-based ML model is expected to facilitate nondestructive
testing and big data-driven design of BG-COL and other composite hydrogels.
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