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Operations in cislunar space are expected to greatly increase over the next decade, which
will place a heightened demand on satellites operating in cislunar space. The orbit selection of
the satellites is a key parameter of the mission. Orbital decay can present significant challenges
for some lunar orbits due to gravitational perturbations. This study focuses on developing a
fast method to assess the decay of lunar orbits. The method is based on modeling lunar orbits
propagation in the presence of these perturbations to quantify orbital decay as a function of
orbital parameters, then using the model to generate data and fit surrogate models. Results
from this effort will enable decision makers to trade performance and station-keeping costs
associated with relevant lunar orbits.

I. Nomenclature

𝑎 (𝑆𝑀𝐴) = Semi-major axis
𝑒 (𝐸𝐶𝐶) = Eccentricity
𝑖 (𝐼𝑁𝐶𝐿) = Inclination
Ω (𝑅𝐴𝐴𝑁) = Right Ascension of the Ascending Node
𝜔 (𝐴𝑂𝑃) = Argument of Perigee
𝑀 = Mean Anomaly
𝐷𝑜𝐸 = Design of Experiments
𝑃𝑁𝑇 = Positioning, Navigation and Timing

II. Introduction
Satellite activity around the Moon is expected to increase in the coming decades. Proposed activities include

scientific studies, human presence, PNT or other architectures, and even tourism [1][2]. One of the challenges of
operating in cislunar space is the significant gravitational perturbations that can make lunar orbits very unstable. From a
design perspective, this instability complicates orbit selection, and sometimes requires spacecraft to perform station
keeping (SK) maneuvers. Significant research for long term lunar orbits have focused on lunar frozen orbits, where the
various gravitational perturbations are minimized and the orbits are relatively stable [3, 4]. The goal of this study is to
understand and quantify the orbital instability of lunar orbits with respect to the relevant orbital parameters. Such a
capability would allow architects of satellite constellations to quickly trade performance benefits of lunar orbits against
costs (station keeping or limited mission duration) of operating in those orbits.

III. Background and Problem Definition
While Apollo missions’ main purpose was to send a human to the Moon, new space missions have now higher

expectations regarding lunar operations. The Artemis [5] mission that is to launch in 2024, has two objectives: first, to
achieve human landing by 2024 with reduced risks, and second, to prepare the ground for future space exploration
missions. The Moon is to become a strategic passage point for space exploration. Missions like Artemis or the Gateway
mission [6] confirm the importance of Earth’s satellite either as a host for permanent lunar sites or for outposts orbiting
in its sphere of influence. In order to empower potential scientists or autonomous equipment either on the ground or in
orbit with PNT and communication services, new lunar infrastructures are needed. LunaNet, for example, aspires to
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develop a terrestrial-like internet for lunar users based on a wide network communicating with Earth and lunar ground
sites as well as on lunar orbiters [7]. The main issue of lunar orbiters is their decay. Because of perturbations, they are
driven to slowly deviate from their original orbits. The main perturbations a spacecraft is subjected to are its drag, the
solar radiation pressure, the non-spherical shape of the body it is orbiting around, and the presence of other heavy bodies
in its vicinity [4]. An accurate model is required for each one of these perturbations in order to be able to correctly
predict a spacecraft orbit and avoid critical deviations of trajectories. Thanks to the Gravity Recovery and Interior
Laboratory (GRAIL) [8] mission launched in 2011 by NASA, scientists now possess a very accurate gravity model of
the Moon that helps evaluate the magnitude of this perturbation.

Orbital perturbations can be addressed through station keeping maneuvers, effectively altering the velocity vector of
satellites to maintain desired orbits. These maneuvers require propellant to be performed and are thus to be optimized to
maximize the lifespan of the spacecraft. Often, station keeping maneuvers can be minimized by selecting orbits that are
least influenced by the gravitational perturbations. Therefore, it is useful to understand the instability of specific lunar
orbits during mission planning and constellation design.

The goal of this study is to develop and implement an approach to quickly evaluate the decay of lunar orbits. The
tool is envisioned for use to facilitate the selection of the initial insertion orbits of a constellation of satellites to meet the
mission objectives of future cislunar operations.

IV. Technical approach
This effort aims at providing an effective way to quantify orbit cost in orbit/constellation design. This orbit cost

could be addressed by either providing station keeping efforts, or allowing the orbit to degrade and limiting the lifetime
of the orbit. Traditionally, only frozen orbits have been considered. However, this restriction drastically limits the
amount of orbital space that is available and could heavily affect the performance of the overall design. One approach to
understand the orbital decay is to numerically propagate the orbits of interest. This method is computationally expensive,
especially for a broad design space where a lot of alternatives are studied, and would slow down the design process.
Surrogate modeling provides an effective way to support the orbit/constellation design process without incurring as
much computational cost. The surrogate models will be based on data from lunar orbits propagated by the tool. The
following sections describe the lunar orbital environment, propagation model, and surrogate modeling approach.

The first step in addressing these objectives is to understand and perform the propagation of lunar orbits. For this
effort, the long term variations in the orbital parameters are of specific interest. Frozen orbits are a subset of lunar orbits
where the long term variations are minimized, and in theory set to 0, and are therefore considered stable [9]. This study
includes but is not limited to frozen orbits.

A. Lunar Orbital Forces
Spacecraft in orbit are subject to a number of forces, including gravity, drag and solar radiation pressure. For lunar

orbits, given the absence of atmosphere, drag is not considered. Moreover, in the scope of this study solar radiation
pressure can be neglected [4]. It should be noted that the method presented here is not predicated on those assumptions.
A traditional Keplerian orbit assumes a single uniform gravity source. A spacecraft orbiting the Moon, however,
experiences a non-uniform gravity field [10] and perturbations due third-body effects of the Earth and other bodies.

The non-uniform gravity field generated by the Moon arises from the oblateness effect of the Moon and the presence
of mascons [11]. Mascons are mass concentrations on the Moon, which result in density changes throughout the Moon
and add up to the non-uniformity of the gravity field. The gravity field can be modeled using spherical harmonic
functions, which can be defined to higher orders depending on data available and accuracy needed. Until the GRAIL
[8] mission, the Moon gravity model was not very accurate. But thanks to the data gathered by its two modules that
communicated together to detect any small deviation in relative distance between them, the mission enabled the creation
of an improved gravity field, which is now the most accurate model that any space body possesses. While on Earth,
the most dominant perturbing term is the oblateness term 𝐽2 (more than 1000 times as large as any other gravity
model coefficient [12]), it is not the case for the Moon. The lunar gravity coefficients 𝐽2 and 𝐶22 are the same order of
magnitude. According to previous studies, 𝐽2 and 𝐶22 are the most significant terms of the lunar gravity field function.
Thus, the perturbation potential leveraged in this study will feature the gravity model of the Moon until the 𝐶22 term,
while higher order terms will be neglected [13].

The relevant third-body effects for lunar orbit include the Earth and sun. For this effort, only Earth effects will be
included, as effects from the sun are much smaller [4]. Additionally, it is assumed that the Moon describes a circular
orbit around the sun [14].
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These assumptions lead us to the following expressions of the perturbing gravitational potential truncated at the 2𝑛𝑑
degree for the third-body effects [3], and with a maximum precision of 10−4[14]:

𝑅𝑝 = − 𝐽2𝜇𝑅
2
𝑀

𝑟3 ∗ (1.5 ∗ 𝑠𝑖𝑛(𝑖)2 ∗ 𝑠𝑖𝑛2 ( 𝑓 +𝜔) − 0.5) + 𝑘𝑛2
3𝑟

2

2
[
3[𝑐𝑜𝑠( 𝑓 + 𝜔) ∗ 𝑐𝑜𝑠(ℎ) − 𝑠𝑖𝑛( 𝑓 + 𝜔)𝑠𝑖𝑛(ℎ)𝑐𝑜𝑠(𝑖)]2 − 1

]
+

3𝐶22𝜇𝑅
2
𝑀

𝑟3 𝑠𝑖𝑛(𝑖)2𝑠( 𝑓 + 𝜔)2 − 1 + 2[𝑐𝑜𝑠(ℎ)𝑐𝑜𝑠( 𝑓 + 𝜔) − 𝑠𝑖𝑛(ℎ)𝑐𝑜𝑠(𝑖)𝑠𝑖𝑛( 𝑓 + 𝜔)2]

where ℎ = Ω − 𝑛3𝑡; 𝑘 =
𝑚𝐸

𝑚𝐸+𝑚𝑀
; 𝑖,Ω, 𝜔, 𝑓 are the classical orbital elements; 𝑛3 is the angular velocity of the Moon

around the Earth; and 𝑚𝐸 , 𝑚𝑀 are the mass of the Earth and the Moon respectively.
It is useful in this context to only consider the long-term perturbations to the orbit. Shorter and medium term

perturbations will have less of an effect on the long-term stability of the orbits [3]. The equations of motion for the
long-term perturbations can be developed for the classical orbital elements, and are shown below [4].

¤̄𝑎 = 0

¤̄𝑒 =
15𝑘𝑛2

3𝑎̄
3/2

8√𝜇
𝑒
√︁

1 − 𝑒2 sin2 𝑖 sin 2𝜔̄

¤̄𝑖 = −
15𝑘𝑛2

3𝑎̄
3/2

16√𝜇

𝑒2
√

1 − 𝑒2
sin 2𝑖 sin 2𝜔̄

¤̄Ω = −
3𝐽2

√
𝜇𝑅2

𝑀

2𝑎̄7/2 (1 − 𝑒2)2 cos 𝑖 +
3𝑘𝑛2

3𝑎̄
3/2

8√𝜇
√

1 − 𝑒2

(
5𝑒2 cos 2𝜔̄ − 3𝑒2 − 2

)
cos 𝑖

¤̄𝜔 =
3𝐽2

√
𝜇𝑅2

𝑀

4𝑎̄7/2 (1 − 𝑒2)2

(
5 cos2 𝑖 − 1

)
+

3𝑘𝑛2
3𝑎̄

3/2

8√𝜇
√

1 − 𝑒2

[(
5 cos2 𝑖 − 1 + 𝑒2

)
+ 5

(
1 − 𝑒2 − 𝑐𝑜𝑠2𝑖

)
cos 2𝜔̄

]
¤̄𝑀 =

√
𝜇

𝑎̄3/2 +
3𝐽2

√
𝜇𝑅2

𝑀

4𝑎̄7/2 (1 − 𝑒2)3/2

(
3 cos2 𝑖 − 1

)
−

𝑘𝑛2
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3/2

8√𝜇

[(
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) (
3 cos2 𝑖 − 1

)
+ 15

(
1 + 𝑒2

)
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]

(1)

where { 𝑎̄, 𝑒, 𝑖, Ω̄, 𝜔̄, 𝑀̄ } are the averaged classical orbital elements, semimajor axis, eccentricity, inclination, right
ascension of ascending node, argument of perigee, and mean anomaly.

B. Orbit Propagation
The differential equations in Equation 1 can be numerically propagated to simulate lunar orbits based on input

orbital parameters. For this effort, a fixed time step Runge-Kutta method was used to integrate the equations of motion.
Each orbit was defined using the orbital elements in Section IV.A. Mean anomaly 𝑀 was initialized at 0 in each case.

C. Measuring Orbit Deviations
In most lunar orbits, the orbital parameters will change through time. The rate of orbital changes themselves are also

a function of the orbital parameters, as seen in Equation 1. For this effort, a metric was needed to quantify how much an
orbit would changes as a function of the orbital parameters. Two options considered were to quantify the change in
orbital elements over a single period of time for all orbits considered, or to quantify the change over a single orbit. In
this case, the changes in orbital elements were compared based on the period of the orbit.

Δ𝑎 = 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑎 𝑓 𝑖𝑛𝑎𝑙

Δ𝑒 = 𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑒 𝑓 𝑖𝑛𝑎𝑙

Δ𝑖 = 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑖 𝑓 𝑖𝑛𝑎𝑙

ΔΩ = Ω𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −Ω 𝑓 𝑖𝑛𝑎𝑙

Δ𝜔 = 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜔 𝑓 𝑖𝑛𝑎𝑙

(2)

The final value for mean anomaly 𝑀 was always 2𝜋, as this represents a completed orbit.
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D. Orbit Station Keeping
Spacecraft operating in unstable orbits plan station keeping maneuvers to maintain the desired orbit throughout the

lifetime of the spacecraft. These station keeping maneuvers can be quantified by the Δ𝑉 associated with each maneuver.
Each maneuver is based on the current and desired state, as well as the time of transfer. There are many maneuvers
available between orbits based on different times of flight. Maneuvers between unstable orbits are complicated by the
fact that the transfer orbit is itself unstable.

Lambert’s problem is a method that allows to establish the transfer orbit between two points A and B in space
(with initial and final velocities) depending on specific time of flight [12] (see Figure 1). With the transfer orbit known
alongside with the position vectors of the current (𝑟1) and target (𝑟2) orbits, the velocity vectors at A (𝑣1) and B (𝑣2)
on the transfer orbit can be derived. These two vectors are respectively subtracted to the velocity vectors at A and B
on the initial orbit propagated. This leads to the values of Δ𝑉 at A and B that respectively enable the transition form
the current orbit to the transfer orbit and then from the transfer orbit to the target orbit which is in the case of station
keeping, the initial orbit of the spacecraft. Finally, by adding up the two Δ𝑉 , the total required velocity change for the
SK maneuver is derived.

Fig. 1 Illustration of Lambert’s problem

For this effort, the metrics in Section IV.C are used to quantify the cost of operating in a specified orbit. Future work
will include research on optimal maneuvers to minimize orbital decay as well as Δ𝑉 requirements, while taking specific
thrust performance into consideration. These considerations can include how often to perform the station keeping
maneuvers.

E. Surrogate Models and Design of Experiments
As previously mentioned, the tool is developed to assess the orbital decay of satellites orbiting around the Moon.

Because of forces balancing each other out, some orbits are more stable than others and present a reduced orbital decay.
These orbits are called frozen orbits and are interesting in a sense that they minimize Δ𝑉 for station keeping. The orbital
elements yielding such orbits can be obtained analytically [3], with some assumptions regarding the perturbations.
However, there may be cases where performance achieved from a certain orbit may be worth the station keeping costs
incurred. It is therefore desirable to consider a much wider range of lunar orbits. Propagating each of these orbits would
represent a significant computational cost. The fields of Design of Experiments (DoE) and surrogate modeling enable
the creation of analytical models representing underlying data, in this case data pertaining to the stability of lunar orbits.
This would allow the user to virtually instantaneously compute the orbital error based on the input of any set of orbital
elements. The design space of interest is represented by continuous orbital parameters. A DoE intelligently samples the
design space to get a sufficiently high density of the design space. It selects the different points the user needs to run
(sets of orbital elements 𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑀) [3]. Thanks to this sampling, the user can run a limited number of cases that,
in the whole, reflect the global trend and logic of the design space. Surrogate models then act as bridges between these
design points, as they are the interpolating functions linking inputs (orbital elements) to outputs (orbital decay). The
design variables as well as their ranges used for the DoE are shown in Table 1. The initial value for mean anomaly 𝑀

was always zero.
The DoE was a Latin hypercube (LHC) to fill the gap between the boundary points thanks to an optimal spacing

algorithm [15]. For this study, nested LHC designs were used. Nested LHCs allow for varying the number of cases used
in surrogate model fitting while reusing some of the cases and maintaining the LHC design [16].
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Table 1 Design of Experiment variables and ranges

Notation Definition Range Unit
a Semi-major axis 1758 − 20, 000 km
e Eccentricity 0 − 0.98 /
i Inclination 0 − 180 degree
Ω Right Ascension of the Ascending Node 0 − 360 degree
𝜔 Argument of Perigee 0 − 360 degree

V. Results
The following sections present the results for this effort starting with the orbit perturbations for a single lunar orbit,

then showing the results from the DoE and surrogate model fitting, finally discussing frozen orbits and simplified Δ𝑉

calculations.

A. Results for Single Orbit
Each lunar orbit is initialized by defining the classical orbital elements {𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑀}. An example orbit is

defined in Table 2.

Table 2 Orbital elements for single lunar orbit

Orbital Element Value Unit
a 7758 km
e 0.4 /
i 50 degree
Ω 0 degree
𝜔 100 degree
𝑀 0 degree

The period of an orbit is calculate as 𝑇 = 2𝜋
√︁
𝑎3/𝜇 for each orbit. For this example, the orbital period is just under

17 hr, 1 min, and 56 sec. Figure 2 below shows the orbit.
Table 3 shows the changes in orbital elements for this orbit over the course of a single orbital period. The change in

semi major axis 𝑎 is zero, as the equations of motion (Equation 1) show that the rate of change ¤̄𝑎 is defined as 0. The
change in mean anomaly 𝑀 is 2𝜋, indicating a single orbital period as expected. The other changes in eccentricity,
inclination, right ascension of ascending node, and argument of perigee represent the effect of gravitational perturbations
and third-body effects on the orbit. These deviations would grow non-linearly over time. Figure 3 shows the orbital
trajectory over 100 periods. Figure 4 shows the non-linear changes in orbital parameters over time.

Table 3 Changes in orbital elements for example orbit

Orbital Element ΔValue Unit
a 0 km
e 5.76𝐸 − 04 /
i −2.301𝐸 − 04 rad
Ω 3.65𝐸 − 03 rad
𝜔 1.27𝐸 − 03 rad
𝑀 6.28 rad
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Fig. 2 Example orbit trajectory

B. Design of Experiment Results
The DoE defines a set of lunar orbits that covers the design space of interest, shown in Table 1. The experimental

design is a nested LHC design. For a nested LHC, an initial number of cases and layers is selected; the design used in
this study had 25 initial cases and 11 layers. The nested design results in an LHC design for each layer up to the number
of layers. Each LHC design has 25 × 2(𝑛−1) cases, where 𝑛 is the layer number starting from 1. The first set of cases has
25 cases, and the second set then has 50 cases, where the first 25 cases of the second set are equivalent to the cases in
the first set. This pattern continues to the highest layer selected, in this case 11, resulting in 25, 600 total cases. This
setup means that if more cases are needed, the next set of cases could be selected by adding a layer (layer 12) while still
using all the cases from the previous layer. Table 4 illustrates the experimental design. The value for mean anomaly 𝑀

is always initialized at zero.

Table 4 Subset of experiment design

Case Number 𝑎 𝑒 𝑖 Ω 𝜔 𝑀

1 11,178 0.99345 13.376 204.57 105.71 0
2 8,151.9 0.72118 157.68 264.9 198.49 0
3 2,679.5 0.6042 17.169 101.56 119.13 0

. . .

. . .
25,599 8,262.8 0.86104 6.3582 247.73 50.234 0
25,600 7,488.6 0.25123 72.135 313.66 127.29 0

Not all the cases in the DoE were physically realisable, as some orbits intercepted (crashed into) the Moon. For
each case, if 𝑎(1 − 𝑒) ≤ 𝑅𝑀𝑜𝑜𝑛, the case was ignored. In this experimental design, about 23% of the cases represented
physically impossible orbits, and were therefore ignored. Figure 5 shows a scatter-plot of the orbital changes for a single
orbit for each of the cases ran. It is interesting to note some of the patterns that emerge from this analysis.

6

D
ow

nl
oa

de
d 

by
 M

ic
ha

el
 S

te
ff

en
s 

on
 F

eb
ru

ar
y 

1,
 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
14

19
 



km

−7500−5000−25000 250050007500

km
−6000

−4000
−2000

0
2000

4000

km

−8000
−6000
−4000
−2000

0
2000

Orbital Path
100 Orbits

Fig. 3 Orbit trajectory over 100 periods

0 10 20 30 40 50 60 70
time (days)

0.370

0.375

0.380

0.385

0.390

0.395

0.400

e

(a) Eccentricity variation

0 10 20 30 40 50 60 70
time (days)

50.0

50.1

50.2

50.3

50.4

50.5

50.6

50.7

in
cl 

(d
eg

)

(b) Inclination variation

0 10 20 30 40 50 60 70
time (days)

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Ω 
(d

eg
)

(c) Right ascension of ascend-
ing node variation

0 10 20 30 40 50 60 70
time (days)

90

92

94

96

98

100

ω
 (d

eg
)

(d) Argument of perigee vari-
ation

Fig. 4 Orbital parameter variations over 100 orbits

C. Surrogate Models
The data from the DoE can be used to fit surrogate models. In this case, neural networks were used as the

approximating function [17]. The neural networks were designed with 2 layers, and activation functions included
hyperbolic tangent, linear, and Gaussian; however, many other activation functions are available [18]. The statistical
analysis tool JMP was used to train the models [19]. The training was conducted using k-fold cross-validation, which
relies on splitting the date into 𝑘 segments, and alternating which are used for training vs validation [20]. When fitting
surrogate models to the smaller LHC DoE’s, the goodness of fits were also validated using the remaining data available.
Models were compared visually using the actual by predicted and residual by predicted plots, as well as by considering
the 𝑅2 and 𝑅𝑀𝑆𝐸 values for both training and validation data sets.

The smallest LHC design used to fit data consisted of 3200 total cases, of which 2440, or 76.25%, were physically
realisable orbits. Table 5 shows the neural network architectures for each of the outputs. Figure 6 shows the goodness of
fit plots and Table 6 shows the 𝑅2 and 𝑅𝑀𝑆𝐸 values for the training and validation data sets. While a good fit was
achieved using the k-fold validation method, it performs fairly poorly when the remaining available data is considered.
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Fig. 5 Scatter-plot of DoE results

Table 5 Neural network architectures for 3200 case design

Output
First Layer Second Layer

TanH Linear Gaussian TanH Linear Gaussian
Δ𝑒 7 7 7 7 7 7

Δ𝐼𝑛𝑐𝑙 8 8 8 8 8 8
ΔΩ 7 7 7 7 7 7
Δ𝜔 7 7 7 7 7 7
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(a) Δ𝑒

(b) Δ𝐼𝑛𝑐𝑙

(c) ΔΩ

(d) Δ𝜔

Fig. 6 Actual and residual by predicted for training and validation for 3200 case design

Table 6 Goodness of fit metrics for training with 3200 case design

Δ𝑒 Δ𝐼𝑛𝑐𝑙 ΔΩ Δ𝜔

Training Validation Training Validation Training Validation Training Validation
𝑅2 0.9996 0.8760 0.9956 0.9844 0.9991 0.9968 0.9988 0.9976

𝑅𝑀𝑆𝐸 0.0001810 0.003589 0.0005667 0.001132 0.001230 0.002220 0.001535 0.002029

The next LHC design considered used 6400 cases, of which 4789, or 74.83%, were physically realisable orbits.
Table 7 shows the neural network architectures for each of the outputs. Figure 7 shows the goodness of fit plots and
Table 8 shows the 𝑅2 and 𝑅𝑀𝑆𝐸 values for the training and validation data sets. The plots and goodness of fit metrics
indicate a better estimate of the output metrics than the 3200 case design. Specifically, the 𝑅2 values are all 0.99 or
higher for both training and validation, and visual inspection of the validation actual by predicted plots in Figure 7 (third
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plot in each row) indicate a consistent accurate estimate. This is expected, as more data was provided to the model.

Table 7 Neural network architectures for 6400 case design

Output
First Layer Second Layer

TanH Linear Gaussian TanH Linear Gaussian
Δ𝑒 6 6 6 6 6 6

Δ𝐼𝑛𝑐𝑙 6 6 6 6 6 6
ΔΩ 6 6 6 6 6 6
Δ𝜔 8 8 8 8 8 8

(a) Δ𝑒

(b) Δ𝐼𝑛𝑐𝑙

(c) ΔΩ

(d) Δ𝜔

Fig. 7 Actual and residual by predicted for training and validation for 6400 case design
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Table 8 Goodness of fit metrics for training with 6400 case design

Δ𝑒 Δ𝐼𝑛𝑐𝑙 ΔΩ Δ𝜔

Training Validation Training Validation Training Validation Training Validation
𝑅2 0.9994 0.9991 0.9947 0.9912 0.9998 0.9988 0.9994 0.9987

𝑅𝑀𝑆𝐸 0.0002260 0.0002725 0.0006223 0.0008606 0.0005977 0.001401 0.001012 0.001478

The final LHC design considered used 12800 cases, of which 9817, or 76.70%, were physically realisable orbits.
Table 9 shows the neural network architectures for each of the outputs. Figure 8 shows the goodness of fit plots and
Table 10 shows the 𝑅2 and 𝑅𝑀𝑆𝐸 values for the training and validation data sets. The goodness of fit metrics and plots
indicate much better predictions even for data not used in the training. Better prediction models can be generated using
more data.

Table 9 Neural network architectures for 12800 case design

Output
First Layer Second Layer

TanH Linear Gaussian TanH Linear Gaussian
Δ𝑒 6 6 6 6 6 6

Δ𝐼𝑛𝑐𝑙 9 9 9 10 10 10
ΔΩ 6 6 6 6 6 6
Δ𝜔 6 6 6 6 6 6
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(a) Δ𝑒

(b) Δ𝐼𝑛𝑐𝑙

(c) ΔΩ

(d) Δ𝜔

Fig. 8 Actual and residual by predicted for training and validation for 12800 case design

Table 10 Goodness of fit metrics for training with 12800 case design

Δ𝑒 Δ𝐼𝑛𝑐𝑙 ΔΩ Δ𝜔

Training Validation Training Validation Training Validation Training Validation
𝑅2 0.9992 0.9991 0.9994 0.9983 0.9998 0.9996 0.9995 0.9993

𝑅𝑀𝑆𝐸 0.0002612 0.0002736 0.0002228 0.0003762 0.0005782 0.0007905 0.0009568 0.001115

D. Capturing Frozen Orbits
It is possible to solve the equations of motion (Equation 1) and set the long period rates of change for eccentricity

( ¤̄𝑒), inclination (¤̄𝑖), and argument of perigee ( ¤̄𝜔) to 0, thereby achieving a frozen orbit [3]. The orbital parameters that
correspond to frozen orbits can then be calculated and plotted, as done in [3]. A similar analysis can be done here, with
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the additional inclusion of non-frozen orbits. This is a great advantage to designers who may want to include such orbits
in their analysis, incurring the cost of increased station-keeping requirements or limited orbital lifetime, but potentially
achieving better mission performance.

A monte carlo analysis was performed to consider a wide range of available orbits. Each of these orbits was analysed
using the surrogate models trained using the 12800. A single orbit instability metric 𝐼𝑀 was calculated by summing the
absolute values of the relevant orbital element rates for each case 𝐼𝑀 = |Δ𝑒 | + |Δ𝑑𝑖 | + |Δ𝜔 |. The absolute values are
used because any change is undesirable. A scatter plot of the orbital parameters with the points colored by the instability
metric calculated shows areas of the design space with lower orbital instability. As in [3], three different cases are
considered: 𝑒 = 0, 𝜔 = 0, 180, 𝜔 = 90, 270. In this analysis, 𝜔 = 0 and 𝜔 = 270 are omitted. More details about each
of these cases are given in [3].

Figures 9-11 below show the heat maps of the different cases considered. The patterns match those presented in [3].
However, additional information is shown here by considering orbits that are not frozen. The sections of the graph
in blue represent orbital parameters that result in low 𝐼𝑀 value, where red represents high 𝐼𝑀 value. The points are
colored based on the 𝑙𝑜𝑔(𝐼𝑀). Orbits chosen closer to the red sections of the plot would experience higher orbital
perturbations. This serves to both validate the approach implemented in this effort by showing that frozen orbits are
accurately capture by the surrogate models as well as demonstrate the utility of the surrogate models by considering all
possible orbits, not just frozen orbits.

Fig. 9 Heat map for instability metric for cases when 𝑒 = 0

Fig. 10 Heat map for instability metric for cases when 𝜔 = 90

Fig. 11 Heat map for instability metric for cases when 𝜔 = 180
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The heat maps shown can be considered for any value of the orbital elements. For example, orbits where 𝑖 = 90 deg
are not necessarily frozen orbits, but the surrogate models developed can give insight into their stability. Figure 12 shows
the results for 𝑖 = 90 deg. There are some frozen orbits in this space, as there do exist frozen orbits when 𝑖 = 90 and
𝑒 = 0 or 𝜔 = 90, 180. It is worth mentioning that the results shown in this section are based on a specific formulation of
the instability measure 𝐼𝑀 . Other formulations, such as the product of the errors, may lead to different insights into the
data.

Fig. 12 Heat map for instability metric for cases when 𝑖𝑛𝑐𝑙 = 90 deg

E. Application to Constellation Design
The goal of this paper was to develop a method to understand the instability of lunar orbits in the context of satellite

mission planning or constellation design. As such, a simple example is shown here. Consider an example constellation
of 20 satellites with orbital parameters shown in Table 11. In this example, 𝑎, 𝑒, 𝑖, and 𝜔 are the same for all the orbits,
and Ω is varied to result in 5 different orbital planes. In each orbital plane, the satellites are equally spaced throughout
the orbit. From the perspective of the equations of motion in Equation 1, this would mean starting at different values
of mean anomaly 𝑀, equally spaced between 0 and 2𝜋. While Δ𝑀 is not one of the outputs of this model, it is not a
variable in the the equations of motion, and therefore the initial value will not change the results of this model as long as
an entire orbit is considered.

Table 11 Example satellite constellation

Eccentricity 0
Semi-major axis 4000 km

Argument of Perigee 0
Inclination 45◦

# of Orbital Planes 5
# of Sats per Plane 4

For each satellite, the orbital parameters can be input: 𝑒 = 0, 𝑎 = 4000𝑘𝑚, 𝑖𝑛𝑐𝑙 = 45 deg, 𝜔 = 0. Ω varies, but
like 𝑀, it is not a variable in the equations of motion, so it does not need to be directly considered here. In this case,
the changes in orbital parameters will be equivalent for all the satellites. The changes are shown in Table 12. If this
constellation were to be deployed, these perturbations would need to be accounted for throughout the lifetime of each
satellite (assuming the satellite remained in the specified orbit).

VI. Conclusion and Future Work
Increased interest and planned activity in and around the Moon motivates the need for reliable and effective methods

to understand the challenges of operating in cislunar space. Lunar orbits, for example, are generally unstable. Many
proposed mission plans rely on using frozen orbits, which are stable for longer periods of time. However, this approach
drastically limits the available orbits. The goal of this effort was to develop a method to quickly quantify the instability
associated with a given lunar orbit. A DoE was conducted to explore the lunar orbital space, and those orbits were
propagated using the equations of motion developed for studying frozen orbits. The data was then used to fit surrogate
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Table 12 Changes in orbital elements for orbits in example constellation

Orbital Element ΔValue Unit
a 0 km
e 8.098 × 10−5 /
i 0.0001095 rad
Ω −9.988 × 10−5 rad
𝜔 −0.001398 rad
𝑀 6.28 rad

models that accurately predict the changes in orbital parameters during a given orbit. This tool allows designers to
quickly quantify instability associated with any orbit within the design ranges considered, shown in Table 1. Higher
accuracy surrogate models can be developed using larger data sets. Different ways of using the surrogate models
in the context of design were illustrated in Sections V.D and V.E. Additionally, the tool could be integrated into an
optimization process or decision making approach with other methods to trade orbit cost with orbit performance. It
should be noted that while surrogate models do provide accurate estimates and are extremely useful in design studies
where many candidate designs are being considered, any final design selections should be confirmed using the higher
fidelity models (in this case the integrated equations of motion).

Several areas of future work would increase the utility of the method and resulting tool presented in this paper. The
first would be to continue to refine the surrogate models by generating more data and fitting better neural networks.
Another improvement would be to expand the equations of motion to consider more perturbations, including higher
order terms in the lunar gravity model and the influence of the sun. The approach would remain the same, but the
orbital propagation would necessarily be more complex and time-consuming. Additionally, more complex orbits could
be considered, such as orbits around the Lagrange points or around the Earth and the Moon. Such orbits are not well
characterized by the classical orbital elements, and the approach presented here would need to be updated to account for
the additional complexity. A final avenue for future work mentioned here is to tie the changes in orbital parameters
presented here directly to Δ𝑉 or fuel requirements for the satellites. Ultimately, the most likely approach for operating
in these orbits would be to provide routine station-keeping maneuvers. The real cost would be in the weight of fuel
required to maintain the orbit throughout the desired lifetime. An approach to calculate fuel required from the changes
in orbital parameters would allow designers to directly consider fuel weight costs associated with any orbits considered.
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