
FAST AND MEMORY EFFICIENT ALGORITHMS FOR
STRUCTURED MATRIX SPECTRUM APPROXIMATION

by
Aditya Krishnan

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
September, 2022

© 2022 Aditya Krishnan
All rights reserved



Abstract

Approximating the singular values or eigenvalues of a matrix, i.e. spectrum approximation,

is a fundamental task in data science and machine learning applications. While approxima-

tion of the top singular values has received considerable attention in numerical linear algebra,

provably efficient algorithms for other spectrum approximation tasks such as spectral-sum

estimation and spectrum density estimation are starting to emerge only recently. Two cru-

cial components that have enabled efficient algorithms for spectrum approximation are access

to randomness and structure in the underlying matrix. In this thesis, we study how ran-

domization and the underlying structure of the matrix can be exploited to design fast and

memory efficient algorithms for spectral sum-estimation and spectrum density estimation.

In particular, we look at two classes of structure: sparsity and graph structure.

In the first part of this thesis, we show that sparsity can be exploited to give low-

memory algorithms for spectral summarization tasks such as approximating some Schatten

norms, the Estrada index and the logarithm of the determinant (log-det) of a sparse matrix.

Surprisingly, we show that the space complexity of our algorithms are independent of the

underlying dimension of the matrix. Complimenting our result for sparse matrices, we show

that matrices that satisfy a certain smooth definition of sparsity, but potentially dense in

the conventional sense, can be approximated in spectral-norm error by a truly sparse matrix.

Our method is based on a simple sampling scheme that can be implemented in linear time. In

the second part, we give the first truly sublinear time algorithm to approximate the spectral
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density of the (normalized) adjacency matrix of an undirected, unweighted graph in earth-

mover distance. In addition to our sublinear time result, we give theoretical guarantees for a

variant of the widely-used Kernel Polynomial Method and propose a new moment matching

based method for spectrum density estimation of Hermitian matrices.
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Chapter 1

Introduction

Numerical linear algebra is a core part of machine learning and data science. With the rise of

big-data and the need for large scale machine learning, traditional methods to do numerical

linear algebra are becoming increasingly inefficient and sometimes even prohibitive for most

applications. This has led to a flurry of work in designing efficient algorithms – both in

terms of memory and running time – for numerical linear algebra that are highly efficient

but produce approximate solutions; trading-off accuracy for performance.

Randomization has emerged as a critical tool in developing these new methods. A

classic example of this are sketching methods [50, 158] that have been used for dimensionality

reduction, leading to fast algorithms for linear regression [34, 54, 110], clustering [38, 56],

low-rank approximation [1, 34, 58], singular value decomposition [73] etc. Broadly, access

to randomization enables us to develop algorithmic tools that lead to provably faster, lower-

memory and smaller communication methods than their deterministic counterparts. In fact,

the introduction of randomized techniques for numerical linear algebra has led to a field

titled ‘Randomized Numerical Linear Algebra’ (RandNLA).
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An important tool derived from randomization is sampling. Sampling methods are

ubiquitous in algorithm design and numerical linear algebra specifically. Some examples

include speeding up kernel regression [12, 116], seeding clustering algorithms [149], tracking

statistics of a data stream [7, 32] and stochastic optimization algorithms such as stochastic

gradient descent [16, 24, 161]; a crucial tool in enabling the training of large-scale neural

networks.

In addition to randomization, structure in the underlying matrix can be greatly benefi-

cial in designing efficient algorithms for numerical linear algebra. For instance, there exist a

variety of fast algorithms for numerical linear algebra involving adjacency matrices or Lapla-

cians of graphs like linear system solving [37, 140], cut and flow problems [128], sparsification

[93] and spectrum approximation [42]. Similarly, fast iterative methods and efficient sketch-

ing methods have been proposed for a variety of problems when the underlying matrix is

low rank; such as projection-cost preserving sketches for clustering [38, 117], block Krylov

methods for principal component analysis [4, 60, 115] and oblivious subspace embeddings

for matrices with quickly decaying spectra [36, 38]. Another example of structure in the

underlying matrix is sparsity. A variety of sketching methods for numerical linear algebra

have been proposed that can be applied in time proportional to the number of non-zero

entries of the matrix, titled “input-sparsity time” sketching methods [34, 110].

In this thesis we will explore three problems in numerical linear algebra for which we

design data-dependent sampling algorithms that exploit the underlying structure of the data

to obtain provably faster and lower-memory algorithms than previous approaches.
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1.1 Sampling for Spectrum Approximation of Struc-

tured Matrices

Many tasks in data science and machine learning require extracting information about the

eigenvalues or singular values of a matrix [15, 49, 57, 63, 109, 130, 144]. Such tasks are broadly

titled spectrum approximation and refer to an umbrella of problems that have motivated

research at the intersection of numerical linear algebra and algorithm design.

Matrices that appear in applications of these tasks are highly structured [49, 57, 145]

and so it is important to understand whether efficient algorithms can be designed that exploit

this structure. In this thesis, we study how we can exploit the underlying structure of the

matrix to design fast and memory-efficient algorithms for tasks in spectrum approximation.

Our main approach is based on random sampling of the rows, columns and entries of the

underlying matrix.

We briefly discuss spectrum approximation in the context of this thesis, the specific kinds

of structured matrices we consider, and how we use sampling as a tool and its connection to

efficient algorithm design in numerical linear algebra.

1.1.1 Spectrum Approximation

The task of spectrum approximation is to obtain an approximation to the n singular values

of an n × n matrix, also known as the spectrum. In some contexts, such as is described

in Chapter 4, the matrix is symmetric and the eigenvalues of the matrix are considered

instead. Computing all the n singular values exactly can take Θ(nω) time1 for ω ≈ 2.37286

1The running time complexity here is the complexity of doing fast matrix multiplication, i.e., O(nω) =
O(n2.37268).
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and can require storing the entire matrix in working memory when traditional methods for

singular value decomposition are used [14, 126]. The running time complexity and memory

requirements of these methods can be prohibitively large even for a moderately sized matrix;

for e.g., the matrices that appear in Ghorbani et al. [63] have n ≥ 105 dimensions! Hence

we often seek approximations to the spectrum that can be computed more efficiently but

without losing critical information about it.

The most notable line of research on spectrum approximation considers approximating

a small number of the largest magnitude singular values. This nature of approximation

to the spectrum has been studied extensively and several methods such as partial SVD

[73], rank-revealing QR factorization [46], randomized block Krylov methods [115, 134] and

other iterative methods under the umbrella of principal component analysis and low-rank

approximation have been proposed [3, 66, 136]. Many of these methods are nearly-linear time

and optimized versions of these methods have been implemented in many machine learning

and numerical linear algebra libraries [69, 134].

Instead of obtaining accurate approximations to a small number of the largest-magnitude

eigenvalues, in this thesis we study methods to approximate the entire spectrum but only

coarsely. The notions of approximation we consider capture information about the whole

spectrum but potentially reveal less information about any specific singular value.

Concretely, we look at i) approximating spectral sums in Chapter 2 and, ii) approxi-

mation under earth-mover’s distance in Chapter 4. While both of these have been studied

less extensively than top singular value computation, designing fast and memory efficent

algorithms for these spectrum approximation tasks has many applications in machine learn-

ing [49, 63, 109, 130] and scientific computing [15, 57, 157] and has recently received more

attention in the literature [31, 48, 122, 145, 148, 162]. We discuss specific applications and

the significance of our results within the respective chapters of each result.
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1.1.2 Structure

There is a long history of research dedicated to designing more efficient algorithms for ma-

trices that exhibit some underlying structure. For example, fast solving of linear systems of

Laplacians [140], approximation of PSD matrices by sampling [52, 118] and sketching meth-

ods such as subspace embeddings [34, 110] and projection cost-preserving sketches [117] that

exploit sparsity in the input matrix. In this thesis, we look at two notions of structure:

1. Sparsity. While real-world datasets are often enormous and exist in high dimensions,

often most of the relevant information required to analyze the data is concentrated in

a small fraction of the data points and dimensions. This structure in the data is often

referred to as sparsity. Several algorithms have been proposed for tasks in numerical

linear algebra that exploit sparsity in data such as speeding up dimensionality reduction

[110], compressed sensing [26], low-rank approximation [40], regression [34], clustering

[38], solving sparse linear systems [129], computation on sparse graphs etc. Sparsity

can be viewed as a notion of intrinsic dimension of the data. The algorithmic challenge

then is – how do we design algorithms to do linear algebra such that the complexity

(both space complexity and running time complexity) of the algorithm depends only on

this intrinsic dimension of the data and not on, the much larger, input dimension? We

study this question in Chapter 2 and show several improvements for sparse matrices

over dense matrices in a variety of spectrum approximation tasks.

While some data is truly sparse, i.e., very few entries contain non-zero values, often

data collected in real-world settings is noisy. In particular, the data is often separated

into two components – signal and noise. The signal is often sparse and contains impor-

tant information that needs to be analyzed or extracted, whereas, the noise is dense,

unimportant and needs to be filtered out. This phenomenon is ubiquitous in machine

5



learning and numerical linear algebra and motivates many areas of research [26, 160].

In Chapter 3 we show how to efficiently filter out this noise, under certain structural

assumptions, while retaining information about the spectrum of the original matrix.

2. Graph Structure. Graphs appear in many places in data science, several fields of

research are dedicated to studying graph structured inputs – network science [13, 49],

graph based neural networks [163], areas of computational physics and chemistry [71,

72, 157], computational geometry [29] etc. There has been a flurry of research in the

last decade or so on faster numerical linear algebra for graphs, such as solving systems

of Laplacians [129], spectral clustering [153, 156], metric embeddings and computing

flows [128]. Often these faster methods crucially use the fact that the underlying data

is graph structured; for example the Laplacian of a graph is symmetric and positive

semidefinite (PSD). In Chapter 4, we exploit the underlying structure of Laplacians of

graphs to obtain fast algorithms to approximate the spectrum of these matrices.

1.1.3 Sampling as a Tool

Sampling has been a core tool in designing algorithms for efficient numerical linear algebra.

Random sampling is often used in the context of matrix sketching, wherein a small number

of rows, columns or entries of the matrix are randomly selected in order to “compress” the

matrix without losing critical information required to solve the problem. This approach has

been used to give faster algorithms for a variety of problems including low-rank approxi-

mation, clustering, linear regression and spectral approximation. Another set of techniques

based on sampling that has emerged in designing efficient algorithms for matrices is in the

context of stochastic iterative algorithms. In particular, these techniques randomly select a

small number of the rows, columns or entries of the matrix within some iterative computa-
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tion involving the entire matrix, so as to speed-up computation or obtain memory savings.

This approach has been been used to give faster algorithms for solving linear systems of

matrices, approximate singular value decomposition, kernel regression, k-means clustering,

principal component regression and been used extensively in the matrix streaming literature,

leading to memory-efficient algorithms for low-rank approximation, estimating spectral-sums

of matrix functions and many other problems.

The main algorithmic challenge in using random sampling is designing sampling distri-

butions that are efficient to sample from, require few samples and lead to accurate solutions.

This trade-off becomes especially pronounced since naive approaches such as sampling data

uniformly can lead to (provably) bad approximations. We will see in this thesis, instances of

sampling algorithms used in the context of matrix sketching in Chapter 3 and in the context

of improving iterative alogrithms in Chapter 2 and 4.

1.2 Thesis Outline

This thesis is split into three technical chapters, each looking at a specific spectrum ap-

proximation problem. In Chapter 2 and Chapter 3 we consider matrices that have sparse

structure and in Chapter 3 look at adjacency and Laplacian matrices of graphs.

We start by outlining our main results and give an overview of each chapter. The details

of the problem definition and computational models have been deferred to the respective

chapter of each problem.

In Chapter 2, we give low-memory algorithms for estimating spectral-sums of sparse

matrices2 for some important class of spectral-sums, including the Schatten p-norms for even

2A matrix with a constant number of non-zero entries in every row and column.
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values of p ≥ 2, the Estrada index and the logarithm of the determinant (log-det) of the

matrix. We give a sampling algorithm that has space complexity completely independent

of the matrix dimension n and only dependent on the sparsity of rows and columns. In

particular, for a sparse matrix, our algorithm requires only a constant number of words of

memory to accurately estimate these spectral-sums. These results improve over previous

work in some computation models by giving the first dimension-independent memory bound

for estimating these spectral-sums. Our algorithm is based on sampling rows from a carefully

defined distribution in an iterative way; trading-off the space complexity of storing the

sampled rows and the information revealed by them to estimate the spectral-sum.

Next, we show in Chapter 3 that matrices with rows and columns that have few heavy

entries and (potentially) many entries with small magnitude can be well-approximated by a

sparse matrix. In particular, we consider a generalization of the notion of sparsity of the rows

and columns of the matrix, titled numerical sparsity; defined as the ratio between the ℓ1-norm

and ℓ2-norm of the row (or column). We show that in fact a matrix that has numerically

sparse rows and columns can be well approximated, under spectral-norm error, by a sparse

matrix. We provide a simple sampling algorithm achieving this guarantee, running in linear

time3 that samples entries of the matrix from a carefully chosen distribution.

Finally, in Chapter 4 we consider spectral density estimation for any n× n normalized

graph adjacency or Laplacian matrix of an undirected, unweighted graph. We show a n ·

poly(1/ϵ) time algorithm for such matrices to obtain ϵ accuracy in Wasserstein-1 distance

(earth-mover’s distance). This running time is sublinear in the number of edges in the

graph and the number of entries of the corresponding matrix. In fact, our method works

more generally for all symmetric matrices with O(1/ϵ) matrix-vector multiplications with

the matrix. It is based on a novel moment matching method that employs randomization

3When a rough estimate of the spectral-norm of the matrix is known.
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to estimate the traces involving the matrix. The sublinear time result for graphs follows

by combining the method for symmetric matrices along with random sampling of columns

to avoid full matrix-vector multiplications. In addition to our moment matching method,

we analyze a variant of the widely used kernel polynomial method and achieve matching

guarantees.

1.3 Notation

Most notation is defined as needed in each chapter, but some notation is used throughout.

R is used to denote the reals, Rn denotes the set of n-length vectors with real entries and

Rn×d denotes the set of n× d matrices with real entries. We use uppercase letters to denote

matrices and lowercase letters to denote vectors and scalars. We let xi denote the i-th entry

of the vector x and Aij denote the entry in the i-th row and j-th column of the matrix

A. nnz(A) denotes the number of non-zero entries in A. Where it is relevant we define the

sparsity of a vector to be the number of non-zero entries and for matrices, define the sparsity

to be the maximum number of non-zero entries in any of its columns or rows.

We let ⊤ denote the transpose of a matrix or vector and denote the n×n identity matrix

by In. For a vector x ∈ Rn and parameter p > 0 we define ∥x∥p to be ∥x∥p = (
∑n

i=1 |xi|p)1/p.

We define ∥x∥∞ to be equal to maxi∈[n] |xi| and similarly ∥x∥0 denotes the number of non-zero

entries in x.

For an m × n matrix A with m ≥ n we denote the n singular values of A by σ1(A) ≥

· · · ≥ σn(A) ≥ 0. When it is clear from context, we omit (A). Similarly, when the matrix A

is square and symmetric, we denote the n eigenvalues of the matrix by λ1(A) ≥ · · · ≥ λn(A).

We let ∥A∥F =
√∑

i,j A
2
ij be the Frobenius norm of the matrix A and when the matrix
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is square, define tr(A) =
∑

i Aii to be the trace of A. Moreover, we define ∥A∥2 to be the

spectral norm and is given by

∥A∥2 = max
∥x∥2=1

∥Ax∥2.

We often write Õ(f) as a shorthand for O(f · logO(1)(n)) where n is the dimension of

the matrix being considered, and write Od(f) when the hidden constant might depend on

the parameter d. [t] denotes the set {1, . . . , n} for a parameter t.
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Chapter 2

Spectral Sum Estimation for Sparse

Matrices

2.1 Introduction

In several application domains, input matrices are often very sparse, meaning that only a

small fraction of their entries are non-zero. In fact, in applications related to natural language

processing (e.g. [61]), image recognition, medical imaging and computer vision (e.g. [67, 105]),

the matrices are often doubly sparse, i.e., sparse in both rows and columns. Throughout,

we define these matrices as k-sparse, meaning that every row and every column has at

most k non-zero entries. The current work devises new algorithms to analyze the spectrum

(singular values) of such sparse matrices, aiming to achieve efficiency (storage requirement

in streaming model) that depends on matrix sparsity instead of matrix dimension.

We focus on fundamental functions of the spectrum, called the Schatten norms. For-

mally, the Schatten p-norm of a matrix A ∈ Rm×n,m ≥ n with singular values σ1 ≥ . . . ≥

11



σn ≥ 0 is defined for every p ≥ 1 as

∥A∥Sp
:=

 n∑
i=1

σp
i

1/p

.

This definition extends also to 0 < p < 1, in which case it is not a norm, and also to

p = 0,∞ by taking the limit. Frequently used cases include p = 0, representing the rank

of A, and p = 1, 2,∞, commonly known as the trace/nuclear norm, Frobenius norm, and

spectral/operator norm, respectively. Schatten norms are often used as surrogates for the

spectrum, as explained in [90, 91, 123, 167], and some specific cases have applications in

optimization, image processing, and differential privacy etc. [120, 164].

For a positive semidefinite (PSD) matrix A, the Schatten norms can be easily used to

approximate other important spectral functions. One example is the Estrada index, which

has applications in chemistry, physics, network theory and information theory (see survey by

Gutman et al. [72]). Another example is the trace of matrix inverse, which is used for image

restoration, counting triangles in graphs, to measure the uncertainty in data collections, and

to bound the total variance of unbiased estimators (see e.g. [19, 30, 75, 162] for references). A

third example is the logarithm of the determinant, used in many machine learning tasks, like

Bayesian learning, kernel learning, Gaussian processes, tree mixture models, spatial statistics

and Markov field models (see e.g. [74, 75, 146, 147] for references). Thus, our results for

Schatten norm have further applications.

As the matrices in many real-world applications are often very large, storing the entire

matrices in working memory can be impractical, and thus, as mentioned, analyzing them

has become increasingly challenging. As a result, the data-stream model has emerged as a

convenient model for how these data-sets are accessed in practice. In this model, the input

matrix A ∈ Rm×n is presented as a sequence of items/updates. In one common setting,
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the turnstile model, each update has the form (i, j, δ) for δ ∈ Z and represents an update

Aij ← Aij + δ. In another common setting, the row-order model, items (i, j, Aij) arrive in

a fixed order, sorted by location (i, j) lexicographically, providing directly the entry of A in

that location. In both models, unspecified entries are 0 by convention, which is very effective

for sparse matrices.

Row-order is a common access pattern for external memory algorithms. When the data

is too large to fit into working memory and has be “streamed” into memory in some pattern,

it is useful to assume that algorithms can make multiple, albeit few, passes over the input

data. For a thorough discussion of such external memory algorithms, including motivation

for the row-order model and for multiple passes over the data, see [64, 103, 152].

Designing small-space algorithms for estimating Schatten norms of an input matrix in

the data-stream model is an important problem, and was investigated recently for various

matrix classes and stream types [6, 23, 32, 99, 100, 101, 102]. However, all known algorithms

require space that is polynomial in n, the matrix dimension, even if the matrix is highly

sparse and the stream type is favorable, say row-order. A natural question then is:

Does any streaming model admit algorithms for computing Schatten norms of

a matrix presented as a stream, with storage requirement independent of the

matrix dimension?

We answer this question in the affirmative for k-sparse matrices presented in row-order and

all even integers p. Our algorithms extend to all integers p ≥ 1 if the input matrix is PSD.
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2.1.1 Main Results

Throughout, we write Õ(f) as a shorthand for O(f · logO(1) n) where n is the dimension of

the matrix, and write Od(f) when the hidden constant might depend on the parameter d.

We assume that the entries of the matrix are integers bounded by poly(n), and thus often

count space in words, each having O(log n) bits. We denote by ⌈p⌉4 the smallest multiple of

4 that is greater than or equal to p, and similarly by ⌊p⌋4 the largest multiple of 4 that is

smaller than or equal to p.

Upper and Lower Bounds for Row-Order Streams. Our main result is a new algo-

rithm for approximating the Schatten p-norm (for even p) of a k-sparse matrix streamed in

row-order, using O(p) passes and poly(kp/ϵ) space (independent of the matrix dimensions).

This is stated in the next theorem, whose proof appears in Section 2.4.1.

Theorem 2.1.1. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0 and a k-sparse matrix

A ∈ Rn×n streamed in row-order, makes ⌊p/4⌋+1 passes over the stream using Op(ϵ
−2k3p/2−3)

words of space, and outputs Ȳ (A) that (1 ± ϵ)-approximates ∥A∥pSp
with probability at least

2/3.

Theorem 2.1.1 provides a multi-pass algorithm whose space complexity depends only

on the sparsity of the input matrix. A natural question is whether one can achieve a similar

dependence also for one-pass algorithms, but our next theorem (proved in Section 2.6) shows

that such algorithms require Ω((n1−4/⌊p⌋4) bits of space, even for O(1)-sparse matrices.

It follows that multiple passes over the data are necessary for an algorithm for sparse

matrices to have space complexity independent of the matrix dimensions.

Theorem 2.1.2. For every p ∈ 2Z≥2 there is ϵ(p) > 0 such that every algorithm that makes

one pass over an Op(1)-sparse matrix A ∈ Rn×n streamed in row-order, and then outputs a

14



Table 2.1: Bounds for Schatten norms (for even p) of k-sparse matrices in row-order streams.
Upper bound space is counted in words. Lower bounds are for suitable ϵ(p) > 0.

Which p Space Bound Ref. Comments

p > 4

Õp,ϵ(k
O(p)n1−4/⌈p⌉4) [23] one-pass

Op,ϵ(k
3p/2−3) Thm. 2.1.1 ⌊p/4⌋+ 1 passes

Op,ϵ(k
2psn1−1/s) Thm. 2.5.3 ⌊ p

2(s+1)
⌋+ 1 passes

Ω(n1−4/⌊p⌋4) Thm. 2.1.2 one-pass, k = O(1)
Ωt(k

p/2−2) [23] t passes, k ≤ n2/p

p = 4
Õp,ϵ(k) [23] one-pass
Op(ε

−2) Thm. 2.7.2 one-pass, for all k ≤ n

(1± ϵ(p))-approximation to ∥A∥pSp
with probability at least 2/3, must use Ω(n1−4/⌊p⌋4) bits of

space.

We can further extend our primary algorithmic technique (from Theorem 2.1.1) in sev-

eral different ways, and obtain improved algorithms for special families of matrices, algo-

rithms in the more general turnstile model, and algorithms with a trade-off between the

number of passes and the space requirement, as explaind later in this section. Table 2.1

summarizes our results for row-order streams, and compares them to bounds derived from

previous work (when applicable).

Applications for Approximating Schatten Norms. We show in Section 2.8 two set-

tings where, under certain simplifying conditions, our algorithms can be used to approximate

other functions of the spectrum, and even weakly recover the entire spectrum. The basic

idea is that it suffices to compute only a few Schatten norms, in which case our algorithms

for k-sparse matrices in row-order streams can be used, and the overall algorithm will require

only small space (depending on k).
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The first setting considers spectral sums of PSD matrices. We use an idea from [17]

to show that for a PSD input A ∈ Rn×n whose eigenvalues lie in an interval [θ, 1), one

can (1± 2ϵ)-approximate log det(A) and tr(A−1) using the first 1
θ
log
(
1
ϵ

)
(integer) Schatten

norms. We further show that given a Laplacian matrix whose eigenvalues lie in an interval

[0, θ], one can (1± 2ϵ)-approximate the Estrada index using the first (eθ + 1) log 1
ε

(integer)

Schatten norms.

The second setting considers recovering the spectrum of a PSD matrix using a few

Schatten norms of the matrix. We use an idea from [91] to approximate the spectrum of a

PSD matrix whose eigenvalues lie in the interval [0, 1], up to L1-distance ϵn using the first

O(1/ϵ) Schatten norms.

Experiments. We validated our row-order algorithm on real-world matrices representing

academic collaboration network graphs. The experiments show that the space needed to

approximate the Schatten 6-norm of these matrices is much smaller than the theoretical

bound, and that the algorithm is efficient also for larger p values. In fact, the matrices

in our experiments have O(1)-sparse in every row, but their columns are only sparse on

average. We also experimented to check if the algorithm is robust to noise, and found that it

is indeed effective also for nearly-sparse matrices. Our experiments validate that the storage

requirement is independent of the matrix dimensions. See Section 4.6 for details.

2.1.2 Extensions of Main Results

Extension I: Fewer Passes. We show in Section 2.5 how to generalize our algorithmic

technique to use fewer passes over the stream, albeit requiring more space. Our method

attains the following pass-space trade-off. For any integer s ≥ 2, our algorithm in Theo-
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rem 2.5.3 makes t(s) = ⌊ p
2(s+1)

⌋ + 1 passes over the stream using Op

(
ϵ−3k2psn1−1/s

)
words

of space, and outputs a (1± ϵ)-approximation to ∥A∥pSp
for p ∈ 2Z≥2.

Extension II: Turnstile Streams. We design in Section 2.4.2 an algorithm for turnstile

streams with an additional Õ(ϵ−O(p)k3p/2−3n1−2/p) factor in their space complexity compared

to our algorithm for row-order streams. An additional O(n1−2/p) factor is to be expected

since the space complexity for estimating ℓp norms of vectors in turnstile streams is Ω(n1−2/p

t
)

if the algorithm is allowed to make t passes over the data. Our algorithm for turnstile streams

makes p + 1 passes over the stream. The algorithm of [99] for O(1)-sparse matrices in the

turnstile model can obviously be extended to k-sparse matrices. Its space requirement is

kO(p), and we believe that a straightforward extension of their analysis yields an exponent

greater than 4.75p

Extension III: Special Matrix Families. We give in Section 2.4.1 improved bounds for

special families of k-sparse matrices that may be of potential interest. We show that for

Laplacians of undirected graphs with degree at most k ∈ N, one can (1± ϵ)-approximate the

Schatten p-norm with space Op(ϵ
−2kp/2−1) by making p/2 passes over a row-order stream.

Additionally, for matrices whose non-zero entries lie in an interval [α, β] for α, β ∈ R+,

we can get nearly-tight upper bounds – our algorithm uses space Op(ϵ
−2kp/2−1(β/α)p/2−2),

which is nearly tight compared to the Ω(kp/2−2) multi-pass lower bound given in [23] where

α = β = 1.

Schatten 4-norm. We show in Section 2.7 a simple one-pass algorithm for (1 ± ϵ)-

approximating the Schatten 4-norm of any matrix (not necessarily sparse) given in a row-

order stream, using only Õp(ϵ
−2) words of space. This improves a previous Õp(ϵ

−2k) bound

from [23].
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2.1.3 Technical Overview

Upper Bounds. We design an estimator that is inspired by the importance sampling

framework and uses multiple passes over the data to implement the estimator. To the best

of the our knowledge, this is the first algorithm for computing the Schatten p-norm in data

streams that uses an adaptive sampling approach, i.e. the probability space of the algorithm’s

sampling in a given pass of the data is affected by the algorithm’s decisions in the previous

pass.

For an integer p ∈ 2Z≥1 and q := p/2, the Schatten p-norm for a matrix A ∈ Rn×n,

denoted by ∥A∥pSp
, can be expressed as

∥A∥pSp
= tr((AA⊤)q) =

∑
i1,...,iq∈[n]

⟨ai1 , ai2⟩⟨ai2 , ai3⟩ . . . ⟨aiq , ai1⟩ (2.1)

where ai is the ith row of matrix A.

The Schatten p-norm can be interpreted using (2.1) as a sum over cycles of q inner-

products (which we refer to informally as cycles) between rows of A. We assign each cycle

in the above expression to one of the rows participating in that cycle. Hence, the Schatten

p-norm can be expressed as a sum
∑n

i=1 zi where zi is the cumulative weight of all the cycles

assigned to row i.

Our algorithm starts by sampling a row i ∈ [n] with probability proportional to the

heaviest cycle assigned to row i (i.e., largest contribution to zi). In the following p/4 stages,

it samples one cycle assigned to i with probability proportional to the weight of the cycle.

Since the rows and columns are sparse, each row cannot participate in “too many” cycles

(because it is orthogonal to any row with a disjoint support). Specifically, we show that

the number of cycles assigned to each row i is only a function of k and p. It follows that
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sampling the first row with probability proportional to the heaviest contributing cycle is a

good approximation (up to a factor depending only on k and p) to zi, the actual contribution

of row i to
∑

i∈[n] zi = ∥A∥
p
Sp

.

The space complexity of sampling a row with probability proportional to its heaviest

contributing cycle depends on the assigning process. A natural assigning is to assign every

cycle to the row with largest l2-norm participating in that cycle (breaking ties arbitrarily).

Notice then that, by the Cauchy-Schwarz inequality, the heaviest contributing cycle to row

i is simply ∥ai∥p2.

This estimator can be implemented in the row-order model easily by using weighted

reservoir sampling [21, 151], as shown in Section 2.4.1. However, implementing it in turn-

stile streams is more challenging (see Section 2.4.2). Using approximate Lp-samplers pre-

sented in [112], we build an approximate cascaded Lp,2-norm1 sampler, to sample rows i with

probability proportional to ∥ai∥p2. Additionally, we use the Count-Sketch data structure to

recover rows and sample cycles once we have sampled the first, “seed” row. This allows us

to implement the estimator in turnstile data streams with an additional Õ(ϵ−O(p)n1−2/p) fac-

tor in the space complexity attributed to the approximate cascaded Lp,2-norm sampler and

an additional Op(k
3p/2−3) factor that comes from approximating the sampling probabilities

(compared to the row-order in which the sampling probabilities can be recovered exactly).

In Section 2.5 we generalize the design of the importance sampling estimator. Instead

of assigning every cycle to a single row that appears in it, every cycle is mapped to s rows

that participate in it, for parameter s ∈ N. These s rows split the cycle into roughly q
s

segments such that each of these s rows participates in a segment where it is the heaviest’

row (by l2-norm). The algorithm samples s “seed" rows and then computes all the cycles

(or alternatively samples one cycle) that are assigned to these s rows. Since the length of

1The Lp,2-norm of a matrix A ∈ Rn×m for p ≥ 0 is
(∑n

i=1 ∥ai∥
p
2

)1/p.
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each of the segments reduces linearly with s, one can compute these cycles with fewer passes.

However, the algorithm needs to sample more indices in order to ensure that each cycle has a

sufficiently large probability of being “hit”. This tension leads to a trade-off between passes

and space.

Lower Bounds. We obtain an Ω(n1−4/⌊p⌋4) bits lower bound for any algorithm that esti-

mates the Schatten p-norm in one-pass of the stream for even p values. Our proof analyzes

for even p values a construction presented in [99], which is based on a reduction from the

Boolean Hidden Hypermatching problem. This lower bound holds even if the input matrix

is promised to be O(1)-sparse.

2.1.4 Previous and Related Work

The bilinear sketching algorithm in [102] was the first non-trivial algorithm for Schatten

p-norm estimation in turnstile streams. It requires only one-pass over the data and uses

O(ϵ−2n2−4/p) words of space.2 Their algorithm uses O(ε−2) independent G1AG
⊤
2 sketches,

where G1, G2 ∈ Rt×n are matrices with i.i.d. Gaussian entries and t = O(n1−2/p).

Inspired by this sketch, [23] gave an almost quadratic improvement in the space com-

plexity if the algorithm is allowed to make multiple passes over the data. Their estimator

uses matrices G2, . . . , Gp ∈ Rt×n with i.i.d. Gaussian entries and Gaussian vector g1 ∈ Rn to

output g⊤1 AG
⊤
2 G2A . . . GpAg1. This estimate can be constructed in p/2 passes of the data

and requires O(ε−2) independent copies each using only t = O(n1− 1
p−1 ) space.

Restricting the input matrix to be O(1)-sparse allows for quadratic improvement in

the space complexity of one-pass algorithms as shown in [99]. They show that sampling

2They also showed a lower bound of Ω(n2−4/p) for the dimension of bilinear sketching for approximating
∥A∥pSp

for all p ≥ 2.
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O(n1−2/p) rows and storing them approximately using small space (since each row is sparse)

is sufficient to (1 + ϵ)-approximate the Schatten p-norm by exploiting the fact that rows

cannot “interact” with one another “too much” because of the sparsity restriction.

If we restrict the data stream to be row-order, then we can reduce the dependence on p

in all the above algorithms by a factor of 2. As noted in [23], since A⊤A =
∑

i aia
⊤
i (where

ai is the ith row of A) one can apply the above algorithms to A⊤A instead of A by updating

it with the outer product of every row with itself. Since ∥A⊤A∥p/2Sp/2
= ∥A∥pSp

(for even p

values), the output is as desired and the dependence on p reduces by a factor of 2.

Lower Bounds. Every t-pass algorithm designed for turnstile streams requires Ω(n1−2/p/t)

bits, which follows by injecting the Fp-moment problem (see [68, 85]) into the diagonal

elements. Li and Woodruff [99] showed that restricting the algorithm to a single pass over

the turnstile stream, leads to a lower bound Ω(n1−ε) bits for every fixed ε > 0 and p /∈ 2Z≥2,

even if the input matrix is O(1)-sparse.3 Later [23] proved that Ω(n1−ε) bits are required

for p /∈ 2Z≥2 even in row-order streams. In addition, they showed (Theorem 5.4 in Arxiv

version) that t passes over row-order streams require space Ω(n1−4/p/t) bits, however these

matrices are actually Ω(n2/p)-sparse (and not O(1)-sparse as may be understood from Table

2 therein). A simple adaptation of that result yields an Ω(kp/2−2/t) space lower bound for

k-sparse input matrices (k ≤ n2/p).

2.2 Notation and Preliminaries

The following useful fact comparing the lengths of the rows of A and its Schatten p-norm is

proved in Appendix A.1.
3They also showed that for p ∈ 2Z≥2, single-pass algorithms require Ω(n1−2/p) bits even if all non-zeros

in the input matrix are constants.
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Fact 2.2.1. Let matrix A ∈ Rn×n have rows {ai}i∈[n] and let t ≥ 1. Then
∑

i∈[n] ∥ai∥2t2 ≤

∥A∥2tS2t
.

Importance Sampling. Our main algorithmic technique is inspired by the importance

sampling framework, as formulated by the following theorem, proved in Appendix A.2.

Theorem 2.2.2 (Importance Sampling). Let z =
∑

i∈[n] zi ≥ 0 be a sum of n reals. Let the

random variable Ẑ be an estimator computed by sampling a single index i ∈ [n] according

to the probability distribution given by {τi}ni=1 and setting Ẑ ← zi
τi

. If for some parameter

λ ≥ 1, each τi ≥ |zi|
λ·z , then

E[Ẑ] = z and V ar(Ẑ) ≤ (λz)2.

Families of Matrices. We define two families of matrices that are of special interest.

• Let Ln ⊆ Zn×n be the family of Laplacian matrices of undirected graphs G([n], E)

with positive edge-weights {wuv > 0 : uv ∈ E}.

• Given positive constants α ≤ β, let Cm×n
α,β ⊆ Rm×n be the family of matrices C such

that every entry Ci,j is either zero or in the range [α, β]. For the vector case (i.e.

n = 1) we may write Cmα,β.

2.3 An Estimator for Schatten p-Norm for p ∈ 2Z≥2

This section introduces our importance sampling estimator for Schatten p-norms. We begin

in Section 2.3.1 with manipulating expression (2.1) for the Schatten p-norm by assigning

every summand, i.e. a cycle of p/2 inner products, to its heaviest participating row, see
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(2.4). We then use this new expression in Section 2.3.2 to give an importance sampling

estimator. In Section 2.3.3 we prove several lemmas, referred to as projection lemmas, which

are key to our analysis in Section 2.3.4.

2.3.1 Preliminaries

Fix a matrix A ∈ Rn×n and p ∈ 2Z≥2. For a row ai, we define the set of its neighboring rows

N(i) := {l ∈ [n] : supp(ai) ∩ supp(al) ̸= ∅}. In addition, we denote the set of neighboring

rows of aj that have smaller length than row ai

N i
S(j) := {l ∈ N(j) : ∥al∥2 ≤ ∥ai∥2}.

Building on this, we intorduce notation for certain “paths” of rows. Fixing some row indices

i, i1 ∈ [n] and an integer t ≥ 2, we then define

Γ(i1, t) :=
{
(i1, . . . , it) : i2 ∈ N(i1), . . . , it ∈ N(it−1)

}
,

Γi
S(i1, t) :=

{
(i1, . . . , it) : i2 ∈ N i

S(i1), . . . , it ∈ N i
S(it−1)

}
.

We further define the weights of “paths” of inner products: given an integer t ≥ 2 and

indices i1, . . . , it ∈ [n], let

σ(i1, . . . , it) := ⟨ai1 , ai2⟩⟨ai2 , ai3⟩ . . . ⟨ait−1 , ait⟩.

Recall from (2.1) that the Schatten p-norm of A ∈ Rn×n can be expressed in terms of

the product of inner products of the rows of A. Using the above notation we manipulate it
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as follows.

∥A∥pSp
= tr

(
(AA⊤)q

)
=

∑
i1,...,iq∈[n]

σ(i1, . . . , iq, i1) (2.2)

=
∑
i1

∑
(i1,...,iq−1)
∈Γ(i1,q−1)

∑
iq∈N(i1)

σ(i1, . . . , iq, i1) (2.3)

=
∑
i1

∑
(i1,...,iq−1)

∈Γi1
S (i1,q−1)

∑
iq∈N

i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq, i1) (2.4)

where 1 ≤ c(i1, . . . , iq) ≤ q is the number of times the sequence (i1, . . . , iq, i1) or a cyclic

shift of the sequence appears in Equation (2.3).

2.3.2 The Estimator

Our estimator is an importance sampling estimator for the quantity in (2.4). To define it,

we need the following quantities:

S :=
⋃
i∈[n]

Γi
S(i, q − 1)

z(i1,...,iq−1) :=
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq)⟨aiq , ai1⟩ ∀(i1, . . . , iq−1) ∈ S

z :=
∑

(i1,...,iq−1)∈S

z(i1,...,iq−1) = ∥A∥
p
Sp

by Equation (2.4).

Our importance sampling estimator, for the sum z, samples quantities z(i1,...,iq−1) indexed

by (i1, . . . , iq−1) ∈ S in q− 1 steps. In the first step, it samples row i1 ∈ [n] with probability
∥ai1∥

p
2∑

j ∥aj∥
p
2
. In each step 2 ≤ t ≤ q − 1, conditioned on sampling it−1 in step t − 1 it samples
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row it ∈ N i1
S (it−1) with probability

pi1it−1
(it) :=

|⟨ait−1 , ait⟩|∑
l∈N i1

S (it−1)
|⟨ait−1 , al⟩|

.

Overall, a sequence (i1, . . . , iq−1) ∈ S is sampled with probability

τ(i1,...,iq−1) =
∥ai1∥

p
2∑

j ∥aj∥
p
2

q−1∏
t=2

pi1it−1
(it),

and the output estimator is

Y (A) :=
1

τ(i1,...,iq−1)

· z(i1,...,iq−1).

2.3.3 Projection Lemmas

To analyze the estimator Y (A), we need a few lemmas, which we call projection lemmas, for

sparse matrices. We start with two lemmas for sparse matrices, followed by two lemmas for

more specialized cases.

Lemma 2.3.1. For every k-sparse matrix B ∈ Rn×k with rows b1, . . . , bn and vector x ∈ Rk

such that ∥x∥2 ≥ ∥bi∥2 for all i ∈ [n], we have that

∥Bx∥1
∥x∥22

=
n∑

i=1

|⟨x, bi⟩|
∥x∥22

≤ k
√
k.

Proof. For a vector y ∈ Rk and S ⊆ [k], let y|S to be the restriction of y onto its indices

corresponding to set S.

For all i ∈ [n], by the Cauchy-Schwarz inequality, ⟨x, bi⟩ = ⟨x| supp(bi), bi⟩≤ ∥x| supp(bi)∥2∥bi∥2.

25



Hence,

n∑
i=1

|⟨x, bi⟩|
∥x∥22

≤
n∑

i=1

∥x| supp(bi)∥2∥bi∥2
∥x∥22

≤
n∑

i=1

∥x| supp(bi)∥2
∥x∥2

≤
n∑

i=1

∥x| supp(bi)∥1
∥x∥2

≤ k∥x∥1
∥x∥2

,

where the last inequality follows from the sparsity of B (every column index is in supp(bi)

for at most k of the rows bi). The lemma now follows by a simple application of the Cauchy-

Schwarz inequality.

We need another, similar, lemma in order to bound the variance.

Lemma 2.3.2. For every k-sparse matrix B ∈ Rn×k with rows b1, . . . , bn and a vector x ∈ Rk

such that ∥x∥2 ≥ ∥bi∥2 for all i ∈ [n], we have that

∥Bx∥22
∥x∥42

=
n∑

i=1

⟨x, bi⟩2

∥x∥42
≤ k.

Proof. Following similar steps as that of Lemma 2.3.1,

n∑
i=1

⟨x, bi⟩2

∥x∥42
≤

n∑
i=1

∥x| supp(bi)∥22
∥x∥22

≤ k,

where again the last inequality follows from the sparsity of B.

The next two lemmas present bounds that improve over Lemma 2.3.1 in two special

cases, when the k-sparse matrix is a graph Laplacian, and when all its non-zero entries come

from a bounded range.

Lemma 2.3.3. Let G = ([n], E) be an undirected graph with positive edge weights {wuv}uv∈E.

Let k be its maximum (unweighted) degree, and let L(G) ∈ Rn×n be its Laplacian matrix with

rows l1, . . . , ln. Given u ∈ [n], let the matrix Bu consist of all the rows lv where ∥lu∥2 ≥ ∥lv∥2,
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and interpret Bu also as a set of rows. Then,

∥Bulu∥1
∥lu∥22

=
∑
lv∈Bu

|⟨lu, lv⟩|
∥lu∥22

≤ 2k.

(Trivially, we can also omit from Bu rows where ⟨lu, lv⟩ = 0.)

Proof. The main idea is that the additional matrix structure implies ∥lu∥1 ≤ 2∥lu∥2, which

is better than what follows from the Cauchy-Schwarz inequality. Indeed, ∥lu∥22 =
(
−∑

t∈N(u)wut

)2
+
∑

t∈N(u) w
2
ut ≥

(∑
t∈N(u) wut

)2
=
(
1
2
∥lu∥1

)2. Now using this inequality in the

proof of Lemma 2.3.1, we have

∥Bulu∥1
∥lu∥22

≤ k∥lu∥1
∥lu∥2

≤ 2k.

Lemma 2.3.4. For positive constants α ≤ β and a k-sparse matrix B ∈ Cn×k
α,β with rows

b1, . . . , bn and a vector x ∈ Ckα,β such that ∥x∥2 ≥ ∥bi∥2 for all i ∈ [n], we have that

∥Bx∥1
∥x∥22

=
n∑

i=1

|⟨x, bi⟩|
∥x∥22

≤ k
β

α
.

Proof. By a direct calculation using the sparsity of B,

n∑
i=1

|⟨x, bi⟩|
∥x∥22

≤
k∑

j=1

|xj| · βk
α∥x∥1

= k
β

α
.
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2.3.4 Analyzing the Estimator

We now prove that the importance sampling estimator Y (A) given in Section 2.3.2 is an

unbiased estimator with a small variance. In addition to analyzing the estimator for all

k-sparse matrices, we provide in Theorem 2.3.6 improved bounds for two special families

of k-sparse matrices: (i) Laplacians of undirected graphs and (ii) matrices whose non-zero

entries lie in an interval [α, β] for parameters 0 < α ≤ β.

Theorem 2.3.5. For every p ∈ 2Z≥2 and a k-sparse matrix A ∈ Rn×n, the estimator Y (A)

given in Section 2.3.2 satisfies E[Y (A)] = ∥A∥pSp
and V ar(Y (A)) ≤ Op(k

3p
2
−4)∥A∥2pSp

.

Proof. We will use the importance sampling framework of Theorem 2.2.2. In order to do so

we must first argue that the values τ(i1,...,iq−1) for (i1, . . . , iq−1) ∈ S indeed form a probability

distribution. It is easy to see that the probabilities of sampling the first row form a distribu-

tion over [n]. Similarly, for every 2 ≤ t ≤ q− 1, the values pi1it−1
(·) indeed form a probability

distribution over the rows in N i1
S (it−1). The argument for τ(i1,...,iq−1) follows by the law of

total probability.

Per Theorem 2.2.2, it is sufficient to prove that for all (i1, . . . , iq−1) ∈ S,

1

τ(i1,...,iq−1)

·
∣∣z(i1,...,iq−1)

∣∣ ≤ Op(k
3
4
p−2)z (2.5)

Fix a sequence of indices (i1, . . . , iq−1) ∈ S and let ζ =

∣∣∣z(i1,...,iq−1)

∣∣∣
τ(i1,...,iq−1)

. Inequality (2.5) can

be shown as follows,

ζ =

∑
j ∥aj∥

p
2

∥ai1∥
p
2

q−1∏
t=2

1

pi1it−1
(it)

∣∣∣∣∣∣∣
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq)⟨aiq , ai1⟩

∣∣∣∣∣∣∣
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≤
∑

j ∥aj∥
p
2

∥ai1∥
p
2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|⟨ait−1 , al⟩|

|σ(i1, . . . , iq−1)|
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)
∣∣σ(i1, . . . , iq)⟨aiq , ai1⟩∣∣

=

∑
j ∥aj∥

p
2

∥ai1∥
p
2

q−1∏
t=2

∑
l∈N i1

S (it−1)

|⟨ait−1 , al⟩|

 ∑
iq∈N

i1
S (i1)

c(i1, . . . , iq)
∣∣⟨aiq−1 , aiq⟩⟨aiq , ai1⟩

∣∣
By Young’s Inequality for products of numbers and the bound on c(i1, . . . , iq),

≤ q

2

∑
j ∥aj∥

p
2

∥ai1∥
p
2

q−1∏
t=2

∑
l∈N i1

S (it−1)

|⟨ait−1 , al⟩|


 ∑

iq∈N
i1
S (i1)

⟨aiq−1 , aiq⟩2 + ⟨aiq , ai1⟩2


=

q

2

∑
j

∥aj∥p2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|⟨ait−1 , al⟩|

∥ai1∥
p−4
2


 ∑

iq∈N
i1
S (i1)

⟨aiq−1 , aiq⟩2 + ⟨aiq , ai1⟩2

∥ai1∥42


By applying Lemma 2.3.2 to the two inner-most summations and the fact that ∥aiq−1∥2 ≤

∥ai1∥2,

≤ qk ·
∑
j

∥aj∥p2

∏q−1
t=2

∑
l∈N i1

S (it−1)
|⟨ait−1 , al⟩|

∥ai1∥
p−4
2


By applying Lemma 2.3.1 and the fact that ∥ait−1∥2 ≤ ∥ai1∥2 for any 2 ≤ t ≤ q − 1,

≤ qk
∑
j

∥aj∥p2

q−1∏
t=2

k
√
k

 = qk
3p
4
−2
∑
i

∥ai∥p2 ≤
pk

3p
4
−2

2
∥A∥pSp

where the last inequality follows from Fact 2.2.1.

Theorem 2.3.6. For every p ∈ 2Z≥2 and a k-sparse Laplacian matrix A ∈ Ln, the estimator

Y (A) given in Section 2.3.2 satisfies V ar(Y (A)) ≤ Op(k
p/2−1)∥A∥2pSp

. If instead the k-sparse

matrix is A ∈ Cn×n
α,β for some 0 < α ≤ β, then V ar(Y (A)) ≤ Op(k

p/2−2
(
β/α

)p/2−2
)∥A∥2pSp

.
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Proof. The bound for Ln (Laplacians) follows the above proof of Theorem 2.3.5 but bounding

the summations using Lemma 2.3.3 instead of Lemma 2.3.1.

The bound for Cn×n
α,β uses a special case of the importance sampling lemma. Using the

notation from Theorem 2.2.2, if zi > 0 for all i ∈ [n] then one can bound the variance by

λ(z)2. Using this, the proof follows the same argument as that of Theorem 2.3.5 but using

Lemma 2.3.4 to bound the summations bounded by Lemmas 2.3.2 and 2.3.1.

2.4 Implementing the Estimator: Row-Order and Turn-

stile Streams

In this section we show how to implement the importance sampling estimator defined in

Section 2.3.2 in two different streaming models, row-order and turnstile streams. We start

by stating two theorems that bound the space complexity of implementing the estimator in

row-order streams. The first one is our main result from the Introduction, and applies to all

k-sparse matrices. The second theorem considers special families of k-sparse matrices.

Theorem 2.1.1. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0 and a k-sparse matrix

A ∈ Rn×n streamed in row-order, makes ⌊p/4⌋+1 passes over the stream using Op(ϵ
−2k3p/2−3)

words of space, and outputs Ȳ (A) that (1 ± ϵ)-approximates ∥A∥pSp
with probability at least

2/3.

Theorem 2.4.1. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0, and a k-sparse ma-

trix A ∈ Ln streamed in row-order, makes ⌊p/4⌋+1 passes over the stream using Op(ϵ
−2kp/2)

words of space, and outputs Ȳ (A) that (1 ± ϵ)-approximates ∥A∥pSp
with probability at least

2/3. If instead the k-sparse matrix A is from Cn×n
α,β for 0 < α ≤ β, then the space bound is

Op(ϵ
−2kp/2−1

(
β/α

)p/2−2
) words.
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We also show that the estimator defined in Section 2.3.2 can be implemented in turnstile

streams in p/2 + 3 passes over the stream.

Theorem 2.4.2. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0 and a k-sparse

matrix A ∈ Rn×n streamed in a turnstile fashion, makes p/2+3 passes over the stream using

Op(k
3p−6n1− 2

p (ϵ−1 log n)O(p)) words of space, and outputs Ȳ (A) that (1 ± ϵ)-approximates

∥A∥pSp
with probability at least 2/3.

Outline. At a high level, the algorithms in all three theorems are similar, and compute

multiple copies of the estimator defined in Section 2.3.2 in parallel and output their average

(to reduce the variance). The algorithms differ in the number of copies, derived from The-

orems 2.3.5 and 2.3.6. Here, and in Sections 2.4.1 and 2.4.2, we describe how to implement

each estimator in p/2 stages, and in Section 2.4.3 we show how to reduce the number of

stages to ⌊p/4⌋ + 1. The first stage samples and stores a “seed” row which we will denote

by ai1 . Each subsequent stage 1 < t < q stores two values: a row index it (and row ait

itself) and an interim estimate Yt := σ(i1, . . . , it). The final stage q computes and outputs∑
iq∈N

i1
S (i1)

Yq−1 · ⟨aiq , ai1⟩c(i1, . . . , iq), where 1 ≤ c(i1, . . . , iq) ≤ q is as defined in (2.4).

The estimator is relatively easy to implement in row-order streams using p/2 passes

and Op(ϵ
−2k3p/2−3) words of space as shown in Section 2.4.1. In turnstile streams however,

the estimator is more difficult to implement. The technical roadblock is sampling the first,

“seed” row i1 ∈ [n] with probability proportional to ∥ai1∥
p
2∑

j ∥aj∥
p
2
. We use approximate samplers

for turnstile streams to get around this roadblock. For a vector x ∈ Rn updated in a turnstile

fashion, one can sample an index i with probability approximately xt
i/∥x∥tt for various t ∈

[0,∞). Such algorithms are called Lt-samplers and have been studied thoroughly, see e.g.

[43]. Approximate samplers introduce a multiplicative (relative) error and an additive error

in the sampling probability, which need to be accounted for when analyzing the algorithm
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that uses the sampler.

Thus, in order to sample rows proportional to the quantities we want, we build two

subroutines in the turnstile model:

1. Cascaded Lp,2-norm sampler for A, used to sample the seed row i1 with probabil-

ity approximately ∥ai1∥
p
2. It runs in 2-passes, has relative error O(ϵ) and uses space

Õp(ϵ
−2n1−2/p).

2. Compute inner products between a given row and its neighbors in space Õ(k2).

Using the two subroutines we can implement the estimator in Section 2.3.2 in p + 1 passes

of the stream in space Op(k
3p−6n1−2/p(ϵ−1 log n)O(p)). The additional Õ(n1−2/p) space com-

plexity factor is introduced by the approximate Lp,2-sampler. We remark that this factor is

actually unavoidable for algorithms that compute ∥A∥pSp
in the turnstile model, since there is

an Ω(n1−2/p) lower bound for computing the lp-norm of vectors in Rn (in turnstile streams),

even if the algorithm is allowed multiple passes. The additional O(k3p/2−3) factor in the

space complexity for turnstile streams compared to row-order streams is due to the bias

introduced in estimating the sampling probability of the first, “seed” row.

As mentioned earlier, a slightly improved version runs in ⌊p/4⌋ + 1 and p/2 + 3 passes

for row-order and turnstile streams respectively, with the same space complexities (up to

constant factors). The idea is to build two parallel paths from the same seed row and

eventually “stitch” the two into one cycle.

2.4.1 Row-Order Streams

In this section we show how to easily implement the estimator defined in Section 2.3.2 in

q = p/2 passes over a row-order stream, i.e. a sligthly weaker version of Theorem 2.1.1.

32



As mentioned, in Section 2.4.3 we explain how to reduce the number of passes to ⌊p/4⌋+ 1

using a small adjustment to the algorithm. Algorithm 1, computes multiple copies of the

estimator in parallel using space O(k) for each copy.

Algorithm 1 Algorithm for Schatten p-Norm of k-Sparse Matrices for p ∈ 2Z≥2 in Row-

Order Streams
Input: A ∈ Rn×n streamed in row-order, p ∈ 2Z≥2, ϵ > 0, m ∈ Z+.

1: in parallel m times do ▷ Each copy is a “walk”

2: i1, . . . , iq ← 0, Y1, . . . , Yq ← 0

3: in pass 1 do

4: sample one row i1 ∈ [n] with probability ∥ai1∥
p
2∑

j ∥aj∥
p
2

▷ Using Reservoir Sampling

5: Y1 ←
∑

j ∥aj∥
p
2

∥ai∥p2

6:

7: in pass 2 ≤ t ≤ q − 1 do

8: sample one row it ∈ [n] with probability pi1it−1
(i) ▷ As defined in Section 2.3.2

9: Yt ← Yt−1 ·
⟨ait−1

,ait ⟩

p
i1
it−1

(i)

10:

11: in pass q do

12: compute Yq ← Yq−1

∑
iq∈N

i1
S (i1)
⟨aiq−1 , aiq⟩⟨aiq , ai1⟩c(i1, . . . , iq)

13:

14:

15: return average of the m copies of Yq

Proof of Theorem 2.1.1 (version with p/2 passes). Algorithm 1 computes the estimator de-

fined in Section 2.3.2 m times in parallel and outputs the average which we will denote by

Ȳ (A). Since the variance of the estimator is at most Cpk
3p
2
−4 as per Theorem 2.3.5, by
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setting m = Ck
3p
2 −4

ϵ2
and the constant C appropriately, the guarantee on the estimate follows

by an application of Chebyshev’s Inequality to Ȳ (A).

In pass t, each instance of the m parallel instances store the row ait along with other

estimates that can be stored in Op(1) words of space. Thus the total space complexity of

the algorithm is mk = Op(ϵ
−2k

3p
2
−3) words.

The proof of Theorem 2.4.1 (version with p/2 passes) follows the above by adjusting m

according to Theorem 2.3.6.

2.4.2 Turnstile Streams

Preliminaries for Approximate Sampling

We define approximate samplers which we will use in turnstile streams to implement our

estimator. Approximate Lp samplers have been studied extensively, see e.g. [43].

Definition 2.4.3 (Approximate Lt Sampler). Let x ∈ Rn be a vector and t ≥ 0. An

approximate Lt sampler with relative error ϵ, additive error ∆, and success probability 1− δ

is an algorithm that outputs each index i ∈ [n] with probability

pi ∈ (1± ϵ)
|xi|t

∥x∥tt
±∆,

and with probability δ the sampler is allowed to output FAIL.

If an approximate sampler has no relative error and its additive error is less than n−C ,

for arbitrarily large constant C > 0, then it is referred to as an exact Lp-sampler.

Generalizing Lp-samplers, we define approximate Lp,q-samplers for matrices.
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Definition 2.4.4 (Weak Approximate Lt,q Sampler). Let t, q ≥ 0 be constants and A ∈

Rn×m be a matrix with rows a1, . . . , an. An approximate Lt,q sampler with relative error

ϵ, additive error ∆, and success probability 1 − δ is an algorithm that, conditioned on

succeeding, outputs each index i ∈ [n] with probability

pi ∈ (1± ϵ)
∥ai∥tq∑

j∈[n] ∥aj∥tq
±∆,

and on failing, which occurs with probability δ, outputs any index.

We draw the attention of the reader to the success condition of the Lp,q sampler; unlike

for Lp samplers, the above definition is a weaker guarantee but is sufficient for our purpose

since we can absorb the probability of failure for the sampler into the failure probability of

the Schatten p-norm algorithm.

We recall some properties of higher powers of Gaussian distributions which we will use

later in the analysis of sampling subroutines that we build. First, we give the higher moments

of mean zero Gaussian random variables.

Fact 2.4.5. For t ≥ 0, r ∈ 2Z≥1 and a random variable X ∼ N (0, t2), we have

E[|X|r] = tr(r − 1)!!.

We state a concentration property for polynomial functions of independent Gaussian

(and Rademacher) random variables called Hypercontractivity Inequalities. For an intro-

duction to the theory of hypercontractivity, see e.g. Chapter 9 of [125].

Proposition 2.4.6 (Hypercontractivity Concentration Inequality, Theorem 1.9 [135]). Con-

sider a degree d polynomial f(Y ) = f(Y1, . . . , Yn) of independent centered Gaussian or
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Rademacher random variables Y1, . . . , Yn. Denote the variance σ2 = V ar(f(Y )), then,

∀λ ≥ 0, Pr[
∣∣f(Y )− E[f(Y )]

∣∣ ≥ λ] ≤ e2 exp

−( λ2

R · σ2

) 1
d


where R = R(d) > 0 depends only on d.

Weak Sampler for Cascaded Norm Lp,2

Before giving our construction for approximate Lp,2 samplers in the turnstile model (Theorem

2.4.8), we recall some core results for Lp samplers that will be the algorithmic workhorse of

our subroutine for Lp,2 sampling.

One can construct algorithms for approximate Lp samplers in various computational

models. We look specifically at Lp samplers in the turnstile streaming model. The following

algorithmic guarantees exist for approximate Lp samplers of vectors in turnstile streams.

Theorem 2.4.7 (Theorem 1.2 in [112]). For δ > 0 and p ∈ 2Z+, there exists an 0-relative-

error Lp-sampler in turnstile streams, in 2-passes, with probability of outputting FAIL at

most n−C where C > 0 is an arbitrarily large constant. The algorithm uses Op(n
1−2/p logO(p) n)

space. 4

For a given vector x ∈ Rn whose entries are streamed in a turnstile fashion, we will

denote Lp-Sampler(x, δ) to be the output of the algorithm in Theorem 2.4.7 with failure

probability at most δ. We will use this algorithm in turnstile streams for p ≥ 2 to give an

O(ϵ) relative error Lp,2 sampler and failure probability at most δ for any given δ > 0. The

algorithm is fairly simple and is described in Algorithm 2.

4The original theorem statement in the paper is for p ∈ [0, 2] but it is well-known among experts that
the result extends to p > 2.
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Algorithm 2 Approximate Lp,2 Sampling Algorithm in Turnstile Streams
INPUT: A ∈ Rn×n as a turnstile stream, p ∈ Z≥2, δ̂ ∈ (0, 1), ϵ > 0.

1: Set Ĉp > 0, m← Ĉplog
p n

ϵ2
▷ Ĉp depends only on p

2: construct G ∈ Rn×m, with i.i.d standard Gaussian entries ▷ drawn pseudorandomly

3: compute matrix X ← 1
(p−1)!!

· AG

4: (i, j)← Lp-Sampler(x, δ̂) ▷ where x ∈ Rn2 is the “flattened” version of X

5: return i if Lp-sampler didn’t output FAIL otherwise return any index

The matrix X, defined on line 3 in the above algorithm, can be computed “on the fly”

given updates to A in the stream.

We then give the following theorem for approximate Lp,2 sampling in turnstile streams

by arguing for the vector x defined in Algorithm 2, the average of the pth power of the entries

corresponding to row i is tightly concentrated around ∥ai∥p2.

Theorem 2.4.8. For every ϵ, C > 0, δ ∈ (0, 1) and p ∈ 2Z≥2, Algorithm 2 is an O(ϵ)

relative error and O(n−C) additive error Lp,2 weak sampler in turnstile streams with failure

probability at most δ. The algorithm uses Op(n
1−2/pϵ−2 log(1

δ
) logO(p)(n)) words of space.

Proof. For a fixed i ∈ [n], notice that xi,1, . . . , xi,m are independent and identically dis-

tributed as N
(
0,

∥ai∥22
((p−1)!!)2

)
. Using Fact 2.4.5, E[xp

i,j] = ∥ai∥p2 for all j ∈ [m] since p is

even.

Let i∗ be the output of Algorithm 2. From the guarantee for Lp-samplers by Theorem

2.4.7, conditioning on the Lp sampler succeeding, and setting the additive error sufficiently
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low, the probability that i∗ = i is

Pr[i∗ = i] =
m∑
j=1

xp
i,j

∥x∥pp
±O

(
n−C

)
.

We will first show that, for a fixed i ∈ [n], the quantity
∑m

j=1 x
p
i,j is tightly concentrated

around m∥ai∥p2 with high probability over the randomness of the Gaussian sketch.

Set the polynomial f : Rm → R on the random variables {xi,j}mj=1 to be f(xi,1, . . . , xi,m) =∑m
j=1 x

m
i,j. Since the random variables {xi,j}mj=1 are independent,

V ar(f(xi,1, . . . , xi,m)) = mV ar(xp
i,∗) = m∥ai∥2p2

(2p− 1)!!− ((p− 1)!!)2

((p− 1)!!)2

for even p > 2. Using this to apply the Hypercontractivity Concentration Inequality for

Gaussian random variables given in Proposition 2.4.6 gives us,

Pr[

∣∣∣∣∣∣
m∑
j=1

xp
i,j −m∥ai∥p2

∣∣∣∣∣∣ ≥ ϵm∥ai∥p2] ≤ e2 exp

−(ϵ2m

Cp

) 1
p


where Cp is a constant only dependent on p.

By setting Ĉp in Algorithm 2 appropriately, we can apply the the union bound over all

i ∈ [n] to obtain,

Pr[i∗ = i] =
(1±O(ϵ))∥ai∥p2

(1±O(ϵ))
∑n

l=1 ∥al∥
p
2

±O(n−C) for all i ∈ [n]

with probability at least 1− δ̂ − n−ĉ (where ĉ is dependent on Ĉp). Setting δ̂ appropriately

in Algorithm 2 gives us the theorem.
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Recovering Rows and Their Neighbors

We also give some subroutines to recover rows and their neighbors so that we can compute

inner-products between rows, sample neighbors and compute the probabilities for the esti-

mator. The algorithmic core for these subroutines will be sparse-recovery algorithms which

can be implemented using the Count-Sketch data structure described below.

Theorem 2.4.9 (Count-Sketch [28]). For all w, n ∈ Z+ and δ ∈ (0, 1), there is a randomized

linear function M : Rn ← Rs with S = O(w log(n/δ)) and a recovery algorithm A satisfying

the following. For input x ∈ Rn, algorithm A reads Mx and outputs a vector x̃ ∈ Rn such

that

∀x ∈ Rn, Pr[∥x− x̃∥∞ ≤
1√
w

min
x′:∥x′∥0=w

∥x− x′∥2] ≥ 1− δ.

Denote the output of a Count-Sketch algorithm on vector x ∈ Rn with parameter w ∈ Z+

and failure probability δ ≥ 0 to be Count-Sketchw(x, δ). Notice that if it is guaranteed

that x is k-sparse, i.e. ∥x∥0 ≤ k, then the output Count-Sketchk(x, δ) recovers the vector

x exactly with probability at least 1− δ because minx̃:∥x̃∥0=k ∥x− x̃∥2 = 0 for every k-sparse

vector x.

Reverting to our setting of k-sparse matrices in turnstile streams, given a target index

i ∈ [n], it is clear how to recover row ai using Õ(k) space using the Count-Sketch algorithm

stated. Given a row ai, we can recover the neighboring rows {aj : j ∈ N(i)} by running

Count-Sketchk(A∗,j, δ̃) for each j ∈ supp(ai) (where A∗,j corresponds to the jth column of

A). Since each column and row is k-sparse, with Õ(k2) space, we can recover the neighbors

of row ai given access to ai. In addition, by setting the failure probability to δ
k+1

in the

above calls to Count-Sketchk, our recovery subroutine will succeed with probability at

least 1− δ.
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Algorithm for Turnstile Streams

We are now ready to present the algorithm implementing the estimator stated in Section

2.3.2 for turnstile streams. We note that unlike in row-order streams, we cannot recover

the probability of sampling the first row exactly in turnstile streams. Since the output

probability of the samplers is approximate, it introduces some bias in the estimator which

we will have to bound. Therefore, the proof of correctness for this algorithm slightly deviates

from that given in Theorem 2.2.2 but uses the same underlying ideas.

Let us introduce notation for the subroutines we will need. Let Lp,2-Sampler(A, ϵ, δ)

denote the output of the approximate Lp,2 sampler defined in Algorithm 2 with relative error

ϵ, and failure probability δ. Additionally, we will need to estimate the cascaded norm Lp,2

of A in order to bias the quantity we sample in our importance sampling estimator. Denote

by Lp,2-NormEstimator(A, ϵ, δ) the output of an algorithm for estimating the Lp,2-norm

of A with relative error ϵ and failure probability δ, such as in Section 4 of [86].

We describe our algorithm for turnstile streams in Algorithm 3, which runs p+1 passes

over the data, i.e. a sligthly weaker version of Theorem 2.4.2. As mentioned, the number of

passes can be reduced to ⌊p/2⌋+ 3 using the extra insight of Section 2.4.3.
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Algorithm 3 Algorithm for Schatten p-norm of k-Sparse Matrices for p ∈ 2Z≥2 in Turnstile
Streams

Input: A ∈ Rn×n in a stream with turnstile updates, p ∈ 2Z≥2, ϵ > 0, m ∈ Z+.

1: in parallel m times do
2: i1, . . . , iq ← 0, Y1, . . . , Yq ← 0
3: in stage 1 do ▷ takes 3 passes
4: i1 ← Lp,2-Sampler(A, ϵ

k3p/4−2 ,
1

100
)

5: ãi1 ← Count-Sketchk(ai1 ,
1

100
)

6: D1 ← Lp,2-NormEstimator(A, ϵ, 1
100

)
7: Y1 ← D1

∥ãi1∥
p
2

8:
9: in stage 2 ≤ t ≤ q − 1 do ▷ each stage takes 2 passes

10: C̃t−1 ← {Count-Sketchk(A∗,j,
1

100kq
) : j ∈ supp(ãit−1)}

11: reconstruct rows R̃t−1 ← {rj : row j has support in C̃t−1 and ∥rj∥2 < ∥ãi1∥2}.
12: Dt ←

∑
j∈R̃t−1

⟨ãit−1 , rj⟩
13: sample row index it ∈ supp(R̃t−1) with probability ⟨ãit−1

,rit ⟩
Dt

14: ãit ← Count-Sketchk(ait ,
1

100q
)

15: Yt ← Yt−1 · Dt

⟨ãit−1
,ãit ⟩
· ⟨ãit−1 , ãit⟩

16:
17: in stage q do
18: C̃q−1 ← {Count-Sketchk(A∗,j,

1
100k

) : j ∈ supp(ãiq−1)}
19: reconstruct rows R̃q−1 ← {rj : row j has support in C̃q−1 and ∥rj∥2 < ∥ãi1∥2}.
20: compute

Yq ← Yq−1

∑
rj∈R̃q−1

⟨ãiq−1 , rj⟩⟨rj, ãi1⟩c(i1, . . . , iq−1, j)

21:
22:
23: return average of the m copies of Yq

Proof of Theorem 2.4.2 (version with p+ 1 passes). Recall that Count-Sketchk, from Sec-

tion 2.4.2, will recover all the entries of a k-sparse vector exactly with high probability. By

setting the failure probability of each call to Count-Sketchk to be sufficiently low, we can

apply a union bound over all executions and assume that the algorithm recovers all the rows
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denoted by ã and r.

Let us assume that the Lp-sampler and Count-Sketch routines succeed and argue that

taking the expectation over the randomness of the Gaussian sketch in the Lp,2-Sampler

algorithm, the Lp,2-NormEstimator and the importance sampling estimator gives us that

|E[Ȳ (A)]− ∥A∥pSp
| ≤ Op(ϵ)∥A∥pSp

.

Recall that the algorithm invokes an O
(

ϵ
k3p/4−2

)
relative error Lp,2-sampler in line 4.

Since the additive error is less than n−C for arbitrary C ≥ 0, we can simply absorb it in the

failure probability of the algorithm. We thus get,

E[Ȳ (A)] =
∑

(i1,...,iq−1)
∈S

(
1± O(ϵ)

k3p/4−2

)
∥ai1∥

p
2∑

j ∥aj∥
p
2

E[D1]

∥ai1∥
p
2

∑
iq∈N

i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq)

Since Lp,2-NormEstimator is an unbiased estimator for the Lp,2-norm, i.e. E[D1] =∑
j ∥aj∥

p
2, we get

∣∣∣E[Ȳ (A)]− ∥A∥pSp

∣∣∣ ≤ ∑
(i1,...,iq−1)

∈S

O(ϵ)

k3p/4−2

∣∣∣∣∣∣∣
∑

iq∈N
i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq)

∣∣∣∣∣∣∣
We can upper bound the second term as we did in bounding the variance of the estimator

in Theorem 2.2.2 to get
∣∣∣E[Ȳ (A)]− ∥A∥pSp

∣∣∣ ≤ Op(ϵ)∥A∥pSp

It is left to bound the variance of Ȳ (A). Again, we assume that the Lp-Sampler and

Count-Sketch routines succeed and recall that that for a sequence (i1, . . . , iq−1) ∈ S, we define

z(i1,...,iq−1) =
∑

iq∈N
i1
S (i1)

σ(i1, . . . , iq, i1)c(i1, . . . , iq). Given the guarantee of Lp,2 sampling in
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Theorem 2.4.8, the variance of the estimate Ȳ (A) is

V ar(Ȳ (A)) ≤ 1

m

∑
(i1,...,iq−1)

∈S

(1± O(ϵ)

k3p/4−2
)

1∑
j ∥aj∥

p
2

E[D2
1]

∥ai1∥
p
2

q−1∏
t=2

1

pi1it−1
(it)

(
z(i1,...,iq−1)

)2

By the accuracy guarantee of Lp,2-NormEstimator and Fact 2.2.1,

≤ 1

m

∑
(i1,...,iq−1)

∈S

(1±O(ϵ))
∥A∥pSp

∥ai1∥
p
2

q−1∏
t=2

1

pi1it−1
(it)

(
z(i1,...,iq−1)

)2

Bounding this identically as we did in Theorem 2.2.2 and setting m = Ck3p/2−4

ϵ2
give us

V ar(Ȳ (A)) ≤ Cpϵ∥A∥2pSp
where Cp is a constant dependent only on p.

The Lp,2-Sampler with O
(

ϵ
k3p/4−2

)
relative error takes space Õp(k

3p
2
−4n1− 2

p (ϵ−1 log n)O(p))

and the Lp,2-NormEstimator takes space Õp(n
1− 2

p (ϵ−1 log n)O(p)). In addition, storing

the rows recovered from Count-Sketch requires Õ(k2) space. Thus, the space complexity

of repeating the estimator m = Ck3p/2−4

ϵ2
times is Õp(k

3p−6n1− 2
p (ϵ−1 log n)O(p)). We note

that in stage 1, the sampler takes two passes, followed by another pass for Count-Sketch

and the norm estimator. The subsequent stages requires two passes each giving a total of

3 + 2(q − 1) = p+ 1 passes.

2.4.3 Fewer Passes

As mentioned earlier, we can slightly modify the way we implement the estimator from

Section 2.3.2 to reduce the number of passes that Algorithm 1 and Algorithm 3 make to ⌊p
4
⌋+

1 and p
2
+3, respectively. This is explained below and completes the proofs of Theorems 2.1.1,

2.4.1 and 2.4.2.

The idea is to sample each sequence (i1, . . . , iq) ∈ S in a different way albeit with the
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same probability. Assume for simplicity that p ≡ 0 (mod 4). After sampling the first row

i1 ∈ [n], we sample independently two “paths” of length p/4 − 1, each starting at i1, with

probabilities identical to the ones in the estimator. We then sum over the common neighbors

of the endpoints of the two paths, using each of them to complete a cycle of length p/2.

Formally, sample independently two sequences of rows (i1, l1, . . . , lq/2−1), (i1, j1, . . . , jq/2−1) ∈

Γi1
S (i1, q/2 − 1). Denote by r the sequence of rows (lq/2−1, . . . , l1, i1, j1, . . . , jq/2−1) then the

following estimator is equivalent to the estimator described in Section 2.3.2 (slightly abusing

the notation therein for concatenating two sequences of rows):

Y :=
1

τr

∑
m∈N i1

S (lq/2−1)

∩N i1
S (jq/2−1)

c(r, iq)σ(r)⟨alq/2−1
, am⟩⟨ajq/2−1

, am⟩.

It is easy to verify that this estimator is unbiased, and that its variance can be bounded using

the proof steps of Section 2.3.2. This estimator can be implemented algorithmically similarly

to the description in Sections 2.4.1 and 2.4.2 using less passes over the stream. Specifically,

the above approach decreases the number of “path” stages (i.e. all but the “seed” sampling

stage) by a factor of (roughly) 2, and the space complexity remains the same up to constant

factors. Therefore, we reduce the number of passes over the streams of Algorithm 1 and

Algorithm 3 to ⌊p
4
⌋+1 and p

2
+3, respectively. This concludes the proofs of Theorems 2.1.1,

2.4.1 and 2.4.2.

2.5 Pass-Space Trade-off

Very often streaming problems have a sharp transition in space complexity when comparing

a single pass to multiple passes over the data. However, it turns out that for the Schatten

p-norm of sparse matrices, the space dependence on the number of passes is smooth, allowing
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one to pick the desired pass-space trade-off. Specifically, for any parameter s ≥ 2, one can

(1±ϵ)-approximate the Schatten p-norm in ⌊ p
2(s+1)

⌋+1 passes using Op,s(ϵ
−3k2psn1− 1

s ) words

of space.

Recall the Schatten p-norm formulation of (2.4). This in can be interpreted as parti-

tioning the (contributing) length-q cycles according to their heaviest row, denoted here by

i1. Analogously, for any parameter s ∈ [2, p − 1], we split the cycle into s + 1 segments of

hop-distance roughly q
s+1

, and further partition the cycles according to the heaviest row in

each such segment. The idea is to “cover" a cycle by sampling s rows, where each sampled

row is the heaviest among its segment. More precisely, each sample “covers” its segment,

except for the heaviest row in the entire cycle that will “cover” two segments. Then, to

evaluate the entire cycle we need ⌊ q
s+1
⌋+1 passes. The total space needed by the algorithm

is Op,s(ϵ
−3k2psn1−1/s) words of space, mostly as it computes multiple copies of the estimator

(to reduce the variance), similarly to Section 2.4.

In the first subsection we focus on the case s = 2 and present a BFS-based algorithm,

followed by a brief explanation how to improve the dependence on k by replacing the BFS

with adaptive sampling as in the previous sections. In the second subsection we generalize

the result to any s ≥ 2.

2.5.1 The Basic Case s = 2 (⌊p6⌋+ 1 Passes)

As mentioned, (2.4) can be interpreted as considering only cycles that “start” from the

heaviest row of the cycle (by “rotating” the cycle). We suggest a variation on this idea. Given

a q-cycle “starting” at the heaviest row i, we identify the row j that is the heaviest among

the rows at least q/3 cycle-hops away from i. In other words, if the cycle is (i = i1, . . . , iq),

then j is the heaviest among (roughly) iq/3, . . . , i2q/3. Therefore, our aim is to sample rows i
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and j and then to connect four paths: two starting from i and two starting from j, each of

hop-distance at most q/3. As we don’t know in advance the hop-distance to row j, we store

all possible options and only later decide which paths to stich together into a cycle.

Formally, we augment the notation of paths presented in Section 2.3. For indices i, j, i1 ∈

[n] and integers t′ ≤ t′′ ≤ t, define

Γ
(i,j;t′,t′′)
S (i1, t) := (i1, . . . , iq) :


(i1, . . . , it′) ∈ Γi

S(i1, t
′),

(it′ , . . . , it′′) ∈ Γj
S(it′ , t

′′ − t′ + 1), and,

(it′′ , . . . , it) ∈ Γi
S(i

′′
t , t− t′′ + 1)

.

As we are actually interested in the special case where t′ = ⌊ q
3
⌋ + 1 and t′′ = q − ⌊ q

3
⌋, we

shall omit t′, t′′ from the superscript in this special case.

Recall that we focus on cycles in which i1 = i, i.e. the heaviest row is the starting of the

cycle. Furthermore, we want j = il for some l ∈ {⌊ q
3
⌋ + 2, . . . , q − ⌊ q

3
⌋}, i.e. j is part of the

cycle, and is at least ⌊ q
3
⌋ cycle-hops away from i. Accordingly, we can rewrite the Schatten

p-norm as

∥A∥pSp
=
∑
i,j

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i). (2.6)

We are now ready to present our estimator and an algorithm implementing it. In the

algorithm, instead of summing over all i, j ∈ [n], we sample two multisets I, J and do a BFS

of depth ⌊q/3⌋ from each i ∈ I and j ∈ J , and eventually enumerate over all cycles involving

these i, j as in (2.6).
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Algorithm 4 Two-Set based Algorithm for Schatten p-Norm of k-Sparse Matrices for p ∈
2Z≥2 in Row-Order Stream

Input: A ∈ Rn×n streamed in row-order, p ∈ 2Z≥2, ϵ > 0.

1: r ← O(ϵ−3q5/2k3p−6
√
n), Y ← 0.

2: in parallel 2r times do
3: in pass 1 do
4: sample a row i ∈ [n] with probability τi =

∥ai∥q2∑
m ∥am∥q2

▷ Using Reservoir Sampling
5:
6: in pass 2 ≤ t ≤ ⌊q/3⌋+ 1 do
7: store all rows of hop-distance at most t− 1 from i that have l2-norm smaller than

row i
8:
9:

10: let multisets I and J contain the first and last r samples (from line 4), respectively

11: for each (i, j) ∈ I × J such that
(

ϵ
qk2⌈q/2⌉

)3/p
∥ai∥2 ≤ ∥aj∥2 ≤ ∥ai∥2 do

Y +=
1

τi · τj

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i)

12: return Ȳ = 1
r2
Y

Theorem 2.5.1. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0 and a k-sparse

matrix A ∈ Rn×n that is streamed in row-order, makes ⌊p
6
⌋+ 1 passes over the stream using

at most Op(ϵ
−3k4p

√
n) words of space, and then outputs Ȳ (A) that (1 ± 2ϵ)-approximates

∥A∥pSp
with probability at least 2/3.

Before the proof, we state the following theorem, which can be viewed as a variant of

the Importance Sampling lemma (Theorem 2.2.2).

Lemma 2.5.2 (Two-Set Sampling). Let z =
∑

i,j∈[n] zi,j > 0 for n ≥ 1, and suppose the

matrix defined by {zi,j} is ∆-sparse.5 Let I, J ∈ [n] be two random multisets of size r,
5∆ can be viewed as an upper bound on the in-degrees and out-degrees of the directed graph defined by

edge weights zij on vertex set [n].
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where each of their 2r elements is chosen independently with replacement according to the

distribution (τl : l ∈ [n]). Consider the estimator

Y =
1

r2

∑
i∈I,j∈J

zi,j
τi · τj

.

If λ > 0 satisfies that for all i, j ∈ [n] both τi, τj ≥ 1
λ

√
|zi,j |
z

, then

E[Y ] = z and V ar(Y ) ≤

(
λ2

r2
+

2λ∆

r

)
z
∑
i,j∈[n]

|zi,j|. (2.7)

The proof of Lemma 2.5.2 is given in Appendix A.3. We now proceed to the proof of

Theorem 2.5.1, remarking that kO(p) factor can be improved by using the Projection Lemmas,

but for simplicity we use more straightforward arguments.

Proof of Theorem 2.5.1. First we remark that indeed in ⌊q/3⌋+1 passes all the needed rows

of a cycle are kept. For any cycle, row i needs to “cover" ⌊q/3⌋ + 1 + (q − (q − ⌊q/3⌋)) =

2⌊q/3⌋+1 rows (including itself), which indeed happens as we do a BFS of size ⌊q/3⌋. Row

j must cover at most q − ⌊q/3⌋ − (⌊q/3⌋ + 2) = q − 2⌊q/3⌋ − 2 rows, including itself. As

⌊q/3⌋+ 1 ≥ q − 2⌊q/3⌋ − 2, we indeed again cover all possibly needed rows in the ⌊q/3⌋+ 1

passes. We now go on to prove the approximation bounds. Let β :=
(

ϵ
qkp−2

)3/p
and define

for all i, j ∈ [n]

zi,j :=


∑

⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋
∑

(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i) if ∥aj∥2 ≤ ∥ai∥2;

0 otherwise.

Then, by Equation (2.6), z′ :=
∑

i,j zi,j = ∥A∥pSp
. Since line 11 in the algorithm considers
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only pairs (i, j) where ∥aj∥2
∥ai∥2 ∈ [β, 1], we further define

z :=
∑

i,j:
∥aj∥2
∥ai∥2

∈[β,1]

zi,j.

Let us show that the omitted terms do not contribute much to z′ = ∥A∥pSp
, and thus

the error introduced by omitting them is small. For simplicity assume q/3 ∈ N, then

∣∣z′ − z
∣∣ ≤∑

i

∑
j:

∥aj∥2
∥ai∥2

≤β

∣∣zi,j∣∣
≤
∑
i

∑
j:

∥aj∥2
∥ai∥2

≤β

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

c(i, i2, . . . , iq)
∣∣σ(i, i2, . . . , iq, i)∣∣

As c(i, i2, . . . , iq) ≤ q, and using the conditions on i and j we get

≤ q
∑
i

∑
j:

∥aj∥2
∥ai∥2

≤β

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

∥ai∥2p/32 ∥aj∥p/32

As each row has at most k2 “neighboring" rows,

≤ k2(q−1)qβp/3
∑
i

∥ai∥p2 = ϵ
∑
i

∥ai∥p2.

Therefore, using Fact 2.2.1, we conclude

|z − ∥A∥pSp
| ≤ ϵ∥A∥pSp

. (2.8)

We proceed to show that the standard deviation of our estimator is bounded by ϵz,

meaning that w.h.p Ȳ ∈ (1± ϵ)z, and together with (2.8) this yields Ȳ ∈ (1± 2ϵ)∥A∥pSp
. To
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this end, we want to use Lemma 2.5.2 and thus wish to show that

∑
i,j

|zi,j| ≤ 2qk2⌈q/2⌉z (2.9)

and that λ :=
√

2qkp−4 n
β2p/3 =

√
2q3/2k3p/2−4

√
n
ϵ

satisfies

|zi,j|
z
≤ λ2τ 2j ∀i, j ∈ [n]. (2.10)

meaning that . We remark that (2.10) is indeed sufficient, as τj ≤ τi, as otherwise zi,j = 0

and the inequality trivially holds.

To prove (2.9), we use similar arguments as above, together with (2.8),

∑
i,j

|zi,j| ≤ q ·
∑

i,j:
∥aj∥2
∥ai∥2

∈[β,1]

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

∥ai∥p2

≤ qkp−2
∑
i

∥ai∥p2

≤ 2qkp−2z.

To prove (2.10), fix i, j such that ∥aj∥
∥ai∥ ∈ [β, 1], then by similar arguments, together with

(2.8) and Fact 2.2.1,

|zi,j|
z
≤ 1

z

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

c(i, i2, . . . , iq)|σ(i, i2, . . . , iq, i)|

≤ 1

z

∑
⌊ q
3
⌋+2≤l≤q−⌊ q

3
⌋

∑
(i,i2,...,iq)

∈Γ(i,j)
S (i): il=j

q∥ai∥2p/32 ∥aj∥p/32

≤ qkp−4 ∥aj∥
p
2

β2p/3z
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≤ 2qkp−4 ∥aj∥p2
β2p/3∥A∥pSp

≤ 2qkp−4 ∥aj∥p2
β2p/3

∑
m ∥am∥

p
2

using norm properties (by applying ∥v∥q ≤ n
1
q
− 1

p∥v∥p to the vector v = (∥a1∥2, . . . , ∥an∥2)),

≤ qkp−4 ∥aj∥p2
β2p/3(

∑
m ∥am∥

q
2)

2/n

≤ 2qkp−4 n

β2p/3
· τ 2j .

We further note that for zi,j to be non-zero, row j must be at distance at most ⌈q/2⌉

from row i, and thus each row can participate in at most k2⌈q/2⌉ different non-zero zi,j, i.e.,

∆ ≤ kp/2−2. Combining all the above, we conclude that setting r = O(ϵ−2λ∆) · 2qkp−2 =

O(ϵ−3q5/2k3p−6
√
n) will give w.h.p a (1 ± 2ϵ)-approximation to the Schatten p-norm by

Chebyshev’s inequality.

As for each row in I ∪ J the algorithm stores neighborhoods of size O
(
(k2)q/3

)
, and

storing each row in the neighborhood takes O(k) words, there is an extra factor of kp/3+1.

Thus the total space is O(ϵ−3q5/2k10p/3−5
√
n) words.

Remark. As mentioned earlier, the BFS approach can be replaced with the adaptive sam-

pling approach from previous sections. For the first r samples (in I), the algorithm adaptively

samples two paths of hop-distance (roughly) q/3, similarly to Section 2.4.3. For each of the

last r samples (in J), the algorithm chooses ρ ∈ [q/3] uniformly at random (and indepen-

dently of all other steps), and adaptively samples a path of hop-distance ρ and a path of

hop-distance (roughly) q
3
− ρ. It then tries to “stitch" these paths to create q-cycles. The

bound on λ (i.e. (2.10)) increases by a factor of q/3 due to ρ (this can be viewed as replacing

the BFS with multiple random paths), but as the algorithm does not keep the entire neigh-
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borhoods, a kp/3 factor is shaved from the space complexity. This, together with a tighter

analysis, can improve the dependence on k in Theorem 2.5.1 to k19p/8+O(1).

2.5.2 General s (using ⌊ p
2(s+1)⌋+ 1 Passes)

We generalize the algorithm from the previous subsection, such that given some integer s ∈

[2, p−1], the algorithm samples in parallel in the first pass r ·s rows for r = Op,ϵ,s(k
4pn1−1/s),

where each “seed" row i is sampled with probability τi =
∥ai∥

p/s
2∑

m ∥am∥p/s2

. In the following passes

it runs a BFS of depth (roughly) q
s+1

, keeping all the shorter rows (in l2-norm) in the

neighborhood of each seed. The first r samples are denoted as multiset I, and the other

samples are split into s − 1 multisets of size r denoted as J1, . . . , Js−1. The algorithm then

considers s-tuples (i, j1, . . . , js−1) where i ∈ I and every row ju ∈ Ju has l2-norm in the range

(β′, 1) relative to that of row i, for β′ ≈
(

ϵ
sqkp

)(s+1)/p

. The estimator is formed by looking

at the eligible s-tuples, and for each such tuple adding the contributions of all the q-cycles

obtained by “stitching" paths of hop-distance (roughly) q
s+1

passing through these seeds, as

follows:

Y +=
1

τiτj1 · · · τjs−1

∑
q

s+1
≤l1≤ 2q

s+1

· · ·
∑

(s−1)q
s+1

≤ls−1≤ s·q
s+1

∑
(i,i2,...,iq)

∈Γ(i,j1,...,js−1)

S (i):
il1=j1,...,ils−1

=js−1

c(i, i2, . . . , iq)σ(i, i2, . . . , iq, i).

The algorithm’s final output is Ȳ = 1
rs
Y .

Theorem 2.5.3. There exists an algorithm that, given p ∈ 2Z≥2, ϵ > 0, an integer s ∈

[2, p− 1] and a k-sparse matrix A ∈ Rn×n streamed in row-order, makes ⌊ p
2(s+1)

⌋+ 1 passes

over the stream using Op

(
ϵ−3k2psn1− 1

s

)
words of space, and outputs Ȳ (A) that (1 ± 2ϵ)-

approximates ∥A∥pSp
with probability at least 2/3.
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Proof Sketch. The proof follows similar steps as the proof for s = 2. First, the error intro-

duced by taking only certain cycles changes, as now we miss cycles in which at least one

of the sampled ju is smaller than β′. However their total contribution can be bounded by

(s − 1)(β′)p/(s+1)qkp−2 < ϵ relative to ∥A∥pSp
. Next, an s-Set Sampling Lemma is proved

using the same arguments as the Two-Set Sampling Lemma. It asserts that the estimator

Y =
1

rs

∑
i∈I,j1∈J1,...,js−1∈Js−1

zi,j1,...,js−1

τiτj1 · · · τjs−1

is unbiased, and that if λ > 0 satisfies that for every i, j1, . . . , js−1 ∈ [n], all τi, τj1 , . . . , τjs−1 ≥
1
λ

(
|zi,j1,...,js−1

|
z

)1/s
, then

Var(Y ) ≤ O

((
∆+

λ

r

)s

−∆s

)
z

∑
i,j1,...,js−1∈[n]

|zi,j1,...,js−1|.

The proof for the inequality analogous to (2.9), which bounds the ratio between the

absolute sum of zi,j1,...,js−1 and z, is the same. To prove the bound λ (i.e. analogous to

(2.10)), we need to bound the shortest ju among rows (j1, . . . , js−1). To do so we first

bound all “seeds" except ju using row i, and then use the same arguments that result in

λ =
(
Cϵqk

p ns−1

(β′)2p/(s+1)

)1/s
for a suitable constant C dependent on ϵ. Finally, now each i can

have (s− 1)k2⌈q/2⌉ different (j1, . . . , js−1), i.e. ∆ ≤ (s− 1)kq+2. Picking r = O
(
ϵ−3s∆s−1λ

)
results in the desired approximation.

The space complexity analysis is as in the proof of Theorem 2.5.1, resulting in

O
(
ϵ−3(s− 1)s · q2+1/s · kp(s/2+11/6+1/s)+2s−O(1) · n1−1/s

)

words of space.
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2.6 Lower Bound for One-Pass Algorithms in the Row-

Order Model

We show a space lower bound of Ω(n1−4/⌊p⌋4) bits for one-pass algorithms and even p values

in the row-order model. Our main technical contribution is the analysis of even p values in a

reduction presented in [99], based on the Boolean Hidden Hypermatching [25, 150]. Although

this is not mentioned in [99], it can easily be verified from the proof of [99, Theorem 3] (stated

below as Theorem 2.6.1) that this reduction applies also to the row-order model.6 Our bound

is closely related to the Ω(n1−1/ε) bits lower bound for p /∈ 2Z, proved in [23], and is also

nearly tight with the upper bound from the same paper (see discussion at the end of this

section).

We first recall the definitions presented in [99]. Let Dm,l (for 0 ≤ l ≤ m) be an m×m

diagonal matrix with the first l diagonal elements equal to 1 and the remaining diagonal

entries equal to 0, and let 1m be an m-dimensional vector full of 1s, thus 1m1⊤
m is the m×m

all-ones matrix. Define

Mm,l(γ) =

 1m1⊤
m 0

√
γDm,l 0

 ,

where γ > 0 is a constant (which may depend on m).

Let m ≥ 2 be an even integer, and let pm(l) :=
(
m
l

)
/2m−1 for 0 ≤ l ≤ m. Let E(m) be

the probability distribution defined on even integers {0, 2, . . . ,m} with probability density

function pm(l). Similarly, let O(m) be the distribution on odd integers {1, 3, . . . ,m − 1}

with density function pm(l). We say that a function f on square matrices is diagonally block-

additive if f(X) = f(X1) + . . .+ f(Xs) for any block diagonal matrix X with square blocks

6In fact, also Theorem 4 in [99] applies to row-order streams, providing a different proof for the Ω(n1−ε)
lower bound for p /∈ 2Z proved in [23].
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X1, . . . , Xs. As noted in [99], f(X) = ∥X∥pSp
is diagonally block-additive.

We observe that the reduction presented in [99] is applicable also to row-order streams,

and thus state below a slightly stronger version of Theorem 3 from that paper.

Theorem 2.6.1 (Theorem 3 in [99]). Let t be an even integer and let f be a function of

square matrices that is diagonally block-additive. If there exists m = m(t) and γ = γ(m) > 0,

such that the following “gap condition” holds:

E[l ∼ E(t)]f
(
Mm,l(γ)

)
− E[l ∼ O(t)]f

(
Mm,l(γ)

)
̸= 0, (2.11)

then there exists a constant ε = ε(t) > 0 such that every row-order streaming algorithm

that, given X ∈ RN×N (for sufficiently large N), approximates f(X) within factor 1± ε with

constant error probability, must use Ωt(N
1−1/t) bits of space.

We can now present our analysis for even p values.

Lemma 2.6.2. Let f(X) = ∥X∥pSp
, for p ∈ 4Z≥1. Then the gap condition (2.11) is satisfied,

under the choice m = t and γ = 1, if and only if t ≤ p/4.

Proof. As shown in the proof of Theorem 4 in [99], for m = t and γ = 1, the non-zero

singular values of a block Mt,l(1) are as follows. For l = 0, the only non-zero singular

value is t. For 0 < l < t, the non-zero singular values are r1(l) =

√
(t2+1)+

√
(t2−1)2+4lt

2
,

r2(l) =

√
(t2+1)−

√
(t2−1)2+4lt

2
and 1 with multiplicity l − 1. And for l = t, the non-zero

singular values are r1(t) =

√
(t2+1)+

√
(t2−1)2+4t2

2
and 1 with multiplicity t − 1. Further note

that that r2(t) = 0. Using this, and recalling the distribution of the blocks, the left-hand

side of the gap condition (2.11) is

1

2t−1

tp + ∑
even l

(
t

l

)(
(l − 1) + rp1(l) + rp2(l)

)
−
∑
odd l

(
t

l

)(
(l − 1) + rp1(l) + rp2(l)

) (2.12)
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and we can rewrite this as

1

2t−1

tp + ∑
0<l≤t

(
t

l

)
(−1)l(l − 1) +

∑
0<l≤t

(
t

l

)
(−1)l

(
rp1(l) + rp2(l)

) .

For the first sum, by Corollary 2 in [133], we know that

t∑
l=0

(−1)l
(
t

l

)
(l − 1) = 0

meaning that ∑
0<l≤t

(
t

l

)
(−1)l(l − 1) = 1.

Let q = p/2 and ζ = rp1(l) + rp2(l). It holds that

ζ =

(
(t2 + 1) +

√
(t2 − 1)2 + 4lt

2

)q

+

(
(t2 + 1)−

√
(t2 − 1)2 + 4lt

2

)q

and using the binomial theorem,

=
1

2q

 q∑
i=0

(
t2 + 1

)q−i
(√

(t2 − 1)2 + 4lt
)i

+

q∑
i=0

(−1)i
(
t2 + 1

)q−i
(√

(t2 − 1)2 + 4lt
)i .

We note that the alternating sum double the even values the zero out the odd values, thus

the above can be rewritten as

=
1

2q−1

∑
even i

(
q

i

)(
t2 + 1

)i (
(t2 − 1)2 − 4lt

) q−i
2 .

and by applying it again, on the second multiplicative term,

=
1

2q−1

∑
even i

(
q

i

)(
t2 + 1

)i q−i
2∑

j=0

( q−i
2

j

)(
t2 − 1

)2j · (4t) q−i
2

−j · l
q−i
2

−j.
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Combining the two insights results in (2.12), i.e.,

1

2t−1

tp + 1 +
t∑

l=1

(−1)l

 1

2q−1

∑
even i

(
q

i

)
(t2 + 1)i

q−i
2∑

j=0

( q−i
2

j

)
(t2 − 1)2j (4tl)

q−i
2

−j l
q−i
2

−j


 .

We further note that for l = 0, the term in the inner parentheses is non-zero only when
q−i
2

= j. In this case we get, using the binomial theorem once more,

1

2q−1

∑
even i

(
q

i

)
(t2 + 1)i(t2 − 1)q−i =

(
t2 + 1 + t2 − 1

2

)q

+

(
t2 + 1− t2 + 1

2

)q

= 1 + tp.

Therefore, we can rewrite (2.12) as

(2.12) = 1

2t−1

 t∑
l=0

(−1)l 1

2q−1

∑
even i

(
q

i

)
(t+ 1)i

q−i
2∑

j=0

( q−i
2

j

)
(t− 1)2j4

q−i
2

−jl
q−i
2

−j


and using [99] observation,

=
1

2t−1
(−1)tt!

∑
even i

(
q

i

)
(t+ 1)i

q−i
2∑

j=0

( q−i
2

j

)
(t− 1)2j4

q−i
2

−j

{ q−i
2

t

}

where
{ q−i

2
t

}
are Stirling numbers of the second kind. As for a fixed t all terms are of the same

sign, the sum vanishes only when
{ q−i

2
t

}
= 0 ∀i, which happens when t > q/2 = p/4.

We remark that Lemma 2.6.2 extends to p ≡ 2 (mod 4) when t ≤ (p−2)/4, by replacing

in the proof q = p/2 with q̃ = (p − 2)/2. The next theorem follows easily by combining

Theorem 2.6.1 and Lemma 2.6.2.

Theorem 2.1.2. For every p ∈ 2Z≥2 there is ϵ(p) > 0 such that every algorithm that makes
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one pass over an Op(1)-sparse matrix A ∈ Rn×n streamed in row-order, and then outputs a

(1± ϵ(p))-approximation to ∥A∥pSp
with probability at least 2/3, must use Ω(n1−4/⌊p⌋4) bits of

space.

Proof. Let us first assume that p ≡ 0 (mod 4). As shown in Lemma 2.6.2, the gap condition

(2.11) holds for f(X) = ∥X∥pSp
and t = p/4, thus by Theorem 2.6.1 the space complexity is

Ω(n1−1/t) = Ω(n1−4/p) bits. For p ≡ 2 (mod 4) the claim holds for t = (p− 2)/4, yielding an

Ω(n1−4/(p−2)) bits lower bound.

We note that for p ≡ 0 (mod 4) the above matches up to logarithmic factors the upper

bound for the row-order algorithm presented in [23], i.e. tight for matrices in which every

row and column has O(1) non-zero elements. For p ≡ 2 (mod 4), there is a small gap: the

lower bound is Ω(n1−4/(p−2)) while the upper bound obtained in [23] is Õk(n
1−4/(p+2)).

2.7 Oϵ(1)-Space Algorithm for Schatten 4-Norm of Gen-

eral Matrices

We present an O(1/ϵ2)-space algorithm for (1 + ϵ)-approximation of the Schatten 4-norm in

the row-order model. As this result does not depend on the sparsity and is applicable to

any matrix, it significantly improves the previously known row-order algorithm, presented

in [23] that uses space Õp,ε(k), and is also better than the result of Section 2.4.1.

The algorithm exploits the fact that A⊤A =
∑

i a
⊤
i ai (i.e. summing over the outer prod-

uct of every row with itself), to sketch the Frobenius norm
∑

j1,j2
((A⊤A)j1,j2)

2 = ∥A⊤A∥2F =

∥A∥4S4
. To do so, it uses two random 4-wise independent vectors, following an idea presented

in [82] (extending the classic [5] result, see also [20, 22]), as follows.
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Lemma 2.7.1 (Lemma 3.1 in [82]). Consider random h, g ∈ {−1, 1}n where each vector is

4-wise independent (and independent of the other one). Let v ∈ Rn2 and zj = hj1gj2 for

j ∈ [n]2, and define Υ = (
∑

j∈[n]2 zjvj)
2. Then

E[Υ] =
∑
j∈[n]2

v2j , and Var(Υ) ≤ 3(E[Υ])2.

Algorithm 5 Algorithm for Schatten 4-Norm of General Matrices in Row-Order Streams
Input: A ∈ Rn×n streamed in row-order, ϵ > 0.

1: in parallel m = Õ(1/ϵ2) times do

2: init: Y ← 0 and choose two random 4-wise independent vectors h, g ∈ {−1, 1}n

3: upon receiving row ai, update: Y += ⟨h, ai⟩⟨g, ai⟩

4: let Υ← Y 2

5:

6: return average of the m copies of Υ

Theorem 2.7.2. Suppose that A ∈ Rn×n is a matrix given in one-pass row-order model.

Algorithm 5 uses space O(1/ϵ2) and outputs a (1+ϵ)-approximation to ∥A∥4S4
with probability

at least 2/3.

Proof. Consider one copy of the independent sketches. Using simple manipulations, we can

write:

Y =
∑
i

∑
j1

hj1Ai,j1

∑
j2

gj2Ai,j2

 =
∑
j1,j2

hj1gj2(A
⊤A)j1,j2

By looking at A⊤A as vector of dimension n2, it easily follows from 2.7.1 that E[Υ] =

∥A⊤A∥2F = ∥A∥4S4
and Var(Υ) ≤ 3∥A∥8S4

. Repeating the sketch O(1/ϵ2) times independently,

decreases the variance and gives the desired result (by Chebyshev’s inequality).
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2.8 Applications

In this section we present two applications of our Schatten-norm algorithms to some common

functions of the spectrum, by approximating these functions using low-degree polynomials.

We employ the well-known idea that just as functions f : R → R can be approximated

in a specific interval by polynomials arising from a Taylor expansion (or using Chebyshev

polynomials), spectral functions can be approximated by matrix polynomials if the matrix

eigenvalues lie in a bounded range. We just need to implement this method in a space-

efficient streaming fashion. In some applications we require the input matrix to have a

bounded spectrum. Unfortunately, there is no known streaming algorithm to estimate the

spectrum of an input matrix.

2.8.1 Approximating Spectral Sums of Positive Definite Matrices

We demonstrate how our Schatten-norm estimators can be used to approximate commonly

used spectral functions of sparse matrices presented as a data stream. We consider three

different spectral functions, log-determinant, trace of matrix inverse and Estrada index of

a Laplacian matrix, that all belong to the class of spectral sums, as defined below. These

results apply to sparse matrices that are either positive definite (PD), positive semidefinite

(PSD), or Laplacian. Throughout, log x denotes the natural logarithm of x.

Definition 2.8.1 (Spectral Sums [75]). Given a function f : R→ R and a matrix A ∈ Rn×n

with real eigenvalues λ1, . . . , λn, a spectral sum is defined as

Sf (A) = tr(f(A)) =
n∑

i=1

f(λi).

When f(x) = log x, the sum is known as log-determinant, when f(x) = 1/x it is known
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as the trace of the matrix inverse, and when f(x) = exp(x) it is known as Estrada index.

Theorem 2.8.2. For every spectral function Sf from the table below, there is an algorithm

with the following guarantee. Given as input ϵ, θ > 0, and a k-sparse matrix A ∈ Rn×n

presented as a row-order stream and whose eigenvalues all lie in the interval If given in the

table, the algorithm makes ⌊mf/4⌋ + 1 passes over the stream using Wf words of space and

outputs an estimate ρ(A) such that

Pr
[
ρ(A) ∈ (1± 2ϵ)Sf (A)

]
≥ 2/3.

Sf If mf Wf

Spectral Function Spectrum Interval Words of Space

Log-Determinant [θ, 2) ⌈1
θ
· log 1

ϵ
⌉ Omf

(ϵ−2k
3mf
2

−3)

Trace of Matrix Inverse [θ, 2) ⌈1
θ
· log 1

ϵ
⌉ Omf

(ϵ−2k
3mf
2

−3)

Estrada Index of a Laplacian [0, θ] 7 ⌈(eθ + 1) log 1
ε
− 1⌉ Omf

(ϵ−2k
mf
2 )

At a high level, the proof follows that of Boutsidis et al. [17], who present a time-

efficient algorithm for approximating the log-determinant of PD matrices. Besides extending

their method to two other spectral sums, the main difference is that we need to adapt their

argument to be space-efficient in the streaming model. More specifically, the log-determinant

of a PD matrix is approximated in [17, Lemma 7] by a truncated version (i.e., only the first

summands) of its Taylor expansion

log det(A) = −
∞∑
p=1

tr((In − A)p)/p. (2.13)

They then approximate the required matrix traces by multiplying the respective matrix

by a Gaussian vector (from left and right), which can be implemented faster than matrix
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powering, by starting with the vector and repeatedly multiply it by a matrix. While this

is time-efficient, it is not space-efficient when the input matrix is sparse, in which case our

streaming algorithm has better space complexity. One other difference to note is that our

algorithm approximates each of the above-mentioned traces separately, and thus we need all

the Taylor expansion coefficients to be non-negative, which indeed applies for these three

spectral functions.8

Proof. We follow the proof framework of Lemma 8 in [17], achieving the desired relative error

of the desired spectral function using a truncated version of its Taylor expansion, consisting

mf terms. The first relative error is due to the tail of the series, i.e. the terms that were

not considered in the final estimate. For the log-determinant, the above-mentioned Lemma

8 shows that it suffices to (1± ϵ)-approximate the first mf = ⌈1
θ
· log 1

ϵ
⌉ terms of its Taylor

expansion (2.13) in order to obtain a (1± 2ϵ)-approximation of log det(A). The same proof

holds also for the Taylor expansion

tr(A−1) =
∞∑
p=1

− tr((In − A)p)

and obtaining a (1 ± 2ϵ)-approximation of tr(A−1) (for the same value of mf ). To achieve

this error bound for the Estrada index of a Laplacian, the number of values of its Taylor

series (see e.g. [55, 72])

tr(exp(A)) =
∞∑
p=0

tr(Ap)/p! (2.14)

that need to be approximated is mf = ⌈(eθ + 1) log 1
ε
− 1⌉, as shown in Appendix A.4.

We are left to explain how to (1 ± ε)-approximate the first mf values of the Taylor

expansion (causing the other relative error). Recall that if a matrix B is PSD then tr(Bp) =

8Our method extends to alternating Taylor sums if the coefficients decrease by a constant factor, by
bounding the approximation error difference of every two consecutive summands. One such an example is
tr(exp(−A)).
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∑
λp
i = ∥B∥

p
Sp

, where λ1, . . . , λn ≥ 0 are its eigenvalues. Furthermore, for such matrices our

algorithm works for every integer p ≥ 2, and therefore this relative error is immediate from

Theorems 2.1.1 and 2.4.1.

To conclude, we can compute the traces of Bp in parallel for all integer p = 2, 3, . . . ,mf

using Algorithm 1, while for p = 1 one can compute ∥B∥1S1
= tr(B) by directly summing the

main diagonal entries. These parallel executions take ⌊m/4⌋ + 1 passes and the total space

is at most Om(ϵ
−2k3m/2−3) words of space for log-determinant and trace of matrix inverse,

and Om(ϵ
−2km/2) words of space for the Estrada index of a Laplacian matrix.

2.8.2 Approximating the Spectrum of PSD matrices

We present an application of our algorithm to (weakly) estimate the spectrum of a matrix,

with eigenvalues bounded in [0, 1] using approximations of a “few” Schatten norms of the ma-

trix. This is based on the work of Cohen-Steiner et al. [42] on approximating the spectrum of

a graph which is in turn based on insightful work by Wong and Valiant [91] on approximately

recovering a distribution from its moments using the Moment Inverse method.

Fix a PSD matrix A ∈ Rn×n with eigenvalues 1 ≥ λ1 ≥ . . . ≥ λn and define the l-

th moment of the spectrum to be 1
n
∥A∥lSl

= 1
n

∑
i∈[n] λ

l
i. Cohen-Steiner et al. show that

estimating O(1/ϵ) moments of A up to multiplicative error O(ϵ) is sufficient to estimate the

spectrum of A within earth-mover distance O(ϵ). It is well-known that the the L1 distance

between two sorted vectors of length n is exactly n times the earth-mover distance between

the corresponding point-mass distributions (uniform probability on each of the n indices).

Hence, the recovery scheme of Cohen-Steiner et al. allows us to recover the spectrum within

L1 distance O(ϵn) by estimating only O
(
1
ϵ

)
moments of the matrix A. Specifically, we get

the following result,
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Theorem 2.8.3 (Theorem 7 in [42]). Given a constant ϵ > 0, there exists a parameter

s = C
ϵ

(where C > 0 is an absolute constant) and an algorithm R such that, for a PSD

matrix A ∈ Rn×n with eigenvalues λ = (λ1, . . . , λn) ∈ [0, 1]n and a vector y ∈ Rs with the

property that yi = ∥λ∥ii ± exp(−C ′ϵ) for all i ∈ [s] and absolute constant C ′ > 0, R reads y

and outputs a vector λ̂ such that ∥λ− λ̂∥1 ≤ ϵn.

For an error parameter ϵ > 0 and parameter s = C
ϵ

(where C > 0 is an absolute

constant) as defined in the above theorem, given a k-sparse PSD matrix A ∈ Rn×n that is

streamed in row-order and whose eigenvalues are in the range [0, 1], one can use Algorithm 1

to compute the vector y ∈ Rs with the desired guarantee using space O(k3s/2−3 exp(−C ′ϵ))

for some absolute constant C ′ > 0 and using ⌊s/4⌋+ 1 passes over the stream.

2.9 Experiments

In this section we present numerical experiments illustrating the performance of the row-order

Schatten p-norm estimator described in Section 2.4.1. We simulate the row-order stream by

reading the input matrix row by row. The results not only follow theoretical space bounds,

showing that the algorithm is indeed independent of the matrix size, but are actually several

orders of magnitude better. In addition, the experiments show that the algorithm is robust

to noise, and these two results suggest that real-life behavior of the algorithm is significantly

better than our theoretical bounds.

The inputs used are {0, 1}n×n matrices, representing collaboration network graphs (nodes

represent scientists and edges represent co-authoring a paper) from the e-print arXiv for sci-

entific collaborations in five different areas in Physics. The data was obtained from the

Stanford Large Network Dataset Collection [96] which was in-turn obtained from [97]. In or-
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der to study the effect of sparsity, we “sparsify” each (of five) matrix by sampling 10 nonzero

entries in each row uniformly at random (note that max column-sparsity can be larger than

10).

In the first experiment, we use the arXiv General Relativity and Quantum Cosmology

collaboration network which has n = 5242 rows and columns; after “sparsifying” the matrix

as mentioned, the max column-sparsity is 37 and the average sparsity is 6.1. We fix the

value of p to be 6, and using our algorithm from Section 2.4.1, we vary number of estimators

(walks) t and compute the relative error of the average of the t walks. We repeat this process

10 times for every value of t and plot the mean and standard deviation in Figure 2.1. In

addition, we show in this figure the results of running the same experiment on a “noisy”

version of the matrix, by adding to it an error matrix where 1/5 of the entries are drawn

independently from N (0, 0.12)9.
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Figure 2.1: Relative error of Algorithm 1 for Schatten 6-norm of arXiv General Relativity
and Quantum Cosmology Collaboration Network: Vary number of walks and plot relative
error of the mean of the walks.

Recall that the number of independent walks (estimators) is ultimately the space re-

9This value assures the l2-norm of the error in a row is “comparable” to the l2-norm of the data:
(0.1)2 × 5242× 0.2 ≈ 10 = max row-sparsity.
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quired by Algorithm 1 (upto the space needed to store a row), as they are run the in parallel.

Therefore, the left graph shows that the space actually needed to approximate the Schatten

6-norm of the selected input matrix is significantly smaller than the theoretical bound of

Theorem 2.4.1, which is Opε
−2k(p/2) ≈ 135000. The other graph shows that the algorithm

is robust to small random noise, i.e. it works also for nearly-sparse, where every row and

column are dominated by a small amount of entries.

In the second experiment, we use all five collaboration networks – General Relativity

and Quantum Cosmology (n = 5242), High Energy Physics - Phenomenology (n = 9877),

High Energy Physics - Theory (n = 12008), Astro Physics (n = 18772) and Condensed

Matter (n = 23133). For each matrix we compute walks (estimator from Section 2.4.1) until

the mean of the walks is within 10% of the true Schatten 6-norm of the matrix. We repeat

this process 10 times for each matrix and plot the median, the first and third quartile of the

number of walks for the 10 trials in Figure 2.2.Since in the second and third experiments,

most of the outputs of the 10 trials are concentrated around the median except for very few

trials (one or two) which are very large outliers. Hence, we chose to output the first and

third quartiles indicating the output of the majority of the trials.
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Figure 2.2: Number of walks to (1±0.1)-approximate Schatten 6-norm of 5 different matrices

from arXiv Physics Collaboration Network.

The above figure shows that indeed calculating the space needed to approximate the

Schatten norms using our algorithm is independent of the matrix dimension. Again, as

in Figure 2.1, it is easy to see that the number of estimators needed to approximate the

Schatten 6-norm of the chosen matrices is several orders of scale better than the theoretical

bound.

In our third experiment we compute the number of walks needed for the mean of the

walks to be within 10% of the true Schatten p-Norm of the GR-QC matrix for different

values of p. We vary the value of p and, for each value of p, compute the number of walks

needed for 10 trials and plot the median, first and third quartile of the 10 trials in Figure

2.3.
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Figure 2.3: Number of walks to (1 ± 0.1)-approximate Schatten p-norm for arXiv General

Relativity and Quantum Cosmology Collaboration Network (GR-QC) for different values of

p ∈ 2Z+.

The last figure follows the previous figures, and shows that again the numerical results

are much better than the theoretical bounds, in this case in the dependence on p. Although

there is an expected increase in space as p grows, it is not rapid, and in particular is not

exponential. This means, for example, that the space needed to approximate other spectral

functions, as explained in Section 2.8, would be small, suggesting that our algorithm would

be practical for such tasks.
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Chapter 3

Sparsifying Numerically Sparse

Matrices by Sampling

3.1 Introduction

In the previous chapter we focused on matrices that have very few non-zero entries, i.e.

are sparse. While sparsity in the rows and/or columns of the matrix is a phenomenon

for which many computational tasks on matrices admit faster algorithms, e.g., low-rank

approximation [62, 79], regression problems [87] and semi-definite programming [8, 44], it is

not a numerically smooth quantity. Specifically, for a vector x ∈ Rn to be k-sparse, at least

n− k entries of x must be 0. In practice, many entries could be small but non-zero, e.g. due

to noise, and thus the vector would be considered dense.

A smooth analogue of sparsity for a matrix A ∈ Rm×n can be defined as follows. First,
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for a row (or column) vector a ∈ Rn, define its numerical sparsity [70, 106] to be

ns(a) := min{k ≥ 0 : ∥a∥1 ≤
√
k∥a∥2}. (3.1)

This value is clearly at most the number of non-zeros in a, denoted ∥a∥0, but can be much

smaller. Earlier work used variants of this quantity, referring to ns(a) as the ℓ1/ℓ2-sparsity of

the vector [78, 80]. We further define the numerical sparsity of a matrix A, denoted ns(A),

to be the maximum numerical sparsity of any of its rows and columns.

In order to take advantage of sparse matrices in various computational tasks, a natural

goal is to approximate a matrix A with numerical sparsity ns(A) with another matrix Ã of the

same dimensions, that is k-sparse for k = O(ns(A)) (i.e., every row and column is k-sparse).

The seminal work of [1] introduced a framework for matrix sparsification via entrywise

sampling for approximating the matrix A in spectral-norm. Specifically, they compute a

sparse matrix Ã by sampling and rescaling a small fraction of entries from A such that with

high probability ∥A− Ã∥2 ≤ ϵ∥A∥2 for some error parameter ϵ > 0, where ∥ · ∥2 denotes the

spectral-norm. This motivates the following definition.

Definition 3.1.1. An ϵ-spectral-norm approximation for A ∈ Rm×n is a matrix Ã ∈ Rm×n

satisfying

∥Ã− A∥2 ≤ ϵ∥A∥2. (3.2)

When Ã is obtained by sampling and rescaling entries from A, we call it an ϵ-spectral-norm

sparsifier.

Before we continue, let us introduce necessary notations. Here and throughout, we

denote the number of non-zero entries in a matrix A by nnz(A), the Frobenius-norm of A

by ∥A∥F , the stable-rank of A by sr(A) := ∥A∥2F/∥A∥22, the i-th row and the j-th column of

A by Ai and Aj, respectively, and the row-sparsity and column-sparsity of A by rsp(A) :=
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maxi ∥Ai∥0 and csp(A) := maxj ∥Aj∥0, respectively.

The framework of [1] can be used as a preprocessing step that “sparsifies" numerically

sparse matrices in order to speed up downstream tasks. It thus motivated a line of work on

sampling schemes [2, 9, 51, 65, 94, 95, 124], in which the output Ã is an unbiased estimator

of A, and the sampling distributions are simple functions of A and hence can be computed

easily, say, in nearly O(nnz(A))-time and with one or two passes over the matrix. Under

these constraints, the goal is simply to minimize the sparsity of the ϵ-spectral-norm sparsifier

Ã.

The latest work, by [2], provides a bound for a restricted class of “data matrices".

Specifically, they look at matrices A ∈ Rm×n such that mini ∥Ai∥1 ≥ maxj ∥Aj∥1, which can

be a reasonable assumption when m≪ n. This restricted class does not include the class of

square matrices, and hence does not include symmetric matrices such as covariance matrices.

Hence, an important question is whether their results extend to a larger class of matrices.

Our main result, described in the next section, resolves this concern in the affirmative.

3.1.1 Main Results

We generalize the sparsity bound of [2], which is the best currently known, to all matrices

A ∈ Rm×n. Our main result is a sampling scheme to compute an ϵ-spectral-norm sparsifier

for numerically sparse matrices A, as follows.

Theorem 3.1.2. There is an algorithm that, given a matrix A ∈ Rm×n and a parameter

ϵ > 0, where m ≥ n, computes with high probability an ϵ-spectral-norm sparsifier Ã for A

with expected sparsity

E(nnz(Ã)) = O
(
ϵ−2 ns(A) sr(A) logm+ ϵ−1

√
ns(A) sr(A)n logm

)
.
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Moreover, it runs in O(nnz(A))-time when a constant factor estimate of ∥A∥2 is given.1

We obtain this result by improving the main technique of [2]. Their sampling distribu-

tion arises from optimizing a concentration bound, called the matrix-Bernstein inequality, for

the sum of matrices formed by sampling entries independently. Our distribution is obtained

by the same approach, but arises from considering the columns and rows simultaneously.

In addition to the sampling scheme in Theorem 3.1.2, we analyze ℓ1-sampling from every

row (in Section 3.2.1).2 This gives a worse bound than the above bound, roughly replacing

the sr(A) term with n, but has the added advantage that the sampled matrix has uniform

row-sparsity.

Lower Bound. Our next theorem complements our main result with a lower bound on

the sparsity of any ϵ-spectral-norm approximation of a matrix A in terms of its numerical

sparsity ns(A) and error parameter ϵ > 0.3

Theorem 3.1.3. Let 0 < ϵ < 1
2

and n, k ≥ 1 be parameters satisfying k ≤ O(ϵ2n log2 1
ϵ
).

Then, there exists a matrix A ∈ Rn×n such that ns(A) = Θ(k log2 1
ϵ
) and, for every matrix

B satisfying ∥A−B∥2 ≤ ϵ∥A∥2, the sparsity of every row and every column of B is at least

Ω(ϵ−2k log−2 1
ϵ
) = Ω̃(ϵ−2) · ns(A).

While the lower bound shows that the worst-case dependence on the parameters ns(A)

and ϵ is optimal, it is based on a matrix with stable rank Ω(n). Settling the sample complexity

when the stable rank is o(n) is an interesting open question that we leave for future work.

1A constant factor estimate of ∥A∥2 can be computed in Õ(nnz(A))-time by the power method.
2Sampling entry Aij with probability proportional to |Aij |/∥Ai∥1
3We write Õ(f) as a shorthand for O(f · polylog(nm)) where n and m are the dimensions of the matrix,

and write Oϵ(·) when the hidden constant may depend on ϵ.
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3.1.2 Comparison to Previous Work

The work of [1] initiated a long line of work on entrywise sampling schemes that approximate

a matrix under spectral-norm [2, 9, 51, 65, 94, 95, 124]. Sampling entries independently

has the advantage that the output matrix can be seen as a sum of independent random

matrices whose spectral-norm can be bounded using known matrix concentration bounds.

All previous work uses such matrix concentration bounds with the exception of [9] who

bound the spectral-norm of the resulting matrix by analyzing the Rayleigh quotient of all

possible vectors.

Natural distributions to sample entries are the ℓ2 and ℓ1 distributions, which corre-

spond to sampling entry Aij with probability proportional to A2
ij/∥A∥2F and |Aij|/∥A∥1

respectively.4

Prior work that use variants of the ℓ2 sampling [1, 51, 94, 124] point out that sampling

according to the ℓ2 distribution causes small entries to “blow-up" when sampled. Some

works, e.g. [51], get around this by zeroing-out small entries or by exceptional handling of

small entries, e.g. [1], while others used distributions that combine the ℓ1 and ℓ2 distributions,

e.g. [94]. All these works sample Ω(ϵ−2n sr(A)) entries in expectation to achieve an ϵ-spectral-

norm approximation and our Theorem 3.1.2 provides an asymptotically better bound. For

a full comparison see Table 3.1.

All these algorithms, including the algorithm of Theorem 3.1.2, sample a number of

entries corresponding to sr(A), hence they must have an estimate of it, which requires esti-

mating ∥A∥2. An exception is the bound in Theorem 3.2.2, which can be achieved without

this estimate. In practice, however, and in previous work in this area, there is a sampling

budget s ≥ 0 and s samples are drawn according to the stated distribution, avoiding the

4Here and henceforth we denote by ∥A∥1 the entry-wise l1 norm.
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Table 3.1: Comparison between schemes for ϵ-spectral-norm sparsification. The first two
entries in the third column present the ratio between the referenced sparsity and that of
Theorem 3.1.2.

Expected Number of Samples Reference Compared to
Thm. 3.1.2

O(ϵ−1n
√

ns(A) sr(A)) [9] Õϵ

(
min

(
n√

ns(A) sr(A)
,
√
n
))

O(ϵ−2n sr(A) + n polylog(n)) [1] Õϵ

(
min

(
n

ns(A)
,
√

n sr(A)
ns(A)

))
Õ(ϵ−2n sr(A)) [51, 94]
Õ(ϵ−2 ns(A) sr(A) +
ϵ−1
√
ns(A) sr(A)n)

[2]; Theorem 3.1.2 [2] is only for data
matrices

Õ(ϵ−2n ns(A)) Theorem 3.2.2 bounded row-sparsity

Ω(ϵ−2n ns(A) log−4 1
ϵ
) Theorem 3.1.3 sr(A) = Θ(n)

need for this estimate. In this case, the algorithm of Theorem 3.1.2 can be implemented in

two-passes over the data and in O(nnz(A)) time.

3.1.3 Applications of Spectral-Norm Sparsification

We provide two useful applications of spectral-norm sparsification. More precisely, we use

the sparsification to speed up two computational tasks on numerically sparse matrices: ap-

proximate matrix multiplication and approximate ridge regression. This adds to previous

work, which showed applications to low-rank approximation [1], to semidefinite program-

ming [9], and to PCA and sparse PCA [95]. These applications work in a black-box manner,

and can thus employ our improved sparsification scheme.

Application I: Approximate Matrix Multiplication (AMM). Given matrices A ∈

Rm×n, B ∈ Rn×p and error parameter ϵ > 0, the goal is to compute a matrix C ∈ Rm×p
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such that ∥AB − C∥ ≤ ϵ∥A∥ · ∥B∥, where the norm is usually either Frobenius-norm ∥ · ∥F

or spectral-norm ∥ · ∥2. In Section 3.3, we provide algorithms for both error regimes by

combining our entrywise sampling scheme with previous AMM algorithms that sample a

small number of columns of A and rows of B.

Theorem 3.1.4. There exists an algorithm that, given matrices A ∈ Rm×n, B ∈ Rn×p

parameter 0 < ϵ < 1
2

and constant factor estimates of ∥A∥2 and ∥B∥2, computes a matrix

C ∈ Rm×p satisfying with high probability ∥AB − C∥2 ≤ ϵ∥A∥2∥B∥2 in time

O(nnz(A) + nnz(B)) + Õ(ϵ−6
√

sr(A) sr(B) ns(A) ns(B)).

Theorem 3.1.5. There exists an algorithm that, given matrices A ∈ Rm×n, B ∈ Rn×p and

parameter 0 < ϵ < 1
2
, computes a matrix C ∈ Rm×p satisfying E∥AB − C∥F ≤ ϵ∥A∥F∥B∥F

in time

O(nnz(A) + nnz(B) + ϵ−6 ns(A) ns(B)).

Approximate Matrix Multiplication (AMM) is a fundamental problem in numerical

linear algebra with a long line of formative work [33, 39, 53, 58, 108, 114, 166] and many

others. These results fall into roughly three categories; sampling based methods, random

projection based methods and a mixture of sampling and projection based methods. We

focus on sampling based methods in our work.

There are two main error regimes considered in the literature: spectral-norm error and

Frobenius-norm error. We focus on the results of [108] for spectral-norm error and [53] for

Frobenius-norm error. Sampling based methods, including that of [53, 108], propose sampling

schemes that are linear time or nearly-linear time: specifically, they write the product of two

matrices as the sum of n outer products AB =
∑

i∈[n] A
iBi, and then sample and compute

each outer product AiBi/pi with probability pi ∝ ∥Ai∥2∥Bi∥2. Computing each of these
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rank-1 outer products takes time bounded by O(csp(A) rsp(B)). This estimator is repeated

sufficiently many times depending on the error regime under consideration.

Our entrywise-sampling scheme compounds well with this framework for approximate

matrix multiplication by additionally sampling entries from the rows/columns sampled by

the AMM algorithm. We essentially replace the csp(A) rsp(B) term with ns(A) ns(B), up

to Õ(poly(1/ϵ)) factors, for both Frobenius-norm and spectral-norm error regimes. It is

plausible that the dependence on epsilon can be improved.

Application II: Approximate Ridge Regression. Given a matrix A ∈ Rm×n, a vector

b ∈ Rm and a parameter λ > 0, the goal is to find a vector x ∈ Rn that minimizes ∥Ax −

b∥22 + λ∥x∥22. This problem is λ-strongly convex, has solution x∗ = (A⊤A + λI)−1A⊤b and

condition number κλ(A
⊤A) := ∥A∥22/λ.

Given an initial vector x0 ∈ Rn and a parameter ϵ > 0, an ϵ-approximate solution to the

ridge regression problem is a vector x̂ ∈ Rn satisfying ∥x̂− x∗∥A⊤A+λI ≤ ϵ∥x0 − x∗∥A⊤A+λI ,

where we write ∥x∥M := x⊤Mx when M is a PSD matrix. We provide algorithms for

approximate ridge regression by using our sparsification scheme as a preconditioner for known

linear-system solvers in composition with a black-box acceleration framework by [59]. The

following theorem is proved in Section 3.4.

Theorem 3.1.6. There exists an algorithm that, given A ∈ Rm×n, x0 ∈ Rn, λ > 0 and ϵ > 0,

computes with high probability an ϵ-approximate solution to the ridge regression problem in

time

Oϵ(nnz(A)) + Õϵ

(
(nnz(A))2/3(ns(A) sr(A))1/3

√
κλ(A⊤A)

)
.

Moreover, when the input matrix A has uniform column (or row) norms, the running

time in Theorem 3.1.6 can be reduced by a factor of roughly (sr(A)/n)1/6, for details see
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Section 3.4.2.

Solving linear systems using preconditioning has a rich history that is beyond the scope

of this work to summarize. Recently, the work of [70] designed algorithms with improved

running times over popular methods using the Stochastic Variance Reduced Gradient De-

scent (SVRG) framework of [87]. They adapt it using efficient subroutines for numerically

sparse matrices. They also suggested the idea of using spectral-norm sparsifiers as precondi-

tioners for linear regression. While they considered the sparsification of [2] for computing the

preconditioners, they required a stronger bound on the spectral-norm approximation than

Theorem 3.1.6 does.

Our result is in general incomparable to that of [70]. In the case when the input has

uniform column (or row) norms, our running time is roughly an (ns(A)/n)1/6-factor smaller

than theirs, for details see Theorem 3.4.4 in Section 3.4.2.

Very recently, [27] have developed, independently of our work and as part of a suite

of results on bilinear minimax problems, an algorithm for ridge regression with improved

running time Õ(nnz(A) +
√

nnz(A) ns(A) sr(A)κλ(A⊤A)). Their approach is different and

their techniques are more involved than ours.

3.2 Spectral-Norm Sparsification

In this section we state and prove our main results. We first prove the upper bound in

Theorem 3.1.2. Then we analyze ℓ1 sampling from the rows in Theorem 3.2.2, Section 3.2.1

that gives a slightly weaker bound but has the property that the resulting matrix has uniform

row sparsity. In Section 3.2.2, we prove the lower bound in Theorem 3.1.3.

Theorem 3.1.2. There is an algorithm that, given a matrix A ∈ Rm×n and a parameter
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ϵ > 0, where m ≥ n, computes with high probability an ϵ-spectral-norm sparsifier Ã for A

with expected sparsity

E(nnz(Ã)) = O
(
ϵ−2 ns(A) sr(A) logm+ ϵ−1

√
ns(A) sr(A)n logm

)
.

Moreover, it runs in O(nnz(A))-time when a constant factor estimate of ∥A∥2 is given.5

Before we prove Theorem 3.1.2, we start by stating a result on the concentration of

sums of independent random matrices; the Matrix Bernstein Inequality.

Theorem 3.2.1 (Matrix Bernstein, Theorem 1.6 of [143]). Consider a finite sequence {Zk}

of independent, random d1 × d2 real matrices, such that there is R > 0 satisfying EZk = 0

and ∥Zk∥2 ≤ R almost surely. Define

σ2 = max
{∥∥∥∑

k

E(ZkZ
⊤
k )
∥∥∥
2
,
∥∥∥∑

k

E(Z⊤
k Zk)

∥∥∥
2

}
.

Then for all t ≥ 0,

P
(∥∥∥∑

k

Zk

∥∥∥
2
≥ t
)
≤ (d1 + d2) exp

( −t2/2
σ2 +Rt/3

)
.

Proof of Theorem 3.1.2. Let ϵ > 0. Given a matrix A, define sampling probabilities as

follows.

p
(1)
ij =

|Aij|∑
i′j′ |Ai′j′|

p
(2)
ij =

∥Ai∥21∑
i′ ∥Ai′∥21

· |Aij|
∥Ai∥1

p
(3)
ij =

∥Aj∥21∑
j′ ∥Aj′∥21

· |Aij|
∥Aj∥1

p∗ij = max
α

(p
(α)
ij ).

5A constant factor estimate of ∥A∥2 can be computed in Õ(nnz(A))-time by the power method.
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Observe that each α = 1, 2, 3 yields a probability distribution because
∑

ij p
(α)
ij = 1.

Let s < mn be a parameter that we will choose later. Now sample each entry of A

independently and scale it to get an unbiased estimator, i.e., compute Ã by

Ãij =


Aij

pij
with prob. pij = min(1, s · p∗ij);

0 otherwise.

To bound the expected sparsity, observe that p∗ij ≤
∑

α p
(α)
ij , and thus

E[nnz(Ã)] =
∑
ij

pij ≤ s
∑
ij

∑
α

p
(α)
ij ≤ 3s.

We show that each of the above distributions bounds one of the terms in matrix Bernstein

bound. For each pair of indices (i, j) define a matrix Zij that has a single non-zero at the

(i, j) entry, with value Ãij −Aij. Its spectral-norm is ∥Zij∥2 = |Ãij −Aij|. If pij = 1, this is

0. If pij < 1 then

|Ãij − Aij| ≤ |Aij|max(1,
1

pij
− 1)

≤ |Aij|
pij
≤ |Aij|

sp
(1)
ij

=
1

s

∑
i′j′

|Ai′j′ |

≤
√

ns(A)

s

∑
j

∥Aj∥2 ≤
√

ns(A)n

s
∥A∥F =: R,

where the last inequality follows from Cauchy-Schwarz inequality.

In order to bound σ2, first notice that var(Ãij) ≤ E(Ã2
ij) =

A2
ij

sp∗ij
. Now, since ZijZ

⊤
ij

has a single non-zero entry at (i, i), and Z⊤
ijZij has a single non-zero entry at (j, j), both∑

i,j ZijZ
⊤
ij and

∑
i,j Z

⊤
ijZij are diagonal, where the (i, i) entry is

∑
j(Ãij−Aij)

2 in the former

and the (j, j) entry is
∑

i(Ãij − Aij)
2 in the latter. Since these are diagonal matrices, their
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spectral-norm equals their largest absolute entry, and thus

∥∥∥∑
i,j

E
(
ZijZ

⊤
ij

)∥∥∥
2
≤ max

i

(∑
j

A2
ij

sp∗ij

)
≤ max

i

(∑
j

A2
ij

sp
(2)
ij

)
=

1

s
max

i

(∑
j

|Aij|
∑

i′ ∥Ai′∥21
∥Ai∥1

)
=

1

s

∑
i′

∥Ai′∥21

≤ 1

s

∑
i′

ns(A)∥Ai′∥22 =
ns(A)

s
∥A∥2F .

The same bound can be shown for
∑

i,j E(Z⊤
ijZij) by using p∗ij ≥ p

(3)
ij , thus by the

definition of σ2, σ2 ≤ ns(A)
s
∥A∥2F . Finally, by the matrix-Bernstein bound,

P
(∥∥∥∑

i,j

Zij

∥∥∥
2
≥ ϵ∥A∥2

)
≤ 2m exp

(
− ϵ2∥A∥22/2

ns(A)
s
∥A∥2F + ϵ

√
ns(A)n

s
∥A∥F∥A∥2/3

)
,

and since sr(A) =
∥A∥2F
∥A∥22

, by setting s = O(ϵ−2 ns(A) sr(A) logm+ϵ−1
√
ns(A) · n · sr(A) logm)

we conclude that with high probability ∥Ã − A∥2 ≤ ϵ∥A∥2, which completes the proof of

Theorem 3.1.2.

3.2.1 A Second Sampling Scheme

We analyze ℓ1 row sampling, i.e. sampling entry (i, j) with probability |Aij |
∥Ai∥1 , as was similarly

done for numerically sparse matrices in [70], although they employed this sampling (i) in a

different setting and (ii) on one row at a time. Here, we analyze how to employ this sampling

on all the rows simultaneously for ϵ-spectral-norm sparsification. This sampling is inferior

to the one in Theorem 3.1.2 in terms of nnz(Ã), but has the additional property that the

sparsity of every row is bounded. By applying this scheme to A⊤, we can alternatively obtain

an ϵ-spectral-norm sparsifier where the sparsity of every column is bounded.
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Theorem 3.2.2. There is an algorithm that, given a matrix A ∈ Rm×n and a parameter

ϵ > 0, computes in time O(nnz(A)) with high probability an ϵ-spectral-norm sparsifier Ã for

A such that the sparsity of every row of Ã is bounded by O(ϵ−2 ns(A) log(m+ n)).

The algorithm is as follows. Given a matrix A and ϵ > 0, define the sampling probabil-

ities

pij =
|Aij|
∥Ai∥1

,

and observe that for every i this induces probability distribution, i.e.,
∑

j pij = 1. Let

s = O(ϵ−2 ns(A) log(m + n)). Now from each row of A sample s entries independently with

replacement according to the above distribution, and scale it to get an unbiased estimator

of that row; formally, for each row i and each t = 1, . . . , s draw a row vector

Q
(t)
i =

{
Aij

pij
e⊤j with prob. pij,

where {ej}j is the standard basis of Rn. Next, average the t samples for each row, and

arrange these rows in a matrix Ã that is an unbiased estimator for A; formally,

Ã =
m∑
i=1

ei
1

s

s∑
t=1

Q
(t)
i .

Clearly E(Ã) = A and every row of Ã has at most s non-zeros. In order to bound the

probability that Ã is an ϵ-spectral-norm sparsifier of A, similarly to the proof of Theorem

3.1.2, we employ the matrix-Bernstein bound stated in Theorem 3.2.1.

Proof of Theorem 3.2.2. Given a matrix A, ϵ > 0, let k = ns(A) and apply the algorithm of

Theorem 3.2.2. Note that by the definition of ns(A) and by spectral-norm properties, the

i-th row of A satisfies

∥Ai∥1 ≤
√
k∥Ai∥2 ≤

√
k∥A∥2. (3.3)
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For each random draw, define a matrix Z(it) with exactly one non-zero row formed by placing

Ai − Q
(t)
i at the i-th row; formally, let Z(it) = ei(Ai − Q

(t)
i ). Where it is clear from context

we will omit the superscript from Q
(t)
i . The spectral-norm of Z(it) is

∥Z(it)∥2 = ∥Ai −Q
(t)
i ∥2 ≤ ∥Ai∥2 + ∥Q(t)

i ∥2 = ∥Ai∥2 + ∥Ai∥1 ≤ 2
√
k∥A∥2 =: R.

To bound σ2, notice that Z(it)Z
⊤
(it) has a single non-zero at the (i, i) entry with value

∥Ai −Q
(t)
i ∥22, hence

∥∥E∑
i,t

Z(it)Z
⊤
(it)

∥∥
2
= smax

i
E∥Ai −Qi∥22 = smax

i
E∥Qi∥22 − ∥Ai∥22

≤ smax
i

∑
j

∥Ai∥1 · |Aij| ≤ sk∥A∥22.

The other term Z⊤
(it)Z(it) satisfies E(Z⊤

(it)Z(it)) = E
(
Q⊤

i (Qi − Ai)
)
= E(Q⊤

i Qi) − A⊤
i Ai.

The matrix E(Q⊤
i Qi) is diagonal with value |Aij| · ∥Ai∥1 at the (j, j) entry, hence

∥∥∑
i,t

E(Z⊤
(it)Z(it))

∥∥
2
= s
∥∥∑

i

(E(Q⊤
i Qi)− A⊤

i Ai)
∥∥
2

= s∥
∑
i

E(Q⊤
i Qi)− A⊤A∥2

≤ s
(∥∥∑

i

E(Q⊤
i Qi)

∥∥
2
+ ∥A⊤A∥2

)
= s
(
max

j

∑
i

|Aij| · ∥Ai∥1 + ∥A∥22
)

≤ s
√
k
(
∥A∥2max

j

∑
i

|Aij|+ ∥A∥22
)

= s
√
k
(
∥A∥2max

j
∥Aj∥1 + ∥A∥22

)
≤ 2s · k · ∥A∥22 =: σ2.
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Now, by the matrix-Bernstein bound as stated in Theorem 3.2.1,

P(∥A− Ã∥2 ≥ ϵ∥A∥2) = P
(∥∥∑

i,t

Z(it)

∥∥
2
≥ sϵ∥A∥2

)
≤ (m+ n) exp

(
− sϵ2∥A∥22/2

2k∥A∥22 + 2ϵ
3

√
k∥A∥22

)
,

and by setting s = O(ϵ−2k log(m+n)) we conclude that with high probability ∥Ã−A∥2 ≤

ϵ∥A∥2.

3.2.2 Lower Bounds

We provide a lower bound in Theorem 3.1.3 for spectral-norm sparsification, which almost

matches the bound in Theorem 3.1.2 for a large range of ϵ and ns(A).

Theorem 3.1.3. Let 0 < ϵ < 1
2

and n, k ≥ 1 be parameters satisfying k ≤ O(ϵ2n log2 1
ϵ
).

Then, there exists a matrix A ∈ Rn×n such that ns(A) = Θ(k log2 1
ϵ
) and, for every matrix

B satisfying ∥A−B∥2 ≤ ϵ∥A∥2, the sparsity of every row and every column of B is at least

Ω(ϵ−2k log−2 1
ϵ
) = Ω̃(ϵ−2) · ns(A).

Proof. We shall assume that k divides n, and that both are powers of 2, which can be

obtained with changing the bounds by a constant factor. Let m = n
k
, and notice it is a

power of 2 as well.

Construct first a vector a ∈ Rm by concatenating blocks of length 2i whose coordinates

have value 2−(1+α)i, for each i ∈ {0, ..., logm− 1}, where 1 > α ≥ Ω(log−1m) is a parameter

that we will set later. The last remaining coordinate have value 0. Formally, the coordinates
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of a are given by aj = 2−(1+α)⌊log j⌋, except the last one which is 0. Its ℓ1 norm is

∥a∥1 =
m∑
j=1

aj =

logm−1∑
i=0

2i · 2−(1+α)i =
1− 2−α logm

1− 2−α
= Θ(α−1).

A similar computation shows that ∥a∥2 = Θ(1), and thus ns(a) = Θ(α−2). Denote by atail(c)

the vector a without its c largest entries, then its ℓ2 norm is

∥atail(c)∥22 ≥
logm−1∑

i=⌊log c⌋+1

2i · 2−2(1+α)i = Ω(c−(1+2α)), (3.4)

which almost matches the upper bound of Lemma 3 in [70].

Now, for k = 1 we construct a circulant matrix A ∈ Rm×m by letting the vector a be its

first row, and the j-th row is a cyclic shift of a with offset j. By well-known properties of

circulant matrices, the t-th eigenvalue of A is given by λt =
∑

j aj(ωt)
j where ωt = exp

(
i2πt
m

)
and i is the imaginary unit, so ∥A∥2 = ∥a∥1 = Θ(α−1). Consider B ∈ Rm×m satisfying

∥A−B∥2 ≤ ϵ∥A∥2, and suppose some row Bj of B has s non-zeros. Then using (3.4),

∥A−B∥2 ≥ ∥Aj −Bj∥2 ≥ ∥atail(s)∥2 = Ω(s−( 1
2
+α)).

By the error bound ∥A − B∥2 ≤ ϵ∥A∥2, we must have s ≥ (Ω(ϵ/α))−
2

1+2α ≥ Ω((ϵ/α)−
2

1+2α ),

which bounds from below the sparsity of every row, and similarly also of every column, of

B.

To generalize this to larger numerical sparsity, consider as a first attempt constructing

a vector a′ ∈ Rn by concatenating k copies of a. Then clearly ns(a′) = Θ(k ns(a)). The

circulant matrix of a′ is equivalent to A ⊗ C, where C is the all-ones matrix of dimension

k × k, and ⊗ is the Kronecker product. But this matrix has low rank, and thus might be

easier to approximate. We thus construct a different matrix A′ = A ⊗ Hk, where Hk is
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the k × k Hadamard matrix. Its numerical sparsity is the same as of the vector a′, thus

ns(A′) = Θ(k ns(a)). The eigenvalues of Hk are ±
√
k. By properties of the Kronecker

product, every eigenvalue of A′ is the product of an eigenvalue of A with ±
√
k, thus ∥A′∥2 =

Θ(
√
k∥A∥2) = Θ(

√
kα−1). We now apply the same argument we made for k = 1. Let

B′ ∈ Rn×n be an ϵ-spectral-norm sparsifier of A′. If some row B′
j has s non-zeros then

using (3.4),

∥A′ −B′∥2 ≥ ∥A′
j −B′

j∥2 ≥ ∥a′tail(s)∥2 = Ω(
√
k(s/k)−( 1

2
+α)).

By the error bound ∥A′ − B′∥2 ≤ ϵ∥A′∥2, we must have s ≥ Ω(k(ϵ/α)−
2

1+2α ), which

bounds the sparsity of every row and every column of B′.

We can set α = log−1 1
ϵ
> ϵ. Note that this choice for α is in the range [log−1 n

k
, 1],

hence the construction hold. Now since 1
1+2α

≥ 1 − 2α, the lower bound on the sparsity of

each row and each column of B′ is k(ϵ/α)
− 2
1+2α ≥ k(ϵ/α)−2+4α ≥ Ω(kϵ−2 log−2 1

ϵ
).

3.3 Application I: Approximate Matrix Multiplication

In this section, we show how to use ℓ1 row/column sampling for fast approximate matrix

multiplication (AMM). Given matrices A ∈ Rm×n, B ∈ Rn×p and error parameter ϵ > 0, the

goal is to compute a matrix C ∈ Rm×p such that ∥AB−C∥ ≤ ϵ∥A∥ · ∥B∥, where the norm is

usually either the Frobenius-norm ∥ · ∥F or spectral-norm ∥ · ∥2. We provide the first results

on AMM for numerically sparse matrices with respect to both norms.

Theorem 3.1.4. There exists an algorithm that, given matrices A ∈ Rm×n, B ∈ Rn×p

parameter 0 < ϵ < 1
2

and constant factor estimates of ∥A∥2 and ∥B∥2, computes a matrix
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C ∈ Rm×p satisfying with high probability ∥AB − C∥2 ≤ ϵ∥A∥2∥B∥2 in time

O(nnz(A) + nnz(B)) + Õ(ϵ−6
√

sr(A) sr(B) ns(A) ns(B)).

Theorem 3.1.5. There exists an algorithm that, given matrices A ∈ Rm×n, B ∈ Rn×p and

parameter 0 < ϵ < 1
2
, computes a matrix C ∈ Rm×p satisfying E∥AB − C∥F ≤ ϵ∥A∥F∥B∥F

in time

O(nnz(A) + nnz(B) + ϵ−6 ns(A) ns(B)).

The proofs of these theorems combine Theorem 3.2.2 with previous results on numerical

sparsity and with previous results on AMM.

Lemma 3.3.1 (Lemma 4 of [70]). Given a vector a ∈ Rn and a parameter ϵ > 0, indepen-

dently sampling (ϵ−2 ns(a)) entries according to the distribution {pi = |ai|
∥a∥1}i and re-weighting

the sampled coordinates by 1
pi
· 1
ϵ−2 ns(a)

, outputs a (ϵ−2 ns(a))-sparse vector a′ ∈ Rn satisfying

Ea′ = a and E(∥a′∥22) ≤ (1 + ϵ2)∥a∥22.

3.3.1 Proof of Theorem 3.1.4 (Spectral-Norm AMM)

In order to prove Theorem 3.1.4, we will use a result from [108]. Given matrices A,B, their

product is AB =
∑

iA
iBi. The algorithm in [108] samples corresponding pairs of columns

from A and rows from B, hence the time it takes to compute an approximation of AB

depends on the sparsity of these rows and columns.

Lemma 3.3.2 (Theorem 3.2 (ii) of [108].). There exists an algorithm that, given matrices

A ∈ Rm×n, B ∈ Rn×p, a parameter 0 < ϵ < 1/2 and constant factor estimates of ∥A∥2 and
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∥B∥2, computes in time

O
(
nnz(A) + nnz(B) + ϵ−2 csp(A) rsp(B)

√
sr(A) sr(B) log

(
ϵ−1 sr(A) sr(B)

))

a matrix C that satisfies

P(∥C − AB∥2 ≥ ϵ∥A∥2∥B∥2) ≤
1

poly(sr(A) sr(B))
.

Proof of Theorem 3.1.4. Given ϵ > 0, our algorithm is as follows.

1. Apply the algorithm in Theorem 3.2.2 on A with parameter ϵ/4 to compute a matrix

A′ satisfying ∥A′ −A∥2 ≤ ϵ
4
∥A∥2 and csp(A′) ≤ O(ϵ−2 ns(A) log(m+ n)), and apply it

on B with parameter ϵ/4 to compute a matrix B′ satisfying ∥B′ − B∥2 ≤ ϵ
4
∥B∥2 and

rsp(B′) ≤ O(ϵ−2 ns(B) log(n+ p)).

2. Apply the algorithm in Lemma 3.3.2 on A′, B′ with parameter ϵ/4 to produce a matrix

C. Output C.

The sampling in Theorem 3.2.2 satisfies the conditions for Lemma 3.3.1, hence E∥A′∥2F ≤(
1+O( ϵ2

log(m+n)
)
)
∥A∥2F . Thus, with high probability, sr(A′) ∈ (1±O(ϵ)) sr(A), and similarly

for B′. Ignoring the nnz(·) terms, the time it takes for the algorithm from Lemma 3.3.2 on

A′, B′ is

O
(
ϵ−6 ns(A) ns(B) log(m+ n) log(n+ p)

√
sr(A) sr(B) log

(
ϵ−1 sr(A) sr(B)

))
,

hence the stated overall running time. The output C satisfies with high probability

∥AB − C∥2 ≤ ∥(A− A′)B∥2 + ∥(A′(B −B′)∥2 + ∥A′B′ − C∥2

≤ ϵ
4
∥A∥2∥B∥2 + ϵ

4
∥B∥2(1 + ϵ

4
)∥A∥2 + ϵ

4
(1 + ϵ

4
)2∥A∥2∥B∥2 ≤ ϵ∥A∥2∥B∥2.
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3.3.2 Proof of Theorem 3.1.5 (Frobenius-Norm AMM)

We provide a sampling lemma for estimating outer products in the Frobenius-norm.

Lemma 3.3.3. There exists an algorithm that, given vectors a ∈ Rn, b ∈ Rm and parameter

0 < ϵ < 1, computes in time O(∥a∥0 + ∥b∥0) vectors a′, b′ ∈ Rn with sparsity ϵ−2 ns(a) and

ϵ−2 ns(b), respectively, satisfying E(a′b′⊤) = ab⊤ and E∥a′b′⊤ − ab⊤∥2F ≤ ϵ2∥a∥22∥b∥22.

Proof. Given 0 < ϵ < 1, our algorithm is as follows.

1. Independently sample (with repetitions) 9ϵ−2 ns(a) entries from a according to the

distribution {p(a)i = |ai|
∥a∥1}i and 9ϵ−2 ns(b) entries from b according to the distribution

{p(b)i = |bi|
∥b∥1}i.

2. Re-weight the sampled entries of a by 1

p
(a)
i

· 1
9ϵ−2 ns(a)

and similarly for b. Output the

sampled vectors.

Denote the sampled vectors a′ and b′. They satisfy the conditions of Lemma 3.3.1, hence

they satisfy E(a′b′⊤) = ab⊤ and E(∥a′∥22) ≤ (1 + ϵ2/3)∥a∥22 and similarly for b′. Thus,

E∥a′b′⊤ − ab⊤∥2F = E∥a′b′⊤∥2F − ∥ab⊤∥2F = E∥a′∥22∥b′∥22 − ∥a∥22∥b∥22 ≤ ϵ2∥a∥22∥b∥22.

In order to prove Theorem 3.1.5, we will use a result from [53]. The algorithm in [53]

samples corresponding pairs of columns from A and rows from B, hence the time it takes to

compute an approximation of AB depends on the sparsity of these rows and columns.
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Lemma 3.3.4 (Lemma 4 of [53]). There exists an algorithm that, given matrices A ∈

Rm×n, B ∈ Rn×p and parameter 0 < ϵ < 1, computes in time O(nnz(A) + nnz(B) +

ϵ−2 csp(A) rsp(B)) a matrix C ∈ Rm×p satisfying E∥AB − C∥F ≤ ϵ∥A∥F∥B∥F .

Proof of Theorem 3.1.5. Let 0 < ϵ < 1. Recall that AB =
∑

i A
iBi. Our algorithm is as

follows.

1. Apply the algorithm in Lemma 3.3.3 on each pair of vectors Ai, Bi with parameter ϵ/3

to obtain their sparse estimates Âi and B̂i.

2. Arrange the column vectors {Âi} in a matrix Â and the row vectors {B̂i} in a matrix

B̂.

3. Apply the algorithm in Lemma 3.3.4 on the matrices Â and B̂ with parameter ϵ/3 to

obtain their approximate product C. Output C.

The sparsity of the columns of Â is bounded by ϵ−2 ns(A) and the sparsity of the rows of

B̂ is bounded by ϵ−2 ns(B). By the triangle inequality, Jensen inequality, Lemma 3.3.3 and

Cauchy-Schwarz inequality,

E∥AB − ÂB̂∥F = E∥
∑
i

AiBi − ÂiB̂i∥F ≤
∑
i

E∥AiBi − ÂiB̂i∥F

≤
∑
i

√
E∥AiBi − ÂiB̂i∥2F ≤ ϵ

3

∑
i

∥Ai∥2∥Bi∥2 ≤ ϵ
3
∥A∥F∥B∥F .

Additionally, by Jensen’s inequality and Lemma 3.3.1,

E∥Â∥F ≤
√

E∥Â∥2F ≤
√∑

i

(1 + ϵ2

9
)∥Ai∥22 ≤ (1 + ϵ

3
)∥A∥F ,
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and similarly for B̂. By the triangle inequality and Lemma 3.3.4,

E∥C − AB∥F ≤ E(∥C − ÂB̂∥F + ∥ÂB̂ − AB∥F )

≤ ϵ
3
(1 + ϵ

3
)2∥A∥F∥B∥F + ϵ

3
∥A∥F∥B∥F ≤ ϵ∥A∥F∥B∥F .

Except for the nnz(·) terms, the time it takes to compute the last step is O(ϵ−6 ns(A) ns(B)),

and the claimed running time follows.

3.4 Application II: Preconditioning for Ridge Regres-

sion

Often, problem-specific preconditioners are used to reduce the condition number of the prob-

lem, since the time it takes for iterative methods to converge depends on the condition

number. Specifically, for a matrix M ∈ Rn×n and a linear-system Mx = b, any invertible

matrix P ∈ Rn×n has the property that the solution to the preconditioned linear-system

P−1Mx = P−1b, is the same as that of the original problem. Using iterative methods to

solve the preconditioned problem requires to apply P−1M to a vector in each iteration. In

the case of ridge regression, M = A⊤A+ λI. Applying (A⊤A+ λI) to a vector can be done

in O(nnz(A)) time, and applying P−1 to a vector is equivalent to solving a linear-system in

P , i.e. argminx ∥Px − y∥22 for some y ∈ Rn. There is a trade-off between the number of

iterations taken to converge for the preconditioned problem, and the time taken to (approx-

imately) solve a linear-system in P . We show in this section how to use the sparsification

scheme of Theorem 3.1.2 to construct a preconditioner for ridge-regression, and couple it

with an acceleration framework by [59].

Theorem 3.1.6. There exists an algorithm that, given A ∈ Rm×n, x0 ∈ Rn, λ > 0 and ϵ > 0,
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computes with high probability an ϵ-approximate solution to the ridge regression problem in

time

Oϵ(nnz(A)) + Õϵ

(
(nnz(A))2/3(ns(A) sr(A))1/3

√
κλ(A⊤A)

)
.

Since the term Ax is a linear combination of the columns of A, and the regularization

term λ∥x∥22 penalizes each coordinate of x equally, in practice, the columns of A are often

pre-processed to have uniform norms before solving ridge-regression. For this case, in section

3.4.2, we show an improvement of roughly (n/ ns(A))1/6 over Theorem 3.1.6.

We start by showing that given a matrix A ∈ Rm×n and parameter λ > 0, if P ∈ Rm×n

is an ϵ-spectral-norm sparsifier for A, for small enough ϵ, the preconditioned problem has a

constant condition number, hence requires only a constant number of iterations as described

above. This was explored by [70], but they demanded ϵ to be O( λ
∥A∥22

), which is much smaller

than necessary. In the next lemma we provide a tighter bound for ϵ.

Lemma 3.4.1. Given matrix A ∈ Rm×n, parameters λ > 0 and 0 < ϵ′ < 1
2
, then if a matrix

P ∈ Rm×n satisfies ∥A− P∥2 < ϵ∥A∥2 where ϵ =
√
λϵ′

∥A∥2 , then

(1− 2ϵ′)(A⊤A+ λI) ⪯ P⊤P + λI ⪯ (1 + 2ϵ′)(A⊤A+ λI).

Setting ϵ′ = 1/4 yields that all the eigenvalues of (P⊤P + λI)−1(A⊤A + λI) are in the

range [2
3
, 2]. Using our sampling scheme in Theorem 3.1.2 with parameter ϵ as described

here, denoting its output as P , provides a preconditioner for ridge regression with constant

condition number. Hence solving this preconditioned problem, i.e, the linear-system (P⊤P +

λI)−1(A⊤A+λI)x = (P⊤P+λI)−1b for some vector b ∈ Rn, with any iterative method, takes

Oϵ(nnz(A) + T λ
P ) time, where T λ

P is the time it takes to compute an approximate solution to

argminx ∥(P⊤P + λI)x− y∥22 for some vector y ∈ Rn.
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Proof of Lemma 3.4.1. For any x ∈ Rn, by the Triangle inequality,

∥Px∥2 ≤ ∥Ax∥2 + ∥(P − A)x∥2 ≤ ∥Ax∥2 +
√
λϵ′∥x∥2.

By squaring both sides and applying the AM-GM inequality,

∥Px∥22 ≤ ∥Ax∥22 + λϵ′2∥x∥22 + 2∥Ax∥2
√
λϵ′∥x∥2

≤ ∥Ax∥22 + λϵ′2∥x∥22 + ϵ′
(
∥Ax∥22 + λ∥x∥22

)
= (1 + ϵ′)∥Ax∥22 + λϵ′(1 + ϵ′)∥x∥22,

and since ϵ′ < 1,

∥Px∥22 + λ∥x∥22 ≤ (1 + ϵ′)∥Ax∥22 + λ(1 + 2ϵ′)∥x∥22.

Hence P⊤P + λI ⪯ (1 + 2ϵ′)(A⊤A+ λI).

Similarly, we get ∥Px∥2 ≥ ∥Ax∥2−
√
λϵ′∥x∥2, thus ∥Px∥22 ≥ (1−ϵ′)∥Ax∥22−λϵ′(1−ϵ′)∥x∥22

and

∥Px∥22 + λ∥x∥22 ≥ (1− ϵ′)∥Ax∥22 + λ(1− 2ϵ′)∥x∥22.

3.4.1 Proof of Theorem 3.1.6

Solving the linear-system in P⊤P+λI can be done by the Conjugate Gradient (CG) method,

and can be accelerated by the framework of [59], that, given an algorithm to compute an

approximate solution to an Empirical Risk Minimization (ERM) problem, uses the algorithm

to provide acceleration in a black-box manner. We restate the guarantees for these algorithms

below.
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Fact 3.4.2. For a matrix M ∈ Rm×n, vector y ∈ Rm and parameters ϵ, λ > 0, the Conjugate

Gradient algorithm returns an ϵ-approximate solution to minx ∥Mx − y∥22 + λ∥x∥22 in time

O(nnz(M)
√
κλ(M) log(1

ϵ
)), which we will denote by T λ

CG(M, ϵ).

Lemma 3.4.3 (Acceleration. Theorem 1.1 of [59]). Let f : Rn → R be a λ strongly convex

function and for all x0 ∈ Rn, c > 1, λ′ > 0, let fmin = minx∈Rn(f(x) + λ′

2
∥x− x0∥22), assume

we can compute xc ∈ Rn in time Tc such that

E(f(xc))− fmin ≤ 1
c
(f(x0)− fmin),

then, given any x0 ∈ Rn, c > 1, λ′ ≥ 2λ, we can compute x1 such that

E(f(x1))−min
x

(f(x)) ≤ 1
c

(
f(x0)−min

x
(f(x))

)
in time O

(
T
4( 2λ

′+λ
λ

)1.5

√
λ′

λ
log c

)
.

The measure of error in the above theorem coincides with the definition we gave for ϵ-

approximation to ridge regression, since if f(x) = ∥Ax− b∥22+λ∥x∥22 and x∗ = argminx f(X)

then for any x ∈ Rn, (x − x∗)T (ATA + λI)(x − x∗) = 2(f(x) − f(x∗)). For a proof, see for

example [122, Fact 39].

Note that the term λ′

2
∥x−x0∥22 is not exactly of the same shape as the ridge term λ′∥x∥22,

but since

∥Ax− b∥22 + λ∥x∥22 + λ′∥x− x0∥22 = ∥Ax− b∥22 + (λ+ λ′)∥x∥22 − 2λ′x⊤
0 x+ λ′∥x0∥22,

solving minx(∥Ax− b∥22+λ∥x∥22+λ′∥x−x0∥22) is at most as hard as solving ridge regression

with vector AT b + λ′x0 and parameter λ + λ′. We are now ready to prove the result for

preconditioned ridge-regression using our sparsifier as a preconditioner.
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Proof of Theorem 3.1.6. We first explain how to compute an approximate solution for ridge

regression with parameter λ > 0 and then apply the acceleration framework of Lemma 3.4.3

as a black-box.

Apply the sparsification scheme of Theorem 3.1.2 on A with parameter ϵ =
√
λ

4∥A∥2 as

specified in Lemma 3.4.1 and denote its output by P . Solve the preconditioned linear-

system (P⊤P + λI)−1(A⊤A + λI)x = (P⊤P + λI)−1b by any iterative method. As was

described earlier, this takes Oϵ(nnz(A) + T λ
P ) time. Use Conjugate gradients to solve each

linear-system in P⊤P +λI. It takes Oϵ(
√
κλ(P⊤P ) nnz(P )) time. Since ∥P∥2 ∈ (1± ϵ)∥A∥2

and κλ(P
⊤P ) =

∥P∥22
λ

, by Theorem 3.1.2,

T λ
CG(P, ϵ) = Oϵ

(
nnz(P )

√
κλ(P⊤P )

)
= Oϵ

(∥A∥32
λ1.5

ns(A) sr(A) log n+
∥A∥22
λ

√
ns(A)n · sr(A) log n

)
.

Applying the acceleration framework (Lemma 3.4.3) yields a running time of

Õ

((
nnz(A) +

∥A∥32
λ′1.5 ns(A) sr(A) +

∥A∥22
λ′

√
ns(A)n · sr(A)

)√λ′

λ

)
.

Set λ′ = ∥A∥22
(ns(A) sr(A)

nnz(A)

)2/3. If n < ns(A) sr(A)
∥A∥22
λ′ = (ns(A) sr(A))1/3(nnz(A))2/3, which is

a reasonable assumption in many cases (for example, if nnz(A) > n3/2), then this choice for

λ′ balances the two major terms, resulting in the stated running time.

3.4.2 Faster Algorithm for Inputs with Uniform Row Norms

The best running time, to our knowledge, for the ridge-regression problem on sparse ma-

trices in general is using Stochastic Variance Reduced Gradient Descent (SVRG), originally

introduced by [87], coupled with the acceleration framework of [59]. We utilize this method

for solving the linear-system for P⊤P + λI, where P is the preconditioner. This method is
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fastest if the norms of the rows/columns of the input matrix A are uniform. We show the

following theorem for solving ridge-regression on numerically sparse matrices with uniform

row/column norms.

Theorem 3.4.4. There exists an algorithm that, given a matrix A ∈ Rm×n having uniform

rows norms or uniform columns norms, a vector x0 ∈ Rn and parameters λ > 0, ϵ > 0,

computes an ϵ-approximate solution to the ridge regression problem in expected time

Oϵ(nnz(A)) + Õϵ

(
nnz(A)2/3

√
sr(A) ns(A)1/3n−1/6

√
κλ(A⊤A)

)
.

Note that (A⊤A + λI)−1A⊤ = A⊤(AA⊤ + λI)−1. Hence, for any vector v, one can

compute an ϵ-approximation for (A⊤A + λI)−1A⊤v in time O(nnz(A)) + T λ(A⊤, ϵ). This

doesn’t change the condition number of the problem, i.e, κλ(A
⊤A) = κλ(AA

⊤). Hence we

only analyze the case where A is pre-processed such that the norms of the rows are uniform.

We provide a theorem from [122] that summarizes the running time of accelerated-

SVRG.

Lemma 3.4.5 (Theorem 49 of [122]). For a matrix M , vector y ∈ Rn and λ, ϵ > 0,

there exists an algorithm that computes with high probability an ϵ-approximate solution to

minx ∥Mx− y∥22 + λ∥x∥22 in time T λ(M, ϵ) such that

T λ(M, ϵ) ≤ Oϵ(nnz(M)) + Õϵ

(√
nnz(M) · ∥M∥

2
F

λ
· rsp(M)

)
.

Before we prove Theorem 3.4.4, note the following properties of the sampling in Theorem

3.1.2.

Lemma 3.4.6. Given a matrix A ∈ Rm×n, parameter ϵ > 0 and a random matrix P ∈ Rm×n

satisfying ∥P −A∥2 ≤ ϵ∥A∥2 and EP = A, then the expected ℓ2-norm of the i-th row and of

95



the j-th column of P are bounded as

E∥Pi∥22 ≤ ∥Ai∥22 + ϵ2∥A∥22,

E∥P j∥22 ≤ ∥Aj∥22 + ϵ2∥A∥22.

Proof. By properties of the spectral-norm, ∥Pi − Ai∥2 ≤ ∥P − A∥2 ≤ ϵ∥A∥2. Squaring this

and taking the expectation yields E(∥Pi∥22)−∥Ai∥22 ≤ ϵ2∥A∥22 as desired. The same holds for

the columns. One can similarly get an high probability statement.

Summing over all the rows or columns yields an immediate corollary,

Corollary 3.4.7. The expected Frobenius-norm of P is bounded as E∥P∥2F ≤ ∥A∥2F +

ϵ2min(n,m)∥A∥22.

We are now ready to show the result for ridge-regression in the case that the norms of

the rows of the input matrix A are uniform.

Proof of Theorem 3.4.4. We first explain how to compute an approximate solution for ridge

regression with parameter λ > 0 and then apply the acceleration framework of Lemma 3.4.3

as a black-box.

Apply the sparsification scheme of Theorem 3.1.2 on A with parameter ϵ =
√
λ

4∥A∥2 as

specified in Lemma 3.4.1 and denote its output by P . Solve the preconditioned linear-

system (P⊤P + λI)−1(A⊤A + λI)x = (P⊤P + λI)−1b by any iterative method. As was

described earlier, this takes Oϵ(nnz(A) + T λ
P ) time. Use Accelerated-SVRG (Lemma 3.4.5)

to solve each linear-system in P⊤P + λI.

The bulk of the running time of the Accelerated-SVRG method is in applying vector-

vector multiplication in each iteration, where one of the vectors is a row of P . The number of
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iterations have dependence on sr(P ), which by Corollary 3.4.7 is bounded by O(sr(A) + n
κλ
).

The running time of each iteration is usually bounded by the maximum row sparsity, i.e,

rsp(P ). Instead, we can bound the expected running time with the expected row sparsity,

denote as s∗(P ). The distribution for sampling each row is pi =
∥Pi∥22
∥P∥2F

[122]. Hence, the

expected running time will depend on
∑

i pi∥Pi∥0 instead of rsp(P ). By Lemma 3.4.6 and

the assumption that the norms of the rows of A are uniform,

s∗(P ) =
∑
i

pi∥Pi∥0 ≤
∑
i

∥Ai∥22 + λ

∥P∥2F
∥Pi∥0 ≤ nnz(P )

( 1
n
+

λ

∥P∥2F

)
(3.5)

Now, by Lemma 3.4.5, equation 3.5 and corollary 3.4.7,

T λ(P, ϵ) ≤ Oϵ

(
nnz(P ) +

√
nnz(P )s∗(P ) sr(P ) · κλ(P⊤P )

)
≤ Oϵ

(
nnz(P ) + nnz(P )

√
sr(P ) · κλ(P⊤P )

n
+ 1

)
≤ Oϵ

(
nnz(P ) + nnz(P )

√
sr(A) · κλ(A⊤A)

n

)
≤ Oϵ(nnz(P )) + Õϵ

(κλ(A
⊤A)3/2 ns(A) sr(A)3/2√

n

)
.

The last inequality is by plugging in nnz(P ) for the second term. Applying the accelera-

tion framework (Lemma 3.4.3) to the preconditioned problem (i.e, P is a c√
κλ′ (A⊤A)

-spectral-

norm sparsifier of A), yields running time of

Õϵ

(
nnz(A) +

(
nnz(A) +

κλ′(A⊤A)3/2 ns(A) sr(A)3/2√
n

)√λ′

λ

)

Setting λ′ =
∥A∥22 ns(A)2/3 sr(A)

n1/3 nnz(A)2/3
results in the stated running time.
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Chapter 4

Fast Spectral Density Estimation

4.1 Introduction

As discussed earlier, computing a full eigendecomposition of a matrix A ∈ Rn×n takes at

least O(nω) time1, which is prohibitively expensive for large matrices [14, 126]. So we are

typically interested in extracting partial information about the spectrum. This can be done

using iterative methods like the power or Lanczos methods, which access A via a small

number of matrix-vector multiplications. Each multiplication takes at most O(n2) time to

compute, and can be accelerated when A is sparse or structured, leading to fast algorithms.

However, the partial spectral information computed by most iterative methods is lim-

ited. Algorithms typically only obtain accurate approximations to the outlying, or largest

magnitude eigenvalues of A, missing information about the interior of A’s spectrum that

may be critical in applications. For example, in network science, clusters of interior eigen-

values can indicate graph structures like repeated motifs [49]. In deep learning, information

1Here ω < 2.373 is the fast matrix multiplication exponent.
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on how the spectrum of a weight matrix differs from its random initialization can give hints

about model convergence and generalization [109, 130], and Hessian eigenvalues are useful

in optimization [63]. Coarse information about interior eigenvalues is also used to initialize

parallel GPU based methods for full eigendecomposition [10, 98].

To address these needs and many other applications, there has been substantial interest

in methods for estimating the full spectral density of a matrix A [157]. Concretely, assume

that A is Hermitian with real eigenvalues λ1, . . . , λn. We view its spectrum as a probability

density s:

Spectral density: s(x) =
1

n

n∑
i=1

δ(x− λi). (4.1)

Here δ is the Dirac delta function. The goal is to find a probability density q that approxi-

mates s in some natural metric, like the Wasserstein distance. The density q can either be

continuous (represented in some closed form) or discrete (represented as a list of approximate

eigenvalues λ̃1, . . . , λ̃n). See Figure 4.1 for an illustration. Both sorts of approximation are

useful in applications.

Figure 4.1: Different approximations for the spectrum of a matrix A with eigenvalues in
[−1, 1]. A typical approximation computed using an iterative eigenvalue algorithm mostly
preserves information about the largest magnitude eigenvalues. In contrast, the spectral
density estimates in the two right figures coarsely approximate the entire distribution of
A’s eigenvalues, the first with a low-degree polynomial, and the second with a discrete
distribution.

Methods for spectral density estimation that run in o(nω) time were first introduced
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for applications in condensed matter physics and quantum chemistry [137, 139, 154]. Many

are based on the combination of two important tools: 1) moment matching, and 2) stochas-

tic trace estimation. Specifically, if we had access to moments of the distribution s, i.e.
1
n

∑n
i=1 λi, 1

n

∑n
i=1 λ

2
i , 1

n

∑n
i=1 λ

3
i , etc., then we could find a good approximation q by find-

ing a distribution that agrees with s on these moments. Moreover, these spectral moments

can be computed via the matrix trace: note that tr(A) =
∑n

i=1 λi, tr(A2) =
∑n

i=1 λ
2
i ,

tr(A3) =
∑n

i=1 λ
3
i , etc. While we cannot hope to compute tr(Ak) exactly in o(nω) time,

thanks to stochastic trace estimators like Hutchinson’s method, this trace can be approxi-

mated much more quickly [11, 81]. Such estimators are based on the observation that, for any

matrix B ∈ Rn×n, tr(B) can be well approximated by tr(GTBG) where G ∈ Rn×m contains

random sub-Gaussian entries and m ≪ n. For any k degree polynomial g, GTg(A)G can

be computed with just O(km) matrix-vector multiplications, so we can quickly approximate

any low-degree moment of A’s spectral density.

While this high-level approach and related techniques have been applied successfully

to estimating the spectra of a wide variety of matrices [104, 157], theoretical guarantees

have only appeared relatively recently. Perhaps surprisingly, it can be shown that many

common methods provably run in linear time for any Hermitian matrix A. For instance, in

work concurrent to ours, Chen, Trogdan, and Ubaru [31] show that for any n×n Hermitian

matrix A with spectral density s, the popular Stochastic Lanczos Quadrature (SLQ) method

provably computes an approximate spectral density q satisfying:

W1(s, q) ≤ ϵ (4.2)

using just poly(1/ϵ) matrix-vector multiplications with A. Above W1 denotes the Wasserstein-

1 distance, aka the “earth-movers distance”.2 We defer a formal definition of W1 to Section

2We assume ∥A∥2 ≤ 1 for simplicity of stating errror guarantees, noting that Wasserstein distance is not
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4.2. The measure is convenient because, unlike many other measures of statistical distance,

it allows a discrete distribution like the spectral density to be meaningfully compared to a

possibly continuous approximation. For discrete approximations, the Wasserstein distance

is related to a simple ℓ1 metric. If we let Λ = [λ1, . . . , λn] be a vector of A’s eigenvalues and

Λ̃ = [λ̃1, . . . , λ̃n] be a vector of approximate eigenvalues, then ∥Λ − Λ̃∥1 ≤ nϵ if and only if

W1(s, q) ≤ ϵ for the discrete spectral density q with eigenvalues in Λ̃.

As a step towards our main sublinear time result, in this work we show that similar

bounds to [31] can also be proven for the popular kernel polynomial method (KPM) [157]

and for a natural moment matching algorithm based on Chebyshev polynomials.

4.1.1 Our contributions

With linear time spectral density estimation algorithms in hand for all Hermitian matrices,

a natural question is if we can go faster for specific classes of matrices. In particular, there

has been growing interest in SDE algorithms for graph structured matrices like adjacency

matrices and Laplacians [49]. A remarkable recent result by Cohen et al. [41] shows that,

for normalized graph adajeceny matrices, it is possible to achieve guarantee (4.2) in 2O(1/ϵ)

time, given appropriate query access to the target graph. Importantly, this runtime does not

depend on n. However, given the exponential dependence on ϵ, the algorithm is impractical

even for coarse spectral approximations.

Our main contribution is a method that obtains a polynomial dependence on ϵ, at the

cost of a linear dependence on the matrix dimension n. Since A can have n2 non-zero

entries, the runtime is still sublinear in the problem size, but with a much more acceptable

dependence on accuracy.

scale invariant. This assumption is without loss of generality since ∥A∥2 can always be scaled after computing
the top eigenvector up to constant fact accuracy, which takes just O(log n) matrix-vector multiplications [115].
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Theorem 4.1.1 (Sublinear time spectral density estimation for graphs.). Let G = (V,E)

be an unweighted, undirected n-vertex graph and let A ∈ Rn×n be the normalized adjacency

of G with spectral density s. Let ϵ, δ ∈ (0, 1) be fixed values. Assume that we can 1) uni-

formly sample a random vertex in constant time, 2) uniformly sample a random neighbor

of any vertex i ∈ V in constant time, and 3) for a vertex i with degree di, read off all

neighbors in O(di) time.3 Then there is a randomized algorithm with expected running

time O(npoly(log(1/δ)/ϵ)) which outputs a density function q : [−1, 1] → R+ such that

W1(q, s) ≤ ϵ with probability at least 1− δ.

Note that the normalized graph Laplacian L = I −A has the same eigenvalues as A up

to a shift and reflection, so Theorem 4.1.1 also yields a sublinear time result for normalized

Laplacians, whose spectral densities are of interest in network science [49].

Robust spectral density estimation

Theorem 4.1.1 is proven in Section 4.5. A key component of the result is a sublinear time

routine for computing coarse approximate matrix-vector products with any normalized graph

adjacency matrix. To make use of such a routine, we need to develop an SDE algorithm that

is robust to the use of an approximate matrix-vector oracle. This is one of the main contri-

butions of our work, as previous methods assume exact matrix-vector products. Formally,

we assume access to the oracle:

Definition 4.1.2. An ϵMV-approximate matrix-vector multiplication oracle for A ∈ Rn×n

and error parameter ϵMV ∈ (0, 1) is an algorithm that, given any vector y ∈ Rn, outputs a

vector z such that ∥z−Ay∥2 ≤ ϵMV ∥A∥2∥y∥2. We will denote a call to such an oracle for by

AMV(A, y, ϵMV).
3A standard adjacency list representation of the graph would support these operations. As discussed in

Section 4.5, assumption (3) can be eliminated at the cost of an extra log n in the runtime as long as we know
vertex degrees.
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In Section 4.4.2 we prove the following for any Hermitian matrix A (e.g., real symmetric)

under the assumption that ∥A∥2 ≤ 1, i.e., that A’s eigenvalues lie in [−1, 1]:

Theorem 4.1.3 (Robust spectral density estimation). Let A ∈ Rn×n be a Hermitian matrix

with spectral density s and ∥A∥2 ≤ 1. Let C,C ′, C ′′ be fixed positive constants. For any

ϵ, δ ∈ (0, 1) and ϵMV = C ′′ϵ−3 ln(1/ϵ), there is an algorithm (Algorithm 6, with Algorithm

8 used as a subroutine to approximate moments) which makes T = Cℓ/ϵ calls to an ϵMV-

approximate matrix-vector oracle for A, where ℓ = max
(
1, C′

n
ϵ−2 log2( 1

ϵδ
) log2(1

ϵ
)
)

, and in

poly(1/ϵ) additional runtime, outputs a probability density function q : [−1, 1] → R≥0 such

that W1(s, q) ≤ ϵ with probability 1− δ.

The requirement for the approximate matrix-vector oracle in Theorem 4.1.3 is relatively

weak: we only need accuracy ϵMV that is polynomial in the final accuracy ϵ. Importantly,

there is no dependence on 1/n, which allows for the theorem to be combined with coarse

AMV methods, including the one developed in Section 4.5 for normalized adjacency matrices.

Based on random sampling, that method returns an ϵ-approximate matrix-vector multiply

in O(n/ϵ2) time. This immediately yields our result for graphs given by Theorem 4.1.1. We

hope that Theorem 4.1.3 will find broader applications, since spectral density estimation is

often applied to matrices where we only have inexact access to A. For example, A might

be a Hessian matrix that we can multiply by approximately using stochastic approximation

[127, 165], or the inverse of some other matrix, which we can multiply by approximately

using an iterative solver.

We note that the result in Theorem 4.1.3 actually improves as n increases. Intuitively,

when A is larger, each matrix-vector product returns more information about the spectral

density s, so we can estimate it more easily. We also remark that the density function q

returned by Algorithm 6 is in the form of an O(1/ϵ3) dimensional vector, with the i-th

entry corresponding to probability mass placed on the i-th point of an evenly spaced grid
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on [−1, 1]. Alternatively, a simple rounding scheme that runs in O(n + poly(1/ϵ)) time can

extract from q a vector of approximate eigenvalues Λ̃ = [λ̃1, . . . , λ̃n] satisfying ∥Λ−Λ̃∥1 ≤ nϵ,

which, as discussed, is ϵ close to the spectral density s in Wasserstein distance (see Theorem

4.8.1).

Our approach for density estimation is based on a moment matching method that ap-

proximates Chebyshev polynomial moments instead of the standard moments. I.e. we ap-

proximate tr(T0(A)), . . ., tr(TN(A)) where T0, . . . , TN are the Chebyshev polynomials of the

first kind and then return a distribution whose Chebyshev moments closely match our ap-

proximations. By leveraging Jackson’s theorem on polynomial approximation of Lipschitz

functions [84], we show how to bound the Wasserstein distance between two distributions

in terms of the magnitude of the differences between their first N = O(1/ϵ) Chebyshev

moments (see Lemma 4.3.1). Unlike results for standard moments [92], the bound shows a

near-linear relationship between Wasserstein distance and difference in the Chebyshev mo-

ments. Ultimately this allows us to obtain a polynomial dependence on ϵ in the number of

approximate matrix-vector multiplications needed in Theorem 4.1.3.

Along the way to proving that theorem, in Section 4.4.1 we first establish the follow

result that is compatible with exact matrix-vector multiplications:

Theorem 4.1.4 (Linear time spectral density estimation). Let A ∈ Rn×n be a Hermitian

matrix with spectral density s and ∥A∥2 ≤ 1. Let C,C ′ be fixed positive constants. For

any ϵ, δ ∈ (0, 1), there is an algorithm (Algorithm 6, with Algorithm 7 used as a subroutine

to approximate moments) which computes T = Cℓ/ϵ matrix-vector multiplications with A

where ℓ = max
(
1, C′

n
ϵ−2 log2( 1

ϵδ
) log2(1

ϵ
)
)

, and in poly(1/ϵ) additional runtime, outputs a

probability density function q : [−1, 1]→ R≥0 such that W1(s, q) ≤ ϵ with probability 1− δ.

As in Theorem 4.1.3, the theorem improves as n increases, requiring just T = O(1/ϵ)
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matrix vector multiplies when n = Ω(1/ϵ2). The runtime of Theorem 4.1.4 is dominated by

the cost of the matrix-vector multiplications, which take O(T · n2) time to compute for a

dense matrix, and O(T · nnz(A)) time for a sparse matrix with nnz(A) non-zero entries, so

the algorithm runs in linear time when ϵ, δ are considered constant.

Given Theorem 4.1.4, we prove Theorem 4.1.3 by showing that the error introduced

by approximate matrix-vector multiplications does not hinder our ability to estimate the

Chebyshev polynomial moments. We do so by drawing on stability results for the three-

term recurrence relation defining these polynomials [35, 119].

Remark. The number of matrix-vector multiplies Nℓ = N · max(1, C
′

n
ϵ−2 log2( 1

ϵδ
) log2(1

ϵ
))

in Theorems 4.1.3 and 4.1.4 can be improved by up to a log2(1/ϵ) factor in the regime when

n is small, specifically n ≤ C ′ϵ−2 log2(1/(ϵδ)). This is discussed further in Section 4.4.

Spectral density estimation via the kernel polynomial method

In addition to the Chebyshev moment matching method used to give Theorem 4.1.4 and

Theorem 4.1.3, we prove that a version of the popular kernel polynomial method (KPM)

can be used to obtain a spectral density estimate with similar running times, albeit with

slightly worse dependence on the accuracy parameter ϵ.4 Along with the Stochastic Lanc-

zos Quadrature method, the kernel polynomial method is one of two dominant spectrum

estimation algorithms used in practice.

Given sufficiently accurate approximations to the Chebyshev polynomial moments, the

KPM method outputs a density function q in the form of a O(1/ϵ) degree polynomial multi-

plied by a simple closed form function. This is described in Algorithm 11 in Section 4.7.2 and

4We believe that the extra O(ϵ−2) factor in the number of matrix-vector multiplications (or calls to an
approximate matrix-vector oracle in the robust setting) may be an artifact of our analysis and can be further
improved to match the approximate Chebyshev moment matching bounds.
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should be thought of as analagous to Algorithm 6. Specifically, we can obtain Theorem 4.1.4

and Theorem 4.1.3 with ℓ = max(1, C′

n
ϵ−4 log2( 1

ϵδ
)) and ϵMV = C ′′ϵ−4 (in the robust setting),

by using Algorithm 11 instead of Algorithm 6. Our proof in the KPM case is again based on

Jackson’s work on polynomial approximations for Lipschitz functions: we take advantage of

the fact that Jackson constructs approximations that are both linear and preserve positivity

[83].

4.1.2 Related work

As mentioned, most closely related to our sublinear time result on graphs is the result of

Cohen et al. [41]. They prove a result which matches the guarantee of Theorem 4.1.1, but

with runtime of 2O(1/ϵ) – i.e., with no dependence on n. In comparison, our result depends

linearly on n, but only polynomially on 1/ϵ. An interesting open question is if a poly(1/ϵ)

time algorithm is possible but we conjecture that the trade-off between the dependence on

n and the accuracy ϵ is inherent. Our bound in Lemma 4.3.1 on the Wasserstein-1 distance

between two distributions can be seen as analagous to Proposition 1 from [92], which is the

basis of the result in [41]. They bound the Wasserstein-1 distance between two distributions

in terms of the differences in the standard moments of the distributions. The bound requires

an exponentially small dependence on 1/ϵ, i.e. 2−O(1/ϵ), in the difference between the stan-

dard moments while the bound from Lemma 4.3.1 only requires an O(ϵ/ ln(1/ϵ)) difference

in the Chebyshev moments.

As discussed, algorithms for spectral density estimation have been studied since the

early 90s [137, 139, 154] but only analyzed recently. In addition to the work of Chen,

Trogdon, and Ubaru that was discussed [31], [121] provides an algorithm for computing an

approximate histogram for the spectrum of matrix. That result can be shown to yield an

ϵ error approximation to the spectral density in the Wasserstein-1 distance with roughly

106



O(1/ϵ5) matrix-vector multiplications. This compares to the improved O(1/ϵ) matrix-vector

multiplications required by our Theorem 4.1.4.

Matrix-vector query algorithms. Our work fits into a broader line of work on

proving upper and lower bounds on the matrix-vector query complexity of linear algebraic

problems, from top eigenvector, to matrix inversion, to rank estimation [18, 47, 111, 138, 141].

The goal in this model is to minimize the total number of matrix-vector multiplications with

A, recognizing that such multiplications either 1) dominate runtime cost or 2) are the only

way to access A when it is an implicit matrix. The matrix-vector query model generalizes

both classical Krylov subspace methods, as well as randomized sketching methods [159].

Studying other basic linear algebra problem when matrix-vector multiplication queries are

only assumed to be approximate (as in Definition 4.1.2) is an interesting future direction.

4.1.3 Paper Roadmap

We describe notation and preliminaries on polynomial approximation in Section 4.2. We use

these tools in Section 4.3 to prove that a good approximation to the first O(1/ϵ) Chebyshev

polynomial moments of the spectral density can be used to extract a good approximation

in Wasserstein-1 distance. This result is the basis for our result on robust spectral density

estimation stated in Theorem 4.1.4 and linear time spectral density estimation stated in

Theorem 4.1.3, which are proven in Section 4.4. Finally, we give a randomized algorithm

to implement an approximate matrix-vector multplication oracle for adjacency matrices in

Section 4.5 and prove our main result, Theorem 4.1.1. In Section 4.7 we describe and

analyze the kernel polynomial method, showing that it too can be used to obtain a spectral

density estimate given approximations to the first O(1/ϵ) Chebyshev polynomial moments.

In Section 4.6, we empirically investigate the potential of combining approximate matrix-

vector multiplications with our moment matching method, the kernel polynomial method,
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and the stochastic Lanczos quadrature method studied in [31]. We show that all three can

achieve accurate SDE estimates in sublinear time for a variety of graph Laplacians.

4.2 Preliminaries

Throughout we assume that A ∈ Rn×n is Hermitian with eigendecomposition A = UΛU∗,

where UU∗ = U∗U = In×n. We assume that A’s eigenvalues satisfy −1 ≤ λn ≤ · · · ≤ λ1 ≤ 1.

In many applications A is real symmetric. We denote A’s spectral density by s, which is

defined in (4.1). Our goal is to approximate s in the Wasserstein-1 metric with another

distribution q supported on [−1, 1]. Specifically, as per the dual formulation given by the

Kantorovich-Rubinstein theorem [88], for s, q supported on [−1, 1] the metric is equal to:

W1(s, q) = sup
f :R→R

|f(x)−f(y)|≤|x−y| ∀x,y

{∫ 1

−1

f(x)
(
s(x)− q(x)

)
dx

}
. (4.3)

In words, s and q are close in Wasserstein-1 distance if their difference has small inner product

with all 1-Lipschitz functions f . Alternatively, W1(s, q) is equal to the cost of “changing”

one distribution to another, where the cost of moving one unit of mass from x to y is |x− y|:

this is the “earthmover’s” formulation common in computer science. Note that (4.3) can be

applied to arbitrary functions s, q, even if they are not distributions, and we will occasionally

do so.

Functions and inner products. We introduce notation for functions used throughout

the paper. Let F([−1, 1],R) denote the space of real-valued functions on [−1, 1]. For g, h ∈

F([−1, 1],R), let ⟨g, h⟩ denote ⟨g, h⟩ :=
∫ 1

−1
g(x)h(x)dx. For f ∈ F([−1, 1],R), we define

∥f∥2 :=
√
⟨f, f⟩ and let ∥f∥∞ denote the max-norm ∥f∥∞ = maxx∈[−1,1] |f(x)|. We let ∥f∥1
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denote ∥f∥1 =
∫ 1

−1
|f(x)|dx.

Let F(Z,R) be the space of real-valued functions on the integers, Z. For f, g ∈ F(Z,R)

let (f ∗ g) denote the discrete convolution: (f ∗ g)[n] =
∑∞

m=−∞ f [m]g[n−m]. Let F(N,R)

be the space of real-valued functions on the natural numbers, N. For functions in F(Z,R)

or F(N,R) we typically used square brackets instead of parentheses.

For two functions f, g let h = fg (or h = f · g) and j = f/g denote the pointwise

product and quotient respectively. I.e. h(x) = f(x)g(x) and j(x) = f(x)/g(x) for all x.

Chebyshev polynomials. Our approach is based on approximating Chebyshev polyno-

mial moments of A’s spectral density, and we will use basic properties of these polynomials,

the kth of which we denote Tk. The Chebyshev polynomial of the first kind can be defined

via the recurrence:

T0(x) = 1 T1(x) = x

Tk(x) = 2x · Tk−1(x)− Tk−2(x) for k ≥ 2.

We will use the well known fact that the Chebyshev polynomials of the first kind are bounded

between [−1, 1], i.e. maxx∈[−1,1] |Tk(x)| ≤ 1.

Let w(x) := 1√
1−x2 . It is well known that ⟨T0, w · T0⟩ = π, ⟨Tk, w · Tk⟩ = π/2 for k > 0,

and

⟨Ti, w · Tj⟩ = 0 for i ̸= j.

In other words, the Chebyshev polynomials are orthogonal on [−1, 1] under the weight func-

tion w. The first k Chebyshev polynomials form an orthogonal basis for the degree k poly-
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nomials under this weight function. We let T̄k denote the normalized Chebyshev polynomial

T̄k := Tk/
√
⟨Tk, w · Tk⟩.

Definition 4.2.1 (Chebyshev Series). The Chebyshev expansion or series for a function

f ∈ F([−1, 1],R) is given by
∞∑
k=0

⟨f, w · T̄k⟩ · T̄k.

We call
∑N

k=0⟨f, w · T̄k⟩ · T̄k the truncated Chebyshev expansion or series of degree N .

Other notation. Let [n] denote 1, . . . , n. For a scalar function f : R → R and n × n

matrix A with eigendecomposition UΛU∗ , we let f(A) denote the matrix function Uf(Λ)U∗.

Here f(Λ) is understood to mean f applied entrywise to the diagonal matrix Λ containing

A’s eigenvalues. Note that tr(f(A)) =
∑n

i=1 f(λi). When f(x) is a degree q polynomial,

c0 + c1x+ . . . , cqx
q, then we can check that f(A) exactly equals c0I + c1A+ . . . , cqA

q, where

I is then n× n identity matrix. So f(A)y can be computed for any vector y using q matrix-

vector multiplications with A.

4.3 Approximate Chebyshev Moment Matching

In this section we show that the spectral density s of a Hermitian matrix A with eigenvalues in

[−1, 1] can be well approximated given access to approximations of the first N = O(1/ϵ) nor-

malized Chebyshev polynomial moments of s, i.e., to approximations of tr(T̄1(A)), . . . , tr(T̄N(A)).

We state our result in Algorithm 6 and analyze it in Section 4.3.1. We show later, in Section

4.4, a method to approximate these moments using a stochastic trace estimator, implemented

with either exact or approximate matrix vector multiplications with A.

Given approximations τ̃1, . . . , τ̃N to the first N normalized Chebyshev moments of A,
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a natural approach is to find a probability density q : [−1, 1] → R+ such that the first N

normalized Chebyshev moments of q, i.e., ⟨T̄1, q⟩, . . . , ⟨T̄N , q⟩, closely approximate τ̃1, . . . , τ̃N .

In order for this approximate moment matching approach to return a good spectral density

estimate, it requires that: for any density function q, if the first N Chebyshev moments of

q closely approximate those of s, then q must be close to s in Wasserstein distance. To that

end, we prove the following lemma:

Lemma 4.3.1. Let N ∈ 4N+ be a degree parameter and p, q be distributions on [−1, 1].

W1(p, q) ≤
36

N
+ 2

N∑
k=1

|⟨T̄k, p⟩ − ⟨T̄k, q⟩|
k

.

Lemma 4.3.1 shows that if the first N normalized Chebyshev moments of two distri-

butions are identical, then the Wasserstein distance between the distributions is at most

O(1/N). When the moments between the distributions differ, the contribution of the dif-

ference between the k-th moments to the Wasserstein distance is scaled by O(1/k). In

particular, the lemma shows that deviation in the lower moments between distributions

contributes more to the Wasserstein distance.

To prove Lemma 4.3.1, we will use two well-known results on approximating Lipschitz

functions by polynomials. The first is proven in [84]. and concerns uniform approximation

of Lipschitz continuous functions by a Chebyshev series:

Fact 4.3.2. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function with Lipschitz constant

λ > 0. Then, for every N ∈ 4N+, there exists N +1 constants b̂N [0] > · · · > b̂N [N ] ≥ 0 such

that the polynomial f̄N =
∑N

k=0
b̂N [k]

b̂N [0]
⟨f, w · T̄k⟩T̄k has the property that maxx∈[−1,1] |f(x) −

f̄N(x)| ≤ 18λ/N.

The coefficients of the polynomial in Fact 4.3.2 are not explicitly stated since we only

require the existence of such a polynomial in order to prove Lemma 4.3.1. We defer the
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reader to Appendix 4.7.1 for an explicit construction of the polynomial5 and Appendix B.1.6

for a proof of Fact 4.3.2.

Next, we state a well-known fact that the magnitude of the inner-product of a Lipschitz

function f with the k-th Chebyshev polynomial (for k ≥ 1) under the Chebyshev weight

function w = 1/
√
1− x2 is bounded by O(1/k), i.e., |⟨f, w · T̄k⟩| ≤ O(1/k). Our proof is

given in Appendix B.3 and is a simple adaptation of the proof of Theorem 4.2 in [142].

Fact 4.3.3. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function with Lipschitz constant

λ > 0. Then, for any k ≥ 1, we have that |⟨f, w · T̄k⟩| = |
∫ 1

−1
f(x)T̄k(x)w(x)dx| ≤ 2λ/k.

With Fact 4.3.2 and 4.3.3 in place, we are now ready to prove Lemma 4.3.1

Proof of Lemma 4.3.1. Recall that the dual formulation of the Wasserstein-1 distance due to

Kantorovich-Rubinstein gives us that W1(p, q) = supf∈lip1

∫ 1

−1
f(x)(p(x)− q(x))dx where lip1

denotes the set of 1-Lipschitz functions on [−1, 1]. Let f ∈ lip1 be an arbitrary 1-Lipschitz

function and let {b̂N [k]}Nk=0 and f̄N be the coefficients and polynomial respectively from Fact

4.3.2 for function f . We can then bound W1(p, q) using the triangle inquality as

W1(p, q) ≤
∫ 1

−1

|f(x)− f̄N(x)|(p(x)− q(x))dx︸ ︷︷ ︸
t1

+

∫ 1

−1

f̄N(p(x)− q(x))dx︸ ︷︷ ︸
t2

.

Using the fact that f is Lipschitz and the bound from Fact 4.3.2, along with the fact that p

and q are distributions, we have that t1 ≤ 36/N .

It is left to bound t2. We expand t2 using the Chebyshev series expansion of f̄N and

5The construction of the polynomial f̄N in Fact 4.3.2 and its uniform approximation to f forms the basis
of our alternate approach, the Kernel Polynomial Method, which is discussed in-depth in Appendix 4.7.1.
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note that ⟨g/w,w · T̄k⟩ = ⟨g, T̄k⟩ for any function g ∈ F([−1, 1],R), giving us

t2 =

∫ 1

−1

f̄N(x)w(x) ·
p(x)− q(x)

w(x)
dx =

∫ 1

−1

f̄N(x)w(x) ·
∞∑
k=0

⟨p− q, T̄k⟩T̄k(x)dx

=

∫ 1

−1

w(x)
N∑
k=0

b̂N [k]

b̂N [0]
⟨f, w · T̄k⟩T̄k(x)

 ∞∑
k=0

⟨p− q, T̄k⟩T̄k(x)

 dx.

By the orthogonality of the Chebyshev polynomials under the weight function w and the

fact that ⟨T̄k, T̄k⟩ = 1 for all k ∈ [N ], we can bound the magnitude of t2 as

|t2| ≤
N∑
k=1

|⟨f, w · T̄k⟩| · |⟨T̄k, p⟩ − ⟨T̄k, q⟩|

since we have that 0 ≤ b̂N [k]/b̂N [0] ≤ 1 and |
∫ 1

−1
T̄k(p(x)− q(x))dx| = |⟨T̄k, p⟩ − ⟨T̄k, q⟩| for

each k ∈ [N ]. Additionally, since p and q are distributions we have that ⟨T̄0, s⟩ = ⟨T̄0, z⟩ =

1/
√
π. We then use the bound from Fact 4.3.3 on |⟨f, w · T̄k⟩| for each k ∈ [N ]. Putting this

together gives us that |t2| ≤
∑N

k=1 2|⟨T̄k, p⟩ − ⟨T̄k, q⟩|/k.

Putting together the bound on t1 and t2 gives us the bound on W1(p, q).

4.3.1 Moment Matching Algorithm

With Lemma 4.3.1 in place, our next step is develop a method to find a distribution q with

Chebyshev moments closely matching a given set of target moments. In order to search for a

distribution, we consider an evenly-spaced grid of the interval [−1, 1]. Specifically, let d ∈ N+

be a discretization parameter and let Xd = [−1,−1 + 2
d
, . . . , 1 − 2

d
, 1] be a (d + 1)-length

evenly-spaced grid of the interval [−1, 1]. Our goal is to output a distribution supported

on Xd for an appropriately chosen value of d. Any such distribution can be described by a

vector in Rd
≥0 such that the i-th entry corresponds to the probability mass placed at point
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−1 + 2i/d on the grid. Where it is clear from the context, we will denote the distribution

and its probability mass vector interchangeably.

In order to compute the first N normalized Chebyshev moments of functions on the

grid Xd, we define two matrices T d
N , T̂ d

N ∈ RN×d such that for k ∈ [N ] and i ∈ [d],

(T d
N)k,i = T̄k(−1 + 2i/d) and (T̂ d

N)k,i =
T̄k(−1 + 2id)

k
.

The matrix T d
N corresponds to a “discretization” of the continuous operator that computes

the first N normalized Chebyshev moments of a continuous function on [−1, 1]. In particular,

for a distribution q supported on Xd, we have that ⟨q, T̄k⟩ =
∑d

i=0 qiT̄k(−1+2i/d) = (T d
Nq)k.

Notice that the matrix T d
N does not contain the row for T̄0; since we are working with

distributions we know that T̄0(q) = 1/
√
π ·
∫ 1

−1
qdx = 1/

√
π for any distribution q on [−1, 1].

The matrix T̂ d
N is the matrix T d

N with the k-th row scaled by 1/k. With this notation in

place, we state the approximate moment matching algorithm in full in Algorithm 6.

Algorithm 6 Approximate Chebyshev Moment Matching
Input: Symmetric A ∈ Rn×n, degree parameter N ∈ 4N+, algorithm M(A) that com-

putes moment approximations τ̃1, . . . , τ̃N with the guarantee that |τ̃k − 1
n
tr(T̄k(A))| ≤

(N ln(eN))−1 for all k.
Output: A vector q corresponding to a discrete density function on [−1, 1].

1: For k = 1, . . . , N use M to compute τ̃1, . . . , τ̃N and set z = [τ̃1/1, τ̃2/2, . . . , τ̃N/N ].
2: Set d = ⌈N3/2⌉ and compute matrix T̂ d

N ∈ RN×d. ▷ (T̂ d
N)k,i = T̄k(−1 + 2i

d
)/k.

3: Minimize ∥T̂ d
Nq − z∥1 subject to q⊤1⃗ = 1 and q ≥ 0.

4: Return q.

Note that the optimization problem in Line 3 of Algorithm 6 can easily be written as a

linear program in O(d+N) variables and constraints and hence can be solved efficiently in

poly(N, d) = poly(1/ϵ) time6. Since this method is independent of the matrix dimension n,
6Additionally, note that the optimization problem has a convex objective and constraints – in particular,

the set of distributions supported on Xd is a convex set. The objective function ∥T̂ d
Nq − z∥1 is not differen-

tiable, but has subgradients. Hence, this program can be solved efficiently in poly(1/ϵ) time using a projected
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it is a lower order term in the running time stated in Theorems 4.1.4 and 4.1.3, as we will

discuss in Section 4.4.

We show that when N = O(1/ϵ), Algorithm 6 returns a distribution satisfying W (s, q) ≤

ϵ.

Lemma 4.3.4. Let ϵ ∈ [0, 1] and let N ≥ 18/ϵ. Then the distribution q : [−1, 1] → R+

returned by Algorithm 6 satisfies W1(q, s) ≤ 3ϵ.

Proof. We start by giving some notation – for a distribution y : [−1, 1] → R+, we denote

τ⃗y := [⟨T̄1, y⟩, . . . , ⟨T̄N , y⟩] to be the vector of the first N normalized Chebyshev moments of

y. For an integer k ∈ N+, we denote k⃗ to be the vector in Rk given by k⃗ := [1, . . . , k] and

for a vector y ∈ Rk write y/k⃗ to denote the vector y/k⃗ := [y1/1, . . . , yk/k]. Notice then that

we have τ⃗q = T d
Nq and τ⃗q/N⃗ = T̂ d

Nq.

We start by bounding the scaled differences in the first N normalized Chebyshev mo-

ments of q and s in order to use Lemma 4.3.1 on q and s.

∥τ⃗q/N⃗ − τ⃗s/N⃗∥1 ≤ ∥τ⃗q/N⃗ − z∥1 + ∥z − τ⃗s/N⃗∥1 ≤ ∥τ⃗q/N⃗ − z∥1 +
1

N
. (4.4)

The first inequality follows by applying the triangle inequality and in the second inequality

we used the fact that ∥z − τ⃗s/N⃗∥1 =
∑N

k=1 |τ̃k − (τ⃗s)k|/k ≤ Hn · (N ln(eN))−1 ≤ 1/N .

Next we show that there exists a distribution q′ supported on Xd such that ∥τ⃗q′/N⃗−z∥ ≤

1/N . To this end, consider the following distribution q∗ on Xd:

q∗(x) =
1

n

n∑
i=1

δ(x− argmin
p∈Xd

|p− λi|).

subgradient method. This requires an oracle that projects onto the the probability simplex supported on
the grid Xd – an algorithm that runs in O(d log d) time has been given in multiple papers, see [155] for more
details.
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In words, q∗ is the distribution corresponding to moving the mass from each λi to its nearest

point on the grid Xd. Notice that we have W1(s, q
∗) ≤ 1/d due to the earthmover distance

interpretation of the Wasserstein-1 distance.

Applying the triangle inequality and the guarantee from the moment approximations, we

get that ∥τ⃗q∗/N⃗ − z∥1 ≤ 1/N + ∥τ⃗q∗/N⃗ − τ⃗s/N⃗∥1. It is left then to bound ∥τ⃗q∗/N⃗ − τ⃗s/N⃗∥1.

To this end, we state the following well-known fact about the derivatives of Chebyshev

polynomials.

Fact 4.3.5. For k ≥ 1, dTk(x)
dx

= kUk−1(x).

We then have using the definition of q∗ that, for any 1 ≤ k ≤ N ,

|⟨T̄k, s− q∗⟩| =

∣∣∣∣∣∣ 1n
n∑

i=1

T̄k(λi)− T̄k(argmin
p∈Xd

|p− λi|)

∣∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∣T̄k(λi)− T̄k(argmin
p∈Xd

|p− λi|)

∣∣∣∣∣
≤
√
2

n
√
π

n∑
i=1

max
x∈[−1,1]

∣∣∣∣dTk(x)

dx

∣∣∣∣ · |λi − argmin
p∈Xd

|p− λi|| ≤
√
2k2

d
√
π

where in the last inequality we used the fact that maxx∈[−1,1] |Uk−1(x)| ≤ k. It follows then

that

∥τ⃗q∗/N⃗ − τ⃗s/N⃗∥1 =
N∑
k=1

|(τ⃗q∗)k − (τ⃗s)k|
k

≤ N(N + 1)

d
√
2π

≤ 1

N

by taking the sum over all k and noting that d ≥ N3/2. Putting these bounds together gives

us that ∥τ⃗q∗/N⃗ − z∥1 ≤ 2/N .

Since ∥τ⃗q/N⃗ − z∥1 ≤ ∥τ⃗q∗/N⃗ − z∥1 from Line 3 of Algorithm 6, we plug this into (4.4)

to get that ∥τ⃗q/N⃗ − τ⃗s/N⃗∥1 ≤ 3/N . We can then use Lemma 4.3.1 with distributions q and

s along with the fact that ∥τ⃗q/N⃗ − τ⃗s/N⃗∥1 =
∑N

k=1 |(τ⃗s)k − (τ⃗q)k|/k ≤ 3/N to give us the

result since N > 18/ϵ.
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Remark. Note that Algorithm 6 can easily be adapted when the minimization problem in

Line 3 is solved approximately – as is the case if projected subgradient descent methods

are used. In particular, a constant factor approximation to the minimal loss increases the

Wasserstein distance bound in Lemma 4.3.4 by an O(1) factor.

4.4 Efficient Chebyshev Moment Approximation

With Lemma 4.3.4 in place, we are ready to prove our main results. To do so, we need to

show how to efficiently approximate the first N Chebyshev moments of a matrix A’s spectral

density s, as required by Algorithm 6. Recall that the kth normalized Chebyshev moment

of s is equal to ⟨s, T̄k⟩ = 1
n
tr(T̄k(A)). We will prove that this trace can be approximated

using Hutchinson’s stochastic trace estimator, implemented with either exact or approximate

matrix-vector multiplications with A.

This estimator requires repeatedly computing T̄k(A)g for a random vector g, which is

done using the standard three-term (forward) recurrence for the Chebyshev polynomials and

requires a total of k matrix-vector multiplications with A. We analyze the basic approach

in Section 4.4.1, which yields Theorem 4.1.4. Then in Section 4.4.2, we argue that the

approach is stable even when implemented with approximate matrix-vector multiplication,

which yields Theorem 4.1.3.

4.4.1 Exact Matrix-Vector Multiplications

Hutchinson’s estimator is a widely used estimator to efficiently compute accurate estimates

of tr(R) for any square matrix R ∈ Rn×n. Each instance of the estimator computes the

quadratic form g⊤Rg for a random vector g ∈ {−1, 1}n whose entries are Rademacher
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random variables. This an unbiased estimator for tr(R) with variance ≤ 2∥R∥2F , and its error

has been analyzed in several earlier results [11, 131]. We apply a standard high-probability

bound from [111, 132]:

Lemma 4.4.1 (Lemma 2, [111]).7 Let R ∈ Rn×n, δ ∈ (0, 1/2], l ∈ N. Let g(1), . . . , g(ℓ) ∈

{−1, 1}n×n be ℓ random vectors with i.i.d {−1,+1} random entries. For a fixed constant C,

with probability at least 1− δ,

|tr(R)− 1

ℓ

l∑
i=1

(g(i))⊤Rg(i)| ≤ C log(1/δ)√
ℓ

∥R∥F .

For a polynomial p ∈ F([−1, 1],R) with degree k, applying Hutchinson’s estimator

to R = p(A) requires computing p(A)g, which can always be done with k matrix-vector

multiplies with A. If p(x) admits a recursive construction, like the Chebyshev polynomials,

then this recurrence can be used. Specifically, for the Chebyshev polynomials, we have:

T0(A)g = g T1(A)g = Ag

Tk(A)g = 2A · Tk−1(A)g − Tk−2(A)g for k ≥ 2. (4.5)

A moment estimation algorithm based on Hutchinson’s estimator is stated as Algorithm

7.

Remark. In total, Algorithm 7 requires N · ℓ matrix multiplications with A since

for each i T1(A)g
(i), . . . , TN(A)g

(i) can but computed using the same N steps of the (4.5)

recurrence. It requires O(nℓN) additional runtime to compute and sum all inner products

of the form (g(i))TTk(A)g
(i).

7In [111] the lemma is stated with an assumption that ℓ > O(1/δ). However, it is easy to see that the
same claim holds without this assumption, albeit with a quadratically worse log(1/δ) dependence. The proof
follows from same application of the Hanson-Wright inequality used in that work.
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Algorithm 7 Hutchinson Moment Estimator
Input: Symmetric A ∈ Rn×n with ∥A∥2 ≤ 1, degree N ∈ 4N+, number of repetitions

ℓ ∈ N+.
Output: Approximation τ̃k to moment 1

n
tr(T̄k(A)) for all k ∈ 1, . . . , N .

1: Draw g(1), . . . , g(l) ∼ Uniform({−1, 1}n).
2: For k = 1, . . . , N , τ̃k ←

√
2/π

ℓn

∑l
i=1(g

(i))⊤Tk(A)g
(i). ▷ Computed using recurrence in

(4.5)
3: Return τ̃1, . . . , τ̃N .

Our main bound on the accuracy of Algorithm 7 follows:

Lemma 4.4.2. If Algorithm 7 is run with ℓ = max
(
1, C · log2(N/δ)/(n∆2)

)
, where C is a

fixed positive constant, then with probability 1− δ the approximate moments returned satisfy

|τ̃k − 1
n
tr(T̄k(A))| ≤ ∆ for all k = 1, . . . , N .

Proof. Fix k ∈ {1, . . . , N}. Note that 1
n
tr(T̄k(A)) =

√
2/π

n
tr(Tk(A)). Let C be the constant

from Lemma 4.4.1. If ℓ = max
(
1, C2 · log2(N/δ)/(n∆2)

)
, then by that lemma we have that

with probability at least 1− δ/N :

|τ̃k −
√

2/π

n
tr(Tk(A))| ≤

1

n

C log(N/δ)√
ℓ

∥Tk(A)∥F ≤
C
√

2/π√
n

√
log(N/δ)

ℓ
≤ ∆.

The second to last inequality follows from the fact that ∥Tk(A)∥2 ≤ 1 and thus ∥Tk(A)∥F ≤
√
n. Applying a union bound over all k ∈ 1, . . . , N gives the claim.

Theorem 4.1.4 immediately follows as a corollary of Lemma 4.4.2 and Lemma 4.3.4.

Proof of Theorem 4.1.4. We implement Algorithm 6 with Algorithm 7 used as a subroutine

to approximate the Chebyshev polynomial moments, which requires setting ∆ = 1
N ln(eN)

.

By Lemma 4.4.2, we conclude that we need to set ℓ = max
(
1, CN2 log2(N/δ) log2(eN)/n

)
.

Then, by Lemma 4.3.4, setting N = O(1/ϵ) ensures that Algorithm 6 returns a distribution

q which is ϵ close to A’s spectral density s in Wasserstein distance.
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4.4.2 Approximate Matrix-Vector Multiplications

Algorithm 7 assumes access to an oracle for computing exact matrix-vector multiplies with

A. In this section, we show that the method continues to work well even when each term

in Hutchinson’s estimator, g⊤Tk(A)g, is computed using an approximate matrix-vector mul-

tiplication oracle for A (see Definition 4.1.2). As discussed in Section 4.1.1, the robustness

of the estimator allows the approximate moment matching method to be applied in many

settings where A can only be access implicitly. It also forms the basis of our sublinear time

algorithm for computing the spectral density of a normalized graph adjacency or Laplacian

matrix, which are presented in the Section 4.5.

To show that approximate matrix-vector multiplications suffice, we leverage well under-

stood stability properties of the three-term forward recurrence for Chebyshev polynomials

of the first kind [35, 119]. These properties allows us to analyze the cumulative error when

Tk(A)g is computed via this recurrence. Specifically, we analyze the following algorithm:

Algorithm 8 Hutchinson Moment Estimator w/ Approximate Multiplications
Input: Symmetric A ∈ Rn×n with ∥A∥2 ≤ 1, degree N ∈ 4N+, number of repetitions

ℓ ∈ N+, ϵMV-approximate matrix vector multiplication oracle AMV for A (see Definition
4.1.2).

Output: Approximation τ̃k to moment 1
n
tr(T̄k(A)) for all k ∈ 1, . . . , N .

1: for i = 1, . . . , ℓ iterations do
2: Draw g ∼ Uniform({−1, 1}n).
3: ṽ0 ← g, ṽ1 ← AMV(A, g, ϵMV).
4: τ̃1,i ← gT ṽ1
5: for k = 2 to N do
6: ṽk ← 2 · AMV(A, ṽk−1, ϵMV)− ṽk−2.
7: τ̃k,i ← gT ṽk

8: For k = 1, . . . , N , τ̃k ← 1
ℓ

∑ℓ
i=1 τ̃k,i.

9: Return τ̃1, . . . , τ̃N .

Algorithm 8 assumes access to an approximate matrix-vector multiplication oracle for
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A with error ϵMV (recall Definition 4.1.2). Since ∥A∥2 ≤ 1, for any vector y, we have that:

∥AMV(A, y, ϵMV)− Ay∥2 ≤ ϵMV ∥y∥2. (4.6)

The algorithm uses this oracle to apply the recurrence from (4.5), approximately computing

each Tk(A)g for k = 1, . . . , N , which in turn allows us to approximately compute g⊤Tk(A)g.

Note that when ϵMV = 0, Algorithm 8 is exactly equivalent to Algorithm 7.

Notation. Analyzing this approach requires accounting for error accumulates across

iterations. To do so, we introduce some basic notation. Let vk denote the true value of

Tk(A)g, and let ṽk denote our computed approximation. We initialize the recurrence with

ṽ−1 = 0⃗ and ṽ0 = v0 = g. For k = 0, . . . , N − 1, let wk = AMV(A, ṽk, ϵMV) and note that

∥wk−Aṽk∥2 ≤ ϵMV ∥ṽk∥2. In iteration k of the recurrence, we compute ṽk+1 by applying the

recurrence:

ṽk+1 := 2wk − ṽk−1.

For each i ∈ 0, . . . , N we denote:

• δk := vk − ṽk, with δ0 = 0⃗. This is the accumulated error up to iteration k.

• ξk+1 := Aṽk −wk, with ξ0 = 0. 2ξk+1 is the new error introduced in iteration k due to

approximate matrix-vector multiplication.

As in Clenshaw’s classic work [35], it can be shown that δk itself evolves according to a

simple recurrence, which ultimately lets us show that it can be expressed as a summation

involving Chebyshev polynomials of the second kind, which are easily bounded. Specifically,

we have:

Fact 4.4.3. δ1 = ξ1 and for 2 ≤ k ≤ N , δk = 2Aδk−1 − δk−2 + 2ξk.
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Proof. The claim for δ1 is direct since v0 = ṽ0: we have δ1 = v1 − ṽ1 = Av0 − w0. For

2 ≤ k ≤ N , we prove the claim by writing the difference δk = vk− ṽk = vk− 2(Aṽk−1+ ξk)+

ṽk−2. We can then replace vk = 2Avk−1 − vk−2 and substitute in (vk−1 − ṽk−1) = δk−1 and

(vk−2 − ṽk−2) = δk−2.

The Chebyshev polynomials of the second kind are defined via the following recurrence:

Definition 4.4.4 (Chebyshev Polynomials of the Second Kind). For k ∈ N≥0 the k-th

Chebyshev polynomial of the second kind Uk(x) is given by

U0(x) = 1 U1(x) = 2x

Uk(x) = 2x · Uk−1(x)− Uk−2(x) for k ≥ 2.

We also define U−1(x) = 0, which is consistent with the recurrence.

Using these polynomials, we can characterize the accumulated error δk in terms of the

error introduced in each of the prior iterations.

Lemma 4.4.5. For k = 1, . . . , N , we have

δk = Uk−1(A)ξ1 + 2
k∑

i=2

Uk−i(A)ξi. (4.7)

Proof. We prove the lemma by induction on j ≤ k. For j = 0, the lemma is trivial since

δ0 = 0 by definition and U−1(A) = 0. For j = 1, δ1 = ξ1 = U0(A)ξ1. By Fact 4.4.3, for

2 ≤ j < k, we have:

δj = 2ξj + 2Aδj−1 − δj−2︸ ︷︷ ︸
z1

. (4.8)
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We can apply the inductive hypothesis on z1 and recombine terms using Definition 4.4.4 to

get:

z1 = 2A ·

Uj−2(A)ξ1 + 2

j−1∑
i=2

Uj−1−i(A)ξi

− Uj−3(A)ξ1 − 2

j−2∑
i=2

Uj−2−i(A)ξi

= Uj−1(A)ξ1 + U1(A) · 2ξj−1 +

j−2∑
i=2

(
2AUj−1−i(A)− Uj−2−i(A)

)
· 2ξi

= Uj−1(A)ξ1 +

j−1∑
i=2

Uj−i(A) · 2ξi

Noting that plugging into (4.8) and noting that 2ξj = 2U0(A)ξj completes the proof.

Our goal is to use Lemma 4.4.5 to establish that δk is small because each ξi is small.

It is well known that the Chebyshev polynomials of the second kind satisfy the following

bounds for any k ∈ N:

|Uk(x)| ≤ k + 1 for x ∈ [−1, 1]. (4.9)

This is the upper bound we need to proceed. Specifically, we will show that each estimator

using Algorithm 8, g⊤ṽk, well approximates Hutchinson’s estimator g⊤Tk(A)g = g⊤vk.

Claim 4.4.6. For quantities vk, ṽk and 0 ≤ ϵMV ≤ 1/2k2, we have

∣∣∣g⊤Tk(A)g − g⊤ṽk

∣∣∣ ≤ 2 ϵMV ·(k + 1)2∥g∥22.

Proof. By the definition of δk, we have |g⊤Tk(A)g − g⊤ṽk| = |g⊤δk|. By Cauchy-Schwarz

we can bound |g⊤δk| ≤ ∥g∥2∥δk∥2. We are left to bound ∥δk∥2. Applying Lemma 4.4.5 and
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triangle inequality, we have

∥δk∥2 ≤ ∥Uk−1(A)∥2∥ξ1∥2 +
k∑

i=2

2∥Uk−i(A)∥2∥ξi∥2

Then applying (4.9) and the fact that ∥A∥2 ≤ 1, we have ∥Uk−i(A)∥2 ≤ (k − i+ 1). Hence,

∥δk∥2 ≤ k∥ξ1∥2 +
k∑

i=2

2(k − i+ 1)∥ξi∥2 ≤
k∑

i=1

2(k − i+ 1)∥ξi∥2.

Using that ξi ≤ ϵMV ∥ṽi−1∥2, and that ∥Ti(A)∥2 ≤ 1 for all i and thus ∥vi∥2 ≤ ∥g∥2, we have:

∥δk∥2 ≤
k∑

i=1

2(k − i+ 1) ϵMV ∥ṽi−1∥2 ≤ 2 ϵMV

k∑
i=1

(k − i+ 1)(∥vi−1∥2 + ∥δi−1∥2)

≤ ϵMV k(k + 1)

(
∥g∥2 +max

i<k
∥δi∥2

)
.

Inducting on δj for j ≤ k gives us ∥δk∥2 ≤ 2 ϵMV(k+1)2∥g∥2, which completes the proof.

Lemma 4.4.7. If Algorithm 8 is run with ℓ = max
(
1, C · log2(N/δ)/(n∆2)

)
and ϵMV =

∆/4N2, where C is a fixed positive constant, then with probability 1 − δ the approximate

moments returned satisfy |τ̃k − 1
n
tr(T̄k(A))| ≤ ∆ for all k = 1, . . . , N .

Proof. Fix k ∈ {1, . . . , N}. Let g(1), . . . , g(ℓ) be the random vectors drawn in the outer

for-loop of Algorithm 8. Let {ṽ(i)k }i∈[ℓ] be the ℓ vectors computed by the inner for-loop

and let {δ(i)k := ṽ
(i)
k − Tk(A)g

(i)}i∈[ℓ] be the ℓ error vectors. Recalling that 1
n
tr(T̄k(A)) =

√
2/π

n
tr(Tk(A)), we have:

|τ̃k −
√
2/π

n
tr(Tk(A))| ≤

√
2/π

nℓ

ℓ∑
i=1

∣∣∣(g(i))⊤δ(i)k

∣∣∣+ |√2/π

nℓ

ℓ∑
i=1

(g(i))⊤Tk(A)g
(i) − 1

n
tr(Tk(A))|
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Applying Claim 4.4.6 and Lemma 4.4.1, with probability at least 1− δ/N , we thus have

|τ̃k −
1

n
tr(T̄k(A))| ≤ 2(k + 1)2 ϵMV ·

√
2/π

nℓ

ℓ∑
i=1

∥g(i)∥22 +∆/2 ≤ ∆/2 + ∆/2.

The last inequality follows from the fact that ∥g(i)∥22 = n for all i ∈ [ℓ], and the choice of

ϵMV = ∆/4N2. Applying a union bound over all k = 1, . . . , N gives the claim.

Theorem 4.1.3 immediately follows.

Proof of Theorem 4.1.3. We implement Algorithm 6 with Algorithm 8 used as a subroutine

to approximate the Chebyshev polynomial moments, which requires setting ∆ = 1
N ln(eN)

. By

Lemma 4.4.7, we conclude that we need to set ℓ = max
(
1, CN2 log2(N/δ) log2(eN)/n

)
and

ϵMV = 1/(4N3 ln(eN)). Then, by Lemma 4.3.4, setting N = O(1/ϵ) ensures that Algorithm 6

returns a distribution q which is ϵ close to A’s spectral density s in Wasserstein distance.

Improving the number of matrix-vector multiplications. We currently require the

error bound in Algorithm 6 for estimating the Chebyshev moments to be the same for

each of the N moments, i.e., parameter ∆ = (N ln(eN))−1. We note that the number of

matrix-vector multiplications can be improved slightly in Theorems 4.1.3 and 4.1.4, poten-

tially by a factor of log2(1/ϵ) for small n. This can be achieved by requiring a different

error bound for estimating each moment. Specifically, we modify the requirement in Algo-

rithm 6 for the estimate τ̃k of the k-th normalized Chebyshev moment 1
n
tr(T̄k(A)) to have

error |τ̃k − 1
n
tr(T̄k(A))| ≤ (k/N5)1/4. Plugging this into Lemma 4.4.2, we require at most∑N

k=1max(1, CN2.5 log2(N/δ)/(n
√
k)) matrix-vector multiplications to estimate the N mo-

ments, where C is a fixed constant. For comparison to the bounds in Theorems 4.1.4 and

4.1.3, the above bound decreases linearly in n until n ≥ CN2 log2(N/δ) and for very large n

is bounded by O(1/N). In the regime where n is small, e.g., when n ≤ CN2 log2(N/δ), the
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bounds from the theorems give O(N3 log2(N/δ) log2(eN)/n) matrix-vector multiplications,

whereas the above bound simplifies to at most O(N3 log2(N/δ)/n) multiplications, saving

a O(log2(N)) = O(log2(1/ϵ)) factor. Lemma 4.4.7 can be adapted identically to give the

same bound in the approximate matrix-vector multiplication case. To give intuition for the

Wasserstein error of the resulting density, if the density estimate q output by Algorithm 6

satisfied the requirement that |⟨q, T̄k⟩ − 1
n
tr(T̄k(A))| ≤ (k/N5)1/4 for k ∈ 1, . . . , N , then we

have by Lemma 4.3.1 that W1(s, q) ≤ 36/N+(2/N5/4)·
∑N

k=1 k
−3/4 ≤ 36/N+8/N = O(1/N).

This intuition can be used to adapt the proof of Lemma 4.3.4 to show that Algorithm 6 with

moment guarantees as mentioned output a density q such that W1(s, q) ≤ O(1/N).

4.5 Sublinear Time Methods for Graphs

With the proof of Theorem 4.1.3 in place, we are now ready to state our sublinear time

result for adjacency matrices of graphs. The significance of Theorem 4.1.3 is that it allows

for the approximate Chebyshev moment matching method in Algorithm 6 to be combined

with any randomized algorithm for approximating matrix-vector multiplications with A. In

this section we prove Theorem 4.1.1 by showing that for the normalized adjacency matrix

of any undirected, un-weighted graph, such an algorithm can actually be implemented in

sublinear time, leading to a sublinear time spectral density estimation (SDE) algorithm for

computing graph spectra from these matrices.

Computational Model. Let A ∈ Rn×n be the adjacency matrix for an unweighted, n-

vertex graph G = (V,E) and let Ā = D−1/2AD−1/2 be the symmetric normalized adjacency

matrix, where D is an n× n diagonal matrix containing the degree of each vertex in V . For

a node i, let N (i) = {j : (j, i) ∈ E} denote the set of i’s neighboring vertices. We assume

a computational model where we can 1) uniformly sample a random vertex in constant
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time, 2) uniformly sample a random neighbor of any vertex i in constant time, and 3) for a

vertex i with degree di, read off all neighbors of i in O(di) time. A standard adjacency list

representation of the graph would allow us to perform these operations but weaker access

models would also suffice.8

Using this model for accessing the adjacency matrix, we show that, for any ϵMV ∈ (0, 1)

and failure probability δ ∈ (0, 1), an ϵMV-approximate matrix-vector multiplication oracle

for Ā can be implemented in O(n ϵMV
−2 log(1/δ)) time. Via Theorem 4.1.3, this immediately

yields an algorithm for computing an SDE that is ϵ close in Wasserstein-1 distance to Ā’s

spectral density in roughly Õ(n/ϵ7) time for sufficiently large n, and at most Õ(n/ϵ9) time,

for fixed δ where the Õ(·) hides factors of poly(log(1/ϵ)). Our main result is stated as

Theorem 4.1.1 in Section 4.1.1.

The same algorithm can be used to approximate the spectral density of the normalized

Laplacian of G by a simple shift and scaling. Specifically, Ā can be obtained from the

normalized Laplacian L̄ via Ā = I − L̄, and the spectral density of L̄, sL̄(x) satisfies sL̄(1−

x) = sĀ(x), where sĀ is the spectral density of Ā. So if we obtain an ϵ-approximate SDE q

for Ā by Theorem 4.1.1, then the function p satisfying p(1− x) = q(x) is an ϵ-approximate

SDE for sL̄. We thus have:

Corollary 4.5.1. Given the the normalized adjacency matrix of G, there exists an algorithm

that takes O

(
npoly

(
log(1/δ)

ϵ

))
expected time and outputs a density function q that is ϵ close

to the spectral density of the normalized Laplacian of G with probability at least 1− δ.

8E.g., random crawl access to a network [89]. We also note that, if desired, assumption 3) can be removed
entirely with a small logarithmic runtime overhead, as long as we know the degree of i. Specifically, 3) can
be implemented with O(di log n) calls to 2): we simply randomly sample neighbors until all di are found. A
standard analysis of the coupon collector problem [Section 3.6, 113] shows that that the expected number of
samples will be O(di log di) ≤ O(di log n).

127



4.5.1 Approximate Matrix-Vector Multiplication for Adjacency

Matrices

We implement an approximate matrix-vector multiplication oracle for Ā in Algorithm 9,

which is inspired by a randomized matrix-multiplication method of [53]. Throughout this

section, let Āi denote the ith column of Ā. Given a sampling budget t ∈ N, the algorithm

samples t indices from 1, . . . , n independently and with replacement – i.e., the same index

might be sample multiple times. For each index it samples, the algorithm decides to accept or

reject the column corresponding to that index with some probability. To approximate Āy,

the algorithm outputs the multiplication of the accepted columns, rescaled appropriately,

with the corresponding elements of y.

Algorithm 9 AMV Multiplication Oracle for Normalized Adjacency Matrices
Input: Normalized adjacency matrix Ā ∈ Rn×n, degrees [d1, . . . , dn], y ∈ Rn, and parameter

t ∈ N.
Output: A vector z ∈ Rn that approximates Āy.

1: Initialize z ← 0⃗.
2: for t iterations do
3: Sample a node j uniformly at random from {1, . . . , n}.
4: Sample a neighbor i ∈ N (j) uniformly at random.
5: Sample x uniformly at random from [0, 1].
6: if x ≤ 1

di
then

7: w ← 1
pi
· yiĀi where pi =

1
ndi

∑
j∈N (i)

1
dj

.
8: else
9: w ← 0⃗.

10: z ← z + w.
11: return 1

t
z

The following lemma bounds the expected squared error of Algorithm 9’s:

Lemma 4.5.2. Let z ∈ Rn be the output of Algorithm 9 with sampling budget t. We have:

E[∥Āy − z∥22] =
n

t
∥y∥22 −

1

t
∥Āy∥22
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Proof. Let b denote b = Āy. Consider a single iteration of the main loop in Algorithm 9,

which generates a vector w that is added to z. Let Xi be an indicator random variable

that is 1 if w is set to a scaling of Āi on that iteration, and 0 otherwise. Xi = 1 if and

only if 1) a neighbor of i is sampled at Line 3 of the algorithm, 2) i is sampled at Line 4

of the algorithm, and 3) the uniform random variable x satisfies x < 1/di. So, we see that

Pr[Xi = 1] is exactly equal to pi = 1
ndi

∑
j∈N (i)

1
dj

. It follows that, by the time we reach

Line 11, w is an unbiased estimator for b. I.e., E[w] = b. Of course, this also implies that

E[z] = b.

Our goal is to show that E[∥b− z∥2] = n
t
∥y∥22 − 1

t
∥b∥22. Since the random vector b − z

has mean zero and is the average of t i.i.d. copies of the mean zero random vector b− w, it

suffices that show:

E[∥b− w∥22] = n∥y∥22 − ∥b∥22. (4.10)

By linearity of expectation and the fact that E[w] = b, we have

E[∥b− w∥22] = ∥b∥22 + E[∥w∥22]− 2⟨E[w], b⟩ = E[∥w∥22]− ∥b∥22.

So to prove (4.10), we need to show that E[∥w∥22] = n∥y∥22. We expand w in terms of the

indicator random variables X1, . . . , Xn. Notice that since we only sample one column in each

iteration, the random variable XiXj = 0 for all i ̸= j. Thus, we have:

E[∥w∥22] =
n∑

k=1

E

∑
i,j∈[n]

XiXj

pipj
(Āiyi)k(Ā

jyj)k

 =
n∑

k=1

E

 n∑
i=1

X2
i

p2i
· (Āiyi)

2
k


=

n∑
i=1

1

pi
· ∥Āiyi∥22 =

n∑
i=1

ny2i = n∥y∥22
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In the last equalities we used the fact that E[X2
i ] = pi and that, for a normalized graph

adjacency matrix, ∥Āi∥22 =
∑

j∈N (i)
1

didj
= npi. This proves (4.10), from which we conclude

the lemma.

Using Lemma 4.5.2, we show that there is an ϵMV-approximate matrix-vector oracle for

Ā based on Algorithm 9 with success probability at least 1−δ that runs in O(n ϵMV
−2 log2(1

δ
))

time.

Proposition 4.5.3. Let Ā ∈ Rn×n be the symmetric normalized adjacency matrix of an

n-vertex graph G and let ϵMV, δ ∈ (0, 1) be fixed constants. There is an algorithm that, given

a vector y ∈ Rn, and access to G as described above, takes O(n ϵMV
−2 log(1

δ
)) expected time

and outputs a vector z ∈ Rn such that ∥z − Āy∥2 ≤ ϵMV ∥y∥2 with probability at least 1− δ.

Proof. By Lemma 4.5.2, we have that E[∥Āy − z∥22] ≤ n
t
∥y∥22. Fix t = 48n ϵMV

−2. Then, by

Lemma 4.5.2 and Markov’s inequality, we have that when Algorithm 9 is called on Ā with

parameter t,

Pr[∥Āy − z∥2 >
ϵMV

4
∥y∥2] ≤

16n∥y∥22
t ϵMV2 ∥y∥22

≤ 1

4
. (4.11)

In order improve our success probability from 3/4 to 1 − δ, we use the standard trick of

repeating the above process r = c log(1
δ
) times for a constant c to be fixed later. Let

z1, . . . , zr ∈ Rn be the output of running Algorithm 9 r times with parameter t. We can

return as our estimate for Āy the first zi such that ∥zi − zj∥2 ≤ ϵMV
2
∥y∥2 for at least r/2 + 1

vectors zj from z1, . . . , zn.

To see why this works, note that a Chernoff bound can be used to claim that with

probability > 1−δ, at least r/2+1 vectors zj from z1, . . . , zr have that ∥zj−Āy∥2 ≤ ϵMV
4
∥y∥2.
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By a triangle inequality we have that for all such zj and zk,

∥zj − zk∥2 ≤ ∥zj − Āy∥2 + ∥zk − Āy∥2 ≤
ϵMV

2
∥y∥2.

Thus, the zi we picked must satisfy that ∥zi − Āy∥ ≤ 3 ϵMV
4
∥y∥2 by the triangle inequality.

All that remains is to bound the expected runtime of Algorithm 9, which we will run r

separate times. To do so, note that all index sampling can be done in just O(t) time, since

sampling a random vertex and a random neighbor of the vertex are assumed to be O(1) time

operations. The costly part of the algorithm is computing the sampled column w at each

iteration. In the case that w = 0⃗, this cost is of course zero. However, when w = 1
pi
Āiyi

for some i, computing the column and adding it to z takes O(di) time, which can be large

in the worst case. Nevertheless, we show that it is small in expectation. This may seem

a bit surprising: while nodes with high degree are more likely to be sampled by Line 4 in

Algorithm 9, they are rejected with higher probability in Line 6. Formally, let nnz(w) denote

the number of non-zero entries in w. We have:

E
[
nnz(w)

]
=

n∑
i=1

nnz(Āi) · pi =
n∑

i=1

∑
j∈N (i)

di
n · didj

=
1

n

n∑
i=1

∑
j∈N (i)

1

dj
= 1.

The final equality follows from expanding the double sum: since node j has exactly dj

neighbors, 1
dj

appears exactly dj times in the sum. So
∑n

i=1

∑
j∈N (i)

1
dj

= n.

We run Algorithm 9 with t = O(n/ ϵMV
2) iterations, so it follows that the expected total

sparsity of all w’s constructed equals O(n/ ϵMV
2), which dominates the expected running

time of our method.

Proof of Theorem 4.1.1. The accuracy and running time claim follows from combining the
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ϵMV-approximate vector multiplication oracle described in Proposition 4.5.3 with Algorithm

6, which is analyzed in Theorem 4.1.3.

As discussed in the introduction, Cohen et al. [41] prove a result which matches the

guarantee of Theorem 4.1.1, but with runtime of 2O(1/ϵ) – i.e., with no dependence on n. In

comparison, our result depends linearly on n, but only polynomially on 1/ϵ. In either case,

the result is quite surprising, as the runtime is sublinear in the input size: A could have up

to O(n2) non-zero entries.

4.6 Experiments

We support our theoretical results by implementing our Chebyshev moment matching method

(Algorithm 6). When using exact matrix-vector multiplications, the kernel polynomial

method (KPM) of Algorithm 11 and the stochastic Lanczos quadrature method (SLQ) stud-

ied in [31] have both been confirmed to work well empirically. So, one set of experiments

is aimed at comparing these methods to the moment matching method (MM) implemented

with exact matrix-vector multiplications. A second set of experiments evaluates the perfor-

mance of the MM and KPM methods when implemented with approximate matrix-vector

multiplies. Specifically, we use our sublinear time randomized method for multiplication by

graph adjacency matrices from Section 4.5.

We consider the normalized adjacency matrix of three graphs, two of which we construct

and one which we obtain from a publicly available dataset for sparse matrices:

• cliquePlusRandBipartite is a graph with 10000 vertices, partitioned into two discon-

nected components. The first component is a clique with 5000 nodes and the second

is a bipartite graph with 2500 vertices in each partition, constructed by sampling each
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Figure 4.2: Wasserstein error of density estimate resulting from approximate Chebyshev
moment matching method (MM), the Jackson damped kernel polynomial method (KPM) and
Stochastic Lanczos Quadrature (SLQ) method. For MM and KPM, Hutchinson’s estimator is
used to estimate the Chebyshev moments. The x-axis corresponds to the number of moments
computed for MM and KPM, and the number of Lanczos iterations used for SLQ. All methods
use 5 (random) starting vectors except for resnet20 and hypercube that use 1 starting vector,
so the x-axis is directly proportional to the number of matrix-vector multiplications used by
each method. Each experiment is repeated 10 times; the solid line represents the median
error of the 10 trials and the shaded regions represent the first and third quartiles.

of the 25002 possible edges independently with probability 0.05. This graph has a

normalized adjacency matrix with ∼ 5000 eigenvalues at 0, two eigenvalues at 1, one

at −1 and the rest of its eigenvalues are roughly evenly spread out between −0.5 and

0.5.

• hypercube is a 16384 vertex boolean hypercube graph on 14 bit strings.9 Its normalized

adjacency matrix has eigenvalues at −1,−6
7
, −5

7
, . . . , 0, . . . , 6

7
, 1. The multiplicity of the

9A boolean hypercube contains a vertex for each distinct b bit string, and an edge between two vertices
if the corresponding strings differ on exactly 1 bit.
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Figure 4.3: Histograms of the eigenvalues of cliquePlusRandBipartite, Erdos992,
gaussian, uniform, resnet20 and hypercube using 50 equally spaced buckets.

0 eigenvalue is largest, with eigenvalues closer to −1 and 1 having lower multiplicity.

• Erdos992 is an undirected graph with 6100 vertices, containing 15030 edges from the

sparse matrix suite of [45]. Its normalized adjacency matrix has ∼ 5000 eigenvalues at

0, one at 1 and the rest evenly spread out between −0.5 and 0.5.

We consider three additional matrices to evaluate the performance of MM against KPM and

SLQ when exact matrix-vector multiplies are used to estimate the Chebyshev moments:

• gaussian is a 1000 × 1000 matrix constructed by drawing n = 1000 Gaussian ran-

dom variables λ1, · · · , λn ∼ N (0, 1) and a random orthogonal matrix U ∈ Rn×n, and

outputting UΛU⊤ where Λ is a n× n diagonal matrix with entries λ1

maxi λi
, . . . , λn

maxi λi
.

• uniform is a 1000 × 1000 matrix constructed identically to gaussian except with

λ1, . . . , λn drawn independently and uniformly from the interval [−1, 1].
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• resnet20 is a Hessian for the ResNet20 network [76] trained on the Cifar-10 dataset.

The matrix is 3000 × 3000 and its eigenvalues have been normalized to lie between

[−1, 1] for our experiments.

For reference, the histogram of the eigenvalues for each matrix are shown in Figure 4.3 by

breaking the range of the eigenvalues into 50 equally spaced intervals for each matrix.

In the first set of experiments, we compute the normalized Chebyshev moments τ1, . . . , τN

of each of the six aforementioned matrices using Hutchinson’s moment estimator as in Algo-

rithm 7, and, compute a spectral density estimate by passing these moments into Algorithm

6 for approximate Chebyshev moment matching method (MM)10 and into Algorithm 11 for

the Jackson damped kernel polynomial method (KPM). For KPM we compute the density

with N = 4, 6, 8, 10, . . . , 52 and for MM we compute it with N = 4, 5, 6, 7, . . . , 52. We

also compute the density estimate resulting from the stochastic Lanczos quadrature (SLQ)

method of [31] with N = 4, 5, 6, 7, . . . , 52 Lanczos iterations. We use ℓ = 5 starting vectors

(i.e., random vectors in Hutchinson’s method, or random restarts of the SLQ method) for

each method, except for the large resnet20 and hypercube matrices, for which ℓ = 1 ran-

dom vector is used. Each experiment is repeated 10 times and the Wasserstein-error between

the true density and the density estimate are shown in Figure 4.2. The results show that

MM is more than 10x more accurate than KPM in almost all cases. The error of MM and

SLQ are more comparable, except for hypercube, on which the errors are comparable for

larger values of N . Both methods show an unusual convergence curve for this matrix, which

we believe is related to the sparsify of its spectrum (a small number of distinct eigenvalues).

In our second set of experiments, we test the performance of our randomized sublin-

ear time algorithm (Algorithm 9) for approximate matrix-vector multiplies with normalized

10We solve the optimization problem from Line 3 by formulating it as a linear program and using an
off-the-shelf solver from scipy.
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Figure 4.4: Wasserstein error of density estimate returned by MM and KPM on
the hypercube, cliquePlusRandBipartite and Erdos992 graphs using approximate
matrix-vector multiplications (Algorithm 9) to estimate the Chebyshev moments. For
both methods, N = 32 moments are computed using 5 random starting vectors for
cliquePlusRandBipartite and Erdos992 and 1 for hypercube. The x-axis corresponds
to the average fraction of non-zeros sampled from the matrix and the y-axis is the Wasser-
stein error from the resulting density estimate. Each experiment is repeated for 10 trials: the
solid line correponds to the median error of the 10 trials and the shaded region corresponds
to the first and third quartiles.

graph adjacency matrices. This method is used to estimate Chebyshev moments in Algo-

rithm 6 (MM) and in Algorithm 11 (KPM). We compute the normalized Chebyshev moments

τ1, . . . , τN for N = 12 using various values of the oversampling parameter t in the approxi-

mate matrix-vector multiplication method. We then compute, for each value of t, the average

number of non-zero elements of A accessed by the method for each matrix-vector product,

which reflects the runtime improvement over a full matrix-vector product. Figure 4.4 plots

the Wasserstein error of the density estimate (y-axis) and the average fraction of non-zeros

used in each matrix-vector multiplication (x-axis) to estimate the Chebyshev moments used

by MM and KPM respectively.

The results show that the KPM method can achieve error nearly identical to that

obtained when using exact matrix-vector multiplications, while only using a small fraction

of non-zero entries for each approximate matrix-vector multiplication. Specifically, on the

dense cliquePlusRandBipartite graph and even the relatively sparse hypercube graph,
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KPM uses less than 15% of the non-zero entries on average to achieve nearly the same error

as when using exact multiplies. On cliquePlusRandBipartite, the MM method achieves

error close to that of the exact method while using ∼ 20% of the non-zero entries on average.

On the sparse Erdos992 and hypercube graphs, the MM method requires ∼ 80% of the non-

zero entries on average to achieve error comparable to exact matrix-vector multiplications.

However, it still obtains a good approximation (consistently better than the KPM method)

when coarse matrix-vector multiplications are used (i.e., fewer non-zeros are sampled).

4.7 The Kernel Polynomial Method

In this section we show how to obtain a spectral density estimate based on a version of

the kernel polynomial method that also approximates Chebyshev polynomial moments:

tr(T0(A)), . . . , tr(TN(A)). We again rely on Jackson’s classic work on universal polynomial

approximation bounds for Lipschitz functions: we take advantage of the fact that Jacksons

construction of such polynomials is both linear and preserves positivity [83].

4.7.1 Idealized Kernel Polynomial Method

As an alternative to the moment matching method presented in Section 4.3, a natural ap-

proach to using computed Chebyshev moments is to construct a truncated Chebyshev se-

ries approximation to s (see Definition 4.2.1). To do so, note that the scaled moments
1
n
tr(T̄0(A)), . . . ,

1
n
tr(T̄N(A)) are exactly equal to the first N Chebyshev series coefficients of

s/w, where w(x) = 1√
1−x2 is as defined in Section 4.2. Specifically, the eigenvalues of T̄k(A)

are equal to T̄k(λ1), . . . , T̄k(λn), where λ1, . . . , λn are the eigenvalues of A. Since the trace of

a diagonalizable matrix is the sum of its eigenvalues, we have 1
n
tr(T̄k(A)) =

1
n

∑n
i=1 T̄k(λi) =
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⟨s, T̄k⟩ = ⟨s/w,w · T̄k⟩.

After using the scaled Chebyshev moments to construct a truncated Chebyshev series

for s/w, i.e. a degree N polynomial approximation, we can then multiply the final result by

w to obtain an approximation to s. Unfortunately, there are two issues with this approach:

1) it is difficult to analyze the quality of the Chebyshev series approximation, since s is not

a smooth function, and 2) this approximation will not in general be a non-negative function,

which is a challenge because our goal is to find probability density that well approximates s.

Figure 4.5: Jackson coefficients for

N = 8.

A common approach for dealing with the sec-

ond issue is to instead use a damped Chebyshev ex-

pansion [157], where the Chebyshev coefficients are

slightly reweighted to ensure that the resulting poly-

nomial is always non-negative. Such non-negativity

preserving damping schemes follow from the connec-

tion between Chebyshev and Fourier series: we refer

the reader to Appendix B.1 for details. In short, by the convolution theorem, Fourier series

truncation corresponds to convolution with a function whose Fourier support is bounded.

If this function is also non-negative, convolution preserves non-negativity of the function

being approximated, leading to truncated series that is guaranteed to be positive. One such

damping schemes was introduced in classic work of Jackson [83]. For any positive integer z,

let N = 4z. Then, for k = 0, . . . , N , define the coefficient

b̂N [k] =

N
2
+1−k∑

j=−N
2
−1

(
N

2
+ 1− |j|

)
·
(
N

2
+ 1− |j + k|

)
. (4.12)

While (4.12) may look opaque, b̂N [0], . . . , b̂N [N ] are actually equal to the result of a simple

discrete convolution operation. Let g ∈ F(Z,R) have g[j] = 1 for j = −z, . . . , z, and g[j] = 0

138



otherwise. Then let b̂N = (g ∗ g) ∗ (g ∗ g) and b̂N [0], . . . , b̂N [N ] be the values corresponding

to non-negative indices.11 See Fig. 4.5 for an illustration of these coefficients. They are all

positive and b̂N [0] > b̂N [1] > . . . > b̂N [N ]. Jackson suggests approximating a function using

the following truncation based on these coefficients:

Definition 4.7.1 (Jackson damped Chebyshev series). Let f ∈ F([−1, 1],R) have Cheby-

shev series
∑∞

k=0⟨f, w · T̄k⟩ · T̄k. The Jackson approximation to f is a degree N polynomial

f̄N obtained via the following truncation with modified coefficients:

f̄N(x) :=
N∑
k=0

b̂N [k]

b̂N [0]
⟨f, w · T̄k⟩T̄k(x). (4.13)

Note that b̂N [0]/b̂N [0] = 1, and all other terms are strictly less than one. It is not hard

to show this damped series preserves positivity. We prove the following fact as Lemma B.1.7

in the appendix:

Fact 4.7.2. If f : [−1, 1] → R≥0 is a non-negative function, then the polynomial f̄N(x)

defined in (4.13) is non-negative for all x ∈ [−1, 1].

Beyond preserving non-negativity, as claimed in Fact 4.3.2, the Jackson damped Cheby-

shev approximation is more well-known for the fact that it provably provides a good uniform

polynomial approximation to any Lipschitz function. For completeness, we give a proof of

this fact as Theorem B.1.6 in the appendix. With Facts 4.7.2 and 4.3.2 in place, we are

ready to introduced the basic kernel polynomial method for approximating the spectral den-

sity s as Algorithm 10. This algorithm is identical to the “Jackson Kernel” KPM from [157].

Recall that, for now, we assume we have access to exact Chebyshev moment of the spectral

11This formulation allows the coefficients to be easily computed in most high-level programming lan-
guages. E.g., in MATLAB we can compute g = ones(2*z+1,1); c = conv(conv(g,g),conv(g,g)); b =
c(N+1:2*N+1);.
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density s for our matrix A. In Section 4.7.2 we prove that Algorithm 10 is robust to using

approximate moments.

Algorithm 10 Idealized Jackson Damped Kernel Polynomial Method
Input: Symmetric A ∈ Rn×n with spectral density s : [−1, 1]→ R≥0, degree N ∈ 4N+.
Output: Density function q : [−1, 1]→ R≥0.

1: For k = 0, . . . , N compute τk =
1
n
tr(T̄k(A)) = ⟨s, T̄k⟩.

2: For k = 0, . . . , N compute b̂N [k] as is (4.12).
3: Return q = w ·

∑N
k=0

b̂N [k]

b̂N [0]
· τk · T̄k.

Lemma 4.7.3. If N ≥ 18
ϵ

, then the function q : [−1, 1]→ R≥0 returned by Algorithm 10 is

a probability density and satisfies:

W1(s, q) ≤ ϵ.

Proof. We first prove that q is a probability density. To see that it is positive, note that

h =
∑N

k=0
b̂N [k]

b̂N [0]
· τk · T̄k is a Jackson approximation to the positive function s/w, so is must

be non-negative by Fact 4.7.2. Since w is also non-negative, we conclude that q = w · h is

as well. Then we consider q’s integral. We need to show that
∫ 1

−1
q(x)dx = 1 =

∫ 1

−1
s(x)dx.

Since T̄0 is a scaling of the constant function, it suffices to show that ⟨T̄0, q⟩ = ⟨T̄0, s⟩. We

have:

⟨T̄0, q⟩ = τ0 · ⟨T̄0, w · T̄0⟩ = ⟨T̄0, s⟩ · 1.

The first step follows directly from the orthogonality of the Chebyshev polynomials under

the weight function w, which implies that ⟨T̄0, w · T̄k⟩ = 0 for all k > 0. We also use that

⟨T̄0, w · T̄0⟩ = 1.

Next, we prove the approximation guarantee. Referring to the formulation of Wasserstein-

1 distance from equation (4.3), we have that W1(s, q) = sup⟨s−q, f⟩ where f is a 1-Lipschitz

function. So, we want to show that any 1-Lipschitz f has small inner product with the dif-
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ference between s and its degree-N Jackson approximation, q. To do so, we show that

this inner product is actually exactly equal to the inner product between s and a degree-N

Jackson approximation to f . Since f is 1-Lipschitz, this approximation is guaranteed to be

have small error. This key equivalency follows because, like a standard Chebyshev series ap-

proximation, the Jackson approximation can be viewed as the output of a symmetric linear

operator applied to s.

Formally, we introduce notation for several linear operators needed to analyze (4.13).

Let T̄ : F([−1, 1],R)→ F(N,R) be the operator mapping a function f ∈ F([−1, 1],R) to its

inner-product with the normalized Chebyshev polynomials. Define the transpose operator

T̄ ∗ : F(N,R)→ F([−1, 1],R) to satisfy ⟨T̄ f, g⟩ = ⟨f, T̄ ∗g⟩ for any g ∈ F(N,R). Concretely,

for i ∈ N and x ∈ [−1, 1],

[T̄ f ][i] :=
∫ 1

−1

T̄i(x)f(x)dx and [T̄ ∗g](x) :=
∞∑
i=0

T̄i(x)g[i]. (4.14)

We also define operators W : F([−1, 1],R) → F([−1, 1],R) and I : F(N,R) → F(N,R) as

follows:

[Wf ](x) := w(x)f(x) =
1√

1− x2
f(x) and [Ig][i] := g[i].

Note that I is an identity operator. For any N ∈ 4N, we define BN : F(N,R) → F(N,R)

as:

[BNg](i) :=


β̂N [i]

β̂N [0]
g(i) for 0 ≤ i ≤ N

0 i > N.

The operatorsW , I, and BN are all commutative with respect to the inner-products in their

respective spaces. Specifically, for f1, f2 ∈ F([−1, 1],R) and g1, g2 ∈ F(N,R), ⟨f1,Wf2⟩ =
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⟨Wf1, f2⟩, ⟨g1, Ig2⟩ = ⟨Ig1, g2⟩, and ⟨g1,BNg2⟩ = ⟨BNg1, g2⟩. Also note that by orthogonality

of the Chebyshev polynomials under w, T̄ ∗T̄ W is the identity operator on F([−1, 1],R) and

so is WT̄ ∗T̄ .

With these operators defined, the remainder of the proof is short. We have via direct

calculation:

⟨f, s− q⟩ = ⟨f, s−WT̄ ∗BN T̄ s⟩

= ⟨f,WT̄ ∗(I − BN)T̄ s⟩ = ⟨T̄ ∗(I − BN)T̄ Wf, s⟩ = ⟨f − T̄ ∗BN T̄ Wf, s⟩.

Note that T̄ ∗BN T̄ Wf is exactly the degree-N Jackson approximation to f . So by Fact

??, if f is a 1-Lipschitz function, ∥f − T̄ ∗BN T̄ Wf∥∞ ≤ 18/N . Since s is a non-negative

function that integrates to 1, it follows that ⟨f, s − q⟩ = ⟨f − T̄ ∗BN T̄ Wf, s⟩ ≤ 18/N .

Since W (s, q) = sup1-Lipschitz f⟨f, s − q⟩, we conclude that W (s, q) ≤ ϵ as long as as long as

N ≥ 18/ϵ.

Remark. Given access to the Chebyshev polynomial moments, tr(T̄0(A)), . . . , tr(T̄N(A)),

Algorithm 10 can be implemented in O(1/ϵ) additional time. The function it returns is an

O(1/ϵ) degree polynomial times the closed form function w. The polynomial can be rep-

resented as a sum of Chebyshev polynomials, or converted to standard monomial form in

O(1/ϵ2) time. The function is easily plotted or integrated over a range – see discussion

around Fact 4.8.2 for more details.

4.7.2 Full Kernel Polynomial Method

Since it is not possible to efficiently compute the exact Chebyshev polynomial moments,

we need to show that the kernel polynomial method can work with approximations to these
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moments, computed e.g. using a stochastic trace estimator as described in Section 4.4. Here,

we first prove a general result on the accuracy of approximation needed to ensure we obtain

a good spectral density estimation. Specifically, we analyze the following “robust” version

of Algorithm 10.

Algorithm 11 Jackson Damped Kernel Polynomial Method
Input: Symmetric A ∈ Rn×n with spectral density s : [−1, 1] → R≥0, degree parameter

N ∈ 4N+, algorithm M(A) that computes moment approximations τ̃1, . . . , τ̃N with the
guarantee that |τ̃k − 1

n
tr(T̄k(A))| ≤ 1/N2 for all k.

Output: Density function q : [−1, 1]→ R≥0.
1: For k = 1, . . . , N use M to compute τ̃1, . . . , τ̃N as above. Set τ̃0 = 1/

√
π.

2: For k = 0, . . . , N compute b̂N [k] as is (4.12).
3: Compute polynomial s̃N = w ·

∑N
k=0

b̂N [k]

b̂N [0]
· τ̃k · T̄k.

4: Return the probability density q =
(
s̃N + w

√
2

N
√
π

)
/
(
1 +

√
2π
N

)
.

The final transformation of s̃N in Line 4 of Algorithm 11 ensures that we return a proper

density, since error incurred by approximating 1
n
tr(T̄k(A)) = ⟨s, T̄k⟩ could leave the function

with negative values. So, we shift by a small positive function, and rescale to maintain unit

integral. Our main result on the error of Algorithm 11, which parallels Lemma 4.7.3 for

Algorithm 10, is as follows:

Lemma 4.7.4. If N ≥ 18
ϵ

, then the function q : [−1, 1]→ R≥0 returned by Algorithm 11 is

a probability density and satisfies:

W1(s, q) ≤ 2ϵ.

Proof. We first prove that q is a probability distribution. Let sN denote the ideal distribution

returned by Algorithm 10 if exact Chebyshev moments were used. I.e.,

sN = w ·
N∑
k=0

b̂N [k]

b̂N [0]
· τk · T̄k

where τk = 1
n
tr(T̄k(A)) = ⟨s, T̄k⟩. Note that for any density s, τ0 = ⟨s, T̄0⟩ = 1/

√
π. Let
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∆k = τ̃k − τk. We have s̃N(x) = sN +
∑N

k=1∆k
b̂N [k]

b̂N [0]
w(x)T̄k(x). Define functions η = sN/w

and η̃ = s̃/w. It follows that for any x ∈ [−1, 1],

|η̃(x)− η(x)| = |
N∑
k=1

b̂N [k]

b̂N [0]
∆kT̄k(x)| ≤

√
2

N
√
π
. (4.15)

The last inequality uses that 0 ≤ b̂N [k]/b̂N [0] ≤ 1 and for x ∈ [−1, 1], T̄k(x) ≤
√
2/π for

k ≥ 1. Since η is a non-negative function, from (4.15) we can conclude that the function

η̃ +
√
2

N
√
π

is non-negitive, and thus w · (η̃ +
√
2

N
√
π
) = s̃N + w

√
2

N
√
π

is also non-negative. The

density of this function is
∫ 1

−1
s̃N(x)dx+

√
2

N
√
π

∫ 1

−1
w(x)dx = 1 +

√
2π
N

, so dividing by 1 +
√
2π
N

gives a probability density.

Next we prove the approximation guarantee. By Lemma 4.7.3 we know that W1(s, sN) ≤

ϵ, so if we can show that W1(sN , q) ≤ ϵ, then by triangle inequality we will have shown that

W1(s, q) ≤ W1(s, sN) +W1(sN , q) ≤ 2ϵ.

To bound W1(sN , q), we need to show that ⟨f, sN − q⟩ ≤ ϵ for any 1-Lipschitz function

f ∈ F([−1, 1],R). Without loss of generality, we can assume that
∫ 1

−1
f(x)dx = 0, as the

1-Lipschitz function f ′ = f −
∫ 1

−1
f(x)dx satisfies ⟨f, sN − q⟩ = ⟨f ′, sN − q⟩ (since sN and q

are both probability densities). If
∫ 1

−1
f(x)dx = 0, f(x) must be zero for some x ∈ [−1, 1],

and since it is also 1-Lipschitz we can in turn bound ∥f∥∞ ≤ 1.12 We can then bound the

inner product:

⟨f, sN − q⟩ ≤ ∥f(s̄N − q)∥1 ≤ ∥f∥∞∥s̄N(x)− q(x)∥1 ≤

∥∥∥∥∥∥w ·
η −

η̃ +
√
2

N
√
π

1 +
√
2π
N

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥w ·
(
η − η̃ −

√
2

N
√
π

)∥∥∥∥∥∥
1︸ ︷︷ ︸

z1

+

∥∥∥∥∥∥
√
2π

N
· w ·

(
η̃ +

√
2

N
√
π

)∥∥∥∥∥∥
1︸ ︷︷ ︸

z2

12Let z maximize f(x). Since f is 1-Lipschitz we have f(z) ≤ |x − z| − f(x) for all x. Integrating both
sides from −1 to 1, we have 2f(z) ≤ (z2 + 1)− 0 ≤ 2. So, f(z) ≤ 1.
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The last inequality uses the fact that 1 − 1
1+γ
≤ γ for 0 ≤ γ ≤ 1, which we apply with

γ =
√
2π
N

. Using the fact that ∥w∥1 =
∫ 1

−1
1√

1−x2dx = π and the bound on ∥η − η̃∥∞ from

(4.15), we have

z1 ≤ ∥w∥1 ·

∥∥∥∥∥η − η̃ −
√
2

N
√
π

∥∥∥∥∥
∞

≤ 2π
√
2

N
√
π
.

Examining z2, recall that we showed earlier that w(η̃ +
√
2

N
√
π
) = s̃N +

√
2

N
√
π
w has ℓ1 norm

1 +
√
2π
N

. So we have z2 ≤
√
2π
N

(1 +
√
2

N
√
π
) ≤ 2

√
2π

N
for all N ≥ 1.

Compiling the bounds on z1 and z2, we have that for all 1-Lipschitz f , ⟨f, sN − q⟩ ≤
4
√
2π

N
≤ 11

N
, and thus W1(s̄N , q) ≤ 11

N
. For N ≥ 18

ϵ
we conclude that W1(s̄N , q) ≤ ϵ. Applying

triangle quality as discussed above completes the proof.

Lemma 4.7.4 is exactly analogous to Lemma 4.3.4. We can take advantage of the result

by using the Hutchinson’s based method from Section 4.4 or the sublinear time method from

Section 4.5 to obtain the approximations for the Chebyshev moments required by Algorithm

11. The end result is that we can obtain the same bounds as Theorem 4.1.4 and Theorem

4.1.3 with ℓ = max(1, C′

n
ϵ−4 log2( 1

ϵδ
)) and ϵMV = C ′′ϵ−4, respectively. The slightly worse ϵ

dependence follows from the fact that Algorithm 11 has a more stringent requirement on the

approximate Chebyshev moments used than Algorithm 6.

4.8 Approximate Eigenvalues from Spectral Density

Estimate

Algorithm 10 and Algorithm 11 in the previous sections output a closed form representation

of a distribution q which is close in Wasserstein-1 distance to s. In particular, the distribution
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output is continuous. Alternatively, we describe a simple greedy algorithm (Algorithm 12)

that recovers a list of n eigenvalues Λ̃ = [λ̃1, . . . , λ̃n] such that ∥Λ− Λ̃∥1 ≤ 3nϵ, which implies

that the discrete distribution associated with Λ̃ is 3ϵ close to s in Wassersetin-1 distance.

Formally:

Theorem 4.8.1. Let s be a spectral density and let q be a density on [−1, 1] such W1(s, q) ≤ ϵ

for ϵ ∈ (0, 1). As long as q can be integrated over any subinterval of [−1, 1] (e.g., has a closed

form antiderivative), there is an algorithm (Algorithm 12) that computes 1/ϵ such integrals

and in O
(
n+ 1/ϵ

)
additional time outputs a list of n values Λ̃ = [λ̃1, . . . , λ̃n] such that

∥Λ− Λ̃∥1 ≤ 3nϵ.

At a high-level, Algorithm 12 computes a grid with spacing ϵ for the interval [−1, 1],

“snaps” the mass of the continuous density onto the nearest point in the grid, and then

readjusts the resulting point masses to a distribution where every point mass is divisible by

1/n (and can therefore be represented by a certain number of eigenvalues). It does so by

iteratively shifting fractional masses to the next point in the grid so that the mass at the

current point is divisible by 1/n.

The method requires computing the mass
∫ b

a
q(x)dx where −1 ≤ a < b ≤ 1. For

Algorithms 10 and 11, q is written as q = w · p where p is a degree N polynomial written as

a sum of the first N + 1 Chebyshev polynomials. So to compute the integral
∫ b

a
q(x)dx, we

just need to compute the integral
∫ b

a
Tk(x)w(x)dx for any k ∈ 0, . . . , N . We can do so using

the following closed form expression (see Appendix B.2 for a short derivation):

Fact 4.8.2. For k ∈ N>0 and −1 ≤ a < b ≤ 1 we have that

∫ b

a

Tk(x)√
1− x2

dx =
− cos(k sin−1 b)

k
− − cos(k sin−1 a)

k

For k = 0, Tk(x) = 1 for all x and we have that
∫ b

a
Tk(x)w(x)dx = sin−1(b)− sin−1(a).
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Using the above fact, when q = w · p for a degree N polynomial p, we can compute∫ b

a
q(x)dx in O(N) time. In our main results N = O(1/ϵ), so this cost is small.

Algorithm 12 Approximate Eigenvalues from Spectral Density
Input: Spectral density q : [−1, 1]→ R+, integer n.
Output: Vector Λ̃ = [λ̃1, . . . , λ̃n].

1: compute v⃗ = (v−1+ϵ, v−1+2ϵ . . . , v0, vϵ, . . . , v1) such that vt =
∫ t

t−ϵ
q(x)dx

2: for t in (−1 + ϵ,−1 + 2ϵ . . . , 0, ϵ, . . . , 1) do
3: r ← vt − ⌊vt⌋1/n ▷ ⌊vt⌋1/n is the largest value ≤ vt that is divisible by 1

n

4: vt+ϵ ← r + vt+ϵ

5: Set n · ⌊vt⌋1/n values in Λ̂ to be t

6: return Λ̂

Proof of Theorem 4.8.1. Consider the output Λ̃ of Algorithm 12 with input q and n. Notice

that W1(v, q) ≤ ϵ by the definition of v and the earthmover’s definition of the Wasserstein

distance. Hence, by triangle inequality, we have that W1(v, s) ≤ 2ϵ. Let ṽ be the vector of

masses after the shifting procedure (Line 4) in the for-loop of the algorithm. Notice that ṽ

is the distribution corresponding to having n equally weighted point-masses on the points

in Λ̃. Since the procedure in Line 4 moves at most 1/n mass at most ϵ distance in each

iteration, we have W1(v, ṽ) ≤ ϵ by the earthmover’s distance definition of the Wasserstein-1

distance. It follows then that W1(ṽ, s) ≤ 3ϵ.

We note that there are other options beyond Algorithm 12 for discretizing a continuous

density return by the Jackson damped kernel polynomial method – i) the optimal discretiza-

tion of a continuous density on the interval [−1, 1] into n equally-weighted point-masses, and

ii) an algorithm by [41] that can be seen as a combination of Algorithm 12 and the optimal

method.
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Optimal Discretization. Given the continuous density q, consider the discrete density

that results from the following procedure:

1. Initialize t = −1, then repeat the following steps until t = 1.

2. Let t′ ≥ t be the smallest value such that
∫ t′

t
q(x)dx = 1

n
.

3. Place a point-mass at Ex∼q

[
x | x ∈ [t, t′]

]
. I.e. a point-mass is placed in the interval

[t, t′] at the point given by the conditional distribution of q on the interval.

4. Update t← t′.

The values Λ̃ = λ̃1, . . . , λ̃n given by the point-masses computed by the aforementioned pro-

cedure is a optimal discretization of q into n equally-weighted point-masses on [−1, 1] in

terms of Wasserstein-1 distance. To see why this is the case, consider the first 1/n fraction

of the mass of the density q, i.e. the smallest t > −1 such that
∫ t

−1
q(x)dx = 1/n. The

policy minimizing the earthmover’s distance to any n equally-weighted point-wise masses

must “move” the mass of q on the interval [−1, t] to the point-mass closest to −1. Hence,

it is sufficient to restrict our attention to the interval [−1, t] when computing the smallest

point-mass, i.e. the mass closest to −1. Now that we are constrained to looking at the

interval [−1, t] one can check that the point-mass minimizing the earthmover’s distance to

q, restricted to [−1, t], is the point-mass at Ex∼q

[
x | x ∈ [−1, t]

]
. The optimality of the

procedure follows from making this argument inductively for all n point-masses.

We note that all steps of the procedure takes roughly O(n) time, although a numerical

integration technique or binary search would need to be used to find each t′ to sufficiently

high accuracy.

A result combining the greedy discretization in Algorithm 12 and the optimal discretiza-

tion is given in [41]. They compute a fractional discretization on an ϵ-spaced grid of [−1, 1],
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as in Algorithm 12, but then compute the eigenvalues using the conditional expectation of

every 1/n fraction of mass based on the discrete density on the grid.
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Appendix A

Additional Proofs for Chapter 2

A.1 Proof of Fact 2.2.1

Let M = AA⊤ be a PSD matrix, with eigenvalues λ1 ≥ . . . ≥ λn ≥ 0. Let m⃗, λ⃗ ∈ Rn be the

vectors corresponding to the diagonal entries of M and the eigenvalues of M respectively,

both in non-increasing order. Then, by Schur-Horn theorem (Theorem 4.3.26 in [77]), λ⃗

weakly majorizes m⃗, i.e.
∑r

i=1 λi ≥
∑r

i=1mi for all r ∈ [n].

Since f(y) =
∑n

i=1 y
t
i is a Schur-convex function for y ∈ Rn and t ≥ 1, we have that∑n

i=1 λ
t
i ≥

∑n
i=1m

t
i. The statement follows from the fact that

∑n
i=1 λ

t
i = ∥AA⊤∥tSt

= ∥A∥2tS2t

and mi = ∥ai∥22 for all i ∈ [n].
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A.2 Proof of Theorem 2.2.2

It is easy to see that the estimator is unbiased; E[Ẑ] =
∑

i∈[n]
zi
τi
· τi = z. Bounding the

variance can be done as follows,

V ar(Ẑ) ≤ E[(Ẑ)2] =
∑
i∈[n]

(
zi
τi

)2

τi =
∑
i∈[n]

(
|zi|
τi

)2

τi.

Since for each i ∈ [n] we have τi ≥ |zi|
λz

, we can bound V ar(Ẑ) ≤
∑

i∈[n](λz)
2τi = (λz)2

A.3 Proof of Lemma 2.5.2

The expectation is straight forward. First assume r = 1:

E[Y ] = E[
zi,j
τiτj

] =
∑

l∈[n],m∈[n]

zl,m
τlτm

τlτm = z

and then using the linearity of expectation,

E[Y ] =
1

r2

∑
u∈[r],v∈[r]

E[
ziu,jv
τiuτjv

] =
1

r2

∑
u∈[r],v∈[r]

z = z

For the variance,

EY 2 =
1

r4

∑
u,v

E[
∑
u′ ̸=u
v′ ̸=v

ziu,jv
τiuτjv

·
ziu′ ,jv′
τiu′τjv′

] + E[

(
ziu,jv
τiuτjv

)2

]

+ E[
∑
u̸=u′

ziu,jv
τiuτjv

·
ziu′ ,jv
τiu′τjv

] + E[
∑
v ̸=v′

ziu,jv
τiuτjv

·
ziu,jv′
τiuτjv′

]
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As iu and iu′ are independent for u ̸= u′, and similarly for jv and jv′ for v ̸= v′, we get

=
1

r4

(
r2(r − 1)2z2 + r2

∑
l,m

zl,m
τl
· zl,m
τm

+ r2(r − 1)
∑
l,m,m′

zl,m′

τl
· zl,m

+ r2(r − 1)
∑
l,l′,m

zl′,m
τm
· zl,m

)

≤ z2 +
1

r2

∑
l,m

|zl,m|
τlτm

· |zl,m|+
1

r

∑
l,m,m′

|zl,m′|
τl
· |zl,m|+

1

r

∑
l,l′,m

|zl′,m|
τm

· |zl,m|

As the first term is just (E[Y ])2, it holds that

Var(Y ) ≤ 1

r2

∑
l,m∈N(l)

|zl,m|
τlτm

· |zl,m|+
1

r

∑
l,m,m′∈N(l)

|zl,m′|
τl
· |zl,m|+

1

r

∑
m,l∈N(m)
l′∈N(m)

|zl′,m|
τm

· |zl,m|

Recalling that zl,m = 0 for all (l,m) /∈ E, we can rewrite the above as

=
1

r2

∑
l,m∈N(l)

|zl,m|
τlτm

· |zl,m|+
1

r

∑
m,l∈N(l)
l′∈N(l)

|zl,m′ |
τl
· |zl,m|+

1

r

∑
m,l∈N(m)
l′∈N(m)

|zl′,m|
τm

· |zl,m|

and using the bound on the probability,

≤ λ2z

r2

∑
l,m∈N(l)

|zl,m|+
λz

r

∑
l,m∈N(l),m′∈N(l)

|zl,m|+
λz

r

∑
m,l∈N(m),l′∈N(m)

|zl,m|

Finally, using the bounds on maximum degrees, we get

≤

(
λ2

r2
+

2λ∆

r

)
z
∑
i,j∈[n]

|zi,j|
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A.4 Bounding the tail of the Estrada index Taylor ex-

pansion (Theorem 2.8.2)

We bound the tail of the Estrada index Taylor expansion (2.14), i.e.
∣∣∣∑∞

p=m+1
tr(Ap)

p!

∣∣∣ ≤
ε
∣∣tr(exp(A))∣∣ for m = ⌈(eθ + 1) log(1/ε)− 1⌉.

∣∣∣∣∣∣
∞∑

p=m+1

tr(Ap)

p!

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
p=m+1

tr(Am+1Ap−(m+1))

(m+ 1)!(p− (m+ 1))!

∣∣∣∣∣∣ .
Using tr(AB) ≤ ∥A∥S∞ · tr(B) which follows from Von Neuman’s trace inequality (see [17]),

≤ ∥A
m+1∥S∞

(m+ 1)!

∣∣∣∣∣∣
∞∑

p=m+1

tr(Ap−(m+1))

(p− (m+ 1))!

∣∣∣∣∣∣ ,
and by the bound on the largest eigenvalue and Stirling’s formula,

≤ (eθ)m+1

(m+ 1)m+3/2
√
2π

∣∣∣∣∣∣
∞∑
p=0

tr(Ap)

p!

∣∣∣∣∣∣
≤
(

eθ

m+ 1

)m+1 ∣∣tr(exp(A))∣∣
Setting m = ⌈(eθ + 1) log(1/ε)− 1⌉ and using (1− x−1)x ≤ e−1 (for x > 0) guarantees

that (
eθ

m+ 1

)m+1

≤
(

eθ

(eθ + 1) log(1/ε)

)m+1

≤
(
1− eθ

eθ + 1

)(eθ+1) log(1/ε)

= ε.
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Appendix B

Additional Proofs for Chapter 4

B.1 Positive Polynomial Approximation

In this section, we introduce Jackson’s powerful result from 1912 on the uniform approxi-

mation of Lipschitz continuous periodic functions by low-degree trigonometric polynomials

[83, 84]. This result will directly translate to the result for algebraic polynomials needed

to analyze the kernel polynomial method. We start with basic definitions and preliminaries

below.

B.1.1 Fourier Series Preliminaries

Definition B.1.1 (Fourier Series). A function f with period 2π that is integrable on the

length of that period can be written via the Fourier series:

f(x) =
α0

2
+

∞∑
k=1

αk cos(kx) + βk sin(kx)
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where

αk =
1

π

∫ π

−π

f(x) cos(kx)dx βk =
1

π

∫ π

−π

f(x) sin(kx)dx.

Equivalently we can write f in exponential form as:

f(x) =
∞∑

k=−∞

f̂ke
ikx

where i =
√
−1, f̂0 = α0/2, f̂k = f̂ ∗

|k| for k < 0, and for k > 0,

f̂k =
1

2
(αk − iβk).

If the Fourier series of a periodic function f has f̂k = 0 for k > N (equivalently,

αk = βk = 0 for k > N), we say that f is a degree N trigonometric polynomial.

In working with Fourier series, we require the two standard convolution theorems:

Claim B.1.2 (First Convolution Theorem). Let f, g be integrable 2π-periodic functions with

exponential form Fourier series coefficients [f̂k]
∞
k=−∞ and [ĝk]

∞
k=−∞, respectively. Let h be

their convolution:

h(x) = [f ∗ g](x) =
∫ π

−π

f(u)g(x− u)du.

The exponential form Fourier series coefficients of h, [ĥk]
∞
k=−∞, satisfy:

ĥk = 2π · f̂kĝk

Claim B.1.3 (Second Convolution Theorem). Let f, g be integrable 2π-periodic functions
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with exponential form Fourier series coefficients [f̂k]
∞
k=−∞ and [ĝk]

∞
k=−∞, respectively. Let h

be their product:

h(x) = f(x) · g(x).

The exponential form Fourier series coefficients of h, [ĥk]
∞
k=−∞, satisfy:

ĥk =
∞∑

j=−∞

f̂j · ĝk−j

In other words, the Fourier coefficients of h are the discrete convolution of those of f and g.

B.1.2 Jackson’s Theorem for Trigonometric Polynomials

We seek a low-degree trigonometric polynomial f̃ that is a good uniform approximation to

any sufficiently smooth periodic function f . I.e., we want ∥f − f̃∥∞ < ϵ where ∥z∥∞ denotes

∥z∥∞ = maxx z(x). A natural choice for f̃ is the truncated Fourier series
∑N

k=−N cke
ikx,

but this does not lead to good uniform approximation in general. Instead, Jackson showed

that better accuracy can be obtained with a Fourier series with damped coefficients, which

is equivalent to the convolution of f with an appropriately chosen “bump” function (aka

kernel), defined below:

Definition B.1.4 (Jackson Kernel). For any positive integer m, let b be the 2m− 2 degree

trigonometric polynomial:

b =

(
sin(mx/2)

sin(x/2)

)4

=
2m−2∑

k=−2m+2

b̂ke
ikx,
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which has exponential form coefficients b̂−2m+2, . . . , b̂0, . . . , b̂2m−2 equal to:

b̂−k = b̂k =
m−k∑
j=−m

(m− |j|) · (m− |j + k|) for k = 0, . . . , 2m− 2. (B.1)

When m is odd it is easy to see that b is a degree 2m − 2 trigonometric polynomial.

Specifically, for odd m we have the well known Fourier series of the periodic sinc function

s(x) = sin(mx/2)
sin(x/2)

=
∑(m−1)/2

k=−(m−1)/2 e
ikx. We then apply the convolution theorem (Claim B.1.3)

to s(x) · s(x). to see that s2(x) =
(

sin(mx/2)
sin(x/2)

)2
is an m− 1 degree trigonometric polynomial

with coefficients c−k = ck = m − k. Applying it again to s2(x) · s2(x) yields (B.1). For a

derivation of (B.1) when m is even, we refer the reader to [84] or [107].

Figure B.1: Jackson’s bump function b(x) for m = 5, alongside its Fourier series coefficients.

Jackson’s main result is as follows. We include a short proof for completeness.

Theorem B.1.5 (Jackson [83], see also [84]). Let f be a 2π-periodic, Lipschitz continuous

function with Lipschitz constant λ. I.e., |f(x)− f(y)| ≤ λ|x− y| for all x, y. For integer m,

let b be the bump function from Definition B.1, with kth Fourier ceofficients b̂k. The function

f̃(x) = 1

2πb̂0

∫ π

−π
b(u)f(x− u)du satisfies:

∥f̃ − f∥∞ ≤ 9
λ

m
.

f̃ is a 2m−2 degree trigonometric polynomial, and by the convolution theorem, its exponential
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form Fourier series coefficients are given by ˆ̃fk =
b̂k
b̂0
· f̂k for k = −2m+ 2, . . . , 2m− 2.

Remark. The function f̃ takes the form of a damped truncation of f ’s Fourier series:
b̂0
b̂0

= 1 and b̂k
b̂0

falls off towards zero as k → 2m−2. After 2m−2, the Fourier series coefficients

from f are fully truncated to 0.

Proof. Recalling that b̂0 =
1
2π

∫ π

−π
b(x)dx, we have that

∫ π

−π
1

2πb̂0
b(u)du = 1, and thus

|f̃(x)− f(x)| ≤
∫ π

−π

1

2πb̂0
b(u) · |f(x)− f(x− u)|du.

By our Lipschitz assumption of f , we can bound |f(x)− f(x− u)| ≤ λ|u| and thus have:

max
x
|f̃(x)− f(x)| = ∥f̃ − f∥∞ ≤ λ ·

∫ π

−π
|u|b(u)du
2πb̂0

= λ ·
∫ π

0
ub(u)du∫ π

0
b(u)du

. (B.2)

In the last equality, we use that b is symmetric about zero. We have that 2 · sin
(
u
2

)
≤ u ≤

π · sin
(
u
2

)
for x ∈ [0, π] and thus:

∫ π

0

ub(u)du ≤ π4

∫ π

0

u
sin(mu/2)4

u4
du = π4m2

∫ πm

0

sin(v/2)4

v3
dv ≤ π4m2

∫ ∞

0

sin(v/2)4

v3
dv.

The last integral evaluates of ln 2
4

, so overall we have
∫ π

0
b(u) · udu ≤ π4 ln 2

4
·m2. Moreover we

can check that:

∫ π

0

b(u)du = π · (2
3
m3 +

1

3
m) ≥ 2π

3
m3.

Plugging into (B.2) we have that:

∥f̃ − f∥∞ ≤ 8.06
λ

m
.
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The result follows. We note that the constant above is loose: numerical results suggest the

bound can be improved to ≤ π
2

λ
m

.

Theorem B.1.5 translates to a result for algebraic polynomials via a standard transfor-

mation between Fourier series and Chebyshev series, which we detail below.

B.1.3 Jackson’s Theorem for Algebraic Polynomials

Theorem B.1.6. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function on [−1, 1] with

Lipschitz constant λ. I.e., |f(x)−f(y)| ≤ λ|x−y| for all x, y. For integer m, let b̂0, . . . , b̂2m−2

be the coefficients from (B.1). Let ck = ⟨f, w · T̄k⟩ be the kth coefficient in f ’s Chebyshev

polynomial expansion, where w and T̄k are as defined in Section 4.2. The degree (2m − 2)

algebraic polynomial

f̃(x) =
2m−2∑
n=0

b̂k

b̂0
ck · T̄k(x)

satisfies ∥f̃ − f∥∞ ≤ 9 λ
m

.

Proof. To translate from the trigonometric case to the algebraic setting, we will use the

identity that for all k,

Tk(cos θ) = cos(kθ). (B.3)

Consider any function r ∈ F([−1, 1],R) with Chebyshev expansion coefficients c0, c1, . . .,

where ck = ⟨r, w · T̄k⟩. Transform r into a periodic function as follows: let g(θ) = r(cos θ) for

θ ∈ [−π, 0] and let h(θ) = g(−|θ|) for θ ∈ [−π, π]. The function h(θ) is periodic, and also
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even, so its Fourier series has all coefficients β1, β2, . . . equal to 0. We thus have that

h(θ) =
∞∑
n=0

αk cos(nθ),

where

α0 =
1

2π

∫ π

−π

h(θ) cos(kθ)dθ =
1

π

∫ 0

−π

g(θ) cos(kθ)dθ

and, for n > 0,

αk =
1

π

∫ π

−π

h(θ) cos(kθ)dθ =
2

π

∫ 0

−π

g(θ) cos(kθ)dθ.

Using (B.3) and the fact that d
dx

cos−1(x) = 1√
1−x2 , we have:

∫ 0

−π

g(θ) cos(kθ)dθ =

∫ 1

−1

r(x)Tk(x)
1√

1− x2
dx.

We conclude that the Chebyshev coefficients of r are precisely a scaling of the Fourier coef-

ficients of h. Specifically, since T̄0 =
√

2
π
T0 and T̄k =

√
1
π
Tk, we have:

√
2

π
c0 = α0,

√
1

π
ck = αk for k > 0. (B.4)

With this fact in hand, Theorem B.1.6 follows almost immediately from Theorem B.1.5.

Specifically, given f ∈ F([−1, 1],R) with Chebyshev series coefficients c0, c1, . . ., we let g(θ) =

f(cos θ) and h(θ) = g(−|θ|). Let α0, α1, . . . denote h’s non-zero Fourier coefficients. Then,

let h̃ be the approximation to h given by Theorem B.1.5. h̃ is a 2m− 2 degree trigonometric

polynomial and is even since h is even and the bump function b is symmetric. Denote h̃’s

non-zero Fourier coefficients by α̃0, . . . , α̃2m−2. We have that α̃k =
b̂k
b̂0
αk for 0 ≤ k ≤ 2m− 2.
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Finally, let f̃ ∈ F([−1, 1],R) be defined by f̃(cos(θ)) = h(−θ). By (B.4), we have that f̃ is

a degree 2m − 2 polynomial and its Chebyshev series coefficients c̃0, . . . , c̃2m−2 are exactly

equal to b̂k
b̂0
ck.

Moreover, we have ∥f − f̃∥∞ = maxx∈[−1,1] |f(x) − f̃(x)| = maxx |h(x) − h̃(x)|. By

Theorem B.1.5 we have maxx |h(x)− h̃(x)| < 9 λ
m

, so we conclude that ∥f − f̃∥∞ < 9 λ
m

.

In addition to the main result of Theorem B.1.6, our SDE algorithm alsos require an

additional property of the damped Chebyshev approximation f̃ :

Lemma B.1.7. For any non-negative function f ∈ F([−1, 1],R) (not necessarily Lipschitz),

let f̃ be as in Theorem B.1.6. We have that f̃ is also non-negative on [−1, 1].

Proof. Let h(θ) and h̃(θ) be the 2π perioduc functions as in the proof of Theorem B.1.6. I.e.,

h(θ) = g(−|θ|) where g(θ) = f(cos θ) and h̃ is the truncated, Jackson-damped approximation

to h from Theorem B.1.5. If f is non-negative, then so is h, and since h̃ is the convolution of

h with a non-negative function, it is non-negative as well. Finally, since f̃(cos(θ)) = h(−θ),

we conclude that f̃(x) ≥ 0 for x ∈ [−1, 1].

B.2 Derivation of Fact 4.8.2

Let x = sin(u) then we have that dx = cos(u)du. Substituting the change of variable in the

integral and noting the fact that Tk(cos θ) = cos(kθ) for θ ∈ [−π, π] gives us that

∫ b

a

Tk(x)√
1− x2

dx =

∫ sin−1 b

sin−1 a

cos(k cos−1 sin(u))√
1− sin2(u)

cos(u)du =

∫ sin−1 b

sin−1 a

cos(k(π/2− u))du

=
− sin(k(π/2− u))

k

∣∣∣∣sin−1 b

sin−1 a

=
− cos(ku)

k

∣∣∣∣sin−1 b

sin−1 a
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where we used the fact that cos2(u) + sin2(u) = 1 and
∫
cos(u)du = sin(u) + c.

B.3 Proof of Fact 4.3.3

Proof. We start by doing a change of variables; set x = cos θ and note that dx = − sin θdθ.

Substituting this into the expression for ⟨f, w · T̄k⟩ and noting that Tk(cos θ) = cos kθ gives

us that

√
2

π

∫ 1

−1

f(x)
Tk(x)√
1− x2

dx =

√
2

π

∫ 0

−π

−f(cos θ)(cos kθ)dθ

since
√
1− cos2 θ = sin θ and dx = − sin θdθ. Integrating by parts and noting that

(f(cos θ)

∫
− cos kθdθ)|0−π = −f(cos θ)sin kθ

k
|0−π = 0

gives us that

⟨f, w · T̄k⟩ =
√

2

π

∫ 0

−π

sin kθ

k
df(cos θ).

We use the definition of the Riemann-Stieltjes integral and let M ∈ N+ be a parameter and

PM = {−π = x0 ≤ · · · ≤ xM = 0} be the set of all M intervals partitioning the interval

[−π, 0]. Then for a partition P ∈ PM we denote norm(P ) to be the length of its longest

sub-interval. The Riemann-Stieltjes integral
∫ 0

−π
sin(kθ) df(cos θ) can be written as

∫ 0

−π

sin kθ df(cos θ) = lim
ϵ→0

sup
M, P∈PM

s.t.norm(P )≤ϵ

m−1∑
i=0

(f(cosxi+1)− f(cosxi)) sin kxi.
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Since f(x) ∈ lip1 and | sin kθ| ≤ 1 we can bound the magnitude of the above summation as

∣∣∣∣∣∣
m−1∑
i=0

(f(cosxi+1)− f(cosxi)) sin kxi

∣∣∣∣∣∣ ≤
m−1∑
i=0

λ| cosxi+1 − cosxi| ≤ 2.

The last inequality follows from the fact that cos(θ) is 1-Lipschitz. Putting these bounds

together gives us that |⟨f, w · T̄k⟩| ≤ 2λ/k.
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