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Abstract

Min-max optimization problems are a class of problems that are usually seen in

game theory, machine learning, deep learning, and adversarial training. Deterministic

gradient methods, such as gradient descent ascent (GDA), Extragradient (EG), and

Hamiltonian Gradient Descent (HGD) are usually implemented to solve those problems.

In large-scale setting, stochastic variants of those gradient methods are prefer because

of their cheap per iteration cost. To further increase optimization efficiency, different

improvements of deterministic and stochastic gradient methods are proposed, such as

acceleration, variance reduction, and random reshuffling.

In this work, we explore advanced iterative methods for solving min-max optimiza-

tion problems, including deterministic gradient methods combined with accelerated

methods and stochastic gradient methods combined with variance reduction and

random reshuffling. We use experiments to evaluate the performance of the classical

and advanced iterative methods on both bilinear and quadratic games.

With an experimental approach, we show that the most advanced iterative methods

in the deterministic and stochastic setting have improvements in iteration complexity.
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Chapter 1

Introduction

Min-max optimization problems play a crucial part in classical game theory and

generative adversarial networks,[1] and it is also applied in a wide range of novel Machine

Learning problems. Statistics,[2, 3] online learning,[4] deep learning,[5] distributed

computing,[6, 7] multi-agent reinforcement learning,[8] and adversarial training[9] are

also fields of mathematics and computer science that use using min-max optimization

methods. In addition, there is a growing awareness that machine learning systems

used for real-life problems that involve scarcity or competition are always consistent

with game-theoretic constraints.[10]

Unconstrained min-max optimization problems on games have the form as

min
x∈Rd1

max
x∈Rd2

f(x, y) (1.1)

where f : Rd1 × Rd2 → R is an objective with two vector input x, y. The goal for this

problem is to find (x∗, y∗) ∈ Rd1+d2 as a min-max solution, also known as a saddle

point, or Nash equilibrium of (1.1), such that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) for every x ∈ Rd1 and y ∈ Rd2 (1.2)

The problem (1.1) is usually called a deterministic game.

In practice, problems like domain generalization,[11] generative adversarial networks,[1]

and some formulations in reinforcement learning[12] all have finite sums game of the
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form of (1.1) when doing empirical risk minimization. We name this formulation as a

stochastic game, in which the objective f is expanded into a finite sum version (1.3)

as below :

min
x∈Rd1

max
y∈Rd2

f(x, y) = 1
n

n∑︂
i=1

fi(x, y) (1.3)

where f : Rd1 × Rd2 → R. The parameter n represents the number of data a problem

has, and the value of n in practice is usually very big.

The min-max solution (x∗, y∗) of (1.1) or (1.3) is first a stationary point of the

objective function f such that

F (x∗, y∗) := (∇xf(x∗, y∗), −∇yf(x∗, y∗))T = 0. (1.4)

Thus, finding a min-max solution needs to first find a stationary point.

An unconstrained Stochastic Variational Inequality Problem (VIP) is a problem

that aims to find a point z∗ ∈ Rd for function Fi : Rd → Rd such that

F (z∗) = 1
n

n∑︂
i=1

Fi(z∗) = 0. (1.5)

If z := (x, y) and Fi(z) := (∇xf(z), ∇yf(z)), then solving VIP is equivalent to finding

a stationary point for (1.3). If (1.3) has a unique stationary point, the stationary

point is its global min-max solution. This kind of situation can happen, for example,

when fi is convex-concave functions. Thus, min-max problems can be regarded as a

special case of VIP.

Multiple algorithms can be used to solve minimax problems. For first-order meth-

ods, which are algorithms that use first-order derivative information in each iteration,

some commonly used algorithms are Gradient Descent Ascent (GDA), Optimistic

Gradient (OG), and Extragradient (EG). For second-order methods, Hamiltonian Gra-

dient Descent (HGD) and Consensus Optimization (CO), which use the information of

the Jacobin matrix in each update, are commonly used. There are also some variants

based on those methods, for example, Alternative Gradient Descent Ascent (AGDA),
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which alternatingly updates the primal-dual variables. All of those methods are in the

deterministic setting that uses all the data information to compute the full gradient

in each iteration.

Although significant advances in the deterministic setting have been witnessed in

recent years,[13, 14, 15, 16, 17, 18, 19, 20,21] it is shown that deterministic variants require

expensive updates, so it becomes infeasible and impractical for model training, espe-

cially when the number or dimension of a dataset is large. This is where the stochastic

settings of the above algorithms emerge. Since the stochastic setting of gradient

methods based on mini-batches reduces computational load and is more relevant and

applicable to real-world ML problems, it is important and worth analyzing.

To be specific, deterministic gradient methods are used to solve (1.1), and stochastic

gradient methods are used to (1.3). If problems are using the same objective f of (1.1)

and (1.3), then the difference between stochastic gradient methods and deterministic

ones is only the usage of an unbiased estimator of the full gradient of f instead of the

full gradient itself.

Nowadays, people care about both computation and iteration complexity. Acceler-

ated methods such as Heavy-ball momentum and Nesterov’s optimal are proposed for

deterministic methods, and people even use those accelerated methods in stochastic

settings. For stochastic cases, variance reduction and random reshuffling are two

commonly used methods that always have good performance in practice.

In this thesis, we will cover some gradient-related methods including GDA, HGD,

and their stochastic version, to solve the min-max problem. More details on pseu-

docodes for those algorithms will be shown in Chapter 2. With an experimental

approach, we explored different combinations of gradient methods, including determin-

istic variants combined with accelerated methods and stochastic variants combined

with variance reduction and random reshuffling methods. Details on experiments will

be shown in Chapter 4.
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Chapter 2

Background

In this chapter, we will provide the necessary background information required

for the rest of this thesis, and describe related work. We will present an overview

of unconstrained optimization, definitions of some properties, and various gradient

methods with their corresponding pseudocode. In addition, two examples of the

aforementioned algorithms will be provided as a general outlook.

2.1 Unconstrained Min-max Problem

In this thesis, we are focusing on solving unconstrained optimization problems in

the form of (1.1) or (1.3), and aiming on finding a saddle point (x∗, y∗), such that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) for every x ∈ Rd1 and y ∈ Rd2 (2.1)

If objective function f is differentiable, then a saddle point must be a stationary

point of f , which means that ∇f(x∗, y∗) = 0. Thus, by finding stationary points of

objective function f , it is possible to eventually achieve a saddle point. If with the

additional assumption that all stationary points are global min-max solutions of f ,

finding stationary points is equivalent to finding saddle points.

The most common way to find a saddle point is to denote an initial point (x0, y0)

and update along the opposite side of the gradient in iteratively to find a fixed

point. The goal of this method is to find a stationary point (xk, yk) that satisfied

4



∇f(xk, yk) = 0. This point may be the saddle point of the function f(x, y). If all

critical points are saddle points, the points the algorithm would find are the final

solution. This situation can happen, for example, when objective functions are convex

in x and concave in y.

A number of first-order and second-order methods are useful in solving this problem.

First order and second order in the name of a method means that a first-order derivative

or a second-order derivative information is used respectively during the iterative update.

In section 2.3, more details about algorithms are provided.

2.2 Preliminary

Notation

In this thesis, we are using the standard notation for optimization literature, and

we are also using Eξ[·] to denote the expectation taken w.r.t. the randomness coming

from sampling ξ only.

Main Definitions

Definition 1 Operator F (x) is L-Lipschitz, if there exists L > 0 such that for all

x, y ∈ Rd

||F (x) − F (y)|| ≤ L||x − y||. (2.2)

Definition 2 We say that a function f is L-smooth, if there exists L > 0 such that

for all x, y ∈ Rd

||∇f(x) − ∇f(y)|| ≤ L||x − y||. (2.3)

5



Note that it is equivalent to saying the objective function f is L-smooth of a

problem if its corresponding operator F is L-Lipschitz.

If f = 1
n

∑︁n
i=1 fi(x), then a more refined analysis of stochastic gradient methods

has been proposed under new notations of expected smoothness(ES).

Definition 3 We say that the function f = 1
n

∑︁n
i=1 fi(x) satisfies the expected smooth-

ness with parameter L, if there exists L > 0 such that for all x ∈ Rd,

Ei[||∇fi(x) − ∇fi(x∗)||2] ≤ 2L(f(x) − f(x∗)). (2.4)

Definition 4 We say that a function f : Rd → R is µ-strongly convex if there exists

a constant µ > 0 such that for all x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ||y − x||2, (2.5)

where x∗ is the projection of x onto the solution set X ∗ minimizing f .

Definition 5 We say that a function f : Rd → R is convex, if for all x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩. (2.6)

Strongly concave or concave have the similar definitions as strongly convex or

convex. We say a function is strongly concave if the function with the opposite sign

is strongly convex, and we say it is concave if the function with the opposite sign is

convex.

Definition 6 Operator F (x) is µ-quasi-strongly monotone, if for µ ≥ 0 and all x ∈ Rd

⟨F (x), x − x∗⟩ ≥ µ||x − x∗||2, (2.7)

where x∗ ∈ Rd is the unique solution such that F (x) = 0.

6



Definition 7 We say that a function f : Rd → R is µ-quasi-strongly convex if there

exists a constant µ > 0 such that for all x ∈ Rd

f ∗ ≥ f(x) + ⟨∇f(x), x∗ − x⟩ + µ

2 ||x∗ − x||2, (2.8)

where f ∗ is the minimum value of f and x∗ is the projection of x onto the solution set

X ∗ minimizing f .

Note that quasi-strong monotonicity has its roots in the quasi-strong convexity

condition from the optimization literature. Thus, having quasi-strong monotonicity of

operator F is equivalent to having quasi-strongly convexity of objective function f .

Definition 8 We say that an operator F is ℓ-co-coercive, if there exists ℓ > 0 such

that for all x, y ∈ Rd

||F (x) − F (y)||2 ≤ ℓ⟨F (x) − F (y), x − y⟩. (2.9)

We say that the operator is ℓ-co-coercive around w∗, if there exists w∗ ∈ Rd and ℓ > 0

such that for all x ∈ Rd

||F (x) − F (w∗)||2 ≤ ℓ⟨F (x) − F (w∗), x − w∗⟩. (2.10)

Note that w∗ is not necessarily a point where F (w∗) = 0.

Definition 9 We say that an operator F is ℓF -co-coercive in expectation with respect

to a distribution D, if there exists ℓF > 0 such that for all x ∈ Rd

ED[||Fi(x) − Fi(x∗)||2] ≤ ℓF ⟨F (x), x − x∗⟩. (2.11)

We write F ∈ EC(ℓF ) to denote that the above inequality is satisfied with the expected

co-coercivity constant ℓF .

7



Hamiltonian function

Hamiltonian gradient descent (HGD) has been proposed as an efficient method for

solving min-max problems in Balduzzi’s paper.[22] The method consists of performing

gradient descent on a particular objective function H(z), named the Hamiltonian

function. Here z := (x, y) is a vector with information of both x and y. The

Hamiltonian function has the following form:

H(z) = 1
2 ||F (z)||2 (2.12)

where F (z) is the vector of appropriately assigned partial derivatives as:

F (z) = (∂f

∂x
(z), −∂f

∂y
(z)). (2.13)

In other words, H(z) is the square norm of the gradient F (z).

In min-max problems, we at least need to find stationary points, and that happens

when F (z) = 0. That is equivalent to H(z) = 0. Since H(z) is the square norm

of the gradient, it has a value larger or equal to zero. We can find a stationary

point by finding a minimizer of H(z). In some special cases or with some additional

assumptions, all stationary points are equivalent to saddle points so that we can find

the saddle points by minimizing H(z) as :

min
z∈Rd1+d2

H(z) (2.14)

In the stochastic setting, we need an unbiased estimator of ∇H(z) as the update

direction in each iteration. When f(x, y) is of finite sum format as (1.3), then

F (z) = 1
2

n∑︁
i=1

Fi(z), where Fi(z) := (∇xf(z), −∇yf(z)) for all i ∈ [n]. For Hamiltonian

function and its gradient, we have the following form:

H(z) = 1
n2

n∑︂
i,j=1

1
2⟨Fi(z), Fj(z)⟩ (2.15)

∇H(z) = 1
n2

n∑︂
i,j=1

1
2[JT

i Fj + JT
j Fi], where Ji :=

[︄
∇2

x,xfi ∇2
x,yfi

−∇2
y,xfi −∇2

y,yfi

]︄
(2.16)
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So, we can see that

∇Hi,j(z) = 1
2[JT

i Fj + JT
j Fi] (2.17)

is an unbiased estimator of H(z).

2.3 Algorithms

In this part, we will show the pseudocode for some commonly used gradient

methods for min-max problems in both deterministic and stochastic settings.

The gradient descent ascent (GDA) algorithm is the most prevalent and straight-

forward method for solving min-max problems (1.1). It is the first algorithm designed

for a min-max problem, in which the descent part of the algorithm optimizes for the

minimization part of the problem and vice versa. It uses the gradient of objection

function f with respect to x as the update direction for minimization with respect to

x. For maximization respect to y, it uses the inverse gradient of objection function

f with respect to y as the update direction. The pseudocode of GDA is shown as

Algorithm 1.

Algorithm 1 Gradient Descent Ascent (GDA)
Input: Starting step-size η1,0 > 0, η2,0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd.

1: for k = 0, 1, 2, ..., K do
2: Set step-size η1,k, η2,k following one of the selected choices(constant, decreasing)
3: Set xk+1 = xk − η1,k∇xf(xk, yk)
4: Set yk+1 = yk + η2,k∇yf(xk, yk)
5: end for

Output: (xK , yK)

The Stochastic Gradient Descent Ascent (SGDA) algorithm is the stochastic

version of GDA, and it solves min-max problems of format (1.3). It is very similar as

GDA, and the only difference is that SGDA use some unbiased estimators of gradients
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instead of the full gradients in each update. The pseudocode of SGDA is shown as

Algorithm 2.

Algorithm 2 Stochastic Gradient Descent Ascent (SGDA)
Input: Starting step-size η1,0 > 0, η2,0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd.

Distribution D of samples.
1: for k = 0, 1, 2, ..., K do
2: Generate fresh samples i ∼ D, and evaluate ∇xfi(xk, yk), ∇yfi(xk, yk)
3: Set step-size η1,k, η2,k following one of the selected choices(constant, decreasing)
4: Set xk+1 = xk − η1,k∇xfi(xk, yk)
5: Set yk+1 = yk + η2,k∇yfi(xk, yk)
6: end for

Output: (xK , yK)

The extragradient (EG) method is a standard algorithm to solve min-max problems,

and it contains one extrapolation step and one update step in each iteration. The

pseudocode of EG is shown as Algorithm 3. Lines 3 and 4 of Algorithm 3 are the

extrapolation steps that compute gradient updates from the point of current iterate

and get an extrapolated point (xk+ 1
2
, yk+ 1

2
). Lines 5 and 6 are the update step that

updates the current iterate point (xk, yk) according to the direction gradients at the

extrapolated point (xk+ 1
2
, yk+ 1

2
).

Algorithm 3 Extragradient (EG)
Input: Starting step-size η1,0 > 0, η2,0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd.

1: for k = 0, 1, 2, ..., K do
2: Set step-size η1,k, η2,k following one of the selected choices(constant, decreasing)
3: Set xk+ 1

2
= xk − η1,k∇xf(xk, yk)

4: Set yk+ 1
2

= yk + η1,k∇yf(xk, yk)
5: Set xk+1 = xk − η2,k∇xf(xk+ 1

2
, yk+ 1

2
)

6: Set yk+1 = yk + η2,k∇yf(xk+ 1
2
, yk+ 1

2
)

7: end for
Output: (xK , yK)

The Same-samples Stochastic Extragradient (S-SEG) algorithm is the stochastic

version of EG, and it solves min-max problems of format (1.3). It is very similar to

EG, and the only difference is that S-SEG uses some unbiased estimators of gradients
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instead of the full gradients in each update. In each iteration, the same sample is used

for the extrapolation and update steps. In other words, for the same fi in one iteration,

unbiased estimators for full gradients are calculated respectively. The pseudocode of

S-SEG is shown as Algorithm 4.

Algorithm 4 Same-samples Stochastic Extragradient (S-SEG)
Input: Starting step-size η1,0 > 0, η2,0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd.

Distribution D of samples.
1: for k = 0, 1, 2, ..., K do
2: Generate fresh samples i ∼ D, and evaluate ∇xfi(xk, yk), ∇yfi(xk, yk)
3: Set xk+ 1

2
= xk − η1,k∇xfi(xk, yk)

4: Set yk+ 1
2

= yk + η1,k∇yfi(xk, yk)
5: Set xk+1 = xk − η2,k∇xfi(xk+ 1

2
, yk+ 1

2
)

6: Set yk+1 = yk + η2,k∇yfi(xk+ 1
2
, yk+ 1

2
)

7: end for
Output: (xK , yK)

Hamiltonian Gradient Descent (HGD) algorithm consists of performing a gradient

on a particular objective function H(z), which is half of the norm of the gradient of

the original objective function. It updates the point by doing a gradient descent on

the Hamiltonian function H(z). The pseudocode of HGD is shown as Algorithm 5.

Algorithm 5 Hamiltonian Gradient Descent (HGD)
Input: Starting step-size η0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd. Let

z0 = (x0, y0).
1: for k = 0, 1, 2, ..., K do
2: Set step-size ηk following one of the selected choices (constant, decreasing)
3: Set zk+1 = zk − ηk∇H(zk)
4: end for

Output: pK = (xK , yK)

The Stochastic Hamiltonian Gradient Descent (SHGD) algorithm is the stochastic

version of HGD, and it solves min-max problems of format (1.3). It is very similar to

HGD, and the only difference is that SHGD uses some unbiased estimators of gradients

instead of the full gradients in each update. One way to choose an unbiased estimator
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of ∇H(z) is by letting ∇Hi,j(z) = 1
2 [JT

i Fj + JT
j Fi] as (2.17), where i ∼ D and j ∼ D

are fresh independent samples. The pseudocode of SHGD is shown as Algorithm 6.

Algorithm 6 Stochastic Hamiltonian Gradient Descent (SHGD)
Input: Starting step-size η0 > 0, γ0 > 0. Choose initial points x0 ∈ Rd, y0 ∈ Rd.

Distribution D of samples. Let z0 = (x0, y0).
1: for k = 0, 1, 2, ..., K do
2: Generate fresh samples i ∼ D and j ∼ D, and evaluate ∇Hi,j(pk)
3: Set step-size ηk following one of the selected choices (constant, decreasing)
4: Set zk+1 = zk − ηk∇Hi,j(zk)
5: end for

Output: zK = (xK , yK)

2.4 Related Work

GDA and SGDA

The gradient descent ascent (GDA) algorithm and its stochastic format (SGDA)

are the most prevalent and straightforward methods for solving minimax problems

(1.1) and (1.3). They are the first algorithm designed for a min-max problem, in which

the descent part of the algorithm optimizes for the minimization part of the problem

and vice versa. The pseudocode of GDA and SGDA are shown as Algorithm 1 and 2

The core aim of the determinate version of GDA is to find an ε-approximate

stationary point. GDA can find the solution within O(κ2log(1/ε)) iterations for

strongly convex-strongly concave problems, and within O(ε2) iterations with decaying

step-size for convex-concave games.[23], [24] For nonconvex-strongly concave min-max

problems, it is shown that a two-time-scale GDA with O(κ2ε2) gradient evaluations

is capable of returning an ε-stationary point of the function Φ(·) = maxy∈Y f(·, y),

where κ > 0 is a condition number.[16] In the nonconvex-concave setting, on the other

hand, two-time scale GDA requires O(ε6) gradient evaluations.[16]
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There is a simple deviation within GDA. The only difference is using simultaneous or

alternating updates of the primal-dual variables, named GDA and AGDA, respectively.

GDA is usually used. But when moving to bilinear games, Zhang et al. show that the

iterates of GDA diverge linearly for any positive constant step-size.[25] By contrast,

they also show that the iterates of AGDA stay bounded.

For the stochastic version, Fi(x, y) := (∇xfi(x, y); ∇yfi(x, y)) represents the

appropriate concatenation of the block-gradients of fi, and operator F (x, y) =
1
n

∑︁n
i=1 Fi(x, y). Stochastic Gradient Descent Ascent (SGDA) is similar to GDA,

and the only difference is that instead of using a full gradient, SGDA uses an unbiased

estimator of the full gradient in each iteration.

When operator F is quasi-strongly monotone and satisfies the expected co-coercivity

assumption, it is proven that SGDA with constant step-size converges linearly to a

neighborhood, and with the help of decreasing step-size, it would be able to achieve the

exact solution in sublinear O(1/K) rate.[26] For nonconvex-strongly-concave min-max

problems, two-time scale SGDA requires O(κ3ε4) stochastic gradient evaluations a

to return an ε-stationary point of the function Φ(·) = maxy∈Y f(·, y), where κ > 0is

a condition number.[16] In the nonconvex-concave setting, O(ε8) stochastic gradient

evaluations are required for two-time scale SGDA.[16] For all the stochastic cases that

have been mentioned, if the problem is extrapolation or over-parameterized in addition,

then SGDA with constant can also guarantee linear convergence to the exact solution

like the corresponding deterministic case does.

While these algorithms have achieved good results in practice, especially in ad-

versarial training, GDA algorithms with constant step-sizes are known for having

the possibility of failing to converge for some general smooth function,[27] including

bilinear games.[28] In the cases when they do converge, the stable limit point still can

not always be guaranteed to be a local Nash equilibrium.[29, 30]
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EG and SEG

The extragradient (EG) method is a standard and well-known algorithm to optimize

VIP and min-max problems. The EG algorithm has been originally introduced by

Korpelevich[31] and extended by Nesterov[32] and Nemirovski[24]. Stochastic versions of

the extragradient have been recently analyzed for stochastic variational inequalities

with bounded constraints.[33, 34] A linearly convergent variance-reduced version of the

stochastic gradient method has also been proposed for strongly monotone variational

inequalities.[35]

The variational inequality problem (VIP) is a slightly more general setting than

the min-max setting. In a differentiable problem, its corresponding VIP designates the

necessary first-order stationary conditions. Under the assumption that the objective

functions of the differentiable game are convex-concave, the solutions of the VIP are

also solutions of the original min-max problem.[36]

For the deterministic version, Mokhtari et al. 2020[38] proved a linear convergence

rate for both EG in bilinear or strongly convex-strongly concave settings, with an

iteration complexity of O(κlog(1/ε)), where κ is the condition number. They also

established a sublinear convergence rate of O(1/K) in terms of the function value

difference of the averaged iterates for EG for convex-concave saddle point problems.[37]

For the stochastic version, the last-iterate SEG algorithm on bilinear games in

the same sample and same step-size in the min-max optimization problem has been

shown that it cannot converge in general even when the step-sizes are diminishing to

zero.[39] Thus, using different step-size becomes important. It was also shown that in

the bilinear game setting with some mild assumptions, iteration averaging allows SEG

to converge at the sublinear rate of O(1/
√

K), where K is the processed number of

samples of the algorithm. The convergence has been further boosted by combining

iteration averaging with scheduled restarting.
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Gorbunov et al.[36] give convergence analysis for stochastic versions of the extragra-

dient of same-sample and independent-sample for stochastic variational inequalities

with Lipschitz continuous and quasi-strongly monotonicity operator F .

HGD and SHGD

Hamiltonian Gradient Descent (HGD) and its stochastic version (SHGD) consists

of performing a gradient on a particular objective function H(z), which is half of the

norm of the gradient of the original objective function. In practice, those algorithms

usually show a fast convergence and perform well.

The last-iterate convergence rates for the deterministic Hamiltonian gradient

descent (HGD) are first provided by Abernethy.[39] They included games that satisfy

the sufficiently bilinear condition in there study. The authors introduced the stochastic

setting and explain how a stochastic variant of HGD with decreasing step-size behaves

by using the convergence results of Karimi.[40] However, their theoretical approach

was not able to provide an efficient way of selecting the unbiased estimators of the

gradient of the Hamiltonian function.

Loizou et al.[41] improve upon the methods that Abernethy[39] provided by intro-

ducing the first efficient variants and analysis of SHGD. In their study, they choose

a practical unbiased estimator of the full gradient by using the recently proposed

assumptions of expected smoothness and expected residual.[42, 43] They also indicate

tight convergence guarantees for the deterministic HGD recovering the result of Aber-

nethy. They give out convergence analysis of SHGD for stochastic bilinear games

and stochastic sufficient bilinear games and give the convergence rate of deterministic

HGD as a special case of SHGD.

Loizou et al. show that by assuming the Hamiltonian function H(z) is quasi-strongly

convex and expected smooth, SHGD with constant step-size converges linearly to a
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neighborhood of the solution.[26] With the additional assumption that operator F is

quasi-strongly monotone and is expected co-coercive, they also indicate that Stochastic

Consensus Optimization (SCO) method reaches the exact solution of sublinear O(1/K)

rate when using some decreasing step-size.

However, the HGD method does not always helpful, since it may find unstable

stationary points of the operator F or other local minima of H(z) = 1
2 ||F (z)||2. That is

because even some convex-concave functions may even have a nonconvex Hamiltonian

function such that H(z) will have more than one critical point. In that case, people

propose the consensus optimization (CO) method to combine the step direction of

minimizing the value of H(z) and the step direction of the gradient of the objective

function with the appropriate sign.

2.5 Simple Examples

In this part, we will run the algorithms mentioned above on two simple basic

bilinear games of the below format V1 and V2:

V1:

min
x∈R10

max
y∈R10

1
10

10∑︂
i=1

xT Aiy + bT
i x + cT

i y,

where bi, ci ∼ N(0, 1/10), and Ai[p, q] =
{︄

1 if i = p = q
0 else.

(2.18)

V2:

min
x∈R

max
y∈R

xy + 1
100

100∑︂
i=1

bix + ciy, where bi, ci ∼ N(0, 1/100) (2.19)

For the second format example V2, we draw two 3D graphs to give a brief illustration

of the properties of its objective function f(x, y) and Hamiltonian function H(x, y),

and show as Figures 2-1 and 2-2 respectively. In Figure 2-1, Z-axis denotes the value
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Figure 2-1. f(x,y) of V2 Figure 2-2. H(x,y) of V2

of f(x, y); In Figure 2-2, Z-axis denotes the value of H(x, y). In both figures, surface

color represents the value of objective function f(x, y). As shown by the color legend,

the bigger the objective function, the warmer the color is.

The update trajectories results using various algorithms will be shown in the

following parts.

2.5.1 GDA and SGDA

Figure 2-3. GDA on V1 Figure 2-4. GDA on V2

We run GDA with a step-size of 0.5 and 200 iteration times for 6 random starting
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points for the first version V1. For the second version V2, we run GDA with a

step-size of 0.5 and 100 iteration times for 4 random starting points. Calculate by

hand to find the optimum value by hand as x = − ∑︁(ci), y = − ∑︁(bi) for V1 and

x = − 1
100

∑︁(ci), y = − 1
100

∑︁(bi) for V2. Use a black star to show the optimum point

and together draw the trajectories. The plot is shown in Figures 2-3 and 2-4. From

all starting points, we can see that the trajectories cycles. In Figure 2-3, there shows

some divergence, and in Figure 2-4, a clear divergence can be witnessed. It shows that

GDA diverges for our bilinear games.

Figure 2-5. SGDA on V1 Figure 2-6. SGDA on V2

For the stochastic version, SGDA, we use single-element uniform sampling for

each iteration. That is to uniformly choose one sample to calculate the gradient as

the estimator of the whole true gradient. Step-sizes are 0.5 for both versions. The

numbers of iterations are 200 and 100 for V1 and V2 respectively. Algorithms are run

for 4 randomly chosen starting points. Results are shown in Figures 2-5 and 2-6. The

trajectories in both figure circle to diverge. And compare with the deterministic case,

the trajectories have more vibrating, i.e, not smooth as before.
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2.5.2 EG and SEG

Figure 2-7. EG on V1 Figure 2-8. EG on V2

For EG, a step-size of 0.5 is again used. We run EG for 4 uniformly random chosen

starting points of 500 iterations for V1 and 200 iterations for V2. The star-point is

the hand-calculated optimum point. From Figures 2-7 and 2-8, it is shown that this

method converges to the exact solution but with circling, i.e., not updates in the best

direction.

Figure 2-9. SEG on V1 Figure 2-10. SEG on V2
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For SEG, the stochastic version, we do the same thing, both with 0.5 step-size, 4

starting points, 500 iterations for V1, and 200 iterations for V2. More specifically about

sampling, we use single-element uniform sampling for each iteration. We emphasize

that we use the same sample during one iteration. In another word, the same sample

is used for calculating the gradient, updating xt+ 1
2
, yt+ 1

2
from xt,yt and updating

xt+1,yt+1 from xt+ 1
2
, yt+ 1

2
.

Some more vibrating trajectories are obtained and shown in Figures 2-9 and 2-10.

Although with some vibration, it can be seen that in both figure SEG methods circle

to converge.

Figure 2-11. SEG on V1 of one starting Figure 2-12. SEG on V2 of one starting

To see more clearly what happened around the optimum point, we run the algorithm

again for one starting point. All the parameters remain the same except that for SEG

on V1 we run 1000 iterations instead of 500. The results are shown in Figure 2-11 and

2-12. It can be witnessed that the trajectory circles at some neighbor of the optimum

point with fluctuation.
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2.5.3 HGD and SHGD

For HGD, use step-size as 0.5. Run algorithm for 4 uniformly random chosen

starting points of 1000 iterations for V1 and of 100 iterations for V2. Star-point is the

hand-calculated optimum point. In Figures 2-13 and 2-14, the trajectories converge

straightforwardly to the optimum point as straight lines. In another word, they update

in the best direction.

Figure 2-13. HGD on V1 Figure 2-14. HGD on V2

For SHGD, the stochastic version, we do the same thing, both with 0.5 step-size,

4 starting points, 500 iterations for V1, and 200 iterations for V2. More specifically

about sampling, we use two single-element uniform samplings for each iteration to

calculate the unbiased estimator of true gradients of the Hamiltonian function.

Results are saved in Figures 2-15 and 2-16. Even though some vibrating can be

witnessed, the trajectories still converge approximately to the optimum point. In

addition, they don’t circle the optimum. Their fluctuations are only around their best

update directions.

To see more clearly what happened around the optimum point, we run the algorithm

again for one starting point, zoom in, and show the result in Figures 2-17 and 2-18.
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For V1, SHGD converges with fluctuations around the best updating direction to a

neighbor of the optimum point. For V2, it almost converges according to the best

direction, but vibrates in a very small neighbour of the the optimum point.

Figure 2-15. SHGD on V1 Figure 2-16. SHGD on V2

It can be seen that many natural algorithms, such as simultaneous GDA (diverge)

and EG (circle to converge), provably diverge, cycle, or converge with circling even in

this simple min-max setting. However, HGD in this problem updates in the direction

of the line that points to the optimum point, i.e., updates straightforwardly according

to the optimum direction. Thus, somehow the HGD method may increase convergence

speed by reducing circling. It is very interesting to analyze and understand the

performance of variants of Hamiltonian function-related gradient descent methods on

min-max problems.

In this thesis, we will introduce some convergence theorems of GDA, HGD, and

their stochastic versions. Then, give an experimental evaluation of iterative methods

for games. In more detail, we will compare convergence performance for gradient

methods with different parameters, e.g., step size and momentum parameters, on
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Figure 2-17. SHGD on V1 of one starting Figure 2-18. SHGD on V2 of one starting

some min-max problems. We will use experiments to evaluate the performance of

using accelerated methods on HGD and GDA of different problems. We will also

cover experimental performances of using variance reduction or random reshuffling on

stochastic gradient methods on different games.
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Chapter 3

Convergence Guarantee

In this chapter, we will first present the convergence theorem for GDA and HGD

in both deterministic and stochastic settings. Then, we will cover some methods for

deterministic or stochastic settings to achieve faster convergences.

Heavy-ball momentum and Nesterov’s method are two general momentum methods

that can be used to accelerate convergence for deterministic gradient methods. In

practice, people usually use them even in the stochastic setting. But there is no

convergence guarantee for them. For stochastic gradient algorithms, variance reduction

and random reshuffling are two commonly used methods to improve convergence and

they always have good performance in practice.

3.1 converge theorem for different algorithms

In this section, we will give the convergence theorem for variant algorithms on

different classes of problems. We will cover Alternative Gradient Descent Ascent

(AGDA) for bilinear games, and cover GDA and SGDA on min-max problems with

quasi-strongly monotone and expected co-coercive operators. Then, we will show

the theorems of HGD and SHGD on min-max problems with quasi-strongly convex

and smooth Hamiltonian function H. We also cover some theorems of EG and SEG,

which we will mention a little bit in the random reshuffling section of experimental
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evaluation chapter.

3.1.1 GDA, AGDA, SGDA and SAGDA

Theorem 1 (SGDA with constant step-size)

Assume that operator F is µ-quasi strongly monotone and that F ∈ EC(ℓF ). Choose

ηk = η ≤ 1
2ℓF

for all k. Then, the iterates of SGDA, given by Algorithm 2, satisfy:

E[||xk − x∗||2] ≤ (1 − ηµ)k||x0 − x∗||2 + 2ησ2

µ
, (3.1)

where σ2 is the variance at the optimum.

Proof 3.1.1 Proved by Loizou, et al., 2021 [26].

Theorem 1 indicates that SGDA with constant step-size converges linearly to

a neighbourhood of the exact solution. For deterministic GDA, we can derive the

convergence analysis from the theorem above by using the fact that σ2 = 0 for

deterministic GDA. Then, we get the following theorem.

Theorem 2 (GDA with constant step-size)

Assume that operator F is µ-quasi strongly monotone and is ℓ-co-coercive. Choose

ηk = η ≤ 1
2ℓ

for all k. Then, the iterates of GDA, given by Algorithm 1, satisfy:

E[||xk − x∗||2] ≤ (1 − ηµ)k||x0 − x∗||2.

In theorem 1, it shows that SGDA has a linear convergence but it only reaches a

neighborhood of the solution. That kind of step should be used when the precision is

not important or when computing time is limited. However, there is some situation

that precision of the solution is vital and have plenty of time. Using decreasing

step-size helps to figure out the problem. It can guarantee convergence to the exact

solution x∗.
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In the below theorem, a switching step-size rule describes when to switch a constant

step-size to a decreasing one. The reason to use a constant step-size in the initial

iterations is to maintain the fast linear convergence at the first part. The theorem

shows that after switching step-size, a sublinear convergence to the exact solution can

be seen.

Theorem 3 (SGDA with decreasing step-size)

Assume that operator F is µ-quasi strongly monotone and that F ∈ EC(ℓF ). Choose

decreasing step-size as

ηk =
{︄ 1

2ℓF
fork ≤ 4⌈κ⌉

2k+1
(k+1)2µ

fork > 4⌈κ⌉,
(3.2)

where κ = ℓF

µ
. If k ≥ ⌈κ⌉, then iterates of SGDA, given by Algorithm 2, satisfy:

E[||xk − x∗||2] ≤ σ2

µ2
8
k

+ 16⌈K⌉2

e2k2 ||x) − x∗||2 = O(1
k

), (3.3)

where σ2 is the variance at the optimum, and e is the Euler number.

Proof 3.1.2 Proved by Loizou, et al., 2021 [26].

Moving on to the alternating gradient descent ascent (AGDA), it is very similar

to GDA, and the only difference is it updates the value of xk, yk alternately instead

of simultaneously. It will be used as a base line when checking the performance of

AGDA with negative momentum on bilinear games.

For AGDA and its stochastic version, the inaccuracy of each update point(xk, yk)

is measured through the potential function

Pk = ak + 1
λ

bk, (3.4)

where ak = E[g(xk) − g∗], bk = E[g(xk) − f(xk, yk)], and λ > 0 will be described in

different theorems. Here g(x) = maxyf(x, y), and g∗ = minxg(x).
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Theorem 4 (SAGDA with constant step-size)

Let function f : Rd → R be differentiable with a global minimum x∗. Assume

that f has ℓ-Lipschitz gradient respect to x and y separately. Suppose stochastic

gradients ∇xfi(x, y) and ∇yfi(x, y) are unbiased stochastic estimators of ∇xf(x, y)

and ∇yf(x, y) and have variance bounded by σ2 > 0. Let f(x, y) satisfy the two-

sided PL condition with µ1, µ2. Define Pk := ak + 1
λ
bk = ak + 1

10bk, where ak =

E[g(xk) − g∗], bk = E[g(xk) − f(xk, yk)], g(x) = maxyf(x, y), and g∗ = minxg(x).

Choose step-size as η2 ≤ 1
ℓ

and η1 ≤ µ2
2η2

18ℓ2 Then the iterates of stochastic-AGDA satisfy:

Pk ≤ (1 − 1
2µ1η1)tP0 + δ

where δ = (1−µ2η2)(L+ℓ)η2
1+ℓη2

2+10Lη2
ℓ

10µ1η1
σ2, L = ℓ + ℓ2/µ2

The parameter L here means that function g is L-smooth. µ = min(µ1, µ2)

Proof 3.1.3 Proved by Yang et al, 2020 [44].

Theorem 4 indicates that SAGDA with constant step-size converges linearly to a

neighbourhood of the exact solution. For deterministic AGDA, we can derive a linear

convergence to the exact solution by using the fact that σ2 = 0 in the deterministic

setting. Theorem for AGDA is shown as below:

Theorem 5 (AGDA with constant step-size)

Let function f : Rd → R be differentiable with a global minimum x∗. Assume

that f has ℓ-Lipschitz gradient respect to x and y separately. Let f(x, y) satisfy

the two-sided PL condition with µ1, µ2. Define Pk := ak + 1
λ
bk = ak + 1

10bk, where

ak = E[g(xk)−g∗], bk = E[g(xk)−f(xk, yk)], g(x) = maxyf(x, y), and g∗ = minxg(x).

Choose step-size as η1 = µ2
2

18ℓ3 and η2 = 1
ℓ
. Then the iterates of AGDA satisfy:

Pk ≤ (1 − µ1µ
2
2

36ℓ3 )tP0
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Furthermore, {(xk, yk)}k converges to some saddle point (x∗, y∗), and

||xk − x∗||2 + ||yk − y∗||2 ≤ α(1 − µ1µ
2
2

36ℓ3 )tP0, (3.5)

where α is a constant depending on µ1, µ2, and ℓ

In previous sections, we show that both SGDA, SAGDA, and their deterministic

version converge for SC-SC problems. However, when moving to bilinear games, a

simple example of a convex-concave problem would cause SGDA and GDA not to

converge and even diverge, and causes AGDA to stay bounded. The theorems below

describes more details about this situation.

Below theorem indicates that the iterates of GDA on a bilinear game diverge

linearly for any positive constant step-size η.

Theorem 6 (GDA on bilinear)

For any η > 0, the iterates of GDA on a bilinear game of format 3.23 diverges as

δk ∈ Ω(δ0(1 + η2σ2
max(B))k, (3.6)

where δk = ||xk − x∗||2 + ||yk − y∗||2

Proof 3.1.4 Proved by Gidel et al., 2019 [28].

For AGDA on bilinear games, the theorem below indicates that for some step-size

η, AGDA stays bounded. However, staying bounded is not as good as converging,

even with a very slow rate. The reason we cover this theory is to use this as a base

line to compare AGDA with negative momentum, which has a linear convergence to

the exact solution.
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Theorem 7 (AGDA on bilinear with constant step-size)

For any 0 < η < 2
σmax(B) , the iterates of AGDA on a bilinear game of format 3.23

stay bounded as

δk ∈ O(δ0), (3.7)

where δk = ||xk − x∗||2 + ||yk − y∗||2

Proof 3.1.5 Proved by Zhang et al., 2022 [25].

3.1.2 HGD and SHGD

Hamiltonian gradient descent (HGD) method and its stochastic version (SHGD)

two very interesting gradient methods, which can find the best update direction in

some kinds of problems. In section 2.5, we have shown the convergence trajectories of

HGD and SHGD on some simple bilinear games. In this part, we will give convergence

guarantees for HGD and SHGD.

If the Hamiltonian function of a problem is quasi-strongly convex and expected

smooth, then using some constant step-size can make SHGD converges linearly to

a neighborhood of the exact solution. The neighborhood is related to the gradient

variance of the stochastic Hamiltonian function with σ2 = Ei,j[||∇Hi,j(x∗)||2]

Theorem 8 (SHGD with constant step-size)

For a stochastic game with µH-quasi-strongly convex and LH-expected smooth Hamil-

tonian function, run SHGD with constant step-size ηk = η ∈ (0, 1
2LH

]. Then, the

iterations, given by Algorithm 6, satisfy:

E[||xk − x∗||2] ≤ (1 − ηµH)k||x0 − x∗||2 + 2ησ2

µH

, (3.8)

where σ2 = Ei,j[||∇Hi,j(x∗)||2].
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Proof 3.1.6 Proved by Loizou, et al., 2021 [26].

In this theorem, expected smoothness parameters L is required to use. Gower et

al. show that the expected smoothness constants can take several values according to

the well-defined distributions D selected for sampling in stochastic algorithms.[42, 43]

Take τ -minibatch sampling as an example, the expected smoothness parameters can

be taken of the following values:

L(τ) = n2(τ − 1)
τ(n2 − 1)LH + n2 − τ

τ(n2 − 1)Lmax, (3.9)

where Lmax = max{LHi,j
}n

i,j=1, and LHi,j
is the smoothness parameter for function

Hi,j.

Then, it can be seen that for uniform single-element sampling, we have τ = 1 so

that L = Lmax. The deterministic case can be regarded as using full-batch sampling,

which is τ = n2. Then, for deterministic HGD, the expected smoothness parameter

L = LH , where LH is the smoothness parameter for the Hamiltonian function.

From theorem 8, we can reach deterministic HGD as a special case by using

full-batch sampling τ = n2. Note that for the deterministic case, σ = 0 and L = LH .

Then, we can find that HGD with constant step-size converges linearly to the exact

solution. The theorem for HGD is shown as below:

Theorem 9 (HGD with constant step-size)

For a game with µH-quasi-strongly convex and LH-smooth Hamiltonian function, run

HGD with constant step-size ηk = η ∈ (0, 1
2LH

]. Then, the iterations satisfy:

E[||xk − x∗||2] ≤ (1 − ηµH)k||x0 − x∗||2. (3.10)

Similar to SGDA, and actually similar to all stochastic gradient algorithms, once

with constant step-size, SHGD has a linear convergence but only reaches a neigh-

borhood of the solution. That kind of step should be used when precision is not
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important or computing time is limited. When the requirement of precision surpasses

the restriction of time, using decreasing step-size is a beneficial way to figure out the

problem. In the below theorem, a switching step-size rule is shown and points out

when to switch a constant step-size to a decreasing one. The reason to use the constant

step-size in the initial iterations is to maintain the fast linear convergence in the first

part. The theorem shows that after switching step-size, a sublinear convergence to

the exact solution can be witnessed.

Theorem 10 (SHGD with decreasing step-size)

For a stochastic game with µH-quasi-strongly convex and LH-expected smooth Hamil-

tonian function, run SHGD with decreasing step-size. Let κ = LH

µH
. Choose step-size

as:

ηk =
{︄ 1

2LH
fork ≤ 4⌈κ⌉

2k+1
(k+1)2µH

fork > 4⌈κ⌉.
(3.11)

If k ≥ 4⌈κ⌉, then SHGD given in Algorithm 6 satisfy:

E[||xk − x∗||2] ≤ σ2

µ2
H

8
k

+ 16⌈κ⌉2

e2k2 ||x) − x∗||2 = O(1
k

), (3.12)

Proof 3.1.7 Proved by Loizou, et al., 2021 [26].

Later, we illustrate propositions 1 and 2 to show that both bilinear games and

strongly-monotone quadratic games have quasi-strongly convex, smooth, and quadratic

Hamiltonian functions. In other words, they satisfy the assumptions of theorem 9 to

11. Then those theorems can be directly used in bilinear games or strongly-monotone

quadratic games.

3.1.3 SEG

Here, we simply show two theorems for SEG that will be followed to choose

step-sizes in an experiment in the later "Random Reshuffling" part. One theorem is
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SEG with constant step-size and it can guarantee linear convergence to a neighborhood

of the exact solution. The other is SEG with decresing step-size, which makes the

algorithm converge sublinearly to the exact solution. It needs to emphasize that using

different step-size for extrapolation and update step is very important in the stochastic

setting. Usually, the update step has a smaller step-size than the extrapolation step.

Theorem 11 (SEG with constant step-size)

We assume that for all sampling ξ there exists Lξ > 0 such that operator Fξ(x) is

Lξ-Lipschitz, i.e., for all x ∈ Rd

||Fξ(x) − Fξ(y)|| ≤ Lξ||x − y||. (3.13)

We assume that for all sampling ξ, operator Fξ(x) is (µξ, x∗)-strongly monotone, i.e.,

there exists (possibly negative) µξ ∈ R such that for all x ∈ Rd

< Fξ(x) − Fξ(x∗), x − x∗ >≥ µξ||x − x∗||2 (3.14)

Let η2,ξk
≤ αη1,ξk

, 0 < α ≤ 1/4, and η1,ξk
≤ 1

4|µξk
|+

√
2Lξk

. Let ρ = α
2Eξk

[η1,ξk
µξk

(1µξk
≥0+

4 × 1µξk
<0] is positive. Then the iterates of S-SEG given by Algorithm 4 satisfy:

E[||xK − x∗||2] ≤ (1 − ρ)K ||x0 − x∗||2 + 3α(4α + 1)σAS2

2ρ
, (3.15)

where σ2
AS = Eξ[η2

1,ξ||Fξ(x∗)||2].

Proof 3.1.8 Proved by Gorbunov et al., 2022 [36].

Theorem 12 (SEG with decreasing step-size)

We assume that for all sampling ξ there exists Lξ > 0 such that operator Fξ(x) is

Lξ-Lipschitz, i.e., for all x ∈ Rd

||Fξ(x) − Fξ(y)|| ≤ Lξ||x − y||. (3.16)
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We assume that for all sampling ξ operator Fξ(x) is (µξ, x∗)-strongly monotone, i.e.,

there exists (possibly negative) µξ ∈ R such that for all x ∈ Rd

< Fξ(x) − Fξ(x∗), x − x∗ >≥ µξ||x − x∗||2 (3.17)

Let η2,ξk
= η1,ξk

4 , and η1,ξk
= βkηξk

, where ηξk
= 1

4|µξk
|+

√
2Lξk

, and ρ̃ = 1
8Eξk

[ηξk
µξk

(1µξk
≥0+

4×1µξk
<0. Assume ρ̃ > 0. Then, for the total number of iterations K ≥ 0 and {βk}k≥0

such that

⎧⎪⎪⎨⎪⎪⎩
if K ≤ 1

ρ̃
βk = 1,

if K > 1
ρ̃

and k ≥ k0, βk = 1,

if K > 1
ρ̃

and k ≥ k0, βk = 2
2+ρ̃(k−k0)

(3.18)

where k0 = ⌈K/2⌉, we have that the iterates of S-SEG satisfy

E[||xK-x∗||2] ≤ 32||x0 − x∗||2

ρ̃
exp(− ρ̃K

2 ) + 27σ2
AS

ρ̃2K
(3.19)

Proof 3.1.9 Proved by Gorbunov et al., 2022 [36].

3.2 Accelerated Methods

3.2.1 Heavy-ball moment

The heavy-ball method was proposed by Polyak in 1964. It has a two-step

procedure defined by the following state transitions:

pk = −∇f(xk) + βkpk−1 (3.20 a)

xk+1 = xk + αkpk (3.20 b)

with some initial points x0 and p0, and some positive sequences αk and βk. Let p0 = 0,

we can rewrite the algorithm as the iteration:

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1) (3.20)
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where x−1 = x0. The term (xk − xk−1) is regarded as momentum.

In practice, heavy-ball method requires a lot of tuning, and we only have a

guaranteed acceleration theorem for it on quadratic problems. Despite this, momentum,

especially heavy-ball momentum is used on top of almost all popular optimization

algorithms in machine learning (even in stochastic cases).

Now, we will describe the convergence theorem for heavy-ball method on Quadratic

minimization problems as:

minf(x) = 1
2xT Qx − bT + c (3.21)

where Q is a positive definite matrix with the assumption that µI ⪯ Q ⪯ LI. This

problem has a unique solution given by x∗ = Q−1b. For the heavy-ball method,

instead of looking at ||xk+1 − x∗||2 we examine the value of Lyapunov function

||xk+1 − x∗||2 + ||xk − x∗||2. Theorem 13 shows that heavy-ball method converge at a

linear rate.

Theorem 13 (Heavy-ball Momentum for Quadratic function)

Let function f(x) = 1
2xT Qx − bT + c has positive definite hessian Q with 0 < µ =

λmin(Q) and L = λmax(Q). Choose step-size α = 4
(
√

L+√
µ)2 and momentum parameter

β =
√

L−√
µ√

L+√
µ
. Let x−1 = x0. Then the iterates of the heavy-ball method given by (3.20)

satisfy:

[||xk+1 − x∗||2 + ||xk − x∗||2] ≤ (
√

L − √
µ√

L + √
µ

+)kC[||x1 − x∗||2 + ||x0 − x∗||2] (3.22)

where is a small positive number and C is a constant.

Proof 3.2.1 Proved by Wright and Recht B, 2022 [45].
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3.2.1.1 H(x) of bilinear games and quadratic games

Now, let’s show that Hamiltonian function H(x) of bilinear games and quadratic

games are LH-smooth and µH-quasi-strongly convex quadratic functions in proposition

1 and 2. Stochastic bilinear games are of the below format:

min
x∈Rd1

max
x∈Rd2

1
n

n∑︂
i=1

xT Biy + bT
i x + cT

i y. (3.23)

And stochastic quadratic games are of the format:

min
x∈Rd1

max
x∈Rd2

1
n

n∑︂
i=1

1
2xT Aix + xT Biy − 1

2yT Ciy + aT
i x + bT

i y. (3.24)

Proposition 1 For stochastic bilinear games of the form (3.23), the stochastic Hamil-

tonian function H(x)(2.12) is an LH-smooth and µH-quasi-strongly convex quadratic

function with constants LH = σ2
max(B) and µH = σ2

min(B), where B = 1
n

∑︁n
i=1 Bi and

σmax and σmin are the maximum and minimum non-zero singular values of B.

Proof 3.2.2 Proved by Loizou, et al, 2020 [41].

Proposition 2 For quadratic games of the form (3.24) with Ai and Ci symmetric

with at least on solution x∗, the Hamiltonian function H(x)(2.12) is an LH-smooth

and µH-quasi-strongly convex quadratic function with constants LH = σ2
max(J) and

µH = σ2
min(J), where J = ∇F is that the Jacobian matrix of the game and σmax

and σmin are the maximum and minimum non-zero singular values of J . Here,

A = 1
n

∑︁n
i=1 Ai and C = 1

n

∑︁n
i=1 Ci.

Proof 3.2.3 Proved by Loizou, et al., 2021 [26].

Then, we can use the parameter of Heavy-ball momentum to HGD on billinear or

strongly-monotone quadratic games.
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3.2.1.2 Negative momentum parameter for AGDA.

There is something special when using Heavy-ball momentum of simultaneous/

alternating gradient descent ascent on bilinear games. It is known that both simul-

taneous and alternating gradient descent ascent doesn’t converge for bilinear games.

Also, Heavy-ball momentum with any parameters doesn’t help simultaneous gradient

descent ascent (GDA) to converge. However, it is interesting that some well-chosen

negative momentum term can make alternating gradient descent ascent (AGDA)

converge to the exact solution with a linear rate. In this part, we focus on bilinear

smooth games of the format (3.23).

The theorem below is a choice of step-size and negative momentum parameters

that can guarantee a linear convergence in bilinear games.

Theorem 14 (AGDA with negative momentum)

For stochastic bilinear games of the form (3.23), let √
η1η2 = η ≤ 1

σmax(B) , β1 = −1
2

and β2 = 0. Then the iterates of AGDA satisfy:

∆k+1 ∈ O(max{1
2 , 1 − ησmin(A)

4 }k∆0) (3.25)

where ∆k = ||xk − x∗||22 + ||yk, −y∗||22, B = 1
n

∑︁n
i=1 Bi and σmax and σmin are the

maximum and minimum non-zero singular values of B.

Proof 3.2.4 Proved by Gidel et al., 2019 [28].

3.2.2 Nesterov’s Method

Nesterov’s optimal method (also known as Nesterov’s accelerated gradient method

(AGD)) is defined by the formula:

xk+1 = xk − α∇f(xk + β(xk − xk−1)) + β(xk − xk−1) (3.26)
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The only difference from (3.20) is that the gradient ∇f is evaluated at a point

xk +β(xk −xk−1) after momentum rather than at the original point xk. By introducing

an intermediate sequence {yk} and allowing α and β to have possibly different values

at each iteration, this method can be rewritten as follows:

yk = xk + βk(xk − xk−1) (3.26 a)

xk+1 = yk − αk∇f(yk) (3.26 b)

where x−1 = x0 = y0 ∈ Rd.

Nesterov’s Optimal Method can accelerate for strongly convex and smooth games,

and can also accelerate for convex and smooth games. In this thesis, we only use this

method on Hamiltonian functions that are strongly convex and smooth. So, below we

only mention the theorem for the first case.

The theorem below shows that Accelerated Gradient Descent (AGD) converges

linearly to the exact solution for L-smooth and µ-quasi-strongly convex games.

Theorem 15 (AGD)

Let function f : Rd → R be differentiable with a global minimum x∗. Assume that

f is L-smooth and µ-quasi-strongly convex. Choose step-size α = 1
L

and momentum

parameter β =
√

L−√
µ√

L+√
µ
. Let x−1 = x0. Let x−1 = x0 = y0 ∈ Rd. Then the iterates of

AGD given by (3.26) satisfies:

f(xk) − f(x∗) ≤ (1 −
√︃

µ

L
)k[f(x0) − f(x∗) + µ

2 ||x0 − x∗||2]. (3.27)

Proof 3.2.5 Proved by Wright and Recht B, 2022 [45].

Nesterov’s Method can be used directly on HGD in bilinear games and quadratic

games. As shown in proposition 1 and 2, the Hamiltonian function H(x) is an

LH-smooth and µH-quasi-strongly convex quadratic function for bilinear games and

quadratic games. Then, AGD method can be used on Hamiltonian function with

step-size α = 1
LH

and momentum parameter β =
√

LH−√
µH√

LH+√
µH

.
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3.3 Variance reduction

Variance reduction is a method used in stochastic gradient methods that reduce

the neighborhood when using constant step-size. It is one of the most remarkable

algorithmic breakthroughs in recent years for solving minimization problems of finite

sum format. This method is significantly faster than SGD in practice and theory.

In this section, we will talk about the Loopless Stochastic Variance Reduced

Gradient Descent method (L-SVRG) and the Loopless Stochastic Variance Reduced

Gradient Descent Ascent method (L-SVRGDA). L-SVRG is used for minimization

problems. Thus, it can be used on the Hamiltonian function to solve the min-max

problems of bilinear games and quadratic games, and this method is named L-SVRHG.

The pseudocode for L-SVRH is similar to Algorithm 7, the only difference is to

regard the Hamiltonian function H(z) as the objective function. The pseudocode of

L-SVRGDA is shown as Algorithm 8.

Variance reduction has revolutionized stochastic methods in optimization. This

technique applies to finite sum minimization problem of the form minz = 1
n

∑︁n
i=1 fi(z).

Instead of using a random sample gk = ∇fi(zk) as SGD does, variance reduction

methods use

gzk
= ∇fi(zk) − ∇fi(wk) + ∇f(wk). (3.28)

A good choice of wk decreases the “variance” E[||gk−∇f(zk)||2] compared to E[||∇fi(zk)−

∇f(zk)||2] that SGD has.

In that way, stochastic variance reduction gradient descent has an inner loop to

update zk and an outer loop to update wk after some fixed number of updates of zk.

In order to simplify the inner and outer loops to one loop, the method of Loopless

Stochastic Variance Reduced Gradient Descent (L-SVRG) has been proposed. Its

pseudocode is shown as Algorithm 7.

Since SHGD is doing minimization on the Hamiltonian function, L-SVRG method
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Algorithm 7 Loopless Stochastic Variance Reduced Gradient Descent (L-SVRG)
Input: Step-size η > 0, probability p ∈ (0, 1]. Choose initial points w0 = x0 ∈ Rd.

Distribution D of samples.
1: for k = 0, 1, 2, ..., K do
2: Generate fresh samples i ∼ D, and evaluate gk = ∇fi(wk) − ∇fi(xk) + ∇f(xk)
3: Set xk+1 = xk − ηgk

4: Set wk+1 =
{︄

xk with probability p
wk with probability 1 − p

5: end for
Output: xK

can be directly used on to Hamiltonian function to get the algorithm Loopless Stochas-

tic Variance Reduced Hamiltonian Gradient Descent (L-SVRHG). The pseudocode for

L-SVRH is similar to Algorithm 7, the only difference is to regard the Hamiltonian

function H(z) as the objective function.

Moving from minimization to min-max problems, a similar variance reduction

method can be used on stochastic gradient methods. Take stochastic variance reduction

gradient descent ascent as an example. Instead of using a random sample gk =

(gxk
, gyk

) = (∇xfi(xk), ∇yfi(yk)) as SGDA does, variance reduction methods use

gxk
= ∇xfi(xk, yk) − ∇xfi(wxk

, wyk
) + ∇xf(wxk

, wyk
),

gyk
= ∇yfi(xk, yk) − ∇yfi(wxk

, wyk
) + ∇yf(wxk

, wyk
).

(3.29)

Again, those stochastic variance reduction methods all have an inner loop and an

outer loop. In order to simplify the inner and outer loops to one loop, the method of

Loopless Stochastic Variance Reduced Gradient Descent Ascent (L-SVRGDA) has

been proposed. Its pseudocode is shown as Algorithm 8.

The below theorem shows that L-SVRG with constant step-size converges linearly

to the exact solution for smooth and strongly convex problems.

Theorem 16 (L-SVRG)

Assume f(x) is a L-smooth, µ-strongly convex function. Let step-size η ≤ 1
6L

and
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Algorithm 8 Loopless Stochastic Variance Reduced Gradient Descent Ascent (L-
SVRGDA)
Input: Step-size η > 0, probability p ∈ (0, 1]. Choose initial points Choose initial

points wx0 = x0 ∈ Rd, wy0 = y0 ∈ Rd. Distribution D of samples.
1: for k = 0, 1, 2, ..., K do
2: Generate fresh samples i ∼ D, and let gxk

= ∇xfi(xk, yk) − ∇xfi(wxk
, wyk

) +
∇xf(wxk

, wyk
), and gyk

= ∇yfi(xk, yk) − ∇yfi(wxk
, wyk

) + ∇yf(wxk
, wyk

)
3: Set xk+1 = xk − ηgxk

, and yk+1 = yk − ηgyk

4: Set (wxk+1 , wyk+1) =
{︄

(xk, yk) with probability p
(wxk

, wyk
) with probability 1 − p

5: end for
Output: (xK , yK)

probability p = 1
n
. Then iterates of L-SVRG, given in Algorithm 7, satisfy:

E[Φk] ≤ max{1 − µ

6L
, 1 − 1

2n
}kΦ0, (3.30)

where Φk := ||xk − x∗||2 + Dk, and Dk := 4η2

pn

∑︁n
i=1 ||i(wk) − ∇fi(x∗)||2.

Proof 3.3.1 Proved by Kovalev et al., 2020 [46].

In proposition 1 and 2, we have shown that the Hamiltonian function of bilinear

games and strongly-monotone quadratic games are smooth, quasi-strongly convex,

and quadratic functions. So, we can use L-SVRG on the Hamiltonian function with

constant step-size to get a linear convergence to the exact solution. The algorithm is

named L-SVRHG.

Now, we will illustrate a theorem of Loopless Stochastic Variance Reduced Gradient

Descent Ascent method (L-SVRGDA) on quasi-strongly monotone functions for min-

max problem. The theorem denotes that L-SVRGDA can converge linearly to the

exact solution with constant step-sizes.

Theorem 17 (L-SVRGDA in the quasi-strongly monotone case)

Let operator F be µ-quasi-strongly monotone. Assume that operators Fi are averaged

star-cocoercivity with parameter ℓ̂, and assume that there is a unique solution for the
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problem. Let step-size satisfy 0 < η ≤ 1
6ℓ̂

. Then for all k ≥ 0 the iterates produced by

L-SVRGDA, given by Algorithm 8, satisfy:

E[||xk − x∗||2] ≤ (1 − min{ηµ,
p

2})kV0, (3.31)

where V0 = ||xk − x∗||2 + 4η2σ2
0

p
, and σ2

0 := 1
n

∑︁n
i=1 ||Fi(xk) − Fi(x∗)||2.

Proof 3.3.2 Proved by Beznosikov et al., 2022 [47].

3.4 Random Reshuffling

For stochastic gradient methods, we can get the unbiased estimator of the gradient

by uniformly sampling for index i or by following some distribution. In practice, there

is another way named random reshuffling (RR) which is normally used and usually

has good results. RR is an algorithm for finite-sum functions that utilizes iterative

gradient descent steps in conjunction with data reshuffling. It uniformly samples

a random permutation of [n] at the start of every epoch, and processes the data

points within that epoch according to the order specified by the permutation. The

pseudocode for using RR on any stochastic gradient methods is shown as Algorithm 9.

Usually, RR has better performance and quicker convergence than using random

sampling. However, the empirical benefits of RR are hard to get theoretical proof.

Here, we will just demonstrate two recent related theorems for RR with constant

step-size. While in a later chapter, we will use RR in my experiments with some

decreasing step-sizes. Details for decreasing step-sizes and experiments can be found

in the next chapter.

THe first theorem is using random reshuffling on gradient descent (GD-RR) for

minimizing an objective function f = ∑︁n
i=1 fi of finite sum format. By using constant
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Algorithm 9 Stochastic Gradient Method with Random Reshuffling (RR)
Input: Number of epochs K, Step-size η > 0, and initial points z0. Distribution D of

samples. Select a stochastic gradient method.
1: Initialize z1

0 = z0
2: for k = 0, 1, 2, ..., K do
3: RR: Sample permutation τk ∼Uniform(Sn)
4: for i = 1, 2, ..., n do
5: Use sample τk(i), and evaluate gτk(i)(zk

i−1) as the update direction for the
selected gradient method.

6: Set zk
i = zk

i−1 − ηgτk(i)(zk
i−1)

7: end for
8: Set zk+1

0 = zk
n

9: end for
Output: zK

n

step-size, the iterates converge linearly to a neighborhood of the exact solution.

Theorem 18 (GD-RR with constant step-size for minimization)

Suppose that the functions f1, ..., fn are µ-strongly convex and both objective function

f = ∑︁n
i=1 fi and functions f1, ..., fn are all L-smooth. Assume that f is lower bounded

by some f∗ ∈ R. Then for GD-RR with a constant step-size η ≤ 1
L

, the iterates satisfy:

E[||xk − x∗||2] ≤ (1 − ηµ)k||x0 − x∗||2 +
2ησ2

Shuffle

µ
, (3.32)

where σ2
Shuffle := maxi=i,...n−1[ 1

η
E[Dfπi

(xi
∗, x∗)] for a random permutation π of {1, 2, ..., n},

and xi
∗ := x∗ − η − ∑︁i−1

j=0 ∇fπj
(x∗) for i = 1, ..., n − 1. Here for any i, the quantity

Dfi
(x, y) := fi(x) − fi(y)− < ∇fi(x), x − y > is the Bregman divergence between x

and y associated with fi.

Proof 3.4.1 Proved by Mishchenko et al., 2020 [48].

Then, when the Hamiltonian function satisfies the assumption of the above theorem,

we can use GD-RR on the Hamiltonian function, named HGD-RR, and obtain a linear

convergence to a neighborhood.
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The second theorem is for using random reshuffling on gradient descent ascend

(GDA-RR) on min-max problems. Below is a convergence theorem of GDA-RR for

each epoch.

Theorem 19 (GDA-RR with constant step-size)

Assume objective function f has µ-strongly monotone operator F (z) = 1
n

∑︁n
i=1 Fi(z),

where each Fi is ι-Lipschitz, but not necessarily monotone. Let z∗ denotes the unique

root of F . Select the step-size as α ≤ min{µ/5nι2, 2log(||F (z0||n1/2K/µ)/}. Here,

K > 0 is the number of epochs that need to run. Then, after the last epoch by running

GDA-RR, the result satisfy:

E[||ZK
n − Z8||2] ≤ 2e−K/5κ2||z0 − z∗||2 + 2µ2 + 8κ2σ2log3(||F (z0)||n1/2K/µ)

µ2nK2 , (3.33)

where zK
n is the points in nth iteration of Kth epoch, κ = ι/mu is the condition number

and σ2 = 1
n

∑︁n
i=1 ||Fi(z∗)||2 is the gradient variance at the optimum.

Proof 3.4.2 Proved by Das et al., 2022 [49].
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Chapter 4

Experimental Evaluation

4.1 Evaluation of Accelerate Methods

In this chapter, we will show the results of HGD and GDA or AGDA with

or without accelerate methods on bilinear games and strongly-monotone quadratic

games (which is an example of SC-SC). Chosen method and parameters are described

separately for each experiment.

In before chapter, we have shown that GDA or GDA with momentum doesn’t

converge for bilinear games, while AGDA with negative momentum converges for

bilinear games. So, in this part, we will give results and some comparison of numerical

experiments using HGD, HGD with momentum, AGDA, and AGDA with negative

momentum for numerical examples of bilinear games of the below format:

min
x∈Rd

1

max
x∈Rd

2

1
n

n∑︂
i=1

xT Biy + bT
i x + cT

i y, (4.1)

where [bi]k, [ci]k ∼ N(0, 1/n), µ2
BI ⪯ BT

i Bi ⪯ L2
BI, and I is the identity matrix. The

sampling method of Bi is the same as (4.2), which will be described below.

We will also cover HGD, HGD with momentum, GDA, GDA with momentum,

AGDA, and AGDA with momentum on numerical experiments of strongly-monotone

quadratic games of the format:
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min
x∈Rd

1

max
x∈Rd

2

1
n

n∑︂
i=1

1
2xT Aix + xT Biy − 1

2yT Ciy + aT
i x + bT

i y, (4.2)

where [ai]k, [bi]k ∼ N(0, 1/n). To make the game be strongly-monotone and co-

coercive, matrices are sampled such that µA ⪯ Ai ⪯ LAI, µ2
BI ⪯ BT

i Bi ⪯ L2
BI, and

µCI ⪯ Ci ⪯ LCI, where I is the identity matrix.

The sampling method of matrices A, B and C comes from Loizou et al.[26] The

sampling of the matrices Ai (resp. Ci) is based on the generation of a random

orthogonal matrix Qi (resp. Q′
i), and subsequently sampling a random diagonal

matrix Di (resp. D′
i) where the elements on the diagonal are sampled uniformly

in [µA, LA] (resp. [µC , LC ]), such that at least one of the matrices has a minimum

eigenvalue equal to µA (resp. µC) and one matrix has a maximum eigenvalue equal

to LA (resp. LC). Finally, the matrices are constructed by computing Ai = QiDiQ
⊤
i

(resp. Ci = Q′
iD

′
iQ

′⊤
i ). This ensures that the matrices Ai and Ci for all i ∈ [n], are

symmetric and positively definite. The sampling of matrices Bi follows a similar

fashion with the diagonal matrix Di to lie between [µB, LB]. Note that matrices Bi

are not necessarily symmetric.

4.1.1 HGD

In proposition 1, we have shown that the Hamiltonian function of bilinear games is

a smooth and quasi-strongly convex quadratic function. Then, theorem 9 of HGD with

constant step size can be used in this experiment. Use constant step-size ηk = 1
2LH

for

HGD, where LH is the smoothness parameter of the Hamiltonian function and can be

calculated according to proposition 1 as LH = σ2
max(B).

Also, theorem 13 and 15 of Heavy-ball momentum and Nesterov’s optimal method

can be directly used on HGD. We run HGD, HGD with heavy-ball momentum, and

HGD with Nesterov’s optimal method of 100 iterations on bilinear games of format
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(4.1) with µB = 1, LB = 10, and compare their performance in Figure 4-1.

Figure 4-1. HGD on Bilinear with 1 ⪯ BT
i Bi ⪯ 102. HGD uses constant steps as theorem

9;[26] HGD with heavy-ball momentum, and HGD with Nesterov’s optimal method choose
parameters as theorem 13 and 15.[45]

From the figure, it can be seen that all those algorithms converge linearly to the

exact solution by using constant step-sizes. When combining HGD with Heavy-ball

momentum or Nesterov’s optimal method, the convergence becomes faster than purely

using HGD. That matches the theorem and indicates that both Heavy-ball momentum

and Nesterov’s optimal method can accelerate the convergence of HGD on smooth

bilinear games.

Now, let’s move on to strongly-monotone quadratic games. In proposition 2, we

have shown that the Hamiltonian function of a quadratic game is a smooth and

quasi-strongly convex quadratic function. Then, theorem 9 of HGD with constant

step-size can be used in this experiment. Use constant step-size ηk = 1
2LH

for HGD,

where LH is the smoothness parameter of the Hamiltonian function. The smoothness

parameter LH can be calculated according to proposition 2 as LH = λmax(JT J), where

J is the Jacobian matrix of the game.

Also, theorem 13 and 15 of Heavy-ball momentum and Nesterov’s optimal method

can be directly used on HGD. We run HGD, HGD with Heavy-ball momentum,

and HGD with Nesterov’s optimal method of 100 iterations on strongly-monotone
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quadratic games of format (4.2) with µA = µB = µC = 1, and LA = LB = LC = 10,

and compare their performance in Figure 4-2.

Figure 4-2. HGD on Quadratic with µA = µB = µC = 1, and LA = LB = LC = 1.
HGD uses constant steps as theorem 9;[26] HGD with heavy-ball momentum, and HGD
with Nesterov’s optimal method choose parameters as theorem 13 and 15.[45]

From the figure, it can be seen that all those algorithms converge linearly to

the exact solution by using constant step-sizes. When combining HGD with Heavy-

ball momentum or Nesterov’s optimal method, the convergence becomes faster than

purely using HGD. That matches the theorem and indicates that both Heavy-ball

momentum and Nesterov’s optimal method can accelerate the convergence of HGD

on strongly-monotone quadratic games.

4.1.2 GDA or AGDA

For the bilinear game µB = 1, LB = 2, we run AGDA, and AGDA with negative

momentum. The step-sizes and momentum parameters are chosen according to the

theorems that we mentioned in before part. For AGDA, use step-size η = 2
σmax(B)

according to theorem 7, where σmax(B) is the maximum singular value of B =
1
n

∑︁n
i=1 Bi. For AGDA with negative momentum, choose step-size as η1 = η2 = 1

σmax(B) ,

and choose momentum parameters as β1 = −1
2 , β2 = 0 as Theorem 14 described. Both
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methods run for 100 iterations. The results are shown in Figure 4-3.

Figure 4-3. AGDA for Bilinear with 1 ⪯ BT
i Bi ⪯ 22. AGDA with a constant step as

theorem 7;[25] AGDA with negative momentum as theorem 14.[28]

It can be seen that AGDA stays bounded, while AGDA with negative momentum

converges linearly to the exact solution. It is very interesting and matches the theorem

that adding a well-chosen negative momentum terms on AGDA for bilinear games

changes the situation from not converging (only bounded) to converging.

For strongly-monotone quadratic games, there is no theorem guarantee that Heavy-

ball momentum will help to improve the convergence rate. So, in this part, we

merely try some values of heavy-ball momentum parameters on GDA and AGDA

separately to see what will happen. The experiments we use are of format (4.2) with

µA = µB = µC = 1, and LA = LB = LC = 10.

Following theorem 2, choose step-size η = 1
2ℓ

for GDA, where ℓ means that operator

F is ℓ-co-coercive. To be specific, for Lipschitz operator F , strongly monotone can

imply co-coercive operator. Also, a strongly monotone operator is equivalent to

SC-SC objective function. Our strongly monotone quadratic game is SC-SC with

Lipschitz operator. The values of the co-coercive parameters ℓ is computed using
1
ℓ

= minλ∈Sp(J)R( 1
λ
).[26],[50] Here Sp(J) denotes the spectrum of the Jacobian matrix

J for objective function f(x, y) and R(·) denotes the real part of a complex number.
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Thus, our experiment has a co-coercive operator and uses η = 1
2ℓ

for GDA.

Then, with this fixed step, we try different values of heavy-ball momentum parame-

ters and run 100 iterations. We find that most of the values, both negative and positive,

may slow the convergence. Only very small positive momentum values don’t damage

the convergence, shown in Figure 4-4. Unfortunately, we don’t obtain acceleration

when using Heavy-ball momentum on GDA on strongly-monotone quadratic games.

Figure 4-4. GDA on Quadratic with µA =
µB = µC = 1, and LA = LB = LC = 10.
All situations (with or without momentum)
use step-size as theorem 2.[26]

Figure 4-5. GDA on Quadratic with µA =
µC = 1, LA = LC = 10, and Bi = 0. All
situations (with or without momentum) use
step-size as theorem 2.[26]

We try one more experiment of format (4.2) with µA = µC = 1,LA = LC = 10,

and all Bi = 0. By letting all Bi = 0, the quadratic game gets rid of the interaction

term xT By. Again, we follow the theorem to choose a constant step-size as η = 1
2ℓ

for GDA, where ℓ means that operator F is ℓ-co-coercive. Then, with this fixed step,

we try different values of heavy-ball momentum parameters and run 100 iterations.

Results are shown in Figure 4-5.

We find that Heavy-ball momentum with positive parameters helps to improve

the convergence for GDA on quadratic games without interaction term xT By. And

among all parameters we try, Heavy-ball momentum with the value of 0.7 has the

fastest convergence.
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We think the difference in performance of GDA with Heavy-ball momentum on

those two quadratic games is caused by the interaction term. When without interaction

term, the game can be separated into two independent minimization problems on

two independent quadratic functions respected to x or y (inverse the function sign

respected to y to change maximizing to minimizing). And we know that Heavy-ball

momentum can help to improve the convergence of Gradient Descent on quadratics

functions. So, for those kinds of problems, Heavy-ball momentum can improve the

convergence. But when there is an interaction term, we cannot separate the min-max

problem into two independent optimization problems. So, it becomes a different case,

and Heavy-ball momentum may not accelerate them.

We also want to have a look at the performance of AGDA combing with Heavy-ball

momentum on strongly-monotone quadratic games. Since our example is SC-SC with

parameter µ1, µ2, then it implies that the experiment follows a two-sided PL condition

with µ1 and µ2. Then, we can choose the step-size following theorem 5 as η1 = µ2
2

18ℓ3 ,

and η2 = 1
ℓ
, here ℓ means Lipschitz gradient with parameter ℓ > 0. We try different

values of heavy-ball momentum parameters on strongly-monotone quadratic games

with µA = µB = µC = 1, and LA = LB = LC = 10. All situations run for 100

iterations. Results are shown in Figure 4-6. It can be seen that with some well-chosen

momentum parameters, it indeed accelerates the convergence of AGDA. Among all

the parameters we choose, the momentum parameter of 0.6 seems to accelerate AGDA

method the most.

4.2 Evaluations for Variance Reduction

In this part, we move on to checking the performance of variance reduction on

stochastic gradient methods. Like the before section, we contain experiments of bilinear
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Figure 4-6. AGDA on Quadratic with µA = µB = µC = 1, and LA = LB = LC = 10.
All situations (with or without momentum) use step-size as theorem 5.[44]

games and strongly-monotone quadratic games. On bilinear games, we compare the

performance between SHGD and L-SVRHG. On strongly-monotone quadratic games,

we compare the performance between SHGD and L-SVRHG, and between SGDA and

L-SVRGDA. Parameters selection will be described respectively.

4.2.1 SHG and L-SVRHG

First, we move on to the stochastic version of bilinear games and run an experiment

in format (4.1) with µB = 0, LB = 2 to check the performance of SHGD and L-SVRHG.

In proposition 1, we have shown that the Hamiltonian function of a bilinear game

is LH-smooth, µH-quasi-strongly convex, and quadratic. Then for SHGD, we use

decreasing step-sizes according to theorem 10 as

ηk =
{︄ 1

2L for k ≤ 4⌈κ⌉
2k+1

(k+1)2µ
for k > 4⌈κ⌉.

(4.3)

Here, κ = L
µH

and L is the expected smoothness parameter. For single element

sampling, L = Lmax = max{1,...,n2}{LHi,j
} is the maximum smoothness constant of

the functions Hi,j = 1
2 < Fi(z), Fj(z) >.

According to theorem 16, we choose constant step-size η = 1
6LH

with p = 1
n

for
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L-SVRHG. we run both SHGD and L-SVRHG for 5 different runs of 5000 iterations.

The results are shown in Figure 4-7. Form now on, the horizontal axis denotes the

number of samples passed by the algorithm. The line is the average performance of 5

runs for each algorithm. The lower and upper boundary of each shade around the line

represents the best and worst cases of convergence in our experiments.

Figure 4-7. SHGD and L-SVRHG for Bilinear with 0 ⪯ BT
i Bi ⪯ 22. Use decreasing

step-size for SHGD as theorem 10;[26] Use constant step-size for L-SVRHG as theorem
16.[46]

From Figure 4-7 we can see that SHGD with decreasing step-size first has a linear

convergence which is because in the initial iterations constant and big step-size is

used. Then it has a sublinear convergence to the exact solution after switching to

using decreasing step-size. For L-SVRHG with constant step-size, although it shows

a slower convergence than SHGD in the initial steps, it has a linear convergence to

the exact solution in total. Thus, the variance reduction method not only helps to

improve the convergence in total but also vanish the variance, which is the bound of

convergence.

Now, we move on to the stochastic version of strongly-monotone quadratic games

and run an experiment in format (4.2) with µA = µB = µC = 0.2, and LA = LB =

LC = 1 to check the performance of SHGD and L-SVRHG.

In proposition 2, we have shown that the Hamiltonian function of a strongly-

52



monotone quadratic game is LH-smooth, µH-quasi-strongly convex, and quadratic.

Then for SHGD, we use decreasing step-sizes according to theorem 10 as

ηk =
{︄ 1

2L for k ≤ 4⌈κ⌉
2k+1

(k+1)2µ
for k > 4⌈κ⌉,

(4.4)

where κ = L
µH

and L is the expected smoothness parameter. For single element

sampling, L = Lmax = max{1,...,n2}{LHi,j
} is the maximum smoothness constant of

the functions Hi,j = 1
2 < Fi(z), Fj(z) >.

Also, it can use the parameters in theorem 16 of L-SVRG on its Hamiltonian

function to get better performance. That is choosing constant step-size η = 1
6LH

with

p = 1
n

for L-SVRHG. We run both SHGD and L-SVRHG for 5 different runs of 5000

iterations. Results are shown in Figure 4-8.

Figure 4-8. SHGD and L-SVRHG on Quadratic with µA = µB = µC = 0.2, and
LA = LB = LC = 1. Use decreasing step-size for SHGD as theorem 10;[26] Use constant
step-size for L-SVRHG as theorem 16.[46]

Again, we can see that SHGD with decreasing step-size first has a linear convergence

which is because in the initial iterations constant and big step-size are used. Then it has

a sublinear convergence to the exact solution after switching to using decreasing step-

size. For L-SVRHG with constant step-size, although it shows a slower convergence

than SHGD in the initial steps, it has a linear convergence to the exact solution in
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total. Thus, the variance reduction method indeed helps to improve the convergence.

4.2.2 SGDA and L-SVRGDA

We know that SGDA or GDA doesn’t converge for bilinear games, so in this part,

we only run SGDA and L-SVRGDA on strongly-monotone quadratic games.

For SGDA, we select decreasing step-size according to theorem 3 as

ηk =
{︄ 1

2ℓF
for k ≤ 4⌈κ⌉

2k+1
(k+1)2µ

for k > 4⌈κ⌉,
(4.5)

where κ = ℓF

µ
and ℓF means that F ∈ EC(ℓF ). For single-element sampling, ℓF =

ℓmax = max{ℓi}n
i=1, and the values of the co-coercive parameters ℓi for all i ∈ [n] are

computed using 1
ℓi

= minλ∈Sp(Ji)R( 1
λ
).[26],[50] Here Sp(Ji) denotes the spectrum of the

Jacobian matrix Ji for all i ∈ [n] and R(·) denotes the real part of a complex number.

For L-SVRGDA, theorem 17 indicates that we can use step-size as η = 1
6ℓ̂

. Here ℓ̂

means that operator Fi is averaged star-co-coercivity with parameter ℓ̂. We know that

if Fi is ℓi-co-coercive for all i ∈ [n], then we can derive averaged star-co-coercivity

with parameter ℓ̂ ≤ ℓF = ℓmax = max{ℓi}n
i=1. So, in the experiment, we use step-size

η = 1
6ℓmax

, and probability p = 1
n
.

We use a strongly-monotone quadratic game of format (4.2) with µA = µB = µC =

0.5, and LA = LB = LC = 1 as an experiment. We run both SGDA and L-SVRGDA

for 5 runs of 2000 iterations. The results are shown in Figure 4-9.

From the plot, we can see that SGDA with decreasing step-size first has a linearly

convergence which is because in the initial iterations constant and big step-size are

used. Then it has a sublinear convergence to the exact solution after switching to

using decreasing step-size. For L-SVRGDA with constant step-size, although it shows

a slower convergence than SGDA in the initial steps, it has a linear convergence to

the exact solution in total. Thus, the variance reduction method not only helps to
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Figure 4-9. SGDA and L-SVRGDA on Quadratic with µA = µB = µC = 0.5, and
LA = LB = LC = 1. Use decreasing step-size for SGDA as theorem 3;[26] Use constant
step-size for L-SVRGDA as theorem 17.[47]

improve the convergence in total but also vanishes the neighborhood when using a

constant step-size.

4.3 Random Reshuffling

In this part, we compare the results between single uniform sampling and random

reshuffling on gradient methods. For bilinear games, we run SHGD and HGD-

RR. For strongly-monotone quadratic games, we compare SHGD and Hamiltonian

Gradient Descent with Random Reshuffling (HGD-RR), SGDA and Gradient Descent

Ascent with Random Reshuffling (GDA-RR), and between S-SEG and Same-sample

Exagradient with Random Reshuffling (S-EG-RR).

4.3.1 SHGD and HGD-RR

We take two bilinear game examples of format (4.1) with parameters µB =

0.2, LB = 1, and µB = 0.5, LB = 1 respectively.
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For both SHGD and HGD-RR, we both use decreasing step-size as (3.11) as

ηk =
{︄ 1

2LH
for k ≤ 4⌈κ⌉

2k+1
(k+1)2µH

for k > 4⌈κ⌉.
(4.6)

Here, κ = L
µH

and L is the expected smoothness parameter. For single element

sampling, L = Lmax = max{1,...,n2}{LHi,j
} is the maximum smoothness constant of

the functions Hi,j.

Figure 4-10. SHGD and HGD-RR for Bi-
linear with 0.22 ⪯ BT

i Bi ⪯ 1. Use decreas-
ing step-size according to theorem 10 for
SHGD;[26] For better comparison, HGD-RR
use the same decreasing step as SHGD does.

Figure 4-11. SHGD and HGD-RR for Bi-
linear with 0.52 ⪯ BT

i Bi ⪯ 1. Use decreas-
ing step-size according to theorem 10 for
SHGD;[26] For better comparison, HGD-RR
use the same decreasing step as SHGD does.

We run 5 times of 100000 iterations for SHGD and HGD-RR of different problems.

The results of those two bilinear games can be seen in Figures 4-10 and 4-11. It can

be witnessed that in both plots, SHGD convergence sublinearly to the exact solution,

and HGD-RR converges faster with vibration. Thus, we say that random reshuffling

help to improve the convergence for using SHGD with decreasing step-size on bilinear

games.

Then, we take two strongly-monotone quadratic games of format (4.2) with pa-

rameter µA = µB = µC = 0.2, LA = LB = LC = 1, and µA = µB = µC = 0.5,

LA = LB = LC = 1, respectively.
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Again, for both SHGD and HGD-RR, we use decreasing step-size as (3.11) as

ηk =
{︄ 1

2LH
for k ≤ 4⌈κ⌉

2k+1
(k+1)2µH

for k > 4⌈κ⌉.
(4.7)

Here, κ = L
µH

and L is the expected smoothness parameter. For single element

sampling, L = Lmax = max{1,...,n2}{LHi,j
} is the maximum smoothness constant of

the functions Hi,j.

Figure 4-12. SHGD and HGD-RR on
Quadratic with µA = µB = µC = 0.2, and
LA = LB = LC = 1. Use decreasing step-
size according to theorem 10 for SHGD;[4]

For better comparison, HGD-RR use the
same decreasing step as SHGD does.

Figure 4-13. SHGD and HGD-RR on
Quadratic with µA = µB = µC = 0.5, and
LA = LB = LC = 1. Use decreasing step-
size according to theorem 10 for SHGD;[4]

For better comparison, HGD-RR use the
same decreasing step as SHGD does.

We run 5 times of 100000 iterations for SHGD and HGD-RR of different problems.

The results of those two strongly-monotone quadratic games can be seen in Figure 4-12

and 4-13. It can be witnessed that in both plots, SHGD convergence sublinearly to

the exact solution, and HGD-RR converges faster with vibration. Random reshuffling

help to improve the convergence for using SHGD with decreasing step-size on strongly-

monotone quadratic games. Since our experiment is an example of SC-SC problems,

we guess that for SC-SC problems, random reshuffling may also be a method that can

help SHGD get a faster convergence rate.
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4.3.2 SGDA and GDA-RR

We know that SGDA or GDA doesn’t converge for bilinear games, so in this part,

we only run SGDA and GDA-RR on strongly-monotone quadratic games.

We take two strongly-monotone quadratic games of format (4.2) with parameter

µA = µB = µC = 0.2, LA = LB = LC = 1, and µA = µB = µC = 0.5, LA = LB =

LC = 1, respectively.

For SGDA, we select decreasing step-size according to theorem 3 as

ηk =
{︄ 1

2ℓF
fork ≤ 4⌈κ⌉

2k+1
(k+1)2µ

for k > 4⌈κ⌉,
(4.8)

where κ = ℓF

µ
and ℓF means that operator F ∈ EC(lξ). For single-element sampling,

ℓF = ℓmax = max{ℓi}n
i=1, and the values of the co-coercive parameters ℓi for all i ∈ [n]

are computed using 1
ℓi

= minλ∈Sp(Ji)R( 1
λ
).[26],[50] Here Sp(Ji) denotes the spectrum

of the Jacobian matrix Ji for all i ∈ [n] and R(·) denotes the real part of a complex

number. We also use the same decreasing step-size for GDA-RR.

Figure 4-14. SGDA and GDA-RR on
Quadratic with µA = µB = µC = 0.2, and
LA = LB = LC = 1. Use decreasing step-
size according to theorem 3 for SGDA;[26]

For better comparison, GDA-RR use the
same decreasing step as SGDA does.

Figure 4-15. SGDA and GDA-RR on
Quadratic with µA = µB = µC = 0.5, and
LA = LB = LC = 1. Use decreasing step-
size according to theorem 3 for SGDA;[26]

For better comparison, GDA-RR use the
same decreasing step as SGDA does.

We run 5 times of 5000 iterations for SGDA and GDA-RR of different problems.
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Results of those two strongly-monotone quadratic games can be seen in Figures 4-14

and 4-15. It can be witnessed that in both plots, SGDA convergence sublinearly to

the exact solution, and GDA-RR converges faster with vibration. Thus, we say that

random reshuffling help to improve the convergence for using SGDA with decreasing

step-size on strongly-monotone quadratic games. Since our experiment is an example

of SC-SC problems, we guess that for SC-SC problems, random reshuffling may also

be a method that can help SGDA get a faster convergence rate.

4.3.3 S-SEG and S-EG-RR

We take a strongly-monotone quadratic game of format (4.2) with parameter

µA = µB = µC = 0.2, and LA = LB = LC = 1. Parameter selections are shown below.

We follow Theorem 11 to choose a constant step-size for S-SEG. That is, using

η1 = 1
6Lξ

, η2 = η1
4 for constant step-size. We also use the same constant step-size for

S-EG-RR to compare.

For S-SEG with decreasing step-size, by following theorem 12, let η2,ξk
= η1,ξk

4 ,

and η1,ξk
= βkηξk

, where ηξk
= 1

4|µξk
|+

√
2Lξk

, and ρ̃ = 1
8Eξk

[ηξk
µξk

(1µξk
≥0 + 4 × 1µξk

<0)].

Assume ρ̃ > 0. Then, for all total number of iterations K ≥ 0 and {βk}k≥0 such that

⎧⎪⎪⎨⎪⎪⎩
if K ≤ 1

ρ̃
βk = 1,

if K > 1
ρ̃

and k ≥ k0, βk = 1,

if K > 1
ρ̃

and k ≥ k0, βk = 2
2+ρ̃(k−k0)

(4.9)

where k0 = ⌈K/2⌉. The total iteration number we chose is K = 1000. We also use the

same decreasing step-size for S-EG-RR to compare. All methods on different games

are run 5 times of K = 1000 iterations. Results are shown in Figure 4-16 and 4-17.

Figure 4-16 shows the results for running S-SEG and S-EG-RR with constant or

decreasing step-sizes on a strongly-monotone quadratic game with µA = µB = µC = 0

and LA = LB = LC = 2. Figure 4-17 shows the results for running S-SEG and S-EG-
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Figure 4-16. SEG and S-EG-RR on
Quadratic with µA = µB = µC = 0, and
LA = LB = LC = 2. Use constant or
decreasing step-size for S-SEG according
to theorem 11 and 12 respectively.[36] For
better comparison, S-EG-RR use the same
decreasing step as S-SEG does.

Figure 4-17. SEG and S-EG-RR on
Quadratic with µA = µB = µC = 0.2,
and LA = LB = LC = 1. Use constant
or decreasing step-size for S-SEG according
to theorem 11 and 12 respectively.[36] For
better comparison, S-EG-RR use the same
decreasing step as S-SEG does.

RR with constant or decreasing step-sizes on a strongly-monotone quadratic game

with µA = µB = µC = 0.2 and LA = LB = LC = 1. It can be seen that with constant

step-size, both S-SEG and S-EG-RR converge linearly to a neighborhood of the exact

solution. The difference is that S-EG-RR has a smaller neighbor compared with

S-SEG, and S-EG-RR is with some vibration when reaching the neighborhood. For

decreasing step-size, both S-SEG and S-EG-RR first have a linear convergence because

of the constant step-size in the initial iterations. Then they experience a sublinear

convergence to the exact solution. Again, S-EG-RR shows a faster convergence with

vibration, compared with S-SEG.

In our experiment, random reshuffling improves the convergence for S-SEG on

the strongly-monotone quadratic game with either constant step-size or decreasing

step-size. Since our experiment is an example of SC-SC problems, we guess that

for SC-SC problems, random reshuffling may be helpful for S-SEG to get a faster

convergence rate.
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Conclusions

For the deterministic gradient methods of min-max problems, we can see from

our experiment part that using Heavy-ball momentum or Nesterov’s optimal method

on HGD on bilinear games or quadratic games helps to get faster convergence. For

bilinear games, using some well-selected negative momentum makes AGDA converge

linearly to the exact solution. When moving to quadratic games with interaction

terms, we don’t find any Heavy-ball momentum parameters that can accelerate GDA.

But for AGDA on quadratic games with or without interaction terms, there exist some

heavy-ball momentum parameters that can fasten the convergence. So, it is worth to

further studying and analyzing AGDA with accelerated method on quadratic games,

and, in general, on some strongly convex-strongly concave games.

For the stochastic gradient methods of min-max problems, loopless variance

reduction methods are very helpful. Using L-SVRHG on bilinear games or quadratic

games both have linear convergence to the exact solution. Using L-SVRGDA on

quadratic games also shows a linear convergence to the exact solution. the loopless

variance reduction methods help to vanish the neighborhood when using the constant

step sizes for stochastic gradient methods. So, variance reduction seems to be a very

sufficient method for stochastic gradient methods.

Random reshuffling is a method that is also helpful to improve the convergence

of stochastic gradient methods on min-max problems. From our experiments, the

stochastic gradient method with RR converges faster than the same stochastic gradient

method with single uniform sampling with the same decreasing step-sizes. Improve-
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ments can be seen in HGD-RR on bilinear games and quadratic games, GDA-RR

on quadratic games, and S-EG-RR on quadratic games. So, it is worth to further

studying and analyzing the method of random reshuffling on various stochastic gradient

methods on different problems.

In summary, the accelerated method, variance reduction method, and random

reshuffling are all useful and sufficient methods that can improve convergence for some

deterministic or stochastic problems. Further study and analysis of their performance

are meaningful and crucial.
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