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Abstract

Automatic Speech Recognition (ASR) functionality, the automatic translation
of speech into text, is on the rise today and is required for various use-cases,
scenarios, and applications. An ASR engine by itself faces difficulties when
encountering live input of audio data, regardless of how sophisticated and
advanced it may be. That is especially true, under the circumstances such as a
noisy ambient environment, multiple speakers, or faulty microphones. These

kinds of challenges characterize a realistic scenario for an ASR system.

ASR functionality continues to evolve toward more comprehensive End-
to-End (E2E) solutions. E2E solution development focuses on three significant
characteristics. The solution has to be robust enough to show endurance
against external interferences. Also, it has to maintain flexibility, so it can
easily extend in expectation of adapting to new scenarios or in order to achieve
better performance. Lastly, we expect the solution to be modular enough to fit
into new applications conveniently. Such an E2E ASR solution may include
several additional micro-modules of speech enhancements besides the ASR
engine, which is very complicated by itself. Adding these micro-modules can
enhance the robustness and improve the overall system’s performance. Ex-
amples of such possible micro-modules include noise cancellation and speech
separation, multi-microphone arrays, and adaptive beamformer(s). Being a

comprehensive solution built of numerous micro-modules is technologically
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challenging to implement and challenging to integrate into resource-limited
mobile systems. By offloading the complex computations to a server on the
cloud, the system can fit more easily in less capable computing devices. Never-
theless, that compute offloading comes with the cost of giving up on real-time
analysis, and increasing the overall system bandwidth. In addition, offloading

to a server must have connectivity to the cloud over the internet.

To find the optimal trade-offs between performance, Hardware (HW)
and Software (SW) requirements or limitations, maximal computation time
allowed for real-time analysis, and the detection accuracy, one should first
define the different metrics used for the evaluation of such an E2E ASR system.
Secondly, one needs to determine the extent of correlation between those

metrics, plus the ability to forecast the impact each variation has on the others.

This research presents novel progress in optimally designing a robust E2E-
ASR system targeted for mobile, resource-limited devices. First, we describe
evaluation metrics for each domain of interest, spread over vast engineer-
ing subjects. Here, we emphasize any bindings between the metrics across
domains and the degree of impact derived from a change in the system’s
specifications or constraints. Second, we present the effectiveness of applying
machine learning techniques that can generalize and provide results of im-
proved overall performance and robustness. Third, we present an approach of
substituting architectures, changing algorithms, and approximating complex
computations by utilizing a custom dedicated hardware acceleration in order
to replace the traditional state-of-the-art SW-based solutions, thus providing

real-time analysis capabilities to resource-limited systems.
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Chapter 1

Introduction

Speech recognition systems started several decades ago. They began with
simple decoding capabilities through keyword spotting and progressed to
the modern Automatic Speech Recognition (ASR) systems that are common

nowadays [11].

Recent advances in the field of speech recognition and acoustic modeling
are due to the introduction of Deep Neural Networks (DNN) based alterna-
tives vice the traditional Hidden-Markov Models—Gaussian Mixtures Models
(HMM-GMM) approaches [8, 17]. With the introduction of DNN algorithms,
ASR systems performance significantly improved compared to the conven-
tional HMM-GMM based speech recognition approach [8, 17]. In addition,
integration with deep beamformers, which are also DNN-based, improves the
front-end (FE) performance. That performance improvement paves the way to
lower error rates in results. Different neural network (NN) architectures can be
used to implement ASR engine building blocks. Usually, the NN used to train
the ASR engine is the same NN used in the implementation of the front-end

components, microphones, channel management, and beamformers.



In recent years, the research interest has been in End-to-End (E2E) ASR
systems [2]. The E2E approach consists of the “complete” pipeline process,
starting with the audio domain physical signal reception up to the output of

the recognition engine.

Figure 1.1 shows a general skeleton of an E2E ASR system. This general
form describes the internal partitioning and the pipeline process. However,
most importantly, it emphasizes the distinction between the two domains
of interest, “audio-related” and “Speech-related”. These two domains are
sometimes referenced as “Audio-Enhancement” and “Speech-Enhancement”,
respectively. Because there can be an overlap between the two regions, “audio-
related” and “Speech-related” are probably the more precise terms.

Audio Related Speech Related

S — — . —_—

—
Mics & Ch. AudiolSpeech Acoustic
Management Enhancments Features

Audio Metrics Speech Metrics

Recognition Engine w

(ASR) B

NN NNy

WER [%]

CER [%]
SWER [%)]

Figure 1.1: General E2E ASR System Blocks Diagram

The distinction between the two is characterized by different metrics.
Typically, speech-recognition performance is evaluated using the Word Error
Rate (WER) and Character Error Rate (CER) metrics. On the other hand,
audio-related performance, measured on the enhanced version of the input
signal, whether it be speech separated or noise suppressed, is evaluated using

different metrics. If such audio enhancement processing is applied, metrics

2



like Clarity [9], Definition [15], Reverberation-Time [15], and other standard
signal processing metrics such as Signal to Noise Ratio (SNR) and Signal to

Distortion Ratio (SDR) are used.

In turn, the first building block of the “audio-related” part that is called
"Microphones & Channels Management" as shown in Figure 1.1, can be evalu-
ated with different sets of performance metrics such as Directivity Factor (DF),

Noise Gain (NG) and more.

Compared to a reference and a specific performance metric, a change in
any of the building blocks shown in Figure 1.1 may improve or degrade
performance. On the other hand, performance increase in one metric can
cause a degradation in other metrics. Hence, there is a great need to perform
cross-correlation and trade-off estimations over the given metric constraints
before and during the design stage of an E2E ASR system. The outcomes can
help in advancing a better approach which may be a promising solution for a
given use case. Furthermore, other performance metrics can be examined. For
example, metrics like computation time and resources utilization can assist
in having a more comprehensive overview of how the system operates given
a static pipeline with different algorithms. Thus, application developers can
benefit from such metrics estimations, especially when dealing with strict

application requirements or resource-limited platforms.



1.1 Literature Review

References [14, 17] are two pioneering research papers focusing on studying
neural networks usages for beamforming in the front-end, before the acoustic
features extraction and recognition engine stages in E2E ASR systems. In both
papers, the researchers built their architecture upon the principles of an E2E
ASR pipeline. Those architectures share a similar baseline but have different
DNN-type beamformers, filters, and ASR engines. Experiments in [14, 17]
focus on WER performance evaluations to express the system’s capabilities
under different test-cases and inputs. Few of the test-cases, for example, are
a single microphone with single channel input, a single microphone with

multi-channel inputs, and a microphones array.

1.1.1 Recent Work

Recently, new techniques have been introduced [7, 10, 12, 13, 16], such as

different NN architectures that serve as the basis for the ASR engines.
1.1.1.1 ASR Engine Alternatives

Performance comparisons between different recognition engines are described
in [12]. The different ASR engines include Recurrent neural network-transducer
(RNN-T), Recurrent neural network-attention encoder decoder (RNN-AED),
and Transformer-AED. These architectures belong to the right side of the ex-
tended E2E ASR structure shown in Figure 1.1, also referred to as the Back-end
(BE). BE engines are complex systems by themselves and thus can be split into

multiple smaller blocks to ease integration. Despite being very comprehensive,



Reference [12] concentrates on the “Speech-related” domain, such that the
primary metric used for evaluation is WER, without considering the front-end
effect and its correlation to performance. In addition, the recognition engines
in this paper do not make use of the Listen, Attend, and Spell (LAS) [3] nor the
Connectionist Temporal Classification (CTC) [6], which are now considered
as integral components in modern ASR engines after proving to enhance

recognition rates drastically.
1.1.1.2 Biasing

Reference [16] explores the effect of biasing on a complete E2E ASR system
pipeline. First, masking operations were applied in the frequency domain.
Then, biasing information was fed into the system in combination with the
masked frequency output. The added biasing information together with
the T-F masking and the beamformer in the front-end showed a substantial

reduction in error rate detections.

1.1.1.3 Low Latency Beamformers

Low latency beamformers were studied in [13]. The research results show
"audio-related" performance comparisons as a function of the beamformer
type and the number of microphones in the array. Moreover, each setup’s
latency was measured to determine its time to process. The authors of this
paper used two different datasets for their experiments. The TIMIT dataset [5]
for the generations of noisy reverberant inputs to the microphone array and

the CHIiME 3 [1] dataset for ASR evaluations.



1.1.1.4 Masking Operations

Reference paper [7] demonstrates experiments on estimations of spectral
masks effects with neural networks based beamformers. Two different beam-
formers, Generalized Eigenvector (GEV) and Minimum Variance Distortion-
less Response (MVDR) were tested with and without Bidirectional Long
Short-Term Memory (BLSTM) spectral masks concerning the Power Spectral
Distribution (PSD) and SNR. However, this paper does not include an E2E
pipeline nor the recognition engine. In other words, this research focuses
on the “audio-related” domain. Indeed, SNR belongs to the “audio-related”

metric set rather than the “Speech-related” metric set, as shown in Figure 1.1.

Another comprehensive research that studies masking operations is de-
scribed in [10]. In this paper, the architecture does not include the ASR engine.
Instead, it mainly deals with the enhanced output signal, signifying that it is
also in the “audio-related” domain. However, this research is unique in that it
utilized both the WER and SDR metrics measurements for different engines

that were plugged in at the BE stage.

1.2 Project Outline

Applications have requirements and limitations that are dictated by their plat-
form or available hardware. A way to estimate Hardware (HW) requirements
for speech applications based on speech-related or audio-related metric sets
can be helpful to developers of such platforms. Therefore, optimizations of a

given E2E ASR architecture by careful trade-off selections can lead to more



robust and rapidly developed applications or setups. That is a significant
advance towards fast setup constructions for different HW platforms. As such,
in this thesis, the effects of changing different building blocks and applying
various enhancement techniques in a given E2E ASR system will be evaluated.
The effects of such replacements and fine-tunes will be presented with respect
to different performance metrics. Based on the results, one will be able to
deduce the trade-offs that can be selected to optimize the implementation
process for a specific application, platform, requirement, feasibility, and other

specifications.

Evaluated performance metrics are shown in Figure 1.2

WER [%]

CER [%]
SWER [%]

> Cross-Correlation |
> Predictions
> Estimations
> Tradeoffs
i

sTOI
PESQ

SNR [dB]

SDR [dB]

Comp time [S]

Feasibility
Power [W]

Resource Util. [%]

Figure 1.2: Project Outline Summary Diagram



A comprehensive performance metrics table that contains the Audio,
Speech, and HW characteristics of an E2E ASR system, will be composed.
Such tables make it easier to detect cross-correlations between the metric
sets. In consequence, deduction of each metric’s projection on others can be

estimated.

Our approach is to setup an architecture that follows the entire E2E ASR

pipeline including the beamforming FE as presented in Figure 1.3.
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Beamformer
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Features Extraction

Time Features

| Cepstral Features |

—_—

{ Spatial Features |

|

] Spectral Features
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Figure 1.3: Project Architecture
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This paper’s structure follows the architecture presented in Figure 1.3.
In Chapter 2, we introduce the selected performance evaluation metrics of
interest and how they relate to these domains. A detailed explanation of how
each performance metric is extracted and calculated is provided as well for a

better understanding of the motivation behind these metrics selections.

Chapter 3 describes three different scaling methods that are commonly
used in audio processing and analysis. We also present detailed performance
comparisons in this chapter based on the evaluation metrics that we described

in Chapter 2.

The understanding of audio frequency scaling and the differences between

scaling methods are essential for Chapter 4.

Chapter 4 presents key aspects of feature analysis along with the consider-
ations and importance of every feature. We conclude that chapter indicating
that a wise feature selection is essential for the sake of accurate speech classifi-

cation and audio processing.

Chapter 5 surrounds Time-Frequency (TF) masking techniques, which is
a preliminary process taken prior to beamforming. In this chapter, we cover
four dominant masking techniques, starting with background theory, through
implementation on to measured performance evaluations. The T-F masking
outputs are dynamically estimated by a DNN subsystem and serve as the

input weights to a beamformer that is connected next.

Beamforming concepts and common beamforming architectures for speech
are described in Chapter 6. This chapter follows the T-F masking chapter since

the beamformer actually works on the outputs that are produced by the T-F

10



masking DNN system.

General background about ASR systems is given in Chapter 7. We then
go through the history of the development of ASR systems to the E2E ASR
systems. We emphasize the benefits of using E2E solutions and what other
advancements were done in this field of research. Here, we present our general
approach of an ASR engine implementation, followed by multiple variants of

suggested ASR engines and their measurement evaluations.

Chapter 8 describes the datasets that we use for training and evaluations
of our various DNN systems. We make use of the multi-microphone CHiME
datasets [1] for the T-F masking and beamforming parts, and the Common-

Voice V7 dataset [4] for the ASR engine module.

In Chapter 9, we state our conclusions for this study and our plan for

future work.
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Chapter 2

E2E Evaluation Metrics

2.1 Audio Metrics
2.1.1 SNR - Signal to Noise Ratio

The signal-to-noise ratio (SNR) metric evaluates how distinct the desired
signal is out of the overall noise.

Let y(t) denote a time-domain signal consisting of the desired speech
signal x(t), and some interferences, referred to as noise n(t). That signal is

given by:
y(t) = x(t) + n(t 1)

Ideal speech separation of a noisy mixture signal is characterized by a
perfect match between the predicted speech signal, x(t), and the original
(reference) speech signal x(t).

Properly modeling the problem, we can optimize it using the MSE (Mean

Square Error) loss function, also noted as the L2 function. The L2 loss function
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is given in Equation 2.2:

0Z,x) = Zf‘) [®(t) — x(t)]? (2.2)
T-1

=Y |r(t))? (2.3)
t=0

The term Y, |r(t)|? is the total energy of the residual error between the
predicted signal and the desired target speech, which is related to the additive

noise.

First, let’s break X(t) to its fundamental components [9].
5C\(t) = xs + enoise + einterf + eartif (24)

Where x, stands for the part of X(#) coming from the wanted source(s), and
represents the part of X(f) coming from the sensor’s noise. The sensor can

e .
noise

be the microphone itself or one of its counterparts. e, , . denotes the unwanted

interf

sources presented in X(¢), and the e . represents any other artifacts that cause

artif
distortions in the prediction of x_.

According to Parseval’s theorem, the total residual energy in time equals
the sum of the spectral power in the frequency domain resulting from the
squared difference between the magnitudes of the predicted and target speech
[4].

Since the residual energy over time is referred to as the noise power,

minimizing the residual, which is minimizing the MSE loss function, translates
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into an increase in SNR.
~ 2
Y=Y Y[R f) - X(xf)] 25)
t
The SNR is therefore given by:

SNR = 101ogy, (5
AN

X 2
= 10log;, <||”7’SHH2 ) (2.6)

2.1.2 SI-SNR - Scale Invariant SNR

To ensure that the SNR is amenable to scale invariance [7], both the target and

estimated signals are normalized to zero-mean.

I, — E[x]|>
SI — SNR = 10log,, — — 5
|(x — E[x]) — (x, — E[x])]
[Es
— 101 _ acll
0 ©810 <H5C\AC - xAC||2
EME
= 10logy, (||r:§ 12 (2.7)

2.1.3 Segmental SNR

An SNR evaluation is basically the ratio between the overall energies of the
signal and those in the noise. However, some portions of the signal are almost
pure noise, especially in the case of speech signals, where there are gaps

between phonemes, articulation stops, and air aspiration breaks. As a result,
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the SNR calculation may be impacted, and it depends on the length of the
empty sections with respect to the length of the other sections where speech is

present.

With Segmental SNR [5], instead of taking the entire signal, the signal is
segmented to relatively small chunks (segments), each in length usually set to
a frame of (typically) 25 ms long with the option of setting an overlap between
segments. Per segment, the SNR is calculated, and then averaged across all
the segments. If the energy of the speech reference in a segment is below
some threshold or duration, that segment is negligible and is excluded, thus

limiting the evaluation only to sections where significant speech is present.

Equation 2.6 can be rewritten as:

SEG — SNR = — f 101 11 2.8)
— = — Og .
M 080 e

Where M denotes the number of segments the signal is divided by.

Despite being more accurate for speech signals, Segmental SNR suffers
from a limitation that can affect the actual results severely. In speech enhance-
ment evaluations, the signal’s predicted (enhanced) version is compared to a

clean reference signal concerning the noisy mixture.

Unfortunately, speech analysis for the extraction of the Segmental SNR
causes misalignment in time due to a lack of common reference time between
the reconstructed signal and the clean reference. Moreover, the reconstructed
signal is not aligned with the noisy mixture either. These misalignments are a
side effect of the time-domain to the frequency-domain transformation, the

processing manipulations on the transformed signal, and the reconstruction
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of the signal in the time-domain using the inverse-transform technique. There-
fore, without any alignments, extraction of the Segmental-SNR is meaningless
and most probably inaccurate. Due to that limitation, an alignment process
should be applied prior to taking the Segmental SNR calculation. These align-
ments usually have a small marginal error that spans over a few sampling

points.

2.14 STOI - Short-Time Objective Intelligibility

STOI [8] is a metric that is used to evaluate the intelligibility of a speech signal.
The intelligibility is measured by taking the correlation coefficient between
the temporal envelopes of the clean and degraded speech. In our case, the
term degraded might be confusing since the degraded speech input is actually
the outcome of the beamformer following the T-F masking at the front-end.
However, relative to the clean speech, the beamformer’s output is indeed

degraded, although it is considered an enhanced version of the noisy mixture.

The naming convention Short-Time comes from the time frame length of

the overlapping segments, which is 384ms.

/ X (m
x (Clean speech) J ; (m)
: X;
DFT-based Short-time o
P 112 octave band segmentation
decomposition
f 7
—_— Correlation Zd
N =30 Coefficient M Jim
. i L
v (Degraded speech) J Y; (m)
I | [ & 1 v v i :
eyt shorttime  |” ""m.; Normlization + it
decomposition segmentation dipping
> m B=-15

Figure 2.1: STOI flow diagram

Source: Adapted from [8]
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The STOI algorithm structure is demonstrated in the blocks diagram shown

in Figure 2.1.

The short-time temporal envelop of the degraded speech Y, is clipped
and normalized before the extraction of the correlation coefficient with the
short-time temporal envelop of the clean speech X; . This clipped normalized

version then be:

1%,

Y[n] = min {HY—Y (], (1+107)X, [n]} (2.9)

jm | | J

Thus, the correlation coefficient can be expressed as the distance given in

Equation 2.10.
(Xj,m - Xj,m)tr ) (y,m - j}j,m)

]

d = = <
o HX],m - X],mH ’ ||y],m - y],mH

(2.10)

Also, defining the intermediate intelligibility measure, Equation 2.10, it stands
for the m'"" time frame. Extending it to form a definition for the entire signal,

we can take the average of d,, as in Equation 2.11.

1
d=—Yd (2.11)
L

Where | presents the total number of one-third octave bands, and the

averaging overlaps M number of time frames.

2.1.5 PESQ - Perceptual Evaluation of Speech Quality

PESQ [6] is a measuring method adopted by the ITU (International Telecom-

munication Union, ITU-T P.862) to test the speech quality of telephony and
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mobile stations.

This measuring metric evolved from different previous measuring tech-
niques such as Bark Spectral Distortion (BSD), Perceptual Analysis Measure-
ment System (PAMS), and Perceptual Speech Quality Measure (PSQM).

The motivation behind the development of the PESQ metric was the need
to assess the speech quality in an E2E communication channel that considers

the entire link rather than particular parts.

The evaluation of a speech signal quality by PESQ follows the MOS (Mean
Opinion Scores) scoring model, where the actual speech quality is ranked
between 1 to 5 by a group of listeners. The MOS is a subjective measure, while

the PESQ is an objective measure.

Figure 2.2 shows the data flow of the PESQ computation for a predicted

signal, with respect to the clean reference.

[ >
Level Input | | Auditory
align filter ]
g . transform

Reference
signal

‘ Prediction of
System _Tlme ; Disturbance Cognitive preceived
| align and N
under test ‘ e { processing modelling speech
] \‘ \ quality
| |
| | S —
Degraded Level Input | Auditory ‘ Identify bad
signal align filter transform intervals
| S— —

T Re-align bad intervals r

Figure 2.2: PESQ Algorithm Blocks Diagram

Source: Adapted from PESQ paper [6] and redesigned
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2.2 ASR Metrics
2.2.1 WER - Word Error Rate

WER [3] metric is probably the most used evaluation technique for speech

recognition systems.

Evaluation of this metric occurs at the ASR engine’s output, where the
predicted text is segmented into sentences. Each word in the predicted text is
then matched with its counterpart in the annotated reference transcript. The
sum of mismatches between a predicted sentence and the reference, divided

by the total counted words in the reference, indicates the WER.

However, in some cases, the predicted sentences differ in size compared
to the reference. Therefore, special care for Insertions and Deletions should be

carried out as well, without neglecting the detected Substitutions.

The WER is described by:

WER = % 2.12)

Where N is the total count of words in the reference, and S, D, I are the
number of Substitutions (wrong word detection), Deletions (Omitting words),

and Insertions (Wrong words insertions).

2.2.2 CER - Character Error Rate

CER is another metric with some similarities to the WER evaluation metric
but with a narrower resolution. The change in resolution is due to comparing

characters instead of words. The same rules of Substitutions, Deletions, and
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Insertions apply, and therefore, the calculation of the CER is the same:

CER = % (2.13)

In many cases, the CER [10] is a complementary measuring metric to the
WER metric. This extra measure shines especially when there is a need to get
a full perspective with a greater differentiation capability of the Substitutions
in the complete sentence of the suggested predicted transcript, also known
as the hypothesis. While WER counts a mismatch between the reference
and the predicted word, even in cases where only single characters or worse,
punctuation marks are not correctly placed, CER can lead to more accurate

grading per word.

2.3 Hardware Metrics
2.3.1 Power Estimation

Electrical circuits, components, and systems require power to function. The
amount of power a device consumes from the power sources is subject to
various parameters and mainly describes the rate of energy delivery from the

source to the device or vice versa.

Due to the nature of conducting materials, whenever an electrical potential
is applied between the conductor’s terminals, electrical current goes through
the conductor. The current that flows in the system feeds the different compo-
nents with energy. However, the total supplied energy is not purely consumed

over time, and some energy is lost and wasted due to power dissipation.
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Power dissipation is a side effect of a conductors’ resistive nature, which
"resists" the transition of current through it. As a result, part of the energy in

the system is converted to heat energy.

Since dissipated power is a waste of energy it is also considered as one
of the main causes to electronic systems” performance degradation at high
temperatures. Therefore, engineers want to mitigate as much as possible any
dissipated power that is not used for the main functionality of the system.
For that end, power analysis is crucial in any system design phase to ensure
efficiency and correctness while maintaining robustness over time and under
different working conditions.

Electrical circuit power dissipation depends on many arguments. However,
in general, it can be modeled accurately according to three scenarios divided

into two main groups:
1. Static Power
¢ Intrinsic Leakage Power
2. Dynamic Power

¢ Internal Power

¢ Switching Power
2.3.1.1 Intrinsic Leakage Power

Leakage power is the power that dissipates due to the structure of a CMOS
device, where a thin layer of metal oxide isolates between the semiconductor

material and the gate metal and thus forming a capacitor. Leakage power
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dissipates statically regardless of the CMOS device state, whether it is the
active state or the off state (idle).

Sub-threshold

/ leakage
IS
p-n junction
Sub-threshald Gate lea'?f:emom
/ leakage leakage
1 1 0
Zaal
p-n junction
leakage to
substrate

Figure 2.3: Leakage Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]
Figure 2.3 describes three current leakages, the reverse bias current of the
diode (p-n junction), sub-threshold current leakage, and the gate leakage.
With the recent advancement in process technologies, CMOS devices are

minimized in size, but the leakage power is increasing as a side effect.
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Figure 2.4: Leakage Power vs. Process Technology

Source: Adapted from Soitec FinFet presentation [1]
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The overall leakage power is a function of the total number of voltage
sources and their voltage levels, the physical dimensions of the CMOS device,

and the threshold value set to switch between on-off states.
2.3.1.2 Internal Power

A CMOS device is a formation of two complementary MOS transistors, a
p-type and an n-type, formed together as a symmetrical pair unit. Internal
power dissipation happens due to the structure of CMOS devices. Whenever
a transition at the CMOS gate occurs, both the NMOS and the PMOS drivers
are active for a relatively small duration of time. As a result, a short circuit
is formed directly from the power rail to the ground. Although not lasting
for long periods of time, the amount of internal dissipated power in highly
toggled designs becomes significant over time. To minimize the internal
dissipated power, or in other words, minimizing the time duration where both
devices are active and current flows from V,;; to GND, the transition times

(both rising and falling) are set to be very fast.

Short-circuit
(crowbar)

Intermediate current

vohage_ﬁ

Figure 2.5: Internal Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]
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2.3.1.3 Switching Power

Switching power is the power dissipated as a result of charging and discharg-
ing loads during transitions. MOS devices introduce capacitance at their input
gates due to their structure. Thus, whenever a low-to-high transition at the
output occurs, the driver pushes the current to charge the capacitive load in
order to set the desired logic level voltage. Likewise, the load capacitance
discharge and sink into the device through the PMOS transistor to the ground
for a high-to-low transition at the output. As a result, the charging and dis-
charging currents eventually dissipate and are not delivered to the external

load.

Discharge

load
n—_\_

NMOS

Figure 2.6: Switching Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]
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Chapter 3

Audio Frequency Scaling methods

3.1 Introduction

The human hearing system detects acoustic vibrations and translates those
vibrations into sounds. The detectable range of frequencies by the human ear
is referred to as audio or sonic. This range spans over approximately 20 kHz,

starting at 20 Hz to about 20 kHz [7].

As a result of aging, the hearing system’s dynamic range as to the de-
tectable bandwidth decreases, and by middle-age are set at about 20 Hz to

14 KHz [8]. That is, the maximum hearable frequency declines with age.

The human ear’s ability to distinguish between two different frequencies
is not symmetric. For example, the spectral distance between two different
frequencies in one distinct region does not equal the spectral distance be-
tween two additional frequencies in other regions. Due to that asymmetry,
the conventional linear spectral mapping is impractical for speech analysis
applications. Thus, a different spectral mapping based on a different scaling

system that mimics the human hearing as possible is applied.
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3.2 Mel-Scaling

The Mel-scaling method is a suggested solution to mapping standard audio
frequencies to perceived frequencies. The basic idea that lies underneath it
is that for different pitches we assign varying bandwidth, such that they are
equal in distance from each other, as rated by listeners. The reference point

has been chosen to be 1000 Hz = 1000 Mels.

Mel-scale was first described in [4] by Stevens and Volkmann, where the

authors presented different curves for Mel-scaling.

Two common tables were composed according to the Mel-scaling curves.

One table by Beranek in 1949 [1] and the second by Umesh et al. in 1999 [6].

The most popular equation that models the Mel-scale is typically refer-

enced as the "Logarithm based Mel scale" [2]:

1000
Mel =In (1 vt ) : (3.1)
700/ In(1+ 45)

Equation [3.1] can be simplified as follows:

f
[=1127In (14 =—
Me n( +700

_ S
Mel = 25951og;, <1 + 700 (3.2)
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Then, the reverse equation, converting Mels back to Hz, can be written as:
f[Hz] = 700 (10% - 1) (3.3)

3.21 Mel-scale approximations

Computing a logarithm for hardware devices, whether it is the natural loga-
rithm or any other base, is not very straightforward. For example, this kind of
computation might require special techniques or long LUTs (look-up tables),
which are extraordinarily resource hungry.

Instead, other approximations that do not involve trigonometric or loga-
rithms, but only simple arithmetic structures can be applied. By doing so, we

benefit from low resource utilization while maintaining high accuracy.

Multiple approximation methods were studied in [6]. Two approximations

are the most prominent for target HW devices.

Mel =a+b-f (3.4)
__f
Mel = P (3.5)

Where g, b in Equation 3.4 are defined as follows:

o [1277 -, F <1000
1322, > 1000

(3.6)

0.9 , f <1000
0.19 , f > 1000
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Figure 3.1: Mel-scale comparisons with Beranek & Umesh tables

Figure 3.1 has comparisons of three different Mel-scale implementations

with Beranek & Umesh tables. The first column, Log Based Mel, represents

O’Shaugnessy’s famous log-based Mel modeling. The Mel option #1, and Mel
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option #2 columns follow the suggested approximations given in Equations

3.4 and 3.5, respectively.

From the last row of graphs, we can deduce that the approximation in

Equation 3.5 is the closest along with the range of audio frequencies to the

tables provided by Beranek & Umesh. On the other hand, the more simplified

approximation in Equation 3.4 seems to yield the highest errors.
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Figure 3.2: LUT based Mel FPGA implementation results
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Figure 3.3: Mel approx. #1 FPGA implementation results

Figures 3.2, 3.3 present the results of FPGA implementations of O’Shaugnessy’s

log-based Mel and Mel approximation #1. Nonetheless, a high precision quan-
tization, U32.22 was chosen for the Mel approximation, where the shifting
error received is higher when compared to the conventional Log Mel scaling
implementation. Although this error shift is compensated just by selecting
the approximation method, the straightforward approach turned out to be
the non-optimized solution in terms of HW resources and power consump-
tion, which utilized four times higher wattage on top of 25 — 30% additional

resources.

Instead, two optimization workarounds were tested. The first is the multi-
plication of the a, b coefficients in Equation 3.5 by 1000. The second optimiza-

tion is reorganizing the equation and storing the result in a sufficient precision
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structure in memory for the fractional part but lower resolution for the integer
part. These optimizations lead to a reduction in the required number of bits
for the fractional part. As a result, both the frequency shifting error and the

overall resource utilization are greatly improved.

Yet, the split in frequency bands results in two multiplied sets of coeffi-
cients for each band calculation. Therefore, choosing a more generalized set
of coefficients for the entire audio band can help in the reduction of redun-
dant LUTs and other combinational logic, such as selectors and multi-bus
multiplexer cells.

Selection of 2 = 0.24, b = 0.741, showed better results as can be seen in
Figure 3.5. The accuracy estimation for the non-generic implementation is

shown in Figure 3.4.
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Figure 3.4: Mel approx. #1 optimized FPGA implementation results
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Figure 3.5: Mel approx. #1 optimized, generic FPGA implementation results

Algorithm Latency [ns] Quant. Max Err. [AHz] Mean Err.  Std Err.
Log LUT Mel 14 3C.C) Ule/4 1.146 0.268 0.106
Mel #1 9(2C.C) U32/22 1.338 -0.873 -0.359
Mel #1 Opt 9(2C.C) Ule/4 0.190 -0.053 0.065
Mel #1 Generic 92C.C) Ule/4 0.174 -0.035 0.061

Table 3.1: Mel-Approx, log-based Mel performance comparison

Log LUT Mel  82(0.04%) 276(0.23%) 1(<1%) 10(0.02%) 1.5(1.04%)
Mel #1 47(0.02%) 530(0.45%) 1(<1%) 0(0%) 0(0%)
Mel #1 Opt 47(0.02%) 271(0.23%) 1(<1%) 0(0%) 0(0%)
Mel #1 Generic  47(0.02%) 269(0.19%) 1(<1%) 0(0%) 0(0%)

Table 3.2: Mel scaling methods resource utilization table
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Parameter Log LUT Mel Mel#1 Mel #1 Opt Mel #1 Generic \

Dynamic Power [W]
Signals 4,947 5.221 3.011 2916
Logic 6.50 6.792 3.751 3.070
DSP 0.014 0.013 0.014 0.014
I/0 18.236 26.263 7.207 6.378
P dynmic 29.697 38.290 13.983 12.379
Static Power [W]
PL Static 2.364 2.466 0.499 0.499
PS Static 0.068 0.071 0.020 0.018
Pstatic 2.432 2.537 0.519 0.517
Total Power [W]
Piotal 32.13 40.827 14.502 12.896

Table 3.3: Mel-Approx, log-based Mel, Bark Scale Power consumption

The LUT implementation makes use of a log, look-up table. However, an
additional step is needed for the natural logarithm or other log bases. Since
the logarithm bases are constant, the LUT result is divided by the log, of
the base, whether it be the natural base or base ten. This logarithm bases

convention is described in Equation 3.8.

log,(a) = igiiggi

(3.8)

Table 3.1 summarizes the performance comparison between the different

Mel scaling implementation approaches.

The HW setup is for the PYNQ-Z1 development board. Hence, the results
are unique to that specific HW device and probably change for other FPGA

devices and development boards.

Latencies were simulated with Xilinx Vivado Suite for an operating clock
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frequency of 225 MHz. In this operating condition, no timing violations were
reported.

Tables 3.2 and 3.3 show the synthesis and implementation results plus the
power estimation reports. These reports were taken from the Xilinx Vivado

Suite application.

3.3 Bark-Scaling

Another scaling method is the Bark scale which is based on the same principle
of retaining perceptual distances. The Bark scale is divided into critical bands
corresponding to the critical hearing bands in humans. Each band has a
bandwidth similar to the psychoacoustic band of the corresponding “filter” in

the human hearing system and is ranked with a unique number.

3.3.1 Bark Critical Bands

Like the Mel scale, several equations were proposed to model best the Bark

scale and its critical bands.

The first method was introduced in [9]. A proposed approximation to the
Bark scaling is described in [5]; this paper also introduces the correction of the

band boundaries to ensure more correctness with the original Bark scaling.
Four different equations were proposed to model the Bark scale.

The first by Zwicker is well described in [9] and is given by the following
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equation:

2
Bark = tan~! {0.00073f} + 3.5 tan™! { (ﬁ) } (3.9)

Zwicker’s bark scale and it’s corresponding critical bands are shown in

Figure 3.6
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Figure 3.6: Zwicker’s bark scale and critical bands

Another proposed equation by Traunmuller [5] is:

26.81
Bark = 6.81f

_ 0% 1
1960 + f 053 (3.10)

Traunmuller’s bark scale and it’s corresponding critical bands are shown

in Figure 3.7
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Bark-Method: Traunmuller
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Figure 3.7: Traunmuller’s original bark scale and critical bands

Denoting Traunmuller’s original Bark scale given in Equation 3.10 as Bark/,

the fixed form for Traunmuller’s Bark equation is:

340.85- / Bark! < 2
Bark:{03+085 (Bark') , Bark' < 311)

Bark’ +0.22 - (Bark’ —20.1) , Bark’ > 20.1

Traunmiller’s fixed bark scale and its corresponding critical bands are

shown in Figure 3.8
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Bark-Method: Traunmuller + corr
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Figure 3.8: Traunmuller’s fixed bark scale and critical bands

The fourth possible modeling equation is proposed by Schroeder in [3]

and is as follows:

Bark=71n [ L+ 10 2 (3.12)
650 422500

Schroeder’s bark scale and it’s corresponding critical bands are shown in

Figure 3.9
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Bark-Method: Schroeder et al
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Figure 3.9: Schroeder’s bark scale and critical bands

Figure 3.10 shows a comparison between the four bark scaling methods.
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Bark-Band vs. Frequency
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Figure 3.10: Bark Scale comparisons

We see in Figure 3.10 th