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Abstract
Automatic Speech Recognition (ASR) functionality, the automatic translation

of speech into text, is on the rise today and is required for various use-cases,

scenarios, and applications. An ASR engine by itself faces difficulties when

encountering live input of audio data, regardless of how sophisticated and

advanced it may be. That is especially true, under the circumstances such as a

noisy ambient environment, multiple speakers, or faulty microphones. These

kinds of challenges characterize a realistic scenario for an ASR system.

ASR functionality continues to evolve toward more comprehensive End-

to-End (E2E) solutions. E2E solution development focuses on three significant

characteristics. The solution has to be robust enough to show endurance

against external interferences. Also, it has to maintain flexibility, so it can

easily extend in expectation of adapting to new scenarios or in order to achieve

better performance. Lastly, we expect the solution to be modular enough to fit

into new applications conveniently. Such an E2E ASR solution may include

several additional micro-modules of speech enhancements besides the ASR

engine, which is very complicated by itself. Adding these micro-modules can

enhance the robustness and improve the overall system’s performance. Ex-

amples of such possible micro-modules include noise cancellation and speech

separation, multi-microphone arrays, and adaptive beamformer(s). Being a

comprehensive solution built of numerous micro-modules is technologically
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challenging to implement and challenging to integrate into resource-limited

mobile systems. By offloading the complex computations to a server on the

cloud, the system can fit more easily in less capable computing devices. Never-

theless, that compute offloading comes with the cost of giving up on real-time

analysis, and increasing the overall system bandwidth. In addition, offloading

to a server must have connectivity to the cloud over the internet.

To find the optimal trade-offs between performance, Hardware (HW)

and Software (SW) requirements or limitations, maximal computation time

allowed for real-time analysis, and the detection accuracy, one should first

define the different metrics used for the evaluation of such an E2E ASR system.

Secondly, one needs to determine the extent of correlation between those

metrics, plus the ability to forecast the impact each variation has on the others.

This research presents novel progress in optimally designing a robust E2E-

ASR system targeted for mobile, resource-limited devices. First, we describe

evaluation metrics for each domain of interest, spread over vast engineer-

ing subjects. Here, we emphasize any bindings between the metrics across

domains and the degree of impact derived from a change in the system’s

specifications or constraints. Second, we present the effectiveness of applying

machine learning techniques that can generalize and provide results of im-

proved overall performance and robustness. Third, we present an approach of

substituting architectures, changing algorithms, and approximating complex

computations by utilizing a custom dedicated hardware acceleration in order

to replace the traditional state-of-the-art SW-based solutions, thus providing

real-time analysis capabilities to resource-limited systems.
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Chapter 1

Introduction

Speech recognition systems started several decades ago. They began with

simple decoding capabilities through keyword spotting and progressed to

the modern Automatic Speech Recognition (ASR) systems that are common

nowadays [11].

Recent advances in the field of speech recognition and acoustic modeling

are due to the introduction of Deep Neural Networks (DNN) based alterna-

tives vice the traditional Hidden-Markov Models—Gaussian Mixtures Models

(HMM-GMM) approaches [8, 17]. With the introduction of DNN algorithms,

ASR systems performance significantly improved compared to the conven-

tional HMM-GMM based speech recognition approach [8, 17]. In addition,

integration with deep beamformers, which are also DNN-based, improves the

front-end (FE) performance. That performance improvement paves the way to

lower error rates in results. Different neural network (NN) architectures can be

used to implement ASR engine building blocks. Usually, the NN used to train

the ASR engine is the same NN used in the implementation of the front-end

components, microphones, channel management, and beamformers.
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In recent years, the research interest has been in End-to-End (E2E) ASR

systems [2]. The E2E approach consists of the “complete” pipeline process,

starting with the audio domain physical signal reception up to the output of

the recognition engine.

Figure 1.1 shows a general skeleton of an E2E ASR system. This general

form describes the internal partitioning and the pipeline process. However,

most importantly, it emphasizes the distinction between the two domains

of interest, “audio-related” and “Speech-related”. These two domains are

sometimes referenced as “Audio-Enhancement” and “Speech-Enhancement”,

respectively. Because there can be an overlap between the two regions, “audio-

related” and “Speech-related” are probably the more precise terms.

Figure 1.1: General E2E ASR System Blocks Diagram

The distinction between the two is characterized by different metrics.

Typically, speech-recognition performance is evaluated using the Word Error

Rate (WER) and Character Error Rate (CER) metrics. On the other hand,

audio-related performance, measured on the enhanced version of the input

signal, whether it be speech separated or noise suppressed, is evaluated using

different metrics. If such audio enhancement processing is applied, metrics
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like Clarity [9], Definition [15], Reverberation-Time [15], and other standard

signal processing metrics such as Signal to Noise Ratio (SNR) and Signal to

Distortion Ratio (SDR) are used.

In turn, the first building block of the “audio-related” part that is called

"Microphones & Channels Management" as shown in Figure 1.1, can be evalu-

ated with different sets of performance metrics such as Directivity Factor (DF),

Noise Gain (NG) and more.

Compared to a reference and a specific performance metric, a change in

any of the building blocks shown in Figure 1.1 may improve or degrade

performance. On the other hand, performance increase in one metric can

cause a degradation in other metrics. Hence, there is a great need to perform

cross-correlation and trade-off estimations over the given metric constraints

before and during the design stage of an E2E ASR system. The outcomes can

help in advancing a better approach which may be a promising solution for a

given use case. Furthermore, other performance metrics can be examined. For

example, metrics like computation time and resources utilization can assist

in having a more comprehensive overview of how the system operates given

a static pipeline with different algorithms. Thus, application developers can

benefit from such metrics estimations, especially when dealing with strict

application requirements or resource-limited platforms.
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1.1 Literature Review

References [14, 17] are two pioneering research papers focusing on studying

neural networks usages for beamforming in the front-end, before the acoustic

features extraction and recognition engine stages in E2E ASR systems. In both

papers, the researchers built their architecture upon the principles of an E2E

ASR pipeline. Those architectures share a similar baseline but have different

DNN-type beamformers, filters, and ASR engines. Experiments in [14, 17]

focus on WER performance evaluations to express the system’s capabilities

under different test-cases and inputs. Few of the test-cases, for example, are

a single microphone with single channel input, a single microphone with

multi-channel inputs, and a microphones array.

1.1.1 Recent Work

Recently, new techniques have been introduced [7, 10, 12, 13, 16], such as

different NN architectures that serve as the basis for the ASR engines.

1.1.1.1 ASR Engine Alternatives

Performance comparisons between different recognition engines are described

in [12]. The different ASR engines include Recurrent neural network-transducer

(RNN-T), Recurrent neural network-attention encoder decoder (RNN-AED),

and Transformer-AED. These architectures belong to the right side of the ex-

tended E2E ASR structure shown in Figure 1.1, also referred to as the Back-end

(BE). BE engines are complex systems by themselves and thus can be split into

multiple smaller blocks to ease integration. Despite being very comprehensive,

4



Reference [12] concentrates on the “Speech-related” domain, such that the

primary metric used for evaluation is WER, without considering the front-end

effect and its correlation to performance. In addition, the recognition engines

in this paper do not make use of the Listen, Attend, and Spell (LAS) [3] nor the

Connectionist Temporal Classification (CTC) [6], which are now considered

as integral components in modern ASR engines after proving to enhance

recognition rates drastically.

1.1.1.2 Biasing

Reference [16] explores the effect of biasing on a complete E2E ASR system

pipeline. First, masking operations were applied in the frequency domain.

Then, biasing information was fed into the system in combination with the

masked frequency output. The added biasing information together with

the T-F masking and the beamformer in the front-end showed a substantial

reduction in error rate detections.

1.1.1.3 Low Latency Beamformers

Low latency beamformers were studied in [13]. The research results show

"audio-related" performance comparisons as a function of the beamformer

type and the number of microphones in the array. Moreover, each setup’s

latency was measured to determine its time to process. The authors of this

paper used two different datasets for their experiments. The TIMIT dataset [5]

for the generations of noisy reverberant inputs to the microphone array and

the CHiME 3 [1] dataset for ASR evaluations.
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1.1.1.4 Masking Operations

Reference paper [7] demonstrates experiments on estimations of spectral

masks effects with neural networks based beamformers. Two different beam-

formers, Generalized Eigenvector (GEV) and Minimum Variance Distortion-

less Response (MVDR) were tested with and without Bidirectional Long

Short-Term Memory (BLSTM) spectral masks concerning the Power Spectral

Distribution (PSD) and SNR. However, this paper does not include an E2E

pipeline nor the recognition engine. In other words, this research focuses

on the “audio-related” domain. Indeed, SNR belongs to the “audio-related’

metric set rather than the “Speech-related” metric set, as shown in Figure 1.1.

Another comprehensive research that studies masking operations is de-

scribed in [10]. In this paper, the architecture does not include the ASR engine.

Instead, it mainly deals with the enhanced output signal, signifying that it is

also in the “audio-related” domain. However, this research is unique in that it

utilized both the WER and SDR metrics measurements for different engines

that were plugged in at the BE stage.

1.2 Project Outline

Applications have requirements and limitations that are dictated by their plat-

form or available hardware. A way to estimate Hardware (HW) requirements

for speech applications based on speech-related or audio-related metric sets

can be helpful to developers of such platforms. Therefore, optimizations of a

given E2E ASR architecture by careful trade-off selections can lead to more
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robust and rapidly developed applications or setups. That is a significant

advance towards fast setup constructions for different HW platforms. As such,

in this thesis, the effects of changing different building blocks and applying

various enhancement techniques in a given E2E ASR system will be evaluated.

The effects of such replacements and fine-tunes will be presented with respect

to different performance metrics. Based on the results, one will be able to

deduce the trade-offs that can be selected to optimize the implementation

process for a specific application, platform, requirement, feasibility, and other

specifications.

Evaluated performance metrics are shown in Figure 1.2

Figure 1.2: Project Outline Summary Diagram
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A comprehensive performance metrics table that contains the Audio,

Speech, and HW characteristics of an E2E ASR system, will be composed.

Such tables make it easier to detect cross-correlations between the metric

sets. In consequence, deduction of each metric’s projection on others can be

estimated.

Our approach is to setup an architecture that follows the entire E2E ASR

pipeline including the beamforming FE as presented in Figure 1.3.
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Figure 1.3: Project Architecture
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This paper’s structure follows the architecture presented in Figure 1.3.

In Chapter 2, we introduce the selected performance evaluation metrics of

interest and how they relate to these domains. A detailed explanation of how

each performance metric is extracted and calculated is provided as well for a

better understanding of the motivation behind these metrics selections.

Chapter 3 describes three different scaling methods that are commonly

used in audio processing and analysis. We also present detailed performance

comparisons in this chapter based on the evaluation metrics that we described

in Chapter 2.

The understanding of audio frequency scaling and the differences between

scaling methods are essential for Chapter 4.

Chapter 4 presents key aspects of feature analysis along with the consider-

ations and importance of every feature. We conclude that chapter indicating

that a wise feature selection is essential for the sake of accurate speech classifi-

cation and audio processing.

Chapter 5 surrounds Time-Frequency (TF) masking techniques, which is

a preliminary process taken prior to beamforming. In this chapter, we cover

four dominant masking techniques, starting with background theory, through

implementation on to measured performance evaluations. The T-F masking

outputs are dynamically estimated by a DNN subsystem and serve as the

input weights to a beamformer that is connected next.

Beamforming concepts and common beamforming architectures for speech

are described in Chapter 6. This chapter follows the T-F masking chapter since

the beamformer actually works on the outputs that are produced by the T-F
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masking DNN system.

General background about ASR systems is given in Chapter 7. We then

go through the history of the development of ASR systems to the E2E ASR

systems. We emphasize the benefits of using E2E solutions and what other

advancements were done in this field of research. Here, we present our general

approach of an ASR engine implementation, followed by multiple variants of

suggested ASR engines and their measurement evaluations.

Chapter 8 describes the datasets that we use for training and evaluations

of our various DNN systems. We make use of the multi-microphone CHiME

datasets [1] for the T-F masking and beamforming parts, and the Common-

Voice V7 dataset [4] for the ASR engine module.

In Chapter 9, we state our conclusions for this study and our plan for

future work.
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Chapter 2

E2E Evaluation Metrics

2.1 Audio Metrics

2.1.1 SNR – Signal to Noise Ratio

The signal-to-noise ratio (SNR) metric evaluates how distinct the desired

signal is out of the overall noise.

Let y(t) denote a time-domain signal consisting of the desired speech

signal x(t), and some interferences, referred to as noise n(t). That signal is

given by:

y(t) = x(t) + n(t) (2.1)

Ideal speech separation of a noisy mixture signal is characterized by a

perfect match between the predicted speech signal, ˆ︁x(t), and the original

(reference) speech signal x(t).

Properly modeling the problem, we can optimize it using the MSE (Mean

Square Error) loss function, also noted as the L2 function. The L2 loss function
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is given in Equation 2.2:

ℓ(ˆ︁x, x) =
T−1

∑
t=0

[ˆ︁x(t)− x(t)]2 (2.2)

=
T−1

∑
t=0

|r(t)|2 (2.3)

The term ∑t |r(t)|2 is the total energy of the residual error between the

predicted signal and the desired target speech, which is related to the additive

noise.

First, let’s break ˆ︁x(t) to its fundamental components [9].

ˆ︁x(t) = xs + enoise + einter f + earti f (2.4)

Where xs stands for the part of ˆ︁x(t) coming from the wanted source(s), and

enoise represents the part of ˆ︁x(t) coming from the sensor’s noise. The sensor can

be the microphone itself or one of its counterparts. einter f denotes the unwanted

sources presented in ˆ︁x(t), and the earti f represents any other artifacts that cause

distortions in the prediction of xs .

According to Parseval’s theorem, the total residual energy in time equals

the sum of the spectral power in the frequency domain resulting from the

squared difference between the magnitudes of the predicted and target speech

[4].

Since the residual energy over time is referred to as the noise power,

minimizing the residual, which is minimizing the MSE loss function, translates
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into an increase in SNR.

∑
t
|r(t)|2 =

T−1

∑
τ=0

T−1

∑
f=0

[︂ ˆ︁X(τ, f )− X(τ, f )
]︂2

(2.5)

The SNR is therefore given by:

SNR = 10 log10

(︃
∥xs∥2

∥ˆ︁x − xs∥2

)︃

= 10 log10

(︃
∥xs∥2

∥r∥2

)︃
(2.6)

2.1.2 SI-SNR – Scale Invariant SNR

To ensure that the SNR is amenable to scale invariance [7], both the target and

estimated signals are normalized to zero-mean.

SI − SNR = 10 log10

(︄
∥xs − E[xs ]∥

2

∥(ˆ︁x − E[ˆ︁x])− (xs − E[xs ])∥
2

)︄

= 10 log10

(︃ ∥xAC∥2

∥ˆ︁xAC − xAC∥2

)︃

= 10 log10

(︃∥xAC∥2

∥rAC∥2

)︃
(2.7)

2.1.3 Segmental SNR

An SNR evaluation is basically the ratio between the overall energies of the

signal and those in the noise. However, some portions of the signal are almost

pure noise, especially in the case of speech signals, where there are gaps

between phonemes, articulation stops, and air aspiration breaks. As a result,
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the SNR calculation may be impacted, and it depends on the length of the

empty sections with respect to the length of the other sections where speech is

present.

With Segmental SNR [5], instead of taking the entire signal, the signal is

segmented to relatively small chunks (segments), each in length usually set to

a frame of (typically) 25 ms long with the option of setting an overlap between

segments. Per segment, the SNR is calculated, and then averaged across all

the segments. If the energy of the speech reference in a segment is below

some threshold or duration, that segment is negligible and is excluded, thus

limiting the evaluation only to sections where significant speech is present.

Equation 2.6 can be rewritten as:

SEG − SNR =
1
M

M

∑
m=1

10 log10

(︄
∥xs∥2

(m)

∥r∥2
(m)

)︄
(2.8)

Where M denotes the number of segments the signal is divided by.

Despite being more accurate for speech signals, Segmental SNR suffers

from a limitation that can affect the actual results severely. In speech enhance-

ment evaluations, the signal’s predicted (enhanced) version is compared to a

clean reference signal concerning the noisy mixture.

Unfortunately, speech analysis for the extraction of the Segmental SNR

causes misalignment in time due to a lack of common reference time between

the reconstructed signal and the clean reference. Moreover, the reconstructed

signal is not aligned with the noisy mixture either. These misalignments are a

side effect of the time-domain to the frequency-domain transformation, the

processing manipulations on the transformed signal, and the reconstruction
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of the signal in the time-domain using the inverse-transform technique. There-

fore, without any alignments, extraction of the Segmental-SNR is meaningless

and most probably inaccurate. Due to that limitation, an alignment process

should be applied prior to taking the Segmental SNR calculation. These align-

ments usually have a small marginal error that spans over a few sampling

points.

2.1.4 STOI – Short-Time Objective Intelligibility

STOI [8] is a metric that is used to evaluate the intelligibility of a speech signal.

The intelligibility is measured by taking the correlation coefficient between

the temporal envelopes of the clean and degraded speech. In our case, the

term degraded might be confusing since the degraded speech input is actually

the outcome of the beamformer following the T-F masking at the front-end.

However, relative to the clean speech, the beamformer’s output is indeed

degraded, although it is considered an enhanced version of the noisy mixture.

The naming convention Short-Time comes from the time frame length of

the overlapping segments, which is 384ms.

Figure 2.1: STOI flow diagram

Source: Adapted from [8]
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The STOI algorithm structure is demonstrated in the blocks diagram shown

in Figure 2.1.

The short-time temporal envelop of the degraded speech Yj,m is clipped

and normalized before the extraction of the correlation coefficient with the

short-time temporal envelop of the clean speech Xj,m . This clipped normalized

version then be:

Y [n] = min

{︄
||Xj,m ||
||Yj,m ||

Yj,m [n], (1 + 10− β/20)Xj,m [n]

}︄
(2.9)

Thus, the correlation coefficient can be expressed as the distance given in

Equation 2.10.

dj,m =
(Xj,m − X̄ j,m)

tr · (Yj,m − Ȳ j,m)

||Xj,m − X̄ j,m || · ||Yj,m − Ȳ j,m ||
(2.10)

Also, defining the intermediate intelligibility measure, Equation 2.10, it stands

for the mth time frame. Extending it to form a definition for the entire signal,

we can take the average of dj,m as in Equation 2.11.

d =
1

JM ∑
j,m

dj,m (2.11)

Where J presents the total number of one-third octave bands, and the

averaging overlaps M number of time frames.

2.1.5 PESQ – Perceptual Evaluation of Speech Quality

PESQ [6] is a measuring method adopted by the ITU (International Telecom-

munication Union, ITU-T P.862) to test the speech quality of telephony and
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mobile stations.

This measuring metric evolved from different previous measuring tech-

niques such as Bark Spectral Distortion (BSD), Perceptual Analysis Measure-

ment System (PAMS), and Perceptual Speech Quality Measure (PSQM).

The motivation behind the development of the PESQ metric was the need

to assess the speech quality in an E2E communication channel that considers

the entire link rather than particular parts.

The evaluation of a speech signal quality by PESQ follows the MOS (Mean

Opinion Scores) scoring model, where the actual speech quality is ranked

between 1 to 5 by a group of listeners. The MOS is a subjective measure, while

the PESQ is an objective measure.

Figure 2.2 shows the data flow of the PESQ computation for a predicted

signal, with respect to the clean reference.

Figure 2.2: PESQ Algorithm Blocks Diagram

Source: Adapted from PESQ paper [6] and redesigned
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2.2 ASR Metrics

2.2.1 WER – Word Error Rate

WER [3] metric is probably the most used evaluation technique for speech

recognition systems.

Evaluation of this metric occurs at the ASR engine’s output, where the

predicted text is segmented into sentences. Each word in the predicted text is

then matched with its counterpart in the annotated reference transcript. The

sum of mismatches between a predicted sentence and the reference, divided

by the total counted words in the reference, indicates the WER.

However, in some cases, the predicted sentences differ in size compared

to the reference. Therefore, special care for Insertions and Deletions should be

carried out as well, without neglecting the detected Substitutions.

The WER is described by:

WER =
S + D + I

N
(2.12)

Where N is the total count of words in the reference, and S, D, I are the

number of Substitutions (wrong word detection), Deletions (Omitting words),

and Insertions (Wrong words insertions).

2.2.2 CER – Character Error Rate

CER is another metric with some similarities to the WER evaluation metric

but with a narrower resolution. The change in resolution is due to comparing

characters instead of words. The same rules of Substitutions, Deletions, and
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Insertions apply, and therefore, the calculation of the CER is the same:

CER =
S + D + I

N
(2.13)

In many cases, the CER [10] is a complementary measuring metric to the

WER metric. This extra measure shines especially when there is a need to get

a full perspective with a greater differentiation capability of the Substitutions

in the complete sentence of the suggested predicted transcript, also known

as the hypothesis. While WER counts a mismatch between the reference

and the predicted word, even in cases where only single characters or worse,

punctuation marks are not correctly placed, CER can lead to more accurate

grading per word.

2.3 Hardware Metrics

2.3.1 Power Estimation

Electrical circuits, components, and systems require power to function. The

amount of power a device consumes from the power sources is subject to

various parameters and mainly describes the rate of energy delivery from the

source to the device or vice versa.

Due to the nature of conducting materials, whenever an electrical potential

is applied between the conductor’s terminals, electrical current goes through

the conductor. The current that flows in the system feeds the different compo-

nents with energy. However, the total supplied energy is not purely consumed

over time, and some energy is lost and wasted due to power dissipation.

22



Power dissipation is a side effect of a conductors’ resistive nature, which

"resists" the transition of current through it. As a result, part of the energy in

the system is converted to heat energy.

Since dissipated power is a waste of energy it is also considered as one

of the main causes to electronic systems’ performance degradation at high

temperatures. Therefore, engineers want to mitigate as much as possible any

dissipated power that is not used for the main functionality of the system.

For that end, power analysis is crucial in any system design phase to ensure

efficiency and correctness while maintaining robustness over time and under

different working conditions.

Electrical circuit power dissipation depends on many arguments. However,

in general, it can be modeled accurately according to three scenarios divided

into two main groups:

1. Static Power

• Intrinsic Leakage Power

2. Dynamic Power

• Internal Power

• Switching Power

2.3.1.1 Intrinsic Leakage Power

Leakage power is the power that dissipates due to the structure of a CMOS

device, where a thin layer of metal oxide isolates between the semiconductor

material and the gate metal and thus forming a capacitor. Leakage power
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dissipates statically regardless of the CMOS device state, whether it is the

active state or the off state (idle).

Figure 2.3: Leakage Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]

Figure 2.3 describes three current leakages, the reverse bias current of the

diode (p-n junction), sub-threshold current leakage, and the gate leakage.

With the recent advancement in process technologies, CMOS devices are

minimized in size, but the leakage power is increasing as a side effect.

Figure 2.4: Leakage Power vs. Process Technology

Source: Adapted from Soitec FinFet presentation [1]
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The overall leakage power is a function of the total number of voltage

sources and their voltage levels, the physical dimensions of the CMOS device,

and the threshold value set to switch between on-off states.

2.3.1.2 Internal Power

A CMOS device is a formation of two complementary MOS transistors, a

p-type and an n-type, formed together as a symmetrical pair unit. Internal

power dissipation happens due to the structure of CMOS devices. Whenever

a transition at the CMOS gate occurs, both the NMOS and the PMOS drivers

are active for a relatively small duration of time. As a result, a short circuit

is formed directly from the power rail to the ground. Although not lasting

for long periods of time, the amount of internal dissipated power in highly

toggled designs becomes significant over time. To minimize the internal

dissipated power, or in other words, minimizing the time duration where both

devices are active and current flows from Vdd to GND, the transition times

(both rising and falling) are set to be very fast.

Figure 2.5: Internal Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]
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2.3.1.3 Switching Power

Switching power is the power dissipated as a result of charging and discharg-

ing loads during transitions. MOS devices introduce capacitance at their input

gates due to their structure. Thus, whenever a low-to-high transition at the

output occurs, the driver pushes the current to charge the capacitive load in

order to set the desired logic level voltage. Likewise, the load capacitance

discharge and sink into the device through the PMOS transistor to the ground

for a high-to-low transition at the output. As a result, the charging and dis-

charging currents eventually dissipate and are not delivered to the external

load.

Figure 2.6: Switching Power Illustration

Source: Adapted from Synopsys PrimePower Suit documentation [2]
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Chapter 3

Audio Frequency Scaling methods

3.1 Introduction

The human hearing system detects acoustic vibrations and translates those

vibrations into sounds. The detectable range of frequencies by the human ear

is referred to as audio or sonic. This range spans over approximately 20 kHz,

starting at 20 Hz to about 20 kHz [7].

As a result of aging, the hearing system’s dynamic range as to the de-

tectable bandwidth decreases, and by middle-age are set at about 20 Hz to

14 KHz [8]. That is, the maximum hearable frequency declines with age.

The human ear’s ability to distinguish between two different frequencies

is not symmetric. For example, the spectral distance between two different

frequencies in one distinct region does not equal the spectral distance be-

tween two additional frequencies in other regions. Due to that asymmetry,

the conventional linear spectral mapping is impractical for speech analysis

applications. Thus, a different spectral mapping based on a different scaling

system that mimics the human hearing as possible is applied.
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3.2 Mel-Scaling

The Mel-scaling method is a suggested solution to mapping standard audio

frequencies to perceived frequencies. The basic idea that lies underneath it

is that for different pitches we assign varying bandwidth, such that they are

equal in distance from each other, as rated by listeners. The reference point

has been chosen to be 1000 Hz = 1000 Mels.

Mel-scale was first described in [4] by Stevens and Volkmann, where the

authors presented different curves for Mel-scaling.

Two common tables were composed according to the Mel-scaling curves.

One table by Beranek in 1949 [1] and the second by Umesh et al. in 1999 [6].

The most popular equation that models the Mel-scale is typically refer-

enced as the "Logarithm based Mel scale" [2]:

Mel = ln
(︃

1 +
f

700

)︃
· 1000

ln(1 + 1000
700 )

(3.1)

Equation [3.1] can be simplified as follows:

Mel = 1127 ln
(︃

1 +
f

700

)︃

Mel = 2595 log10

(︃
1 +

f
700

)︃
(3.2)
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Then, the reverse equation, converting Mels back to Hz, can be written as:

f [Hz] = 700
(︂

10
Mel
2595 − 1

)︂
(3.3)

3.2.1 Mel-scale approximations

Computing a logarithm for hardware devices, whether it is the natural loga-

rithm or any other base, is not very straightforward. For example, this kind of

computation might require special techniques or long LUTs (look-up tables),

which are extraordinarily resource hungry.

Instead, other approximations that do not involve trigonometric or loga-

rithms, but only simple arithmetic structures can be applied. By doing so, we

benefit from low resource utilization while maintaining high accuracy.

Multiple approximation methods were studied in [6]. Two approximations

are the most prominent for target HW devices.

Mel = a + b · f (3.4)

Mel =
f

a · f + b
(3.5)

Where a, b in Equation 3.4 are defined as follows:

a =

{︄
127.7 , f ≤ 1000
1322 , f > 1000

b =

{︄
0.9 , f ≤ 1000
0.19 , f > 1000

(3.6)
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while in Equation 3.5 a, b are:

a =

{︄
0.000244 , f ≤ 1000
0.0004 , f > 1000

b =

{︄
0.741 , f ≤ 1000
0.603 , f > 1000

(3.7)

Figure 3.1: Mel-scale comparisons with Beranek & Umesh tables

Figure 3.1 has comparisons of three different Mel-scale implementations

with Beranek & Umesh tables. The first column, Log Based Mel, represents

O’Shaugnessy’s famous log-based Mel modeling. The Mel option #1, and Mel
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option #2 columns follow the suggested approximations given in Equations

3.4 and 3.5, respectively.

From the last row of graphs, we can deduce that the approximation in

Equation 3.5 is the closest along with the range of audio frequencies to the

tables provided by Beranek & Umesh. On the other hand, the more simplified

approximation in Equation 3.4 seems to yield the highest errors.

Figure 3.2: LUT based Mel FPGA implementation results
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Figure 3.3: Mel approx. #1 FPGA implementation results

Figures 3.2, 3.3 present the results of FPGA implementations of O’Shaugnessy’s

log-based Mel and Mel approximation #1. Nonetheless, a high precision quan-

tization, U32.22 was chosen for the Mel approximation, where the shifting

error received is higher when compared to the conventional Log Mel scaling

implementation. Although this error shift is compensated just by selecting

the approximation method, the straightforward approach turned out to be

the non-optimized solution in terms of HW resources and power consump-

tion, which utilized four times higher wattage on top of 25 − 30% additional

resources.

Instead, two optimization workarounds were tested. The first is the multi-

plication of the a, b coefficients in Equation 3.5 by 1000. The second optimiza-

tion is reorganizing the equation and storing the result in a sufficient precision
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structure in memory for the fractional part but lower resolution for the integer

part. These optimizations lead to a reduction in the required number of bits

for the fractional part. As a result, both the frequency shifting error and the

overall resource utilization are greatly improved.

Yet, the split in frequency bands results in two multiplied sets of coeffi-

cients for each band calculation. Therefore, choosing a more generalized set

of coefficients for the entire audio band can help in the reduction of redun-

dant LUTs and other combinational logic, such as selectors and multi-bus

multiplexer cells.

Selection of a = 0.24, b = 0.741, showed better results as can be seen in

Figure 3.5. The accuracy estimation for the non-generic implementation is

shown in Figure 3.4.

Figure 3.4: Mel approx. #1 optimized FPGA implementation results
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Figure 3.5: Mel approx. #1 optimized, generic FPGA implementation results

Algorithm Latency [ns] Quant. Max Err. [∆Hz] Mean Err. Std Err.
Log LUT Mel 14 (3 C.C) U16/4 1.146 0.268 0.106
Mel #1 9 (2 C.C) U32/22 1.338 -0.873 -0.359
Mel #1 Opt 9 (2 C.C) U16/4 0.190 -0.053 0.065
Mel #1 Generic 9 (2 C.C) U16/4 0.174 -0.035 0.061

Table 3.1: Mel-Approx, log-based Mel performance comparison

Algorithm FF LUT DSP LUTRAM BRAM
Log LUT Mel 82(0.04%) 276(0.23%) 1(<1%) 10(0.02%) 1.5(1.04%)
Mel #1 47(0.02%) 530(0.45%) 1(<1%) 0(0%) 0(0%)
Mel #1 Opt 47(0.02%) 271(0.23%) 1(<1%) 0(0%) 0(0%)
Mel #1 Generic 47(0.02%) 269(0.19%) 1(<1%) 0(0%) 0(0%)

Table 3.2: Mel scaling methods resource utilization table
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Parameter Log LUT Mel Mel #1 Mel #1 Opt Mel #1 Generic
Dynamic Power [W]

Signals 4.947 5.221 3.011 2.916
Logic 6.50 6.792 3.751 3.070
DSP 0.014 0.013 0.014 0.014
I/O 18.236 26.263 7.207 6.378
Pdynmic 29.697 38.290 13.983 12.379

Static Power [W]
PL Static 2.364 2.466 0.499 0.499
PS Static 0.068 0.071 0.020 0.018
Pstatic 2.432 2.537 0.519 0.517

Total Power [W]
Ptotal 32.13 40.827 14.502 12.896

Table 3.3: Mel-Approx, log-based Mel, Bark Scale Power consumption

The LUT implementation makes use of a log2 look-up table. However, an

additional step is needed for the natural logarithm or other log bases. Since

the logarithm bases are constant, the LUT result is divided by the log2 of

the base, whether it be the natural base or base ten. This logarithm bases

convention is described in Equation 3.8.

logb(a) =
logx(a)
logx(b)

(3.8)

Table 3.1 summarizes the performance comparison between the different

Mel scaling implementation approaches.

The HW setup is for the PYNQ-Z1 development board. Hence, the results

are unique to that specific HW device and probably change for other FPGA

devices and development boards.

Latencies were simulated with Xilinx Vivado Suite for an operating clock
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frequency of 225 MHz. In this operating condition, no timing violations were

reported.

Tables 3.2 and 3.3 show the synthesis and implementation results plus the

power estimation reports. These reports were taken from the Xilinx Vivado

Suite application.

3.3 Bark-Scaling

Another scaling method is the Bark scale which is based on the same principle

of retaining perceptual distances. The Bark scale is divided into critical bands

corresponding to the critical hearing bands in humans. Each band has a

bandwidth similar to the psychoacoustic band of the corresponding “filter” in

the human hearing system and is ranked with a unique number.

3.3.1 Bark Critical Bands

Like the Mel scale, several equations were proposed to model best the Bark

scale and its critical bands.

The first method was introduced in [9]. A proposed approximation to the

Bark scaling is described in [5]; this paper also introduces the correction of the

band boundaries to ensure more correctness with the original Bark scaling.

Four different equations were proposed to model the Bark scale.

The first by Zwicker is well described in [9] and is given by the following
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equation:

Bark = tan−1 {0.00073 f }+ 3.5 tan−1

{︄(︃
f

7500

)︃2
}︄

(3.9)

Zwicker’s bark scale and it’s corresponding critical bands are shown in

Figure 3.6

Figure 3.6: Zwicker’s bark scale and critical bands

Another proposed equation by Traunmuller [5] is:

Bark =
26.81 f

1960 + f
− 0.53 (3.10)

Traunmuller’s bark scale and it’s corresponding critical bands are shown

in Figure 3.7
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Figure 3.7: Traunmuller’s original bark scale and critical bands

Denoting Traunmuller’s original Bark scale given in Equation 3.10 as Bark′,

the fixed form for Traunmuller’s Bark equation is:

Bark =

{︄
0.3 + 0.85 · (Bark′) , Bark′ < 2
Bark′ + 0.22 · (Bark′ − 20.1) , Bark′ > 20.1

(3.11)

Traunmiller’s fixed bark scale and its corresponding critical bands are

shown in Figure 3.8
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Figure 3.8: Traunmuller’s fixed bark scale and critical bands

The fourth possible modeling equation is proposed by Schroeder in [3]

and is as follows:

Bark = 7 ln

(︄
f

650
+

√︃
1 +

f 2

422500

)︄
(3.12)

Schroeder’s bark scale and it’s corresponding critical bands are shown in

Figure 3.9
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Figure 3.9: Schroeder’s bark scale and critical bands

Figure 3.10 shows a comparison between the four bark scaling methods.
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Figure 3.10: Bark Scale comparisons

We see in Figure 3.10 that Schroeder’s bark scale has a large error term

when compared to the other suggested bark scales. On the other hand, when

we omit Schroeder’s scale and measure the maximum distance between the

other three suggested scales, we see that the error is comparatively lower.

We intend to simplify our implementations in hardware as much as possi-

ble. Simplifications are expressed in utilizing less hardware resources. This

is possible especially when using basic arithmetic operations. Therefore, we

decide to focus on Traunmuller’s original bark scale given in Equation 3.10
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The accuracy estimation for Traunmuller’s original bark scale is shown in

Figure 3.11.

Figure 3.11: Traunmuller’s original bark scale FPGA implementation results

Algorithm Latency [ns] Quant. Max Err. [∆Hz] Mean Err. Std Err.
Trau. w/ Fix 14 (3 C.C) U10/5 N.A N.A N.a
Trau. w/o Fix 9 (2 C.C) U9/4 0.0443 0.0015 0.0180

Table 3.4: Traunmuller’s Bark scale implementations performance comparison

Algorithm FF LUT DSP LUTRAM BRAM
Traunmuller w/ Fix 43(0.02%) 302(0.26%) 1(<1%) 0(0%) 0(0%)
Traunmuller w/o Fix 27(0.01%) 284(0.24%) 1(<1%) 0(0%) 0(0%)

Table 3.5: Traunmuller’s Bark scale implementations resource utilization table
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Parameter Traunmuller w/ Fix Traunmuller w/o Fix
Dynamic Power [W]

Signals 2.380 2.192
Logic 3.079 2.957
DSP 1.445 0.014
I/O 4.022 4.022
Pdynmic 10.923 9.186

Static Power [W]
PL Static 0.469 0.437
PS Static 0.017 0.016
Pstatic 0.486 0.453

Total Power [W]
Ptotal 11.412 9.639

Table 3.6: Traunmuller’s Bark scale implementations Power consumption

Table 3.4 summarizes the performance comparison between the different

Bark scaling implementation approaches.

Tables 3.5 and 3.6 show the synthesis and implementation results plus the

power estimation reports. These reports were taken from the Xilinx Vivado

Suite application.

3.4 ERB - Equivalent Rectangular Bandwidth

Like the Bark scaling method, the ERB scale aims to rescale the audio spectrum

in different bandwidths corresponding to the human hearing “filters”.

This approach slightly differs from the Bark scale because the filter is

modeled according to a rectangular filter with an equivalent bandwidth.

ERBs = 11.17 ln(47.065 − 676170.42
f + 14678.5

) (3.13)
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A proposed approximation is given by:

ERBs = 21.4 · log10(1 + 0.00437 f ) (3.14)

The accuracy estimation for the LUT based ERB scale and the LUT based

ERB approximation are shown in Figures 3.12, 3.13, respectively.

Figure 3.12: LUT based ERB FPGA implementation results

Figure 3.13: LUT based ERB approximation FPGA implementation results
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Algorithm Latency [ns] Quant. Max Err. [∆C] Mean Err. Std Err.
ERB 23 (5 C.C) U16/10 0.0153 0.0130 0.0018
ERB Approx 14 (3 C.C) U16/10 6.210m -0.408m 0.657m

Table 3.7: ERB and ERB approx performance comparison

Table 3.7 presents the performance comparison between the implementa-

tions of the pure ERB and the ERB approximation given by Equations 3.13 and

3.14, respectively. The error terms for the ERBs are measured in ∆C, indicating

the error in Cams rather than in frequency units (Hz). Equation 3.15 can be

used to convert Cams to Hz.

f =
676170.42

47.065 − e0.0895·C − 14678.5 (3.15)

Algorithm FF LUT DSP LUTRAM BRAM
ERB 112(0.05%) 824(0.70%) 1(<1%) 1(0.02%) 1.5(1.04%)
ERB Approx 103(0.04%) 564(0.48%) 1(<1%) 1(0.01%) 1.5(1.04%)

Table 3.8: ERB scaling methods resource utilization table
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Parameter ERB ERB Approx
Dynamic Power [W]

Signals 12.691 5.525
Logic 17.576 7.478
DSP 0.067 0.049
I/O 17.379 17.373
Pdynmic 47.713 31.519

Static Power [W]
PL Static 2.971 1.510
PS Static 0.084 0.046
Pstatic 3.055 1.556

Total Power [W]
Ptotal 50.768 33.075

Table 3.9: ERB vs. ERB approx Power consumption

Tables 3.8 and 3.9 show the synthesis and implementation results plus the

power estimation reports for the ERB implementations.

3.5 Summary

The following tables 3.10, 3.11 and 3.12, provide a summary of the resource

utilization, timing and accuracy performances, and lastly the power consump-

tion of each scaling implementation.

Algorithm FF LUT DSP LUTRAM BRAM
Log-Based Mel 82(0.04%) 276(0.23%) 1(<1%) 10(0.02%) 1.5(1.04%)
Mel #1 Generic 47(0.02%) 269(0.19%) 1(<1%) 0(0%) 0(0%)
Bark Scale w/ fix 43(0.02%) 302(0.26%) 1(<1%) 0(0%) 0(0%)
Bark Scale w/o fix 27(0.01%) 284(0.24%) 1(<1%) 0(0%) 0(0%)
Approx. ERB 103(0.04%) 564(0.48%) 1(<1%) 1(0.01%) 1.5(1.04%)

Table 3.10: Mel-Approx, log-based Mel, Bark Scale, and approximated ERB resources
utilization comparison
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Algorithm Latency [ns] Quant. Max Err. [∆Hz] Mean Err. Std Err.
Log-Based Mel 14 (3 C.C) U16/4 1.146 0.268 0.106
Mel #1 Generic 9 (2 C.C) U16/4 0.174 -0.035 0.061
Bark Scale w/ fix 14 (3 C.C) U10/5 N.A N.A N.A
Bark Scale w/o fix 9 (2 C.C) U9/4 0.0443 1.5m 0.0015
ERB Approx. 14 (3 C.C) U16/10 0.292 0.104 0.134

Table 3.11: Mel-Approx, log-based Mel, Bark Scale performance comparison

Parameter Mel LUT Mel Gen Bark w/ Bark w/o Approx. ERB
Dynamic Power [W]

Signals 4.947 2.916 2.380 2.192 5.525
Logic 6.50 3.070 3.079 2.957 7.478
DSP 0.014 0.014 1.445 0.014 0.049
I/O 18.236 6.378 4.022 4.022 17.373
Pdynmic 29.697 12.379 10.923 9.186 31.519

Static Power [W]
PL Static 2.364 0.499 0.469 0.437 1.510
PS Static 0.068 0.018 0.017 0.016 0.046
Pstatic 2.432 0.517 0.486 0.453 1.556

Total Power [W]
Ptotal 32.13 12.896 11.412 9.639 33.075

Table 3.12: Mel-Approx, log-based Mel, Bark Scale, and approximated ERB Power
consumption

We see that the implementations of the approximated Mel scale generic

and the Traunmuller’s bark scaling approaches were synthesized to the small-

est amount of physical hardware resources. This also supports the measured

power consumptions we see in Table 3.12, where these scaling implementa-

tions proved to be the most efficient.

Based on these results, we conducted the research using these most promi-

nent implementations in the feature extraction modules and the ASR engine’s

internal acoustic scaling.
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Chapter 4

Features

4.1 Introduction

In data analysis craftsmanship, it is important to characterize the data so

that variations are noticeable and more easily discernible during the analysis

process. To that end, the input data being analyzed is reorganized according

to selected features on which conclusions and distinctive deductions can be

made. Similarly, in a supervised learning procedure, data reorganization is

needed in order to make classification decisions accurately.

An intelligent choice of the learnable features [5] can drastically change a

given model’s outcomes quality. In supervised learning, the feature selection

and extraction process, are preparatory steps to the learning or classification

stages coming next. As a rule of thumb, the more features, the better the

accuracy a learning model can yield theoretically[3]. That holds true to a great

degree as long as the amount of sudden fluctuations do not characterize the

data. In a case of heavy fluctuating data, or alternatively, in the case of a

massive number of features, that some of which have minor contributions
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to the classification part of the output, an increase in the number of features

may become deteriorative. In terms of performance, enlarging the number of

features leads to a bigger model, an increased number of learnable parameters,

longer training times, and unnecessary extension of processing times. Also, a

possible reduction in the accuracy is expected due to False-Negative (FN) or

False-Positive (FP) misdetections resulting from the wrong classification of

signals as noise and vice versa caused by additional redundant features.

For speech signals, a wide variety of meaningful feature sets exist. More or

less useful, different speech features may better fit certain use-cases or fulfill

a particular unerring task. Features for speech (including audio) are mainly

from the following domains: spectral features, cepstral features, time domain

features, and spatial features.

Speech features are selected to give the maximal accuracy in detecting

utterances. That means a precise characterization of a word, utterance, or the

pronunciation of a single character, making them distinguishable from other

input streams.

4.2 Spectral Features

4.2.1 FB – FilterBanks

FilterBanks is a very common technique for spectral mapping of speech sig-

nals. By dividing the audio spectrum into multiple frequency bins with a

pre-defined percentage of overlap, the spectrum is “framed” according to fre-

quency. Thus, by a set of bandpass filters, each of which contain the confined

information of the speech signal that corresponds to the filter’s specific range
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of frequencies.

The resolution can then be set as a function of the number of filters and

the overall processed audio bandwidth. Increasing the number of filters,

assuming the audio bandwidth and the overlap ratio are constant, means

narrower allocated bandwidths for each individual filter or in other better

spectral resolution.

Filterbanks by themselves are not the desired speech feature, but only

the mean for feature extraction. The most common feature extracted by a

filterbank set is the total sum of energy bounded by the filter’s frequency

response.

A set of filters is computed per frequency bin and remains the same for the

entire signal length over time. Thus, the total sum of energy computed for

each filter characterizes the speech over a finite defined duration of time.

The human hearing system is less sensitive to high frequencies than lower

band frequencies, as described in Chapter 3. Therefore, in an attempt to

emulate that same natural behavior and to resemble human hearing “filters”

as much as possible, the filterbank set of filters is set with center frequencies

according to the different scaling methods noted in Chapter 3. In that way,

narrow-band filters are assigned to lower frequency ranges. Similarly, wide-

band filters are for the higher hearable frequency ranges.

4.2.1.1 Mel FB

One way of mapping the audio spectrum is according to the Mel scale. This

scaling method is described in Chapter 3. First, the center frequencies and
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the bandwidths are received by the transformation between Hertz to Mels.

Then a set of Bartlett filters with those center frequencies are generated with

an overlap of 50% between adjacent filters.

The amplitude of the filters is bounded to “1” to maintain Nonzero Overlap

Add (NOLA) compatibility. An example of a Mel Filterbank constructed by

Bartlett filters is shown in Figure 4.1.

Figure 4.1: Mel FB

4.2.1.2 Bark FB

The Bark Filterbank is very similar to the Mel Filterbank except that it follows

the Bark scale instead of the Mel Scale.

Different filter shapes are available but, triangular filter shapes are the

most common, as described in [8].

An example of the Bark Filterbank constructed by Bartlett filters is shown
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in Figure 4.2.

Figure 4.2: Bark FB

4.2.1.3 Gammatone FB

The Gammatone filter, as described in [1], has a response function as follows:

g(t) = αtn−1e−2πbt cos (2π fct + ϕ) (4.1)

Where α denotes the amplitude factor, n is the filter order, fc is the center

frequency, ϕ is the phase factor, and b is the bandwidth parameter computed

according to the ERB scale mapping of 1.019 · ERB ( fc).

An example of a Gammatone Filterbank is shown in Figure 4.3.
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Figure 4.3: Gammatone FB

4.3 Cepstral Features

4.3.1 MFCCs – Mel-Frequency Cepstral Coefficients

4.3.1.1 Pre-emphasis

Speech signals have a roll-off frequency resembling a low-pass behavior [6].

Due to that physical nature, higher frequencies decay faster than lower speech

frequencies. Compensation for this phenomenon is attainable with a pre-

emphasis filter that boosts the higher [2] frequencies responses.

4.3.1.2 Framing

Speech signals vary in time. Although the variation over time can be relatively

slow, a speech signal is not a pure stationary process but a quasi-stationary.

Therefore, analysis of speech signals is taken on small portions of the signal to

be less affected by randomness effects. To that end, a preliminary framing ac-

tion is applied to speech signals in the time domain. Framing means dividing

the signal into small fragments (frames) with some overlapping in between.
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Each time frame is assumed to be stationary, and thus a measurement can be

taken.

The shifting in time between frames is referred to as the hopping length

and is set to contain a sufficient amount of temporal context that characterizes

the natural characteristics of speech.

A very common sampling frequency of audio signals is 16KHz. In order

to work with a round number of sampling points, the frame lengths and

the hopping lengths are set to 25ms, and 6.25ms or 10ms for hopping size.

These values translate to a frame length equals 400 sampling points at 16KHz,

and hopping size equals 100 or 160 sampling points, respectively. Another

advantage of setting the hopping length as 6.25ms is that it gives a complete

temporal context of 3 adjacent frames by definition.

4.3.1.3 Windowing

In order to extract each frame only whilst also minimizing the Gibbs phe-

nomenon as much as possible, a windowing function is applied. As a result,

the information confined in a given frame is extracted while the window’s

response function tapers the edges to reduce the adjacent frames’ effect.

Usually, a Hamming or a Hann window is used as the window function

due to their relatively decent trade-off between edge tapering, implementa-

tion simplicity, bandwidth, and spectral leakage, making them exceptionally

suitable for speech signals.

The Hamming and Hann windows are given by Equations 4.2 and 4.3,
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respectively.

WHamming [n] = 0.54 − 0.46 cos
(︃

2πn
M − 1

)︃
0 ≤ n ≤ M − 1 (4.2)

WHann [n] = 0.5 − 0.5 cos
(︃

2πn
M − 1

)︃
0 ≤ n ≤ M − 1 (4.3)

4.3.1.4 DFT spectrum

Each one of the windowed frames is converted to the frequency domain by

applying the Discrete-Time Fourier Transform (DTFT). Later the DTFT results

are discretized giving the Discrete Fourier Transform (DFT). The composition

of both windowed framing and the DFT is referred to as the Short-Time

Fourier Transform (STFT). A technique to visualize the STFT outcome is called

a spectrogram. The STFT outcome contains multiple frequency bins per time

frame, making it a function of f and t.

The DTFT is given by:

Xm( f ) =
∞

∑
n=−∞

x[n]g[n − mR]e−j2π f n (4.4)

Where Xm( f ) denotes the DFT transformation of a given time frame win-

dows signal, g[◦] denotes the window function of size M, and R represents

the hopping size.
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Figure 4.4: STFT demonstration diagram

Source: Adapted from Matlab’s STFT documentation [4]

4.3.1.5 Mel-spectrum

Once the spectrogram is received, the frequencies are rescaled in accordance

with the Mel Scale. A comprehensive description of the Mel Scale was detailed

in Chapter 3.

Next, the cepstral coefficients are extracted from each frequency bin, by

taking the energies summed of each filter and multiplying it with the Discrete
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Cosine Transform (DCT).

MFCC[n] =

√︃
2
K

K

∑
k=1

{e[k] · DCT (k)}

=

√︃
2
K

K

∑
k=1

{︂
e[k] · cos

(︂πn
K

(k + 0.5)
)︂}︂

(4.5)

It is very common to extract the log-Mel energies and then have Equa-

tion 4.5 written as:

MFCC[n] =

√︃
2
K

K

∑
k=1

{︂
log (e[k]) · cos

(︂πn
K

(k + 0.5)
)︂}︂

(4.6)

4.3.2 RFCCs – Root-Frequency Cepstral Coefficients

An alternative to the log-Mel extraction of the cepstral coefficients has been

suggested in [7] and [9]. The motivation to put this proposed technique under

test is that the root function can be less computationally demanding than the

traditional log function..

RFCC[n] =

√︃
2
N

K

∑
k=1

{︂
(e[k])γ · cos

(︂πn
K

(k + 0.5)
)︂}︂

(4.7)

4.3.3 GFCCs – Gammatone-Frequency Cepstral Coefficients

GFCCs follow the same basic steps as the MFCCs extraction. But, instead of

translating the frequencies to Mels, the spectrum is translated to the ERB scale.

ERB scale implies a Gammatone Filterbank as described in Chapter 3.
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4.3.4 BFCCs – Bark-Frequency Cepstral Coefficients

Like the Gammatone-FCCs (GFCCs), the BFCCs follow the Bark scale.

4.4 Time-Domain Features

4.4.1 Dynamic FCC features

During the framing process, the speech signal is divided into small fragments

of the speech over time. These time unit fragments are called frames. Each

frame spans over a finite time duration. The extracted cepstral coefficients are

computed statically for a given frame. However, the original speech is framed

in multiple number of frames. Therefore, coefficients extractions have to be

dynamic for the entire signal, i.e., all frames.

Additional information about the temporal changes between adjacent

coefficients can also be extracted to include the dynamics and transitions

within a frame.

4.4.1.1 Deltas

The first derivate of the cepstral coefficients, known as the Deltas (∆), rep-

resents the velocity of the MFCCs’ dynamics and is a sub-set of the cepstral

coefficients.

Deltas (∆) are extracted by:

∆[n] =

T
∑

i=−T
kicm[n + i]

T
∑

i=−T
|i|

(4.8)
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Where n denotes the frame time index, k marks the coefficient weight, T

stands for the number of temporally adjacent frames used for the calculation,

and cm denotes the mth coefficient in the given frame n.

4.4.1.2 Delta-Deltas

Delta-Deltas (∆∆) is an extra layer of information representing the acceleration

at which the MFCCs’ dynamics change within a given time frame. The extrac-

tion of the Delta-Deltas follows the same principale as the first derivatives.

Yet, instead of taking the cepstral coefficients as the input feature, we replace

cm in Equation 4.8 with the first-order derivatives ∆[n].

4.4.2 Temporal Context

Temporal context is an attachment of raw unprocessed feature data from ad-

jacent frames together with the currently selected feature. Whether spectral,

cepstral, or spatial features, the concatenation of past and future features can

infer decisions based on a memorized characteristics. Furthermore, different

languages introduce contextual constraints such as relative positions of ad-

jectives or nouns to verbs, plurals, affiliations, possessions, and other lingual

principles.

Usually, the number of adjacent past and future frames to concatenate is

based on the framing and DFT parameters. It is plain to understand one would

not want to exaggerate and excessively use redundant frames that do not have

any significant impact on the accuracy of detection. The downside of overly

using temporal context frames is potentially having orders of magnitude
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larger amounts of information to process.
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Chapter 5

Time-Frequency Masking

5.1 Introduction

Speech separation makes use of various algorithms in order to distinguish in

one way or another between desired speech and interferences. It is similar

to other prevalent enhancement applications, such as the Computational

Auditory Scene Analysis (CASA) [1] and Blind Speech Separation (BSS) [3].

The advantages of precise distinction between speech and interference include,

among others, the ability to apply speech enhancements, noise cancelation or

reduction, speech corrections, and more. With ASR systems, these abilities are

expressed in improved performance of precisely detecting words at higher

rates.

A typical algorithm in CASA applications is time-frequency masking (T-F

masking). Since speech signals vary with time, as described in Chapter 4,

they are not considered stationary. Hence, a unique representation is required

for conducting an accurate analysis of such signals.

A T-F representation means presenting a speech signal in time-frequency
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composition, where each T-F unit contains the speech’s spectral elements at a

certain time window bin. As described in Chapter 4, the T-F presentation of a

signal is produced by using the STFT or auditory filtering [5].

Examples of STFT outputs for a noisy speech mixture and a clean reference

of the same speech are given in Figures 5.1 and 5.2 respectively.

Figure 5.1: Noisy mixture spectrogram

Figure 5.2: Reference clean speech spectrogram
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Examination of the T-F units provides a possibility to classify an entire unit

or parts of a unit as a speech-centric bin or, on the contrary, as interference

(mainly noise). Based on this classification, appropriate weights are associated

with each segment bin. In that way, speech elements can be extracted by

separating the classified speech out of the mixture, or alternatively, attenuation

the non-speech elements in certain activity areas along the length of the audio

signal.

In general, the association of weights for classifying different elements in a

signal is called T-F masking. This process of T-F masking takes a significant

role in CASA and BSS applications, and in recent years, they have proved to

be very useful in E2E-ASR systems.

An additional use of T-F masking is to tie it as input to a beamformer that

in turn, filters interferences based on the classification received by the masking

operation.

5.2 IBM – Ideal Binary Mask

Assuming that a voice activity detection algorithm can separate speech from

noise effectively, the IBM technique is based on power differences. When-

ever the speech’s power spectral density (PSD) is higher than any of the

interferences PSD, the speech is masked binarily to “1”.

Ms(jω, t) =

{︄
1, i f |S(t, jω)|2 − |N(t, jω)|2 > ϵ

0, otherwise
(5.1)

Where ϵ marks a changeable threshold value for the speech activity detection

over the noise.
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Equation 5.1 indicates that as a result of applying the IBM masks, the

speech and interference separated sources become complementary in such a

way that

Mn = 1 − Ms

and thus:

y(t) =

{︄
xŝ, i f Ms = 1
xn̂, i f Ms = 0

(5.2)

5.3 IRM – Ideal Ratio Mask

Unlike IBM, where hard decisions in terms of boolean values are made, by

marking speech or noise elements with “true” or “false”, the Ideal Ratio Mask

(IRM) provides a soft decision mechanism with values in the range of [0, 1] [2].

The IRMs at any T-F unit of the clean speech and noise artifacts, Ms(jω, t) and

Mn(jω, t), are given in Equations 5.3 and 5.4, respectively.

Ms(jω, t) =
(︃

|S(t, jω)|2
|S(t, jω)|2 + |N(t, jω)|2

)︃β

(5.3)

Mn(jω, t) =
(︃

|N(t, jω)|2
|S(t, jω)|2 + |N(t, jω)|2

)︃β

(5.4)

Where β is a tunable parameter that controls the strength of the mask

estimations. A value of 0.5 is used for a fair trade-off between speech and
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noise mask estimations.

Ms(jω, t) =

√︄(︃
|S(t, jω)|2

|S(t, jω)|2 + |N(t, jω)|2

)︃
(5.5)

Mn(jω, t) ≈ 1 − Ms (5.6)

Example of the IRM masked outputs of a speech signal are given in Figures

5.3 and 5.4. Figure 5.3 shows the IRM speech mask Ms(jω, t) and Figure 5.4

shows the IRM noise mask Ms(jω, t).

Figure 5.3: IRM Speech Mask Ms(jω, t)
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Figure 5.4: IRM Noise Mask Mn(jω, t)

Thus, the covariance matrices are extracted by:

RNN(jω) =
1

T
∑

t=1
Mn(jw,t)

T

∑
t=1

Mn(jw,t) |Rx(jw,t) |
2 (5.7)

RSS(jω) =
1

T
∑

t=1
Ms(jw,t)

T

∑
t=1

Ms(jw,t) |Rx(jw,t) |
2 (5.8)

5.3.1 Masks Predictions

Predicting T-F masks is possible using neural network models that are trained

against a training dataset of ideal masked signals. The IRM masks, Ms(jω, t),

Mn(jω, t) given in Equations 5.3 and 5.4 are bounded in the range of [0, 1].

Since both the speech and noise masks are bounded in that range, it is easier

to use a Sigmoid activation function as the output layer, thus ensuring the

output indeed remains in this range.
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A simple neural network of six to eight fully-connected (FC) layers, as

seen in Figure 5.5, is used for classifying the input features to the desired IRM

masks. The network’s input features are the MFCCs of the microphone-array.

Each input signal is framed into 25ms lasting frames with a hopping length

of 6.25ms. With a sampling frequency of 16KHz, the framing settings are 400

samples per frame and a total of 300 overlapping samples.

A BLSTM layer is placed as the first block in the network, giving weight

to the temporal context as well. In that way, three additional adjacent feature

maps are concatenated from both sides of the currently processed T-F unit fea-

ture map. The BLSTM is then followed by several fully connected (FC) layers

holding in between the Rectified Linear Unit (ReLU) activation functions.
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Figure 5.5: IRM estimation DNN blocks diagram
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Production of both the speech and noise estimations co-occurs. Conse-

quently, the cost function should consider the two masks in the minimization

process of the error term. To that end, the cost function is defined as:

ℓ(ˆ︂Mjω,t, Mjω,t) =
1

2N ∑
jω,t

[︃
β
(︂ˆ︂M(s)

jω,t − M(s)
jω,t

)︂2
+ (1 − β)

(︂ˆ︂M(n)
jω,t − M(n)

jω,t

)︂2
]︃

(5.9)

Here, β denotes the weighing factor. For a fair and evenly consideration

between the masks, β is set to 0.5.

The proposed IRM estimation network blocks diagram is shown in Fig-

ure 5.6.
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Figure 5.6: Implemented DNN for IRM T-F masking estimations

Figures 5.7a and 5.7c shows the speech and noise spectrograms results of an

ideally IRM masked signal. We use these masks as a reference for comparison

with the estimated speech and noise masks produced by our DNN model

shown in Figures 5.7b and 5.7d.

73



(a) (b)

(c) (d)

Figure 5.7: (a) and (b) are the “IRM” reference vs. estimation masks of the speech
M(s)

jω,t, ˆ︂M(s)
jω,t; (c) and (d) are the “IRM” reference vs. estimation masks of the noise

M(n)
jω,t, ˆ︂M(n)

jω,t.
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5.3.2 Measurements

5.3.2.1 SNR

(a) (b)

Figure 5.8: (a) “IRM” enhanced beamformed SNR & Segmental-SNR (bottom) degra-
dation with (top) respect to the clean reference speech (middle), with the extracted
SNR per frame (bottom); (b) The SNR & Segmental-SNR ratios between the noisy
mixture (top) and the clean reference speech (middle), with the extracted SNR per
frame (bottom).

Figure 5.8 shows two measurements of the SNR & Segmental-SNR metrics for

two subject signals. We took both the clean reference and the noisy mixture

of a randomly selected entry from the CHiME dataset (additional details

about the CHiME dataset in Chapter 8). The noisy mixture is enhanced by a

beamformer with filter coefficients resulting from the implemented IRM mask

predicting DNN. Figure 5.8 shows the “IRM” enhanced beamformed version

of the noisy mixture and the noisy mixture itself with respect to the clean

reference speech. The overall improvements in SNR and Segmental-SNR are

the ratios between the enhanced beamformed signal and the noisy mixture.

Thus, from Figure 5.8 the accumulated improvement in SNR for is extracted
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from the difference between the two measurements as follows:

|SNRnoisy| − |SNRenh| = 5.1725 [dB]

Likewise, the improvement in Segmental-SNR is 9.2675 [dB]. It is important

to note that the enhanced beamformed signal does not align in time with

the clean speech reference. In a worst-case scenario, we measured a delay

of −0.0014s, which equals approximately 22 samples. A perfectly aligned

comparison would be more accurate, but since the frame lengths’ (400 sam-

ples) are much larger than the worst measured delay, the impact of this time

misalignment is less acute. The Segmental-SNR calculation makes use of a

VAD (voice activity detection) algorithm for dropping segments where the

detected speech activity is negligible. These dropped segments are red colored

in Figure 5.8.
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Figure 5.9: IRM beamformer PESQ vs. MOSLQ

Figure 5.9 presents the PESQ and the Mean Opinion Score Listening Qual-

ity (MOSLQ) metrics for the IRM beamformed output. The results are shown

in a pair-plot diagram, where the correlations between each pair of metrics

are plotted. On the diagonal, the distributions of the measured values are

shown. The mean values for both the PESQ and MOSLQ under the test cases

of the real and simulation datasets from the CHiME4 dataset are also shown

on the plots. where “et” stands for the evaluation subset and “dt” marks
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the development subset. More details about the datasets are provided in

Chapter 8.

A strong correlation between the PESQ and MOSLQ is seen in the plot,

and this behavior is both understandable and desirable since the MOSLQ

metric is based on the PESQ measurement.

Another pair-plot for the SNR, Segmental-SNR, SI-SNR and STOI metrics

is shown in Figure 5.10. The “simulation” subset yields better results in

terms of performance. It is important to note that faulty microphones in the

“real” subset are dropped prior to taking the measurements. Nevertheless,

the ambient noise absorbed is characterized by a real scenario and a non-

artificial room impulse response. On the other hand, the “simulation” subset

is composed of a recording taken in a relatively clean environment (recording

booth) and an artificial mixture of the recorded background noises.

Because the SNR and Segmental-SNR are measured as the improvement

compared to the noisy mixture, and since the background noises are truncated

to match the booth recorded speech for the “simulation” subset, the results

for those metrics are more sparsely distributed compared to the “real” subset

measurements. With the SI-SNR, the measurements are taken regardless of

the noisy mixture. Hence, the “simulation” results are far better and more

spatially dense in contrast to the “real” subset SI-SNR results.

Likewise, in the same manner, the STOI is measured regardless of the noisy

mixture but relatively to the clean speech. Therefore, the “simulation” subset

distribution is narrower with lower variance.
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Figure 5.10: IRM beamformer SNR vs. Segmental-SNR vs. STOI vs. SI-SNR

In order to evaluate the generalization of the prediction model, the DNN es-

timations are compared to the ideal mask enhancement derived from directly

applying the masking algorithm on the noisy mixture. Figure 5.11 shows the

measurements of the SNR and Segmental-SNR for an ideal IRM mask.
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Figure 5.11: Ideal IRM beamformer enhancement SNR & Segmental-SNR.

5.4 cIRM – Complex Ideal Ratio Mask

Both IBM and IRM utilize the noise and speech magnitudes only while com-

pletely neglecting the phase arguments. The outcome of the STFT operation is

a complex pair representation of each T-F unit. Recent studies have shown

the importance of the phase element in speech seperation [4, 5].

In that manner, further extension of the IRM mask to include the complex

pair to form the cIRM. Thus, instead of having a magnitude only based mask

matrix, a complex pair of masking matrices that makes use of the phase

element is given.
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The mixture y(t) after being processed by the STFT operation can be

described as a complex sum whether in polar coordinates as seen in Equa-

tion 5.10 or in the general form as in Equation 5.11.

Y(jω, t) = ST FT {y(t)} := Yjω,t

= |AY | cos(θY) + j|AY | sin(θY) (5.10)

= Yr + jYi (5.11)

The real and imaginary parts can be summarized as:

Yr := R
C
{Yjω,t} = |AY | cos(θY) (5.12)

Yi := T
M
{Yjω,t} = |AY | sin(θY) (5.13)

Extraction of the magnitude and phase from the complex representation is

accomplished by the following set of Equations 5.14 and 5.15:

|AY | =
√︂

R
C
{Yjω,t}2 + T

M
{Yjω,t}2 (5.14)

θY = tan−1

{︄
T

M
{Y(jω, t)}

R
C
{Y(jω, t)}

}︄
(5.15)

Rearranging the equations above, we can write the cIRM mask’s real and

imaginary parts as:

Mr =
YrSr + YiSi

Y2
r + Y2

i
(5.16)

Mi =
YrSi − YiSr

Y2
i + S2

r
(5.17)
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Thus, the complex masks for the speech and noise are:

M(s)
jω,t = M(s)

r + jM(s)
i

=
YrSr + YiSi

Y2
r + Y2

i
+ j

YrSi − YiSr

Y2
i + S2

r
(5.18)

M(n)
jω,t = M(N)

r + jM(N)
i

=
YrNr + YiNi

Y2
r + Y2

i
+ j

YrNi − YiNr

Y2
i + N2

r
(5.19)

Therefore, applying a cIRM T-F masking requires a complex multiplication

for separation as opposed to the more basic IBM and IRM where magnitudes

multiplications are taken in the real domain only.

The reference compressed cIRM masks are shown in Figure 5.12;

(a) (b)

(c) (d)

Figure 5.12: (a) and (b) are the cIRM real and imaginary references of the speech M(s)
r ,

M(s)
i ; (c) and (d) are the cIRM real and imaginary references of the noise M(n)

r , M(n)
i .
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5.4.1 Masks Estimations

In Section 5.4, the cIRM masks are described in Equations 5.18 and 5.19. In

contrast to the IRM masks which are bounded in the range [0, 1], the cIRM

masks are unbounded, and have the range (−∞, ∞).

A neural network cannot train for unbounded values. Hence, an alternative

presentation to the mask values is needed. One possibility is to compress the

real and imaginary masks with a hyperbolic tangent as suggested in [4]:

cIRMx = K
1 − e−C·Mx

1 + e−C·Mx
(5.20)

Where x stands for the real or the imaginary parts of the mask. By applying

this compression, the mask values are bounded in the range [−K, K], while C

controls the steepness. For that purpose, we replaced the simpler IRM DNN

sigmoid layers placed at the output with linear layers.

Then, the cost function is defined to include both real and imaginary parts

of both the noise and speech masks.

ℓ(ˆ︂M(x)
jω,t, M(x)

jω,t) =
1

2N ∑
jω,t

[︃
β
(︂ˆ︂M(s∈C)

jω,t − M(s∈C)
jω,t

)︂2
+ (1 − β)

(︂ˆ︂M(n∈C)
jω,t − M(n∈C)

jω,t

)︂2
]︃

(5.21)

The proposed cIRM estimation network blocks diagram is shown in Fig-

ure 5.13.
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Figure 5.13: Proposed DNN for cIRM T-F masking estimations
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(a) (b)

Figure 5.14: (a) Reference cIRM real speech mask M(s)
r ; (b) The estimated cIRM real

speech ˆ︂M(s)
r .

Figure 5.14 shows the reference real speech cIRM mask compared to the

estimated real speech mask predicted by the DNN model. Carefully examin-

ing the figure, one can conclude that the model generalized correctly as the

estimated mask resembles the reference to a great extent. Compared to the

“IRM” DNN performance, the cIRM model with a compression in the range of

[−10, 10] performs better in producing mask predictions that are closer to the

ideally computed masks.

5.4.2 Measurements

Due to the complexity of the cIRM DNN model, it did not generalize properly

for the evaluation dataset with 50 epochs. The results hence, are not accurate

as a reference nor for comparison, unless a retraining process is initialized

with a sufficient number of epochs to let the model generalize.

Due to the uncertainty of the impact the low number of epochs have on the

model performance, and the lack of time for a re-evaluation of the DNN mask

estimation, we decide to skip the results and to drop the cIRM measurements.
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5.5 PSM – Phase Sensitive Mask

The PSM T-F masking makes use of the magnitude ratios and phase differences

rather than requiring a complex multiplication. In that way, the multiplication

is taken in the real domain only, while utilizing the phase contribution directly.

Figure 5.15: PSM Speech Mask Ms(jω, t)
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Figure 5.16: PSM Noise Mask Mn(jω, t)

The following equations give the PSM masks for the reference speech and

noise, M(s)
jω,t and M(n)

jω,t:

M(s)
jω,t =

|S(t, jω)|
|Y(t, jω)| cos(θS − θY) (5.22)

M(n)
jω,t =

|N(t, jω)|
|Y(t, jω)| cos(θN − θY) (5.23)

5.5.1 Masks Estimations

Unlike the cIRM complex masks, the PSM masks are real valued. However,

the masks are not bounded similarly to the cIRM masks. Therefore, the

proposed model for the cIRM masks can be reused with a slight difference

in implementation. Now, only two outputs are created instead of branching

to four outputs at the final layer. One output for the speech mask and the

other for the noise mask. The same as we did for the “IRM” but without
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the Sigmoids. In addition, to deal with the unbounded range of values, we

also apply a compression algorithm to the reference masks as well same as

described in Equation 5.20.

Following this architecture, the cost function can be set to take two masks

in the calculation of the error term, like with the “IRM” masks:

ℓ(ˆ︂Mjω,t, Mjω,t) =
1

2N ∑
jω,t

[︃
β
(︂ˆ︂M(s)

jω,t − M(s)
jω,t

)︂2
+ (1 − β)

(︂ˆ︂M(n)
jω,t − M(n)

jω,t

)︂2
]︃

(5.24)

The proposed PSM estimation network blocks diagram is shown in Fig-

ure 5.17.
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Figure 5.17: Proposed DNN for PSM T-F masking estimations.

5.5.2 Measurements

Figure 5.18 shows a pair-plot for the SNR, Segmental-SNR, SI-SNR and STOI

metrics for the PSM T-F masking.
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Figure 5.18: PSM beamformer SNR vs. Segmental-SNR vs. STOI vs. SI-SNR.

5.19 shows the measurements of the SNR and Segmental-SNR for an ideal

ORM mask.
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Figure 5.19: Ideal PSM beamformer enhancement SNR & Segmental-SNR.

5.6 ORM — Optimal Ratio Mask

IRM masking can be furtherly improved following the realization of the phase

component importance.

Trying to minimize the general MSE loss function for T-F masking, which

is same as with the “Weiner filter” that the IRM masking approximates, we
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get[5]:

M(s)
jω,t =

|S(t, jω)|2 +Re{S(t, jω) · N∗(t, jω)}
|S(t, jω)|2 + |N(t, jω)|2 + 2Re{S(t, jω) · N∗(t, jω)} (5.25)

M(n)
jω,t =

|N(t, jω)|2 +Re{N(t, jω) · S∗(t, jω)}
|S(t, jω)|2 + |N(t, jω)|2 + 2Re{N(t, jω) · S∗(t, jω)} (5.26)

Looking at the equation above, it resembles the IRM form but also intro-

duces the real part of the multiplication between the speech spectrum and the

conjugate noise spectrum.

5.6.1 Masks Estimations

The ORM masking in terms of the estimation process resembles the PSM

completely. Therefore, the same compression and DNN architecture are used

to estimate the ORM masks.

The proposed DNN model block diagram is shown in Figure 5.17, and the

cost function is given in Equation 5.24.

5.6.2 Measurements

Figure 5.20 shows a pair-plot for the SNR, Segmental-SNR, SI-SNR and STOI

metrics for the ORM T-F masking.
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Figure 5.20: ORM beamformer SNR vs. Segmental-SNR vs. STOI vs. SI-SNR.

5.21 shows the measurements of the SNR and Segmental-SNR for an ideal

ORM mask.
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Figure 5.21: Ideal ORM beamformer enhancement SNR & Segmental-SNR.

5.7 T-F masks Conclusions

Table 5.1 presents the model’s sizes in terms of memory requirement and the

number of learnable parameters. The model’s parameters were quantized

to the form of signed 16 bits. The MSB (most significant bit) is for the sign;

the following four bits are set for the integer part; and the other eleven bits

present the fractional part. All of the tested models were trained with and

without the ∆, ∆∆ features. Usage of the additional ∆, ∆∆ features enlarges

the input size of the model and thus leads to a larger number of learnable

parameters, resulting in a bigger model. Bigger models take a longer time to
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train and are more complex to fit in limited resources hardware devices. A

trade-off decision can be made with respect to the memory size and desired

performance in the design phase of T-F masks based applications. Although

presenting better results in audio metrics, the PSM and ORM masks require

∼ 43% larger memory space compared to the IRM masks, when the feature

set does not include the ∆, ∆∆ features. A less severe increase of ∼ 22% in

memory size requirement has been observed when the ∆, ∆∆ features were

not excluded from the feature set.

Learnable Parameters [Mil] Quant. (S16.11) Mem [Mb]
Targets

W/o (∆,∆∆) W/ (∆,∆∆) W/o (∆,∆∆) W/ (∆,∆∆)
IRM 2.44 4.67 39.0 74.8
cIRM 3.76 5.99 60.1 95.9
PSM 3.49 5.73 55.9 91.7
ORM 3.50 5.74 56.0 91.8

Table 5.1: T-F Masks models learnable parameters vs. Required memory size
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Chapter 6

Beamformers

6.1 Introduction

In general, a fundamental part of signal processing involves filtering in one

way or another, and the same is the case for speech signals processing. The

motivation to filter incoming signals is to form a given signal so that the

unwanted components, referred to as interferences, are eliminated, and the

desired component of the signal remains.

A filter can be in the form of an analog or digital circuit. In the sense

of a fixed-tap or static digital filter, the discrete signal samples are tapered

due to a convolutional multiplication with the filter’s weighted coefficients.

These coefficients are preset according to desired characteristics of the desired

output signal.

Since speech signals can vary in tone, pitch, formants, and frequencies,

statically setting the filter’s coefficients won’t be sufficient and robust enough.

To that end, the coefficients should be set dynamically to suit the input signal

or the model to be generalized to a great end; hence, the filter’s performance
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would be suitable for a wide range of inputs rather than a singular case

scenario. Changing the filter’s coefficients dynamically in accordance with

the input or the use case is called “adaptive filtering”. In opposed to the case

of “static filtering”, where the coefficients are computed once.

In a case where multiple sources are presented such as a sensors array, a

“spatial factor” is introduced such that the filtered signal is the outcome of

a combination of all the receiving elements in the array that maximize the

filtering effect. That “spatial filtering” in the presence of multiple sensors is

called “beamforming”. The guideline of beamforming is the optimization of

the received signal utilizing all the sensors to maximize, in most cases, the

SNR. In this research, we show that in E2E-ASR systems, the introduction

of beamformers at the front-end before the ASR model manifests in higher

detection results and better model accuracy.

The beamforming principle relies on acknowledging that the desired signal

is absorbed and received by multiple sensors along with the unwanted inter-

ferences. In the case of beamforming speech signals, the sensors (microphones)

are spread in space in a dedicated formation and set at a known distance from

each other. Each sensor’s input can be filtered, delayed, amplified, or undergo

any form of manipulation until eventually summing up with the other sensors’

inputs. In other words, the ability to manipulate each sensor’s input signal

in a multi-sensor array gives the ability to “form” a given signal utilizing the

properties of constructive and destructive interferences.
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We apply beamforming in the frequency domain:

Y(jω) = WH(jω)X(jω) (6.1)

The time difference of arrival between microphone 1 and m can be esti-

mated using the Generalized Cross-Correlation with Phase Transform (GCC-

PHAT) with the following expression:

τm = argmaxτ

∫︂ +π

−π

X1(jω)Xm(jω)∗

|X1(jω)||Xm(jω)| e
jωτdω (6.2)

The power corresponds to:

E(u) =
A(jω, u)HA(jω, u)√︁

A(jω, u)HU(jω)U(jω)HA(jω, u)
(6.3)

The DOA with the maximum power is selected as the DOA of sound:

umax = argmaxuE(u) (6.4)

6.2 Multi sensors use-cases

A multi-microphone array is often named multi-sensors. Every sensor absorbs

the speech differently due to the sensor’s spatial location relatively to the

speech source. In this work, spacing between sensors and the array’s forma-

tion are pre-known and permanent. Knowing the microphone array’s shape,

forming a constructive interference is only a matter of the direction of arrival

since all the other parameters are static.

The human speech frequencies are considered “long-length”, which means

that the wavelength of the frequencies in the audible band is between single
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centimeters to several meters. A speaker standing in front of a microphone

typically stands at a distance that does not exceed several meters, nor is it

millimeters away. In either situation, the absorbed speech will be distorted

or barely usable. As a result, the propagated speech waves arrive in a planar

shape once they reach the microphone. In a microphone array, these charac-

teristics become handy when applying Direction Of Arrival (DOA) and Time

Difference Of Arrival (TDOA) applications.

A planar wave propagating towards a microphone array is depicted in

Figure 6.1.

Figure 6.1: Microphone array planar wave scenario

We distinguish between two possible scenarios of interest depending on

the number of sensors and the number of sources. In one case, multiple

connected microphones are placed in space, forming a microphone array, and
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in the same space, only a single speaker is present. The other case is where

multiple speakers are present. Naming these use cases, we say that a speaker is

referred to as the input to the system, and the microphone array stands for the

system’s multiple outputs. Therefore, we name the single speaker scenario a

Single Input Multiple Output (SIMO) and the latter a Multiple Inputs Multiple

Outputs (MIMO). Demonstrations of these use cases are shown in Figures 6.2a

and 6.2b, respectively.

(a) (b)

Figure 6.2: (a) Single Input Multiple Output (SIMO) scenario; (b) Multiple Inputs
Multiple Output (MIMO) scenario

6.3 Types

6.3.1 Delay-and-Sum

Delay and sum (DAS) beamformer is a basic beamformer that serves as an

infrastructure for other beamforming architectures. These beamformers aim to

align the speech part from multiple sensors and thus creating the formed beam

to conduct constructive interference. The speech is then enhanced while the
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other artifacts are attenuated, whether it is ambient noise or other unwanted

speech from different speakers.

The general architecture for a DAS beamformer is given in Figure 6.3.

Figure 6.3: Delay-and-Sum Beamformer architecture

Combining the DAS architecture with the microphone array as the input

we get a system capable of dealing with SIMO and MIMO, as shown in

Figure 6.4.
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Figure 6.4: Microphone array processing

The coefficients for a DAS beamformer are chosen such that:

W(jω) =
1
M

A(jω) (6.5)

Where M is a calculated weight given to each coefficient, and A is the

steering vector that points to the same direction as the direction of arrival.

6.3.2 MVDR – Minimum Variance Distortionless Response

Another type of beamformer is the MVDR beamformer. These beamformers

aim to minimize the sampled variance at the beamformer’s output. Modeling
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a microphone array, we can write the propagation of sound in the form of:

r1(t) = s(t − D1) + n1(t)

r2(t) = s(t − D2) + n2(t)

...

rm(t) = s(t − Dm) + nm(t) (6.6)

Where rm models the absorbed signals by microphone m, s stands for the

desired speech, and n marks all the other artifacts that are considered noise.

The lagging time Dm corresponds to the room impulse response hm . Therefore,

we can write the model for absorbed propagation sound as:

rm [n] = hm [n] ⋆ s[n] + nm [n] (6.7)

Transforming Equation 6.8 to frequency domain, we get:

Rm(jω; t) = Hm(jω)S(jω; t) + Nm(jω; t) (6.8)

MVDR works on minimizing the variance at the output resulting from

the summation of the speech and noise variations at the inputs. Therefore,

we need a notation for the variances and covariances to model the MVDR

beamformer.

Equation 6.9 shows the covariance matrices of the speech, noise, and the
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extracted room impulse response, respectively.

RSS =
1
T

T

∑
t=1

S(jω; t)SH́(jω; t)

RNN =
1
T

T

∑
t=1

N(jω; t)NH́(jω; t)

RHH =
1
T

T

∑
t=1

H(jω)HH́(jω)|S(jω; t)|2 (6.9)

Hence, an MVDR beamformers coefficients can be selected following:

W(jω) =
R−1

XX(jω)A(jω)

AH(jω)R−1
XX(jω)A(jω)

(6.10)

Similar to the DAS beamformer, here, A(jω) denotes the steering vector.

6.3.3 GEV – Generalized Eigenvalue

The GEV beamformer is based on the principle of generalized eigenvalues

decomposition so that the beamformer’s coefficients are set accordingly by

the extraction of the eigenvalue vector λ.

RSS(jω)W(jω) = λRNN(jω)W(jω) (6.11)

GEV beamformers are favorable over MVDR and DAS beamformers espe-

cially when the microphone array formation is unknown. Another case when

we should consider a GEV beamformer is when modeling the steering vector

becomes a factor due to complex room impulse responses.
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Chapter 7

ASR – Automatic Speech
Recognition

7.1 Introduction

Speech recognition (SR) stands for recognizing natural speech and translating

it to readable text named transcript. Often speech recognition is referred to as

Speech-to-Text (STT). Speech recognition that is accomplished automatically

by a computing machine or software is known as ASR (Automatic Speech

Recognition).

ASR systems employ numerous algorithms and techniques to conduct the

speech to text translation. Some algorithms aim for precision improvements

and higher detection ratios measured with WER, CER and PER, as described

in Chapter 4. Other algorithms target increasing the system’s robustness,

which means how well the system can still function adequately given that the

environmental conditions are not static and change.

Naturally spoken speech has inherent variabilities depending on many

factors that make a speech signal classified as non-stationary and inconsistent.
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Natural speech heavily depends on the speaker’s gender, whether a male or

a female, and the speaker’s age. Moreover, different speakers of the same

gender and age range may still present variances in the vocal range, pitch,

and formant frequencies. Likewise, we can say that gender-independent char-

acteristics such as accent, style of speech, emotional state, or health conditions,

which are examples of social and geographical factors, all impact naturally

spoken sentences and introduce some degree of variability.

Due to the high dependency that natural speech has on so many factors,

an ASR system must have high endurance to fluctuations in these previously

mentioned environments and states. Also, the ability to perform adequately

in a wide range of scenarios is very crucial. In particular, the cases of high

background noise levels in low SNR scenarios and multiple reverberations

due to poor room acoustics.

Traditional ASR Engines are usually built of several modules designated

for a specific task. An ASR Engine as a whole is a chain of these modules

connected in a pipeline. A common structure of an ASR system is shown in

Figure 7.1a. This type of ASR system translates a speech waveform into a

transcript by chaining phonemes together to construct words.

A phoneme is a discrete and distinctive unit of language that can be used

to differentiate between words. A word is a sequence of phonemes chained

together in how the word is actually pronounced. The motivation of detecting

phonemes instead of entire words by the ASR Engine relies on the fact that

the number of words in a common language crosses the tens of thousands

and sometimes even larger than hundreds of thousands. Extensive word
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vocabulary implies a huge training dataset requirement covering most of the

words in a selected language. On the contrary, most languages have 20-60

phonemes [1, 3]. In that way, a much smaller set of dedicated phonemes can be

used to construct the vocabulary utilizing a less demanding training dataset

requirement.

(a)

(b)

Figure 7.1: (a) Traditional ASR system blocks diagram; (b) End-to-end ASR system
blocks diagram.

The system presented in Figure 7.1a shows a pipeline that starts with a

pre-emphasis and features extraction modules. The pre-emphasis includes the

speech analysis, noise cancellation, speech enhancements, windowing, and

framing of the speech into sub-frames in which it is closer in characteristics

to a stationary signal. The feature extraction module extracts the individ-

ual features representing the speech from the incoming frames as MFCCs,

FilterBanks, and other techniques.

108



The next module in line is the decoder. The decoder’s responsibility is to

take the features, convert them to a set of phonemes and chain them together

to detectable words, composing the transcript at the output. A decoder is

built from three sub-models tied together that work in harmony. The first

is the Acoustic Model (AM), which maps the acoustic features extracted in

the earlier module to phoneme sequences with probabilistic weights. These

phonemes are an intermediate representation in the process of word decoding.

An additional module is the pronunciation model. This module is a dictionary,

handcrafted by an expert linguist and tailor-made to each language explicitly.

This dictionary links phoneme sequences to words. Lastly, the Language

Model (LM) calculates the likelihood a given word is detected based on the

perceived phoneme sequences and how likely it is for this word to occur given

the past temporal context. The words or N-Grams with the highest scores are

selected and written into the output transcript.

A newer more modernized approach known as End-to-End Automatic

Speech Recognition (E2E ASR) has been proposed in [4]. This approach

replaces the conventional decoder structure with a deep neural network of

some kind that maps acoustic features to characters. An E2E ASR system

structure is presented in Figure 7.1b.

With this architecture, there is no longer a need for expert dictionaries or

complex models of chaining phonemes to words. That spares the need to

acquire new pronunciation models or maintain an existing one, which can be

expensive. Instead, character probabilities are given at the output according

to the learning process of mapping acoustic features to corresponding letters.
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That leads to another advantage of E2E ASR systems over traditional ASRs.

Retraining an E2E model with a new dataset of annotated speech in different

languages is possible without changing the architecture at all. On the other

hand, using E2E systems means a more extensive training dataset is required

for the model to generalize well, only to maintain comparable detection ratios

in terms of WER and CER as the traditional ASRs do.

However, despite having an E2E system trained against a huge dataset,

the direct estimations of characters and, later on, the construction of a full

transcript don’t work as expected compared to traditional ASRs. To overcome

the degradation in performance, several algorithms can be applied to improve

different aspects of the model. Such a helpful technique that is called CTC

(Connectionist Temporal Classification) by Maas et al. is presented in Refer-

ence [5]. For example, this method demonstrates which characters get the

highest probability for specific phonemes, as shown in Figure 7.2.

Figure 7.2: Maas et al. [5] phonemes vs characters graphs
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Additional paradigm by Chan et al. known as Seq2Seq (Sequence-to-

Sequence) or sometimes as Attention Encoder-Decoder (AED) networks is

presented in [2]. This approach is based on an LSTM transducer. A more

advanced model that is known for its self-attention mechanism was later

suggested by Vasawani et al. in 2017 [7]. This model, which also uses the

Encoder-Decoder architecture, is called a transformer.

A sophisticated combination of these techniques is practically used in this

work to construct and evaluate the different ASR Engines.

7.2 The ASR Engine

The proposed general architecture for the suggested ASR Engines listed in

Table 7.1 is constructed with a CNN front-end connected to a self-attention

based transformer, implying an Encoder-Decoder infrastructure.
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7.2.1 Front-End

Figure 7.3: CNN front-end general ConvBlock architecture.

7.2.2 Transformer

A transformer is a self-attention Encoder-Decoder based model whose archi-

tecture is shown in Figure 7.4. The left side is the Encoder, and the right side

is the Decoder.
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Figure 7.4: Transformer

Source: Adapted from “Attention Is All You Need” [7]

The attention function that translates the Query (Q) and the keys-values

pairs (K), (V), respectively, can be implemented in Scaled Dot-Product Atten-

tion or in Multi-Head Attention. The transformer backend used in this work
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is a Multi-Head Attention-based utilizing eight heads in the attention model.

The Encoder and Decoder parts consist of a variable number of linear layers

ranging from four to eight. The activation function used with the transformer

is the GELU (Gaussian Error Linear Unit).

7.2.3 CTC

The CTC loss is the negative logarithm of the probabilities that resulted from

the CTC algorithm. Minimizing the CTC loss is in fact selecting the characters

that end up with the highest probabilities. As a result, the predicted label

collapses, meaning that any repeated characters not separated by the “blank”

character unite into a single character.

θ̂ = arg min
θ

−
N

∑
i=1

[︂
∑ p

(︂
π|x(i); θ

)︂]︂
(7.1)

7.2.4 Sequence-to-sequence — Seq2Seq

Sequence to sequence (Seq2seq) [2], or more commonly known as encoder-

decoder, is a DNN model that translate a sequence in one domain at the

encoder’s input into another sequence at the decoder’s output.

We use the Kullback-Leibler Divergence (kldiv) loss function for the Seq2seq

model. The kldiv loss function is given by:

ℓ(x, y) = L = {ℓ1 , ℓ2 , ..., ℓN} (7.2)

Where:

ℓn = yn [log (yn)− xn ] (7.3)
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The kldiv works with the log-probabilities and can be reduced with respect

to the mini-batch size, as follows:

ℓ(x, y) =

{︄
∑ L

batch_size , red = meanbatch

∑ L, red = sum
(7.4)

Combining both the CTC and the Seq2Seq components, the engine’s loss

function used for training is as follows:

ℓ = ωctcℓctc + (1 − ωctc) · ℓseq (7.5)

Where ωctc is set to 0.3 and a greater weight of 0.7 is given to the Seq2Seq loss

ℓseq .

Id(seed) Feature(s) Params Scale Fbank #Filt. #Coeff.
Root Mean Cepstral Coefficients

#1(5) RMFCC(0.1), ∆, ∆∆ 146.2M Mel Bartlett 80 20
#2(15) RMFCC(0.08), ∆, ∆∆ 146.2M Mel Bartlett 80 20
#3(12) RBFCC(0.1), ∆, ∆∆ 146.0M Bark Bartlett 28 18
#4(13) RGFCC(0.1), ∆, ∆∆ 146.0M ERB Gammatone 28 18

Conventional Cepstral Coefficients
#5(70) MFCC, ∆, ∆∆ 146.2M Mel Bartlett 80 20
#6(72) MFCC, ∆, ∆∆ 146.0M Mel Bartlett 28 18
#7(22) BFCC, ∆, ∆∆ 146.0M Bark Bartlett 28 18
#8(23) GFCC, ∆, ∆∆ 146.0M ERB Gammatone 28 18
#9(100) MFCC, ∆, ∆∆, Context(3, 3) 78.8M Mel Bartlett 26 26
#10(101) MFCC, ∆, ∆∆, Context(3, 3) 78.8M Mel Approx. Bartlett 26 26

Table 7.1: ASR Engines Table

ASR Engines #9, #10 were heavily optimized in terms of the neural net-

work structures, leading to smaller models having two times fewer learnable

parameters. For comparison, differences between ASR Engines #10 and #6 are

summarized in Table 7.2.
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Parameter Engine #10 Engine #6
CNN Settings

CNN Blocks [#] 3 3
CNN Shapes [64, 100, 128] [128, 200, 256]

Transformer Settings
FFN layers 2048 3072
Input size 2560 3584
Enc. layers 8 12
Dec. layers 4 6

Implementation Settings
Filters [#] 26 28
Coeff. [#] 2048 3072
Precision U16/8 FP64

Table 7.2: ASR Engines #10, #6 comparison table

7.2.5 Trained Engines

7.2.5.1 ASR Engine #1 – RFCC(0.1), ∆, ∆∆

ASR Engine #1 had been trained over fifteen epochs, against a 400K recordings

table, with a minibatch size of four per iteration. The engine was trained

against the RFCCs, when γ = 0.1, with the ∆, ∆∆ features, utilizing the

Log-Mel scale. A preprocessing STFT enframing block was set with 80 Bartlett

filters for each T-F bin. Overall the number of features per T-F unit is 20 cep-

stral coefficients plus the first and second derivatives. Figure 7.5a shows ASR

Engine #1 training results for the test and validation subsets. In Figure 7.5b,

we present the evaluated WER and CER measures taken every five epochs

during the training process.
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(a)

(b)

Figure 7.5: (a) ASR #1 training accuracy and loss plot; (b) ASR #1 WER, CER
evaluation plot.

117



Figure 7.6: ASR #1 WER, CER vs. T-F masks, noisy and clean inputs

In Figure 7.6, we present the engine’s results in terms of WER and CER per

each subset of the multi microphone CHiME dataset. This figure emphasizes

the comparison between the four T-F masking algorithms. Results are plotted

side-by-side with the evaluated noisy mixture and clean speech metrics as

reference. Two horizontal lines, red and blue, are stretched across the x-axis

of each plot. These lines mark the plot’s metric, whether WER or CER, taken

from the training evaluations of CommonVoice datasets validation and test

subsets. The red line is for the test measurement and the blue line marks the

validation measurement.
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7.2.5.2 ASR Engine #2 – RMFCC(0.08), ∆, ∆∆

ASR Engine #2 had been trained over fifteen epochs, along a 400K recordings

table, with a minibatch size of four per iteration. The engine was trained

against the RMFCCs, utilizing the Log-Mel scale with the ∆, ∆∆ features.

Gamma has been set to γ = 0.08, as this setting proved to be the optimized

value as stated in [6]. The rest of the settings are similar to ASR Engine #1.

Figures 7.7a and 7.7b show the training results of ASR Engine #2 and its

WER and CER benchmarks for the validation and test subsets.
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(a)

(b)

Figure 7.7: (a) ASR #2 training accuracy and loss plot; (b) ASR #2 WER, CER
evaluation plot.

Figure 7.8 presents the T-F mask based beamformed enhanced recordings

evaluations for ASR #2.
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Figure 7.8: ASR #2 WER, CER vs. T-F masks, noisy and clean inputs

7.2.5.3 ASR Engine #3 – RBFCC(0.1), ∆, ∆∆

ASR Engine #3 trained similarly to the previous engines, #1 and #2 but with

some distinctions. The feature set utilizes the Bark scale instead of the previ-

ously used Log-Mel scale, and the number of extracted cepstral coefficients

has been reduced to 18. The number of Bartlett filters per T-F unit has been

set to 28 instead of 80.

Figures 7.9a and 7.9b show the training results, and Figure 7.10 presents

the beamforming effect per T-F algorithm, compared to the noisy mixture and

the clean speech references.
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(a)

(b)

Figure 7.9: (a) ASR #3 training accuracy and loss plot; (b) ASR #3 WER, CER
evaluation plot.
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Figure 7.10: ASR #3 WER, CER vs. T-F masks, noisy and clean inputs

7.2.5.4 ASR Engine #6 – MFCC, ∆, ∆∆

ASR Engine #6 as opposed to ASR Engine #3, had been trained against the

Mel cepstral coefficients. All the other settings are retained.

Figures 7.11a, 7.11b, and 7.12 present the training, evaluation, and the T-F

based beamforming results, respectively.
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(a)

(b)

Figure 7.11: (a) ASR #6 training accuracy and loss plot; (b) ASR #6 WER, CER
evaluation plot.
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Figure 7.12: ASR #6 WER, CER vs. T-F masks, noisy and clean inputs

7.2.5.5 ASR Engine #9 – MFCC, ∆, ∆∆, Context(3, 3)

ASR Engine #9 is an optimized Log-Mel scale based engine that has been

trained against the Mel cepstral coefficients with their first and second deriva-

tives. These extracted features were also taken from six additional adjacent

T-F units, three prior and another three past the currently analyzed unit. The

number of extracted coefficients is set to 26, same as the total number of

Bartlett filters covering the spectrum of each T-F bin.

In contrast to the previous engines, engine #9 underwent heavy optimiza-

tion to fit a target hardware device. In the process, the engine’s learnable

parameters were quantized to the U16/8 format from the default 64bit floating

point.
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The training process updated to over 40 epochs with 100K randomly se-

lected recordings from the entire CommonVoice dataset. The motivation

behind these changes in the training process is to let the model better general-

ize in a reasonable training time because of the introduction of the additional

temporal context features vectors and the quantized architecture.

Figures 7.13a, 7.13b, and 7.14 present the training, evaluation, and the T-F

based beamforming results, respectively.
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(a)

(b)

Figure 7.13: (a) ASR #9 training accuracy and loss plot; (b) ASR #9 WER, CER
evaluation plot.
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Figure 7.14: ASR #9 WER, CER vs. T-F masks, noisy and clean inputs

7.2.5.6 ASR Engine #10 – Approx. Mel-FCC, ∆, ∆∆, Context(3, 3)

ASR Engine #10 is identical to ASR Engine #9 except for the actual implemen-

tation of the Mel scale. This engine has been trained against the same features

utilizing the linear approximation of the Mel scale as described in Chapter 3.

Figures 7.15a, 7.15b, and 7.16 present the training, evaluation, and the T-F

based beamforming results, respectively.
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(a)

(b)

Figure 7.15: (a) ASR #3 training accuracy and loss plot; (b) ASR #3 WER, CER
evaluation plot.
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Figure 7.16: ASR #10 WER, CER vs. T-F masks, noisy and clean inputs

7.2.5.7 Other ASR Engines

ASR Engines #4, #5, #7, and #8 were not tested with the enhanced beamformed

recordings. The reason is that the performance of these ASR Engines is de-

graded compared to the previously described ASR Engines. However, for

completeness, we present their training results and some WER, CER measures

for the training, validation, and test subsets of the CommonVoice dataset.

Figures 7.17 and 7.18 present the training results and the WER and CER

metrics measures for ASR Engine #7.
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Figure 7.17: ASR #7 training accuracy and loss plot

Figure 7.18: ASR #7 WER, CER evaluation plot
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Figures 7.19, 7.20 present the training results and the WER and CER met-

rics measures for ASR Engine #8.

Figure 7.19: ASR #8 training accuracy and loss plot
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Figure 7.20: ASR #8 WER, CER evaluation plot

Figures 7.21, 7.22 present the training results and the WER and CER met-

rics measures for ASR Engine #5.
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Figure 7.21: ASR #5 training accuracy and loss plot

Figure 7.22: ASR #5 WER, CER evaluation plot

The training statistics were not gathered for ASR Engine #4, so only the
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WER and CER measures for the validation and test datasets are presented in

Figure 7.23.

Figure 7.23: ASR #4 WER, CER evaluation plot

7.3 Chapter Summary

In this chapter, we covered the great advantage the E2E ASR system has

over the traditional ASR system. Later, we reviewed different algorithms and

techniques like the CTC and Seq2Seq that improve ASR system’s performance.

Following that, we presented the selected architecture for the ASR Engine,

which includes CNN networks at the front-end followed by an attention-based

encoder-decoder transformer that uses the above-mentioned algorithms.

During experiments, our focus was on the ASR performance according

to WER and CER metrics. When training a model using a large dataset, we
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observed that the loss function decreases over time. Thus, the engine’s model

reaches better detection rates and higher accuracy.

In our experiments, we tested multiple engine configurations. However,

we consider only ten selected engines as meaningful. These ten engines are

described in Table 7.1. The baseline architecture is the same for all the tested

engines. The differences between the engines are the selected features for

analysis, the scaling method, and mainly the technique of cepstral coefficient

extraction.

Using various configurations, we covered a vast spectrum of parameters,

indicating each parameter’s impact on performance. In doing so, from the

measured results, we could deduce that the Mel and Bark scaling methods

yielded better results than the ERB scale. Moreover, we discovered that sim-

plifying the cepstral coefficients calculations was made possible by reducing

the number of filters or coefficients per T-F bin. A distinct example of this

conclusion is the comparison between ASR Engines #5 and #6.

We also examined the change in performance due to root frequency cep-

stral coefficients. The RFCCs were replaced with the conventional cepstral

coefficient extractions, which usually involve complex trigonometric functions

such as inverse tangents and logarithms. The RFCCs results matched the con-

ventional methods, and computation-wise, root-square is more efficient than

logarithms. However, after introducing the simplifications to the traditional

methods, such as the Mel and Bark approximations, we see no advantage in

using RFCCs.

In the last trials, we tried to optimize the engine in terms of computation
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time, memory footprints, hardware resources, and the derived power con-

sumptions. Our most prominent finding is deduced from comparing ASR

Engines #9 and #10 with ASR Engine #6. We simplified the ASR Engine’s

model by reducing the number of filters and coefficients. We also changed

the bit precision for the feature extractions section and slimmed down the

model’s CNN and transformer layers.

Although detecting degradation in ASR performance has been seen due

to these optimizations, we managed to compensate for it by adding an extra

feature. With the added temporal context feature, we matched the WER and

CER detection ratios we had before the optimization.

In conclusion, since the Mel and Bark approximations show significant

improvement in execution time, hardware resources utilization, and therefore

less power consumption, we chose them in favor of the logarithm-based

calculations. Combining that with the previously mentioned optimizations,

we ended with a more capable model. The received model produces the same

results in less execution time and consumes less power. In addition, synthesis

results point to lower resource utilization ratios, enabling the capability of

fitting the model into smaller, cheaper devices. Overall, we successfully

reduced the model’s size by approximately half, from 146.2 million learnable

parameters to 78.8 million.

Figure 7.24 summarizes the results of our ASR experiments comparing the

different T-F masking techniques.
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Figure 7.24: ASR CER WER Summary vs. T-F Masking
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Chapter 8

Datasets

8.1 CHiME 4/5

8.1.1 Overview

The CHiME-4 dataset is provided as part of the CHiME challenge [1, 2].

The challenge is to build an ASR model for multi-microphone devices

being used in various noisy environments.

Six microphones are mounted on a tablet device and are recorded with

a high-resolution multi-track recorder. Besides those six microphones, an

additional close-talking microphone is recorded by another recording device,

daisy-chained to the multi-microphone recording device.

The close-talking microphone is referenced as the clean speech channel.
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8.1.1.1 CHiME Recording Scenarios

Figure 8.1: CHiME-4 microphone-array

Source: Adapted from [4]

Figure 8.2: CHiME-4 recording setup

Source: Adapted from [4]
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Four different noisy environments were selected, a Cafe, a street junction, a

bus, and a pedestrian area.

The CHiME-4 dataset stats are shown in Figure 8.3

Figure 8.3: CHiME-4 recording setup

Source: Adapted from [4]

8.2 CommonVoice

The CommonVoice dataset is an open-source, free dataset provided by Mozilla [3].
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CommonVoice for the English corpus contains overall 2886 hours of record-

ings, where 2185 hours of them were validated by the community, and there

are 79, 398 different voices in the dataset.

Statistics and distributions for the CommonVoice dataset are shown in

Table 8.1.

23% United States English
8% England English
7% India and South Asia
3% Canadian English
3% Australian English

Accent 2% Scottish English
1% New-Zealand English
1% Southern African
1% Irish English
51% Undeclared
24% 19-29
13% 30-39
10% 40-49
6% <19

Age 4% 60-69
4% 50-59
1% 70-79
38% Unknown
45% Male

Gender 15% Female
40% Unknown

Table 8.1: CommonVoice dataset statistics

During training, we dropped recordings longer than ten seconds. This is

because the dataset contains open-mic recordings, which cause the feature

vector to be so large that it cannot fit in either the GPU’s dedicated RAM or

the server’s memory. As a result of omitting recordings longer than the ten
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seconds threshold, some recordings, although being valid, are still marked as

open-mic and also dropped from the dataset.

Another issue we faced with the CommonVoice dataset is that some record-

ings were not validated and thus could be corrupted. Filtering out those

recordings is very cumbersome and would take long a time to complete. There-

fore, the number of non-validated recordings participating in the training,

validation, or testing phases was cut in half. We have seen some performance

degradation in terms of WER and CER due to non-validated recordings in

the test and validation measurements. However, these faulty measures are

sparse compared to the validated recordings measures, introducing only a

slight impact on the mean value, but can be seen in the variance fluctuations

presented in the bar plots in Chapter 7.

Table 8.2 summarizes the CommonVoice dataset subsets and the number

of recordings each subset contains.

Set Utterances [N]

Training 759,546
Dev/Valid 16,264
Test 16,236

Table 8.2: CommonVoice sets utterances distribution
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Chapter 9

Conclusions

In this research we have investigated some possible explicitly or implicitly

direct links between several metrics that are measured in different stages

along an E2E ASR system.

We also investigated the impact of speech enhancement where we have

seen how a multi-channel microphone array beamformer combined with a

T-F masking algorithm can improve an existing E2E ASR system detection

rates. This provided insights into a correlation between improvements in SNR,

PESQ, and STOI leading to an improvement in WER and CER whom are ASR

metrics.

We also presented the magnitude of influence that different scaling meth-

ods have on ASR system’s performance and requirements, especially when

the implementation is targeted for a hardware device rather than a software

based solution. In such cases, the requirements for computation efficiency,

low power consumption and wise utilization of limited resources are taken

into account and affect the ranks of different configuration sets. For example,

slim models for the beamformer, masking or the ASR engine would be ranked
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higher than heavy and larger models when the target device has limited mem-

ory resources. Alternatively, when storage memory is not considered an issue,

a better performing algorithm may be achieved using additional memory.

Such an algorithm would yield higher detection rates.

To evaluate the End-to-End speech enhancement plus the ASR engine

performance, we divided the effort into two sections, where each has been

evaluated separately. Later, the two sections were connected together and the

evaluation was taken from input to the ASR output.

During experiments, multiple ASR engines were trained against different

carefully selected feature sets, each time alternating one parameter, whether it

was the features’ combination, scaling method, the computation for feature

extraction or the neural network’s shape and structure. A clear advantage, in

terms of ASR performance (WER, CER), has been observed for a combination

of the Delta, Deltas-Delta (∆, ∆∆) and the companion cepstral coefficients,

over the increase in the number of filters and coefficients or the usage of only

FilterBanks. Adding temporal context to the mixture, resulted in a slightly

better ASR performance. These insights reflected mainly in the effort of sim-

plifying our ASR model and reducing its memory footprints. In accordance,

simplifications such as approximations for the scaling methods and the reduc-

tion in filters and coefficients were made possible while maintaining equal

detection rates and sometimes even better than highly dense FilterBank based

ASR systems. On the other hand, root cepstral coefficients extraction did not

yield any gain in performance over the natural or log based coefficients, nor

the suggested approximations.
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Those trained ASR engines were attached to a processing FE (Front-End),

that serves as a speech enhancing stage. The speech enhancing is applied by

multi-channel multi-microphones array deep beamformers combined with T-F

masking. That combination between a GEV beamformer and a T-F masking

extraction layer attached to an ASR Engine led to much improved performance

compared to the ASR’s performance measured as a standalone unit. Deeper

analysis of the various T-F masking alogirthms yielded a conclusion that the

audio domain metrics such as SNR and STOI have direct impact on the ability

of the ASR engine to be more precise. This actually strengthen the intuition

that better speech quality or cleaner speech is easier to perceive, and thus,

ASR transcripts would be more accurate for it.

Some very important questions arise with regard to adding a FE stage to

the ASR engine that is, what would be the cost? What could be traded in favor

of performance or higher detection ratios? In this research, we used the same

configuration for the feature extractions in both the FE and the ASR engine

itself. Doing so, we managed to combine the feature extraction mechanism and

save on resources by reusing the same modules. The computation overload

for the FE part becomes negligible since it is already implemented for the ASR;

Thus, only the extraction of the beamformer coefficients is left for computation.

Despite saving on resources, an increase in memory is anticipated to hold the

beamformer’s and the T-F masking NN model parameters.

In this research we present trade-off options, together with the expected

gains in some metrics. The gains or deteriorations in the different metrics are

presented side by side to the speech WER and CER metrics which gives a more
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comprehensive perspective about the overall performance, from end-to-end.

For systems that are not designed with limited resources, like memory and

slow operating clock frequency, the more advanced, but complex algorithms

for T-F masking as cIRM, PSM, and ORM can be used. Leading to higher

perception rates at the ASR engine’s output as mentioned before due to higher

SNR levels. However, a trade-off can be made between complex T-F masking

algorithm and slimmer ASR engines and vice versa. For example, picking a

more optimized version of an ASR engine, while utilizing a PSM T-F masking

algorithm can yield matched results in terms of WER and CER. According to

the results presented in this research, speech-to-text systems can be optimized

by wise selection of configurations for certain modules and still achieve the

desired quality of performance.

9.1 Future work

In this research we based our ASR engine architecture on the transformer

model. Other advanced ASR engine models are available such as CTC based

Seq2Seq and the transducer model. Also, modern techniques of introducing

additional acoustic information to the ASR training process like the wav2vec

outputs are expected to improve the results presented in this research.

Besides the ASR, further optimizations in hardware can be applied with

dedicated HW based accelerators, which are now built-in inside new AI ca-

pable FPGA devices. These hardware accelerators are tailor made for neural
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networks, mainly CNNs. The systolic-array architecture that is very com-

mon for such accelerators provide much lesser computing times when com-

pared to conventional piped-line hardware architectures. Furthermore, the

computing efficiency measured in tera-operations per energy or power units

[TFLOPS/Joule, TFLOPS/Watt] of such accelerators is tens to hundreds times higher.

Going forward, combining both the alternative ASR engine models and

more expanded optimizations in hardware, this research can be more com-

prehensive in terms of the possibilities laid in front of a system designer for

taking trade-offs based on the system’s requirements.
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