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Abstract

This work involves using native RNA nanopore sequencing to directly char-

acterize the transcriptome of a human cell line, GM12878. We demonstrated

several new methods, and findings, including newly discovered isoforms,

allele-specific isoforms, measurement of polyadenylation length, and even

measurement of RNA modifications. We also describe an application of

nanopore RNA sequencing and chemical labeling to measure the secondary

structure of RNA. Lastly, we demonstrate an analysis framework for looking

at a new file format for single-molecule/long-read modification data.
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Chapter 1

Introduction

1.1 History of Nanopore Sequencing

25 years of development after the initial patent in 1995, nanopore sequencing

has emerged as a viable commercial platform for nucleic acid sequencing and

contributed to massive strides in genomics and transcriptomics. Nanopore

sequencing operates in a similar fashion to a Coulter counter - allowing for

characterization of a polymer (DNA, RNA, or cDNA) based on its interaction

with ionic current flowing through the pore. In contrast to most other sequenc-

ing methods which operate through sequencing by synthesis, nanopore is

characterizing the molecule directly which enables longer reads and evalua-

tion of nucleotide modifications on DNA or RNA.

It can be argued that the genomics era began with the resolution of the

three-dimensional structure of DNA in the 1950s (Franklin and Gosling, 1953;

Watson and Crick, 1953). This was followed by the first sequencing of nu-

cleic acids using chromatography based methods in the 1960s (Holley et al.,
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1965; Wu, 1972; Sanger, Brownlee, and Barrell, 1965). Chromatographic meth-

ods like these were then optimized (Sanger, Nicklen, and Coulson, 1977)

throughout the 70s and 80s, resulting in automated capillary electrophoresis

sequencing available by 1990 (Luckey et al., 1990). This technology develop-

ment, a coupling of molecular biology advances to advances in engineering

and computational analysis, led in part to the completion of the first human

genome in 2001, an achievement which cost >$3 billion and took ∼13 years

(Venter et al., 2001; Lander et al., 2001) But technology development has con-

tinued, reducing the costs and improving the speed of sequencing (Schloss

et al., 2020). A goal of a $1000 genome was set and strived for via different

methods of technology development.

Technological advancements led to the introduction of the massively par-

allel high throughput Next Generation Sequencing (NGS). These technologies

allow for rapid and cheaper sequencing than the previously used Sanger.

Illumina sequencing in particular, can generate billions of sequencing reads

enabling the goal of whole human genome sequencing for under $1000 (Buer-

mans and Dunnen, 2014; Davies, 2015; Mardis, 2006). The technology involves

local clonal amplification of DNA template molecules and identification of

nucleotides through detection of fluorescent signals. While generating se-

quencing reads greater than 99.9% accurate (Q30), Illumina sequencing is

subject to cycle dephasing brought on by increasing read length, inverted

repeats and GC rich sequences which decreases signal to noise and precludes

read accuracy (Nakamura et al., 2011). Due to this technological hurdle, GC

rich regions are under-represented in the sequencing reads and read length
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is limited. Alternatively, long read sequencing, sequencing, offers many ad-

vantages over NGS. While NGS can generate reads up to 600bp in length,

single molecule sequencing can routinely sequence reads longer than 10kb.

Long reads improve de novo assembly, mappability, transcript isoform identi-

fication, phasing of alleles, and detection of structural variants. Additionally,

third generation sequencing can be performed on native nucleic acid, both

DNA and RNA, therefore reducing PCR amplification bias and preserving

epigenetic information in the form of base modifications.

There are currently two methods of single molecule sequencing, Oxford

Nanopore Technologies (ONT) and Pacific Biosciences (PacBio). Both rely

on distinct biophysical principles to evaluate the order of nucleotides on

single molecules. PacBio sequencing captures sequence information during

the replication process by detecting fluorophore incorporation at a tethered

polymerase. This process occurs within a zero mode wave-guide (ZMW)

which limits fluorophore detection primarily to the volume around the poly-

merase (Levene et al., 2003). Read length in PacBio sequencing is dependent

on the processivity of the polymerase - the longer the polymerase stays on

the molecule, the longer the sequencing read can be. Because PacBio sequenc-

ing uses a circularized library, there is an opportunity to sequence the same

molecule multiple times (HiFi data), improving the single read accuracy to

greater than 99.9% (Q30) at the cost of sequencing yield or molecular read

length (25 kb) (Nurk et al., 2020). In contrast, CLR sequencing can achieve

exceeding 50kb, with a decrease in read accuracy to below 85% (Nurk et al.,

2020; Wei and Zhang, 2018).
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In contrast, nanopore sequencing relies on fluctuations in electrical

current to characterize a biopolymer as it passes through a biological nanopore.

Nanopore sequencing is unique from other sequencing methodologies (i.e.

Sanger, Illumina, PacBio) because it characterizes the molecule directly, rather

than as a result of DNA synthesis. The methodology was first suggested that

polymers could be characterized by measuring the altered current as polymers

pass through protein pores in the late 1990s (Church et al., 1998; Deamer,

Akeson, and Branton, 2016). This idea became a reality when Kasianowicz

et al. characterized DNA and RNA in α-hemolysin (α-HL) nanopores using

techniques developed in electrophysiology for ion-channel measurements

(Kasianowicz et al., 1996).

As experimentation continued, initial enthusiasm was curbed because of

significant roadblocks in application to actual sequencing, mainly that the

speed of nucleic acid translocation was too fast (1-10µs) to resolve individual

bases. Improving signal to noise required each base to be in the pore for >

100µs. This pointed to the necessity of racheting the strand through the pore so

that each step allowed sufficient time to identify the next base in the strand’s

sequence (Meller, Nivon, and Branton, 2001; Deamer, Akeson, and Branton,

2016; Hornblower et al., 2007). It was not until 2012 that the two essential

components of a functioning nanopore sequencer (ie. translocation control at

single-nucleotide resolution and discrimination among bases) were in place

by utilizing a mutant MspA nanopore and phi29 DNA polymerase (Manrao

et al., 2012).
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With all the pieces in place, commercial development began with the an-

nouncement at AGBT in 2012 and the first release of the R6 MinION nanopore

sequencer by Oxford Nanopore Technologies in 2014. The MinION is a

compact and portable device with 2,048 individually addressable protein

nanopores of which 512 can sequence simultaneously. (Cherf et al., 2012; Yeh

et al., 2012). Initial testing of the MinION showed it could yield 50-150Mb

with reads up to 15kb long (Mikheyev and Tin 2014, W. Timp et al. 2014). With

these early iterations, error rate in the MinIONs was a significant concern

with per read accuracy at ∼67% (Mikheyev and Tin 2014; W. Timp et al. 2014).

Rapid and significant improvements have occurred throughout the past few

years leading to additional iterations of the protein pore, motor protein and

membrane. The dominant pore version is currently the R9.4, which is derived

from the Escherichia coli CsgG pore and also has a newer version of the motor

protein (E8) to increase translocation speed ((Loose, 2017; Lu, Giordano, and

Ning, 2016; Goyal et al., 2014). Current yield varies between the different

flowcell options from ∼1Gb for the smallest (flongle) flowcell with 128 se-

quencing channels to ∼10-20Gb for the minION with 512 sequencing channels

to ∼100Gb for the PromethION with ∼3000 sequencing channels.

To sequence DNA on a nanopore instrument, first high quality, long DNA

molecules have to be extracted intact from samples. This is a specialized

technique and a sample specific problem which has required the generation

of specialized extraction methods such as the wrinkled silica of Circulomics

Nanobind and modified spin columns of RevoluGen’s Firemonkey (Zhang et

al. 2016; Gong et al. 2019). Depletion of short molecules can also occur after
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extraction using a combination of polyethylene glycol and NaCl, the Circu-

lomics short read eliminator kit (SRE) or with the BluePippin automated gel

cassette from SAGE sciences (Kovaka et al., 2021; Wiley and Miller, 2020; Law,

Warren, and McCallion, 2020; Kovaka et al., 2021). Once purified, sequencing

adapters with bound motor protein are ligated to double-stranded DNA. The

bound motor protein ensures translocation control and a tether included in the

adaptor places the molecule on the surface, reducing the pore capture problem

to a 2D diffusion concern, limiting the amount of time a pore stays empty,

though still only a small fraction of input molecules is sequenced. Single

strands of the library molecule are then sequenced from 5’-3’, generating a

sequencing read (Figure 1.1 A).

But because this sequencing is not dependent on synthesis, we can also

characterize RNA molecules directly by passing them through a pore, as the

original experiments on nanopore sequencing did. By attaching a sequencing

adaptor to the 3’ end of RNA molecules with a bound motor protein com-

patible with RNA, direct RNA nanopore sequencing is possible (Figure 1.1

B).
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Figure 1.1: Nanopore sequencing A) For DNA nanopore sequencing, adapters (blue) are
ligated to end-prepped and dA-tailed native DNA . Each adapter has a motor protein (green)
for aiding in translocation through the pore from the 5’ end to the 3’ end. B) In nanopore
direct RNA libraries an adapter with a 10(dT) (red) overhang ligates to the polyadenylated
tail of transcripts followed by a reverse transcription step to linearize the RNA template, can
also be replaced with a custom adapter so that any RNA sequence can be targeted with a
custom primer. Then, sequencing adapters with motor proteins (green) are ligated in the last
step of library preparation. RNA is sequenced from the 3’ polyadenylated tail to the 5’ cap.
C) DNA electrophoretically translocates the modified CsgG protein pore. Electric current
is measured as a function of time and nucleic acid bases can be associated with signature
electrical fluctuations.

1.2 Accuracy

Despite the many improvements to nanopore sequencing over the years, prob-

lems with translocation control and signal to noise that riddled the technology

in its early years are still pervasive. Nanopore sequencing in its current formu-

lation does not interrogate a single base at a time - rather multiple bases have

a significant impact on the current. The primary influence on the current is

generally accepted to be a group of 5-6 nucleotides for the R9.4 pore. With the
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newest iteration of the motor protein (named E8), DNA translocates through

the pore at an average speed of ∼450b/s and the electrical current is sampled

about 9 times per k-mer (4kHz) (Rang, Kloosterman, and de Ridder 2018; de

Lannoy, de Ridder, and Risse 2017). However, the speed of translocation is not

quite uniform, making the basecalling of homopolymeric regions a difficult

task and results in systematic errors mostly in the form of insertions and

deletions (indels) (Winston Timp, Comer, and Aksimentiev 2012; O’Donnell,

Wang, and Dunbar 2013). This speed can further be influenced by the number

of library molecules loaded in the pore - too many and the speed drops due to

a lack of fuel for the motor protein, too few and the speed is faster. The rate

of translocation for RNA is much lower (∼70b/s) and fluctuates significantly.

This results in a lower signal to noise ratio making native RNA sequencing

more erroneous (∼85%) (Viehweger et al., 2019).

To translate the electrical signal per k-mer into sequence, the first genera-

tion of ONT basecallers relied on Hidden Markov Models (HMMs), these are

a class of probabilistic models that allow prediction of a sequence of unknown

variables (nucleotide bases) from a set of observed variables (ionic current).

It was shown that HMMs could successfully decode trinucleotides in 2012

(Winston Timp, Comer, and Aksimentiev 2012). ONT’s first HMM basecaller,

Albacore was released in 2017 and relied on an intermediary stage known

as “event detection". The later versions of Albacore transitioned to ‘raw base-

calling’ with a transducer-based model which calls bases directly from the

signal data skipping the event detection step. This improved basecalling in

homopolymeric regions with single read accuracy of Q9.2 and consensus
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accuracy of Q21.9 (Wick, Judd, and Holt, 2019). ONT’s next version of the

basecaller, Guppy, was released in late 2017. Early versions of Guppy did not

perform much better than Albacore, however its GPU compatibility made it

substantially faster to run. The most recent version of Guppy contains two

basecalling algorithms, the current baseline algorithm contained in Albacore

and the addition of the “flip-flop" algorithm. Flip-flop uses a neural network

implementation that substantially improves consensus accuracy and calling of

long homopolymer regions. Guppy flip-flop generates reads with consensus

accuracy of 99.5%, a significant improvement over the previous basecallers

(Wick, Judd, and Holt, 2019). ONT also offers a neural network training

toolkit, Tiayaki, which can be used to develop models for Guppy. While the

model generation and training process can often be time-consuming and labor

intensive, the performance of a neural net relies heavily on the quality of the

training data. Therefore the most accurate base calls are obtained from models

trained on native DNA of the same species (Wick, Judd, and Holt, 2019). Ad-

ditionally, several independently developed basecallers from researchers have

become available including Chiron, Nanocall, DeepNano, and basecRAWler

(David et al., 2017; Boža, Brejová, and Vinař, 2017).

The resulting basecalling should be assessed at both the individual read

level and at as a measure of the consensus accuracy. Errors at the read level

complicate interpretation of heterogeneous samples or low-coverage data,

while errors at the consensus level are harder to solve even with high coverage

sequencing. Even low accuracy individual reads can lead to a high accuracy

consensus as long as the error is random rather than systematic. Unfortunately,
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nanopore is subject to specific errors in certain stretches and conformations

of k-mers. In some cases this can be resolved by examining reads on the plus

and minus strand - the reverse complement strand may not have the same

systematic error as the original strand. This can even be employed to increase

per molecule accuracy with the “1Dˆ2" sequencing mode where both strands are

sequenced, though this can reduce the yield. Low complexity sequences, e.g.

homopolymers, are hard to resolve accurately. While systematic errors in low-

complexity regions are still a pervasive problem with nanopore sequencing,

random errors can be solved with increased sequencing coverage. Methods

such as Intramolecular-ligated Nanopore Consensus Sequencing (INC-Seq)

and Rolling Circle Amplification to Concatemeric Consensus (R2C2)capitalize

on the strand displacement and processivity of phi29 DNA polymerase to

perform rolling circle amplification on circularized template molecules (Li,

Xiong, and Yi, 2016; Volden et al., 2018; Cole et al., 2020). The resulting library

consists of long DNA or cDNA molecules made up of multiple repeating

units. After sequencing, these repeating sequences are corrected by generat-

ing a consensus sequence improving accuracy to greater than 94% and 97%,

respectively for R2C2 and INC-seq (Li, Xiong, and Yi, 2016; Volden et al.,

2018).

Libraries generated from high quality HMW DNA can generate sequencing

runs with N50s greater than 100kb, albeit with a significant cost to sequencing

yield (Jain et al., 2018). Often reads can be up to megabases long, these

reads have been colloquially referred to as “whales", and their appearance

in sequencing runs is becoming more common as UHMW DNA extraction
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methods are improving. Often these “whales" can also be incorrectly split by

ONT’s MinKNOW software during sequencing, but can be computationally

“reattached" with tools like BulkVis (Payne et al., 2019).

1.3 DNA Assembly

Genome assembly aims reconstruct the full genome sequence of the organism

by first organizing the sequencing reads to contigs, which are then ordered and

oriented into larger scaffolds with gaps between them contigs (Figure 1.2 A).

Most plant and animal genomes have high levels of repeated and duplicated

sequences that cause ambiguities in the ordering of genome segments (Simp-

son and Pop 2015). A great example of this is the human genome: after nearly

two decades of improvements from its initial completion, the current human

reference genome (GRCh38) is the most accurate and complete vertebrate

genome ever produced. However, gaps represented by stretches of Ns still

persist (Chaisson et al., 2015; Guo et al., 2017).

While the development of NGS has revolutionized the field of genomics

by making whole genome sequencing rapid and affordable, short reads alone

result in fragmented assemblies because most repetitive sequences longer

than the read length can not be resolved (Nagarajan and Pop, 2009). Contigs

assembled from long reads can be ∼30 to 300-fold longer than those assembled

from short reads (Rhie et al., 2020). Long reads reduce the number of gaps, but

the decrease in accuracy when compared to NGS adds additional challenges

to long read assembly. The most common method for de novo assembly, the

de Bruijn graph, is confounded by sequencing errors (Nagarajan and Pop 2009;
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Simpson and Pop 2015). The overlap-layout-consensus (OLC) algorithm was

revived for long read assembly because it can handle inconsistencies in read

length and a relatively high number of sequencing errors making it excellent

for assembly from nanopore or PacBio data (Koren et al., 2017).

The high error rate from long-read sequencing data can work to the detri-

ment of assembly. The initial assembly algorithms can correct many errors

simply looking at the consensus (Koren et al., 2017; Kolmogorov et al., 2019),

which will eliminate many errors with sufficient coverage, but systematic

errors will persist in the resulting assembly. One solution to these errors is

subsequent polishing algorithms such as nanopolish or medaka. Nanopolish

examines the assembly and assesses the likelihood of alternative sequences

using the raw electrical data to find the most likely consensus (Loman, Quick,

and Simpson, 2015). Nanopolish substantially increases the per base accuracy

of the consensus sequence and also improves basecalling of homopolymer

tracks (Wick, Judd, and Holt, 2019; Loman, Quick, and Simpson, 2015).

Medaka instead uses a trained neural network against the aligned reads - by

training on known sequences, they have established models that perform well

to correct errors using only the basecalled reads.

Alternatively accuracy can be increased by simple rounds of consensus

generation using either the original long reads (Racon) or highly accurate

Illumina short reads (Racon, Pilon, FreeBayes, or POLCA ) (Walker et al., 2014;

Garrison and Marth, 2012; Zimin and Salzberg, 2019). Unfortunately these

short-read consensus polishers are limited by the mappability of the short

reads - so cannot polish inside highly repetitive areas or other areas of .
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Other genome assembly methods involve using both the short and long

reads for assembly in a process known as “hybrid assembly". These hybrid

approaches can use long reads to construct the structure of the genome and

fill in the bases with short accurate reads or combine short reads together into

longer “super-reads" and scaffold these “super-reads" into “mega-reads" using

the long read nanopore data (Koren et al., 2012; Zimin et al., 2013). Lastly,

contigs can be scaffolded using a variety of data modalities that capture

long range information (i.e. mate pair, HiC, optical mapping). Nanopore

sequencing has been used to generate chromosome level reference genomes

for a multitude of model and non-model organisms and entire microbial

communities (Nicholls et al., 2019; Hamner et al., 2019).

1.4 Structural Variants

Since the development of high-throughput sequencing methods (Illumina),

our understanding and study of mutations/alterations to the human genome

have exploded. Characterization of small nucleotide variations inform Mendelian

diseases, genetic predispositions, and different cancers have allowed us to

form mechanistic insight. However, most of these studies focused on what

is easiest to detect with short-read sequencing, small nucleotide variations.

These variations are identified via alignment to the reference genome and

identification via a suite of tools (e.g., freebayes or GATK).

In contrast, structural variations, defined as genomic alterations larger

than 50bp which encompass deletions, duplications, insertions, inversions

and translocations, describe major rearrangements in the genome. But these
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are hard to identify with short-read sequencing - though in principle changes

in coverage and split read alignments can identify SVs, in practice issues of

mappability

Detecting and visualizing structural variations (SVs) is critical for under-

standing the relationship between SVs, human traits, and diseases. Deducing

SVs from Illumina paired end data is well established and highly used, how-

ever these methods lack sensitivity (only 10-70% of variants detected), and

have very high false positive rates (up to 89%) (Pang et al., 2010; English,

Salerno, and Reid, 2014; Mahmoud et al., 2019). Conversely, long read se-

quencing considerably increases correct detection of SVs because of both

higher quality genome assemblies and accurate mapping of complex regions

(Mahmoud et al. 2019; Sedlazeck et al. 2018). Ultra long nanopore reads have

been used to anchor long and complex variants allowing for accurate analysis

of previously unexplored regions of the human genome such as complex repet-

itive arrays (ie. centromeres) and nested SVs (ie. INVDUPs and INVDELs)

involved in human cancer (Jain et al., 2018; Miga et al., 2020) (Figure 1.2 B).

By exploiting nanopore long read data it is possible to reconstruct the di-

verse architecture of SVs responsible for normal human genetic variation and

those implicated in human disease (Miao et al. 2018; Gong et al. 2018; Norris

et al. 2016; Sakamoto et al. 2019). Currently nanopore technology is becoming

more widely utilized in the medical community as a routine diagnostic tool

for discovery of novel Mendelian diseases (Mantere, Kersten, and Hoischen

2019). The developments of software pipelines such as Sniffles, FreeBayes,
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NanoVAR, SVIM, NanoSV, and Picky, increase accuracy in detecting and di-

agnosing novel SVs involved in human disease that gene panels and whole

exome sequencing have failed to detect (Mantere, Kersten, and Hoischen 2019;

Gong et al. 2018; Heller and Vingron 2019; Sedlazeck et al.; Garrison and

Marth 2012; Miao et al. 2018; Tham et al. 2020; Cretu Stancu et al. 2017)

Expansion of variable number tandem repeats (VNTRs) causes more than

30 Mendelian human disorders. Short read sequencing is ineffective at se-

quencing through GC rich VNTRs due to PCR biases and has difficulty map-

ping longer VNTRs. For this reason, long read sequencing is useful in identify-

ing novel VNTRs and quantifying the number of tandem repeats. Basecalling

in VNTR regions has been reported to be more highly error prone due to

systematic errors in tandem repeat calling (Mitsuhashi et al., 2019). While

the basecalls in these regions are unreliable, signal level analysis algorithms

(ie. STRique, NanoSatellite) have been developed in order to estimate tan-

dem repeat numbers from raw nanopore signal data (Gießelmann et al 2018,

De Roeck et al 2018). NanoSTRique uses a dynamic time warping (DTW)

approach to identify VNTR spanning reads from the raw signal data and

follows this with a hidden Markov model based count on the signal of interest

(Gießelmann et al., 2018). This approach was successful in quantifying VNTR

number for the repeat expansion loci associated with Frontotemporal Demen-

tia (FTD) and Amyotrophic Lateral Sclerosis (ALS) (Gießelmann et al., 2018).

NanoSatellite follows a similar DTW approach and has been used in clinical

settings to characterize the VNTR alleles in Alzheimer’s disease (Roeck et al.).
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In addition to detecting novel SVs, advances in nanopore targeted se-

quencing technologies make it possible to sequence native DNA at specific

regions at high depth to more deeply probe SVs at known locations (Gabrieli

et al., 2018; Gießelmann et al., 2018; Kovaka et al., 2021). The ‘nanopore

Cas9 Targeted-Sequencing’ (nCATS) method utilizes the ability of Cas9 to

make cuts at specific locations then ligates nanopore adapters in order to

enrich for specific loci without any amplification biases or loss of DNA modi-

fications. Targeted long read sequencing can detect SVs ranging from large

chromosomal deletions to SNPs with high accuracy and sensitivity even in

long repetitive loci such as human tumor suppressor gene BRCA1, which is

responsible for the onset of many breast and ovarian cancers (Gilpatrick et al.,

n.d.). Additionally, nanopore adaptive sequencing with the ONT ReadUntil

API allows nanopore devices to selectively eject individual reads from the pore

in real-time. This has inspired the development of open source software UN-

CALLED and ReadUntil to rapidly match streaming nanopore current signals

to a reference sequence (Kovaka et al. 2020; Payne et al. 2020). UNCALLED

enriched 148 human genes associated with hereditary cancers enabling accu-

rate detection of SNPs, indels, structural variants (SVs), and methylation and

detected twice as many SVs compared to 50x coverage Illumina sequencing

(Kovaka et al. 2020; Payne et al. 2020). ReadUntil adaptive sequencing was

used to enrich 25,600 target regions covering nearly 10,000 genes and 717

genes implicated in cancer (Kovaka et al. 2020; Payne et al. 2020).
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1.5 RNA Sequencing

RNA sequencing has emerged as a crucial tool over recent years to investigate

different characteristics of the transcriptome such as differential gene expres-

sion, splicing variation, gene annotations, ribosomal profiling, etc. Illumina is

the current gold standard short-read RNA sequencing platform accounting for

the majority of published RNA-seq data on SRA (Stark, Grzelak, and Hadfield

2019). Long-read cDNA sequencing has significantly improved the quality of

transcriptome-wide analysis by identifying longer transcripts. These longer

reads not only enhance the detection of splice-junctions but also result in

capturing diverse isoforms (Stark, Grzelak, and Hadfield 2019). This has

caused the emergence of new computational tools that integrate these long-

read cDNA reads in genome annotation (Cook et al., 2019; Lagarde et al., 2017).

It has also been shown that ONT cDNA sequencing is capable of generating

full-length transcript reads even with low RNA input (for example, single-cell

experiments) (Oikonomopoulos et al., 2016). This technology then can be

used to investigate different characteristics of RNA such as splicing variation,

kinetics, alternative polyadenylation, and post-translational modifications

at the isoform level and their relevance in a variety of fields in biology and

medicine.

1.6 Full-length isoform discovery

Perhaps one of the most obvious advantages is the possibility of novel isoform

discovery even in very well-characterized samples. For example, studies
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have identified a considerable number of novel isoforms in lymphoblastoid

cell lines (Workman et al., 2018; Jong et al., 2017). Another interesting study

recently revealed the potential of nanopore sequencing for investigation of

full-length circRNAs in human and mouse brains. Rahimi et al. reported more

than 200 novel exons used in circRNAs (Rahimi et al., 2019).

Despite its strength in full length discovery, long-read cDNA/RNA se-

quencing still faces significant challenges. First is the 5’ truncation common

to these methods. This could happen due to a variety of reasons such as

RNA degradation, and sample handling (Stark, Grzelak, and Hadfield 2019).

Some studies have tried to address this issue for both long-read RNA and

cDNA sequencing. Jiang et al. utilized a 5’-Cap capturing approach to look

at the impact of Piwi on the exonization of TEs in loci. In this approach,

7-methylguanosine 5’-capped RNAs are enriched using a biotinylated RNA

adapter. In the case of long-read cDNA sequencing, different reverse transcrip-

tases can be used that convert only 5’-capped mRNAs to cDNA (Jiang et al.,

2019). Sessegolo et al. also have investigated the usage of commercialized

TeloPrime amplification kit (Lexogen) that is selective to both capped and

polyadenylated RNA molecules (Sessegolo et al. 2019).

Polyadenylation is one of the vital RNA regulation mechanisms that im-

pacts nuclear transport, RNA stability, and translation initiation. Nanopore

sequencing has made the assessment of poly(A) tail length in a transcriptome-

wide high-throughput manner possible. Recently, nanopolish-polya was

introduced as a computational tool that accurately estimates the poly(A) tail

length at the read-level in direct-RNA sequencing. Nanopolish achieves this
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by segmenting the signal into four regions of start, leader, adapter, poly(A) tail,

and transcript using a Hidden Markov Model (HMM). After correcting for

the different translocation speeds across the reads, the length of poly(A) tail is

estimated. This was then used to show the correlation of poly(A) tail length

with different characteristics of RNA at both transcriptome and isoform levels

(Workman et al., 2018). Another tool that implements a similar approach is

tailfindr, an alignment-free poly(A) length estimator that works for not only

direct-RNA sequencing but also cDNA sequencing (Krause et al., 2019).

1.7 Base Modifications

Another major advantage of nanopore sequencing is the ability to obtain in-

formation about non-canonical nucleic acid bases from raw signal data. Base

modifications to DNA and RNA play major roles in integral cellular processes

such as aging, gene regulation, imprinting, gene expression, transcript lo-

calization and disease (Field et al., 2018; Gibney and Nolan, 2010; Kumar,

Chinnusamy, and Mohapatra, 2018; Macdonald, 2012; Liyanage et al., 2014).

The current ‘gold standard’ method for profiling 5mC in DNA is bisulfite

sequencing (Patterson et al., 2011). Sodium bisulfite treatment converts un-

modified cytosines to uracil, while leaving methylated cytosines unchanged

(Clark et al., 1994; Frommer et al., 1992). Research has shown the presence of

other DNA base modifications in prokaryotes such as N6-Methyladenosine

and N4-methylcytosine. Although a variety of methods have been devel-

oped to detect these modifications, they are not nearly as accurate and high

throughput as bisulfite sequencing. Research has shown the presence of other
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DNA base modifications in prokaryotes such as N6-Methyladenosine and

N4-methylcytosine. Although a variety of methods have been developed to

detect these modifications, they are not nearly as accurate and high through-

put as bisulfite sequencing. Despite being the current gold standard, bisulfite

treatment is harsh and damaging to the DNA, resulting in DNA degradation

and significant sample loss (Kint et al., 2018). In a newer method called Enzy-

matic Methyl-seq (EM-seq), 5mC and 5hmC modified bases are detected more

accurately. EM-seq is specifically superior to bisulfite sequencing due to the

fact that it has less sequencing bias and requires minimal DNA input (Vaisvila

et al. 2019). In addition, the short reads gained from bisulfite sequencing

reveal short-range patterns, however, long range methylation information

can reveal allele specific patterns, particularly those involved in imprinting

(Gigante et al., 2019).

Base modifications from non-canonical nucleotides introduce unique devi-

ations in the signal data making them detectable. Calling base modifications

typically involves traditional basecalling, mapping the raw signal to a genomic

reference and then computing if a base is modified based on evidence from

the signal (Gouil and Keniry, 2019). Nanopolish methylation caller is a pre-

trained package that detects 5-methylcytosine in a CpG context by employing

a HMM. The HMM uses a table of event level distributions characteristic to

every k-mer, termed a pore model, to decipher the methylation state of k-mers

(David et al., 2017). Other software such as signalAlign, mcaller, DeepSignal,

and DeepMod use either HMMs or neural networks to detect both 5mC and

6-mA modifications (McIntyre et al., 2019; Rand et al., 2017). ONT also offers
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software packages Taiyaki, Megaladon and Tombo for training and calling

nucleic acid base modifications.

There are over 100 known post-translational modifications to RNA, but the

most frequently studied include N6-methyladenosine (m6A), 5-methylcytosine,

inosine, pseudouridine, 7-methylguanosine, and N1-methyladenosine (Zhao,

Roundtree, and He, 2017). 5’cap and poly(A) tail play arguably the most

crucial roles in RNA regulation processes such as transcript stability, splicing,

nuclear export, and translation initiation (Roundtree et al., 2017). Profiling

RNA modifications have been proven to be crucial in order to better under-

stand their role in RNA regulation and human disease. Current methods for

profiling modifications in RNA are often complex, inefficient, and do not offer

combinatorial measurement of multiple modifications simultaneously, i.e.,

detection of 6-mA and 5-mC combinations (Li, Xiong, and Yi, 2016). Since the

introduction of direct RNA sequencing by ONT, a few studies have tried to

investigate the possibility of RNA modification detection using this platform.

In one of the most recent studies, Liu et al. have combined using the raw

signal with basecalling errors to accurately call m6A modifications in a new

tool called EpiNano. EpiNano takes advantage of support vector machines

(SVMs) to train a model on in-vitro transcribed reads with all possible 5-

mers that incorporate m6A. They report that using 5-mer current intensity,

read quality, per-base quality, per-base mismatch frequency, per-base deletion

frequency, and per-base insertion frequency as features of the proposed SVM

improve the accuracy of calling m6A sites up to 97%-99% (H. Liu et al. 2019).

Although these studies have contributed significantly to this area using this
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new technology, there are still crucial challenges that require more thorough

investigations. While it is relatively easy to identify modification sites when

investigating reads in aggregate, confidently calling modified bases at a single-

read level is difficult. ONT’s Taiyaki enables users to train their own models for

basecalling of nanopore dRNA reads. While this can be a major enhancement,

Constructing long RNA molecules with modifications as training sets is quite

expensive and challenging.

1.8 Dynamics and labeling

Exogenous labels can be added to native nucleic acid and later detected

upon sequencing. This methodology has been utilized to study structure and

dynamics of DNA and RNA. In the case of RNA, studying nascent RNA can

provide a general understanding of how enhancer-mediated gene regulation

works (J. (Wang et al., 2018). Often multiple exons in a pre-mRNA go through

differential splicing. In order to understand the dynamics and regulation of

these splicing events across nascent transcripts, comprehensive methods to

assess RNA processing phenomena in vivo. In a recent study Drexler et al.

have developed a technique named nano-COP in which nascent RNAs are

directly sequenced using nanopore sequencing. nano-COP uses 4sU labeling

of RNA to capture nascent RNA. This provides a valuable tool to study the

dynamics and patterns of RNA splicing omitting amplification bias. Using

this method, it was shown that co-transcriptional splicing often happens

after transcription of several kilobases of pre-mRNA by RNA polymerase II,

suggesting splicing machinery starts working as transcription takes place
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(Drexler, Choquet, and Stirling Churchman, 2019).

Another study introduces a somewhat similar method called nano-ID

to investigate RNA metabolism at single RNA molecules and isoforms level

in different cell states and conditions. nano-ID utilizes 4sU labeling without

enriching for the labeled RNA. By incorporating some of the RNA modifica-

tion methods described above, the labeled (nascent transcripts) and unlabeled

(existing pre-mRNA) sequencing reads can be distinguished computationally.

Maier et al. reported the change in synthesis rate, stability, and splicing pat-

tern at the isoform level in human cells treated by heat shock by this method

(Maier et al., 2019).

Signal level analysis has also been used to capture dynamics of DNA

during genome replication using pulsed in BrdU with either D-NAscent or

RepNano (Hennion et al., 2018). These methods detect differences in BrdU

incorporation frequency across individual molecules. This information can

be used to reveal the location of active replication origins, fork direction,

termination sites, and fork pausing/stalling events. Nanopore sequencing

can also detect non-endogenous GpC methylation for profiling chromatin

accessibility (Lee et al. 2018, Shipony, Marinov, and Swaffer 2018). The SMAC-

seq method treats DNA with m6A and CpG and GpC 5mC methyltransferases

which preferentially methylate DNA in open regions of chromatin. When the

DNA is subsequently sequenced, highly methylated regions are indicative of

open chromatin regions (Shipony, Marinov, and Swaffer 2018). The MeSMLR-

seq and NanoNOMe methods treat DNA with GpC 5mC methyltransferases

to profile chromatin accessibility and nucleosome occupancy (Lee et al., 2018).
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Detection of methylated DNA has also proven useful in the case of binning

metagenomic contigs, associating mobile genetic elements with their host

genomes, and identifying misassembled metagenomic contigs (Tourancheau

et al. 2020).

26



1.9 References

Boža, Vladimír, Broňa Brejová, and Tomáš Vinař (2017). “DeepNano: Deep
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Chapter 2

Nanopore native RNA sequencing
of a human poly(A) transcriptome

This chapter is a published manuscript at the journal Nature Methods reprinted

in compliance with the journal policies. I am a co-first author on this study re-

sponsible for the majority of downstream analysis. More specifically, analysis

of allele-specific expression, poly(A) tail length, and base modification are the

result of my work.

Rachael E Workman et al. (2019). “Nanopore native RNA sequencing of a human

poly (A) transcriptome”. In: Nature methods 16.12, pp. 1297–1305

2.1 Introduction

The roles of RNA in cell function are numerous and complex. Beyond the

fundamental importance of mRNA, tRNA, and ribosomal RNA in translation,

several classes of non-coding RNA (ncRNA) regulate cellular processes in-

cluding division, differentiation, and programmed cell death (Cech and Steitz,

2014; Su et al., 2016).
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Sequencing by synthesis (SBS) strategies have dominated RNA sequencing

since the early 1990s. Typically this involves generation of cDNA templates by

reverse transcription (RT) (Temin and Mizutani, 1970; Baltimore, 1970) coupled

with PCR amplification (Saiki et al., 1988). Sequential base identification along

template strands is generated by DNA polymerase-dependent incorporation

of complementary nucleotides into daughter strands. A high throughput

version of this basic technique (RNA-seq (Nagalakshmi et al., 2008; Wilhelm

et al., 2008; Mortazavi et al., 2008; Lister et al., 2008; Cloonan et al., 2008;

Marioni et al., 2008; Morin et al., 2008)) can be implemented to determine both

reference-based and de novo transcriptomes at high coverage (Wang, Gerstein,

and Snyder, 2009). Single molecule SBS strategies have been employed to

sequence RNA without a PCR step using Pacific Biosciences and Helicos

platforms. Read lengths were <25 nt (Vilfan et al., 2013) and <34 nt (Ozsolak

et al., 2009) respectively.

Nanopore RNA strand sequencing has emerged as an alternative single

molecule strategy (Garalde et al., 2018; Jenjaroenpun et al., 2018; Smith et al.,

2019). It differs from SBS-based platforms in that native RNA nucleotides,

rather than copied DNA nucleotides, are identified as they thread through

and touch a nanoscale sensor. Nanopore RNA strand sequencing shares the

core features of nanopore DNA sequencing, i.e. a processive helicase motor

regulates movement of a bound polynucleotide driven through a protein pore

by an applied voltage. As the polynucleotide advances through the pore in

single nucleotide steps, ionic current impedance reports on the segment of

bases that occupy a narrow reading head as a function of time. This series of
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ionic current segments is converted into nucleotide sequence using an ONT

algorithm trained with known RNA molecules.

Here we describe sequencing and analysis of a human poly(A) transcrip-

tome from the GM12878 cell line using the Oxford Nanopore (ONT) platform.

We demonstrate that long native RNA reads allow for discovery and char-

acterization of RNA isoforms that are difficult to observe using short read

cDNA methods (Steijger et al., 2013; Venturini et al., 2018). Because native

RNA strands are directly read by nanopores, nucleotide modifications and 3’

poly(A) tail lengths can be determined from the ionic current signal without

additional processing steps. Data and resources are posted online at:

(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/

RNA.md).

2.2 RNA preparation, nanopore sequencing, and
computational pipeline

The protocol we used to isolate and sequence native poly(A) RNA from a

human B-lymphocyte cell line (GM12878) is summarized in Figure 2.1a and

detailed in methods. Briefly, 750 ng of poly(A) RNA was adapted for nanopore

sequencing using ONT protocols and library reagents. Adapted poly(A) RNA

(160-400 ng) was then added to the MinION flow cell and sequenced for

∼24-48 hours. A typical ionic current trace during TP53 mRNA translocation

through a nanopore is shown in Figure 2.1b. The ionic current readout for

each poly(A) RNA strand was basecalled using Albacore version 2.1.0 (ONT).

We also performed nanopore cDNA sequencing using the identical GM12878
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RNA sample and analysis pipeline, but with modified parameters appropri-

ate for cDNA sequencing (methods). Both the RNA and cDNA data were

archived and used for downstream analyses (Figure 2.1c). They are available

on GitHub at:

(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/

RNA.md).

2.3 Native poly(A) RNA sequencing statistics

Each of six laboratories performed five nanopore sequencing runs. Together,

these thirty runs produced 13.0 million poly(A) RNA strand reads, of which

10.3 million qualified as pass reads (Albacore generated Q-value > 7). Through-

put varied between 50K and 831K pass poly(A) reads per flow cell. The 10.3

million pass RNA nanopore reads had an N50 length of 1,334 bases, and a me-

dian length of 771 bases. Of these, 9.9 million aligned to the GRCh38 human

genome reference sequence using minimap2 version 2.1 with a splice-aware

setting (-ax splice -uf -k14) (Li, 2018). This algorithm was chosen because it

aligns nanopore reads to exons in the human genome while spanning across

introns (Tang et al., 2018). The 360,000 unaligned pass reads had a median

read length of 211 bases, suggesting that shorter nanopore reads were more

difficult to align.

We next aligned the RNA pass reads to the GENCODE v27 transcriptome

reference using minimap2. This resulted in aligned reads ranging in length

from 85 nt (a fragment of an mRNA encoding Ribosomal Protein RPL39), to

21kb (an mRNA encoding spectrin repeat containing nuclear envelope protein
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2 (SYNE2)). A comprehensive list of the genes and isoforms represented

among the aligned native RNA reads can be found on GitHub.

MarginStats (version 0.1) (Jain et al., 2015a) was employed to calculate

percent identity and the number of matches, mismatches, and indels per

aligned read in this population. The median identity across flow cells and

laboratories averaged 86+/-0.86% (Figure 2.2a), with mismatch, insertion, and

deletion errors of 2.4%, 4.3%, and 4.4% respectively. The basecaller seldom

confused G-for-C or C-for-G (0.38% and 0.47% errors respectively); C-to-T

and T-to-C errors were substantially higher (3.62% and 2.23% respectively)

(Figure 2.2b). We compared the observed read length vs expected transcript

length as defined by GENCODE v27, and found general agreement (Figure

2.2c). The discrete clusters below the diagonal represent incorrect assignments

to GENCODE isoforms, and the diffuse shading represents fragmented RNA

(see text below concerning RNA truncation).

For nanopore cDNA data, we observed a median identity of 85% (Figure

2.2d) which is comparable to recent published nanopore DNA results (Jain

et al., 2018). The substitution error patterns for cDNA data were similar to

those for native RNA data (Figure 2.2e). There was a weaker correspondence

between observed vs expected read lengths for cDNA (Figure 2.2f).

2.4 Kmer coverage

Previous Kmer analyses indicated that some nucleotide sequences are over- or

under-represented in nanopore-based DNA sequence reads (Jain et al., 2015a;

Jain et al., 2018). In this study, we assessed nanopore RNA and cDNA 5-mer
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coverage using reads aligned to GENCODE v27 isoforms. Only reads that

covered 90% or more of a given reference sequence were chosen. Of the 10.3

million RNA pass reads, 2.9 million RNA reads were selected based on this

criterion. Of the 15.1 million pass cDNA reads, 3.9 million pass cDNA reads

were selected. These reads included all 1024 possible 5-mers.

The largest deviation from expectation often occurred for homopolymer-

rich 5-mers that were under-represented in native RNA and over-represented

in cDNA. This is similar to previous 5-mer analysis for ONT MinION DNA

sequence data (Jain et al., 2015a; Jain et al., 2018).

2.5 Nanopore sequencing performance assessed us-
ing mitochondrially-encoded RNA

We reasoned that mitochondrial poly(A) transcripts could be used to bench-

mark nanopore sequencing performance because they are abundant in all

human cells, they are single exon, and they vary substantially in length (349-

2,379 nt). Of the 9.9 million aligned nanopore poly(A) RNA strand reads,

approximately 10% (950,879) aligned to the mitochondrial genome (Figure

2.3a and public UCSC track: https://goo.gl/erWFyu). As expected, most of

these poly(A) transcripts corresponded to mitochondrial ribosomal RNA or to

mitochondrial mRNA. Overall, the nanopore RNA reads recapitulated known

features of the human MT-transcriptome.

MT-RNA read length analysis was revealing. Figure 3b shows 5,000 reads

that aligned to MT-CO2 or to MT-ND4L/ND4 genes. In each panel, a domi-

nant band corresponded closely to the expected transcript length (732 nt and
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1,673 nt for MT-CO2 and MT-ND4L/ND4 respectively). However, for each

of these, a population of truncated reads was randomly distributed between

the dominant band and about 300 nt in length. When we quantified the

fraction of truncated reads as a function of nominal transcript length for ten

MT-mRNA of the heavy strand (Online Methods), we found a strong linear

anti-correlation in most cases (Figure 2.3c). The single outlier was MT-ND5

which is the mitochondrial transcript with a 568 nt 3’ UTR.

These MT-poly(A) RNA truncations could occur at any of several non-

biological steps during the sequencing process, or they could arise from

regulated enzymatic degradation in the mitochondrion (Szczesny et al., 2012).

Here we considered three possible non-biological causes that were specific to

the nanopore platform.

One systematic cause of read truncations occurred because the enzyme

that controls translocation through the pore is 10-15 nt from the nanopore

sensor. Thus, when the enzyme releases the last base at the 5’ end, the strand

is rapidly driven through the pore at microseconds per nucleotide which

prevents reading the terminal 10-15 nt. This phenomenon was evident by close

inspection of read coverage at the 5’ end of mitochondrial mRNA transcripts

( https://goo.gl/erWFyu), and is expected for all direct RNA reads in the

present ONT protocol.

Another possible cause was ionic current signal artifacts associated with

enzyme stalls during RNA translocation, or with extraneous voltage spikes.

Similar artifacts have been shown to disrupt strand reads during MinION

sequencing of DNA (Payne et al., 2018). Systematic analysis of 2,729 MT-CO1
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reads within bulk FAST5 files from Lab 1 identified 527 reads which started

or ended abnormally (methods). By including ionic current segments that

were identified before or after many of these truncations, we reconstructed

300 reads with longer alignments to MT-CO1 (Figure 2.3d). As anticipated,

this phenomenon was length dependent (Figure 2.3e), ranging from 4.2% of

reads with rescued segments for ND3 (346 nt nominal length) to 17.6% for

ND5 (2379 nt nominal length).

A third possible cause was strand breaks during nanopore sequencing

runs. As a test, we analyzed MT-CO1 read-length distribution for each of

the six laboratories as a function of time on ONT flow cells. As expected,

we found that the read frequency at all lengths declined steadily over 36

hours, however the full-length fraction declined by only 5% (Figure 2.3f). This

analysis also revealed that initial input RNA quality differed substantially

between laboratories. For Lab 1 (representative of Labs 1-5) the full length

MT-CO1 fraction was 49.7% for 0-6 hours on the sequencer (Figure 2.3f, left);

by comparison, for Lab 6 the full length MT-CO1 fraction was 31.1% (Figure

2.3f, right). A possible cause is that Lab 6 used a separate GM12878 cell pellet.

For this reason, isoform-level analyses in the following sections omitted Lab 6

data, and focused on 8.17 million aligned poly(A) RNA reads from Labs 1-5.

2.6 Isoform detection and analysis

Long nanopore reads could improve resolution of RNA exon-exon connec-

tivity, allowing for discovery of unannotated RNA isoforms. However, these
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reads averaged 14% per-read base call errors, confounding precise determi-

nation of splice sites. Also, biological RNA processing and in vitro 5’-end

truncations (see above) can make it difficult to define transcription start sites

(TSS).

To overcome these limitations we employed FLAIR (Full-Length Alterna-

tive Isoform Analysis of RNA). In this strategy, we first replaced any nanopore-

based splice sites bearing apparent sequencing errors with splice sites sup-

ported by GENCODE v27 annotations or by Illumina GM12878 cDNA data

(Tilgner et al., 2014; Cho et al., 2014). Second, to overcome TSS uncertainty

caused by truncated RNA reads, we considered only reads with 5’ ends proxi-

mal to promoter regions (defined by ENCODE promoter chromatin states for

the GM12878 cell line (Bernstein et al., 2005; Ernst and Kellis, 2010; Ernst et al.,

2011)). And third, we used FLAIR to group reads into isoforms according to

chains of splice junctions.

We then compiled two FLAIR isoform sets using different supporting read

criteria (see methods):

i) A FLAIR-sensitive set that included isoforms with three or more uniquely

mapped reads (see GitHub link). This large set could be useful for isoform

discovery, at the risk of false positives.

ii) A FLAIR-stringent set that was compiled by filtering set (i) for isoforms

having three or more supporting reads that spanned ≥ 80% of the isoform

with ≥ 25 nt coverage into the first and last exon.

We used the FLAIR-stringent dataset to screen for unannotated isoforms

because it had the most strict criteria for isoform assignment. This set was
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composed of 33,984 isoforms from 10,793 genes. Over half (52.6%) of the

isoforms had a splice junction chain unannotated in GENCODE v27 (13.0%

of total assigned reads). Of the unannotated isoforms, 46.5% (7,961) had new

combinations of annotated splice junctions, 13.3% (2,281) had retained introns,

and 6.9% (1,180) had an unannotated exon. Figure 4a shows an example

set of lncRNA isoforms arising from an unannotated transcription start site

with multiple splice variants. We performed the same analysis using the

FLAIR-sensitive set.

To better characterize long non-coding RNAs (lncRNAs), we then segre-

gated the FLAIR-stringent isoforms into three categories (methods): i) lncR-

NAs that lacked an annotated start codon; ii) isoforms from protein-coding

genes with premature termination codons upstream of the last splice junc-

tion; and iii) known protein-coding isoforms. Non-coding genes had more

complex splicing patterns per gene than did coding genes, as measured by

Shannon entropy (Figure 2.4b). This is consistent with prior studies that

demonstrated increased alternative splicing in non-coding exons (Deveson

et al., 2018; Gonzàlez-Porta et al., 2013).

As a conservative alternative to FLAIR, we compiled two GENCODE-

based isoform sets:

iii) A GENCODE-sensitive set that included isoforms with one or more

reads that mapped uniquely to GENCODE v27. We implemented a lower

coverage threshold than we did for FLAIR because GENCODE is carefully

curated.

iv) A GENCODE-stringent set that was compiled by filtering set (iii) for
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isoforms having one or more supporting reads that spanned ≥ 80% of the

isoform with ≥ 25 nt coverage into the first and last exon.

To estimate the sequencing depth required to completely characterize the

GM12878 transcriptome, we plotted the number of isoforms detected in the

GENCODE-sensitive and FLAIR-stringent isoform sets versus the number of

subsampled reads in 10% increments. We then fitted a hyperbolic function

to the data (Figure 2.4c). It is evident that the curves did not saturate and

that additional reads would be required to capture a complete GM12878

transcriptome.

2.7 Assignment of transcripts to parental alleles

Allele-specific expression (ASE) is the preferential transcription of RNA from

the paternal or maternal copy of a gene.. Although the importance of this

phenomenon has been characterized (Baralle and Giudice, 2017), the conse-

quences are not fully understood. This is partly due to technical limitations of

haplotype identification using short read sequencing technologies.

We reasoned that the long nanopore RNA reads would be easier to assign

to the parental allele of origin due to the greater chance of encountering a

heterozygous SNP. Reads with at least two heterozygous SNPs were assigned

to the parental allele of origin using HapCUT2 (Edge, Bafna, and Bansal,

2017). To discover the most possible genes, we used the FLAIR-sensitive data-

set. In it, we found 3,751 genes with at least 10 haplotype informative reads.

3,707 of these genes were from autosomal chromosomes and 44 were from

the X-chromosome. Among autosomal genes, 228 (6.1%) showed significant
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ASE (binomial test, p<0.001), and among X-chromosome genes, 23 (95.7%)

showed significant ASE (binomial test, p<0.001). X-chromosome expression

was biased, with 22/23 allele-specific X-linked genes originating from the ma-

ternal allele, consistent with previous results for this cell line (Rozowsky et al.,

2011). The sole paternally expressed X-linked locus encoded the lncRNA XIST,

which is transcribed from the inactive X-chromosome and recruits epigenetic

silencing machinery for X-inactivation in females (Brown et al., 1991). The

remaining genes were expressed equally from both parental alleles.

We combined these allele-specific reads with isoforms from the FLAIR-

sensitive set to mine for allele-specificity (methods). We identified 5 genes with

one isoform expressed from one allele and another isoform expressed from the

other allele (binomial test, P<0.001). One of these genes, IFIH1, had a paternal

isoform with exon 8 retained, while the maternal isoform did not retain exon

8 (Figure 2.4d). We note that the closest SNV used in allele-assignment was

886 nt away from the alternative splicing event in this transcript. This would

be undetectable using short read sequencing.

2.8 poly(A) analysis

Transcript poly(A) tails are thought to play a role in post-transcriptional

regulation, including mRNA stability and translational efficiency (Eckmann,

Rammelt, and Wahle, 2011; Preiss, 2013). However, these homopolymers can

be several hundred nucleotides long making them difficult to measure using

short-read SBS data (Subtelny et al., 2014; Chang et al., 2014).
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In this study, we measured poly(A) tail lengths directly using a low vari-

ance the ionic current signal associated with the 3’ end of each poly(A) strand

(Figure 1b, iii). Briefly, we developed a computational method (‘nanopolish-

polya’, https://github.com/jts/nanopolish) to segment this signal and es-

timate how many ionic current samples were drawn from the poly(A) tail

region. Then, by correcting for the rate at which the RNA molecule passes

through the pore, nanopolish-polya estimates the length of the poly(A) tail.

To test this method we obtained six MinION-derived poly(A) RNA control

datasets generated by ONT (ENA accession PRJEB28423). These datasets

consisted of ionic current traces for synthetic S. cerevisiae enolase transcripts

appended with 3’ poly(A) tails of 10, 15, 30, 60, 80 or 100 nucleotides. A

second version of the 60nt poly(A) tailed construct (60nt-kN) contained a 10nt

randomer between the enolase sequence and the 3’ poly(A).

Poly(A) tail length estimates for these synthetic controls are shown in

Figure 2.5a. Median estimates fell within 4 nucleotides of the expected tail

length for the 10-to-80 poly(A) datasets; for the 100nt dataset, the median

estimate was 109nt. We observed that 66%-80% of the estimated lengths fell

within 2 median absolute deviations of the expected tail length. The predicted

tail length distribution for the 60nt-kN dataset (bearing the 10nt random

sequence insert) contained a higher proportion of short poly(A) tails than

expected, which may indicate amplification errors specific to this sample due

to the 10nt sequence insert.

A limitation of our approach is the inability to detect when the poly(A) re-

gion stalls in the nanopore sensor during translocation, causing over-estimation
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of the tail length. From the control data, we estimate this occurs for 1-3% of

the sequenced molecules. Also, as the length of the poly(A) tail increases, the

variance of our estimator does as well. This is expected because the number

of ionic current samples in the tail region for a fixed expected tail length is not

deterministic and has substantial variation due to the kinetics of translocation.

We found that we were able to offset some of this inherent variance by using

the overall transcript translocation rate as an estimator of the poly(A) rate.

We applied this poly(A) length estimator to the complete GM12878 native

poly(A) RNA sequence dataset. Overall, the poly(A) length distribution

centered at ∼50nt, with a broad dispersion of longer poly(A) tails for some

transcripts. When we segregated mitochondrial-encoded transcripts from

nuclear-encoded transcripts, we found that the mitochondrial transcripts

had poly(A) lengths which peaked at 52nt, with a mean of 59nt and almost

no poly(A) tail lengths greater than 100nt (Figure 2.5b). This is consistent

with results for mitochondrial poly(A) RNA from other human cell lines

(Temperley et al., 2010). Conversely, nuclear transcripts showed a broader

length distribution, with a peak at 58nt, a mean of 112nt, and a large number

of poly (A) tails greater than 200nt.

Next, we measured poly(A) tail length differences between genes with at

least 500 reads. Figure 2.5c shows the distribution of poly(A) size for genes

found to have the 2 longest poly(A) tails, genes with the two shortest poly(A)

tails, and the gene with the median poly(A) length.

For some genes, e.g. the RNA-binding protein DDX5, multiple poly(A)

length peaks were observed (Figure 2.5c), suggesting the presence of poly(A)
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tail-length sub-populations that are isoform specific. To explore this, we

analyzed genes in the Gencode-stringent dataset, and found 215 genes that

had isoforms with significantly different poly(A) lengths.

When we compared two Gencode isoforms of DDX5, we noted that an

intron-retaining isoform (ENST00000581230, ‘230’) had a median poly(A) tail

length of 327nt, compared with the protein-coding isoform (ENST00000225792,‘792’),

which had a median poly(A) tail length of 125nt. (Figure 2.5d). This difference

motivated us to explore the relationship between poly(A) length and RNA

intron-retention. For this analysis, we classified each isoform in Gencode-

sensitive as either protein-coding or intron-retaining. We observed that a

subset of transcripts with retained introns tended to have longer poly(A)

tails (median 232nt) than did transcripts without introns (median 91nt) (t-test

p-value < 2.2e-16, Figure 5e). This result is consistent with a previous observa-

tion that nuclear transcripts with retained introns tend to have longer poly(A)

tails, priming them for degradation through recognition by the nuclear poly(A)

binding protein (PABPN1) (Bresson et al., 2015).

2.9 Modification detection

Nanopore sequencing has been used to identify base modifications in DNA

(Simpson et al., 2017; Rand et al., 2017) and RNA (Garalde et al., 2018; Smith

et al., 2019). N6-methyladenine (m6A) is the most common internal modifica-

tion on mRNA (Liu and Pan, 2016), and has been implicated in many facets

of RNA metabolism (Dai et al., 2018). m6A dysregulation has been linked

to human diseases, including obesity and cancer (Sibbritt, Patel, and Preiss,
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2013). Because m6A modifications are enriched in 3’ UTRs, with two-thirds of

these containing miRNA sites (Meyer et al., 2012), the impact of this modifica-

tion appears to be largely regulatory, as opposed to altering protein coding

sequence.

Prior work has documented that base modifications result in changes in

ionic current distributions for a given kmer (Rand et al., 2017; Simpson et al.,

2017). We focused our studies on the GGACU binding motif of METTL3, a sub-

unit of the m6A methyltransferase complex (Roost et al., 2015). As an example,

we compared the raw current signal at a putative m6A site (chr19:3976327)

for eukaryotic elongation factor 2 (EEF2) RNA versus the signal for an in vitro

transcribed copy produced from GM12878 mRNA (methods). This compar-

ison revealed an ionic current change attributable to m6A (Figure 2.6a). To

validate this result, we used synthetic oligomers that were identical except

for the presence or absence of m6A within the GGACU motif (Figure 2.6b).

After sequencing, we used nanopolish eventalign to extract current levels

for the 5-mers which contained the modified base and the unmodified base.

This revealed a clear current difference (Figure 2.6c) consistent with the EEF2

result.

To determine if m6A modifications differed between isoforms of the same

gene, we screened Gencode-sensitive isoforms for ionic current changes at the

GGACU motif. We found 86 genes (198 isoforms) where the median current

levels at a single GGACU were significantly different between gene isoforms

(Kruskal-Wallis, Student’s t-test, and Kolmogorov-Smirnov statistical testing

with Bonferroni multiple testing correction). An example is illustrated for the
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SNHG8 gene (Figure 2.6d).

Another post-transcriptional modification, A-to-I RNA editing (Licht et

al., 2016), commonly occurs in introns, UTRs, and Alu elements. It plays a

role in splicing and regulating innate immunity (Nishikura, 2010; Tajaddod,

Jantsch, and Licht, 2016) and is associated with numerous diseases (Gallo et al.,

2017). NGS detects A-to-I editing as a nucleotide variant in cDNA sequences

(A-to-G).

Previous nanopore experiments documented the presence of systematic

base miscalls in regions of E. coli 16S rRNA bearing modified RNA bases

(Smith et al., 2019). Consistent with this, we found systematic base miscalls at

putative inosine bearing positions in the GM12878 aryl hydrocarbon receptor

(AHR) data (chr7:17,345,148-17,345,157). To cross-validate this result, we

compared our cDNA sequence data relative to the GM12878 reference and

found that putative inosines were detected as a base change (A-to-G) (single

inosine for the CUACU 5-mer, and multiple inosines for the AAAAA 5-mer).

The ionic current distribution for the putative single inosine 5-mer (CUACU)

was modestly different from the canonical 5-mer (Figure 6e). The ionic current

distribution for the inosine containing AAAAA 5-mer was more complex,

possibly reflecting the presence of multiple inosines (Figure 2.6f).

2.10 Discussion

Nanopore RNA sequencing has two useful features: 1) The sequence composi-

tion of each strand is read as it existed in the cell. This permits direct detection

of post-transcriptional modifications including nucleotide alterations and
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polyadenylation; 2) reads can be continuous over many thousands of nu-

cleotides providing splice-variant and haplotype phasing. Although each

of these features is useful in itself, the combination is unique and likely to

provide new insights into RNA biology. The two principal drawbacks of the

present ONT nanopore RNA sequencing platform is the relatively high error

rate (compared to Illumina cDNA sequencing), and uncertainty about the 5’

end of the transcript.

We were concerned that read fragmentation in the nanopore data was

caused by RNA degradation on the nanopore flow cells during sequencing.

However, we found minimal (∼5%) reduction in the full-length fraction of a

1.6 kb mRNA (MT-CO1) over 36 hours. Preliminary analysis indicated that

read truncations were more often caused by electronic signal noise due to cur-

rent spikes of unknown origin. We showed that meaningful biological signals

can be recovered from bulk Fast5 files around these truncations, suggesting

that future improvements to the MinKNOW read segmentation pipeline are

needed.

When combined with more accurate short Illumina reads, long nanopore

reads allowed for end-to-end documentation of RNA transcripts bearing nu-

merous splice junctions, which would not be possible using either platform

alone. We documented a high proportion (52.6%) of unannotated isoforms,

similar to other long-read transcriptome sequencing studies (e.g., 35.6% and

49%) (Tardaguila et al., 2018; Anvar et al., 2018). While many of these unanno-

tated isoforms are low abundance and their protein coding potential unknown,

it is important to catalog them because subtle splicing changes can impact
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function (Wang et al., 2016; Bradley et al., 2012). We also note that the num-

ber of detected isoforms did not saturate using the nanopore poly(A) RNA

dataset, indicating that greater sequence depth will be necessary to give a

comprehensive picture of the GM12878 poly(A) transcriptome.

A variety of techniques have been used to examine allele-specific expres-

sion (ASE) (Rozowsky et al., 2011; Turro et al., 2011; Pandey et al., 2013;

Mayba et al., 2014; Skelly et al., 2011; Tilgner et al., 2014; Deonovic et al., 2017).

However, identification of ASE is limited using short read platforms because

heterozygous variants are rare within any given window of a few hundred

nucleotides. Our nanopore approach for ASE discovery has the advantage

of long reads, but the disadvantage of high base call errors. We attempted to

mitigate the effects of these errors by requiring multiple heterozygous variants

and a stringent false-discovery rate (FDR) during ASE analysis. Therefore, the

number of genes that we report as demonstrating ASE (167) is likely an un-

derestimation. We report nearly exclusive use of the maternal X-chromosome,

with the only paternal transcripts originating from the XIST locus, consistent

with previous findings (Rozowsky et al., 2011). Importantly, we have shown

that nanopore sequencing enables allele-specific isoform studies, especially

in cases where the splicing variation does not have a heterozygous variant

within range of conventional short-read sequencing.

Polyadenylation of RNA 3’ ends regulates RNA stability and translation

efficiency by modulating RNA-protein binding and RNA structure (Eckmann,

Rammelt, and Wahle, 2011). However, transcriptome-wide poly(A) analysis

has been difficult due to basecalling and dephasing errors (Chang et al., 2014).
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Recently implemented modifications to the Illumina strategy address these

limitations (Chang et al., 2014; Subtelny et al., 2014; Woo et al., 2018); but can

not resolve distal relationships, such as between splicing and poly(A) length.

Nanopore poly(A) tail length estimation using nanopolish-polya offers the

advantages of both direct length assessment and maintenance of information

about isoform and modification status per transcript. Our preliminary studies

revealed differences in poly(A) length distribution between mitochondrial

and nuclear genes, between different nuclear genes, and between different iso-

forms of the same gene. We note in particular an increase in poly(A) tail length

for some intron-retaining isoforms. This is consistent with previous work

showing that hyper-adenylation targets intron-retaining nuclear transcripts

for degradation through recognition by a poly(A)-binding protein (PABPN1)

(Bresson et al., 2015).Additionally, deadenylation of cytoplasmic transcripts is

a core part of the RNA degradation pathway (Yi et al., 2018), suggesting that

time course experiments investigating RNA decay kinetics (Parker and Song,

2004) could be possible with this technology.

We have demonstrated detection of N6-methyladenosine and inosine mod-

ifications in human poly(A) RNA. This validates prior work which showed

modification-dependent ionic current shifts associated with m6A (S. cerevisiae)

(Garalde et al., 2018), pseudouridine (Smith et al., 2019), and m7G (E. coli)

(Smith et al., 2019). Differences in m6A modification level proved to be dis-

cernible at the isoform level for human SNGH8 mRNA (Figure 2.6d), thus

documenting splicing variation and modification changes simultaneously.
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Although other methods exist for high throughput analysis of RNA modi-

fications (Li, Xiong, and Yi, 2016), they often require enrichment which limits

quantification, and they are usually short-read based. The latter precludes

analysis of long-distance interactions between modifications, and between

modifications and other RNA features such as splicing and poly(A) tail length.

The capacity to detect these long-range interactions is likely to be important

given recent work suggesting links between RNA modifications, splicing reg-

ulation, and RNA transport and lifetime (Roundtree et al., 2017; Lee, Kim, and

Kim, 2014). We argue that nanopore native RNA sequencing could deliver this

long-range information for entire transcriptomes. However, this will require

algorithms trained on large, cross-validated datasets as has been accomplished

for cytosine and adenine methylation in genomic DNA (Simpson et al., 2017;

Rand et al., 2017).

2.11 Conclusions

Oxford Nanopore devices sequence long native RNA strands directly. In

this study, we showed that these long reads improved human poly(A) RNA

isoform characterization, including allele specificity. Because native RNA

strands were read directly, m6A and inosine nucleotide modifications could

be detected without intermediate preparative steps. We introduced a new

tool (nanopolish-polya) that estimates 3’ poly(A) tails on individual RNA

strands based on nanopore ionic current signals. Applied to the GM12878

transcriptome, it revealed differences in RNA poly(A) tail lengths between

nuclear and mitochondrially encoded genes, and between splice variants of
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genes.

2.12 Data Availability

Sequence data including raw signal files (FAST5), event-level data (FAST5),

base-calls (FASTQ) and alignments (BAM) are available as an Amazon Web

Services Open Data set for download from https://github.com/nanopore-wgs-consortium/

NA12878. The scripts used for various analyses are also available from the

same GitHub under nanopore-human-transcriptome/scripts.
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2.13 Figures

Figure 2.1: (a) RNA is isolated from cells followed by poly(A) selection using poly(dT) beads.
Poly(A) RNA is then prepared for nanopore sequencing using the following steps: (i) A
duplex adapter bearing a poly(dT) overhang is annealed to the RNA poly(A) tail, followed by
ligation of the strand abutting the poly(A) tail; ii) the poly(dT) complement is extended by
reverse transcription; iii) a proprietary ONT adapter bearing a motor enzyme is ligated to
the first adapter; and (iv) the product is loaded onto the ONT flow cell for reading by ionic
current impedance. The ionic current trace for each poly(A) RNA strand is base called using
a proprietary ONT algorithm (Albacore). (b) A representative ionic current trace for a 2.3 kb
TP3 transcript ionic current components: (i) Strand capture; ii) ONT adapter translocation;
iii) poly(A) RNA tail translocation; iv) mRNA translocation; and (v) exit of the strand into
the trans compartment. Bar is 5 seconds. (c) Processing of the RNA strand reads in silico,
followed by data analysis.
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Figure 2.2: (a) Alignment identity vs. read length for native RNA reads. (b) Substitution
matrix for native RNA reads. (c) Observed v. expected read length for ∼9.7 million native
RNA reads. (d) Alignment identity vs. read length for cDNA reads. (e) Substitution matrix
for cDNA reads. (f) Observed vs. expected read length for ∼14.1 million cDNA reads.
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Figure 2.3: (a) Read coverage of the H strand (top) and the L strand (bottom). (b) Distribution
of nanopore read lengths for MT-CO2 and MT-ND4L/ND4 transcripts. Each point represents
one of approximately 5000 reads in the order acquired from a single Lab 1 MinION experiment.
Horizontal arrows are expected transcript read lengths. (c) Relationship between expected
transcript read length and fraction of nanopore poly(A) RNA reads that were full length.
Each point is for a protein coding transcript on the H strand. Labels are for mitochondrial
genes without the MT prefix. See Online Methods for definition of ‘Full Length’. (d) Ionic
current trace for translocation of a MT-CO1 transcript. It is representative of traces where the
read was artificially truncated by a signal anomaly. The red line represents the MinKNOW
segmented read (positions 474-1532 of the MT-CO1 gene), and the blue line represents the
manually segmented and rescued read (positions 27-1532 of the MT-CO1 gene). The time bar
is two seconds. (e) Percent of artificially truncated strand reads where sequence was recovered
from the ionic current signal. Points are for protein coding transcripts as in panel c. (f)
MT-CO1 poly(A) transcript read length vs MinION run time.
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Figure 2.4: (a) Genome browser view of unannotated isoforms found in the native RNA data.
(b) Distributions of the Shannon entropy of isoform expression for coding versus noncoding
genes detected by FLAIR. (c) Saturation plot showing the number of isoforms discovered
(y-axis) in relation to the different numbers of reads (x-axis) of total native RNA and cDNA
data used. (d) IGV view of the allele-specific isoforms of the gene IFIH1. Purple boxes (inset)
indicate location of SNPs used to assign allele specificity, alternatively spliced exon is indicated
with a green box.

61



Figure 2.5: (a) Estimate of poly(A) lengths for a synthetic enolase control transcript bearing
3’ poly(A) tails of 10, 15, 30, 60, 80 or 100 nucleotides. ‘60kN’ contained all possible
combinations of a 10nt random sequence inserted between the enolase sequence and the 3’
poly(A) 60mer. (b) Poly(A) length distributions for transcripts encoded in the mitochondrial
genome versus nuclear-encoded genes. (c) Violin plots showing the range of poly(A) tail
lengths sequenced, with the longest (DDX5, DDX17), shortest (RPS24, OLA1), and average
(SRP14) poly(A) distributions plotted. (d) Distribution of poly(A) tail lengths and gene models
for two isoforms of DDX5 plotted. (e) Distribution of poly(A) tail lengths for intron-retaining
and intron-free transcripts identified using Gencode-Sensitive isoform set, Kruskal-Wallis
p-value denoted.
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Figure 2.6: (a) Comparing current signal from m6A-modified and unmodified GGACU motifs.
(b) Schematic for the oligomer-ligation preparation. (c) Comparing current signal from m6A-
modified and unmodified GGACU motifs. (d) Current distributions for GGACU motifs
within SNHG8 gene isoforms. (e) Ionic current distributions for putative inosine-bearing
CUACU 5-mer in the 3’-UTR region of the AHR gene. (f) Ionic current distributions for
putative inosine-bearing AAAAA 5-mer in the 3’-UTR region of the AHR gene.
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2.14 Methods

Unless otherwise noted, kit based protocols described below followed the

manufacturer’s instructions.

2.14.1 GM12878 cell tissue culture

GM12878 cells (passage 4) were received from the Coriell Institute and cul-

tured in RPMI media (Invitrogen cat# 21870076) supplemented with 15% non

heat-inactivated FBS (Lifetech cat# 12483020) and 2mM L-Glutamax (Lifetech

cat# 35050061). Cells were grown to a density of 1 x 106 / ml before subse-

quent dilution of every ∼3 days and expanded to 9 x T75 flasks (45 ml of

media in each). Cells were centrifuged for 10 min at 100 x g (4oC), washed

in 1/10th volume of PBS (pH 7.4) and combined for homogeneity. The cells

were then evenly split between 8 x 15ml tubes and pelleted at 100g for 10

mins at 4oC. The cell pellets were then snap frozen in liquid nitrogen and

immediately stored at -80oC before shipping on dry ice. Two tubes of 5 x

107 frozen GM12878 cell pellets from passage 10 from a single passage, cul-

tured at UBC, were distributed and used at UBC, OICR, JHU, and UCSC. Two

tubes of cells from passage 11 were distributed to UoN from UBC, and an

independently cultured passage of GM12878 was used at UoB. (University of

British Columbia (UBC), University of Birmingham (UoB), Ontario Institute

of Cancer Research (OICR), Johns Hopkins University (JHU), University of

Nottingham (UoN), and University of California Santa Cruz (UCSC))
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2.14.2 Total RNA Isolation

The following protocol was used by each of the six institutions. Four ml of

TRI-Reagent (Invitrogen AM9738) was added to a frozen pellet of 5 x 107

GM12878 cells and vortexed immediately. This sample was incubated at

room temperature for 5 minutes. Four hundred µl BCP (1-Bromo-3-chloro-

propane) or 200 µl CHCl3 (Chloroform) was added per ml of sample, vortexed,

incubated at room temperature for 5 minutes, vortexed again, and centrifuged

for 10 minutes at 12,000g (4oC). The aqueous phase was pooled in a LoBind

Eppendorf tube and combined with an equal volume of isopropanol. The tube

was mixed, incubated at room temperature for 15 minutes, and centrifuged

for 15 minutes at 12,000g (4oC). The supernatant was removed, the RNA pellet

was washed with 750 µl 80% ethanol and then centrifuged for 5 minutes at

12,000g (4oC). The supernatant was removed. The pellet was air-dried for 10

minutes, resuspended in nuclease free water (100 µl final volume), quantified,

and either stored at -80oC or processed further by poly(A) purification.

2.14.3 Poly(A) RNA isolation

One hundred µg aliquots of total RNA were diluted in 100 µl of nuclease free

water and poly(A) selected using NEXTflex Poly(A) Beads (BIOO Scientific

Cat#NOVA-512980). Resulting poly(A) RNA was eluted in nuclease free water

and stored at -80oC.
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2.14.4 MinION native RNA sequencing of GM12878 poly(A)
RNA

Biological poly(A) RNA (500-775 ng) and a synthetic control (Lexogen SIRV

Set 3, 5 ng) were prepared for nanopore direct RNA sequencing generally

following the ONT SQK-RNA001 kit protocol, including the optional reverse

transcription step recommended by ONT. One difference from the standard

ONT protocol was in the use of Superscript IV (Thermo Fisher) for reverse

transcription. RNA sequencing on the MinION and GridION platforms was

performed using ONT R9.4 flow cells and the standard MinKNOW (version

1.7.14) protocol script recommended by ONT, with one exception, i.e. we

restarted the sequencing runs at several time points to improve active pore

counts and throughput during the first 24hrs.

2.14.5 cDNA synthesis

First strand cDNA synthesis was performed using Superscript IV (Thermo

Fisher) and 100 ng of poly(A) purified RNA. Reverse transcription and strand-

switching primers were provided by ONT in the SQK-PCS108 kit. After

reverse transcription, PCR was performed using LongAmp Taq Master Mix

(NEB) under the following conditions: 95oC for 30 seconds, 11-15 cycles (95oC

for 15 seconds, 62oC for 15 seconds, 65oC for 15 minutes), 65oC for 15 minutes,

hold at 4oC. The 15 cycle PCR was performed when using the SQK-PCS108

kit and 11 cycle PCR was performed when using the SQK-LSK308 kit. PCR

products were purified using 0.8X AMPure XP beads.
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2.14.6 MinION sequencing of GM12878 cDNA

cDNA sequencing libraries were prepared using 1 µg of cDNA following the

standard ONT protocol for SQK-PCS108 (1D sequencing) or SQK-LSK308

(1Dˆ2 sequencing) with one exception. That is, we used 0.8X aAMPure XP

beads for cleanup. We used standard ONT MinKNOW scripts for MinION

sequencing with one exception. That is, we restarted the sequencing runs at

several time points to improve active pore counts and throughput during the

first 24 hours.

2.14.7 Acquiring continuous data for nanopore sequencing
runs and resegmenting reads

For a subset of runs, “bulk FAST5 files" containing continuous raw current

traces and read decisions made by MinKNOW were recorded for more de-

tailed analysis. This can be enabled in MinKNOW by looking at “Additional

options" under “Output" when configuring a run to start in MinKNOW.

Options were set to capture raw signal data and the read table. Events

were not captured to reduce file size (Payne et al., 2018). Bulk FAST5 files

were investigated using BulkVis (Payne et al., 2018)and scripts available

on GitHub (https://github.com/nanopore-wgs-consortium/NA12878/tree/

master/nanopore-human-transcriptome/scripts/bulk_signal_read_correction).

To identify reads with abnormal start or ends the read classifications made by

MinKNOW in the 2 seconds before and after each read start or end respectively.

Read starts should include ‘pore’, ‘good_single’, ‘inrange’ or ‘unblocking’ clas-

sifications (Payne et al., 2018). Read ends should also end with these categories.
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Reads which did not start or end with these classifications were considered

as potentially abnormal. Additional signal before and after the read was

extracted from the bulk FAST5 file and a new synthetic read created for base

calling (using Albacore version 2.1.3). For abnormal read starts, signal up to

the start of the previous read was prepended. For abnormal read ends, signal

up to the start of the following read was appended. Base calling is disrupted

by signal incorrectly classified as open pore. Therefore these incorrect signal

chunks were replaced with signal matching the mean for each read to generate

a corrected read. These reads were recalled and mapped against the candidate

targets using minimap2 with standard ONT parameters. This method can

result in incorrectly concatenated reads and so mapping to the target was

used to filter out such sequences. The difference in target coverage for each

read was used to indicate recovery of sequence data. All corrected read files,

basecalls, mapping files and scripts used to generate them are available on

GitHub (link cited above).

2.14.8 Length analysis of mitochondrial protein-coding tran-
scripts

In this analysis, we limited the test population for each gene to reads that

aligned to a 50 nt sequence at the 3’ prime end of its ORF, except for MT-ND5

where alignment was to a 50 nt sequence at the end of its 568 nt 3’ UTR. Full

length was defined as extending to at least within 25 nt of the genes expected 5’

terminus. This limit was chosen because the processive enzyme that regulates

RNA translocation is distal from the CsgG nanopore limiting aperture and

necessarily falls off before the 5’ end is read. The sharpest coverage drop-off is

68



typically at 10 nt from the 5’ transcript end; we chose the 25 nt limit to ensure

that all likely full length reads were captured in the count.

2.14.9 In vitro transcription

cDNA synthesis was performed according to ONT instructions (SQK-PCS108

kit) by combining Superscript IV (Thermo Fisher), RT and ONT strand switch-

ing primers, and 100 ng of poly(A) purified RNA. Next, an 11 cycle PCR

reaction was performed using the ONT SQK-LSK308 kit but with a modified

version of the primer that included a T7 promoter as recommended by NEB

(Catalog number E2040S). The PCR reaction was run under the following

conditions: 95oC for 30 seconds, 11 cycles (95oC for 15 seconds, 62oC for 15

seconds, 65oC for 15 minutes), 65oC for 15 minutes, hold at 4oC.

PCR products were purified using 0.8X AMPure XP beads. Next, in vitro

transcription was performed using the NEB HiScribe T7 High Yield RNA

Synthesis Kit following NEB instructions. The IVT product was poly(A)

tailed using the same kit. The resulting IVT RNA was purified using LiCl

precipitation and then adapted for RNA sequencing on the MinION the using

SQK-RNA001 kit.

2.14.10 Oligomer Ligation

The oligomer containing the N6-methyladenosine modification was obtained

as a lyophilized pellet from Trilink BioTechnologies and resuspended to 20

µM using TE buffer (Quality Biological Cat#351-011-721). The firefly lu-

ciferase (FLuc) transcript used as the carrier molecule was produced by in
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vitro transcription using the HiScribe™ ARCA mRNA Kit (with tailing) (NEB

Cat#E2060) and supplied protocol with the following exception: after DNase

treatment, the reaction was terminated and the RNA purified using 1X Agen-

court RNAClean XP beads (Beckman Coulter A63987). The oligomer was then

treated with T4 polynucleotide kinase (PNK) (NEB Cat#M0201) to phosphory-

late the 5’end for ligation. After phosphorylation, the oligomer was purified

using the Oligo Clean & Concentrator kit (Zymo Research Cat#D4060). The

phosphorylated oligomer and FLuc transcript were quantified, combined in

equimolar amounts, and ligated using T4 RNA Ligase 1 (NEB Cat#M0204).

The reaction mixture was incubated at 16oC overnight. After incubation,

the RNA was purified using RNAClean XP beads. The ligated product was

poly(A) tailed using E. coli Poly(A) Polymerase (NEB HiScribe™ ARCA mRNA

Kit) according to the supplier’s instructions. After A-tailing, the RNA was

purified using RNAClean XP beads. The isolated RNA was poly(A) selected

using NEXTflex Poly(A) Beads. The resulting poly(A) RNA was eluted in

nuclease free water and immediately prepared for sequencing using Oxford

Nanopore’s direct RNA sequencing kit (SQK-RNA001) and protocol.

2.14.11 Basecalling, alignments, and percent identity calcula-
tions

We used the ONT Albacore workflow (version 2.1.0) for basecalling direct

RNA and cDNA data. A strand read with an average sequence quality of 7 or

higher (Q7) was classified as pass (default setting for Albacore (version 2.1.0).

We used minimap2 version 2.1 (recommended parameters i.e. -ax splice -uf

-k14 for alignments to the human genome and -ax map-ont for alignments to
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the human transcriptome) to align the nanopore RNA and cDNA reads to the

GRCh38 human genome reference and to the GENCODE v27 transcriptome

reference. We used marginStats (version 0.1) (Jain et al., 2015b) to calculate

alignment identities and errors for pass RNA strand reads and pass 1D cDNA

strand reads. Substitutions were calculated using custom scripts available

within marginAlign (version 0.1) (Jain et al., 2015a).

2.14.12 Kmer analysis

We assessed nanopore RNA and cDNA 5-mer coverage using GENCODE

isoforms. The read sequences were filtered by length and only reads covering

90% or more of the respective reference sequence were chosen. We calculated

expected 5-mer counts from the set of reference sequences and observed 5-mer

counts from the set of read sequences. For plotting purposes, we normalized

the read and reference counts to coverage per megabase. The scripts are

available within marginAlign (Jain et al., 2015a).

2.14.13 Isoform detection and characterization

To define isoforms from the sets of native RNA and cDNA reads, we used

FLAIR v1.4, a version of FLAIR (Tang et al., 2018) with additional considera-

tions for native RNA nanopore data. For our analysis, we first removed reads

generated by lab 6, because a disproportionate number of those molecules

appeared to be truncated prior to addition to the nanopore flow cell. We also

removed 71,276 aligned reads with deletions greater than 100 bases caused
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by minimap2 version 2.1. We then selected reads that had TSSs within pro-

moter regions that were computationally derived from ENCODE ChIP-Seq

data (Ernst and Kellis, 2010; Ernst et al., 2011). Using FLAIR-correct, we

corrected primary genomic alignments for pass reads based on splice junction

evidence from GENCODE v27 annotations and Illumina short-read sequenc-

ing of GM12878. This step also removes reads containing non-canonical splice

junctions not present in the annotation or short-read data. The filtered and

corrected reads were then processed by FLAIR-collapse which generates a first-

pass isoform set by grouping reads on their splice junctions chains. Next, pass

reads were realigned to the first-pass isoform set, retaining alignments with

MAPQ>0. Isoforms with fewer than 3 supporting reads or those which were

subsets of a longer isoform were filtered out to compile the FLAIR-sensitive

isoform set. A FLAIR-stringent isoform set was also compiled by filtering the

FLAIR-sensitive set for isoforms which had 3 supporting reads that spanned

≥ 80% of the isoform and a minimum of 25nt into the first and last exons.

Unannotated isoforms were defined as those with a unique splice junction

chain not found in GENCODE v27. Isoforms were considered intron-retaining

if they contained an exon which completely spanned another isoform’s splice

junction. Isoforms with unannotated exons were defined as those with at least

one exon that did not overlap any existing annotated exons in GENCODE

v27. Isoforms at unannotated loci were defined as isoforms that only contain

unannotated exons. Genes that did not contain an annotated start codon were

considered non-coding genes.
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2.14.14 Defining promoter regions in GM12878 for isoform
filtering

Promoter chromatin states for GM12878 were downloaded from the UCSC

Genome Browser in BED format from the hg18 genome reference. Chromatin

states were derived from an HMM based on ENCODE ChIP-Seq data of nine

factors (Ernst and Kellis, 2010; Ernst et al., 2011). The liftover tool (Hinrichs

et al., 2006)was used to convert hg18 coordinates to hg38. The active, weak,

and poised promoter states were used.

2.14.15 Haplotype Assignment and Allele-Specific Analysis

We obtained genotype information for GM12878 from existing phased Illu-

mina platinum genome data generated by deep sequencing of the cell donors’

familial trio (Eberle et al., 2016). The bcftools package was used to filter for

only variants that are heterozygous in GM12878. Starting with aligned reads,

we used the extractHAIRS utility of the haplotype-sensitive assembler Hap-

CUT2 (Edge, Bafna, and Bansal, 2017) to identify reads with allele-informative

variants. For allelic assignment, we required a read to contain at least two

variants, and required that greater than 75% of identified variants agreed

on the parental allele of origin – this stringent threshold was selected to re-

duce the chances of incorrect assignment from nanopore sequencing errors.

Through this approach, each read was annotated as maternal, paternal or unas-

signed. To identify genes that demonstrated a very strong bias for a single

allele, we performed a binomial test of all reads assigned to a parental allele,

with an FDR of 0.001. We also visually inspected numerous genes displaying
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genes demonstrating allele-specificity using IGV, to increase our confidence in

proper mapping of the reads and evaluate the presence of variants.

We further integrated this haplotype-specific analysis with our isoform

pipeline to explore for the presence of allele-specific isoforms. If reads for a

specific isoform originated from a single parental allele (binomial test, FDR

0.001), the isoform was assigned as allele specific. We then filtered for any

genes which contained both maternal and paternal allele-specific isoforms,

and visually inspected these isoforms using IGV to compare location of vari-

ants and splicing events.

2.14.16 Poly(A) tail length analysis

The Supplemental Note describes use of nanopolish-polya version 0.10.2

(https://github.com/jts/nanopolish) to estimate polyadenylated tail lengths

of nanopore native RNA sequence reads. We used the Kurskal-Wallis test as

implemented in Python to determine statistically significant changes between

isoforms; code is available at [ https://github.com/nanopore-wgs-consortium/

NA12878/tree/master/nanopore-human-transcriptome/scripts ]

2.14.17 Modification detection and analysis

We focused our initial efforts on m6A modification in genes previously iden-

tified as enriched in modifications from m6A immunoprecipitation sequenc-

ing data on human cell lines (Roost et al., 2015; Molinie et al., 2016). We

aligned native RNA reads and IVT RNA reads to candidate genes and then

extracted ionic current information (mean current and standard deviation
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in pA) for specific 5-mers using nanopolish eventalign (version 0.10.2). We

compared ionic current kernel density estimates (KDE) for GGACU within

the 3’ UTR of the EEF2 gene in native RNA with the KDE for its canoni-

cal IVT RNA counterpart. The extent and directionality of current shifts

observed by m6A modification within the GGACU motif were orthogo-

nally investigated using an in-vitro oligomer ligation assay, as described

above. We compared KDEs for the modified and unmodified GGACU mo-

tifs within the synthetic oligomer. Statistical testing (Kruskal-Wallis, Stu-

dent’s t-test, Kolmogorov-Smirnov and Bonferroni correction) was imple-

mented in Python with code available at [https://github.com/nanopore-wgs-

consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts].

For detecting A-to-I editing, we focused on the 3’-UTR region of the human

aryl hydrocarbon receptor (AHR) gene. Using the UCSC Genome Browser,

we identified systematic G base variant calls in AHR cDNA data (probable

inosine substitutions in RNA). We then tested for systematic base miscalls at

the corresponding positions in native RNA data. Next, we used nanopolish

eventalign (version 0.10.2) to extract ionic current information for two putative

inosine-containing 5-mers (CUACU and AAAAA), and for their respective

IVT-derived canonical 5-mers from chromosome 7. Ionic current distributions

for CUACU and AAAAA 5-mers between the biological and IVT data were

compared using kernel density estimates.
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Chapter 3

Direct detection of RNA
modifications and structure using
single molecule nanopore
sequencing

This chapter is a published manuscript at the journal Cell Genomics reprinted

in compliance with the journal policies. I am a co-author on this study respon-

sible for the analysis of electrical nanopore signals to infer RNA modification

sites and secondary structure.

William Stephenson et al. (2022). “Direct detection of RNA modifications and

structure using single-molecule nanopore sequencing”. In: Cell genomics 2.2, p. 100097

3.1 Introduction

Modifications are present on many classes of RNA including tRNA, rRNA

and mRNA. These modifications modulate diverse biological processes such

as genetic recoding, mRNA export and folding. In addition, modifications
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can be introduced to RNA molecules using chemical probing strategies that

reveal RNA structure and dynamics. Many methods exist to detect RNA

modifications by short-read sequencing; however, limitations on read length

inherent to short-read-based methods dissociate modifications from their

native context, preventing single-molecule modification analysis. Here we

demonstrate direct RNA nanopore sequencing to detect endogenous and

exogenous RNA modifications on long RNAs at the single-molecule level. We

detect endogenous 2’-O-methyl and base modifications across E. coli and S.

cerevisiae ribosomal RNAs as shifts in current signal and dwell times distally

through interactions with the helicase motor protein. We further use the 2’-

hydroxyl reactive SHAPE reagent, acetylimidazole, to probe RNA structure at

the single-molecule level with readout by direct nanopore sequencing.

Over 100 distinct modifications of RNA have been identified, occurring on

either the nucleobase or the ribose sugar. These modifications exhibit diverse

effects on RNA structure and function, including modulation of stability,

translation efficiency, structural dynamics, nuclear export and translational

recoding, (Wendy, Tristan, and Cassandra, 2016; Jun, Hyosuk, and Christine,

2016; Daniel et al., 2019) and in some cases, are installed, read or removed by

modification “writers", “readers" and “erasers", suggesting a dynamic model

of post-transcriptional gene regulation (Deepak et al., 2018; Zaccara et al.,

2019). The 2’-O-methyl (Nm) modification occurs in the 5’ cap of eucaryotic

mRNAs (m7GpppNmNm) and extensively in ribosomal RNAs (rRNA). Nm

modifications have also been detected within coding regions of mRNA (Qing

et al., 2017) and appear to tune cognate tRNA selection during translation,
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thereby adjusting protein synthesis dynamics (choi20182’). Pseudouridine

(Ψ), often referred to as the fifth base due to its widespread inclusion in

diverse classes of RNA, is generated by isomerization of uracil, to create a

nucleoside with distinct hydrogen bonding and base pairing properties and

increased base stacking propensity relative to uridine (Emily, Anna, and Eric,

2017; Schwartz et al., 2014). The absence or reduction of RNA modifications

have been implicated in multiple diseases including cancer, heart disease, and

genetic diseases (Nicky et al., 2017; Bianca et al., 2005; Yi, Thomas, and Meier,

2014). Comprehensive detection and localization of RNA modifications within

their native context will improve our understanding of RNA modification

function and regulation, and their role in disease.

Current methods to detect post-transcriptional RNA modifications fall into

three broad classes. Immunoprecipitation methods use antibodies specific to

individual modifications to enrich short fragments of RNA with the modifica-

tions, which are then converted into cDNA and sequenced with short reads

(Mark and Yuri, 2017; Xiaoyu, Xushen, and Chengqi, 2016). These approaches

can be applied genome-wide, but do not always provide nucleotide resolution

and are limited by the availability and specificity of the pulldown reagents. An

alternative family of approaches takes advantage of the propensity of reverse

transcriptase (RT) enzymes to either terminate cDNA synthesis or incorporate

noncomplementary nucleotides when a modified RNA base is encountered

(Qing et al., 2017; Thomas et al., 2014; Kate, 2019; Matthias et al., 2009). Finally,

modified nucleosides can be directly detected by mass spectrometry (MALDI
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or LC-MSMS); unique mass to charge ratios (m/z) and peaks can provide in-

formation relating to precise chemical identities and abundances of modified

nucleosides and their immediate sequence context (Rebecca et al., 2015; Ning

et al., 2019). Each of these methods has proven useful in specific contexts,

but all have limited resolution and typically only probe one modification at a

time.

Exogenous modifications of RNA have been used as temporal tags to assay

RNA dynamics, including stability, turnover, and splicing timing (Veronika

et al., 2017; Heather, Karine, and L, 2020; Kentaro et al., 2020; Liying et al.,

2020). In addition, chemical probing is widely used to monitor RNA structure.

Chemical probes modify either the nucleobase (for example, dimethyl sulfate

DMS) or the ribose 2’-hydroxyl group, the site of modification in Selective

2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) strategies. The

location of SHAPE reagent-induced modification is detected by exploiting RT

termination at the modified residue or through detection of a mutation oppo-

site the modified site during RT readthrough. This latter approach, termed

Selective 2’-Hydroxyl Acylation analyzed by Primer Extension and Muta-

tional Profiling (SHAPE-MaP) (Nathan et al., 2014), yields single nucleotide

resolution reactivity patterns and can be employed transcriptome wide (Yue

et al., 2014; Anthony et al., 2018). However, SHAPE-MaP technology is limited

by current constraints of short-read sequencing. An ideal method for inves-

tigating both endogenous and exogenous RNA modifications would detect

multiple classes of modifications and would allow observation of multiple

modifications on the same RNA molecule.
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Direct RNA nanopore sequencing has emerged as a promising technology

for full-length sequencing and analysis of both cell-derived and synthetic

RNA molecules. In the commercial platform developed by Oxford Nanopore

Technologies (ONT), RNA is translocated via a motor protein through a bio-

logical nanopore suspended in a membrane (Figure 3.1A). As the RNA transits

through the pore under voltage bias, the observed changes in picoampere

ionic current are characteristic of the chemical identity and sequence of the 5

nucleotides (“kmer") positioned at the pore constriction (Garalde et al. 2018;

Workman et al. 2019).

Here we adapt direct RNA sequencing on the ONT platform to detect

both endogenous and exogenous RNA modifications. Importantly, we show

that the raw current signal from nanopore sequencing detects RNA modifi-

cations, independent of the chemical nature of the modification. In addition,

we describe modification-dependent signals in the time domain, relating to

the translocation rate of single molecules through the nanopore. This time

domain signal provides a complementary dimension of information that may

be incorporated with current signal for de novo identification of nucleotide

modification classes. Building on these insights, we developed nanoSHAPE

that combines long-read, direct RNA sequencing with a new SHAPE reagent

that, by virtue of its high reactivity and small adduct size, enables full-length

probing of structure in long RNAs.

88



3.2 Results

3.2.1 Identification of specific modifications at defined loca-
tions within 16S rRNA

We first applied direct ONT RNA sequencing to rRNAs from Escherichia coli

and Saccharomyces cerevisiae; these rRNA are highly abundant and harbor

well-characterized modifications. We generated in vitro transcripts, which

are devoid of modifications, of the small and large subunit RNAs, as controls.

These in vitro transcribed (IVT) controls, were sequenced independently to

provide a modification-free baseline against which native, cell-derived RNAs

could be compared to identify putative sites of modification (Andrew et al.,

2019; Felix et al., 2019). IVT controls and native RNAs exhibited reads at the

expected lengths for E. coli (16S: 1.5 kb, 23S: 2.9 kb) (Figure 3.1B) and S. cere-

visiae (18S: 1.8 kb, 25S: 3.4 kb). Notably, median quality scores for full-length

molecules from E. coli were lower than for the native samples as compared to

IVT controls (16S: -0.53, 23S: -0.31, t-test p < 0.05); results were similar for S.

cerevisiae. This reduction likely reflects the effect that high modification levels

have on read quality using the current iteration of modification un-aware

base calling software. Coverage was lower towards the 5’ ends for all sam-

ples, including IVT controls as expected from the configuration of direct RNA

nanopore sequencing, which translocates RNA in the 3’ to 5’ direction.

Reads were processed using both Tombo (Marcus et al., 2016) and Nanop-

olish (Jared et al., 2017), which perform raw current signal level to sequence

alignment. As an example, we highlight a region of current signal mapped
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with Tombo on 16S rRNA in E. coli containing two modifications in proxim-

ity: N4,2’-O-dimethylcytosine (m4Cm) at position 1402 and 5-methylcytosine

(m5C) at position 1407 (Figure 3.1C). We observed a clear deviation in current

signal distribution of the native sample at position 1402, whereas current sig-

nal deviation due to the chemically distinct m5C modification at position 1407

was less pronounced and spread over 3 positions, 1406 - 1408 highlighting the

often-distributed nature of complex nanopore signals in the kmer context.

3.2.2 Comprehensive rRNA modification detection

We next examined whether nanopore sequencing could detect all known mod-

ifications in the small and large subunit rRNAs of both E. coli (Triinu and

Jaanus, 2010) and S. cerevisiae (Masato et al., 2016). Normalized current and

dwell time differences between native and IVT samples were observed across

the small and large subunit rRNAs consistent with the locations of known

modifications. To more rigorously assess modification signals, which are

highly dependent on kmer sequence context, we performed non-parametric

Kolmogorov-Smirnov testing (KS) across all positions for current and dwell

time from raw signal aligned data using both Tombo and Nanopolish (Meth-

ods, Figure 3.1D). Peaks in the KS statistic profile indicated distributional

differences between the IVT unmodified control sample and the native sam-

ples. The KS statistic for the current signal was strongly correlated between

Tombo and Nanopolish (Pearson correlation, r = 0.75 - 0.79) however the

dwell time KS statistic profiles were only moderately correlated (Pearson

correlation, r = 0.45 - 0.55). Generally, KS statistic peaks for current were
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observed within ±2 nt of the known modifications.

To assess modification class features we collated all RNA modifications

across the small and large ribosomal subunits from both E. coli and S. cere-

visiae, aligning them by their known modification position and considered

the aggregate median KS statistic profile across modification class: Nm, Ψ,

and base (e.g., base modifications excluding Ψ). The median KS statistic for

current of all modification classes had an appreciable signal at the site of

modification (pore constriction) as expected (Figure 3.1E). With respect to the

dwell time, the median KS statistic profile exhibited two peaks for Nm and

pseudouridine modifications but not for base modifications (Figure 3.1E). The

primary peak occurred at the nanopore constriction (relative modification

position 0); however, secondary peaks were observed approximately 10 nu-

cleotides in the 3’ direction with Nm modifications exhibiting a larger median

KS statistic than Ψ. This 10-nt distance is the ‘registration distance’ (Xr) from

the pore constriction where kmer currents are measured, to the motor protein

that sits atop the nanopore. The registration distance in DNA nanopore se-

quencing experiments using a more terminally located pore constriction in

MspA and a different motor protein suggested an Xr of ∼ 20 nt (Elizabeth

et al., 2012). In the R9.4.1 version nanopore system used here, a CsgG pore

is used, which has a centrally located pore constriction, likely explaining the

smaller Xr (Daniel et al., 2018). Interestingly, these observations suggest that at

least in some sequence contexts, the motor protein kinetics are more sensitive

to Nm than Ψ modifications. The 2’-O-methylation confers approximately

-0.2 kcal/mol of stacking free energy to single stranded RNA and favors the
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C3’-endo conformation of RNA (P, N, and M, 1974). Thus, changes in RNA

conformation or steric and chemical interactions with particular amino acid

residues of the motor protein may perturb translocation times. Interestingly,

all types of modifications exhibit a median KS statistic peak for dwell time

above background at relative modification position 0, indicating that transit

times through the nanopore constriction itself are also perturbed by many

of the modifications studied here. However, we did not observe significant

changes in deletion or insertion error frequencies as might be expected from

these dwell time differences. The majority of errors observed due to Ψ or

Nm modifications were mismatches centered at the modification site, with Ψ

having the highest average error of 48% mismatch.

3.2.3 RNA translocation rate is sensitive to nucleotide modifi-
cations and sequence composition

We next investigated the dwell time as a function of position to ascertain

whether modifications and/or sequence content perturb dwell times. Com-

parison of dwell times for both native and IVT samples at a distance of Xr in

the 3’ direction from selected sites within E. coli 16S (1402 m4Cm), E. coli 23S

(2552 Um), S. cerevisiae 18S (1428 Gm), and S. cerevisiae 25S (2220 Am) rRNAs

revealed a significant increase (Mann-Whitney U test) in native samples rela-

tive to IVT controls (Figure 3.2A) To assess the extent of motor protein pausing

due to sequence rather than the presence of modifications, we explored se-

quence similarities for the top 1% of ranked dwell times from all IVT samples

in the region spanning the entire sequencing complex from upstream of the

motor protein to the exit of the nanopore. We observed a strong guanosine
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enrichment approximately 9-11 nt upstream of the pore constriction (Figure

3.2B), consistent with the registration distance of 10 nt, that corresponds to

the location of the active site of the motor protein. We quantified the represen-

tation of each nucleotide in the motor protein active site, defined as the three

nucleotides at positions 9-11 3’ of the nanopore constriction, across dwell time

percentiles for all IVT samples and observed over-representation of guanosine

in the highest percentiles (Figure 3.2C). Collectively these data indicate that

even absent modifications, the motor protein used in direct RNA nanopore

sequencing experiments has a tendency to pause on guanosine-rich sequences.

These observations are consistent with pausing over guanosine-rich sequences

by single-molecule picometer resolution nanopore tweezers (SPRNT) experi-

ments with DNA (using a Hel308 based translocation mechanism) (Jonathan

et al., 2019). Pausing over guanosine-rich regions may be a general feature of

enzyme-based translocation; these regions may sterically hinder the enzyme

or higher-than-average single-stranded stacking energies might decelerate

translocation (Reid et al., 2015).

3.2.4 The 1-acetylimidazole reagent generates a compact SHAPE
adduct

As nanopore sequencing was able to detect endogenous Nm modifications

in rRNA, we hypothesized that we could detect 2’-O-adducts resulting from

exposure of folded RNAs to electrophilic SHAPE reagents, which would

then enable us to interrogate RNA structure using nanopore sequencing. A

long-term advantage to exploiting nanopore sequencing for structural prob-

ing is the possibility of detection of multiple modifications per molecule,
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enabling analysis of phased and correlated structural information over long

sequence distances (Homan et al. 2014; Sengupta, Rice, and Weeks 2019).

We initially attempted nanopore sequencing using RNA that had been mod-

ified with established SHAPE reagents 2-methylnicotinic acid imidazolide

(NAI), 1-methyl-7-nitroisatoic anhydride (1M7), and N-methylisatoic anhy-

dride (NMIA). In our hands, at the concentrations tested, readout of these

experiments with nanopore sequencing resulted in few full-length reads and

poor alignment accuracy as compared to an unmodified control sample. A

similar poor alignment accuracy was reported recently when a short RNA

modified with high concentrations of NAI (100 mM) was analyzed using

nanopore sequencing.(Aw et al. 2020) We observed that the alignment per-

centage and fraction of full-length reads were poor at both high (200mM) and

low (25mM) concentrations of NAI, precluding the detection of multiple mod-

ifications on single long RNA molecules. We hypothesized that the observed

inefficient and incomplete translocation was due to the presence of multiple

bulky 2’-O-aryl adducts that result from reaction of RNA with these SHAPE

reagents.

We therefore searched for a reagent that would produce a smaller adduct,

more chemically similar to native Nm modifications. We examined five

carbonyl-imidazolide candidates, for structure-selective 2’-O-acylation. We de-

tected covalent adduct formation for NAI, as expected, and for 1-acetylimidazole

(AcIm). AcIm was previously identified as a 2’-hydroxyl-reactive reagent

(Maryam et al., 2019). The proposed reaction of AcIm with the 2’- hydroxyl of

RNA (Figure 3.3A) results in the most compact possible acetyl adduct using
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an electrophilic carbonyl reagent.

The relative rate of reaction for a SHAPE reagent with the 2’-hydroxyl of

RNA is mirrored by its rate of reaction with water (Edward et al., 2005). We

investigated the timescale of AcIm reactivity by monitoring the change in

absorbance of AcIm in reaction buffer; imidazole was monitored as a control.

The AcIm signal, centered at 250 nm, decayed via a single exponential, with a

half-life of 3 minutes at 37 ºC (Figure 3.3B), consistent with prior measurements

of N-acetylimidazole hydrolysis (Maryam et al., 2019; B, 1982). The AcIm

spectrum decays to that observed for imidazole, supporting hydrolysis of

AcIm into imidazole and, non-absorbing, acetate.

To assess AcIm reactivity with RNA, we extracted RNA from E. coli and

treated total RNA with 100 mM NAI, 13 mM NMIA, 100 mM AcIm, or DMSO

(as a vehicle control). We then obtained per-nucleotide reactivity profiles

using mutational profiling (SHAPE-MaP) (Nathan et al., 2014) and aligned

the resulting cDNAs to the 16S and 23S rRNAs (Figure 3.3C). Reactivity

profiles for the three reagents were highly correlated, indicating that AcIm

is a robust SHAPE reagent. AcIm reacted with each of the four canonical

RNA nucleotides and preferentially reacted with conformationally flexible

(unpaired) nucleotides (Figure 3.3D). Receiver operator characteristic curve

analysis demonstrated that there was virtually no difference in discrimination

between paired and unpaired nucleotides for NAI, NMIA, and AcIm (area

under curve ∼ 0.8 for all probes) (Figure 3.3E). In sum, AcIm generates small

adducts, reacts broadly with all four ribonucleotides, and generates SHAPE-

MaP reactivity profiles consistent with known reagents.
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3.2.5 nanoSHAPE: Direct RNA nanopore sequencing of AcIm
modified RNA

We next assessed whether AcIm chemical probing could be used to guide

RNA secondary structure modeling based on single-molecule direct RNA

nanopore sequencing, a method we call nanoSHAPE. We focused on an in

vitro transcribed pri-miRNA transcript of the miR-17∼92 cluster, which spans

951 nucleotides and folds to form a series of well-defined hairpin structures

(Steven et al., 2011; Saikat et al., 2012). The p ri-miR-17∼92 is predicted to form

a moderately structured complex (predicted ∆Gcentroid = –298.80 kcal/mol)

with a low number of isoenergetic suboptimal conformations (ensemble diver-

sity, ED = 152.9), making it a suitable substrate for folding studies. We first

assessed the structure of pri-miR-17∼92 by SHAPE-MaP using both AcIm and

NAI. Reactivities for the two reagents were highly correlated (Spearman’s rho

= 0.78). Furthermore, secondary structure modeling informed by the AcIm

SHAPE-MaP reactivity profile produced a centroid structure consistent with

the current pri-miR transcript structure models (Steven et al., 2011). These

experiments indicate that both chemical probes are suitable for investigating

this structure and provide a control for comparison with nanoSHAPE. We next

assessed the compatibility of AcIm with nanopore sequencing by performing

a series of direct RNA nanopore sequencing experiments using either unmod-

ified pri-miR-17∼92, or RNA modified with 5, 20, 50, 75, 100, 150 or 200 mM

final concentrations of AcIm. Prior to AcIm modification, the terminal RNA

nucleoside was modified through oxidation and beta-elimination to remove

the 3’-nucleoside and leave a 3’-phosphate. After AcIm modification, the
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3’-phosphate was removed by phosphatase treatment to leave a 3’-hydroxyl,

allowing ligation with RNA sequencing adapters (Figure 3.4A). At higher

AcIm modification rates, we observed noticeable decreases in read quality and

fraction of full-length reads obtained. This signal degradation reduced the per-

centage of reads successfully aligned by Tombo. The coverage was higher at

the 3’ end at all concentrations, consistent with the 3’ to 5’ read direction of the

RNA through the nanopore. The coverage, fraction of full-length reads, and

aligned read percentage became inadequate at the highest AcIm concentration

(200 mM) so this condition was excluded from further analysis. The lower

fraction of full-length reads observed after modification with AcIm suggested

that reads were truncating at sites of AcIm modification. We mapped direct

RNA nanopore sequencing read termini from unmodified RNA and RNA

modified with 25 mM NAI or 150 mM AcIm to the pri-miR-17∼92 RNA to

the parent sequence and compared to the SHAPE-MaP reactivity profile. The

control and AcIm modified data had similar read termini profiles (Spearman’s

rho = 0.76), which in turn were similar to the SHAPE-MaP reactivity profile

albeit shifted by approximately 10-15 nt in the 3’ direction, which implicates

motor protein involvement in read truncation events. These observations

suggest, first, that in the absence of SHAPE reagent modification, intrinsic

RNA structures cause a small degree of truncation and, second, that modifica-

tion with AcIm slightly accentuates read truncations in these same regions.

Read termini in NAI-modified RNA had a different profile (Spearman’s rho =

0.12 and 0.19 for control and AcIm respectively) with most termini mapping

to the 3’ end of the pri-miR-17∼92 sequence, consistent with the very small
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fraction of full-length reads obtained from NAI-modified sequencing experi-

ments. Thus, NAI is a poor nanoSHAPE probe as these adducts pose serious

problems for motor protein processing and processivity.

We next performed KS statistical testing for current and dwell time distri-

butions across all AcIm concentrations as compared to the unmodified control.

KS peaks in current were observed in all profiles primarily in single-stranded

regions of pri-miR-17∼92. We determined Spearman’s rank order correlations

for both KS of current and KS of dwell time (shifted by Xr) against the AcIm

SHAPE-MaP profile. The correlation was greatest for current, and maximized

at 150 mM (current rho = 0.51, dwell time rho = 0.28). To assess the capability

of single-molecule-based reconstruction of reactivity profiles, we performed

per-read statistical testing and normalization for every nucleotide position

within 1000 individual full-length molecules of pri-miR-17∼92 across all AcIm

concentrations (Figure 3.4B,C) The median mutation rates from SHAPE-MaP

libraries derived from pri-miR-17∼92 modified with 25 mM and 200 nM AcIm

were 0.03% and 0.1%, respectively, which corresponds to 0.285 and 0.951 de-

tected adducts per full-length read, respectively. These low values suggest

that the current MaP approach does not detect the AcIm adduct efficiently.

Based on the single molecule nanopore data, and after statistical testing and

detection, we obtained approximately 105 called modification sites per full-

length read at 150 mM AcIm (Figure 3.4D). This value is likely notably inflated

due to the distributed nature of modification detection and due to the high

level of noise intrinsic to current generation nanopores. Nonetheless, these

comparisons suggests that nanopore detection is more efficient at detecting
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the compact 2’-ribose AcIm adduct than is MaP-RT.

We next examined the number of single-molecule reads which are required

to obtain an optimal correlation with SHAPE-MaP. We sub-sampled full-length

reads from n = 1 to n = 1000 and calculated the normalized reactivity pro-

files from the per-read current statistical testing as a function of number of

reads. The Spearman’s rank correlation of the normalized reactivity against

the SHAPE-MaP reactivity profile reached 95% of the maximum correlation at

around 200 reads for each AcIm concentration, with higher correlations with

MaP data obtained at higher AcIm concentrations (Figure 3.4E). In the normal-

ized reactivity profile derived from nanoSHAPE, we observe less distinctive

reactivity features closer to the 5’ end of the pri-miR-17∼92 transcript. To

explore this phenomenon, we calculated the Spearman’s rank correlation on a

progressively shortened normalized reactivity profile, trimming from the 5’

end. This procedure revealed a maximum correlation at about 300 nucleotides

from the 5’-end of the transcript (rho = 0.53, 150mM AcIm) (Figure 3.4F),

indicating that the 5’ end of RNAs may not be well resolved by this approach.

Poor structural resolution at the 5’ end may be due to reduced coverage in this

region resulting from incomplete reverse transcription due to the presence of

AcIm adducts that can cause cDNA truncation. Reverse transcription is not

strictly required for direct RNA sequencing using the nanopore platform; how-

ever, the presence of a cDNA is known to stabilize the sequenced RNA strand

increasing overall yield and throughput, potentially favoring the recovery of

RNA molecules with a full-length cDNA annealed.
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3.2.6 nanoSHAPE facilitates RNA structure modeling

We performed secondary structure modeling using nanoSHAPE and SHAPE-

MaP reactivities as pseudo-free energy constraints introduced into a nearest-

neighbor RNA folding algorithm (Katherine et al., 2009; Kevin and 2021,

n.d.). The two structural models differ in that nanoSHAPE centroid structure

includes fewer long-range base pairs and has larger loop sizes (specifically for

hairpins 17 and 19a) than does the SHAPE-MaP-based structure (Figure 3.5A).

Hairpin 17 and 19a are both predicted to have internal bulges (U151 and G435-

U437) at the bases of their loops towards the 3’ side, based on both SHAPE-

MaP and unconstrained modeling (Saikat et al., 2012). Reactivity at these

positions, observed by nanoSHAPE, which features a 3’ to 5’ read direction,

may over-detect reactivity at loop closing base pairs, leading to prediction

of larger loop sizes. Importantly, centroid structures for both SHAPE-MaP-

and nanoSHAPE-constrained predictions contain the six miRNA hairpins

expected to occur in the 17∼92 cluster.

We next performed partition function calculations for RNA structures

arising from SHAPE-MaP-constrained and nanoSHAPE-constrained pri-miR-

17∼92 sequences. Partition function base pair probabilities between all pos-

sible nucleotides (i,j) exhibited generally concordant connectivity patterns

indicating broad agreement between the collective predicted structural ensem-

bles (Figure 3.5B). We then benchmarked minimum free energy and centroid

secondary structures predicted from nanoSHAPE versus predictions from

SHAPE-MaP constrained modeling relative to models obtained with no prob-

ing data (NPD). In general, MaP-constrained models were the most distinct,
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consistent with extensive prior work showing SHAPE-MaP data generally

substantially change RNA structure models relative to no-probing-data mod-

els, in the direction of the correct structure (Nathan et al., 2014; Kevin and

2021, n.d.). nanoSHAPE data also clearly perturbed the structural ensem-

ble, relative to the no-probing-data ensemble, to become more similar to the

SHAPE-MaP-informed model (Figure 3.5C). We conclude that nanoSHAPE

produces reactivity patterns and secondary structure predictions for the pri-

miR-17∼92 sequence broadly consistent with high-throughput sequencing

based RNA chemical probing and structural profiling approaches.

3.3 Discussion

The long-read direct RNA nanopore sequencing on the ONT platform is a

promising tool for characterizing RNA at the single-molecule level. RNA

molecules exhibit diverse chemical and structural states that serve as effectors

and modulators of RNA function, interaction, and dynamics. We sought to use

the direct measurement of RNA, rather than a cDNA copy, to examine RNA

chemical modifications and secondary structure. Our direct RNA sequencing

approach was able to detect native modifications in ribosomal RNA from

E. coli and S. cerevisiae at both the nucleobase (Ψ) and backbone (Nm). The

majority of these positions are modified stoichiometrically, making them good

systems for benchmarking endogenous modification detection. In our dataset

comparing endogenous rRNAs to in vitro transcribed controls, we performed

raw signal to sequence alignment with both Tombo (Marcus et al., 2016) and

Nanopolish (Jared et al., 2017) and identified rRNA modification positions to
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within ± 2 nt of known modified sites.

Direct RNA nanopore sequencing is uniquely positioned to answer ques-

tions about the dynamics and ordering of modification installation on rRNA

and, in principle, has the potential to address both quantification and long-

range phasing of modifications. Signal discrimination remains an outstanding

challenge for direct RNA nanopore sequencing for modification detection,

which is a function of the kmer sequence context and ability to align raw

current signal to sequence. Development of training sets consisting of known

modifications in all possible kmer sequence contexts will be required for RNA

modification identification without resorting to comparison with an IVT con-

trol. The ability to call modifications without an IVT control, coupled with

increasing yield of direct RNA sequencing should allow investigation of other,

less abundant cellular mRNAs and long non-coding RNAs.

In addition to current signal levels, we characterized changes in the current

level dwell times in direct RNA sequencing. Ribose modifications, both

the endogenous Nm, and exogenous SHAPE reagent modifications, notably

extend dwell times. Dwell time changes due to RNA modifications at the

pore constriction have been recently reported (Leger et al. 2019). Here we

demonstrated that dwell time is dependent on motor protein translocation

kinetics mediated at a registration distance (Xr ∼10 nt in the 5’ direction) from

the pore constriction. Additionally, we observed that motor protein dwell

times are influenced by primary sequence. Translocation rates have been

shown to be sequence dependent for DNA using the Hel308 motor protein and

a MspA nanopore (Jonathan et al., 2019). We found that average translocation
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rates varied across the nanopore array complicating direct comparison of

dwell times across array channels. However, we suggest that large dwell

times observed in direct RNA nanopore sequencing experiments may be used

to infer sites (at Xr distance) of Nm or Ψ modifications in the absence of IVT

controls, provided that the sequence context around the putative modification

is not G-rich. Full characterization and incorporation of this extra dimension

of information will require channel- or even read-specific normalization to

faithfully compare translocation rates across the nanopore array.

The detection of naturally occurring Nm modifications in rRNA suggested

the possibility of applying this approach to detect experimentally introduced

2’-O adducts, as used in RNA structure probing methods. Key to our success

was identifying a SHAPE reagent specifically tailored for nanopore sequenc-

ing. AcIm had favorable properties including a short (but still experimentally

manageable) half-life, small adduct size, detection by mutational profiling,

and commercial availability. The small adduct (2’-O-acetyl) created by mod-

ifying RNA with AcIm is detectable in direct RNA nanopore sequencing

experiments. High rates of AcIm modification do lower the number of full-

length reads, overall yield, and alignment rates; however, the resulting yield

and data quality are vastly superior to that obtained with reagents that yield

bulkier adducts. Consistent with our analysis, an NAI analog (NAI-N3) was

independently (Jong et al., 2020) found to induce drastic decreases in yield.

In that work, NAI-N3 yielded hit-rates of 1-2% over the readable fraction

of RNA, whereas AcIm achieved median hit-rates up to 11% on full-length

single molecules. Application of nanoSHAPE with AcIm to the analysis
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of the structure of the pri-miR-17∼92 transcript revealed that nanoSHAPE-

data-constrained modeling yielded RNA structures broadly similar to those

obtained with SHAPE-MaP data.

3.4 Limitations of the study

Direct RNA nanopore sequencing, and by extension nanoSHAPE, have limi-

tations. The method requires high concentrations of target RNA and a free

3’-hydroxyl for ligation to the 5’ phosphate of the first adapter required for

nanopore sequencing. Electrophilic SHAPE reagents, AcIm included, co-

valently modify the 3’-hydroxyl, preventing ligation. We ameliorated this

challenge by chemical treatment to create a terminal phosphate; after mod-

ification, the RNA was then treated with a phosphatase to enable poly(A)

tailing and ligation to the sequencing adapter. If nanoSHAPE is to be properly

extended transcriptome-wide and to in-cell structural probing experiments

with high single molecule modification rates, novel methods for selection and

enrichment of target RNAs and protection of the 3’-hydroxyl (or enrichment of

molecules with ligate-able 3’-hydroxyl ends) in cells may be required to ensure

sufficient yield with the current direct RNA nanopore sequencing method.

nanoSHAPE is also limited by the poor resolution of reactivity profiles at

the 5’ ends of longer RNA molecules. This loss of resolution is likely due to

multiple factors including coverage bias inherent to the 3’-to-5’ direction of

RNA nanopore sequencing and the difficulty of translocation through a highly

structured RNA, like pri-miR-17∼92. It is also possible that cDNA synthesis

on highly AcIm-modified RNA, which is an optional step that facilitates
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translocation, was incomplete in our experiments.

Finally, nanoSHAPE is limited by the method of signal analysis used to

identify intrinsic posttranscriptional modifications and SHAPE adduct sites.

In this work, we used a comparative approach, comparing current signals

of modified RNAs to those of unmodified RNAs of the same sequence to

identify sites of difference. Modification detection may be improved by using

methods that employ trained models for signal classification. However, de

novo methods are reliant on a training or ground truth set containing the

modification in all kmer sequence contexts. A second challenge in adduct

detection is distinguishing authentic chemical modifications from current

signal and dwell time changes induced by the underlying RNA structure.

Extensive benchmarking with native RNAs of known structure would inform

deconvolution of adduct versus structure effects.

Despite these challenges, nanoSHAPE demonstrates significant promise.

Long-read single-molecule sequencing will permit investigation of RNA struc-

tural ensembles for long RNAs directly. Adduct detection and sequencing

throughput are poised to improve as direct RNA nanopore sequencing technol-

ogy and analyses mature. Direct sequencing of AcIm-modified RNA will be

crucial to deciphering RNA energy landscapes, alternative folding pathways,

and phasing of distal RNA structural elements.
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Figure 3.1: Direct RNA nanopore sequencing and modification detection. A) Scheme for
direct RNA nanopore sequencing. rRNAs containing native modifications are poly(A) tailed
before ligation of adapters and RT. Ionic current blockage events are characteristic of the kmer
sequence of RNA transiting through the pore constriction. B) Read quality heatmap for IVT
rRNA (left) and native rRNA (right) from E. coli. Dashed red lines indicated the expected
lengths for 16S rRNA (1.5 kb) and 23S rRNA (2.9 kb) C) Normalized native (red) and IVT
(black) current signal alignment for 16S rRNA from E. coli spanning positions 1395 - 1415
performed using Tombo. Sites of known modifications within this window are highlighted in
blue. D) Positional Kolmogorov-Smirnov (KS) statistical testing of current signals across
rRNA from E. coli and S. cerevisiae using both Tombo and Nanopolish. Modification positions
described in the literature are indicated as black lines. E) Median current and dwell KS
statistic profiles separated by modification type (base (excluding Ψ), blue; 2’-O-methyl, red;
and Ψ, green) and aligned by modification position from both Tombo and Nanopolish. Colored
shaded regions represent the standard deviation of the KS statistic.
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Figure 3.2: Dependence of dwell time on modifications and sequence. A) Dwell time com-
parison of native (red) and IVT (black) samples (Mann-Whitney U test, n = 1000 reads) at
selected Nm modification sites in 16S and 23S from E. coli and 18S and 25S from S. cerevisiae.
The kmer is indicated below the x-axis along with the position of the modification (red). Dwell
times are from +Xr from the centered modification site kmer. B) Sequence motif from the top
1% of dwell times (IVT samples only, 16S, 23S, 18S, and 25S) spanning a 30-nucleotide win-
dow encompassing the entire biomolecular sequencing complex. C) Nucleotide representation
(fraction) within the trimer (positions -9, -10, and -11) from IVT samples as a function of
dwell time percentile. The highest dwell time percentiles are enriched for guanosine within the
trimer.
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Figure 3.3: Acetylimidazole generates small adducts detectable by SHAPE-MaP. A) Schematic
of acylation of RNA with acetylimidazole (AcIm). B) Time dependence of hydrolysis for AcIm
analyzed by changes in UV absorbance. Experiment performed at 37 ºC. C) SHAPE-MaP
reactivity profiles using NMIA, NAI, and AcIm for E. coli 16S and 23S rRNAs. D) Two-
dimensional kernel density estimates for NMIA, NAI, and AcIm adduct-induced mutation
rates for E. coli 16S and 23S rRNAs with unmodified control and SHAPE-modified rates on
the x- and y-axes, respectively. E) Receiver operator characteristic curve and associated area
under the curve (AUC) for MaP reactivities as a function of pooled nucleotide base pairing
status for SHAPE reagents.
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Figure 3.4: Direct structural probing of a pri-miR-17∼92 transcript RNA using AcIm
and nanopore sequencing. A) Scheme for 3’-end modification, SHAPE probing, and 3’ end
tailing. B) Normalized SHAPE-MaP reactivity (blue), and nanoSHAPE reactivity detected
by changes in current (red) and dwell time (grey) for the pri-miR-17∼92 RNA. C) Heatmap
of 1000 nanopore reads of pri-miR-17∼92 modified with 150 mM AcIm. Modifications
were determined by per-nucleotide Student’s t-test using Fisher’s method context of ± 1 of
the current signal. Per-nucleotide p-values were corrected using the Benjamini-Hochberg
procedure and binarized. Nucleotides scored as modified and unmodified are shown in black
and teal, respectively; unmapped regions are grey. D) Kernel density estimate of the number
of called modifications per pri-miR-17∼92 molecule as a function of AcIm concentration.
Called modifications correspond to an upper limit. E) Spearman’s rank order correlation
(rho) between nanoSHAPE and SHAPE-MaP as a function of the number of contributing
pri-miR-17∼92 molecules across the AcIm concentrations tested. F) Spearman’s rho as a
function of the distance from the 3’-end of the pri-miR-17∼92 RNA.
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Figure 3.5: Comparison of RNA structure modeling based on SHAPE-MaP and nanoSHAPE
reactivities. A) Secondary structure models, visualized as arc diagrams, for the pri-miR-17∼92
RNA. Centroids for structures modeled using SHAPE-MaP (blue) or nanoSHAPE (green)
constraints are shown. Secondary structure models for the constituent miRNA hairpins are
shown with overlaid SHAPE-MaP and nanoSHAPE reactivities. SHAPE data correspond to
the 25 mM AcIm concentration. B) Probabilities of all possible base pairs in pri-miR-17∼92
based on SHAPE-MaP (top) or nanoSHAPE (bottom) reactivity constraints, shown as a
partition function dot plot. Probabilities are displayed as -log10(probability base pair (i,j)).
C) Similarity in structure models, reported as relative positive predictive value (PPV) and
sensitivity for minimum free energy (MFE) and centroid structures. Pairwise comparison
was performed between SHAPE-MaP constrained (MaP), nanoSHAPE constrained, and no
probing data (NPD) secondary structure models.
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3.5 Methods

3.5.1 E.coli and S.Cerevisiae

E. coli (K-12 MG1655) cells were grown in an overnight culture at 37 ◦C in

5% CO2 in 10 mL of freshly prepared Luria Bertani broth (LB) or 10 mL M9

minimal salts. 75 mL of pre-warmed media was inoculated with 1 mL of

overnight culture. E. coli cells were grown to OD600 = 0.5, typically over 3 - 4

hours at 37 ◦C. S. cerevisiae (S288C), colonies were picked from an agar plate

and incubated at 30 ◦C in ∼7 mL of YPD broth for two days.

3.5.2 rRNA extraction (E. coli and S. cerevisiae)

25 mL of E. coli cells were pelleted at 3280 g at 4 ◦C for 12 minutes. Cells

were lysed in 16.5 mL lysis buffer (15mM Tris pH 8, 450 mM sucrose, 8

mM EDTA, 0.4 mg/ml lysozyme) for 5 minutes at room temperature then

10 minutes at 4 ◦C. The pellet was collected at 3280 g for 5 minutes and

then resuspended in 2 mL proteinase K buffer (50 mM HEPES, 200 mM

NaCl, 5 mM MgCl2, 1.5% SDS, 0.2 mg/mL Proteinase K). The solution was

vortexed for 10 seconds and incubated at room temperature for 5 minutes, and

then 4 ◦C for 10 minutes. Nucleic acids were extracted twice with 1 volume

of phenol:chloroform:isoamyl alcohol (25:24:1) followed by two subsequent

chloroform extractions prior to ethanol precipitation and resuspension in 88

µl RNAse-free water. Purified nucleic acids were treated with Turbo DNAse

(10 µl Turbo DNAse buffer [10X] and 2 µl Turbo DNAse) at 37 ◦C for 1 hour.

Finally, RNA was purified with 0.8X vol AmpureXP beads. For S. cerevisiae,
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RNA extraction was carried out using the YeaStar RNA kit (Zymo Research)

according to instructions.

3.5.3 Generation of rRNA IVT controls

gDNA was extracted from E. coli using the method described for RNA above

up to and including the ethanol precipitation step. After resuspension in

88 µl RNAse-free water, purified nucleic acids were treated with 1-5 µl 1

mg/ml RNaseA (Qiagen) for 45 minutes at 37 ◦C to degrade RNA. gDNA was

then purified with 0.5X SPRI or subsequent ethanol precipitation. gDNA was

purified from S. cerevisiae using the YeaStar Genomic DNA kit (Zymo Research)

according to instructions. Primers for amplifying rDNA amplicons, which

include a T7 transcription promoter for subsequent in vitro transcription

(IVT) are detailed in Table S2. Amplicons were generated by PCR using

Kapa HiFi DNA polymerase and purified by SPRI. T7 transcription templates

were transcribed using HiScribe T7 Quick High Yield RNA Synthesis Kit

(New England Biolabs). Reactions were cleaned up using the MEGAClear

Transcription Clean-up Kit (Invitrogen) before nanopore sequencing library

preparation.

3.5.4 Poly(A) tailing of RNA

Oxford Nanopore Technologies direct RNA sequencing requires a poly(A) tail

for first adapter ligation. Both rRNA and pri-miR-17∼92 (951 nt) samples were

poly(A) tailed. Briefly, 0.5 – 1.0 ug of RNA was poly(A) tailed with 2 ul ATP

[10mM], 1 ul [5U] of E. coli Poly(A) polymerase (EPAP) (New England Biolabs)
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and 2 ul EPAP reaction buffer [2X] in a final volume of 20 ul. Reactions were

carried out for 15 minutes and quenched with 0.5 ul of 0.5 M EDTA before

purification with 1X SPRI.

3.5.5 Nanopore library preparation

Direct RNA sequencing was performed using the Oxford Nanopore Tech-

nologies kit (SQK-RNA002) as directed with the RCS control RNA. Sequenc-

ing was performed on the MinION device using either standard flowcells

(FLO-MIN106D) for rRNA experiments or a mixture of standard and flongle

flowcells (FLO-FLG001) for pri-miR-17∼92 experiments. Sequencing was

carried out until the number of active nanopores dropped below 5% of the

initial total number of pores, typically 12-36 hours.

3.5.6 Reagents

All standard laboratory reagents, including AcIm, were purchased from

Millipore-Sigma, with the exception of NMIA purchased from Invitrogen/Thermo

Fisher Scientific. NAI was synthesized from 2-methylnicotinic acid and 1,1’-

carbonyldiimidazole, as described. (Robert et al., 2012) Briefly, 137 mg (1mmol)

2-methylnicotinic acid was dissolved in 0.5 mL anhydrous DMSO. A solution

of 162 mg (1 mmol) 1,1’-carbonyldiimidazole in 0.5 mL anhydrous DMSO was

added dropwise over 5 min. The resulting solution was stirred at room tem-

perature using a PTFE coated micromagnet until gas evolution was complete

and then stirred at room temperature for 1 h further. The resulting solution

was used as a 1.0 M stock solution (assuming complete conversion) containing
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a 1:1 mixture of the desired compound and imidazole. The NAI stock solution

was aliquoted and frozen at −80 ◦C when not in use. The reagent is stable for

several months if stored in anhydrous DMSO at −80 ◦C. The stock solution

should be warmed to room temperature prior to opening.

3.5.7 AcIm hydrolysis

AcIm hydrolysis was tracked at 37 ºC by time resolved UV absorbance using

a Nanodrop 2000 spectrophotometer in [1x] modification buffer (100 mM

HEPES pH 8.0, 100 mM NaCl, 10mM MgCl2) every 2 minutes for 40 minutes.

Imidazole spectra were collected every 2 minutes in [1x] modification buffer

for 40 minutes.

3.5.8 SHAPE-MaP on rRNA

Extracted rRNA was treated with NAI [100 mM final], AcIm [100 mM final],

NMIA [13 mM final] or DMSO (unmodified control). All SHAPE-MaP experi-

ments were performed with 10% volume fraction of DMSO. Modification was

carried out at 37 ◦C for 3 half-lives of the chemical probe used. For mutational

profiling RT, 1 µl of nonamer primer [200 ng/µl or 2µM] was added to 1-3 µg

of rRNA in 10 µl nuclease free water. The samples were incubated at 65 ◦C

for 5 minutes then cooled on ice. 8 µl of [2.5x] MaP buffer (125 mM Tris pH

8.0, 187.5 mM KCl, 15 mM MnCl2, 25 mM DTT, and 1.25 mM dNTPs) was

added and incubated at 42 ◦C for 2 minutes. 1 µl of SuperScript II reverse

transcriptase was added and mixed well before incubating the reaction at

42 ◦C for 2-3 hours, and then at 70 ◦C to inactivate the polymerase. cDNA
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was exchanged into water using G-50 columns (GE Life Sciences) the volume

increased to 68 µl using nuclease free water. Second strand synthesis was

carried out (Second Strand Synthesis Enzyme mix; New England Biolabs)

and the dsDNA was used to generate a Nextera library for sequencing on an

Illumina MiSeq, as described.(Smola et al. 2015)

3.5.9 RNA modification (pri-miR-17 92)

In order to protect the 3’-OH of pri-miR-17∼92 RNA from modification with

acylating reagents, the terminal 3’ nucleotide was oxidized followed by a

beta-elimination reaction to remove the terminal nucleotide leaving a terminal

phosphate. Then RNA modification was carried out prior to dephosphoryla-

tion and nanopore library preparation. Briefly, pri-miR-17∼92 was incubated

at 37 ºC for 30 minutes with shaking in oxidation buffer (NaIO4 [20mM],

Lysine-HCl [200mM] pH 8.5, final volume: 40 µl). The reaction was quenched

with 2 µl of ethylene glycol then purified using 1x SPRI, eluting into beta-

elimination buffer (Sodium borate [33.75mM], boric acid [50mM], pH 9.5)

incubating at 45 ºC for 45 minutes. RNA was again purified by 1x SPRI. 1-2.5

µg of IVT pri-miR-17∼92 RNA was diluted into 7 µl water and heated to 95

ºC for 2 min and immediately placed on ice (2 min). 6µl of folding buffer

[3.3x] (333 mM Tris-HCl pH 8.0, 333 mM NaCl and 33 mM MgCl2) and 5 µl

HEPES pH 8.0 [200 mM] were added and the RNA was allowed to fold for 20

min at 37 ºC. 2 µl of DMSO (control) or SHAPE reagent (NAI or AcIm) were

added to a new tube, then folded RNA was added and mixed by pipetting.

Modification was carried out for at least 3 half-lives at 37 ºC. RNA was then
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dephosphorylated by adding 22 µl RNAse-free water, 5 µl Antarctic Phos-

phatase reaction buffer [10x], 2 µl Antarctic Phosphatase [5k U/mL] (NEB)

and 1 µl RNase inhibitor and incubating at 37 ºC for 30 minutes with shaking.

The phosphatase was inactivated by incubating the reaction at 65 ºC for 5

minutes. Finally, the RNA was purified using 1x SPRI prior to poly(A) tailing.

3.5.10 SHAPE-MaP on pri-miR-17 92

After pri-miR-17∼92 RNA was dephosphorylated, mutational profiling re-

verse transcription (RT) was performed. 1 µl of nonamer primer [200 ng/µl or

2µM] was added to 1-3 µg of RNA in 10 µl nuclease free water. The samples

were incubated at 65 ◦C for 5 minutes then cooled on ice. 8 µl of [2.5x] MaP

buffer (125 mM Tris pH 8.0, 187.5 mM KCl, 15 mM MnCl2, 25 mM DTT, and

1.25 mM dNTPs) was added and incubated at 42 ◦C for 2 minutes. 1 µl of

SuperScript II reverse transcriptase was added and mixed well before incu-

bating the reaction at 42 ◦C for 2-3 hours, and then at 70 ◦C to inactivate the

polymerase. cDNA was exchanged into water using G-50 columns (GE Life

Sciences) the volume increased to 68 µl using nuclease free water. Second

strand synthesis was carried out (Second Strand Synthesis Enzyme mix; New

England Biolabs) and the dsDNA was used to generate a Nextera library for

sequencing on an Illumina MiSeq, as described.(Smola et al. 2015)

3.5.11 Nanopore data processing

Multi-fast5 reads were basecalled using guppy (v3.1.5). Base called multi-fast5

reads were then converted to single read fast5s using the Oxford Nanopore
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Technologies API, ont_fast5 (v1.0.1). Fastqs were mapped to their respective

transcriptomes for E. coli (NC_000913.3.fa) and S. cerevisiae (R1-1-1_19960731.fsa)

using minimap2 (v2.11).

3.5.12 Nanopolish and Tombo analysis of data

Tombo (v1.5.1) and Nanopolish (v0.11.1) were both used to detect native

modifications in rRNA datasets as well as detect modifications deposited

from SHAPE reagents. Comparisons were performed between native and IVT

samples for the rRNA datasets and between modified (at indicated concen-

trations) and unmodified samples for pri-miR-17∼92. Nanopolish eventalign

module was used to align current intensities and dwell times to reference

sequences. Kolmogorov–Smirnov (KS) statistical testing was performed in

order to detect modified nucleotides. Using Tombo, raw signal squiggles

were assigned to reference sequences using resquiggle. Next, modified base

detection was carried out using the detect_modifications model_sample_compare

method. Per-read statistical testing (AcIm modified RNA) was performed

with a ± 1 nucleotide Fisher’s method context adjustment. The requisite text

output was obtained using text_output browser_files method. Reactivity profiles

from Tombo per-read statistical testing were further adjusted using Benjamini-

Hochberg procedure for multiple testing. Adjusted per-read reactivity profiles

were used to calculate percentage modification per genomic position. This

percentage profile was then normalized using the normalization procedure de-

scribed in SHAPE-MaP method.(Smola et al. 2015) Single molecule positional

current, standard deviation of current, and dwell time data were extracted
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as numpy arrays directly from single read fast5 data using custom written

python scripts.

3.5.13 RNA structure modeling

Centroid structures and free energies were obtained using the RNAfold

(v2.4.13) (Vienna) web server. Options were to avoid isolated base pairs

and temperature = 37 ºC. R-chie (Lai et al. 2012) was used for displaying base

pairing (arc) of centroid structures. The RNAstructure (v6.2) software suite

(Reuter and Mathews 2010) was used for partition function calculation and as-

sociated dot plot visualization. The following options were used for partition

function calculation: maximum percent energy difference = 10%, maximum

number of structures = 50, window size = 3, temperature = 37 ºC. PPV and

sensitivity were determined by performing pairwise comparison between the

respective minimum free energy (MFE) and centroid structures of miR-17∼92

for sequence alone prediction, SHAPE-MaP and nanoSHAPE constrained ex-

periments. CT files from constrained and unconstrained RNAfold predictions

were used as input to the RNAstructure scorer function to determine PPV and

sensitivity. PPV corresponds to the percentage of predicted base pairs that are

in the “accepted" structure and sensitivity corresponds to the percentage of

known base pairs correctly predicted in the “accepted" structure.
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Chapter 4

Modbamtools: Analysis of
single-molecule epigenetic data for
long-range profiling, heterogeneity,
and clustering

This chapter is currently a preprint deposited on bioRxiv. I am the first author

leading this work and responsible for the full implementation of modbam-

tools.

Roham Razaghi et al. (2022). “Modbamtools: Analysis of single-molecule epige-

netic data for long-range profiling, heterogeneity, and clustering”. In: bioRxiv

4.1 Abstract

The advent of long-read sequencing methods provides new opportunities for

profiling the epigenome - especially as the methylation signature comes for

“free" when native DNA is sequenced on either Oxford Nanopore or Pacific

Biosciences instruments. However, we lack tools to visualize and analyze
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data generated from these new sources. Recent efforts from the GA4GH

consortium have standardized methods to encode modification location and

probabilities in the BAM format. Leveraging this standard format, we de-

veloped a technology-agnostic tool, modbamtools to visualize, manipulate

and compare base modification/methylation data in a fast and robust way.

modbamtools can produce high quality, interactive, and publication-ready

visualizations as well as provide modules for downstream analysis of base

modifications. Modbamtools comprehensive manual and tutorial can be

found at https://rrazaghi.github.io/modbamtools/.

4.2 Introduction

Direct single-molecule sequencing methods, e.g. Pacific Biosciences (PacBio)

and Oxford Nanopore Technologies (ONT), have recently greatly expanded in

throughput and yield. In addition to the canonical base sequencing data that

these platforms generate, modifications on the nucleic acids can be measured

directly, either via delays in the incorporation of bases (IPD, PacBio (Flusberg

et al., 2010)) or perturbations in the electrical current (ONT (Simpson et al.,

2017)). These have been accompanied by development of software tools to

measure and call modifications within this data, but the output formats of

these calls were not standardized precluding easy downstream development.

Modification data files have typically been stored as enormous (terabyte scale)

tsv/csvs and early efforts to incorporate 5-methylcytosine information from

ONT into a “bisulfite-like" BAM file required complex manipulations(Lee

et al., 2020).
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More recently, the Global Alliance for Genomics and Health (GA4GH)

(Rehm et al., 2021) standards group proposed an addition to the BAM file

spec, incorporating two new tags (MM and ML) for SAM/BAM alignment

files. The MM tag is used to locate the strand and position the modification

was observed on, and the ML tag is the probability of each modification

being present (http://samtools.github.io/hts-specs). Although these tags

were introduced as an adaptation to long-read base modification data, it is

anticipated that all technologies will eventually incorporate this file format.

Single molecule base modification callers have rapidly adapted to the new

standard format. Currently, for nanopore data, most modification calling

tools can output BAM files with tags, including guppy, bonito, Megalodon,

and nanopolish (Simpson et al., 2017). Similarly, Primrose, and ccsmeth (Ni

et al., 2022) can be used for PacBio reads. An updated list of compatible tools

generating these alignment files can be found at https://rrazaghi.github.

io/modbamtools/.

Here we introduce modbamtools, a suite of tools to explore modifications

in single-molecule data using this new format. With this tool we generate

interactive and batch visualization and analysis for methylation frequency

and single-molecule methylation. Profiling methylation across individual

molecules, we can look at coordination of long-range methylation effects, e.g.

enhancer-promoter interactions, and the degree of variation of methylation

“noise" within regions. We have also generated modules to phase reads by

using genetic variation or through methylation alone via a read clustering

approach, to enable exploration of allele-specific methylation and epigenetic
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heterogeneity.

4.3 Results

4.4 Usage and Examples

We developed modbamtools, a software package that provides analysis and

interactive visualization of single-read base modification data along with

other highly used formats for genomic tracks (GTF, bigwig, bedgraph, etc).

Modbamtools utilizes core python modules including numpy (Walt, Colbert,

and Varoquaux, 2011), pandas (McKinney and Others, 2011), scikit-learn

(Pedregosa et al., 2011), pysam (Heger et al., 2014), click, plotly (Plotly Tech-

nologies Inc., 2015), modbampy, pybigwig (Ryan, Gruning, and Ramirez,

2016), pypdf2, pillow, and hdbscan (McInnes, Healy, and Astels, 2017). We

have made modbamtools easily accessible through PyPI (‘pip install modbam-

tools‘).

The tool has three main elements (‘calcMeth‘, ‘calcHet‘, ‘cluster‘) and

a plotting function that allows for interactive plotting of single-read base

modification data. This generates a multi-panel plot (Figure 4.1) consisting

of an annotation track, methylation frequency track, and single-read plots.

The annotation track can display other sets of genomics data including gene

models, other epigenetic data (e.g. ENCODE ChIP-seq), and genetic variation.

Methylation frequencies along with a smoothed average frequency is plotted

on top of the reads similar to a conventional genome browser. The methylation

frequency plot shows the per locus frequency of modified to total called bases.
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Finally, the single-read plots represent each individual single molecule with

base modifications indicated as blue for unmodified and red for modified.

These figures can be output as HTML, PDF, PNG, or SVG. The HTML provided

is generated with plotly and is interactive, allowing magnification. Multiple

plots can be output in batch mode by providing a BED file of regions of interest

resulting in a multiple page HTML or PDF report.

128



Figure 4.1: Example of modbamtools output onMEG3 (chr14 : 100,802,849,111) locus using
both PacBio and ONT single-molecule data from the HG002 Genome in a Bottle cell line.
"Genes" track shows GENCODE (Release 38, GRCH38) gene models and the "CTCF" track
shows CTCF CHiP-seq ENCODE track from GM12878. Methylation frequency track is
colored according to platform and haplotype, with colors indicated by the title of the single-
molecule
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Using appropriate tools, e.g. clair (Zheng et al., 2021) or whatshap (Martin

et al., 2016), BAM files can have the haplotypes of reads encoded with the

commonly used “HP" tag. Our tool has the ability to group the alignments

based on phase tag (HP) in BAM files. Using this HP tag, we can separate

reads according to haplotype, plotting each haplotype’s methylation frequency

as different colored lines and the single reads as separate plot elements. We

show an example of this module on methylation calls from the HG002 cell line

at the MEG3 long noncoding RNA (lncRNA), using public single-molecule

methylation data from both ONT and PacBio platforms (Figure 4.1). MEG3

has known monoallelic expression in many tissues and loss of this regulation

has been implicated in development of type 2 diabetes mellitus (Rosa et al.,

2005; Kameswaran et al., 2014). From this data, we observe clear examples of

allele-specific methylation at a CTCF binding site and MEG3 promoter region.

Beyond clustering according to genomic haplotype, we have implemented

a method to cluster single-molecule reads based on methylation status alone

using Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN) (McInnes, Healy, and Astels, 2017). This is a useful feature

for regions without many SNPs for phasing reads into haplotypes (Gershman

et al., 2022). Clustering can also be used to quantify different cell types or to

profile early cancer detection from a heterogeneous sample (Wang et al., 2021;

Houseman et al., 2008; Gkountela et al., 2019; Tian et al., 2020). Clustering can

be performed either as a part of the plotting command or separately (‘–cluster‘

command) with the input of a batch file for locations used for the clustering.

As shown in Figure 4.2, we can cluster the SNURF gene promoter based purely
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on methylation signal at this locus. This paternally imprinted locus can also

be phased based on genotyping information, demonstrating the agreement of

our clustering approach with classical methods.

Figure 4.2: A) single molecule methylation profile on geneSNRPN (chr15 : 24,953,958,133)
from HG002 data as in Figure1.B) Single molecule methylation profile on gene SNRPN
separated into clusters with ’modbamtools plot -cluster’

Finally, using a BED file of genomic loci, we can profile the average methy-

lation in each location, including methylation on each haplotype. The “cal-

cMeth" module calculates methylation average across each single molecule
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first then aggregates over all molecules which map to that region, rather than

averaging CpG methylation per CpG then averaging across the region. This

is especially useful with long reads to capture methylation variability more

efficiently (Figure 4.3).
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Figure 4.3: Example of modbamtools plot with options for haplotype separation and calculating
heterogeneity at theGNAS locus (chr20 : 58,790,850,596).
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With single-molecule methylation data, can quantify not only methyla-

tion frequency averaged across all reads, but also variability of methylation

across individual molecules. A few studies have attempted to address this by

proposing different algorithms to quantify this feature (Scherer et al., 2020;

Landau et al., 2014; Guo et al., 2017; Landan et al., 2012; Xie et al., 2011). Here,

we implemented a module to calculate methylation heterogeneity (“calcHet")

that calculates this on genomic regions provided by the user. Similar to the

clustering function, “–heterogeneity" option can be used with plotting com-

mand to visualize this; we have plotted it for the GNAS locus in Figure 4.3.

There we observe areas of clear difference in methylation heterogeneity across

the region, suggesting not only a change in methylation but a less ordered

epigenetic state on one allele when compared to the other.

4.5 Conclusion

Advances in single-molecule sequencing throughput suggest we are at an

inflection point where large scale data sets are on the horizon. These data

types offer the unique advantage of providing DNA methylation data as well

as primary sequence - but without tools to take advantage of it, these data

will be “left on the table" and not used to their potential. Here we have

described a toolset to take advantage of these data, using the newly described

modification tags present in the SAM/BAM file specifications. This toolset is

compatible with all modern modification callers. Modbamtools provides fast,

robust, interactive visualization and analysis for alignment files containing
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base modification tags.
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4.9 Code Availability and implementation

modbamtools source code is available at https://github.com/rrazaghi/modbamtools.

A manual and tutorial are available at https://rrazaghi.github.io/modbamtools/.
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Chapter 5

Conclusion and Future direction

This thesis summarizes the work I have performed in the Timp lab at Johns

Hopkins University during my PhD. My dissertation has resulted in 9 manuscripts

(one as a co-first author, and one as a first author) (Razaghi et al., 2022; Kovaka

et al., 2019; Lee et al., 2020; Workman et al., 2019; Stephenson et al., 2022; Tiek

et al., 2022; Gershman et al., 2021; Gershman et al., 2022; Kandathil et al., 2021).

The focus of my work has revolved around sequencing technology methods

development using third-generation sequencing.

First in my dissertation work, we generated one of the largest to date

direct-RNA nanopore sequencing datasets. This data being one of the first

of its kind, showcased the potential of dRNA sequencing in the fields of

transcriptomics and epitranscriptomics. We demonstrated how dRNA can be

utilized to advance our knowledge of allele-specific expression, poly(A) tail,

and RNA base modifications (Workman et al., 2019).

We then focused on a follow up study with collaboration with New York

Genome Center to investigate the potential of RNA exogenous labeling. This

labeling on long RNA molecules proved to be effective in inferring RNA
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secondary structure. This coupled with analysis enabled by the first study

provided a way to cluster alternative structures in an isoform-specific manner

while measuring endogenous RNA modification (Stephenson et al., 2022).

For the second half of my dissertation, I focused on DNA and base mod-

ifications. I was involved in a study that adapts the sequencing technique

NOMe-seq to third-generation sequencing (NanoNOMe) (Lee et al., 2020; Lay,

Kelly, and Jones, 2018). This enables us to have a phased epigenome that

includes the simultaneous measurement of endogenous (DNA CpG methyla-

tion) and exogenous (chromatin accessibility) methylation profiles. Inspired

by this study, we have been trying to develop a "multi-color" assay where

different DNA-protein interactions can be profiled in addition to DNA methy-

lation and chromatin accessibility. This can be achieved by fusing protein

A/G to a DNA modifying enzyme. This construct can be pulled to a protein

of interest with proper antibody treatments. The enzyme then modifies the

DNA in close proximity of the protein of interest. Although, we gathered

some preliminary data on this proposed assay, we need more time to refine

and optimize further in the near future.

Lastly, I focused on one of the recent sequencing library preparation kits

called ultra-long nanopore sequencing (SQK-ULK001). This kit has enabled

the genomics community to produce reads up to 2-3 Mb in length. In our

hands, we routinely generate 80-100 Gb of sequencing data with N50s of

above 100 kb using a Promethion flowcell. These ultra-long reads provide a

crucial tool to close any gaps in the human genome mostly due to repetitive

elements (Nurk et al., 2022). With this better mappability, we can also study
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the epigenome more comprehensively and discover novel biology (Gershman

et al., 2022). One of the challenges of studying methylation using nanopore

sequencing (especially ultra-long sequencing) is navigating rather large text

files. Recently, htslib has provided a new way to store base modification

information into alignment files. I developed modbamtools to provide the

community a set of tools to navigate, visualize, and manipulate this new

file format efficiently. One of the future directions for this study is to ex-

pand the functions further to adapt to the growing cell-free DNA (cfDNA)

methylation analysis (Razaghi et al., 2022). Another potential future project

would be to utilize ultra-long reads to investigate combinatorial methylation

states at different regulatory elements (enhancers, promoters, gene bodies,

etc) on a phased single molecule level. This can provide better insight on how

methylation regulates gene expression levels.
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