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Abstract

Abundance and affordability of cameras has enabled scalable and affordable collec-

tion of image data. This has led to many research opportunities both in robot-assisted

surgery and general computer vision domain related to image segmentation. In this

thesis, we focus on image segmentation problem as it is a fundamental task which

has many applications including pose estimation of surgical tools in robotic surgery

and eye tracking in head mounted displays. As a result of our work we present a

data-efficient method that does not require human annotation of data and exhibits

real-time inference.

First, we introduce the use of residual neural networks for surgical instrument

segmentation for robotic surgery. We show state of the art results on multiple in-

strument segmentation datasets. Second, we introduce a neural architecture search

method that is able to find a very efficient image segmentation model capable of real-

time inference. Real-time inference is a crucial requirement for image segmentation

methods for robotic surgery. Third, to reduce the amount of annotation required

for our method, we introduce a semi-supervised approach which leverages unlabeled
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ABSTRACT

images and synthetic training data. Finally, we introduce the use of generative ad-

versarial networks for unsupervised discovery of segmentation classes from unlabeled

image data. Here, we show for this first time that this task is possible without any

annotated data. Data annotation for image segmentation is a very time consuming

procedure as it requires every pixel of an image to be classified into one of the classes.

We study the ability of recently introduced multimodal approaches like CLIP to as-

sign text labels to our discovered segmentation regions. At the end, we present a

model that is able to not only discover segmentation regions automatically but also

assigns text labels them.

Primary Advisor: Nassir Navab (Johns Hopkins University)

Reader: Kemar E. Green (Johns Hopkins University)
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Chapter 1

Introduction

In this chapter we formulate motivation for the thesis and provide a general out-

line, motivate the task of image segmentation for robotic surgery and other fields and

show its importance. We highlight the questions that are raised and addressed by

the thesis. We conclude with a concise thesis statement that emphasizes our main

findings.

1.1 Motivation

Semantic segmentation plays crucial part in computer assisted interventions (CAI)

during Robot-assisted Minimally Invasive Surgery (RMIS) as methods for full surgical

instrument pose estimation rely on high quality segmentation of instrument parts [12].

Also, during CAI additional visual information is integrated like overlaying pre- and
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CHAPTER 1. INTRODUCTION

intra-operative imaging with surgical console which can improve decision making

during complex procedures [13]. Segmentation of instruments also plays important

part here as it is used to prevent rendered overlays from occluding the instruments [14].

At the same time, highly accurate eye segmentation is used as a part of gaze estimation

in VR and AR devices [4]. Accurate gaze estimation allows to significantly reduce

power consumption in AR and VR devices by only generating high quality picture at

the region where a user is currently looking [4].

Segmentation of instruments and eye segmentation are extremely difficult as en-

vironment and patient can vary a lot and exhibit lighting changes or occlusions. All

previous recent work relied on deep learning approaches to solve this problem [4,5,14].

Additional challenge related to all image segmentation problems is a dataset creation:

it takes a lot of effort to create high quality annotations for images [15] [1].

In this thesis, we focus primarily on a problem of image segmentation, which is the

task of labeling every pixel in the image with the class of its enclosing object or region.

Image segmentation serves as a foundation for many important applications related

to robotic surgery and augmented and virtual reality. Moreover, many applications

lack annotated image segmentation training data and require real-time inference.

Therefore, we aim to solve the problem of image segmentation under no or limited

annotated training data availability and real-time inference constraints.
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1.2 Outline

In this section we pose the main questions that are addressed in the thesis. We

highlight the chapters of the thesis that are relevant to each raised question.

1.2.1 Is it possible to accurately perform a fully

automatic and accurate segmentation of sur-

gical instruments?

Automatic segmentation of surgical instruments is a crucial step towards full in-

strument pose estimation but it can also be solely used to improve user interactions

with the robotic system. Leveraging techniques such as deep residual learning and

dilated convolutions to advance both binary-segmentation and instrument part seg-

mentation performance is the subject of Chapter 2.

1.2.2 Can we automatically learn an efficient real-

time network architecture for instrument seg-

mentation?

While previous research focused primarily on methods that deliver high accuracy

segmentation masks, majority of them can not be used for real-time applications due
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to their computational cost. Should we manually design a network architecture for

each task or is it possible to learn an optimal architecture tailored for a given task?

This question is addressed in Chapter 3.

1.2.3 Is instrument segmentation possible with in-

accurate synthetic annotations?

While many recent approaches based on convolutional neural networks have shown

great results, a key barrier to progress lies in the acquisition of a large number of

manually-annotated images which is necessary for an algorithm to generalize and

work well in diverse surgical scenarios. Unlike the surgical image data itself, anno-

tations are difficult to acquire and may be of variable quality. On the other hand,

synthetic annotations can be automatically generated by using forward kinematic

model of the robot and CAD models of tools by projecting them onto an image

plane. Unfortunately, this model is very inaccurate and cannot be directly used for

supervised learning of image segmentation models. Is it possible to design an algo-

rithm that will learn accurate segmentation model even from corrupted data? And if

so, how will the accuracy differ from fully supervised methods? These questions are

addressed in Chapter 4.
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1.2.4 Is image segmentation possible even in the

absence of annotations?

While fully supervised methods show impressive results, their applicability is lim-

ited by a very slow process of image annotation. This issue is more pronounced in the

medical imaging community where a domain knowledge is required to perform anno-

tations. Can we automatically segment images into semantically meaningful regions

without human supervision? This question is addressed in Chapter 5.

1.3 Thesis Statement

Image segmentation can be performed in an automated fashion under constraints

of limited or no training data availability and real-time inference.

5



Chapter 2

Deep Residual Learning for

Instrument Segmentation in

Robotic Surgery

In this chapter, we focus on the task of labeling every pixel in the image with the

class of its enclosing object or region, which is also known as image segmentation in

the literature. In this particular case, we focus on binary instrument segmentation,

where the objective is to label every pixel as instrument or background and instrument

part segmentation, where different semantically separate parts of the instrument are

labeled. We introduce dilated deep residual neural networks for this task and show

that they are capable of achieving state-of-the-art performance.
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CHAPTER 2. DEEP RESIDUAL LEARNING FOR INSTRUMENT
SEGMENTATION IN ROBOTIC SURGERY

2.1 Introduction

Robot-assisted Minimally Invasive Surgery (RMIS) overcomes many of the limi-

tations of traditional laparoscopic Minimally Invasive Surgery (MIS), providing the

surgeon with improved control over the anatomy with articulated instruments and

dexterous master manipulators. In addition to this, 3D-HD visualization on sys-

tems such as da Vinci enhances the surgeon’s depth perception and operating preci-

sion [16]. However, complications due to the reduced field-of-view provided by the

surgical camera limit the surgeon’s ability to self-localize. Traditional haptic cues on

tissue composition are lost through the robotic control system [17].

Overlaying pre- and intra-operative imaging with the surgical console can provide

the surgeon with valuable information which can improve decision making during

complex procedures [13]. However, integrating this data is a complex task and in-

volves understanding spatial relationships between the surgical camera, operating

instruments and patient anatomy. A critical component of this process is segmenta-

tion of the instruments in the camera images which can be used to prevent rendered

overlays from occluding the instruments while providing crucial input to instrument

tracking frameworks [12,18].

Segmentation of surgical tools from tissue backgrounds is an extremely difficult

task due to lighting challenges such as shadows and specular reflections, visual occlu-

sions such as smoke and blood (see Fig. 2.1). Early methods attempted to simplify

the problem by modifying the appearance of the instruments [19]. However, this
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Figure 2.1: Example frames from RMIS procedures present in the dataset. Left
column shows example images frames from the dataset. Right column shows the
binary and instrument part segmentation of corresponding images delivered by our
method.

complicates clinical application of the technique as sterilization can become an is-

sue. Segmentation of the instruments using natural appearance is a more desirable

approach as it can be applied directly to pre-existing clinical setups. However, this

defines a more challenging problem. To solve it, previous work has relied on machine

learning techniques to model the complex discriminative boundary. The instrument-

background segmentation can be modeled as a binary segmentation problem to which

discriminative models, such as Random Forests [20], maximum likelihood Gaussian

Mixture Models [18] and Naive Bayesian classifiers [21], all trained on color features,

have been applied. More recently, the state-of-the-art has increasingly been defined

by Fully Convolutional Networks (FCNs), such as the FCN-8s model [22] adapted for

the task of binary segmentation of robotic tools [23] and U-Net [24] which was used
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for both binary and instrument part segmentation [25].

In this work, we adopt the state-of-art residual image classification Convolutional

Neural Network (CNN) [26] for the task of semantic image segmentation by casting it

into a FCN. However, the transformed model delivers a prediction map of significantly

reduced dimension compared to the input image [22]. To account for that, we reduce

in-network downsampling, employ dilated (atrous) convolutions to enable initializa-

tion with the parameters of the original classification network, and perform simple

bilinear interpolation of the feature maps to obtain the original image size [27, 28].

This approach is a powerful alternative to using deconvolutional layers (upsampling

layers) and “skip connections” as in FCN-8s model [22] and CSL model [25]. By em-

ploying it, we advance the state-of-the-art in binary and instrument part segmentation

of tools on the EndoVis 2017 Robotic Instruments dataset [1].

2.2 Method

The goal of this work is to label every pixel of an image I with one of 𝐶 semantic

classes, representing surgical tool part or background. In case of binary segmentation,

the goal is to label each pixel into 𝐶 = 2 classes, namely surgical tool and background.

In this work, we also consider a more challenging multi-class segmentation with 𝐶 = 4

classes, namely tool’s shaft, wrist and jaws and background.

Each image I𝑖 is a three-dimensional array of size ℎ × 𝑤 × 𝑑, where ℎ and 𝑤 are
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spatial dimensions, and 𝑑 is a channel dimension. In our case, 𝑑 = 3 because we use

RGB images. Each image I𝑖 in the training dataset has corresponding annotation A𝑖

of a size ℎ × 𝑤 × 𝐶 where each element represents one-hot encoded semantic label

𝑎 ∈ {0, 1}𝐶 (for example, if we have classes 1, 2, and 3, then the one-hot encoding of

label 2 is (0, 1, 0)𝑇 ).

We aim at learning a mapping from I to A in a supervised fashion that generalizes

to previously unseen images. In this work, we use CNNs to learn a discriminative

classifier which delivers pixel-wise predictions given an input image. Our method is

built upon state-of-the-art deep residual image classification CNN (ResNet-18, Section

2.2.1), which we convert into fully convolutional network (FCN, Section 2.2.2).

CNNs reduce the spatial resolution of the feature maps by using pooling layers or

convolutional layers with strides greater than one. However, for our task of pixel-wise

prediction we would like dense feature maps. We set the stride to one in the last two

layers responsible for downsampling, and in order to reuse the weights from a pre-

trained model, we dilate the subsequent convolutions (Sec. 3.2.1) with an appropriate

rate. This enables us to obtain predictions that are downsampled only by a factor of

8× (in comparison to the original downsampling of 32×).

We then apply bilinear interpolation to regain the original spatial resolution. With

an output map of the same resolution as an input image, we perform end-to-end

training by minimizing the normalized pixel-wise cross-entropy loss [22].
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2.2.1 Deep Residual Learning

Traditional CNNs learn filters that process the input 𝑥𝑙 and produce a filtered

response 𝑥𝑙+1, as shown below

𝑦𝑙 = 𝑔(𝑥𝑙, 𝑤𝑙), (2.1)

𝑥𝑙+1 = 𝑓(𝑦𝑙). (2.2)

Here, 𝑔(., .) is a standard convolutional layer with 𝑤𝑙 being the weights of the layer’s

convolutional filters and biases, 𝑓(.) is a non-linear mapping function such as the

Rectified Linear Unit (ReLU). Recently modifications [26] showed that significant

gains in performance can be obtained by employing “residual units” as a building

block of a deep CNN, and called such networks Residual Networks (ResNets). Each

unit of a ResNet can be expressed in the following general form

𝑦𝑙 = ℎ(𝑥𝑙) + 𝐹 (𝑥𝑙,𝑊𝑙), (2.3)

𝑥𝑙+1 = 𝑓(𝑦𝑙), (2.4)

where 𝑥𝑙 and 𝑥𝑙+1 are input and output of the 𝑙-th unit, and 𝐹 (., ) is a residual

function to be learnt. The function ℎ(.) is a simple identity mapping, ℎ(𝑥𝑙) = 𝑥𝑙 and

𝑓(.) is a rectified linear unit activation (ReLU) function. As ℎ(𝑥𝑙) is chosen to be an

identity mapping, it is easily realized by attaching an identity skip connection (also
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known as a “shortcut” connection). In our work, we adopt ResNet-18 architecture

which allows us to achieve state-of-the-art performance in tool segmentation.

2.2.2 Fully Convolutional Networks

Figure 2.2: A simplified CNN before and after being converted into an FCN (illustra-
tions (a) and (b) respectively), after reducing downsampling rate with integration
of dilated convolutions into its architecture with subsequent bilinear interpolation
(illustration (c)). Illustration (a) shows an example of applying a CNN to an image
patch centered at the red pixel which gives a single vector of predicted class scores.
Illustration (b) shows the fully connected layer being converted into 1 × 1 convolu-
tional layer, making the network fully convolutional, thus enabling a dense prediction.
Illustration (c) shows network with reduced downsampling and dilated convolutions
that produces outputs that are being upsampled to acquire pixelwise predictions.

Deep CNNs (e.g. AlexNet, VGG16, ResNets, etc.) are primarily trained for the

task of image classification. However, to obtain the output granularity required for a

task such as image segmentation requires converting the CNN’s fully connected layers
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into convolutions with kernels that are equal to their fixed input regions [22] which

creates an FCN. An FCN operates on inputs of any size, and produces an output

with reduced spatial dimensions [22].

Fully convolutional models deliver prediction maps with significantly reduced di-

mensions (for both VGG16 and ResNets, the spatial dimensions are reduced by a

factor of 32). In the previous work [22], it was shown that adding a deconvolutional

layer to learn the upsampling with factor 32 provides a way to get the prediction map

of original image dimension, but the segmentation boundaries delivered by this ap-

proach are usually too coarse. To tackle this problem, two approaches were recently

developed which are based on modifying the architecture. (i) By fusing features from

layers of different resolution to make the predictions [22, 25]. (ii) By avoiding down-

sampling of some of the feature maps [27, 28] (removing certain pooling layers in

VGG16 and by setting the strides to one in certain convolutional layers responsible

for the downsampling in ResNets). However, since the weights in the subsequent

layers were trained to work on a downsampled feature map, they need to be adapted

to work on the feature maps of a higher spatial resolution. To this end, [27] employs

dilated convolutions. In our work, we follow the second approach: we mitigate the

decrease in the spatial resolution by using convolutions with strides equal to one in

the last two convolutional layers responsible for downsampling in ResNet-18 and by

employing dilated convolutions for subsequent convolutional layers (Sec. 3.2.1).
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2.2.3 Dilated Convolutions

In order to account for the problem stated in the previous section, we use dilated

(atrous) convolution. Dilated convolution1 in one-dimensional case is defined as

𝑦[𝑖] =
𝐾∑︁
𝑘=1

𝑥[𝑖+ 𝑟𝑘]𝑤[𝑘]

where, 𝑥 is an input 1D signal, 𝑦 output signal and 𝑤 is a filter of size 𝐾. The rate

parameter 𝑟 corresponds to the dilation factor. The dilated convolution operator can

reuse the weights from the filters that were trained on downsampled feature maps by

sampling the unreduced feature maps with an appropriate rate.

In our work, since we choose not to downsample in some convolutional layers (by

setting their stride to one instead of two), convolutions in all subsequent layers are

dilated. This enables initialization with the parameters of the original classification

network, while producing higher-resolution outputs. This transformation follows [27]

and is illustrated in Fig. 2.2c.

2.2.4 Training

Given a sequence of images {I𝑡}𝑛𝑡
𝑡=0, and sequence of ground-truth segmentation

annotations {A𝑡}𝑛𝑡
𝑡=0, we optimize normalized pixel-wise cross-entropy loss [22] using

Adam optimization algorithm [29] with learning rate set to 10−4 (𝑛𝑡 stands for the

1We follow the practice of previous work and use simplified definition without mirroring and
centering the filter [27].
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number of training examples). Other parameters of Adam optimization algorithm

were set to the values suggested in [29].

2.3 Experiments and Results

We test our method on the EndoVis 2017 Robotic Instruments dataset [1]. The

training dataset consists of 8 high resolution (1280×1024) sequences with 225 frames

each that were acquired from a da Vinci Xi surgical system during several different

procedures [1]. Each pixel is labeled as either tool’s shaft, wrist and jaws or back-

ground. The test dataset consists of 8 75-frame sequences sampled immediately after

each training sequence and 2 full 300-frame sequences. Following the terms of the

challenge, we excluded the corresponding training set when evaluating on one of the

75-frame sequences.

2.3.1 Results

We report our results for binary and instrument part segmentation in Tab. 4.1

and Tab. 2.2 respectively using standard metric such as Intersection Over Union

(IoU). We can see that our method outperforms previous work. Fig. 2.1 shows

some qualitative results for both the binary segmentation and the instrument part

segmentation tasks.
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NCT UB BIT MIT SIAT UCL TUM Delhi UA UW Ours

Dataset 1 0.784 0.807 0.275 0.854 0.625 0.631 0.760 0.408 0.413 0.337 0.862
Dataset 2 0.788 0.806 0.282 0.794 0.669 0.645 0.799 0.524 0.463 0.289 0.855
Dataset 3 0.926 0.914 0.455 0.949 0.897 0.895 0.916 0.743 0.703 0.483 0.926
Dataset 4 0.934 0.925 0.310 0.949 0.907 0.883 0.915 0.782 0.751 0.678 0.931
Dataset 5 0.701 0.740 0.220 0.862 0.604 0.719 0.810 0.528 0.375 0.219 0.877
Dataset 6 0.876 0.890 0.338 0.922 0.843 0.852 0.873 0.292 0.667 0.619 0.896
Dataset 7 0.846 0.930 0.404 0.856 0.832 0.710 0.844 0.593 0.362 0.325 0.869
Dataset 8 0.881 0.904 0.366 0.937 0.513 0.517 0.895 0.562 0.797 0.506 0.939
Dataset 9 0.789 0.855 0.236 0.865 0.839 0.808 0.877 0.626 0.539 0.377 0.879
Dataset 10 0.899 0.917 0.403 0.905 0.899 0.869 0.909 0.715 0.689 0.603 0.915

Mean IOU 0.843 0.875 0.326 0.888 0.803 0.785 0.873 0.612 0.591 0.461 0.896

Table 2.1: Quantitative results of our method and comparison with previous state-
of-the-art in binary segmentation of robotic tools [1].

NCT UB BIT MIT SIAT UCL TUM UA UW Ours
Dataset 1 0.723 0.715 0.317 0.737 0.591 0.611 0.708 0.485 0.235 0.791
Dataset 2 0.705 0.725 0.294 0.792 0.632 0.606 0.740 0.559 0.244 0.785
Dataset 3 0.809 0.779 0.319 0.825 0.753 0.692 0.787 0.640 0.239 0.805
Dataset 4 0.845 0.737 0.304 0.902 0.792 0.630 0.815 0.692 0.238 0.920
Dataset 5 0.607 0.565 0.280 0.695 0.509 0.541 0.624 0.473 0.240 0.734
Dataset 6 0.731 0.763 0.271 0.802 0.677 0.668 0.756 0.608 0.235 0.832
Dataset 7 0.729 0.747 0.359 0.655 0.604 0.523 0.727 0.438 0.207 0.641
Dataset 8 0.644 0.721 0.300 0.737 0.496 0.441 0.680 0.604 0.236 0.855
Dataset 9 0.561 0.597 0.273 0.650 0.655 0.600 0.736 0.551 0.221 0.660
Dataset 10 0.788 0.767 0.273 0.762 0.751 0.713 0.807 0.637 0.241 0.806
Mean IOU 0.699 0.700 0.289 0.737 0.667 0.623 0.751 0.578 0.357 0.764

Table 2.2: Quantitative results of our method and comparison with previous state-
of-the-art in the parts based segmentation of robotic tools [1].
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2.4 Discussion and Conclusion

In this work, we propose a method to perform robotic tool segmentation. This is

an important task, as it can be used to prevent rendered overlays from occluding the

instruments or to estimate the pose of a tool [12]. We use deep network to model the

mapping from the raw images to the segmentation maps. Our use of a state-of-the-art

deep network (ResNet-18) with dilated convolutions helps us achieve improvement in

binary tool and instrument part segmentation over the previous stat-of-the-art. Our

results show the benefit of using deep residual networks for this task and also provide

a solid baseline for the future work.
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Chapter 3

Searching for Efficient Architecture

for Instrument Segmentation in

Robotic Surgery

In the previous chapter we explored dilated residual neural networks for the task

of instrument segmentation. An important question is whether this task can be

performed in real-time since many applications related to surgical robotics have this as

a requirement. In this section, we analyze the use of hyperparameters that are usually

empirically selected by researchers when they design a neural network. Instead, we

introduce a method that is capable of learning these hyperparameters automatically,

allowing to find an optimal architecture for real-time instrument segmentation. Our

discovered neural network architectures exhibit superior performance compared to
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Figure 3.1: Multi-class instrument segmentation results delivered by our method on
sequences from validational subset of Endovis 2017 dataset.

previously introduced methods in terms of speed and accuracy trade off.

3.1 Introduction

Robot-assisted Minimally Invasive Surgery (RMIS) provides a surgeon with im-

proved control, facilitating procedures in confined and difficult to access anatomical

regions. However, complications due to the reduced field-of-view provided by the

surgical camera limit the surgeon’s ability to self-localize. Computer assisted inter-

ventions (CAI) can help a surgeon by integrating additional information. For example,
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Figure 3.2: An example image sequence showing previous state-of-the-art algorithm
masking an overlay of a porcine kidney. As the instrument tip is quickly rotated, the
mask lags behind the video as the video frame rate of 60 Hz is faster than the network
can handle, resulting in dropped frames.

overlaying pre- and intra-operative imaging with the surgical console can provide a

surgeon with valuable information which can improve decision making during complex

procedures [13]. Integrating this data is a complex task and involves understanding

relations between the patient anatomy, operating instruments and surgical camera.

Segmentation of the instruments in the camera images is a crucial component of this

process and can be used to prevent rendered overlays from occluding the instruments

while providing crucial input to instrument tracking frameworks [12,18].

There has been a significant development in the field of instrument segmenta-

tion [5, 25, 30] based on recent advancement in deep learning [26, 27]. Additionally,

release of new datasets for surgical tools segmentation with high-resolution challeng-

ing images further improved the field by allowing methods to be more rigorously

tested [1]. While the state-of-the-art methods show impressive pixel accurate re-

sults [5,30], the inference time of these methods makes them unsuitable for real-time

applications. In our work we address this problem and present a method that has a
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faster than real time inference time while delivering high quality segmentation masks.

3.2 Method

In this work, we focus on the problem of surgical instrument segmentation. Given

an input image, every pixel has to be classified into one of 𝐶 mutually exclusive

classes. We consider two separate tasks with increasing difficulty: binary tool seg-

mentation and multi-class tool segmentation. In the first case, each pixel has to be

classified into 𝐶 = 2 classes as belonging to surgical background or instrument. In

the second task, into 𝐶 = 4 classes, namely tool’s shaft, wrist, jaws and surgical

background. Our method is designed to perform these tasks efficiently while deliver-

ing high quality results. First, we discuss the previous state-of-the-art method based

on dilated residual networks and highlight the major factor that makes it computa-

tionally expensive. Then, we present light residual networks that allow to solve this

problem and make the method faster. To account for reduced accuracy we introduce

a search for optimal dilation rates in our model which allows to improve its accuracy.

3.2.1 Dilated Residual Networks

We improve upon previous state-of-the-art approach [5] based on dilated residual

network that employs ResNet-18 (see Fig. 3.3), a deep residual network pretrained

on ImageNet dataset. The network is composed of four successive residual blocks,
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each one consisting of two residual units of ”basic” type [26]. The average pooling

layer is removed and stride is set to one in the last two residual blocks responsible for

downsampling, subsequent convolutional layers are dilated with an appropriate rate

as suggested in [5, 27]. This allows to obtain predictions that are downsampled only

by a factor of 8× (in comparison to the original downsampling of 32×) which makes

the network work on a higher resolution features maps (see Fig. 3.3) and deliver finer

predictions [5, 27].

The aforementioned method delivers very accurate segmentation masks but is too

computationally expensive for real-time applications. The main reason for this is

that it uses deep residual classification models pretrained on ImageNet that usually

have great number of filters at the last layers: when the model is being transformated

into dilated residual network, the downsampling operations at the last two residual

blocks are removed forcing the convolutional layers to operate on the input that is

spatially bigger by a factor of two and four respectively [5, 27] (see Fig. 3.3). Even

the most shallow deep residual network ResNet-18 is too computationally expensive

when converted into dilated residual network. This motivates us to create a smaller

deep residual network that can be pretrained on the imageNet and converted into

dilated residual model that exhibits improved running time.
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3.2.2 Light Residual Networks

In order to solve the aforementioned problem, we introduce a light residual net-

work, a deep residual model which satisfies the requirements:

∙ Low latency: exhibits low latency inference on high-resolution images when

converted into dilated residual network. This is achieved by reducing the num-

ber of filters in the last stages of the network (see Fig. 3.3). In the original

resnet networks [26], the number of filters in the last stages is considerable:

after being converted into dilated versions, these stages experience increase in

the computational price by a factor of two and four [27]. Since last stages are

the biggest factor responsible for the increased inference time, we decrease the

number of channels in them. This significantly decreases the inference time.

While we noticed a considerable decrease in the accuracy of the model on the

ImageNet dataset, the performance on the segmentation dataset only moder-

ately decreased. We attribute it to the fact the number of filters in the last

layers is of significant importance for the imagenet classification task because

it needs to differentiate between one thousand classes compared to only four in

our case.

∙ Low GPU memory consumption: the memory requirements of the net-

work allow it to be trained with optimal batch and image crop sizes on single

GPU device. Dilated residual networks consume a considerable amount of mem-
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ory when trained for segmentation task [27], while still requiring relatively big

batch size and crop size [31]. Similar to the previous section, the biggest fac-

tor responsible for the memory comsumption again involves the last stages of

the network [27]. Since every activation has to be stored in memory during

backpropagation [32], the layers that generate the biggest activations are con-

tributing the most to the increased memory consumption. The last layers of

the residual network work on increased spatial resolution after being converted

to the dilated residual network and have more channels than other layers. By

decreasing the number of channels in the last layers, we solve the problem and

are able to train the model with sufficient batch size and image crop size [31].

∙ ImageNet pretraining: the network is pretrained on ImageNet dataset which

was shown to be essential for good performance on small segmentation datasets

like Endovis [30]. We pretrain all our models on the ImageNet dataset following

the parameters suggested in [26].

We present two versions of Light ResNet-18 named Light ResNet-18-v1 and Light

ResNet-18-v2 with number of channels in the last layers set to 64 and 32 respectively.

Second version exhibits improved runtime speed at the expense of decreased accuracy

on the segmentation task. All models were pretrained on imageNet dataset and then

converted into dilated residual networks following [5]. After being converted, the

network were trained on the Endovis 2017 [1] segmentation dataset for binary and

multi-class instrument segmentation tasks. While being fast, the networks exhibit
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Figure 3.3: Top row: simplified ResNet-18 before being converted into dilated fully
convolutional network (FCN). Middle row: ResNet-18 after being converted into
FCN following the method of [5]. Since the stride was set to one in two layers and
the number of channels was left the same, convolutional layers are forced to work
on a greater resolution, therefore, computational overhead is substantially increased,
making the network unable to deliver real-time performance. Bottom row: Our
light-weight ResNet-18 being converted into dilated FCN and dilation rates are set to
the values found during our differentiable search. The decreased number of channels
makes the network fast while the found dilation rates increase its accuracy without
any additional parameters or computational overhead. Green arrows represent the
residual unit of a ”basic” type, black arrows represent skip connections. First two
layers does not have any residual units and are simplified in the figure. Dashed lines
represent the bilinear upsampling operation. The figure is better viewed in a pdf
viewer in color and zoomed in for details. The figure in bigger resolution is available
in the supplementary material.
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Figure 3.4: Left: Simplified residual unit, a building block of deep residual networks
which are usually formed as a sequence of residual units. Right: A group of residual
units with different dilation rates combined with a discrete decision gate which forces
the network to choose only one of residual units depending on which of them leads to a
better overall performance of the network. The gate is controlled by a variable which
receives gradients during training. During optimization each layer has its own set of
residual units and gate variables and by the end of training only the residual units with
dilation rates that perform best are left (other choices can be safely removed). We
perform search for dilation rates only for the last four residual units of our network.

reduced accuracy compared to state-of-the-art methods. In order to account for that

and improve the accuracy without reducing the speed of the network, we search for

optimal dilation rates for each layer.

3.2.3 Searching for Optimal Dilation Rates

In order to improve accuracy of our model further but avoid adding any new

parameters or additional computational overhead [33], we search for optimal integer

dilation rates for each residual unit. Since trying out all possible combinations of

dilation rates and retraining a model each time is infeasible, we formulate the problem

of dilation rate search as an optimization problem [34].
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First, we update residual units of our model. Original residual unit [26] can be

expressed in a form (see Figure 3.4):

𝑥𝑙+1 = 𝑥𝑙 + ℱ(𝑥𝑙) (3.1)

where 𝑥𝑙 and 𝑥𝑙+1 are input and output of the 𝑙-th unit, and ℱ is a residual

function.

In order to allow our network to choose residual units with different dilation

rates, we introduce gated residual unit which has 𝑁 different residual connections

with different dilation rates:

𝑥𝑙+1 = 𝑥𝑙 +
𝑁∑︁
𝑖=0

Z𝑖 · ℱ𝑖(𝑥𝑙) (3.2)

𝑁∑︁
𝑖=0

Z𝑖 = 1 (3.3)

∀𝑖 Z𝑖 ∈ {0, 1} (3.4)

where Z is a gate that decides which residual connection to choose and is repre-

sented with discrete one-hot-encoded categorical variable, 𝑁 is equal to the number

of dilation rates that we consider. In order to be able to search for the best dilation

rates, we need to also optimize the gate variable Z which is not differentiable since

it represents a hard decision. But it is possible to obtain estimated gradients of such
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hard decisions by introducing petrtubations in the system in the form of noise [34–37].

To be more specific, we use recent work that introduces differentiable approximate

sampling mechanism for categorical variables based on a Gumbel-Softmax distribu-

tion (also known as a concrete distribution) [35–37]. We use Gumbel-Softmax to relax

the discrete distribution to be continuous and differentiable with reparameterization

trick:

Z̄𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((log𝛼𝑖 +𝐺𝑖)/𝜏) (3.5)

Where 𝐺𝑖 is an 𝑖th Gumbel random variable, Z̄ is the softened one-hot random

variable which we use in place of Z, 𝛼𝑖 is a parameter that controls which residual

unit to select and is optimized during training, 𝜏 is the temperature of the softmax,

which is steadily annealed to be close to zero during training.

We update last four layers or our network to have gated residual units. Each of

them allows the network to choose from a predefined set of dilation rates which we set

to {1, 2, 4, 8, 16}. We train the network on the Endovis 2017 dataset by optimizing all

weights including the 𝛼𝑖 variables which control the selection of dilation rates. Upon

convergence, the best dilation rates are decoded from the 𝛼𝑖 variables. Discovered

dilation rates can be seen at the Fig. 3.3. Next we train the residual network with

specified dilation rates and original residual units.

28



CHAPTER 3. SEARCHING FOR EFFICIENT ARCHITECTURE FOR
INSTRUMENT SEGMENTATION IN ROBOTIC SURGERY

3.2.4 Training

After the optimal dilation rates are discovered we update Light ResNet-18-v1

and ResNet-18-v2 to use them. Light ResNet-18-v1 and ResNet-18-v2 were first pre-

trained on Imagenet. We train networks on the Endovis 2017 train dataset [1]. During

training we recompute the batch normalization statistics [31,38]. We optimize normal-

ized pixel-wise cross-entropy loss [27] using Adam optimization algorithm. Random

patches are cropped from the images [27] for additional regularization. We employ

crop size of 799. We use the ‘poly’ learning rate policy with an initial learning rate

of 0.001 [31]. The batch size is set to 32.

3.3 Experiments and Results

We test our method on the EndoVis 2017 Robotic Instruments dataset [1]. There

are 10 75-frame sequences in the test dataset that features 7 different robotic surgical

instruments [1]. Samples from the dataset and qualitative results of our method are

depicted in Fig. 4.1. We report quantitative results in terms of accuracy and inference

time of our method.

As it can be seen our method is able to deliver pixel accurate segmentation while

working at an extremely fast frame rate of up to 125 FPS.
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Table 3.1: Quantitative results of our method compared to other approaches in terms
of accuracy (measured using mean intersection over union metric) and latency (mea-
sured in miliseconds). Latency was measured for an image of input size 1024 × 1280
using NVIDIA GTX 1080Ti GPU. It can be seen that our light backbone allows for
significantly decreased inference time, while learnt dilations help to improve decreased
accuracy.

Binary segmentation Parts segmentation
Model IOU Time IOU Time

TernausNet-16 [1, 30] 0.888 184 ms 0.737 202 ms
Dilated ResNet-18 [5] 0.896 126 ms 0.764 126 ms

Dilated Light ResNet-18-v1 0.821 17.4 ms 0.728 17.4 ms
Light ResNet-18-v1 w/ Learnt Dilations 0.869 17.4 ms 0.742 17.4 ms

Dilated Light ResNet-18-v2 0.805 11.8 ms 0.706 11.8 ms
Light ResNet-18-v2 w/ Learnt Dilations 0.852 11.8 ms 0.729 11.8 ms

Table 3.2: Latency of our method as measured on a modern NVIDIA Tesla P100
GPU for an image of input size 1024 × 1280. We can see that fastest of our models
is able to work at 125 frames per second.

Binary segmentation Parts segmentation
Model IOU Time IOU Time

Light ResNet-18-v1 w/ Learnt Dilations 0.869 11.5 ms 0.742 11.5 ms
Light ResNet-18-v2 w/ Learnt Dilations 0.852 7.95 ms 0.729 7.95 ms
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3.4 Discussion and Conclusion

In this work, we propose a method to perform real-time robotic tool segmentation

on high resolution images. This is an important task, as it allows the segmentation

results to be used for applications that require low latency, for example, preventing

rendered overlays from occluding the instruments or estimating the pose of a tool [12].

We introduce a lightweight deep residual network to model the mapping from the raw

images to the segmentation maps that is able to work at high frame rate. Additionally,

we introduce a method to search for optimal dilation rates for our lightweight model,

which improves its accuracy in binary tool and instrument part segmentation. Our

results show the benefit of our method for this task and also provide a solid baseline

for the future work.
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Chapter 4

Towards Unsupervised Learning

for Instrument Segmentation in

Robotic Surgery with

Cycle-Consistent Adversarial

Networks

In the previous chapter we were able to automatically learn an optimal architec-

ture for the real-time instrument segmentation. While the proposed method have

shown great results, a key barrier to progress lies in the acquisition of a large num-

ber of manually-annotated images which is necessary for an algorithm to generalize
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and work well in diverse surgical scenarios. Unlike the surgical image data itself,

annotations are difficult to acquire and may be of variable quality. On the other

hand, synthetic annotations can be automatically generated by using forward kine-

matic model of the robot and CAD models of tools by projecting them onto an image

plane. Unfortunately, this model is very inaccurate and cannot be directly used for

supervised learning of image segmentation models. In this chapter we introduce an

algorithm that is able to learn accurate segmentation model even from corrupted

data.

4.1 Introduction

Robot-assisted Minimally Invasive Surgery (RMIS) provides a surgeon with im-

proved control, facilitating procedures in confined and difficult to access anatomical

regions. However, complications due to the reduced field-of-view provided by the

surgical camera limit the surgeon’s ability to self-localize. Computer assisted inter-

ventions (CAI) can help a surgeon by integrating additional information. For example,

overlaying pre- and intra-operative imaging with the surgical console can provide a

surgeon with valuable information which can improve decision making during complex

procedures [13]. Integrating this data is a complex task and involves understanding

relations between the patient anatomy, operating instruments and surgical camera.

Segmentation of the instruments in the camera images is a crucial component of this
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process and can be used to prevent rendered overlays from occluding the instruments

while providing crucial input to instrument tracking frameworks [12,18].

Segmentation of surgical tools from tissue backgrounds is an extremely difficult

task due to lighting challenges such as reflections, shadows and occlusions such as

smoke and blood. Early methods attempted to simplify the problem by modifying

the appearance of the instruments [19]. However, this complicates clinical application

of the technique as sterilization can become an issue. Segmentation of the instruments

using natural appearance is a more desirable approach as it can be applied directly

to pre-existing clinical setups. However, this defines a more challenging problem.

To solve it, previous work has relied on machine learning techniques to model the

complex discriminative boundary. Approaches based on Random Forests [20], maxi-

mum likelihood Gaussian Mixture Models [18] and Naive Bayesian classifiers [21], all

trained on color features, have been applied. More recently, the state-of-the-art has

increasingly been defined by Fully Convolutional Networks (FCNs), such as the FCN-

8s model [22] adapted for the task of binary segmentation of robotic tools [23] and

U-Net [24] which was used for both binary and instrument part segmentation [25]. In

order for segmentation approaches based on supervised training of neural networks to

successfully generalize, a considerable amount of annotated data is required [15]. At

the same time, creating a segmentation dataset with high resolution fine annotations

is an extremely time-consuming and costly process [15] [1].

Recently, unsupervised and self-supervised methods were introduced to make use
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Figure 4.1: Top row shows an example of synthetic annotation acquired using forward
kinematics model that was used for training of our method. As it can be seen, it barely
captures the actual tool due to errors. Two bottom rows show example segmentations
delivered by our method on a random images from Endovis 2017 dataset that were
not used for training.
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IR AF IC AR IF AC

GI GA

. . . . . .

GIGA

DIDA

Real/Fake? Real/Fake?

Figure 4.2: Main stages of our approach. During training, we learn four mappings
which are represented by convolutional neural networks: generators GA and GI which
map images to annotations and annotations to images respectively; discriminators
DA and DI which learn to differentiate between real and generated annotations and
images respectively. IR and AR stand for real images and annotations. IF and AF

stand for images and annotations generated by networks. IC and AC stand for images
and annotations generated from AF and IF respectively. They are used in cycle-
consistency loss term. Loss also includes adversarial terms that forces discriminator
to differentiate between real samples and the ones generated by the generators, and
the generators to fool the discriminators. After the training, we use GA to acquire
segmentations of unseen images.

of a great amount of unlabeled images of surgical instruments which can be collected

with little or no effort: Ross et al. [39] proposed a method, which allows to pre-

train segmentation models on recoloring task, greatly reducing the number of labeled

images necessary for supervised learning; Rocha et al. [40] proposes an optimiza-

tion method to obtain corrected labels to train a binary segmentation model despite

imprecise kinematic model which sometimes results in poor results when the approx-

imate labels are located far from the actual position of a surgical tool. Apart from

instrument segmentation domain, Mahmood et al. [41] trained a model for multi-
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organ nuclei segmentation with synthetic and real data, Pfeiffer et al. [42] generated

synthetic dataset for liver segmentation and showed promising results.

One way to acquire segmentation masks automatically is to use kinematic model

of a robot and CAD model of the tools and project them onto the image plane of cam-

era. Unfortunately, since the kinematic model is imprecise, the generated projections

exhibit errors and cannot be directly used for supervised training. Although a lot of

effort was made in improving supervised training of instrument segmentation mod-

els [5] [25] [23], a method that is able to successfully use this kind of data for training

can potentially be supplied with unlimited amount of automatically generated data.

In this paper, we introduce an approach for binary surgical tool segmentation

which does not need any manual annotation and only uses labels generated with im-

precise kinematic model. The problem is posed as image-to-image translation [43]

where we need to convert an image of surgical scene from RGB representation to

semantic labels representation. Due to errors in the generated annotations that are

caused by the imprecise kinematics, we are not able to train a segmentation in a

supervised setting using acquired image/annotation pairs. Although we lack direct

supervision in the form of image and annotation pairs, we employ set-level supervi-

sion: we are given a set of surgical images and a set of generated annotations which

were created automatically without any manual annotation (see Fig. 4.4). By using

this approach, we learn the mapping from surgical images to binary tool segmenta-

tion which is competitive with supervised algorithms that use expensive manually
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annotated data. This will allow segmentation models to be trained on larger amount

of data and generalize better.

4.2 Method

4.2.1 Data Generation

In our work we are not using images with manually created labels similar to En-

dovis 2017 [1] for training and, instead, rely only on labels generated with imprecise

kinematics. We record image sequences of surgical procedures and corresponding

annotation masks. The masks are generated by rendering CAD models of each in-

strument that is attached to a da Vinci Xi system using joint encoder values that are

synchronized to the video feed. Rigid body transforms between the robot base frame

and the instruments and the camera are computed using forward kinematics from the

DH parameters of the robot. Camera calibration is also acquired from the system.

Inaccuracies exist between the true instrument and camera poses due to unknown

hand-eye calibration transforms and errors from slack and tension in the cable driven

arms of the da Vinci [12].

Overall, three video sequences of different procedures were collected resulting in

6 thousand frames and annotations. As mentioned previously, annotations exhibit

errors similar to example presented in Fig. 4.1. The process of the data creation is

fully automatic and does not involve any manual annotation and, therefore, can be
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used to generate a dataset of potentially unlimited size (see Fig. 4.4).

Collected video sequences contain 3 different types of robotic surgical instruments:

Large Needle Driver, Prograsp Forceps, Bipolar Forceps. An example image sample

from the dataset is shown in Fig. 4.1. Although we were not able to collect video

sequences featuring all instruments [1] because their CAD models are not available, we

noticed that our approach successfully generalizes to previously unseen instruments.

4.2.2 Set-Level Supervision

Since the annotations that were automatically generated for our collected images

contain errors, we can not use supervision on the level of image/annotation pairs

during training. Instead, we use set-level supervision: we propose an unpaired GAN-

based approach that learns mappings between surgical images (𝐼) and annotation

masks (𝐴) and enforces them to be cycle consistent. We use cycleGAN [43] approach

to learn a mapping𝐺𝐴 : 𝐼 → 𝐴 between surgical images and corresponding annotation

masks that generalizes to previously unseen surgical images.

Overall, our approach employs four networks: 𝐺𝐼 (segmentation labels to surgical

image generator), 𝐺𝐴 (surgical image to segmentation labels generator), 𝐷𝐴 (discrim-

inator network of 𝐺𝐴), and 𝐷𝐼 (discriminator network of 𝐺𝐼). The final objective [43]

consists of two adversarial loss terms ℒGAN and cycle consistency loss term ℒcyc. Af-

ter the training is done, we use 𝐺𝐴 as our segmentation model and evaluate it on

previously unseen images to assess its segmentation performance.
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First, we introduce an adversarial loss [43] that forces our segmentation model

𝐺𝐴 to translate surgical images to realistic segmentation masks by making them look

similar to annotations that we collected from kinematics model:

ℒGAN(𝐺𝐴, 𝐷𝐴) = E𝑎∼𝑝data(𝑎)[log𝐷𝐴(𝑎)]

+ E𝑖∼𝑝data(𝑖)[log(1−𝐷𝐴(𝐺𝐴(𝑖))] (4.1)

Where 𝐷𝐴 is a discriminator network that learns to distinguish between segmen-

tations generated by our model 𝐺𝐴 and real segmentations. Distributions 𝑝data(𝑖) and

𝑝data(𝑎) are approximated by surgical images and annotation samples collected in the

prevous step using kinematics model. However, optimizing this objective alone does

not guarantee that a meaningful mapping 𝐺𝐴 will be learnt since there are infinitely

many mappings that will satisfy this criteria [43].

To make our problem more well-defined we follow [43] and add a constraint on

translation to be cycle-consistent: we introduce a reverse mapping 𝐺𝐼 : 𝐴 → 𝐼 from

surgical images to corresponding segmentation masks (Fig. 2) and make 𝐺𝐼 and 𝐺𝐴

to be inverses of each other. Note, that the reverse mapping is introduced only to

train our segmentation model 𝐺𝐴 more effectively [43].

Second adversarial term of loss is introduced to force the distribution of surgical

images generated by the network 𝐺𝐼 to be similar to that of the real surgical images:
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ℒGAN(𝐺𝐼 , 𝐷𝐼) = E𝑖∼𝑝data(𝑖)[log𝐷𝐼(𝑖)]

+ E𝑎∼𝑝data(𝑎)[log(1−𝐷𝐼(𝐺𝐼(𝑎))] (4.2)

where the mapping 𝐺𝐼 is constrained to generate surgical images from real seg-

mentation masks so that they look like real surgical images. Discriminator 𝐷𝐼 is

trying to differentiate between real and generated surgical images. This term intro-

duces competition between generator and discriminator networks, allowing them to

improve during training as a result of the competition [43].

As previously mentioned, in order to make our mapping more well-defined and

learn a better segmentation model we also introduce a cycle consistency loss:

ℒcyc(𝐺𝐴, 𝐺𝐼) = E𝑖∼𝑝data(𝑖)[𝐺𝐼(𝐺𝐴(𝑖))− 𝑖1]

+ E𝑎∼𝑝data(𝑎)[𝐺𝐴(𝐺𝐼(𝑎))− 𝑎1] (4.3)

This term adds an additional regularization by making 𝐺𝐼 and 𝐺𝐴 inverse func-

tions of each other. Specifically, it ensures that 𝐺𝐼(𝐺𝐴(𝑖)) ≈ 𝑖 (forward cycle consis-

tency) and 𝐺𝐴(𝐺𝐼(𝑎)) ≈ 𝑎 (backwards cycle consistency).

The full objective for our set-level supervised learning can be written as:
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ℒ(𝐺𝐴, 𝐺𝐼 , 𝐷𝐴, 𝐷𝐼) =ℒGAN(𝐺𝐴, 𝐷𝐴)

+ ℒGAN(𝐺𝐼 , 𝐷𝐼)

+ 𝜆ℒcyc(𝐺𝐴, 𝐺𝐼) (4.4)

Where 𝜆 is a hyperparameter. We aim to solve:

𝐺*
𝐴, 𝐺

*
𝐼 = arg min

𝐺𝐴,𝐺𝐼

max
𝐷𝐴,𝐷𝐼

ℒ(𝐺𝐴, 𝐺𝐼 , 𝐷𝐴, 𝐷𝐼) (4.5)

4.2.3 Edge Consistency

Applying the aforementioned method as-is allows us to learn the mapping 𝐺𝐴 that

acts as a segmentation model and delivers realistically looking segmentation masks

but upon inspection, they are completely unaligned with instruments present in the

input image. Intersection over union accuracy measure is also very low, which means

that the segmentation has little or no overlap with tools located in the image. This

motivates us to introduce additional constraints so that generated annotations are

more aligned with instruments located in the surgical images.

We replace U-Net [24] architecture that we used for generator networks 𝐺𝐼 and

𝐺𝐴 with a network based on deep residual connections which give us much better

results [26] [43]. We hypothesize that an implicit regularization that residual con-
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Figure 4.3: An example of segmentation results delivered by a deep residual model
without edge consistency loss term. As it can be seen, while the shape of the segmen-
tation looks realistic, it is not aligned with the edges of the tools. Since the segmen-
tation result still has a great overlap with the tools, the intersection over union score
is good but applications involving augmented reality and tracking of tools require the
segmentation algorithm to be more precise along the borders.
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nections provide [44] allows us to acquire segmentation results that are more aligned

with the input image.

However, the problem is not completely solved: while the intersection over union

score is good, the predictions delivered by the method are not precise along the borders

(See Fig. 4.3). In order for the segmentation method to be useful for augmented reality

applications and tool tracking, the segmentation results should be aligned with the

borders of the actual tool [1]. Ideally, we would want to have consistent edges in the

image and generated annotation (See Fig. 4.5). Inspired by a similar problem in the

field of image matting [45] [46], we add the edge consistency term [45] to our loss:

ℒedge(𝐺𝐴) = E𝑖∼𝑝data(𝑖)[𝐿𝐶(𝐺𝐴(𝑖), 𝑖)], (4.6)

𝐿𝐶(𝐴, 𝐼) =

∑︀
𝐴𝑚𝑎𝑔

[︀
1− (𝐼𝑥𝐴𝑥 + 𝐼𝑦𝐴𝑦)

2 ]︀∑︀
𝐴𝑚𝑎𝑔

(4.7)

where (𝐼𝑥, 𝐼𝑦) and (𝐴𝑥, 𝐴𝑦) are the normalized image and annotation gradients,

and 𝐴𝑚𝑎𝑔 is the annotation gradient magnitude. Intuitively, the loss constraints the

generator 𝐺𝐴 to deliver segmentation masks that are more aligned with the image

edges (See Fig. 4.5). Using both the deep residual network and edge consistency gives

the best results (See Fig. 4.1).
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Figure 4.4: Supervised learning approach typically uses paired training data (left)
consisting of training examples where every image has a corresponding manually an-
notated image. These datasets are expensive to collect and are usually of a small
size. We instead consider unpaired training data (right), consisting of images and
synthetically generated annotations using forward kinematics. This data can be au-
tomatically generated during medical procedures and can potentially be of unlimited
size N � n.
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Figure 4.5: Examples of surgical image and annotation and their gradient magnitude
images. The figures serves as a motivation for edge consistency loss: edges of the
image should be aligned with the edges of the segmentation generated by the network.
(Image is best viewed in the electronic version of the document)

4.3 Experiments and Results

4.3.1 Implementation Details

4.3.1.1 Network Architectures

The generator architecture GI and our segmentation model GA are both based

on deep residual network architecture [26], since it was shown to work better for our
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task. First two layers of the networks subsample the input image by a factor of 4,

followed by nine residual blocks and two upsampling layers with learnt filters that

bring the output to the same size as the input image. The discriminator networks

𝐷𝐼 and 𝐷𝐴 have much simpler architectures based on PatchGANs [47] with three

layers and fewer parameters, as suggested in [43]. All networks are implemented in

a fully-convolutional fashion, which allows them to be applied to images of varying

sizes [22].

In order to reduce memory consumption and be able to store four networks in GPU

memory at the same time during training we had to resort to training with batch size

one. Since training with small batch size with batch normalization is known to be

unstable [38], we are employing instance normalization layers instead [48].

4.3.1.2 Training details

All the networks in our work were trained from scratch, starting with randomly

initilized weights. We perform the optimization with Adam optimizer [29] with batch

size one and learning rate of 0.0002. Overall, we train for 20 epochs with fixed learning

rate and then linearly decay it to zero for another 20 epochs.

4.3.2 Accuracy measures

There are three commonly used accuracy measures for assessment of image seg-

mentation models [49]:
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1. Overall Pixel accuracy

2. Per-Class accuracy

3. Jaccard Index (Intersection-over-union)

In order to describe accuracy measures we define confusion matrix C, which con-

tains predictions for the whole image segmentation dataset D:

C𝑖𝑗 =
∑︁
𝐼∈D

⃒⃒
𝑧 ∈ I 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆𝐼

𝑔𝑡(𝑧) = 𝑖 𝑎𝑛𝑑 𝑆𝐼
𝑝𝑠(𝑧) = 𝑗

⃒⃒
Where 𝑆𝐼

𝑔𝑡(𝑧) is the ground-truth label of pixel 𝑧 in image I, 𝑆𝐼
𝑝𝑠(𝑧) is a label

predicted by a particular algorithm and |𝐴| is the cardinality of the set 𝐴. We define

G𝑖 =
∑︀𝐿

𝑗=1 𝐶𝑖𝑗, where 𝐿 is the number of classes and P𝑗 =
∑︀

𝑖 C𝑖𝑗

Overall Pixel accuracy measures number of correctly classified pixels:

𝑂𝑃 =

∑︀𝐿
𝑖=1 C𝑖𝑖∑︀𝐿
𝑖=1 G𝑖

One significant limitation of this measure is its bias in the presence of very imbal-

anced classes [49]. If a dataset has one class that is more present than others and

a segmentation model classifies it correctly, while making mistakes on other smaller

classes, the value of the measure will not sufficiently represent that.

Per-Class accuracy does the same measurement as Overall Pixel accuracy but
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solves its problem with unbalanced classes by scaling results of from each class [49]:

𝑃𝐶 =
1

𝐿

𝐿∑︁
𝑖=1

C𝑖𝑖

G𝑖

While it solves the problem, another weakness can be observed: if a large background

class is present, one achieves a better score by labeling object classes correctly while

making more errors in labeling the background class [49].

Jaccard Index (Intersection-over-union) measures intersection over union for each

class and reports the average between all classes:

𝐽𝐼 =
1

𝐿

𝐿∑︁
𝑖=1

C𝑖𝑖

G 𝑖 +P𝑖 −C𝑖𝑖

It solves the problem of previous two measures and currently is a main measure of

semantic segmentation accuracy for PASCAL VOC challenge [50] and Endovis 2017

Robotic Instrument Segmentation Challenge [1] which we use to assess our method.

In order to be able to compare our method with other methods on Endovis 2017

challenge we report Intersection over Union accuracy measure of our method on test

dataset.
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NCT UB BIT MIT SIAT UCL TUM Delhi UA UW Ours +Edge

Dataset 1 0.784 0.807 0.275 0.854 0.625 0.631 0.760 0.408 0.413 0.337 0.692 0.727
Dataset 2 0.788 0.806 0.282 0.794 0.669 0.645 0.799 0.524 0.463 0.289 0.735 0.769
Dataset 3 0.926 0.914 0.455 0.949 0.897 0.895 0.916 0.743 0.703 0.483 0.721 0.755
Dataset 4 0.934 0.925 0.310 0.949 0.907 0.883 0.915 0.782 0.751 0.678 0.752 0.782
Dataset 5 0.701 0.740 0.220 0.862 0.604 0.719 0.810 0.528 0.375 0.219 0.778 0.794
Dataset 6 0.876 0.890 0.338 0.922 0.843 0.852 0.873 0.292 0.667 0.619 0.793 0.815
Dataset 7 0.846 0.930 0.404 0.856 0.832 0.710 0.844 0.593 0.362 0.325 0.686 0.694
Dataset 8 0.881 0.904 0.366 0.937 0.513 0.517 0.895 0.562 0.797 0.506 0.787 0.815
Dataset 9 0.789 0.855 0.236 0.865 0.839 0.808 0.877 0.626 0.539 0.377 0.673 0.726
Dataset 10 0.899 0.917 0.403 0.905 0.899 0.869 0.909 0.715 0.689 0.603 0.706 0.727

Mean IOU 0.843 0.875 0.326 0.888 0.803 0.785 0.873 0.612 0.591 0.461 0.732 0.760

Table 4.1: Quantitative results of our method and comparison with supervised
methods in binary segmentation of robotic tools [1].

4.3.3 Dataset

We test our method on the EndoVis 2017 Robotic Instruments dataset [1]. There

are 8 high resolution (1280 × 1024) sequences with 225 frames each in the training

dataset [1]. As mentioned previously, we did not use the training dataset of Endovis

2017 and, instead, trained our method on our data acquired with imprecise kinematics

model. Each pixel is labeled as either tool or background. There are 10 75-frame

sequences in the test dataset that features 7 different robotic surgical instruments [1].

Samples from the dataset and segmentations delivered by our algorithm are depicted

in Fig. 4.1.

The dataset is very challenging and even some of the supervised image segmenta-

tion methods were struggling to achieve good performance as it can be seen from the

Table. 4.1. At the same time it provides a good indication of whether our method

can generalize well to unseen surgical scenes and instruments. After training our

segmentation model on collected images and annotations generated with imprecise
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kinematics model, we evaluated it on the test set of the Endovis dataset.

4.3.4 Quantitative Study and Results

We used data from ten different test sequences of Endovis 2017 dataset to evaluate

our trained instrument segmentation network. To assess generalizability of the devel-

oped algorithm, we also payed attention on how our method performed segmentation

with instruments that were not represented in our collected dataset: our method

successfully segmented previously unseen instrument (See bottom row of Fig. 4.1).

Table 4.1 summarizes the quantitative results of the testing with intersection-over-

union metric.

A comparative analysis with supervised segmentation methods that participated

in the challenge was performed and our method, as can be seen from the table,

outperforms four out of ten methods. We are the first ones to test a self-supervised

method on challenging Endovis 2017 competition while outperforming some of the

supervised methods that reported their results.

4.4 Conclusion and Future Work

Automated training of accurate instrument segmentation models for surgical pro-

cedures has the potential to completely eliminate costs associated with manual cre-

ation of datasets and can greatly affect the field by improving the segmentation per-
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formance and robustness of segmentation models by employing abundant unlabeled

data. In this work we address the problem of training a segmentation model without

direct supervision where images and inaccurate labels are generated automatically,

therefore, eliminating the need for dataset creation.

We propose an approach that allows the instrument segmentation network to be

trained on images with synthetically generated annotations with errors. The problem

is posed as an unpaired image-to-image translation task. This way we are able to

enforce set-level supervision between sets of surgical images and annotations. This

approach performs on par with some standard supervised approaches tested on chal-

lenging Endovis 2017 dataset.

In the future work, we plan on adapting this approach to multi-class instrument

segmentation and instance segmentation since this data can be easily automatically

generated in a similar way to how we generated binary masks. Potentially, other

types of mappings can also be learnt without direct supervision that can be very

useful for surgical scene analysis and pose estimation like pixel-wise depth estimation

and surgical tools landmarks detection. On the other hand, since our approach still

performs worse than some of the supervised methods in terms of accuracy, a better

segmentation network architecture can be used to close this gap in accuracy and

completely eliminate the need for manual segmentation dataset creation.
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Chapter 5

Unsupervised Semantic Image

Segmentation with Stylegan and

CLIP

In this chapter, we deviate from the common assumption that an abundance of

annotated or synthetic data is available for training. First, we consider representa-

tion learning in a fully unsupervised fashion, and we demonstrate that generative

adversarial learning works best for this purpose. Here, we show that this leads to

the discovery of semantically meaningful regions from unlabeled data. Our approach

yields state-of-the-art performance on multiple datasets. Next, we study the ability

of recently introduced multimodal approaches like CLIP to assign text labels to our

discovered segmentation regions. At the end, we present a model that is able to not
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only discover segmentation regions automatically but also assigns text labels them.

5.1 Introduction

The development of deep convolutional neural networks [26, 51, 52] has fueled

remarkable progress in semantic segmentation and pushed state-of-the-art on a variety

of datasets [53–55]. While the introduced methods show impressive results, their

applicability is limited by a very slow process of image annotation [15]. This issue

is more pronounced in the medical imaging community where a domain knowledge

is required to perform annotations. Consistent labeling can be a difficult task for a

team of annotators working on the same dataset as most semantic classes lack clear

visual boundaries. This can lead to some heterogeneity in the labels which can affect

the performance of a model. At the same time most deep learning approaches require

a considerable amount of training data to reach their best performance [26]. In this

paper, we introduce a method that does not require any labeling, allows to discover

consistent semantic regions across images, outperforms semi-supervised methods that

require a small number of annotations and is competitive with fully supervised image

segmentation methods.

In our work we compare our method against semi-supervised learning approaches

(SSL) which use a small number of annotations. This serves as a very strong baseline

for our approach and we show that we outperform recent state-of-the-art methods [56,
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57] even though we do not use any annotations. Our method allows to suggest

consistent semantic classes and we show that on some datasets they coincide with

annotations provided by human which allows us to measure its accuracy. As it can

be seen our method allows to discover high quality semantic regions that coincide

with human defined regions (see Fig. 5.1) and also suggest consistent semantic regions

that might be hard for human to discover and label (see Fig. 5.2). Additionally, we

introduce a method that allows us to use natural language to discover certain rare

semantic regions like beard, glasses and hats (see Fig. 5.6). Finally, we show how

we can automatically classify each of the discovered semantic regions and assign a

prompt defined in a natural language to each of them (see Fig. 5.5). To demonstrate

applicability of our method across other domains, we carry out experiments on an

eye segmentation dataset [4] and show that our discovered semantic regions replicate

human annotations (see Fig. 5.8) and that the accuracy of our provided segmentation

masks is competitive with fully supervised methods.

5.2 Method

Our approach is based on StyleGAN2 [58] a very powerful generative model capa-

ble of generating realistic samples of objects of interest once it has been trained on a

related dataset (Section 5.2.1). In our work we either use a pretrained models in case

of human faces, cats, dogs and cartoons or train a model from scratch on a desired
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dataset in case of eye segmentation problem [4].

We show that by clustering in the feature space of trained StyleGAN2 model, we

can discover meaningful semantic regions that are consistent across different samples

of the model (Section 5.2.2).

To discover rare semantic classes that were not found during clustering since

they appear relatively rarely in samples of StyleGAN2, we apply recently introduced

approach for image manipulation [9, 10] using text prompts with CLIP [11]. By

manipulating latent vectors of sampled images, we make a desired semantic region

to appear in almost every sample, which allows it to appear as one of the clusters

(Section 5.2.3).

To conclude the process and attribute each semantic region with a prompt defined

in a natural language, we modify the original CLIP [11] image encoder to accept image

regions instead of a whole image. Then we encode each of the discovered semantic

regions and classify them (Section 5.2.4).

Once a StyleGAN2 model is modified to deliver samples along with segmentation

masks, we apply a simple knowledge distillation procedure by training a segmentation

network on synthetic images and segmentation masks and show that it generalizes to

real images (Section 5.2.5).
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5.2.1 StyleGAN2

StyleGAN2 is used in our method as a generative backbone as it is able to generate

images with high quality, gives us access to feature maps of generated images that

we use for clustering and allows generated images to be manipulated which we use to

discover additional semantic classes. Sampling is performed by drawing from a normal

distribution 𝑧 ∈ 𝑍. A separate mapping network maps 𝑧 to an intermediate latent

vector 𝑤 ∈ 𝑊 . 𝑤 is then transformed into 𝑘 vectors that are used by different layers

of generator network of StyleGAN2 (see Fig. 5.3). StyleGAN2 gradually generates

feature maps of higher resolution as they get upsampled and processed by successive

layers of the generative model.

5.2.2 Clustering

During clustering, we generate 𝑁 samples and save the generated images as well as

corresponding feature maps from a certain layers of StyleGAN. We mostly use feature

maps from the seventh or ninth layer of the generative model. Using earlier layers

of StyleGan results in more coarse but more semantically meaningful clusters. Later

layers result in more fine clusters with less semantic meaning. We also performed

experiments with concatenated features from different layers but did not notice any

improvement. Feature maps have dimensionality of either 𝑁 × 64 × 64 × 512 or

𝑁×128×128×256 where the first number represents a number of samples the second
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and third numbers represent the spatial resolution and the last number represents the

dimensionality of the feature space. We flatten the acquired feature maps and end

up with 𝑁 * 64 * 64 feature maps of size 512 or with 𝑁 * 128 * 128 feature maps of

size 256. After that we perform clustering by minimizing the following loss function:

𝐽 =
�̄�∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑟𝑛𝑘‖𝑥𝑥𝑥𝑛 − 𝜇𝜇𝜇𝑘‖2

Where 𝑥𝑥𝑥𝑛 represents a single data point of size 512 or 256, 𝑟𝑛𝑘 ∈ 0, 1 is a binary

indicator variable, where 𝑘 = 1, . . . , 𝐾 describes which of the 𝐾 clusters the data

point 𝑥𝑥𝑥𝑛 is assigned to. �̄� is equal to 𝑁 * 128 * 128 or 𝑁 * 64 * 64 depending on

the layer of choice. We search for set of values {𝑟𝑛𝑘} and {𝜇𝜇𝜇𝑘} that minimize 𝐽 . To

solve this problem we use K-means clustering algorithm [59]. Discovered classes can

be seen in Fig. 5.2. After the clusters are discovered we notice that new samples have

the same semantic regions if we assign their features to the closest cluster. This gives

us a way to generate image and corresponding segmentation masks at the same time

with minimal additional computational overhead.

5.2.3 Class Discovery with Image Manipulation

Some classes that are rarely present in samples of StyleGAN like hat, beard or

glasses are not always discovered by our method as is. In order to make desired

semantic classes more present in samples that we use for clustering, we update a latent
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code of every image so that it contains a desired attribute. Let 𝑤 ∈ 𝑊 denote a latent

code of a generated sample, and F(w) the corresponding generated image (where F is

a generator network of StyleGAN). We employ a recently introduced method [9, 10]:

we collect a number of latent vectors and corresponding generated images and classify

generated images with CLIP [11] given a natural language prompt like “a person with

a beard”. Given a set of pairs {(𝑤𝑖, 𝑏𝑖)}, where 𝑤 is a latent vector and 𝑏 is a binary

variable indicating if the generated images contains desired attribute, we learn a

manipulation direction 𝐺, such that 𝐹 (𝑤+𝛼𝐺) yields an image where that attribute

is introduced or amplified. The manipulation strength is controlled by 𝛼. The method

depiction can be seen in Fig. 5.4. An example of latent code manipulation along the

beard direction can be seen in Fig. 5.9 and discovered corresponding semantic regions

are depicted in Fig. 5.6.

5.2.4 Cluster Classification

Once all the desired clusters are discovered, we need to assign a semantic class to

each of them. In order to do so, we use pretrained text encoder and image encoder

of the CLIP model [11]. We use text encoder as is and encode desired classes given

corresponding text prompts like “hair“, “forehead“ etc (see Fig. 5.5). As for the

image encoder we use a model based on residual neural network [11, 26]. Our choice

is motivated by the fact that this model can be modified to deliver embedding with

bigger spatial resolution by removing downsampling layers and adding dilation factors
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to certain convolutional layers [53, 55]. We observed that bigger spatial resolution

gives better results for smaller clusters. Once we get embeddings for each pixel of

every image, we average them per each cluster over many images. Averaging over

many images also gives better results according to our experiments. Finally, we

compute the dot products between embedding of each cluster and each text prompt:

we assign the cluster to a class that resulted in a biggest dot product value. This way

we use original clusters as region proposals that we classify.

5.2.5 Knowledge Distillation

Once we are able to generate synthetic images and corresponding annotations,

we need a way to get the same segmentation masks for real images. Inspired by

recent work in knowledge distillation for image manipulation with StyleGAN [60] we

generate a synthetic dataset with images and corresponding segmentation masks and

train a simple segmentation model on that dataset. We apply a segmentation method

based on resnet-18 and dilated convolutions [55] and show that trained model also

generalizes to real images as it can be seen in Fig. 5.7

5.3 Datasets and Results

For faces, we evaluate our model on CelebA-Mask8 dataset [2], which contains

8 part categories and compare our method to state-of-the-art semi-supervised meth-

60



CHAPTER 5. UNSUPERVISED SEMANTIC IMAGE SEGMENTATION WITH
STYLEGAN AND CLIP

ods [56, 57]. As can be seen in the Table 5.1 our method achieves state-of-the-art

results. In order to evaluate our method on face images that contain a bigger set of

labels we test our method on CelebAMask-HQ dataset [3] segmentation face parsing

dataset that contains 19 semantic classes. To simplify the dataset we merge left and

right eye classes into one and do similar simplification for ears. We also eliminate

earring and necklace attributes as StyleGAN struggles to generate these attributes

realistically which results in poor performance. The results compared to fully super-

vised method can be found in Table 5.2. As it can be seen our method is performing

worse than the fully supervised method but delivers overall good results. We also col-

lect a small dataset where we label beard in order to test the accuracy of our method

on this discovered semantic class. The results compared to fully supervised method

can be found in Table 5.4. To test if our method is able to generalize to completely

different domains, we use our method to perform eye segmentation on OpenEDS [4]

dataset. We train StyleGAN2 on images of the dataset from scratch and apply our

algorithm to the trained model. As it can be seen, overall iris, pupil and sclera were

discovered which coincides with semantic classes of the original dataset (see Fig. 5.8).

Moreover, our algorithm achieves a segmentation performance which is very close to

the fully supervised method in this case, since the semantic classes are simpler (see

Table 5.3).
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Method DatasetGAN [57] semanticGAN [56] Ours
Number of Manually Annotated Images Used 16 30 0
Mean IOU 70.01 69.02 73.1

Table 5.1: Results of our algorithm on CelebA-Mask8 Dataset [2] in comparison to
semi-supervised methods. As it can be seen our method outperforms them and does
not need any manual annotations.

Method DRN [55] Ours
Number of Manually Annotated Images Used All 0
Mean IOU 70.5 62.5

Table 5.2: Results of our algorithm on CelebAMask-HQ [3] in comparison to fully
supervised method. The dataset has additional face semantic classes compared to
CelebA-Mask8 Dataset [2].

5.4 Conclusion

We propose a powerful method for unsupervised learning that allows to discover

meaningful and consistent semantic classes which mostly coincide with classes defined

and labeled by human. Our method is successful in cases where it might be hard for

human to define and consistently label semantic classes. We propose a way to derive

semantic class annotations by defining a text prompt which allowed us to discover

classes like beard that currently has no public annotations. We show that training

a segmentation model on our generated synthetic images along with segmentation

masks generalizes to real images and shows competitive results with fully supervised

methods. Our method achieves state-of-the-art results as it performs better than

recently introduced semi-supervised models.
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Method SegNet [4] Ours
Number of Manually Annotated Images Used All 0
Mean IOU 84.1 82.39

Table 5.3: Results of our algorithm on OpenEDS 2020 eye segmentation dataset [4]
in comparison to fully supervised method. The dataset has 4 semantic classes. As it
can be seen, our method has a very similar performance compared to fully supervised
method as semantic classes are simpler in this dataset.

Method DRN [4] Ours
Number of Manually Annotated Images Used All 0
Mean IOU 88.8 84.29

Table 5.4: Results of our algorithm on our custom beard segmentation dataset
compared to fully supervised approach.
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Figure 5.1: Example of synthetic image and annotation pairs created with our method
for hair segmentation (first and second row) and background segmentation (third
row).

64



CHAPTER 5. UNSUPERVISED SEMANTIC IMAGE SEGMENTATION WITH
STYLEGAN AND CLIP

Figure 5.2: Synthetic dataset examples generated using our method with a style-
gan model pretrained on Flickr-Faces-HQ (FFHQ) [6] dataset (first row), Animal
faces (AFHQ) [7] dataset (second and third rows for cats and dogs) and a cartoon
dataset [8]. Semantic regions proposed by the network are consistent across sam-
ples even though there is no clear visual border between most semantic classes: it is
usually hard for human annotators to consistently label examples like this while our
method works well.
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Generator

WMapping 
NetworkZ

ClusteringFeature 
Maps

Figure 5.3: Generation of a synthetic dataset with semantic annotations for our ap-
proach. Stylegan consists of mapping network and generator networks which allow to
create sythetic images. First we generate N images and save their intermediate fea-
ture maps produced by the generator network. Clustering allows us to find semantic
regions of the generated images. After the clusters are found, a much bigger set of
images is generated and using their feature maps we attribute each pixel to one of the
previously discovered semantic clusters. A segmentation network is later on trained
on the synthetic dataset.

Generator

W + G   Mapping 
NetworkZ

ClusteringFeature 
Maps

G

Latent Space Direction 
Discovered by CLIP

Figure 5.4: Generation of synthetic annotations for rare classes that were not discov-
ered during clustering. First, a latent direction in the Stylegan is learnt that adds a
desired semantic class to almost every generated sample using the method of [9, 10].
In this case, the vector G represents the a text promt “a person with glasses”. Af-
ter that, almost every sample has the desired attribute and it naturally appears as
one of the clusters. As it can be seen, semantic region representing glasses is indeed
represented by one of the clusters.
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Figure 5.5: Classification of previously discovered clusters. Given a set of text
prompts of desired classes and a set of generated images with corresponding clus-
ters, we embed both text and image regions using pretrained text encoder and image
encoders of CLIP [11]. After that we compute pairwise dot products between text
and cluster embeddings. Each cluster is assigned to a text prompt that results in a
biggest dot product value. For example, in a given set of images all clusters containing
hair will be classified as “hair”.
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Figure 5.6: Example of synthetic image and annotation pairs created for rare classes
with our method with CLIP [11] using text prompts “a person with a beard” (first
row), “a person with glasses” (second row), “a person wearing a hat” (third row). In-
terestingly, the discovered class representing glasses does not include eye regions which
is consistent with human annotations of glasses for some datasets like CelebAMask-
HQ [3].
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Figure 5.7: Segmentation results on test set of CelebAMask-HQ [3] delivered by our
segmentation model on semantic classes with a increasing complexity: background,
hair, eyes.
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Figure 5.8: Example of semantic classes discovered by clustering features from dif-
ferent layers for OpenEDS eye segmentation dataset. As it can be seen, overall iris,
pupil and sclera were discovered which coincides with semantic classes of the original
dataset.

Figure 5.9: Example of latent code manipulation of generated image along the direc-
tion of beard attribute.
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Chapter 6

Conclusions

This thesis focused on fast and data-efficient image segmentation, a fundamental

task which has many applications including pose estimation of surgical tools in robotic

surgery and eye tracking in head mounted displays.

In Chapter 2, we introduced deep dilated residual networks for the task of surgical

surgical instrument segmentation, and demonstrated that it is possible to achieve

highly accurate state-of-the-art results in both binary and part-based instrument

segmentation tasks.

In Chapter 3, we departed from the common path of using manually designed

networks for the task of instrument segmentation, and instead focused on learning an

optimal architecture for the task of instrument segmentation. This led to state-of-

the-art performance for both binary and part-based surgical instrument segmentation

in terms of speed and accuracy.
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In Chapter 4, we investigated the possibility of using only corrupted synthetic

annotations for surgical instrument segmentation. We developed a new approach

that is capable of learning accurate instrument segmentation model from corrupted

synthetic annotations. We found that our method is comparable with fully supervised

methods that use accurate human labels.

In Chapter 5, we asked whether it is possible to perform image segmentation

without any annotations. First, we showed that generative adversarial learning can

be used to learn meaningful representations that lead to the discovery semantically

meaningful classes. Next, we showed that we are able to achieve state-of-the-art

performance on multiple datasets. And finally, we found that by using recently in-

troduced multimodal approaches like CLIP we are able to assign text labels to our

discovered segmentation regions.
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