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Abstract

Constrained optimization problems where both the objective and constraints may be

nonsmooth and nonconvex arise across many learning and data science settings. In

this thesis, we show a simple first-order method finds a feasible, ϵ-stationary point at a

convergence rate of O(ϵ−4) without relying on compactness or Constraint Qualification

(CQ). When CQ holds, this convergence is measured by approximately satisfying the

Karush-Kuhn-Tucker conditions. When CQ fails, we guarantee the attainment of

weaker Fritz-John conditions. As an illustrative example, we show our method still

stably converges on piecewise quadratic SCAD regularized problems despite frequent

violations of constraint qualification. The considered algorithm is similar to those of [1,

2] (whose guarantees both assume compactness and CQ), iteratively taking inexact

proximal steps, computed via an inner loop applying a switching subgradient method

to a strongly convex constrained subproblem. Our non-Lipschitz analysis of the

switching subgradient method analysis appears to be new and may be of independent

interest.
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Chapter 1

Introduction

In this paper, we considered the difficult family of constrained optimization prob-

lems where both the objective and constraints may be nonconvex and nonsmooth.

Specifically, we study problems of the following form:

min
x∈X

f(x)

s.t. gi(x) ≤ 0, i = 1, ..., m.
(1.1)

Here, d is dimension of the problem and convex set X ⊆ Rd is its domain. The

objective f : X → R and constraints gi : X → R, i = 1, ..., m are assumed to be

continuous on X, but need not be convex nor differentiable.

Constrained optimization problems with nonsmooth and nonconvex objective

loss functions and constraints are common in modern data science and machine

learning fields. For instance, phase retrieval, blind deconvolution and covariance

matrix estimation could all be constructed as nonconvex and nonsmooth minimization

problems [3–8]. If we further expect sparsity for our solutions, it is effective to introduce

a regularizing constraint (e.g., convex choices like ℓ1-norms or ℓ2-norms, nonconvex

choices like SCAD functions [9, 10] or ℓq-norms for q ∈ (0, 1)). The SCAD functions

will serve as a running example throughout this work as they are very simple piecewise

quadratic functions exhibiting nonsmoothness and nonconvexity, with real usage in

several modern sparse optimization problems [11–15]. Other problems like multi-class

Neyman-Pearson classification [1, 16, 17], which tries to minimize the loss on one
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class while controlling the losses on other classes under some values, are also prevalent

constrained optimization models inheriting any nonsmoothness and nonconvexities

from the loss functions.

Our approach to solving nonsmooth, nonconvex, constrained problems relies on

two main ingredients outlined below: (in)exact proximal point methods and Fritz-

John/Karush-Kuhn-Tucker stationarity conditions.

(In)exact Proximal Point Methods Several recent works [7, 18–22] have con-

cerned solving nonconvex problems via inexact evaluation of a proximal operator. For

settings without functional constraints (i.e., m = 0), these methods seek a stationary

point of minx∈X f(x) by iterating

xk+1 ≈ proxα,f (xk) := argmin
x∈X

{︃
f(x) + 1

2α
∥x − xk∥2

}︃
(1.2)

with stepsize α > 0. By restricting to the family of weakly convex functions (defined

in (2.4)), this proximal subproblem is guaranteed to be convex with a unique solution

for small enough α. When the proximal map can be evaluated exactly, an ϵ > 0-

stationary point (defined in Definitions 2.1 and 2.2) is found within O(1/ϵ2) iterations.

The inexact methods of [7, 22] show that using cheaper subgradient oracle calls such

a point is found within O(1/ϵ4) iterations.

We consider the following extension of these ideas to nonconvex inequality con-

straints by [1, 2] (their ideas and comparisons with our contributions are discussed in

depth in Section 1.3). Consider the following proximal subproblem, penalizing the

constraints similarly to the objective

xk+1 ≈ argmin
x∈X

{︃
f(x) + 1

2α
∥x − xk∥2 | gi(x) + 1

2α
∥x − xk∥2 ≤ τ

}︃
(1.3)

with stepsize α > 0 and feasibility tolerance τ ≥ 0. Importantly, any feasible solution to

this proximal subproblem xk+1 has feasibility bounded by gi(xk+1) ≤ τ− 1
2α

∥xk−xk+1∥2
2.

Hence a sequence of xk generated by inexactly evaluating this mapping remains feasible
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for (1.1) until reaching approximate stationarity (that is, ∥xk −xk+1∥2 ≥
√

2ατ implies

gi(xk+1) ≤ 0 for each constraint i).

Fritz-John/Karush-Kuhn-Tucker Stationarity Let ∂f(x) denote a generalized

subdifferential of a function f and NX(x) denote the normal cone of X at x, formally

defined in Chapter 2. Here we consider two classic measurements of stationarity: Fritz-

John (FJ) conditions giving a weaker optimality condition and Karush-Kuhn-Tucker

(KKT) conditions giving a stronger condition.

We say that a feasible x∗ is a FJ point of (1.1) if there exists nonnegative multipliers

γ∗
0 ∈ R and γ∗ = (γ∗

1 , ..., γ∗
m)T ∈ Rm, and subgradients ζf ∈ ∂f(x∗) and ζgi ∈ ∂gi(x∗)

such that (γ∗
0 , γ∗

1 , ..., γ∗
m) is a non-zero vector with

γ∗
i gi(x∗) = 0, ∀i = 1, ..., m,

γ∗
0ζf +

m∑︂
i=1

γ∗
i ζgi ∈ −NX(x∗).

(1.4)

Note requiring (γ∗
0 , γ∗

i , ..., γ∗
m) to be a nonzero vector is equivalent to requiring

γ∗
0 + ∑︁m

i=1 γ∗
i = 1. This condition is necessary for x∗ to be a global (or locally)

minimizer [23]. However, this condition is known to fail to give meaningful insights

into the quality of x∗ as a solution whenever γ∗
0 = 0 as (1.4) becomes independent

of f [24]. This weakness is remedied by the stronger notion of KKT points, which

implicitly require γ∗
0 ̸= 0. We say a feasible x∗ is a KKT point for the problem (1.1) if

there exists nonnegative Lagrange multipliers λ∗ ∈ Rm, ζf ∈ ∂f(x∗) and ζgi ∈ ∂gi(x∗)

such that
λ∗

i gi(x∗) = 0, ∀i = 1, ..., m,

ζf +
m∑︂

i=1
λ∗

i ζgi ∈ −NX(x∗).
(1.5)

Note the KKT conditions strengthen FJ, requiring γ∗
0 ̸= 0, in particular γ∗

0 = 1. The

requirement that γ∗
0 ̸= 0 is equivalent to having the Mangasarian-Fromovitz Constraint

Qualification (MFCQ) condition hold: Let A(x) = {i | gi(x) = 0, i = 1, ..., m}. We
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say MFCQ holds at x if

∃v ∈ −N∗
X(x) s.t. ζT

giv < 0 ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x). (1.6)

Measurements of approximate FJ and KKT stationarity can be vastly different

when constraint qualification does not hold. When a strengthened (σ-strict) MFCQ

condition (see (2.11)) is not satisfied at the stationarity point our method converging to,

the associated Lagrange multipliers may blow up and approximate KKT stationarity

may never be attained despite the iterates xk of (1.3) converging. In contrast,

approximately satisfying the FJ conditions can be ensured whenever xk converges.

1.1 Contribution

We show an inexact proximal method can solve a wide range of nonsmooth, nonconvex

constrained optimization problems, producing an approximate stationary point within

O(1/ϵ4) subgradient evaluations, matching the unconstrained rate. In particular, our

proposed method uses a switching subgradient method approximately solving (1.3)

to produce each subsequent xk+1, see Algorithm 1. We show this scheme has the

following three generally desirable properties missing from prior works [1, 2]:

Always Feasible Iterates By appropriately selecting the algorithmic parameters

α and τ , we can ensure feasibility gi(xk+1) ≤ τ − 1
2α

∥xk − xk+1∥2
2 ≤ 0 for the original

problem (1.1). Maintaining not just approximate but actually feasible iterates is

critical, for example, in settings of planning or control where feasibility corresponds

to physical limitations or safety concerns [25, 26].

Stationarity with or without Constraint Qualification Ensuring constraint

qualification over nonconvex constraints is nontrivial. This is illustrated for a common

sparse regularization in Section 1.2 and numerical explored in Chapter 5. In Theo-

rems 3.2 and 3.3 respectively, we show with or without constraint qualification, an
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inexact proximal point method produces an approximate KKT or FJ point using at

most O(1/ϵ4) subgradient evaluations.

Convergence Rates without Compactness Our guarantees apply without need-

ing to assume compactness of the domain X, which prior works relied on. This

is done by extending the analysis of the switching subgradient method to handle

non-Lipschitz objective and constraint functions like those occurring in (1.3). This

analysis and resulting subproblem convergence guarantee appear to be new and may

be of independent interest.

1.2 Vignette: Failure of MFCQ Assumptions for
Sparse Regularized Problems

Nonconvex regularization has become common due to its statistical benefits [27–30].

One of the simplest regularizers is the smoothly clipped absolute deviation (SCAD)

function [9, 10], sums up piecewise quadratic clipped absolute deviations in each

coordinate

SCAD(xi) =

⎧⎪⎪⎨⎪⎪⎩
2|xi| 0 ≤ |xi| ≤ 1,

−x2
i + 4|xi| − 1 1 < |xi| ≤ 2,

3 |xi| > 2.

(1.7)

The constraint g(x) := ∑︁
i SCAD(xi) − p ≤ 0 implies that at most p/3 entries of

x have magnitude larger than two. Here we consider the problem of sparse phase

retrieval problems (SPR), see (5.1), which minimizes a piecewise quadratic objective

over this piecewise quadratic constraint set.

Note these piecewise quadratic constraints and objective form a simple family

of nonsmooth nonconvex problems where we can approximately solve the convex

subproblem (1.3). Despite this, two problems (one mild and one severe) prevent the

convergence theory of prior works from being applied.

First, prior works do not apply as the set {x | g(x) ≤ 0} is not compact for any
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p ≥ 3. If a bound on the size of a solution is known, then one could add a ball

constraint X = {x | ∥x∥ ≤ D} to enure compactness. Our theory applies without

such a modification.

(a) 1D SCAD function

(b) Seven 3D SCAD level sets {(x1, x2, x3) |
∑︁

SCAD(xi) ≤
p} with p ∈ {2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5}. Note the set
changes suddenly at p ∈ {3, 6, 9}.

Figure 1-1. 1-1a shows the one-dimensional SCAD function in [−4, 4]. 1-1b shows the
feasible regions of the three-dimensional SCAD function in [−5, 5]3.

(a) Small values of p (b) Large values of p

Figure 1-2. Lagrange multipliers computed at approximate stationary points reached
by iterating (1.3) on randomly generated SPR problems (see Chapter 5 for the exact
construction). As p varies from 60 to 120, the black line shows the average multiplier
computed after 30 iterations and the gray region shows the range between maximum
and minimum values seen. Black dots are placed at each multiple of three, where the
strengthened MFCQ condition fails to hold.

More subtly, prior works do not apply here as SPR often fails to have constraint

qualification hold as p varies. As a result, none of the prior works’ theories can be

guaranteed to apply and yield KKT points. Figure 1-2 illustrates the failure of KKT
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conditions on randomly generated SPR instances. We see that when p is near a

multiple of three, the limit point reached by iteratively applying (1.3) may have its

associated Lagrange multiplier blow up. For large values of p, we see the multipliers

tending to zero, corresponding to unconstrained stationarity.

We could infer from this graph that when p is a multiple of three, the strengthened

MFCQ condition breaks. In this case, our theory still guarantees the iteration will

find a stationary point that is an approximate FJ point, but which may fail to be an

approximate KKT point (having extremely large values of the computed Lagrange

multipliers). Despite this possibility, in several of our random problem instances,

we see the Lagrange multiplier values stay reasonably despite MFCQ failing to hold

everywhere, and so our method identifies the resulting point as an approximate KKT

point (in addition to being FJ).

1.3 Related Work

Inexact Proximal Methods The idea of using inexact proximal-point methods

to deal with nonsmooth problems is not new to this work. Double-loop algorithms

that cost several inner steps to inexactly solve a convex proximal subproblem in each

outer iteration have been designed and showed corresponding convergence results. For

example, the algorithm proposed in [18] approximating nonconvex proximal points

contributed to such an idea, and [19] presented a proximal variant of bundle methods

solving nonconvex problems based on the work of [18]. In recent years, [22] developed

this idea into unconstrained stochastic settings, where a general class of weakly convex

and nonsmooth objective functions were analyzed.

Special Case of (Strongly) Convex Constraints A range of methods from

the literature can be applied to inexactly solve the nonsmooth and strongly convex

constrained subproblems constructed during the iterations of the inexact proximal
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method. [31] introduced a level-set method for convex constrained problems, improved

by [32] to maintain feasibility. Another type of method transforms constrained

minimization problems into minimax problems, and such saddle point problems could

be solved by primal-dual type methods as done by [33] and [34]. Switching subgradient

methods can also be applied, which have been analyzed in [35] and extended in [1],

[36] and [37].

Comparison with Ma, Lin, and Yang [1] We consider a very similar inexact

proximal point method with switching subgradient method being the oracle for the

subproblems as Ma et al. [1], in which they also find nearly optimal and nearly

feasible solutions for the subproblems. In their work, convergence of a stochastic

subgradient algorithm was also analyzed. However, under deterministic setting,

they can only achieve a nearly feasible and approximate stationary solution for the

original optimization problem, while our method ensures feasibility. To attain KKT

stationarity, they introduced a uniform Slater’s condition as their stronger type of

constraint qualification, which is stronger than the strengthened MFCQ condition

proposed in this paper. What’s more, their constant upper bound for the optimal

dual variables and convergence rate for switching subgradient algorithm both rely on

the boundedness of the domain X by some constant value, while we do not need such

a requirement. Finally, we also show convergence results to FJ points instead of KKT

points without constraint qualification.

Comparison with Boob, Deng, and Lan [2] As another comparison, Bood et al.

[2] showed the framework of searching for nearly optimal and strictly feasible solutions

for the subproblems, and keeping strict feasibility automatically during iterations to

finally achieve a feasible approximate stationary solution for the main problem. They

also proposed an algorithm which can be used for the subproblems, with corresponding

convergence results in various problem settings. However, this algorithm cannot fit
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their framework of guaranteeing strict feasibility. Furthermore, they considered MFCQ,

strong MFCQ and strong feasibility conditions as their stronger types of constraint

qualifications, while the strong feasibility condition is stronger than the strengthened

MFCQ condition proposed in this paper. For MFCQ and strong MFCQ conditions

in their paper, although both of them are weaker than our strengthened MFCQ

condition, they need an additional assumption to ensure the existence of an exact

stationary solution that the iterated points converge to, which is necessary to show

the boundedness of the optimal dual variables. They did not prove that this upper

bound could be any constant value, while we attain a constant upper bound directly

according to our strengthened MFCQ condition. What’s more, they also require the

domain to be compact, which is not necessary for us. We further show convergence

results to FJ points instead of KKT points without constraint qualification.

Prior Nonconvex Fritz John and KKT-type Guarantees Birgin et al. [38] gave

a general method that attains approximate stationarity using first, second, or higher

order information. They adopted both scaled KKT points and unscaled KKT points to

describe the stationarity, while the former one means the accuracy of KKT conditions

satisfied at such points is proportional to the size of the Lagrange multipliers, and it

has no influence on the accuracy for the latter one. The scaled KKT points with the

linear combination of the gradients of only the constraints being near zero are similar

as Fritz John points. Hinder and Ye [39] redefined Fritz John stationarity in a slightly

stronger version compared to the natural definition which is more similar to ours, and

used IPMs to find approximate Fritz John points under nonconvex constraints. They

also introduced their new definitions of unscaled KKT points and termination criteria

as comparisons with [38]. Besides, the ideas of adopting scaled KKT stationarity and

the corresponding discussions on the size of Lagrange multipliers also occur in [40–43].
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Alternative Approaches to Nonconvex Constraints Finally, we note three

alternatives to the use of (inexact) proximal methods for nonconvex constrained

problems considered here: Classic second-order approaches like sequential quadratic

programming techniques [44] can be applied. Cubic regularization approaches [45] and

penalized methods [46, 47] can also provide provably convergence guarantees. If the

constraints are star convex with respect to a known point, then the radial methods

of [48, 49] apply with convergence guarantees towards stationarity while maintaining

fully feasible iterates.
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Chapter 2

Preliminaries

Throughout the paper, we use the following notations. Let ∥·∥ denote the l2-norm. For

domain set X, we denote its normal cone at x as NX(x), and its dual cone as N∗
X(x).

The distance from a point x to a set S is denoted as dist(x, S) = mins∈S ∥x − s∥,

and the convex hull of any set S is denoted as co{S}. For any convex function

h : X → R⋃︁{+∞}, its set of subgradients at x ∈ X is defined as:

∂h(x) = {ζ ∈ Rd|h(x′) ≥ h(x) + ζT (x′ − x), ∀x′ ∈ X}. (2.1)

More generally, for any potentially nonconvex function h : X → R⋃︁{+∞}, its set

of Clarke subgradients at x is defined as:

∂h(x) = co{ lim
i→∞

∇h(xi)|xi → x and h(x) is differentiable at any xi ∈ X}. (2.2)

A function h(x) is µ-strongly convex on X if h− µ
2 ∥·∥2 is convex. This is equivalent

to having:

h(x′) ≥ h(x) + ζT (x′ − x) + µ

2 ∥x′ − x∥2, ∀x, x′ ∈ X, ∀ζ ∈ ∂h(x). (2.3)

A function h(x) is ρ-weakly convex on X if h + ρ
2∥ · ∥2 is convex. This is equivalent

to having:
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h(x′) ≥ h(x) + ζT (x′ − x) − ρ

2∥x′ − x∥2, ∀x, x′ ∈ X, ∀ζ ∈ ∂h(x). (2.4)

Without loss of generality, we simplify the m nonsmooth, nonconvex constraints

of (1.1) into a single constraint as follows:

min
x∈X

f(x)

s.t. g(x) := max
i=1,...,m

gi(x) ≤ 0.
(2.5)

Not if each gi is ρ-weakly convex, then g is ρ-weakly convex.

We follow the construction of (1.3) to build up our subproblems on the main

problem (2.5). The subproblems are written as:

min
x∈X

Fk(x) := f(x) + ρ̂

2∥x − xk∥2

s.t. Gk(x) := g(x) + ρ̂

2∥x − xk∥2 ≤ 0.

(2.6)

By properly selecting ρ̂, both the objective function Fk(x) and the constraint Gk(x)

are (ρ̂ − ρ)-strongly convex, and we set the feasibility tolerance. We find a nearly

optimal and nearly feasible solution under the feasibility tolerance for the subproblem

as our next iterate.

As the subproblems being approximately solved, our goal is to find approximate

stationary solutions for our main problem (2.5). Without loss of generality, we describe

the approximate stationarity for problem (1.1) according to Fritz John conditions and

KKT conditions shown in (1.4) and (1.5), and give the following definitions.

Definition 2.1. A point x is an ϵ-FJ point for problem (1.1) if gi(x) ≤ 0 ∀i =

1, ..., m, and there exists ζf ∈ ∂f(x), ζgi ∈ ∂gi(x) and γ0 ≥ 0, γ = (γ1, ..., γm)T ≥ 0,

γ0 +∑︁m
i=1 γi = 1 such that:
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dist(γ0ζf +
m∑︂

i=1
γiζg, −NX(x)) ≤ ϵ, (2.7)

|γigi(x)| ≤ ϵ2 ∀i = 1, ..., m. (2.8)

Definition 2.2. A point x is an ϵ-KKT point for problem (1.1) if gi(x) ≤ 0 ∀i =

1, ..., m, and there exists ζf ∈ ∂f(x), ζgi ∈ ∂gi(x) and λ = (λ1, ..., λm)T ≥ 0 such that:

dist(ζf +
m∑︂

i=1
λiζgi, −NX(x)) ≤ ϵ, (2.9)

|λigi(x)| ≤ ϵ2 ∀i = 1, ..., m. (2.10)

Let x̂k+1 denote the optimal solution for the subproblem (2.6), γk0, γk and λk

correspond to the FJ and KKT stationarity at x̂k+1. We can show that for the main

problem (2.5), with γk0, γk, λk and an appropriate ρ̂, (2.8)/(2.10) is automatically

satisfied when (2.7)/(2.9) is satisfied. This implies that when searching for approximate

FJ or KKT stationary points for our main problem (2.5), we only need to consider

whether (2.7) or (2.9) holds.

Inexact proximal point idea allows our method to find nearly optimal solutions for

the subproblems (2.6) instead of exact solutions x̂k+1. Therefore, when x̂k+1 become an

approximate stationary point for the main problem (2.5), we can only ensure xk lying

in the corresponding neighborhood of x̂k+1, but not exactly reach this approximate

stationary solution. We give the following definitions to describe the points near the

approximate stationary point.

Definition 2.3. A point x is an (ϵ, η)-FJ point for problem (1.1) if there exists an

ϵ-FJ point x′ for problem (1.1) with ∥x − x′∥ ≤ η.
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Definition 2.4. A point x is an (ϵ, η)-KKT point for problem (1.1) if there exists an

ϵ-KKT point x′ for problem (1.1) with ∥x − x′∥ ≤ η.

Again, let x̂k+1 denote the optimal solution for the subproblem (2.6), γk0, γk and

λk correspond to the FJ and KKT stationarity at x̂k+1. We can show that with γk0,

γk, λk and an appropriate ρ̂, if x̂k+1 is an approximate stationary point for the main

problem (2.5), then the distance from xk to x̂k+1 is bounded. This implies that as long

as an approximate stationary point is found for our main problem (2.5), our iterate

locates in its close neighborhood automatically.

The accuracy of KKT stationarity is proportional to the size of the optimal

Lagrange multipliers. To guarantee KKT stationarity, it is necessary to give a constant

upper bound for the optimal Lagrange multipliers in (1.5) for our subproblems (see

problem (2.6)). Thus we define a stronger type of constraint qualification. Let

A(x) = {i|gi(x) = 0, i = 1, ..., m}. We say σ-strict MFCQ condition holds at x if there

exists a constant σ > 0, such that:

∃v ∈ −N∗
X(x) and ∥v∥ = 1 s.t. ζT

giv ≤ −σ ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x). (2.11)

Specifically, when NX(x) = {0}, we could equivalently state the condition as:

∥ζgi∥ ≥ σ ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x). (2.12)

Now we consider the σ-strong MFCQ condition for problem (1.1) based on the

σ-strict MFCQ condition at x. The σ-strong MFCQ condition holds when σ-strict

MFCQ condition is satisfied at any x ∈ X with uniform σ. By assuming σ-strong

MFCQ condition is satisfied for all the subproblems (see problem (2.6)), we could

show boundedness for Lagrange multipliers in (1.5) for our subproblems, and attain

convergence results to KKT points for the main problem (2.5).
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Make the following four assumptions about (2.5) throughout the paper.

Assumption A. f(x) and g(x) are continuous and ρ-weakly convex functions on X.

Assumption B. flb = infx∈X f(x) > −∞, glb = infx∈X g(x) > −∞.

Assumption C. For any x ∈ X, we can compute some ζf ∈ ∂f(x), ζg ∈ ∂g(x) with

∥ζf∥, ∥ζg∥ ≤ M .

Assumption D. We have access to an initial feasible point x0 to problem (2.5) (i.e.

x0 ∈ X and g(x0) ≤ 0).

These assumptions suffice for our convergence theory to FJ points. Under the

following additional assumption we show convergence results to KKT points.

Assumption E. σ-strong MFCQ condition is satisfied for any subproblem (2.6).

For notation simplicity, let D =
√︂

−8glb

ρ̂−ρ
indicate the diameter of the set {x|Gk(x) ≤

0} due to the (ρ̂ − ρ)-strong convexity of Gk(x), which in particular upper bounds the

distance from the current iterate xk to the optimal solution of the subproblem (2.6).

Let B = M+ρ̂D
σ

denote the uniform upper bound for the optimal dual variables of the

subproblems (2.6) as Assumption E is satisfied.

Assume x̂k+1 is the optimal solution for the subproblem (2.6). Based on our

previous illustrations, to ensure an (ϵ, ϵ)-FJ/KKT solution for the main problem

(2.5), we only need to care about whether (2.7)/(2.9) is satisfied. We can show when

∥x̂k+1 − xk∥ is less than or equal to some corresponding value, it is guaranteed that

(2.7)/(2.9) holds. This implies that we attain approximate FJ or KKT stationary

solutions for the main problem (2.5) as long as ∥x̂k+1 − xk∥ is small enough. We

provide the following Lemma to formalize this result.

Lemma 2.5. Let x̂k+1 denote the optimal solution for the subproblem (2.6) with

ρ̂ > max{ρ, 1}. When Assumptions A-D hold and ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂
, xk is an (ϵ, ϵ)-FJ
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point; when Assumptions A-E hold and ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂(1+B) , xk is an (ϵ, ϵ)-KKT

point.

Note that (2.7)/(2.9) is a sufficient and necessary condition for xk to be an (ϵ, ϵ)-

FJ/KKT point. However, Lemma 2.5 given above only indicates the sufficiency of the

condition that ∥x̂k+1 − xk∥ being small enough, without providing its necessity. In

fact, when xk is an (ϵ, ϵ)-KKT point, it is not necessary for ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂(1+B) to

be satisfied.
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Chapter 3

Algorithms

In this section, we describe how the inexact proximal point method using the switching

subgradient method as an oracle works for solving the main problem (2.5), and prove

our main convergence guarantees. We first introduce the switching subgradient method

for our constrained strongly convex subproblems, and then discuss the inexact proximal

point method. All proofs are deferred to Section 4.

3.1 The Classic Switching Subgradient Method
(without Lipschitz Continuity)

We introduce the classic switching subgradient method (see [35]) for solving the

optimization problem below:

min
z∈Z

F (z)

s.t. G(z) ≤ 0.
(3.1)

Here we assume the domain Z is a convex set, and F (z) and G(z) are µ-strongly

convex functions on Z. Let z∗ be the optimal solution of this problem. Previous con-

vergence analysis of algorithms for this problem usually assumed Lipschitz continuity

for both F (z) and G(z), but we only need the following weaker condition previously

considered for projected subgradient methods [50] as:
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∀z ∈ Z, ∀ζF ∈ ∂F (z), ζG ∈ ∂G(z), ∃L0 ≥ 0, L1 ≥ 0,

s.t. ∥ζF ∥2 ≤ L2
0 + L1(F (z) − F (z∗)), ∥ζG∥2 ≤ L2

0 + L1(G(z) − G(z∗)).
(3.2)

When L1 = 0, F (z) and G(z) become L0-Lipschitz continuous functions. Condition

(3.2) allows F (z) and G(z) up to quadratic growth, which could be satisfied for strongly

convex problems even in an unbounded domain Z. Note that it is impossible to

have Lipschitz continuity for a strongly convex function in an unbounded domain.

Specifically, for µ-strongly convex h(x) defined on X ′ with x∗ as its minimum point,

strong convexity provides: ∀x ∈ X ′, ∀ζx ∈ ∂h(x), ∥ζx∥ ≥ µ∥x − x∗∥. As X ′ is

unbounded, ∥x−x∗∥ is unbounded, then ∥ζx∥ is also unbounded. This makes Lipschitz

continuity of h(x) fails to hold.

We define nearly optimal and nearly feasible solutions for problem (3.1).

Definition 3.1. A point z is a (δ, τ)-optimal solution for problem (3.1) if F (z) −

F (z∗) ≤ δ and and G(z) ≤ τ , where z∗ is the optimal solution.

In fact, when we aim to find a (τ, τ)-optimal solution for problem (3.1) using

the switching subgradient method (Algorithm 1), we only need to assume an even

weaker condition based on (3.2), with the up to quadratic growth of F (z) and G(z)

not necessarily satisfied in the whole domain Z. It can be written as:

∀z1 ∈ {z|G(z)≤τ}, z2 ∈ {z|G(z)>τ}, ∀ζF ∈ ∂F (z1), ζG ∈ ∂G(z2), ∃L0 ≥0, L1 ≥0,

s.t. ∥ζF ∥2 ≤ L2
0 + L1(F (z1) − F (z∗)), ∥ζG∥2 ≤ L2

0 + L1(G(z2) − G(z∗)).
(3.3)

Here we analyze the switching subgradient method (Algorithm 1) to solve problem

(3.1), finding a (τ, τ)-optimal solution for it. Basically, when the current iterate is not

nearly feasible with tolerance τ , we compute the subgradient based on the constraint

function and make an update seeking feasibility; otherwise we compute the subgradient

of the objective function to make an update seeking optimality.
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Algorithm 1 The Switching Subgradient Method
Require:

µ, τ > 0, z0 ∈ {z ∈ Z|G(z) ≤ τ}, T > 0, αt.
set I = ϕ, J = ϕ
for t = 0, 1, ..., T − 1 do

if G(zt) ≤ τ then
zt+1 = projZ(zt − αtζF t), ζF t ∈ ∂F (zt), I = I

⋃︁{t}
else

zt+1 = projZ(zt − αtζGt), ζGt ∈ ∂G(zt), J = J
⋃︁{t}

end if
end for

Ensure:
A (τ, τ)-optimal solution z̄T =

∑︁
t∈I

(t+1)F (zt)∑︁
t∈I

(t+1) for problem (3.1).

We give the convergence result for this method, generalizing [1, 36, 37] to non-

Lipschitz settings.

Theorem 3.1. With αt = 2

µ(t+2)+
L2

1
µ(t+1)

and τ > 0 in Algorithm 1, z̄T is a (τ, τ)-optimal

solution for problem (3.1) for all

T ≥ max

⎧⎨⎩8L2
0

µτ
,

⌜⃓⃓⎷2L2
1∥z0 − z∗∥2

µτ

⎫⎬⎭ .

Note that the switching subgradient method can also attain a (τ, 0)-optimal solution

at the rate of O(τ−1) for problem (3.1), as long as we have access to a feasible initial

point z0 (i.e. G(z0) ≤ 0).

In our subproblem (2.6), Fk and Gk are both (ρ̂ − ρ)-strongly convex functions,

which grow quadratically on potentially unbounded domain X. We can find upper

bounds of quadratic growth (3.3) for Fk and Gk. The following Lemma is provided to

show this result.

Lemma 3.2. Condition (3.3) is satisfied for problem (2.6) with L0 =
√

9M2 − 6ρ̂glb

and L1 = 6ρ̂.
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With Lemma 3.2 above, we apply the switching subgradient method to our

subproblems (2.6) and give the following convergence result.

Corollary 3.3. With z0 = xk, µ = ρ̂ − ρ, αt = 2
(ρ̂−ρ)(t+2)+ 36ρ̂2

(ρ̂−ρ)(t+1)
and τ > 0 in

Algorithm 1, z̄T is a (τ, τ)-optimal solution for problem (2.6) for all

T ≥ max

⎧⎪⎨⎪⎩24(3M2 − 2ρ̂glb)
µτ

,

⌜⃓⃓⎷72ρ̂2D2

µτ

⎫⎪⎬⎪⎭ .

In previous convergence analysis of the switching subgradient method shown in

other literature, the Lipschitz continuity assumption is necessary for both the objective

function Fk(x) and the constraint function Gk(x). Due to their quadratic rates of

growth, previous works require compactness of the domain X. In Corollary 3.3, we

do not need Lipschitz continuity to guarantee the convergence of this method. As a

result, compactness of X not needed to be assumed anymore.

Several stochastic variants of Algorithm 1 exist for solving stochastic versions of

problem (3.1). An adaptive stochastic mirror descent method was introduced in [36]

for the randomized version of problem (3.1), in which we could still get the exact

functional values of the constraint, but can only evaluate the stochastic approximations

of the subgradients of both the objective function and the constraint. With unbiased

estimators of the subgradients available, Algorithm 1 can be applied to this kind of

randomized problems with convergence results in expectation, without requiring the

compactness of the domain or the stochastic subgradients to be bounded almost surely.

A stochastic version of our quadratic growth upper bound (3.3) could be seen in [51] as

a combination of the expected smoothness and finite gradient noise conditions around

the optimal solution of problem (3.1), which is needed to show convergence of the

stochastic version of Algorithm 1, without almost surely bounded subgradients being

necessary anymore. In [37], they provided their alternating mirror descent stochastic

approximation algorithm under stochastic estimations of the functional values of both
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the objective function and the constraint. Under this setting, they showed guarantees

of finding nearly optimal solutions in expectation, still requiring the compactness of

domain.

3.2 Proximally Guided Switching Subgradient Method

Using the switching subgradient method as our subproblem oracle, the inexact proximal

point method searching for approximate stationary solutions for problem (2.5) proceeds

according to Algorithm 2.

Algorithm 2 The Inexact Constrained Proximal Method
Require:

A feasible point x0 for problem (2.5), ρ̂ > max{ρ, 1}, ϵ > 0, parameters δ and τ .
for k = 0, 1, ... do

find xk+1: a (δ, τ)-optimal solution for problem (2.6)
end for

Ensure:
An (ϵ, ϵ)-FJ or (ϵ, ϵ)-KKT point xk−1 for problem (2.5).

To reach an (ϵ, ϵ)-FJ point, we pick:

δ = (ρ̂ − ρ)ϵ2

8ρ̂2 and τ = (ρ̂ − ρ)ϵ2

8ρ̂2 . (3.4)

To reach an (ϵ, ϵ)-KKT point, we pick:

δ = (ρ̂ − ρ)ϵ2

8(1 + B)2ρ̂2 and τ = (ρ̂ − ρ)ϵ2

8(1 + B)2ρ̂
min

{︄
1

ρ̂ − ρ + ρ̂B
, 1
}︄

. (3.5)

We guarantee the feasibility of our iterates xk by the following two Lemmas.

Lemma 3.4. Under Assumptions A–D with δ and τ as in (3.4), or Assumptions A–E

with δ and τ as in (3.5), Algorithm 2 has g(xk) ≤ 0 before xk becomes an (ϵ, ϵ)-FJ

point or an (ϵ, ϵ)-KKT point.

21



Lemma 3.4 shows the automatic satisfaction of feasibility in Algorithm 2 until an

(ϵ, ϵ)-FJ/KKT point is found and the algorithm stops.

In the framework of Algorithm 2, we adopt Algorithm 1 to serve as an oracle—a

proximally guided switching subgradient method to attain nearly optimal and nearly

feasible solutions for the subproblems (2.6), and finally reach an approximate stationary

solution for the main problem (2.5). We provide the following convergence result of

Algorithm 2 for reaching an (ϵ, ϵ)-FJ solution for problem (2.5).

Theorem 3.2. Under Assumptions A–D with parameters as in (3.4), Algorithm 2

using Algorithm 1 as an oracle has xK be an (ϵ, ϵ)-FJ point for problem (2.5) for some

K <
8ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 = ∆1

ϵ2 ,

with T = max
{︃

192ρ̂2(3M2−2ρ̂glb)
(ρ̂−ρ)2ϵ2 ,

√︃
576ρ̂4D2

(ρ̂−ρ)2ϵ2

}︃
= max

{︂
∆2
ϵ2 , ∆3

ϵ

}︂
steps of Algorithm 1 in

each iteration of Algorithm 2, such an xK is found using at most

∆1 max {∆2, ∆3ϵ}
ϵ4

total subgradient evaluations.

To guarantee an approximate KKT stationarity, it is necessary to give a uni-

form upper bound for the optimal dual variables (Lagrange multipliers) of the KKT

conditions (1.5) for our subproblems (2.6). We show the Lemma below to achieve this.

Lemma 3.5. Under Assumptions A–E, the optimal dual variables for problems (2.6)

are uniformly upper bounded by B = M+ρ̂D
σ

.

Then we provide the following convergence result of Algorithm 2 for reaching an

(ϵ, ϵ)-KKT solution for problem (2.5).

Theorem 3.3. Under Assumptions A–E with parameters as in (3.5), Algorithm 2

using Algorithm 1 as an oracle has xK be an (ϵ, ϵ)-KKT point for problem (2.5) for
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some

K <
8(1 + B)ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 = Λ1

ϵ2 ,

with T =max
{︃

192(1+B)2ρ̂(3M2−2ρ̂glb)max{ρ̂−ρ+ρ̂B,1}
(ρ̂−ρ)2ϵ2 ,

√︃
576(1+B)2ρ̂3D2max{ρ̂−ρ+ρ̂B,1}

(ρ̂−ρ)2ϵ2

}︃
=max

{︂
Λ2
ϵ2,

Λ3
ϵ

}︂
steps of Algorithm 1 in each iteration of Algorithm 2, such an xK is found using at

most
Λ1 max {Λ2, Λ3ϵ}

ϵ4

total subgradient evaluations.

3.3 Stopping Criteria

While searching for approximate stationary points, we need to stop our algorithm as

we reach our target. The stopping criteria for Algorithm 2 is shown as:

∥xk − xk−1∥ ≤ d1 or g(xk) > 0 or f(xk) ≥ f(xk−1) − d2. (3.6)

In (3.6), to reach an (ϵ, ϵ)-FJ point, we pick:

d1 = ϵ

2ρ̂
and d2 = 3(ρ̂ − ρ)ϵ2

8ρ̂2 . (3.7)

To reach an (ϵ, ϵ)-KKT point, we pick:

d1 =
√

ρ̂ − ρϵ

2(1 + B)
√

ρ̂ − ρ + ρ̂Bρ̂
and d2 = 3(ρ̂ − ρ)ϵ2

8(1 + B)ρ̂2 . (3.8)

The following two Lemmas about the stopping criteria help to guarantee Algorithm

2 to reach an (ϵ, ϵ)-FJ or (ϵ, ϵ)-KKT solution for problem (2.5).

Lemma 3.6. Under Assumptions A–D with d1 and d2 as in (3.7), the stopping criteria

(3.6) does not hold when xk−1 is not an (ϵ, ϵ)-FJ point.
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Proof. When xk is not an (ϵ, ϵ)-FJ point, we have g(xk+1) ≤ 0 due to Lemma 3.4,

while (4.4) and (4.11) hold. Therefore, the stopping criteria (3.6) does not hold when

xk−1 is not an (ϵ, ϵ)-FJ point.

Lemma 3.7. Under Assumptions A–E with d1 and d2 as in (3.8), the stopping criteria

(3.6) does not hold when xk−1 is not an (ϵ, ϵ)-KKT point.

Proof. When xk is not an (ϵ, ϵ)-FJ point, we have g(xk+1) ≤ 0 due to Lemma 3.4,

while (4.8) and (4.12) hold. Therefore, the stopping criteria (3.6) does not hold when

xk−1 is not an (ϵ, ϵ)-FJ point.

With Lemma 3.6 and Lemma 3.7 shown above, our stopping criteria is not satisfied

when we have not reached an satisfactory approximate stationary point, and Algorithm

2 continues. When the stopping criteria holds, we reach our targeted approximate

stationary point and stop our algorithm. Generally, it is possible that the stopping

criteria fails to be satisfied when we have already achieved our targeted stationarity.

In this case, it is reasonable to let Algorithm 2 continue working, since the break of

(3.6) guarantees the feasibility and the least amount of descent of the next iterates,

which will lead to convergence while the stopping criteria being satisfied finally.

3.4 Extension to Stochastic Gradient Oracles and
High Probability Guarantees

In Section 3.1, we discussed the stochastic variants of the switching subgradient

method. Under randomized problem settings with unbiased stochastic subgradient

estimators and the measurements of the constraint function values being accurate,

we can guarantee the targeted level of approximate feasibility for our subproblems,

and preserve feasibility for our main problem. Since it is achievable for the expected

objective value of our solution for the subproblem being sufficiently close to the

optimal value after fixed number of iterations, it is possible that there exists a high
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probability guarantee for our objective value staying close to the expected value in

a small size of neighborhood. Therefore, a high probability guarantee for the least

amount of the objective value descent in each iteration of Algorithm 2 is attained,

which indicates the high probability of the stochastic version of our method achieving

approximate stationarity under a fixed computation complexity. Furthermore, when

there are only noisy evaluations of the constraint functions available, we may also

give a high probability guarantee for the approximate feasibility for our subproblems,

which yields a high probability guarantee for the feasibility of our final solution for the

main problem. This is similar as the way we guarantee the computation complexity

of finding approximate stationarity in such stochastic settings.
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Chapter 4

Convergence Analysis

4.1 Proof of Theorem 3.1 — Non-Lipschitz Strongly
Convex Switching Subgradient Method Con-
vergence

Our proof follows the styles of [1] and [50].

Let z∗ be the optimal solution for problem (3.1), whose existence and uniqueness

follow from strong convexity. Since the domain Z is convex, when t ∈ I, we have

∥zt+1 − z∗∥2 ≤ ∥zt − αtζF t − z∗∥2

= ∥zt − z∗∥2 − 2αtζ
T
F t(zt − z∗) + α2

t ∥ζF t∥2

≤ ∥zt − z∗∥2 − 2αtζ
T
F t(zt − z∗) + L2

0α
2
t + L1α

2
t (F (zt) − F (z∗)).

Since F (z) is µ-strongly convex, (2.3) implies

∥zt+1 − z∗∥2 ≤ (1−µαt)∥zt−z∗∥2−(2αt−L1α
2
t )(F (zt)−F (z∗))+L2

0α
2
t

(2−L1αt)(F (zt)−F (z∗)) ≤ ( 1
αt

−µ)∥zt−z∗∥2− 1
αt

∥zt+1−z∗∥2+L2
0αt.

Since αt = 2

µ(t+2)+
L2

1
µ(t+1)

, the above coefficient on F (zt) − F (z∗) is at least one
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L1αt = 2L1

µ(t + 2) + L2
1

µ(t+1)

≤ 2L1

2
√︃

µ(t + 2) L2
1

µ(t+1)

≤ 1.

Then the previous inequality becomes

F (zt) − F (z∗) ≤
µt + L2

1
µ(t+1)

2 ∥zt − z∗∥2 −
µ(t + 2) + L2

1
µ(t+1)

2 ∥zt+1 − z∗∥2 + 2L2
0

µ(t + 2) .

Multiplying through by (t + 1) (a trick due to [1]) yields

(t+1)(F (zt)−F (z∗)) ≤
µt(t+1)+ L2

1
µ

2 ∥zt −z∗∥2 −
µ(t+1)(t+2)+ L2

1
µ

2 ∥zt+1 −z∗∥2 + 2L2
0

µ
.

Similarly, from the µ-strongly convex constraint G(z), we have when t ∈ J that

(t+1)(G(zt)−G(z∗)) ≤
µt(t+1)+ L2

1
µ

2 ∥zt −z∗∥2 −
µ(t+1)(t+2)+ L2

1
µ

2 ∥zt+1 −z∗∥2 + 2L2
0

µ
.

Summing the two inequalities above up for t = 0, 1, 2, ..., T − 1 yields

∑︂
t∈I

(t + 1)(F (zt) − F (z∗)) +
∑︂
t∈J

(t + 1)(G(zt) − G(z∗)) ≤ 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ
.

For t ∈ J , we have G(zt) > τ . Since G(z∗) ≤ 0, we have G(zt) − G(z∗) > τ . Then

the inequality becomes

∑︂
t∈I

(t + 1)(F (zt) − F (z∗)) +
∑︂
t∈J

(t + 1)τ ≤ 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ
.

Therefore, with T ≥ max{8L2
0

µτ
,

√︃
2L2

1∥z0−z∗∥2

µτ
}, we have
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∑︂
t∈I

(t + 1)(F (zt) − F (z∗)) ≤
∑︂
t∈I

(t + 1)τ −
T −1∑︂
t=0

(t + 1)τ + 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ

=
∑︂
t∈I

(t + 1)τ − T (T + 1)
2 τ + 2L2

0T

µ
+ L2

1∥z0 − z∗∥2

2µ

=
∑︂
t∈I

(t + 1)τ − Tτ

4 (T − 8L2
0

µτ
) − τ

4(T 2 − 2L2
1∥z0 − z∗∥2

µτ
)

<
∑︂
t∈I

(t + 1)τ.

The convexity of F (z) gives us

F (z̄T ) − F (z∗) = F

(︄∑︁
t∈I(t + 1)zt∑︁

t∈I(t + 1)

)︄
− F (z∗) ≤

∑︁
t∈I(t + 1)F (zt)∑︁

t∈I(t + 1) − F (z∗) < τ.

The convexity of G(z) gives us

G(z̄T ) = G

(︄∑︁
t∈I(t + 1)zt∑︁

t∈I(t + 1)

)︄
≤
∑︁

t∈I(t + 1)G(zt)∑︁
t∈I(t + 1) < τ.

Therefore, z̄T is a (τ, τ)-optimal solution for problem (2.6).

4.2 Proof of Theorem 3.2

According to Lemma 3.4, our iterates xk are always feasible, that is g(xk) ≤ 0, for the

main problem (2.5) before we reach an (ϵ, ϵ)-FJ point. For any xk, with γk0 and γk

defined in (1.4) for problem (2.6), we construct the function Lk(x) for problem (2.6)

as

Lk(x) = γk0Fk(x)+γkGk(x) = γk0(f(x)+ ρ̂

2∥x−xk∥2)+γk(g(x)+ ρ̂

2∥x−xk∥2). (4.1)

Without loss of generality, suppose γk0 ≥ 0, γk ≥ 0, and γk0 + γk = 1. Let x̂k+1 be

the exact solution for problem (2.6). According to FJ conditions (1.4), there exists

ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies
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γk0ζ̂F k + γkζ̂Gk ∈ −NX(x̂k+1). (4.2)

Since Lk(x) is (ρ̂ − ρ)-strongly convex, we have

γk0Fk(xk) + γkGk(xk) ≥γk0Fk(x̂k+1) + γkGk(x̂k+1) + (γk0ζ̂F k + γkζ̂Gk)T (xk − x̂k+1)

+ ρ̂ − ρ

2 ∥xk − x̂k+1∥2.

According to FJ conditions, we also have γkGk(x̂k+1) = 0. By (4.2) and since

xk ∈ X, we know (γk0ζ̂F k + γkζ̂Gk)T (xk − x̂k+1) ≥ 0. Since g(xk) ≤ 0 from Lemma

3.4, the previous inequality becomes

γk0f(xk) ≥ γk0Fk(x̂k+1) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2.

Since xk+1 is a (δ, τ) solution for problem (2.6), Fk(xk+1) − Fk(x̂k+1) ≤ δ. Then

the previous inequality becomes

γk0f(xk) ≥ γk0(f(xk+1) + ρ̂

2∥xk+1 − xk∥2 − δ) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2

≥ γk0(f(xk+1) − δ) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2.

Thus we attain a lower bound for descent of each step as

γk0(f(xk) − f(xk+1)) ≥ ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 − γk0δ. (4.3)

When γk0 = 0, then ∥x̂k+1 − xk∥ = 0 and we have already reached an exact

stationary point xk for problem (2.5). Now we consider the case that γk0 > 0 here. Let

ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). According

to (4.2), before we reach the (ϵ, ϵ)-FJ point x̂k+1, there exists ν ∈ NX(x̂k+1) which

satisfies:
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γk0(ζ̂fk + ρ̂(x̂k+1 − xk)) + γk(ζ̂gk + ρ̂(x̂k+1 − xk)) + ν = 0,

∥γk0ζ̂fk + γkζ̂gk + ν∥ > ϵ.

Then

∥x̂k+1 − xk∥ >
ϵ

ρ̂
.

Thus, before we reach the (ϵ, ϵ)-FJ point x̂k+1, it can be derived from (4.3) that

f(xk) − f(xk+1) ≥ ρ̂ − ρ

2γk0
∥x̂k+1 − xk∥2 − δ

≥ ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 − δ

>
ρ̂ − ρ

2 × ϵ2

ρ̂2 − (ρ̂ − ρ)ϵ2

8ρ̂2

= 3(ρ̂ − ρ)ϵ2

8ρ̂2 . (4.4)

By Assumption B, we could give an upper bound for the number of total iterations

K of Algorithm 2 as

K <
8ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 .

Using Algorithm 1 as an oracle for Algorithm 2, with τ = (ρ̂−ρ)ϵ2

8ρ̂2 , L0 and L1 from

Lemma 3.2. Taking the number of steps of Algorithm 1 as T = max
{︃

8L2
0

(ρ̂−ρ)τ ,

√︃
2L2

1D2

(ρ̂−ρ)τ

}︃
in each iterations of Algorithm 2, the number of total subgradient evaluations is upper

bounded as

KT <
8ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 max

⎧⎪⎨⎪⎩192ρ̂2(3M2 − 2ρ̂glb)
(ρ̂ − ρ)2ϵ2 ,

⌜⃓⃓⎷ 576ρ̂4D2

(ρ̂ − ρ)2ϵ2

⎫⎪⎬⎪⎭ .
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4.3 Proof of Theorem 3.3

According to Lemma 3.4, our iterates are always feasible, that is g(xk) ≤ 0, for the

main problem (2.5) before we reach an (ϵ, ϵ)-KKT point. For any xk, with λk defined

in (1.5) for problem (2.6), we construct the Lagrange function for problem (2.6) as

Lk(x) = Fk(x) + λkGk(x) = f(x) + ρ̂

2∥x − xk∥2 + λk(g(x) + ρ̂

2∥x − xk∥2). (4.5)

Without loss of generality, suppose λk ≥ 0. Let x̂k+1 be the exact solution for

problem (2.6). According to KKT conditions (1.5), there exists ζ̂F k ∈ ∂Fk(x̂k+1) and

ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies

ζ̂F k + λkζ̂Gk ∈ −NX(x̂k+1). (4.6)

Since Lk(x) is (1 + λk)(ρ̂ − ρ)-strongly convex, we have

Fk(xk) + λkGk(xk) ≥Fk(x̂k+1) + λkGk(x̂k+1) + (ζ̂F k + λkζ̂Gk)T (xk − x̂k+1)

+ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2.

According to KKT conditions (1.5), we also have λkGk(x̂k+1) = 0. By (4.6) and

since xk ∈ X, we know (ζ̂F k + λkζ̂Gk)T (xk − x̂k+1) ≥ 0. Since g(xk) ≤ 0 from Lemma

3.4, the previous inequality becomes

f(xk) ≥ Fk(x̂k+1) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2.

Since xk+1 is a (δ, τ) solution for problem (2.6), Fk(xk+1) − Fk(x̂k+1) ≤ δ, then

f(xk) ≥ (f(xk+1) + ρ̂

2∥xk+1 − xk∥2 − δ) + (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2

≥ f(xk+1) − δ + (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2.
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Thus we attain a lower bound for descent of each step as

f(xk) − f(xk+1) ≥ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 − δ. (4.7)

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1).

According to (4.6), before we reach the (ϵ, ϵ)-KKT point x̂k+1, there exists ν ∈

NX(x̂k+1) which satisfies:

(ζ̂fk + ρ̂(x̂k+1 − xk)) + λk(ζ̂gk + ρ̂(x̂k+1 − xk)) + ν = 0,

∥ζ̂fk + λkζ̂gk + ν∥ > ϵ.

Then

∥x̂k+1 − xk∥ >
ϵ

(1 + λk)ρ̂ .

Thus, before we reach the (ϵ, ϵ)-KKT point x̂k+1, apply Lemma 3.5 here, it can be

derived from (4.7) that

f(xk) − f(xk+1) ≥ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 − δ

>
(1 + λk)(ρ̂ − ρ)

2 × ϵ2

(1 + λk)2ρ̂2 − (ρ̂ − ρ)ϵ2

8(1 + B)2ρ̂2

>
(ρ̂ − ρ)ϵ2

2(1 + λk)ρ̂2 − (ρ̂ − ρ)ϵ2

8(1 + B)ρ̂2

≥ (ρ̂ − ρ)ϵ2

2(1 + B)ρ̂2 − (ρ̂ − ρ)ϵ2

8(1 + B)ρ̂2

= 3(ρ̂ − ρ)ϵ2

8(1 + B)ρ̂2 . (4.8)

By Assumption B, we could give an upper bound for the number of total iterations

K as
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K <
8(1 + B)ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 .

Using Algorithm 1 as an oracle for Algorithm 2, with τ = (ρ̂−ρ)ϵ2

8(1+B)2ρ̂
min

{︂
1

ρ̂−ρ+ρ̂B
, 1
}︂

,

L0 and L1 from Lemma 3.2. Taking the number of steps of Algorithm 1 as T =

max
{︃

8L2
0

(ρ̂−ρ)τ ,

√︃
2L2

1D2

(ρ̂−ρ)τ

}︃
in each iterations of Algorithm 2, the number of total subgra-

dient evaluations is upper bounded as

KT <
8(1 + B)ρ̂2(f(x0) − flb)

3(ρ̂ − ρ)ϵ2 max

⎧⎨⎩192(1 + B)2ρ̂(3M2 − 2ρ̂glb) max{ρ̂ − ρ + ρ̂B, 1}
(ρ̂ − ρ)2ϵ2 ,

⌜⃓⃓⎷576(1 + B)2ρ̂3D2 max{ρ̂ − ρ + ρ̂B, 1}
(ρ̂ − ρ)2ϵ2

⎫⎬⎭.

4.4 Proof of Lemmas

4.4.1 Proof of Lemma 2.5

Given ρ̂ > max{ρ, 1}, we discuss for FJ and KKT stationarity respectively.

For FJ stationarity, assume FJ conditions (1.4) are satisfied for problem (2.6) at

x̂k+1 with γk0 ≥ 0, γk ≥ 0, γk0 + γk = 1, ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1). Let

ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1) and ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1), then

there exists ν ∈ NX(x̂k+1) such that

γk0(ζ̂fk + ρ̂(x̂k+1 − xk)) + γk(ζ̂gk + ρ̂(x̂k+1 − xk)) = −ν.

When ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂
, we have

∥γk0ζ̂fk + γkζ̂gk + ν∥ = ρ̂∥x̂k+1 − xk∥ ≤ ϵ.

Then (2.7) is satisfied. When γk = 0, |γkg(x̂k+1)| = 0, thus we only consider the
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case that γk is positive. In this case, we have Gk(x̂k+1) = 0 according to FJ conditions,

then

0 ≥ g(x̂k+1) = − ρ̂

2∥x̂k+1 − xk∥2 ≥ − ϵ2

2ρ̂
.

Therefore

|γkg(x̂k+1)| ≤ |g(x̂k+1)| ≤ ϵ2

2ρ̂
< ϵ2.

Then (2.8) is satisfied, and x̂k+1 is an ϵ-FJ point for problem (2.5). Due to

∥x̂k+1 − xk∥ ≤ ϵ
ρ̂

< ϵ, xk is an (ϵ, ϵ)-FJ point for problem (2.5).

Similarly, for KKT stationarity, assume KKT conditions (1.5) are satisfied for

problem (2.5) with λk ≥ 0, ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1). Let ζ̂fk =

ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1) and ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1), then there

exists ν ∈ NX(x̂k+1) such that

ζ̂fk + ρ̂(x̂k+1 − xk) + λk(ζ̂gk + ρ̂(x̂k+1 − xk)) = −ν.

When ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂(1+B) , apply Lemma (3.5) here, we have

∥ζ̂fk + λkζ̂gk + ν∥ = ρ̂(1 + λk)∥x̂k+1 − xk∥ ≤ ϵ.

Then (2.9) is satisfied. When λk = 0, |λkg(x̂k+1)| = 0, thus we only consider

the case that λk is positive. In this case, we have Gk(x̂k+1) = 0 according to KKT

conditions, then

0 ≥ g(x̂k+1) = − ρ̂

2∥x̂k+1 − xk∥2 ≥ − ϵ2

2ρ̂(1 + B)2 .

Therefore
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|λkg(x̂k+1)| ≤ ϵ2λk

2ρ̂(1 + B)2 ≤ ϵ2

2ρ̂
< ϵ2.

Then (2.10) is satisfied, and x̂k+1 is an ϵ-KKT point for problem (2.5). Due to

∥x̂k+1 − xk∥ ≤ ϵ
ρ̂(1+B) < ϵ, xk is an (ϵ, ϵ)-KKT point for problem (2.5).

4.4.2 Proof of Lemma 3.2

Let z∗ = x̂k+1 be the optimal solution for problem (2.6), and µ = ρ̂ − ρ. Let ζF k ∈

∂Fk(z), ζGk ∈ ∂Gk(z), ζf = ζF k − ρ̂(z − z0) ∈ ∂f(z), and ζg = ζGk − ρ̂(z − z0) ∈ ∂g(z).

We aim to find L0 and L1 satisfying the quadratic growth condition below:

∀z ∈ {z|Gk(z) ≤ τ}, ∥ζF k∥2 ≤ L2
0 + L1(Fk(z) − Fk(z∗)), (4.9)

∀z ∈ {z|Gk(z) > τ}, ∥ζGk∥2 ≤ L2
0 + L1(Gk(z) − Gk(z∗)). (4.10)

For Fk(z) we have

L2
0 + L1(Fk(z) − Fk(z∗))

= L2
0 + L1(Fk(z) − Fk(z∗)) − ∥ζF k∥2 + ∥ζF k∥2

≥ L2
0 + L1(f(z) + ρ̂

2∥z − z0∥2 − Fk(z0)) − ∥ζf + ρ̂(z − z0)∥2 + ∥ζF k∥2

= L2
0+L1(f(z)−f(z0))+ L1ρ̂

2 ∥z − z0∥2−∥ζf∥2−2ρ̂ζT
f (z − z0)−ρ̂2∥z − z0∥2+∥ζF k∥2

≥ L2
0−L1M∥z − z0∥+ L1ρ̂

2 ∥z − z0∥2−M2−2ρ̂∥ζf∥∥z − z0∥−ρ̂2∥z − z0∥2+∥ζF k∥2

= (L2
0 − M2) − (L1 + 2ρ̂)M∥z − z0∥ + (L1

2 − ρ̂)ρ̂∥z − z0∥2+∥ζF k∥2

L1>2ρ̂=
(︃

L1

2 −ρ̂
)︃

ρ̂

(︄
∥z − z0∥− (L1 + 2ρ̂)M

(L1 − 2ρ̂)ρ̂

)︄2

+
(︄

L2
0−M2− (L1 + 2ρ̂)2M2

2(L1 − 2ρ̂)ρ̂

)︄
⏞ ⏟⏟ ⏞

A1

+∥ζF k∥2.

Pick L0 = 3M, L1 = 6ρ̂, then A1 ≥ 0, and (4.9) is satisfied.

Similarly, for Gk(z) we have
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L2
0 + L1(Gk(z) − Gk(z∗))

= L2
0 + L1(Gk(z) − Gk(z∗)) − ∥ζGk∥2 + ∥ζGk∥2

= L2
0 + L1(g(z) + ρ̂

2∥z − z0∥2) − ∥ζg + ρ̂(z − z0)∥2 + ∥ζGk∥2

= L2
0+L1g(z0)+L1(g(z)−g(z0))+ L1ρ̂

2 ∥z−z0∥2−∥ζg∥2−2ρ̂ζT
g (z−z0)−ρ̂2∥z−z0∥2+∥ζGk∥2

≥ L2
0+L1g(z0)−L1M∥z−z0∥+ L1ρ̂

2 ∥z−z0∥2−M2−2ρ̂∥ζg∥∥z − z0∥−ρ̂2∥z−z0∥2+∥ζGk∥2

= (L2
0 − M2 + L1g(z0)) − (L1 + 2ρ̂)M∥z − z0∥ + (L1

2 − ρ̂)ρ̂∥z − z0∥2 + ∥ζGk∥2

L1>2ρ̂=
(︃
L1

2 −ρ̂
)︃

ρ̂

(︄
∥z−z0∥− (L1+2ρ̂)M

(L1−2ρ̂)ρ̂

)︄2

+
(︄
L2

0−M2+L1g(z0)− (L1+2ρ̂)2M2

2(L1−2ρ̂)ρ̂

)︄
⏞ ⏟⏟ ⏞

A2

+∥ζGk∥2.

Pick L0 =
√︂

9M2 − 6ρ̂g(z0), L1 = 6ρ̂, then A2 ≥ 0, and (4.10) is satisfied.

Since we always have g(z0) ≥ glb, we pick L0 =
√︂

9M2 − 6ρ̂g(z0) and L1 = 6ρ̂ as a

uniform choice satisfied for all z0, which makes (4.9) and (4.10) hold.

4.4.3 Proof of Lemma 3.4

First we show the feasibility of the iterates xk before reaching an (ϵ, ϵ)-FJ point,

with δ and τ in (3.4). Assume Gk(xk) = g(xk) ≤ 0. For function Lk(x) (see (4.1)),

(ρ̂ − ρ)-strong convexity gives us

γk0Fk(xk+1) + γkGk(xk+1) ≥γk0Fk(x̂k+1) + γkGk(x̂k+1) + (γk0ζ̂F k + γkζ̂Gk)T (xk+1

− x̂k+1) + ρ̂ − ρ

2 ∥xk+1 − x̂k+1∥2.

Since λk0ζ̂F k + λkζ̂Gk ∈ −NX(x̂k+1) by FJ conditions, and due to xk+1 ∈ X, we

know

(γk0ζF k + γkζGk)T (xk+1 − x̂k+1) ≥ 0.
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Also since γkGk(x̂k+1) = 0 by FJ conditions, and xk+1 being an (δ, τ)-optimal

solution for the subproblem (2.6) yields Fk(xk+1) − Fk(x̂k+1) ≤ δ and Gk(xk+1) ≤ τ ,

then the first inequality becomes

γk0δ + γkτ ≥ ρ̂ − ρ

2 ∥x̂k+1 − xk+1∥2

∥x̂k+1 − xk+1∥ ≤
√︄

2(γk0δ + γkτ)
ρ̂ − ρ

.

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1).

Before we reach the (ϵ, ϵ)-FJ point x̂k+1 for the main problem (2.5), γk0 > 0, according

to the FJ conditions, there exists ν ∈ NX(x̂k+1) such that γk0(ζ̂fk + ρ̂(x̂k+1 − xk)) +

γk(ζ̂gk+ρ̂(x̂k+1−xk))+ν = 0 and ∥γk0ζ̂fk+γkζ̂gk+ν∥ > ϵ, which yields ∥x̂k+1−xk∥ > ϵ
ρ̂
.

Thus

∥xk+1 − xk∥2 ≥ 1
2∥x̂k+1 − xk∥2 − ∥x̂k+1 − xk+1∥2 >

ϵ2

2ρ̂2 − 2(γk0δ + γkτ)
ρ̂ − ρ

.

Take δ = (ρ̂−ρ)ϵ2

8ρ̂2 and τ = (ρ̂−ρ)ϵ2

8ρ̂2 , due to the fact that δ = τ , we have

∥xk+1 − xk∥2 >
ϵ2

2ρ̂2 − 2δ

ρ̂ − ρ
= ϵ2

2ρ̂2 − ϵ2

4ρ̂2 = ϵ2

4ρ̂2 . (4.11)

Therefore

g(xk+1) = G(xk+1) − ρ̂

2∥xk+1 − xk∥2

< τ − ρ̂

2 × ϵ2

4ρ̂2 ≤ (ρ̂ − ρ)ϵ2

8ρ̂2 − ϵ2

8ρ̂
= − ρϵ2

8ρ̂2 < 0.

This indicates that g(xk+1) ≤ 0 automatically if g(xk) ≤ 0, from which we can

induce that all the iterates are feasible for the main problem (2.5) before reaching an

(ϵ, ϵ)-FJ point.
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Next we show the feasibility of the iterates xk before reaching an (ϵ, ϵ)-KKT point,

with δ and τ in (3.5). Assume Gk(xk) = g(xk) ≤ 0. For the Lagrange function (see

(4.5)), (1 + λk)(ρ̂ − ρ)-strong convexity of Lk(x) gives us

Fk(xk+1) + λkGk(xk+1) ≥Fk(x̂k+1) + λkGk(x̂k+1) + (ζ̂F k + λkζ̂Gk)T (xk+1 − x̂k+1)

+ (1 + λk)(ρ̂ − ρ)
2 ∥xk+1 − x̂k+1∥2.

Since ζ̂F k + λkζ̂Gk ∈ −NX(x̂k+1) by KKT conditions, and due to xk+1 ∈ X, we

know

(ζF k + λkζGk)T (xk+1 − x̂k+1) ≥ 0.

Also since λkGk(x̂k+1) = 0 by KKT conditions, and xk+1 being an (δ, τ)-optimal

solution for the subproblem (2.6) yields Fk(xk+1) − Fk(x̂k+1) ≤ δ and Gk(xk+1) ≤ τ ,

the the first inequality becomes

δ + λkτ ≥ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk+1∥2

∥x̂k+1 − xk+1∥ ≤

⌜⃓⃓⎷ 2(δ + λkτ)
(1 + λk)(ρ̂ − ρ) ≤

√︄
2(δ + λkτ)

ρ̂ − ρ
.

According to Lemma 3.5, λk ≤ M+ρ̂D
σ

= B, then we have

∥x̂k+1 − xk+1∥ ≤
√︄

2(δ + Bτ)
ρ̂ − ρ

.

Before we reach the (ϵ, ϵ)-KKT point x̂k+1 for the main problem (2.5), according to

the KKT conditions, there exists ν ∈ NX(x̂k+1) such that (ζ̂fk +ρ̂(x̂k+1−xk))+λk(ζ̂gk +

ρ̂(x̂k+1 − xk)) + ν = 0 and ∥ζ̂fk + λkζ̂gk + ν∥ > ϵ, which yields ∥x̂k+1 − xk∥ > ϵ
(1+λk)ρ̂ .

Apply Lemma 3.5 here, we have ∥x̂k+1 − xk∥ > ϵ
(1+B)ρ̂ . Thus
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∥xk+1 − xk∥2 ≥ 1
2∥x̂k+1 − xk∥2 − ∥x̂k+1 − xk+1∥2 >

ϵ2

2(1 + B)2ρ̂2 − 2(δ + Bτ)
ρ̂ − ρ

.

Take δ = (ρ̂−ρ)ϵ2

8(1+B)2ρ̂2 and τ = (ρ̂−ρ)ϵ2

8(1+B)2ρ̂
min

{︂
1

ρ̂−ρ+ρ̂B
, 1
}︂

, and since τ ≤ (ρ̂−ρ)ϵ2

8(1+B)2(ρ̂−ρ+ρ̂B)ρ̂ ,

we have

∥xk+1 − xk∥2 >
(ρ̂ − ρ)ϵ2

4(1 + B)2(ρ̂ − ρ + ρ̂B)ρ̂2 . (4.12)

Therefore

g(xk+1) = G(xk+1) − ρ̂

2∥xk+1 − xk∥2

< τ − ρ̂

2 × (ρ̂ − ρ)ϵ2

4(1 + B)2(ρ̂ − ρ + ρ̂B)ρ̂2 = 0.

This indicates that g(xk+1) ≤ 0 automatically if g(xk) ≤ 0, from which we can

induce that all the iterates are feasible for the main problem (2.5) before reaching an

(ϵ, ϵ)-KKT point.

4.4.4 Proof of Lemma 3.5

Let x̂k+1 be the exact solution for problem (2.6). (ρ̂ − ρ)-strong convexity of Gk(x)

implies that the set {x|Gk(x) ≤ 0} has diameter D =
√︂

−8glb

ρ̂−ρ
. xk and x̂k+1 both lying

in this set yields ∥x̂k+1 − xk∥ ≤ D.

Let λk be the dual variable for problem (2.6). According to FJ conditions (1.5),

there exists ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies ζ̂F k + λkζ̂Gk ∈

−NX(x̂k+1). We then focus on the case that λk is positive. Under this condition,

Gk(x̂k+1) = 0 by KKT conditions. Then there exists ν ∈ NX(x̂k+1) such that
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ζ̂F k + λkζ̂Gk = −ν

λk = ∥ζ̂F k∥
∥ζ̂Gk + ν

λk
∥

. (4.13)

According to Assumption E, ∃v ∈ −N∗
X(x̂k+1) and ∥v∥ = 1, s.t. ζ̂

T

Gkv ≤ −σ. Since

ν ∈ NX(x̂k+1) and v ∈ −N∗
X(x̂k+1), we know νT v ≤ 0. Then

∥ζ̂Gk + ν

λk

∥ = ∥ζ̂Gk + ν

λk

∥ · ∥v∥ ≥ −(ζ̂Gk + ν

λk

)T v ≥ σ.

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂fk(x̂k+1). Since we have Assumption C and

∥x̂k+1 − xk∥ ≤ D, (4.13) becomes

λk = ∥ζ̂F k∥
∥ζ̂Gk + ν

λk
∥

≤
∥ζ̂fk∥ + ρ̂∥x̂k+1 − xk∥

σ
≤ M + ρ̂D

σ
= B.

Thus, constant value B = M+ρ̂D
σ

could be an uniform upper bound for the optimal

dual variables λk of problems (2.6).
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Chapter 5

Numerical Experiments

In this section, we illustrate the diversity of different approximate stationary points

reached by inexact proximal point methods. We consider a sparse phase retrieval

(SPR) problem in Section 1.2. Although we always saw our iterates converge as

xk → x∗, but with the different levels of sparsity controlled by the SCAD constraint,

we saw three distinct behaviors. When we control our problem under a high sparsity,

our method is more likely to converge to a sparse solution locates on the boundary of

the feasible region (with the constraint being active), where we may or may not have

the strengthened constraint qualification (σ-strict MFCQ condition) satisfied. This

make our iterates converge to either an approximate KKT stationary solution with the

Lagrange multipliers of reasonable magnitude, or only an approximate FJ stationary

solution with the Lagrange multipliers blowing up to infinity. If we relax our sparsity

level and allow a lower sparsity, our method will have higher probability to converge

to a solution locates in the interior of the feasible region (with the constraint being

inactive and hence the optimal Lagrange multiplier equals to zero). In this case, we

can reach the same accuracy of approximate FJ and KKT stationarity.

Phase retrieval is a common problem in various applications, such as imaging,

X-ray crystallography and transmission electron microscopy. The phase is recovered

by solving linear equations up to a universal sign change. We construct our sparse

phase retrieval problem as:
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min
x∈X

f(x) = 1
m

∥(Ax)2 − b2∥1 = 1
m

m∑︂
i=1

|(aT
i x)2 − b2

i |

s.t. g(x) =
n∑︂

i=1
SCAD(xi) − p ≤ 0.

(5.1)

To control sparsity, SCAD : R → R is a SCAD function given by:

SCAD(u) =

⎧⎪⎪⎨⎪⎪⎩
2|u| 0 ≤ |u| ≤ 1,

−u2 + 4|u| − 1 1 < |u| ≤ 2,

3 |u| > 2.

(5.2)

In this problem, f : Rn → R and g : Rn → R are weakly convex and nonsmooth

continuous functions, X = {x|xi ∈ [−10, 10] ∀i = 1, ..., n}, m = 240, n = 120,

A ∈ Rm×n, aT
i is the i-th row of A and b ∈ Rm. The value of p ∈ [0, 3n) varies to

control the sparsity of our problem. We generate each element of A as aij ∼ N(0, 1).

For the elements x∗
i of x∗, we generate 40 of them uniformly in [−10, −5]⋃︁[5, 10], and

set the other 80 entries as 0. We also generate η ∼ N(0, Im) and b2 = (Ax∗)2 + η. Our

algorithm starts from a feasible initial point x0 = [0.25, ..., 0.25]T with the targeted

stationarity ϵ = 0.01.

According to Lemma B.1 in [22], f(x) is expected to be 2-weakly convex. Let amax

denote the maximum absolute value of the elements of A, and we set ρ = 2amax > 2

(this should be checked in practical, since amax > 1 with high probability), ρ̂ = 2ρ. It

is also easy to derive that any subgradient of f(x) should not exceed 20n3/2a2
max in X,

and we set M as this value. Besides, we have flb = 0 and glb = −p as the functional

lower bounds.

An interesting fact of g(x) is that, when p can be divided by 3, then there always

exists subproblems that do not have Slater points. Consider x = [3, 3, · · · , 3, 0, 0, · · · , 0]

which consists of p/3 entries of 3 and (n − p/3) entries of 0. When our iterate locates

at x, we will not have the σ-strict MFCQ condition hold for our subproblem at such a

point. Thus by this way our method will not be able to reach an approximate KKT

point for our main problem.
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In practical, it is a difficult task to know the exact solutions x̂k+1 of the subproblems,

thus the way we compute stationarity and the Lagrange multipliers should be designed

carefully. Since our nearly optimal and feasible solutions xk+1 are sufficiently close

to x̂k+1, we use xk+1 as the substitute of x̂k+1 in our computation. For the Lagrange

multipliers, we accumulate the stepsizes for solving each subproblem respectively for

Gk(x) and Fk(x) within a huge amount of steps (controlled by measuring the amount

of movements of the subiterates) and compute their ratio as an approximate evaluation.

That is, when t → ∞, we have

z∗ = lim
t→∞

zt = z0 + lim
t→∞

(︄∑︂
t∈I

αtζF kt +
∑︂
t∈J

αtζGkt

)︄
.

Notice that zt converges to z∗, and ∑︁∞
t=0 αt → ∞. Therefore

∑︁
t∈I αt∑︁∞
t=0 αt

lim
t→∞

ζF kt +
∑︁

t∈J αt∑︁∞
t=0 αt

lim
t→∞

ζGkt

= lim
t→∞

(︄∑︁
t∈I αtζF kt∑︁∞

t=0 αt

+
∑︁

t∈J αtζGkt∑︁∞
t=0 αt

)︄

= lim
t→∞

z∗ − z0∑︁∞
t=0 αt

= 0.

This shows that we can use
∑︁

t∈I
αt∑︁∞

t=0 αt
as an approximation of γk0, and

∑︁
t∈J

αt∑︁∞
t=0 αt

as an

approximation of γk in the FJ conditions at the optimal point for the subproblems.

We can accordingly compute the optimal Lagrange multipliers as λk =
∑︁

t∈J
αt∑︁

t∈I
αt

in the

KKT conditions. Furthermore, due to the large time consumption of the potentially

extremely large value of the inner step number guarantees, we stop our inner steps

as long as a sufficiently tiny movement of the averaged nearly feasible subiterates

is detected (i.e. we stop when ∥z̄t+1 − z̄t∥ ≤ η as t ∈ I, with η = 10−8, and note

that z̄t =
∑︁

t∈I
(t+1)F (zt)∑︁

t∈I
(t+1) where I

⋃︁
J = {0, 1, ..., t − 1}). This allows us to finish our

numerical experiments with reasonable time consumption.
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5.1 Sparse Phase Retrieval with FJ Stationarity

In our first numerical experiment, we randomly generate our data and set p = 120. In

this example below, we could only find an approximate FJ stationary point for the

main problem, but not converge to an approximate KKT stationary point. This is

because with p = 120 that could be divided by 3, it tends to be no Slater points in

the subproblems when we are reaching the final iteration, and the σ-strong MFCQ

condition fails to hold as we end our method. We could correspondingly see that the

Lagrange multipliers blow up to infinity, and get the objective function value decrease

without approaching a local minimum. The numerical results are shown in Figure 5-1.

Figure 5-1a shows that our iterates do not end at a local minimum point, and

Figure 5-1b provides the feasibility of our iterates showing we approach the boundary

of the feasible region. From Figure 5-1c we can see that our targeted FJ stationarity is

attained finally, but Figure 5-1d indicates that KKT stationarity is not satisfactorily

yielded. This is due to the blow up of the optimal Lagrange multipliers for our

subproblems, which can be seen in Figure 5-1e and 5-1f.

5.2 Sparse Phase Retrieval with KKT Stationarity

In the second numeric, we use another set of randomly generated data and set p = 121.

Under this setting, we would be sure to have Slater points for every subproblem no

matter where our current iterate locates. This is because the subgradient set of g(x) at

any x ∈ {x|g(x) = 0} contains the zero vector only when all the entries xi, i = 1, ..., n

of x satisfy xi ∈ (−∞, 2]⋃︁{0}⋃︁[2, ∞), g(x) can be divided by 3 in this situation.

Otherwise, for any ζg ∈ g(x), we can derive an lower bound for ∥ζg∥ to make the

σ-strong MFCQ condition hold, which means Slater points exist. Therefore, it is

guaranteed that our algorithm can converge to an approximate FJ point, which is

also an approximate KKT point with a worse level of approximate stationarity if the
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final Lagrange multiplier is positive. We can decide the level of approximate FJ or

KKT stationarity as our target, and set our parameters accordingly. Considering

the case that the absolute values of 40 entries of x larger than or equal to 3 and 80

of them being 0, it is derived that σ ≤
√

2ρ̂, and thus we set σ = 2
√

2. Specially,

to show the difference processes of converging to the same level of approximate FJ

and KKT stationary points, we set our targeted stationarity ϵ = 0.02. As we have

expected, when we aim to find an (ϵ, ϵ)-FJ point, with the corresponding parameters

set, our method will stop earlier without reaching the same level of approximate KKT

stationarity, due to the positive values of the Lagrange multipliers; When we aim to

find an (ϵ, ϵ)-KKT point and set the corresponding parameters, our method will finally

attain an (ϵ, ϵ)-KKT point, which consumes much more iterations than reaching the

same level of approximate FJ stationarity. We could see that the Lagrange multipliers

stay in a reasonable positive range without blowing up, and the objective values

converge to local minimums. Let xlo denote the stationary point we are converging to.

The numerical results are shown in Figure 5-2 and Figure 5-3.

Figure 5-2 is generated as we are seeking for the targeted FJ stationarity. Figure

5-2a shows that our iterates converge to a local minimum point, and Figure 5-2b

provides the feasibility of our iterates showing we approach the boundary of the

feasible region. From Figure 5-2c we can see that our targeted FJ stationarity is

attained finally, and Figure 5-2d shows that we also reach the corresponding level of

KKT stationarity. Figure 5-2e and 5-2f reveal the varying of the Lagrange multipliers.

Figure 5-3 is generated as we are seeking for the targeted KKT stationarity. Figure

5-3a shows that our iterates converge to a local minimum point, and Figure 5-3b

provides the feasibility of our iterates showing we approach the boundary of the

feasible region. From Figure 5-3c we can see that our targeted KKT stationarity is

attained finally. Figure 5-3d indicate that with the Lagrange multipliers larger than

1, although we have already reached our targeted FJ stationarity and the Lagrange
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multipliers do not blow up, the KKT stationarity we attained do not meet our goal,

and our algorithm continues running until we achieve our targeted KKT stationarity.

5.3 Phase Retrieval with Inactive Stationarity

In the third numeric, we use another set of randomly generated data and set p = 320.

Under such a relatively large value of p, we do not expect for sparse solutions anymore,

and the loose restriction of the constraint results in higher possibility of attaining

inactive stationarity. In this example, we would finally reach an approximate stationary

solution with the constraint inactive at that point, which means its stationarity

measured by FJ and KKT conditions are the same. The numerical results are shown

in Figure 5-4.

Figure 5-4a shows that our iterates converge to a local minimum point, and Figure

5-4b provides the feasibility of our iterates showing we approach the boundary of

the feasible region. From Figure 5-4c we can see that our targeted FJ stationarity is

attained finally, and Figure 5-4d shows that our targeted KKT stationarity is also

attained at the same time and the same level. Accordingly, the Lagrange multipliers

converge to zero in Figure 5-4e and 5-4f.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-1. Finding an (ϵ, ϵ)-FJ point for Example 1
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(a) (b)

(c) (d)

(e) (f)

Figure 5-2. Finding an (ϵ, ϵ)-FJ point for Example 2
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(a) (b)

(c) (d)

Figure 5-3. Finding an (ϵ, ϵ)-KKT point for Example 2
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(a) (b)

(c) (d)

(e) (f)

Figure 5-4. Finding an (ϵ, ϵ)-FJ/KKT point for Example 3
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Chapter 6

Conclusion

In this paper, we analyzed an inexact proximal point method using switching subgra-

dient method as an oracle for nonconvex nonsmooth constrained optimization. We

derived new convergence rates to attain FJ and KKT stationarity, while guaranteeing

feasibility for our solutions and removing the restrictions on the compactness of domain.

The performance of our method for solving sparse phase retrieval problems turns out

to be consistent with our theoretical expectations.

For the future directions, it is worthy to explore more stable methods to make

the Fritz John condition certificate when constraint qualification fails to be satisfied.

Furthermore, stochastic versions of our method could be designed and analyzed, like

[7, 22] in unconstrained setting. Finally, we may seek for guarantees of speedup for

our method when we have sharpness (see [52]) at the stationary points.
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