
IMBALANCED CRYPTOGRAPHIC PROTOCOLS

by
Gijs Van Laer

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
October, 2022

© 2022 Gijs Van Laer
All rights reserved

Abstract

Efficiency is paramount when designing cryptographic protocols, heavy mathematical opera-

tions often increase computation time, even for modern computers. Moreover, they produce

large amounts of data that need to be sent through (often limited) network connections.

Therefore, many research efforts are invested in improving efficiency, sometimes leading

to imbalanced cryptographic protocols. We define three types of imbalanced protocols,

computationally, communicationally, and functionally imbalanced protocols.

Computationally imbalanced cryptographic protocols appear when optimizing a protocol

for one party having significantly more computing power. In communicationally imbalanced

cryptographic protocols the messages mainly flow from one party to the others. Finally, in

functionally imbalanced cryptographic protocols the functional requirements of one party

strongly differ from the other parties.

We start our study by looking into laconic cryptography, which fits both the computational

and communicational category. The emerging area of laconic cryptography involves the

design of two-party protocols involving a sender and a receiver, where the receiver’s input is

large. The key efficiency requirement is that the protocol communication complexity must be

independent of the receiver’s input size. We show a new way to build laconic OT based on

the new notion of Set Membership Encryption (SME) – a new member in the area of laconic

cryptography. SME allows a sender to encrypt to one recipient from a universe of receivers,

while using a small digest from a large subset of receivers. A recipient is only able to decrypt

ii

the message if and only if it is part of the large subset.

As another example of a communicationally imbalanced protocol we will look at NIZKs.

We consider the problem of proving in zero-knowledge the existence of exploits in executables

compiled to run on real-world processors.

Finally, we investigate the problem of constructing law enforcement access systems

that mitigate the possibility of unauthorized surveillance, as a functionally imbalanced

cryptographic protocol. We present two main constructions. The first construction enables

prospective access, allowing surveillance only if encryption occurs after a warrant has been

issued and activated. The second allows retrospective access to communications that occurred

prior to a warrant’s issuance.

Thesis Readers

Dr. Matthew D. Green (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Abhishek Jain
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. J. Ayo Akinyele
CEO/Co-Founder
Bolt Labs Holdings, Inc.

iii

Acknowledgments

The road to graduating in a PhD program is very different for everyone pursuing this goal.

The reason I started this path is because when you want to work on applied cryptography, at

this level of detail, there is no easy way to do this. The few companies working on applied

cryptography almost always require a PhD, so it has been on my list of goals for a while.

Even though I do not necessarily want to work at such company, it is out of pure interest

that I wanted to get my hands dirty with real applied cryptography. Besides the real research

work, I had the good fortune to get the chance to implement some of the cryptographic

protocols as part of that research and during my work as a cryptographic engineer at Bolt

Labs, which only further enriched my knowledge in this field. The real hard-core research has

not always been (and maybe still isn’t) my forte, but when I have to dive into the details of a

construction of some cryptographic primitive based on some mathematical equations, I really

enjoy it. So, if you ask me, has this part of my career been hard? Yes. Did I enjoy it and

would I do it again? Absolutely. Nevertheless, I am happy to be at the end of this journey.

New opportunities will open up in the near future, different challenges, new things to learn.

Of course, this is a pursuit that you cannot do on your own. I was extremely lucky to be

advised by Matthew Green. Even though I sometimes needed days, if not weeks to understand

one of your passionate explanations about some esoteric cryptographic system, I’ve learned a

lot by doing so. Thank you for being patient with me while I was working through these

things. Next, it was Abhishek Jain’s enthusiasm in some of the problems I’ve been working

iv

on that kept me going, his insights and broad knowledge of the field were invaluable. I would

like to thank you both for the amazing guidance, learnings, and opportunities.

Thank you to my friend and coach, Roel Buyzen, without whom I would have crashed

and burned long time ago. Thanks for all the amazing conversations about how to “just get

the work done”, or the conversations that were just more monologues; me complaining and

ordering my thoughts. All these conversations were indispensable.

I would also like to thank Gabriel Kaptchuk, whom I have had the opportunity to work

with on almost all of the projects and papers I worked on. Your relentless enthusiasm and

never tiring in all of your work, never less than 5 projects on your plate at the same time.

Likewise, I would like to thank the amazing colleagues in the lab that were always open for a

good old nerdy conversation about deep cryptographic details, Arka Choudhuri, Gabrielle

Beck, Alishah Chator, Aarushi Goel, Zhenzhong Jin, Tushar Jois, Stephan Kemper, and Max

Zinkus. And more recently, and unfortunately due to the pandemic we had less chance to

collaborate, but also a thank you to Harry Eldridge, Aditya Hegde, and Pratyush Tiwari.

Without the great team at Bolt Labs where I had the opportunity to apply the research

directly into practice, I definitely would not have made the end of this PhD. Thank you to

Ayo Akinyele for giving me this opportunity, and being a mentor along the way. Thanks to

Colleen Swanson, Marcella Hastings, Solomon Akinyele, San Tran, and Vidya Akavoor, for

being such a great team and always open for a discussion about cryptography, code, how to

run a business, or just any random subject.

Also, thanks to my business partner, Lars Veelaert, for listening to me rambling about

some cryptography from time to time. For building a business together while I was still on

this path to graduation, for patiently waiting for me to be done with this PhD. Well, I am

ready now, let’s build this successful startup that we have been talking about and working

on.

v

Last, but definitely not least, I would like to thank my friends and family for their support,

in particular, my wife, Cathy, without whom I would not even have made it to the US for

starting the PhD. You’ve always supported me unconditionally, and would take care of our

children as the best mother in the world while I had to work on this little dissertation. Also,

thanks to my two kids, Linus and Juno, who, let’s be honest, actually wrote this dissertation.

vi

Contents

Abstract . ii

Acknowledgments . iv

Contents . vii

List of Tables . xi

List of Figures . xiii

Chapter 1 Introduction . 1

1.1 Laconic Cryptography . 3

1.2 Efficient Non-Interactive Proofs . 5

1.3 Abuse Resistant Law Enforcement Access Systems 7

1.4 Organization of This Work . 9

Chapter 2 Preliminaries . 10

2.1 Definitions . 11

2.1.1 Laconic Oblivious Transfer . 11

2.1.2 Laconic Private Set Intersection . 12

2.1.3 Broadcast Encryption . 14

2.1.4 Proof-of-publication ledgers . 15

vii

2.1.5 Authenticated Communication . 16

2.1.6 Simulation Extractable Non-Interactive Zero Knowledge 17

2.1.7 Lossy Encryption . 18

2.1.8 Multi-sender Non-interactive Secure Computation 20

2.1.9 Witness Encryption and Extractable Witness Encryption 21

2.1.10 Programmable Global Random Oracle Model 22

2.2 Assumptions . 22

2.2.1 Composite Order Bilinear Groups . 23

Chapter 3 Efficient Set Membership Encryption and Applications 26

3.1 Introduction . 26

3.1.1 Applications . 31

3.1.2 Technical Overview . 32

3.2 Set Membership Encryption . 39

3.2.1 Laconic OT from Set Membership Encryption 41

3.3 New Broadcast Encryption Scheme . 44

3.4 SME Construction . 51

3.5 SME with Constant Size Decryption Keys 59

3.6 Extensions and Applications . 63

3.6.1 Optimization of the Laconic OT Construction 63

3.6.2 Updatable Laconic OT . 64

3.7 Evaluation and Comparison . 66

3.7.1 Asymptotic Efficiency . 67

3.7.2 Concrete Efficiency . 68

3.8 Related Work . 71

3.9 Conclusion . 72

viii

Chapter 4 Efficient Proofs of Software Exploitability for Real-world Pro-

cessors . 74

4.1 Introduction . 74

4.1.1 Contributions . 77

4.2 Technical Overview . 79

4.2.1 Background: Zero-Knowledge and Ben-Sasson et al.’s RAM Reduction 79

4.2.2 Formalizing Exploits . 82

4.2.3 Producing Efficient ZK Proofs of Exploit 83

4.3 Related Work . 86

4.4 Modeling Real-World Processors . 88

4.4.1 Modeling MSP430 Processor Semantics 88

4.4.2 Interacting with the Program . 90

4.5 Formalizing Exploits . 94

4.6 Circuit Compiler . 96

4.7 Cryptographic Optimizations . 98

4.7.1 Memory Permutation Proof (over Zq) 99

4.7.2 Ring Switching . 101

4.8 Implementation and Evaluation . 104

Chapter 5 Abuse Resistant Law Enforcement Access Systems 108

5.1 Introduction . 108

5.1.1 Towards Abuse Resistance . 114

5.1.2 Technical Overview . 117

5.1.3 Contextualizing ARLEAS In The Encryption Debate 124

5.2 Related work . 127

5.3 Definitions . 128

ix

5.4 Lossy Tag Encryption . 128

5.4.1 Defining ARLEAS . 132

5.5 Prospective Solution . 137

5.5.1 UC-Realizing Fv,t,p,θ,pro
ARLEAS for Identity-Based Predicates 138

5.5.2 UC-Realizing Fv,t,p,θ,pro
ARLEAS for Arbitrary Predicates 147

5.6 Retrospective Solution . 158

5.6.1 UC-Realizing Fv,t,p,θ,ret
ARLEAS . 159

5.7 On the Need for Extractable Witness Encryption 168

5.8 An ARLEAS’ Parameterizing Functions in Practice 172

5.8.1 Service Providers . 173

5.8.2 Transparency Functionalities . 173

5.8.3 Policy Functionalities . 174

5.8.4 Metadata and Warrant Scope Check Functionalities 175

Conclusions and general discussion . 178

References . 180

x

List of Tables

3-I Overview of our asymptotic and concrete efficiency in comparison with Cho et

al. [59], Goyal et al. [108], and Alamati et al. [9] for database size n = 231. (DDH

= Decisional Diffie-Hellman assumption, q-DBDHI = q-Decisional Bilinear

Diffie-Hellman inversion assumption, SDP = Subgroup Decision Problem in

composite order bilinear groups, sBDHE = selective Bilinear Diffie-Hellman

Exponentiation assumption) . 28

3-II Comparison of asymptotic computation and communication efficiency. 68

3-III Comparison of concrete efficiency, with n = 231. Cho et al. is estimated over

elliptic curve secp192k1 with λ = 96, Goyal et al. and our work are estimated

on the BLS12-381 curve with security parameter roughly 120 bits, and Alamati

et al. is estimated using an RSA group of 2048 bits to achieve around 128 bit

security. (kB = 1000 bytes, MB = 1 million bytes, GB = 1 billion bytes, PB

= 1 quadrillion bytes, EB = 1 quintillion bytes) 70

4-I Benchmarks for proofs of exploits (at 128 bits of security) for a representative

subset of the Microcorruption exercises. The selected exercises cover the most

important exploit categories, including buffer overflow, code injection, and

bypassing memory protection. These exercises are ordered by the difficulty of

the exercise, as estimated by the Microcorruption creators. 101

xi

4-II Comparative Measurements for NIZKs computing 511 iterations of SHA256

(Merkle tree with 256 leaves). Measurements for prior work from [196] on

an Amazon EC2 c5.9xlarge with 70GB of RAM and Intel Xeon platinum

8124m CPU with 18 3GHz virtual cores. Because these proof systems and

implementations were unable to exploit parallelism, all benchmarks were run

on a single thread. Reverie was benchmarked on a Digital Ocean virtual

machine with 32 virtual cores and 256GB of memory. We note that our choice

of protocol and our implementation is able to take advantage of the parallelism

offer by the multiple cores, which is part of the reason Reverie is able to

dramatically out-perform prior work. 105

4-III Breakdown of processor circuit components 106

xii

List of Figures

Figure 2-1 The ideal functionality for laconic PSI (FPSI) 13

Figure 2-2 Adaptive security game for broadcast encryption. 15

Figure 2-3 Ideal functionality for a proof-of-publication ledger, from [60]. 16

Figure 2-4 The message authentication ideal functionality FAUTH supporting static

corruption, adapted from [53]. 17

Figure 2-5 Ideal functionality for generating a Common Reference String, from [54]. 19

Figure 2-6 Ideal functionality for multi-sender NISC, from [7]. 21

Figure 2-7 Ideal functionality for the global programmable random oracle, from [51]. 23

Figure 3-1 A schematic description of using SME to construct laconic OT based

on an example database D. Note that for ease of presentation, we

use simplified versions of the algorithms omitting any details such as

a common reference string. Each Ri represents a receiver in the SME

scheme. 37

Figure 3-2 Security game for set membership encryption. 41

Figure 3-3 Selective security game for set membership encryption. 42

xiii

Figure 4-1 A high level overview of our toolchain for producing efficient zero-

knowledge proofs for RAM programs on real processors. (1) The

process starts with a one-time preprocessing phase which compiles

the processor model into building blocks which are later assembled

into a complete circuit. The circuit compiler (which we instantiate

using Verilog and Yosys) generates the circuit for evaluating a single

instruction, and the circuitry required to perform the permutation proof

and check memory correctness. (2) When the prover wishes to create a

proof, they feed the software, represented as assembly in the appropriate

ISA, and any private program inputs into the processor emulator. The

processor emulator runs the program to its conclusion and outputs

the execution trace. (3) Based on the length of the trace, the RAM

Reduction Assembler takes the preprocessed circuit components and

creates the completed circuit. (4) The program trace, produced by

the processor emulator, and the completed circuit, produced by the

RAM reduction assembler, into any zero-knowledge prover to produce

the final proof. We include the instantiations we use for our proofs of

vulnerability in parenthesis. 81

Figure 4-2 Unknown Permutation Proof Circuit (Cshuffle). The circuit checks if

two secret lists are permutations of each other. 99

Figure 5-1 Ideal functionality for an Abuse Resistant Law Enforcement Access

System. 135

Figure 5-2 The real world experiment for a protocol implementing Fv,t,p,θ,mode
ARLEAS . . 136

xiv

Chapter 1

Introduction

In the design of cryptographic protocols, efficiency is paramount. Often, the heavy mathe-

matical computations that are involved when performing a cryptographic protocol lead to

very high computation time, this pushes modern computers to their limits. This problem

gets exacerbated when the same cryptographic computation needs to be performed multiple

times. Moreover, some protocols output large chunks of data that often have to be sent to

another party over a (sometimes limited) network connection. Therefore, much research

effort is focused on optimizing both the communication and computational cost of protocols.

Often, a trade-off needs to be made between communication and computational cost, where

a certain choice for one or the other can highly depend on the specific applications of the

protocol.

In exploratory initial work, many protocols are optimized in such a way that asymptotic

computational efficiency is minimized, some of the research includes lower bounds on said

efficiency. In practice, however, finding the best asymptotic solution is not always desirable.

Often, new implementations of existing protocols are found to have worse asymptotic efficiency,

but orders of magnitude better real-world efficiency. In this work, we are more interested in

the concrete optimizations, rather than the asymptotic efficiency of the protocols.

Different participants of a cryptographic protocol can have very different requirements,

1

needs, and limitations. For example one of the parties can have significantly more com-

putation power, more storage, or faster network connection. Moreover, a participant can

have very different security or privacy needs than the others. Many cryptographic protocols

are specifically optimized for such settings, therefore, we introduce the term of imbalanced

cryptographic protocols to describe the protocols that accommodate these different or imbal-

anced expectations of the participants. Imbalanced protocols try to strike the exact trade-off

between theoretical optimizations and concrete efficiency in order to optimize the protocol in

a real-world situation. Furthermore, we define the following three categories of imbalanced

protocols:

Computationally imbalanced protocols: In this setting, one of the participants has

significantly more computation power. Therefore, it makes sense to optimize a protocol

by moving the heaviest part of the protocol to the participant with the most computing

power, e.g. in the common case of running a protocol between a client and server. Here,

the server often has large computational capacity while the client can be more limited,

e.g. a mobile phone. We introduce the term computationally imbalanced cryptographic

protocol to describe this type of protocols. This could lead to a theoretically less efficient

protocol, but can be much more practical given this difference in computing power.

Communicationally imbalanced protocols: Also communicationally, protocols can be

very imbalanced, meaning most of the data flows from one party to the others and

not necessarily in the other direction. The most extreme example is a non-interactive

protocol. In that case, there is only one round of communication going from one party

to another, and no data is flowing back. Nevertheless, a protocol with many rounds

can still be imbalanced when the difference in the amount of data that is flowing from

one party to the other is significantly different.

Functionally imbalanced protocols: The last category is a little different, as this is

2

not necessarily about the efficiency of a protocol. But rather about the abilities of the

different parties with respect to the data that has been shared. For example, you can

imagine a protocol where a certain party can decrypt a ciphertext without restrictions,

while the other party needs to comply with certain extra rules or can only obtain a

function over the plaintext and not the plaintext itself.

Note that these types of protocols are merely a categorization to talk about general properties

of the protocols. They are not strictly defined by certain numbers or bounds, but allow us

to understand the nature of certain optimizations within protocol research. Nevertheless,

we look into specific instances of these protocols and their applications in this dissertation,

examining some of the properties that these protocols can have. Now that we have defined

these categories, we study different protocols that are part of one or more of these categories.

We explore these different categories based on three different protocols and their ap-

plications. First, we look into laconic cryptography which is situated within two of our

categories, computationally and communicationally imbalanced protocols. Next, we look at

non-interactive proofs of knowledge of an exploit in software binaries for real-world processors

as an application of a communicationally imbalanced protocol. Finally, we look at a function-

ally imbalanced protocol by looking at abuse resistant law enforcement access systems. Now,

we briefly introduce all three of these protocols and their applications.

1.1 Laconic Cryptography

First, we look at the area of laconic cryptography, an area that tries to excel in both the

computational as well as the communicational imbalanced categories. Recently, Cho et al. [59]

introduced the elegant notion of laconic oblivious transfer, in laconic cryptography researchers

try to heavily optimize the communication for one of the parties in an interactive protocol

even if that party has a large input to the protocol. The first laconic protocol is laconic

3

Oblivious Transfer (ℓOT). Here, a receiver has a large database of selection bits and a sender

has two labels for every position in the database. Based upon the selection bit at every

position in the database, the sender would like to send one of the two labels. Furthermore,

without the receiver revealing their selection bits and without the sender revealing the second

label corresponding to the opposite bit. To make this protocol laconic, the receiver should

only send little information to the sender, i.e. much smaller than the full size of the database.

Moreover, the sender’s computation time should be kept low as well, i.e. independent of the

receiver’s database size.

Later, other laconic protocols were introduced such as laconic private set intersection [8,

72, 73, 91, 168], where the receiver tries to find the intersection of their large set with a smaller

set from a sender, again without revealing any extra information except the intersection itself.

Similarly, to make this protocol laconic, the goal is to keep the communication from receiver

to sender small and the senders computation time low.

In this dissertation we look specifically at improving laconic Oblivious Transfer. Previous

improvements to regular Oblivious Transfer, called OT extensions, focused around reducing

the computational complexity of multiple OT interactions, but still require interactive

communication that grows linearly with the number of invocations. Laconic Oblivious

Transfer tries to also reduce that communicational overhead, starting with the work of Cho

et al.. However, the work of Cho et al. left much room for improvement. This is due to their

use of complex garbled circuits. This only leads to a theoretical and asymptotic optimized

solution, but nowhere near practical, even though the underlying primitive was improved as

part of several follow up works [47, 62, 70, 71, 90, 92, 107].

Later, the work of Goyal et al. [108] and Alamati et al. [9] introduced a new balance in

asymptotic efficiency leading towards a concretely efficient construction of laconic OT.

Set Membership Encryption. In Chapter 3, we introduce a new laconic primitive called

4

set membership encryption (SME). In this primitive, which can be viewed as a derivative

of a public key broadcast encryption system, a sender can encrypt a message to a receiver,

but takes an extra value as input to the encryption function. This value is a digest of a

subset of the full set of possible receivers. The receiver can decrypt the message if and only

if they were part of the subset that was used to compute the digest. The security property

captures exactly this notion by disallowing decryption when the receiver is not in the set,

even when the secret keys of all parties are revealed to the adversary, which makes this

quite an interesting and strong primitive. We show how to construct this primitive based on

two specific broadcast encryption (BE) systems. The BE scheme has double purpose and

we have to use it as an identity-based encryption scheme as well to achieve our specific set

membership security property.

Next, we show how we can use SME to construct laconic OT. Therefore, we seem to be

able to leverage BE and IBE to construct SME. However, we stress that this construction is

making non-black box use of the primitives, it does not appear to be possible to generalize

this transformation. Nevertheless, the resulting schemes turn out to be quite efficient in

comparison with previous work.

We compare the efficiency of our derived laconic OT construction with previous work on

laconic OT. Compared to Cho et al., our scheme shows an enormous improvement, which is

in line with Goyal et al. and Alamati et al.. However, we also show a significant concrete

improvement over these works.

1.2 Efficient Non-Interactive Proofs

Second, we will be looking into protocols that reduce the communication cost to achieve a

communicationally imbalance protocol. Communication cost can be reduced in two ways: on

one hand, one can reduce the number of rounds of communication, i.e. reducing the number

5

of messages going from one party to another. The ultimate goal of this reduction being one

round of communication: this is called a non-interactive protocol. Although, non-interactivity

obviously cannot be achieved for every protocol, it can be achieved in unexpected places.

The best known example of a non-interactive protocol is in the setting of zero-knowledge

proofs. Here, a prover can convince a verifier of the veracity of a statement without revealing

the witness for that statement. Even without changing the number of rounds, a second way

to optimize communication is by reducing the size of the messages. Again, theoretically this

can be done by trying to achieve lower asymptotic efficiency, but this is not always the best

concrete solution. We won’t be studying how to construct such non-interactive protocol, but

we will look into a very practical application, i.e. proving knowledge of an exploit in an

existing binary for a real-world processor.

In Chapter 4 of this work, we will look at an extreme case of a communicationally

imbalanced cryptographic protocol, by optimizing the number of communication rounds to

only one, leading to a non-interactive protocol. The most famous of such protocols is the

non-interactive zero knowledge proof (NIZK), which has been studied thoroughly and is still a

very active field of research. In these protocols, a prover tries to convince a receiver of the fact

that a statement is in an NP-language, without revealing anything about the witness. The

communication only happens from the prover to the receiver to achieve non-interactiveness.

Efficient Proofs of Software Exploitability for Real-world Processors. Instead of

studying general NIZKs or improving the existing NIZK protocols, we take a very practical

approach to see how very complicated versions of such proofs are indeed practical. We consider

the problem of proving in zero-knowledge the existence of vulnerabilities in executables

compiled to run on real-world processors. We demonstrate that it is practical to prove

knowledge of real exploits for real-world processor architectures without the need for source

code and without limiting our consideration to narrow vulnerability classes. To achieve

6

this, we devise a novel circuit compiler and a toolchain that produces highly optimized, non-

interactive zero-knowledge proofs for programs executed on the MSP430, an ISA commonly

used in embedded hardware. Our toolchain employs a highly optimized circuit compiler and

a number of novel optimizations to construct efficient proofs for program binaries. We use

techniques that were set out by Ben-Sasson et al. [29, 30, 32], as well as the KKW [132]

MPC-in-the-head based proof system, to build such practical NIZK prover and verifier. To

demonstrate the capability of our system, we test our toolchain by constructing proofs for

challenges in the Microcorruption capture the flag exercises [3].

1.3 Abuse Resistant Law Enforcement Access Systems

Now that we have explored two protocols in more detail, a laconic OT system and the

practicality of a NIZK system, we can look at a way of combining several protocols including

the once studied before. By doing so we are looking into functionally imbalanced protocols.

Rather than optimizing for efficiency, we try to build a protocol where all different parties

have very different requirements and expectations of the protocol.

The increasing deployment of end-to-end encrypted communications services has ignited

a debate between technology firms and law enforcement agencies over the need for lawful

access to encrypted communications. Unfortunately, existing solutions to this problem suffer

from serious technical risks, such as the possibility of operator abuse and theft of escrow key

material. In this work we investigate the problem of constructing law enforcement access

systems that mitigate the possibility of unauthorized surveillance. We first define a set of

desirable properties for an abuse-resistant law enforcement access system (ARLEAS), and

motivate each of these properties. We then formalize these definitions in the Universal

Composability (UC) framework [53], and present two main constructions that realize this

definition. The first construction enables prospective access, allowing surveillance only if

7

encryption occurs after a warrant has been issued and activated. The second, more powerful

construction, allows retrospective access to communications that occurred prior to a warrant’s

issuance. To illustrate the technical challenge of constructing the latter type of protocol, we

conclude by investigating the minimal assumptions required to realize these systems.

Prospective ARLEAS. As mentioned, in the prospective case, messages send through an

end-to-end encrypted messaging system can be accessed by law enforcement when they have

a valid warrant for these specific messages at the time that they are sent. It is clear that

this relaxes the requirements a little in comparison with access to all messages, including

messages that were sent in the past. Therefore, it is to be expected that this primitive is

going to be easier to construct than the more general retrospective case. Indeed, we show

two possible ways to construct such prospective ARLEAS system.

We first show that this can be constructed efficiently using lossy encryption and efficient

simulation sound NIZKs, with the limitation that warrants must explicitly specify the identities

of users being targeted for surveillance. We then show a generalization of this construction

such that warrants can be arbitrary predicates to be evaluated over each message metadata;

our construction of this generalization relies on non-interactive secure computation [126]. It

is in these constructions that we see the benefits of previous chapters, where practicality

of large NIZKs becomes important, and the use of laconic OT can improve non-interactive

secure computation.

Retrospective ARLEAS. We show how to realize ARLEAS that admits retrospective

access, while still maintaining the auditability and detectability requirements of the system.

The novel idea behind our construction is to use secure proof-of-publication ledgers to

condition cryptographic escrow operations. The cryptographic applications of proof-of-

publication ledgers have recently been explored (under slightly different names) in several

works [60, 106, 130, 175]. Such ledgers may be realized using recent advances in consensus

8

networking, a subject that is part of a significant amount of research.

Lower Bound. Finally, we investigate the minimal assumptions for realizing retrospective

access in an accountable law enforcement access system. As a concrete result, we present a

lower-bound proof that any protocol realizing retrospective ARLEAS implies the existence

of an extractable witness encryption scheme for some language L which is related to the

ledger functionality and policy functions of the system. While this proof does not imply

that all retrospective ARLEAS realizations require extractable witness encryption for general

languages (i.e., it may be possible to construct languages that have trivial EWE realizations),

it serves as a guidepost to illustrate the barriers that researchers may face in seeking to build

accountable law enforcement access systems.

1.4 Organization of This Work

In Chapter 2 we will introduce the necessary notation and definitions needed for the other

chapters, this includes the introduction of some assumptions regarding bilinear groups. Next,

in Chapter 3, we talk about laconic cryptography, introduce the new notion set membership

encryption, and show how to build laconic OT from it. Then, in Chapter 4, we investigate how

to build proofs for the knowledge of exploits in binaries compiled for real-world processors.

And finally, we introduce law enforcement access systems that mitigate the possibility of

unauthorized surveillance in Chapter 5.

9

Chapter 2

Preliminaries

Before diving into the main chapters of this dissertation, we introduce some common notation,

definitions, and assumptions.

Notation. Let λ be an adjustable security parameter and negl(λ) be a negligible function in

λ. We use ∥ to denote concatenation, c≈ to denote computational indistinguishability. We will

write x← Algo(·) to say that x is a specific output of running the algorithm Algo on specific

inputs and will write x ∈ Algo(·) to indicate that x is an element in the output distribution

of Algo, when run with honest random coins. We write AlgoPar to say that the algorithm

Algo is parameterized by the algorithm Par. We write AlgoD to say that the algorithm Algo

has random read access to the set D. We denote [n] = {1, . . . , n} and for a bit b we write

b̄ to denote 1− b. We will write x
$←− S when x gets randomly sampled from the set S, we

assume the sampling is uniformly random unless otherwise specified. For ease of presentation,

in all asymptotic efficiency notations we will ignore the security parameter and will assume

it appears in all of them. We use [b] for a share of a bit b, similarly we will use JxK for an

arithmetic share of an element x in the respective arithmetic ring.

10

2.1 Definitions

In this section we show a few definitions that we will be needing in the main chapters of this

dissertation.

2.1.1 Laconic Oblivious Transfer

We now give the following formal definition as presented by Cho et al., we add the requirement

that the size of the database is known when generating the common reference string, as well

as some changes to the efficiency requirements.

Definition 1 (laconic OT) A laconic OT (ℓOT) scheme consists of four algorithms crsGen,

Hash, Send, and Receive.

crsGen(1λ, ℓ)→ crs. This algorithm takes as input the security parameter λ and the size of

the database ℓ.

Hash(crs, D)→ (digest, D̂). This algorithm takes as input a common reference string crs and

a database D ∈ {0, 1}ℓ and outputs a digest digest of the database and a state D̂.

Send(crs, digest, L, m0, m1) → c. This algorithm takes as input a common reference string

crs, a digest digest, a database location L ∈ [ℓ], and two labels m0 and m1. It outputs a

ciphertext c.

ReceiveD̂(crs, c, L) → m. This algorithm takes as input a common reference string crs, a

ciphertext c, and a database position L. Moreover, it has random read access to D̂. It

outputs a label m.

This scheme should have the following properties:

Correctness: For any database D of size ℓ = poly (λ) , for any polynomial function poly (·) ,

any database location L ∈ [ℓ], and any pair of labels (m0, m1) ∈ {0, 1}λ × {0, 1}λ, it

11

holds that

Pr

⎡⎢⎢⎢⎢⎢⎣m = mD[L]

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

crs ← crsGen
(︂
1λ, ℓ

)︂(︂
digest, D̂

)︂
← Hash (crs, D)

c ← Send (crs, digest, L, m0, m1)
m ← ReceiveD̂ (crs, c, L)

⎤⎥⎥⎥⎥⎥⎦ = 1,

where the probability is taken over the random choices made by crsGen and Send.

Sender Privacy Against Semi-Honest Receivers: There exists a PPT simulator

S such that for any database of size at most ℓ = poly (λ) for any polynomial function

poly (·), any memory location L ∈ [ℓ], and any pair of labels (m0, m1) ∈ {0, 1}λ×{0, 1}λ,

let crs← crsGen(1λ, ℓ) and digest← Hash(crs, D), it holds that

(crs, Send (crs, digest, L, m0, m1))
c≈
(︂
crs,S

(︂
D, L, mD[L]

)︂)︂
.

Receiver Privacy: There exists a PPT simulator S such that for any database of size at

most ℓ = poly (λ) for any polynomial function poly (·) , let crs← crsGen(1λ, ℓ), it holds

that

(crs, Hash(crs, D)) c≈
(︂
crs,S

(︂
1λ
)︂)︂

.

Efficiency: The length of digest is a fixed polynomial in λ, independent of the size of the

database. Moreover, the algorithm Hash runs in time |D| · poly (log |D|, λ) , Send runs

in time poly (log |D|, λ) , and Receive runs in time O (|D|, λ) .1

2.1.2 Laconic Private Set Intersection

We now give the following formal definition for a laconic private set intersection scheme as

presented by Alamati et al. [9].

Definition 2 (laconic PSI) A laconic private set intersection (ℓPSI) scheme consists of

four algorithms crsGen, R1, S, and R2.

1We slightly relax the efficiency in comparison with the definition given in Cho et al. [59] This slightly
worse asymptotic receiver time results in constructions with much better concrete efficiency.

12

crsGen(1λ, ℓ)→ crs. This algorithm takes as input the security parameter λ and the maximum

size of the receiver set ℓ.

R1(crs, SR)→ (digest, st). This algorithm takes as input a common reference string crs and

a receiver set SR and outputs a digest digest of the database and state st.

S(crs, digest, SS)→ c. This algorithm takes as input a common reference string crs, a digest

digest, and a sender set SS. It outputs a ciphertext c.

R2(crs, c, st)→ I. This algorithm takes as input a common reference string crs, a ciphertext

c, and state st. It outputs a set I.

This scheme should have the following properties:

Correctness: For all SR, SS ⊆ [ℓ], we have

Pr

⎡⎢⎣SR ∩ SS = R2(crs, c, st)

⃓⃓⃓⃓
⃓⃓⃓ crs ← crsGen(1λ, ℓ)

(digest, st) ← R1(crs, SR)
c ← S(crs, digest, SS)

⎤⎥⎦ = 1.

Efficiency: There exists a fixed polynomial poly (·) such that the length of digest and the

running time of S are at most poly (λ, log |SR|) .

Security is defined in Canetti’s UC framework [53], by using the ideal functionality defined

in Figure 2-1.

PSI functionality (FPSI).

The functionality FPSI is parameterized by a universe Ω

Setup phase R sends (sid, SR) to FPSI where SR ⊆ Ω. It ignores future messages from R with the
same sid.

Send phase S sends (sid, i, SS ⊆ Ω) to FPSI. FPSI sends (sid, i, SR ∩ SS) to R. It ignores future
messages from S with the same sid and i ∈ N

Figure 2-1. The ideal functionality for laconic PSI (FPSI)

13

2.1.3 Broadcast Encryption

Broadcast encryption systems [82] allow for a sender to broadcast encrypted messages on

a broadcast channel, while the message is only intended for a dynamically chosen subset

S ⊆ [n] of all users. The system will assure that a ciphertext is created that can only be

decrypted by anyone in the set S.

For completeness we show the definition for adaptive broadcast encryption based on the

definition shown by Gentry and Waters [94].

Definition 3 (Broadcast Encryption) A broadcast encryption scheme consists of four

randomized algorithms:

• (pk, msk)← Setup
(︂
1λ, n

)︂
. It takes as input the security parameter λ and the maximum

number of receivers n. It outputs a public key pk and a master secret key msk.

• C ← Encrypt (pk, M, S) . This algorithm takes as input a public key pk, a message M,

and a subset S ⊆ [n]. It outputs a ciphertext C, which can be broadcasted.

• Kk ← KeyGen (k, pk, msk) . This algorithm takes as input an index k ∈ [n], a public key

pk, and a master secret key msk. It outputs a private key Kk.

• M ← Decrypt (pk, K, S, k, C) . This algorithm takes as input a public key pk, a private

key K, a subset S ⊆ [n], an index k ∈ [n], and the ciphertext C. It outputs a plaintext

message M.

This scheme should have the following properties:

Correctness: For all S ⊆ [n] and all i ∈ S, then

Pr

⎡⎢⎢⎣M = Decrypt (pk, K, S, i, C)

⃓⃓⃓⃓
⃓⃓⃓⃓ (pk, msk) ← Setup

(︂
1λ, n

)︂
C ← Encrypt (pk, M, S)
K ← KeyGen (i, pk, msk)

⎤⎥⎥⎦ = 1.

14

Adaptive Security Game for Broadcast Encryption GameA,BE,n(λ).

Setup. The challenger runs Setup
(︂
1λ, n

)︂
to obtain a public key pk and master secret

key msk, it hands out the public key to the adversary A.

Key Query Phase. Adversary A adaptively issues private key queries for indices
i ∈ [n].

Challenge. The adversary then specifies a challenge set S∗, such that for all private
keys queried we have that i ̸∈ S∗ and two messages M0 and M1. The challenger
picks b

$←− {0, 1} sets C ← Encrypt (pk, Mb, S∗) and gives this to A.

Guess. The adversary A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Figure 2-2. Adaptive security game for broadcast encryption.

Adaptive security: For all PPT algorithms A we have that

⃓⃓⃓⃓
Pr [b = b′|(b, b′)← GameA,BE,n (λ)]− 1

2

⃓⃓⃓⃓
≤ ϵ (λ) ,

with ϵ(·) a negligible function and GameA,BE,n the security game as described in

Figure 2-2.

2.1.4 Proof-of-publication ledgers

Our work makes use of a public append-only ledger that can produce a publicly-verifiable proof

of publication. This concept was formalized by Goyal et al. [106], Choudhuri et al. [60], and

Kaptchuk et al. [130], but related ideas have also been previously used by Liu et al. to realize

time-lock encryption [144]. Plausible candidates for such ledgers have been the subject of great

interest, due to the deployment of blockchains and other consensus networks [152]. Significant

work has been done to formalize the notion of a public, append-only ledger [18, 19, 61, 106]

and study its applications to cryptographic protocols [11, 36, 60]. This work uses a simplified

ledger interface formalized in [60] that abstracts away details such as timing information

15

and temporary inconsistent views that are modeled in [18]. However, this simplified view

captures the eventual functionality of the complex models, and is therefore equivalent for our

purposes.

The ledger ideal functionality is provided in Figure 2-3. This functionality allows users to

post arbitrary information to the ledger; this data is associated with a particular index on

the ledger, with which any user can retrieve the original data as well as a proof of publication.

For security, our functionality encodes a notion we refer to as ledger unforgeability, which

requires that there exists an algorithm to verify a proof that a message has been posted to

the ledger, and that adversaries cannot forge this proof.

Functionality LVerify

GetCounter.: Upon receiving (GetCounter) from any party, return ℓ.
Post.: Upon receiving (Post, x), the trusted party increments ℓ by 1, computes the
proof of publication πpublish on (ℓ||x) such that Verify((ℓ∥x), πpublish) = 1. Add the entry
(ℓ, x, πpublish) to the entry table T . Respond with (ℓ, x, πpublish)
GetVal.: Upon receiving (GetVal, ℓ), check if there is an entry (ℓ, x, πpublish) in the entry
table T . If not, return ⊥. Otherwise, return (ℓ, x, πpublish).

Figure 2-3. Ideal functionality for a proof-of-publication ledger, from [60].

2.1.5 Authenticated Communication

We use a variant of Canetti’s ideal functionality for authenticated communication, FAUTH , to

abstract the notion of message authentication [53]. This is presented in Figure 2-4. Since

we restrict our analysis to static corruption, we simplify this functionality to remove the

adaptive corruption interface.2

2Note that this ideal functionality only handles a single message transfer, but to achieve multiple messages,
we rely on universal composition and use multiple instances of the functionality.

16

Functionality FAUTH

Sending: Upon receiving an input (Send, sid, Pj, m) from Pi, if it is not the first
instance of (Send, ·, ·, ·), the ideal functionality does nothing. Otherwise, it sends
(Sent, sid, Pi, Pj, m) to the adversary. If the adversary responds with (OK), then
the ideal functionality sends (Sent, sid, Pi, Pj, m) and halts. If the adversary does
not approve, the ideal functionality drops the message and halts.

Figure 2-4. The message authentication ideal functionality FAUTH supporting static corruption,
adapted from [53].

2.1.6 Simulation Extractable Non-Interactive Zero Knowledge

In our protocols we require non-interactive zero knowledge proofs of knowledge that are

simulation extractable. To preserve space, we refer the reader to the definitions of Sahai [172]

and De Santis et al. [67]. Rather than rely on UC functionalities, we employ a NIZK directly

in our protocols.

Definition 4 (Simulation Extractable Non-Interactive Zero Knowledge) A non-in-

teractive

zero-knowledge proof of knowledge for a relation R is a set of algorithms (ZKSetup, ZKProve,

ZKVerify, ZKSimulate) defined as follows:

ZKSetup(1λ) returns the common reference string and simulation trapdoor (CRSZK , τ).

ZKProve(CRSZK , x, ω) takes in the common reference string CRSZK , a statement x and a

witness ω and outputs a proof π.

ZKVerify(CRSZK , x, π) takes in the common reference string CRSZK , a statement x and a

proof π, and outputs either 1 or 0.

ZKSimulate(CRSZK , τ, x) takes in the common reference string CRSZK , a statement x and

the simulation trapdoor τ and outputs a proof π.

17

We say that a non-interactive zero-knowledge argument of knowledge is simulation

extractable if it satisfies the following properties:

Completeness: If a prover has a valid witness, then they can always convince the verifier.

More formally, for all relations R and all x, ω, if R(x, ω) = 1, then

Pr
[︂
ZKVerify(CRSZK , x, π) = 1

⃓⃓⃓
(CRSZK , τ)← ZKSetup(1λ), π ← ZKProve(CRSZK , x, ω)

]︂
= 1

Perfect Zero knowledge: A scheme has zero-knowledge if a proof leaks no information

beyond that truth of the statement x. We formalize this by saying that an adversary

with oracle access to a prover cannot tell if that prover runs the honest algorithm

ZKProve or uses the trapdoor and ZKSimulate.

Pr
[︂
AZKProve(CRSZK ,·,·)(CRSZK) = 1|(CRSZK , ·)← ZKSetup(1λ)

]︂ s≈

Pr
[︂
AZKSimulate(CRSZK ,τ,·)(CRSZK) = 1|(CRSZK , τ)← ZKSetup(1λ)

]︂

Simulation Extractability: There exists an extractor Extract such that

Pr

⎡⎢⎢⎢⎢⎢⎣R(x, ω) = 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

(CRSZK , τ)← ZKSetup(1λ),

(x, π)← AZKSimulate(CRSZK ,τ,·)(CRSZK),

ω ← Extract(CRSZK , τ, x, π)

⎤⎥⎥⎥⎥⎥⎦ ≥ 1− negl(λ)

It has been shown that realizing this primitive for languages outside BBP requires the

common reference string model [97, 98, 160]. We present the common reference string ideal

functionality from [54] in Figure 2-5.

2.1.7 Lossy Encryption

Lossy encryption [25] is an encryption application of lossy trapdoor functions, which were

introduced by Peikert and Waters [165]. Intuitively, lossy encryption is a public key encryption

scheme that has an algorithm to generate lossy keys that are computationally indistinguishable

18

Functionality FD
CRS

FD
CRS proceeds as follows, when parameterized by a distribution D:
Common Reference String: When activated for the first time on input (CRS, sid),

choose a value d
$←− D and send back to the activating party. In each other activation

return the value d to the activating party.

Figure 2-5. Ideal functionality for generating a Common Reference String, from [54].

from normal keys. When encrypting with these lossy keys, the resulting ciphertext contains

no information about the plaintext.

Definition 5 A lossy public-key encryption scheme is a tuple of algorithms (KeyGen,

KeyGenloss, Enc, Dec) defined as

KeyGen(1λ) generates an injective keypair (pk, sk)

KeyGenloss(1λ) generates a lossy keypair (pk, ·)

Enc(pk, m) takes in a public key pk and a plaintext message m and outputs a ciphertext c

Dec(sk, c) takes in a secret key sk and a ciphertext c and either outputs ⊥ or the message m

We require that the above algorithms satisfies the following properties:

Correctness on real keys: For all messages m, it should hold that

Pr
[︂
m = Dec(sk, Enc(pk, m))

⃓⃓⃓
(pk, sk)← KeyGen(1λ)

]︂
= 1

Lossiness on lossy keys: for all (pk, ·)← KeyGenloss(1λ) and m0, m1 such that |m0| = |m1|,

Enc(pk, tag, m0)
s≈ Enc(pk, tag, m1)

Indistinguishability of keys: Finally, over all random coins, it should hold that

KeyGen(1λ) c≈ KeyGenloss(1λ)

19

2.1.8 Multi-sender Non-interactive Secure Computation

When instantiating our prospective protocol for arbitrary predicates in Section 5.5.1,we

will require the use of Non-interactive Secure Computation (NISC) [7, 126]. In NISC, a

receiver can post an encryption embedding a secret x1 such that senders with secret x2

can reveal f(x1, x2) to the receiver by sending only a single message. Realizing such a

scheme (see [126]) is feasible in the CRS model [53, 55] from two-round, UC-secure malicious

oblivious transfer [64, 157], Yao’s garbled circuits [121, 199], and generic non-interactive

zero knowledge (see Section 2.1.6). The resulting protocols, however, are very inefficient and

require non-blackbox use of the underlying cryptographic primitives. While this is sufficient

for our purposes, we note that depending on specific functionality required in an instantiation

of ARLEAS, it may be possible to use more efficient constructions (i.e. depending on the size

of the predicate circuit, etc.) Because the notation for NISC protocols varies, we fix it for

this work below. We omit the ideal functionality of multi-sender NISC from [7], due to space

constraints. Because we require non-blackbox use of the primitive, we will use it directly

rather than as a hybrid.

Definition 6 (Multi-sender Non-interactive Secure Computation) Given a garbling

scheme for a functionality f : {0, 1}input1 × {0, 1}input2 → {0, 1}output, i.e. a tuple of PPT

algorithms ΠNISC := (GenCRS, NISC1, NISC2, Evaluate) such that

GenCRS(1λ, input; r)→ (CRSNISC, τNISC): GenCRS takes the security parameter 1n and out-

puts a CRS, along with a simulation backdoor τNISC. When we explicitly need to specify

the randomness, we will include it as r as here.

NISC1(CRSNISC, x1; r) → (niscpublic
1 , niscprivate

1): NISC1 takes in the CRS and an input x ∈

{0, 1}input1 and outputs the first message NISC1. When we explicitly need to specify the

randomness, we will include it as r as here.

20

NISC2(CRSNISC, f, x2, niscpublic
1 ; r) → nisc2: NISC2 takes in the CRS, a circuit C, an input

x2 ∈ {0, 1}input2 and the first garbled circuit message niscpublic
1 . It outputs the second

message nisc2. When we explicitly need to specify the randomness, we will include it as

r as here.

Evaluate(CRSNISC, nisc2, niscprivate
1): Evaluate takes as input the second GC message nisc2

along with the private information niscprivate
1 and outputs y ∈ {0, 1}output or the error

symbol ⊥

We give an ideal world security definition for a multi-sender NISC in Figure 2-6.

Multi-sender Non-interactive Secure Computation.

Receiver Posting: Upon receiving a message (Input1, x1) from P1, store x1. Initialize
and empty table T and ignore future Input1 messages.

Sender Input: Upon receiving a message (Input2, x2) from Pi, store (Pi, x2) in table T.

Outputs: Upon receiving a message (Outputs) from P1, send ({(Pi, f(x1, x2)}(Pi,x2)∈T)

Figure 2-6. Ideal functionality for multi-sender NISC, from [7].

2.1.9 Witness Encryption and Extractable Witness Encryption

Our retrospective constructions require extractable witness encryption (EWE) [46], a variant

of witness encryption in which the existence of a distinguisher can be used to construct an

extractor for the necessary witness [95]. While EWE is a strong assumption, in later sections

of this work we show that it is a minimal requirement for the existence of retrospective

ARLEAS.

Definition 7 (Extractable Witness Encryption) An extractable witness encryption

21

ΠEWE = (Enc, Dec) for an NP language L associated with relation R consists of the fol-

lowing algorithms:

Enc(1λ, x, m): On input instance x and message m ∈ {0, 1}, it outputs a ciphertext c.

Dec(c, w): On input ciphertext c and witness w, it outputs m′.

We require that the above primitive satisfy the following properties:

Correctness: For every (x, w) ∈ R, for every m ∈ {0, 1},

Pr[m = Dec(Enc(1λ, x, m), w)] = 1

Extractable Security: For any PPT adversary A = (A0,A1), if:

Pr

⎡⎢⎢⎢⎢⎢⎣A1(1λ, c, state) = b

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

b← {0, 1}

(m0, m1, state)← A0(1λ, x)

c← Enc(1λ, x, mb)

⎤⎥⎥⎥⎥⎥⎦ ≥
1
2 + negl(λ)

then there exists a PPT extractor Ext such that for all auxiliary inputs aux:

Pr
[︂
w ← ExtA(1λ, x, aux) s.t. : (x, w) ∈ R

]︂
≥ negl(λ)

2.1.10 Programmable Global Random Oracle Model

The security proof for our retrospective construction makes use of the programmable global

random oracle model, introduced in [51].

The ideal functionality GpRO is illustrated in Figure 2-7.

2.2 Assumptions

In this section we will introduce a few assumptions in composite order bilinear groups that

we will be needing in a few of the proofs in Chapter 3.

22

Functionality GpRO.

Initiate with an empty list ListH
Query: Upon receiving message (HashQuery, m) from party P , the ideal functionality

proceeds as follows. Find h such that (m, h) ∈ ListH. If no such h exists, let
h

$←− {0, 1}ℓ and store (m, h) in ListH. Return (HashConfirm, h) to P .

Program: Upon receiving message (ProgramRO, m, h) from adversary A, the ideal
functionality proceeds as follows. If ∃h′ ∈ {0, 1}ℓ such that (m, h′) ∈ ListH and
h ≠ h′, then abort. Otherwise, add (m, h) to ListH and output (ProgramConfirm)
to A

Figure 2-7. Ideal functionality for the global programmable random oracle, from [51].

2.2.1 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced by Boneh et al. [42] These groups

are defined by taking a group generator, which is an algorithm G that takes as input a

security parameter λ and outputs a description of a bilinear group G. This bilinear group

is of composite order, which throughout this paper would be an order composed of three

distinct primes p1, p2, and p3, i.e. (N = p1p2p3,G,GT , e). G and GT are cyclic groups of

order N and e : G×G→ GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e
(︂
ga, hb

)︂
= e (g, h)ab ;

2. (Non-degenerate) ∃g ∈ G such that e (g, g) has order N in GT .

Furthermore, all operations in G and GT as well as the bilinear map e should be computable

in polynomial time with respect to the security parameter λ. Also note that the subgroups

Gp1 ,Gp2 , and Gp3 of respective order p1, p2, and p3 are orthogonal to each other, i.e. ∀gi ∈

Gpi
, gj ∈ Gpj

and i ̸= j, e (gi, gj) = 1.

We will use the same assumptions as introduced by Lewko and Waters [141]. They prove

that these assumptions hold in the generic group model using the general framework of Katz,

23

Sahai, and Waters [131]. Because our first SME construction is based on the construction of

the IBE by Lewko and Waters [141], we can re-use the same assumptions.

Assumption 1 Given a group generator G:

(N = p1p2p3,G,GT , e) $←− G(λ),

g
$←− Gp1 , X3

$←− Gp3 ,

D = (g, X3) ,

T1
$←− Gp1p2 , T2

$←− Gp1 .

We say this assumption holds if there exists a negligible function ϵ in the security parameter

λ for any adversary A such that:

|Pr [A (D, T1) = 1]− Pr [A (D, T2) = 1]| ≤ ϵ(λ).

Assumption 2 Given a group generator G:

(N = p1p2p3,G,GT , e) $←− G(λ),

g, X1
$←− Gp1 , X2, Y2

$←− Gp2 , X3, Y3
$←− Gp3 ,

D = (g, X1X2, X3, Y2Y3) ,

T1
$←− G, T2

$←− Gp1p3 .

We say this assumption holds if there exists a negligible function ϵ in the security parameter

λ for any adversary A such that:

|Pr [A (D, T1) = 1]− Pr [A (D, T2) = 1]| ≤ ϵ(λ).

24

Assumption 3 Given a group generator G:

(N = p1p2p3,G,GT , e) $←− G(λ), α, s
$←− ZN

g
$←− Gp1 , X2, Y2, Z2

$←− Gp2 , X3
$←− Gp3 ,

D = (g, gαX2, X3, gsY2, Z2) ,

T1 = e (g, g)αs , T2
$←− GT .

We say this assumption holds if there exists a negligible function ϵ in the security parameter

λ for any adversary A such that:

|Pr [A (D, T1) = 1]− Pr [A (D, T2) = 1]| ≤ ϵ(λ).

25

Chapter 3

Efficient Set Membership Encryption
and Applications

This chapter is based on joint work with Matthew Green and Abhishek Jain.

3.1 Introduction

Recent developments in secure multiparty computation (MPC) have led to the increasing

usage and deployment of the technology. This deployment has illustrated the need for

further improvements in the efficiency of MPC protocols. One broad area of potential

improvement has to do with the fixed cost needed for Oblivious Transfer (OT) [169]. OT

is a fundamental cryptographic protocol and is foundational to the construction of MPC

protocols [101, 125, 125, 134, 169, 198]. In practice, OT is a significant contributor to

the overhead of MPC; moreover, the number of OT invocations typically increases with

the size of the function inputs. This has motivated efficiency optimizations such as OT

extension [23, 124, 138, 176]. While such improvements reduce the computational complexity

of multiple OT interactions, they still require interactive communication that grows linearly

with the number of invocations.

Recently Cho et al. [59] proposed a new primitive called laconic Oblivious Transfer (ℓOT)

to address this communication cost. In laconic OT a receiver first produces a succinct digest

26

of a vector of selector bits. The sender then uses this digest to encrypt a corresponding

database of message pairs. The critical property in this scheme is that the receiver must be

able to decrypt exactly one message from each pair, corresponding to its previous selections.

The key efficiency requirement are as follows: the digest size must be independent of the

database size, while the sender’s running time and the receiver’s decryption time (for each

position) must be poly-logarithmic in the size of the receiver’s input.

Laconic OT has many promising applications and the instantiation proposed by Cho et al.

is elegant and relies on well-studied cryptographic hardness assumptions. Unfortunately, it is

far from practical. While asymptotically efficient, the proposed scheme includes substantial

concrete overhead that makes it unusable for real-world deployment. In particular, the

construction makes extensive use of elliptic curve scalar multiplications that are embedded

within chains of sequential garbled circuits, resulting in enormous concrete bandwidth costs.

Some optimizations have been proposed to improve this and related protocols [62]; however,

even the optimized realizations are challenging to implement – let alone deploy for real-world

applications [62, 184].

The impracticality stems from a focus on asymptotic efficiency instead of concrete efficiency.

A recent line of work [9, 108] recognized this and proposed much more concretely efficient

constructions by allowing for asymptotically larger decryption times – linear, as opposed to

poly-logarithmic. These works also realize a related notion of laconic private set intersection

(ℓPSI), where a sender and a receiver can compute the intersection of their respective sets in

a manner such that the communication complexity of the protocol is independent of the size

of the receiver’s set. The work of Goyal et al. [108] presents constructions based on various

number-theoretic assumptions, while Alamati et al. [9] presents a construction based on the

ϕ-hiding assumption.

The main drawback of these works is the requirement of large decryption time, in concrete

27

Table 3-I. Overview of our asymptotic and concrete efficiency in comparison with Cho et al. [59],
Goyal et al. [108], and Alamati et al. [9] for database size n = 231. (DDH = Decisional Diffie-
Hellman assumption, q-DBDHI = q-Decisional Bilinear Diffie-Hellman inversion assumption, SDP
= Subgroup Decision Problem in composite order bilinear groups, sBDHE = selective Bilinear
Diffie-Hellman Exponentiation assumption)

crs size Hash size Send size crs size Hash size Send size Receive Assumption
Cho et al. [59] O (1) O (1) O (log n) 4.6kB 48 bytes 1.2PB3 - DDH
Goyal et al. [108] O (n) O (1) O (1) 103.1GB 48 bytes 1.25kB 8.1 days q-DBDHI
Goyal et al. [108] + §3.6.1 O (

√
n) O (

√
n) O (1) 2.2MB 2.2MB 1.25kB 15.1s q-DBDHI

Alamati et al. [9] O (1) O (1) O (1) 0.8MB 3.9MB 7.7MB 85.9s ϕ-hiding
This work §3.4 O (n2) O (1) O (1) 221.4EB 48 bytes 1.34kB 27.7 minutes SDP
This work §3.4 + §3.6.1 O (n) O (

√
n) O (1) 103.1GB 2.2MB 1.34kB 38.7ms SDP

This work §3.5 O (n) O (1) O (1) 412.3GB 48 bytes 1.34kB 27.7 minutes sBDHE
This work §3.5 + §3.6.1 O (

√
n) O (

√
n) O (1) 8.9MB 2.2MB 1.34kB 38.7ms sBDHE

terms, for moderate to large size databases. In this work, we take a new approach towards

designing ℓOT schemes. As we discuss shortly, our approach yields schemes that achieve

the same asymptotic complexity as the state-of-the-art, but achieves orders of magnitude

improvements in decryption times. This brings the area of laconic cryptography to the realm

of practice.

A new approach.. In this work we investigate an alternative approach to building ℓOT

schemes. We begin with a simple observation: namely, that ℓOT has similarities to primitives

that have been studied in the literature, most notably efficient constant-size broadcast

encryption [41, 82]. In broadcast encryption (BE), an encryptor transmits a message to a

subset of recipients such that only recipients in the set can decrypt the resulting ciphertext.

While this functionality is clearly different from ℓOT, the two systems share a similar structure:

each can be viewed as a form of “subset” encryption in which a compact ciphertext can

be decrypted by some keys and not others. Of course, broadcast encryption on its own

does not obviously imply ℓOT. This motivates the following question: can efficient broadcast

encryption constructions be used as a stepping stone to construct laconic OT?

In this work we answer the previous question in the affirmative. Our first contribution
3This is an estimate based on circuit size for curve multiplications on secp192k1 given by Jayaraman et

al. [128], for more details on this computation see §3.7.2.

28

is to observe that certain pairing-based broadcast encryption schemes can be transformed

into a related primitive that we name set membership encryption (SME). SME is a form of

functional encryption [43, 173] that combines properties of broadcast encryption with those

of Identity-Based Encryption (IBE) [39]. In this paradigm, a master authority generates a set

of secret keys for a collection of parties. The encryptor now specifies a single party to be the

recipient. The novel ingredient in this primitive is that the encryption algorithm additionally

receives a succinct commitment that identifies a specific subset of possible recipients. A party

can decrypt the resulting ciphertext if and only if they were identified as both the intended

recipient and they are included within this commitment.

We show two constructions of set membership encryption. First, we begin with an

efficient adaptively secure broadcast encryption scheme by Waters [190] that we then combine

with the identity based encryption scheme of Lewko and Waters [141] to build adaptively

secure set membership encryption. Second, we build a selectively secure version of set

membership encryption based on the work by Boneh et al. [41]. The latter construction

achieves significantly better parameters.

A key property of set membership encryption is that the scheme remains secure even

when all possible recipients collude. This means that all parties’ secret keys can be revealed

to an adversary without compromising the security of the scheme, i.e. ciphertexts that are

intended for a recipient that was not in the subset of recipients remain secure. This allows us

to construct a laconic OT for a database of fixed size N via the simple expedient of generating

2N parties’ public and secret keys in a trusted setup phase, and publishing the resulting key

material as a structured reference string (SRS). The Receiver can then commit to its selector

bits by encoding these as a commitment for the set membership encryption scheme.

Asymptotic vs Concrete Costs.. An important note regarding this approach is that the

resulting constructions produce the same efficiency tradeoff as in the work of Goyal et al.

29

and Alamati et al. In comparison with the original work of Cho et al., asymptotically, our

construction reduces the bandwidth complexity of each ciphertext from O (log n) to constant

size, but requires an increase in the size of the structured reference string (SRS) to O (n)

(rather than a constant) and a corresponding increase in the decryption complexity of the

receiver to O (n) rather than poly (log(n)). Our first construction achieves similar parameters,

but a larger structured reference string.

We believe that the longer size of the SRS might be acceptable for some applications

since it can be re-used for multiple protocol executions, and was already introduced as

useful by Goyal et al. We further demonstrate that other tradeoffs are possible, yielding

lower decryption times. Specifically, by allowing for a larger digest (sublinear, as opposed

to constant-sized), we can achieve sublinear sized SRS and sublinear decryption complexity.

Nevertheless, the longer asymptotic decryption complexity of our construction compared to

the original work of Cho et al. remains a limitation, and further improvements on this front

remain an interesting avenue for future work.

Our constructions perform surprisingly well when we evaluate the concrete costs. Indeed,

the asymptotic complexity discussed above obscures a significant concrete improvement over

the work of Cho et al., due to the fact that our construction removes the need for many

sequential garbled circuit evaluations, e.g. while prior works’ ciphertexts easily grow into

petabytes of data, ours is only a few hundred bytes. The works of Goyal et al. and Alamati et

al. also achieve these better communication complexities. Our key improvement over these

works is in the decryption complexity. In particular, the decryption time of our scheme

(specifically the variant that achieves sublinear decryption complexity) is orders of magnitude

faster than prior schemes.

We refer the reader to Table 3-I and §3.7 for a detailed comparison of our results with

prior work.

30

Extensions.. Finally, we consider two basic extensions to our schemes. First, we note that

the basic definition of ℓOT as proposed by Cho et al. does not include Receiver privacy. In

practice, this property is added to a basic protocol using a two-party secure computation

protocol instantiated with a garbled circuit. While a similar approach can be used with our

constructions as well, we show that in the interactive setting, our construction can achieve

Receiver privacy without the use of garbled circuits. Finally, we investigate an extension

that was originally proposed by Cho et al., namely, updatable ℓOT. We introduce a more

general definition of this primitive and show how to realize this definition using our SME

constructions. We note that the constructions from Goyal et al. [108] and Alamati et al. [9]

do not seem to imply such generalization.

Concurrent Work. In concurrent work, Aranha et al. [15] present a very similar laconic

private set-intersection scheme based on pairings. They reduce their scheme to the security

of the Strong Bilinear Decisional Diffie-Hellman Problem, which can also be proven secure

in the generic group model. Although the laconic PSI scheme itself shows similarities, we

believe our approach and new primitive introduce a fresh look upon this problem.

3.1.1 Applications

We observe that SME and the laconic primitives that can be derived from it have several

potential applications that motivate its study. Moreover, understanding the nature of these

applications is important, as it can help to determine the appropriate efficiency requirements

for an SME scheme. In previous work, many different applications have been discussed as

well, most of these can be achieved without much trouble from SME or derived primitives.

We briefly discuss two direct applications below.

One-Time Programs.. Goldwasser, Kalai and Rothblum [103] proposed the notion of

one-time programs. These programs employ a form of secure hardware token, with multiple

31

OT-like functionalities that “self-destruct” after use. In practice, the cost of this token

functionality imposes a significant barrier to the deployment of such programs: since each

token functionality holds one input label for a garbled circuit (and can be used only once),

the input size (or number of program executions) is therefore bounded by the number

of functionalities that can be included into a practical device. Laconic OT removes this

restriction: by compressing a large selector database into a ℓOT digest, an evaluator can

now evaluate a polynomial number of input wires (or program executions) using a constant

number of token OT functionalities.

3.1.2 Technical Overview

In this section we will discuss how to build set membership encryption, but first, we will

provide an overview of laconic Oblivious Transfer and discuss the early construction of Cho et

al. [59]. In the original definition of laconic OT receiver privacy is missing, however, we have

added receiver privacy to the definition of laconic OT as well.

Laconic Oblivious Transfer. In a traditional OT, a Sender with two messages interacts

with a Receiver who possesses a selector bit. At the conclusion of the interaction, the Receiver

learns one message (and nothing about the other message) and the Sender does not learn

the Receiver’s selection. Laconic OT generalizes this primitive to multiple interactions: the

Receiver possesses a database D ∈ {0, 1}n of selector bits and the Sender has n message

pairs. To rule out the naive construction, laconic OT adds an efficiency restriction: the

communication from Receiver to Sender must be compact, and ideally independent of the

database size. An alternative view of laconic OT poses it as a type of encryption: the Receiver

computes a hash of the selector bits, and the Sender uses this hash as a form of “public key”

to encrypt messages for specific indices and positions. Most critically, in this formulation a

single digest can be re-used to encrypt many distinct messages.

32

Security. Traditional OT provides privacy for both Sender and Receiver. The basic ℓOT

security definition proposed by Cho et al. requires only privacy for the Sender’s inputs. Cho

et al. point out that Receiver privacy can be added by embedding the laconic encryption

algorithm into a garbled circuit that can be evaluated by the Receiver using labels retrieved

from the sender using a traditional OT protocol. However, given our very different approach,

we can add receiver privacy from the start. Therefore, we have added it to the definition of

laconic OT.

Efficiency. Cho et al. specify precise asymptotic efficiency requirements in their definition of

laconic OT. Notably, they limit the size of the digest to be only polynomially-dependent on

the security parameter and independent of the database size. Computationally, the digest

must be computable in time n · poly (log n) and encryption and decryption time are bounded

by poly (log n). Unfortunately, due to the nature of our constructions we have to relax some

of these bounds: specifically, we allow decryption to require O (n), which is an asymptotic

setback, but we can still show concrete improvements of the decryption time.

The construction of Cho et al.. Cho et al. propose a construction in two parts. Given

a security parameter λ, they propose a laconic OT scheme that takes as input a selector

database of size 2λ and creates a digest of size λ. To achieve further compression, the second

part of the construction uses this scheme in a binary Merkle tree to reduce a database of

arbitrary size to a digest of size λ.

The key observation of the Cho et al. scheme is that the root of this tree can be used

as an encryption key. This is done by constructing an efficient witness encryption scheme

for a specific language involving hash functions, and then dividing the selector database

into blocks of λ bits each. These blocks form the leaves of the tree and the root of the

tree becomes the digest of the laconic OT scheme. Encryption proceeds by evaluating the

witness encryption at each level of the tree. To make this process non-interactive, each level

33

of encryption is embedded into a garbled circuit, resulting in ciphertexts that comprise chains

of log N garbled circuits. While this design is elegant and the overall complexity assumptions

are mild, practical implementations must bear the cost of evaluating elliptic curve point

multiplications within many garbled circuits in order to decrypt a single laconic ciphertext:

in practice this results in a substantial concrete overhead.

Our Approach.. In broadcast encryption (BE) [82], an encryptor wishes to broadcast a

message such that only a subset of receivers can receive the message. Intuitively one might be

tempted to construct laconic OT from broadcast encryption via the following heuristic: each

of 2 selector bits/position in the Receiver’s database could be treated as a single recipient

in a universe of 2n possible recipients. The Sender could then encrypt each of its messages

to a subset of the recipients that would correspond to the appropriate selector bits in the

Receiver’s database. In this vision, the Receiver would be unable to decrypt messages in

positions where its selector bit was not appropriately set.

Of course this intuition does not work, for several reasons. First: broadcast encryption is

fundamentally the wrong primitive for this task: instead of encrypting to a specific recipient

if and only if the recipient is in a chosen subset, broadcast encryption allows decryption by

any recipient in the set. In practice this means that the recipient can open both messages at a

given index. Moreover even if we ignore this fundamental issue, broadcast encryption has no

notion of a succinct digest to encode the set of allowed recipients. Finally, the intuition above

elides an important detail about the nature of the secret keys: even if keys are generated

via a trusted setup procedure (or honestly by the Sender), not every broadcast encryption

scheme will retain its security when all secret keys are known to an adversarial Receiver.

A key intuition of this work is that while broadcast encryption is not the right primitive,

these problems can be solved by adapting specific broadcast encryption schemes to construct

a new protocol that we call set membership encryption. This new protocol requires several

34

features: it must incorporate a means to specify the recipient set via a compact commitment

(or digest); it must allow the encryptor to encrypt to a specific recipient as long as they are in

the recipient set; and it must provide a strong collusion resistance property. We now outline

the key steps by which we construct this primitive.

Constructing a succinct digest. As a first step, we consider the problem of modifying broadcast

encryption to incorporate a succinct digest of the recipient set. Our basic observation for

this modification is that certain efficient broadcast encryption schemes [41, 141, 190] feature

compact ciphertexts that are independent of the recipient size, and also admit homomorphic

operations on the ciphertext. The nature of these protocols enables an efficient process for

constructing a digest of the recipient set: this is done by introducing (1) a first “hashing”

procedure Hash that takes as input a recipient set and outputs a succinct broadcast encryption

ciphertext encrypting the identity element, and (2) a subsequent “encryption” operation

Encrypt that takes the previous ciphertext and homomorphically embeds a new plaintext.

Concretely, we observe that in many pairing-based BE schemes the recipient set is contained

in the ciphertext as a product of certain group elements corresponding to the recipients. We

can compute that product during the Hash algorithm and finish the creation of the ciphertext

during the Encrypt algorithm.

Modifying the encryption functionality. Unlike broadcast encryption, set membership en-

cryption requires two inputs to the encryption function. First: it takes as input a succinct

digest of the recipient set that is produced using the approach described immediately above.

Additionally it takes a specific receiver identity. The scheme must allow decryption by a

specific recipient key if and only if the recipient was identified by the encryptor and is in

the recipient set. This novel functionality combines elements of broadcast encryption with

those of IBE.4 Because of the mathematical properties of the pairing-based schemes, we can
4Notably, this new scheme must use the same key for both functionalities, which rules out simple

combinations of two distinct schemes.

35

instantiate a second version of the same BE scheme, such that we can bind one recipient

to the set of recipients by taking their product. Moreover, we ensure that two secret keys

for the same receiver are bound as well, such that the resulting secret key can decrypt both

coupled ciphertexts.

Collusion resistance. In the security game of a normal BE scheme, an adversary can receive

any key they want as long as they do not appear in the challenge set, i.e. the set of receivers

to which the challenge ciphertext is encrypted. However, we want the stronger property

that given all possible secret keys, ciphertexts are still secure when they are encrypted to a

recipient that was not in the recipient set. The way we achieve this is that while tying both

the secret keys, we ensure that the adversary cannot use a set of keys to derive a different

key. By strongly coupling the binding of both keys to the master secret key, we avoid that

any malicious keys can be crafted from a combination of secret keys without knowledge of

the master secret key.

Defining security for set membership encryption. We define security for SME via a game-

based definition that says that an adversary cannot learn anything from a ciphertext, when

that ciphertext is formulated by using the hashing algorithm on a set of receivers and the

encryption algorithm for one specific receiver that is not contained in the set, even given

decryption keys for all possible receivers. We will define a strong adaptively secure definition,

followed by a weaker selectively secure definition where the challenger knows the challenge

set of receivers and the challenge receiver before creating a common reference string.

From SME to laconic OT. Having defined set membership encryption, this leaves the

main question of how to create a laconic OT scheme. Figure 3-1 illustrates this process. As

mentioned previously, the idea is to define two receivers for each location in the database: one

receiver corresponds to a 0 bit and the other to a 1 bit. Now, the database can be mapped

to said receivers and the Hash algorithm can be used to create a digest D̂ of the database.

36

L D 0-bit 1-bit
1 0 R1 R2

2 0 R3 R4

3 1 R5 R6
...
i 0 R2i−1 R2i

...
n 1 R2n−1 R2n

Hash({R1,R3, R6, . . . ,

R2i−1, . . . , R2n})

Receiver

digest

Sender

Send(digest, L,

m0, m1) Encrypt(digest, R2L−1, m0)
Encrypt(digest, R2L, m1)

Figure 3-1. A schematic description of using SME to construct laconic OT based on an example
database D. Note that for ease of presentation, we use simplified versions of the algorithms
omitting any details such as a common reference string. Each Ri represents a receiver in the SME
scheme.

Next, for every location, the sender can create two ciphertexts by encrypting the labels using

both receivers at that location corresponding to 0 and 1. Given that the encoded database is

used, only one of these receivers is encoded inside D̂, therefore, due to the properties of the

SME, the receiver can only decrypt one of the labels.

Adaptive Security. The adaptive definition for set membership encryption feels much more

natural in this setting and therefore our goal is to build our protocols using an adaptively secure

broadcast encryption scheme as the basic ingredient. These adaptive schemes are typically

proven secure using the Dual System Encryption paradigm introduced by Waters [190]. We

can build an adaptively secure scheme based on the work of Lewko and Waters [141] using

composite order bilinear groups.

Boneh et al. [42] were the first to introduce a scheme using composite-order bilinear

groups. Given that assumptions on composite order groups are relying on the fact that it is

hard to factor the composite order, large primes must be chosen to create the composite order.

This leads to larger groups than prime order bilinear groups. Luckily, Freeman [86] proposes

conversions from composite to prime order groups for several schemes. Later, Lewko [140]

provides a general conversion from composite order groups to prime order groups. The

37

assumptions that we use to prove our construction secure are borrowed from the work of

Lewko and Waters [141], we describe these assumptions in §2.2.1. These assumptions are

closely related to the subgroup decision assumption, which informally states that given an

element g ∈ G there is no efficient algorithm to decide whether the element g has order p.

As in the work of Lewko and Waters [141], we use the composite order to introduce

elements in different subgroups when creating semi-functional ciphertexts and semi-functional

keys that are needed to use the Dual System Encryption technique of Waters [190]. We rely

on the fact that subgroups are orthogonal to each other with respect to the pairing operation.

Constant Size Decryption Keys. Unfortunately, in the adaptively secure construction,

decryption keys are linear in the number of possible receivers in the system. In the derived

ℓOT, this leads to a common reference string of size O (n2) . Therefore, we show a version

with constant sized decryption keys, but we can only show this to be selectively secure.

This construction is based on the broadcast encryption system introduced by Boneh et

al. [41]. This BE scheme is also only selectively secure, which explains the fact that we can

only hope to prove selective security for our set membership encryption scheme. To prove this

scheme secure we introduce a new assumption which we call a selective bilinear Diffie-Hellman

exponentiation assumption (sBDHE), which is an interactive variant of a general BDHE. We

can prove this assumption to be secure in the generic bilinear group model [180], by using

the generic proof template of Boneh et al. [40]

Improvements of our Laconic OT Construction. In the next part of this paper we

will introduce a few improvements to our constructions, we will now give a brief technical

overview of these improvements.

√
n-Optimization. Although, our second construction already shows a concrete improvement

over some of the previous work, the common reference string is still particularly large and

the construction of Alamati et al. is still outperforming ours. By striking a new balance

38

between the size of the digest and the CRS, we can achieve much better efficiency. In order

to achieve this, we only initiate the underlying SME with 2
√

n receivers, where n is the size

of the database. Instead of hashing the database as a whole, we hash it in chunks of size
√

n. The digest consists of
√

n sub-digests, which increases the asymptotic communication

efficiency of the digest to O (
√

n) . However, as already shown in Table 3-I, we achieve much

better concrete efficiency overall. This leads to a very practical construction of ℓOT.

3.2 Set Membership Encryption

In this section we introduce a new primitive called set membership encryption (SME). This

primitive allows a first party, the hasher, to hash a subset of all receivers that can decrypt

a ciphertext, but only a second party, the encryptor, adds a message to the ciphertext and

defines a single recipient. Only when this recipient was included in the subset that was

chosen by the hasher, the ciphertext can be decrypted. We give a game-based definition that

specifies strong adaptive security as well as a second weaker selectively secure definition.

Definition 8 (set membership encryption) A set membership encryption scheme (SME)

consists of five randomized algorithms:

Setup(1λ, n) → (pk, msk). This algorithm takes as input the security parameter λ and the

maximum number of receivers n. It outputs a public key pk and a master secret key

msk.

KeyGen(k, pk, msk)→ Kk. This algorithm takes as input a receiver k ∈ [n], a public key pk,

and a master secret key msk. It outputs a private key Kk.

Hash(pk, S)→
(︂
Ŝ, st

)︂
. This algorithm takes as input a public key pk and a subset S ⊆ [n].

It outputs a digest of the set S that is denoted Ŝ and some state st.

39

Encrypt(pk, i, M, Ŝ)→ C. This algorithm takes as input a public key pk, a receiver i ∈ [n], a

message M, and a digest Ŝ. It outputs a ciphertext C.

Decrypt(pk, K, S, i, C, st) → M. This algorithm takes as input a public key pk, a private

key K, a subset S ⊆ [n], a receiver i ∈ [n], a ciphertext C, and state from Hash st. It

outputs a plaintext message M.

This scheme should have the following properties:

Correctness. For all S ⊆ [n] and all i ∈ S, we have

Pr

⎡⎢⎢⎢⎢⎣M = Decrypt(pk, K, S, i, C, st)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

(pk, msk) ← Setup(1λ, n)
(Ŝ, st) ← Hash(pk, S)

C ← Encrypt(pk, i, M, Ŝ)
K ← KeyGen(i, pk, msk)

⎤⎥⎥⎥⎥⎦ = 1.

Efficiency. The size of the digest Ŝ is a fixed polynomial in λ independent of the size

of the original set. Moreover, the algorithm Hash runs in time |D| · poly (log |D|, λ) ,

Encrypt runs in time poly (log |D|, λ) , and Decrypt runs in time poly (|D|, λ) .

(Selective) Security. For all PPT algorithms A we have that⃓⃓⃓⃓
Pr [b = b′|(b, b′)← GameA,SME,n (λ)]− 1

2

⃓⃓⃓⃓
≤ ϵ (λ) ,

with ϵ(·) a negligible function and GameA,SME,n the security game as described in

Figure 3-2. The same definition can be stated with the selective security game

GameA,sSME,n(λ)

as described in Figure 3-3.

Privacy: There exists a PPT simulator S such that for any set S of size at most n = poly (λ)

for any polynomial function poly (·) , let (pk, msk) ← Setup(1λ, n), ∀i ∈ [n] : Ki =

KeyGen(i, pk, msk), and (Ŝ, st)← Hash(pk, S), it holds that(︂
pk, {Ki}i∈[n], Ŝ

)︂ c≈
(︂
pk, {Ki}i∈[n],S

(︂
1λ
)︂)︂

.

40

Security game for set membership encryption GameA,SME,n(λ).

Setup. The challenger runs Setup
(︂
1λ, n

)︂
to obtain a public key pk and master secret

key msk, it hands the public key to the adversary A as well as private keys
Kk ← KeyGen(k, pk, msk), for all k ∈ [n].

Challenge. A picks a message M and sends this message together with a subset S ⊆ [n]
and a receiver i ̸∈ S. The challenger computes a digest (Ŝ, st)← Hash(pk, S) and
picks b

$←− {0, 1} and sets C ← Encrypt
(︂
pk, i, M, Ŝ

)︂
if b = 0 and picks M ′ at

random and sets C ← Encrypt
(︂
pk, i, M ′, Ŝ

)︂
otherwise. The challenger gives this

digest, the state st, and the ciphertext to A.

Guess. The adversary A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Figure 3-2. Security game for set membership encryption.

3.2.1 Laconic OT from Set Membership Encryption

We now prove that our newly introduced set membership encryption primitive also implies

ℓOT, by constructing a ℓOT scheme based on a secure SME scheme.

Theorem 1 Given a secure set membership encryption scheme

SME = (Setup, KeyGen, Hash, Encrypt, Decrypt)

there exists a secure laconic OT scheme ℓOT.

Proof. We build the following laconic OT scheme ℓOT, with ℓ = |D|

crsGen(1λ, ℓ) : Set n = 2ℓ, run (pk, msk)← Setup(1λ, n), and run Ki ← KeyGen(i, pk, msk),

for all i ∈ [n]. Output

crs = (pk, {Ki}i∈[n]).

Hash(crs, D) : Set E =
{︂
2i−D[i]

⃓⃓⃓
∀i ∈ [ℓ]

}︂
and (digest, st)← Hash(pk, E). Output

(︂
digest, D̂ = (E, digest, st)

)︂
.

41

Selective security game for set membership encryption GameA,sSME,n(λ).

Setup. The adversary A sends a set S ⊆ [n] and a receiver i ̸∈ S. The challenger runs
Setup

(︂
1λ, n

)︂
to obtain a public key pk and master secret key msk, it hands out the

public key to the adversary A as well as private keys Kk ← KeyGen(k, pk, msk), for
all k ∈ [n].

Challenge. A picks a message M and sends this message. The challenger computes a di-
gest (Ŝ, st)← Hash(pk, S) and picks b

$←− {0, 1} and sets C ← Encrypt
(︂
pk, i, M, Ŝ

)︂
if b = 0 and picks M ′ at random and sets C ← Encrypt

(︂
pk, i, M ′, Ŝ

)︂
otherwise.

The challenger gives this ciphertext, the digest, and the state st to A.

Guess. The adversary A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Figure 3-3. Selective security game for set membership encryption.

Send(crs, digest, L, m0, m1) : create

c0 = Encrypt(pk, 2L− 1, m0, digest)

and

c1 = Encrypt(pk, 2L, m1, digest).

Output c = (c0, c1).

ReceiveD̂(crs, c, L) : Parse c as (c0, c1). If D[L] = 0, set

m = Decrypt(pk, K2L−1, E, 2L− 1, c0, st).

If D[L] = 1, set

m = Decrypt(pk, K2L, E, 2L, c1, st).

Correctness follows by inspection and because of the correctness of the underlying SME

scheme.

42

To achieve receiver privacy, the simulator can internally use the simulator of the pri-

vacy property of the underlying SME scheme. Indistinguishability of both views follows

immediately.

We construct the following simulator S(D, L, mD[L]) :

• digest← Hash(crs, D)

• c0 = Encrypt(pk, 2L−1, mD[L], digest) and c1 = Encrypt(pk, 2L, mD[L], digest) and output

c = (c0, c1).

Assume we have a distinguisher A that can distinguish between the normal Send algorithm

and this simulator, then we build an adversary B that can break the SME security game.

B receives a public key pk and all private keys for every i ∈ [n] from the challenger in the

SME security game. It passes this information as the crs to A. Next, B computes digest

honestly using Hash, picks a message mD[L] at random, and sends mD[L] and mD[L] as well as

E (from Hash), 2L−D[L], and digest to the challenger in the SME security game. B receives

a ciphertext c. Now, B sets cD[L] = c and cD[L] ← Encrypt(pk, 2L−D[L], mD[L], digest). Now,

A answers with either 0, i.e. we are using the real Send algorithm, in which case B answers

with D[L], or A answers with 1, i.e. we are using the simulator. In which case B sends D[L]

to the challenger.

The efficiency of the laconic OT scheme follows directly from the efficiency of the set

membership encryption scheme. □

Malicious Sender and Receiver.. Similar to previous work, the constructions that we

give are only secure against semi-honest adversaries. Standard techniques can be used to

upgrade to malicious adversaries, e.g. by the use of Non-Interactive Zero Knowledge proofs

(NIZKs) [80]. Luckily, given the use of bilinear maps in our constructions it is possible to use

quite optimal NIZKs such as the ones introduced by Groth et al. [114], and Groth [112]. More

43

recent work is exploring and further optimizing these types of NIZKs. [52, 58, 87, 113, 146]

We suspect that these proofs can even be further optimized leading to a very practical

construction, we leave these optimizations of the NIZKs for future work.

Other possibilities to improve the construction against malicious adversaries are the

techniques of Ishai et al. [126], or using interactive zero-knowledge proofs, but this introduces

more interactivity. Given the optimal setting for NIZKs, we rather prefer these former

techniques.

3.3 New Broadcast Encryption Scheme

We introduce a new broadcast encryption scheme that is based on the IBE scheme that

was introduced by Lewko and Waters [141]. To prove the IBE to be secure they use the

Dual System Encryption that was introduced by Waters [190], where that paper contained

a Broadcast encryption system, Lewko and Waters didn’t give a construction. They made

the interesting observation that their system was closely related to the IBE introduced by

Boneh and Boyen [38] and their HIBE to the Boneh, Boyen, and Goh [40] HIBE. The latter

also introduced a Broadcast encryption system. Therefore, this construction is only novel

in combining the existing construction techniques as well as proving techniques from these

different previous works. However, we will later need this exact Broadcast encryption scheme

to create our Laconic OT.

Construction.

Setup
(︂
1λ, n

)︂
: Let G be a bilinear group of composite order N = p1p2p3. Choose random

elements u1, . . . , un, g,∈ Gp1 and a random α ∈ ZN . Output:

pk = (u1, . . . , un, g, e (g, g)α) .

and msk = gα.

44

Encrypt (pk, M, S) :This function takes as input the public key pk, a message M , and the

receiver set S. It outputs an encrypted messages C.

• Parse pk as (u1, . . . , un, g, e (g, g)α) .

• Pick s
$←− ZN

• Output:

C = (C0, C1, C2) =
(︄

M · e (g, g)αs ,

(︄∏︂
i∈S

ui

)︄s

, gs

)︄
.

KeyGen (k, pk, msk) : This function takes as input the index k of the receiver for which a

key is generated, the public key pk, and the master secret key msk. It outputs a secret

key K.

• Parse pk as (u1, . . . , un, g, e (g, g)α) .

• Parse msk as gα.

• Pick r
$←− ZN , R3, R

(1)
3 , . . . , R

(n)
3

$←− Gp3

• Output:

K =
(︄

K1, K2, {K3,i}i∈[n]
i ̸=k

)︄
=
(︄

grR3, gαur
kR

(k)
3 ,

{︂
ur

i R
(i)
3

}︂
i∈[n]
i ̸=k

)︄

Decrypt (pk, K, S, k, C) : This function takes as input the public key pk, a secret key K, the

receiver set S, an index k, and the ciphertext C. It outputs a plaintext message M.

• Parse K as
(︄

K1, K2, {K3,i}i∈[n]
i ̸=k

)︄
.

• Parse C as (C0, C1, C2)

• Compute:

e (g, g)αs =
e (K2, C2) e

(︃∏︁
i∈S

i ̸=k
K3,i, C2

)︃
e (K1, C1)

. (3.1)

• Output:

M = C0

e (g, g)αs .

45

Correctness. We show that Equation (3.1) indeed recovers e (g, g)αs , which then can be

used to recover the plaintext:

e (K2, C2) e
(︃∏︁

i∈S

i ̸=k
K3,i, C2

)︃
e (K1, C1)

=
e
(︂
gαurk

k R
(k)
3,k, gtb

)︂
e
(︃∏︁

i∈S

i ̸=k
urk

i R
(i)
3,k, gs

)︃
e (grkR3,k, (∏︁i∈S ui)s)

= e (g, g)αs e ((∏︁i∈S ui)rk , gs)
e (grk , (∏︁i∈S ui)s)

= e (g, g)αs

Security. We will now prove the following theorem:

Theorem 2 If Assumptions 1, 2, and 3 hold, then our BE system is adaptively secure.

Proof. To prove this statement we will use the Dual System Encryption technique of

Waters [190]. First, we will introduce a semi-functional ciphertext as well as a semi-functional

key. A semi-functional ciphertext can still be decrypted by a normal key, but cannot be

decrypted by a semi-functional key. However, the semi-functional key can still decrypt normal

ciphertexts.

Using these semi-functional versions of the ciphertext and keys, we will use a set of hybrids

that start with changing the challenge ciphertext into a semi-functional ciphertext. Next,

one-by-one we change each key that gets queried by the adversary into a semi-functional

key. As a last step we can replace the message by a random message, this final version

does not contain any information about the ciphertext anymore. If all these hybrids are

indeed indistinguishable to the adversary, we can use the hybrid lemma to conclude that our

broadcast encryption construction is indeed secure.

Semi-functional Ciphertext. We let g2 denote a generator of subgroup Gp2 . First

generate a normal ciphertext C ′ = (C ′
0, C ′

1, C ′
2) . Sample random exponents x, zc

$←− ZN . Then

C = (C ′
0, C ′

1g
xzc
2 , C ′

2g
x
2) .

46

Semi-functional Key. Create a normal key K ′ =
(︄

K ′
1, K ′

2,
{︂
K ′

3,i

}︂
i∈[n]
i ̸=k

)︄
. Sample random

exponents γ, {zk,i}i∈[n]
$←− ZN . Then K =

(︄
K ′

1g
γ
2 , K ′

2g
γzk,k

2 ,
{︂
K ′

3,ig
γzk,i

2

}︂
i∈[n]
i ̸=k

)︄
.

Decrypting a semi-functional ciphertext with a semi-functional key adds an extra blinding

factor of e (g2, g2)
xγ

(︂∑︁
i∈[n] zk,i−zc

)︂
. If ∑︁i∈[n] zk,i = zc, decryption will still work, which means

the key is nominally semi-functional.

Now we introduce the different hybrids:

GameReal is the real security game for broadcast encryption.

Gamej is the same as the real security game except that the challenge ciphertext is

semi-functional and the first j queried keys are also semi-functional. In Gameq the

ciphertext and all keys are semi-functional, with q being the number of queries the

attacker makes.

GameFinal is the same as Gameq except that the ciphertext is a semi-functional

ciphertext of a random message.

Note that Game0 is the same as the real security game except that the challenge ciphertext

is a semi-functional ciphertext, while all secret keys remain normal secret keys.

We conclude the proof by using three lemmas. First, Lemma 1 proves that GameReal is

indistinguishable from Game0. Next, Lemma 2 proves that Gamei−1 is indistinguishable

from Gamei, for any i ∈ [q], with q the number of queries made by the adversary. Finally,

Lemma 3 proves that Gameq is indistinguishable from GameFinal, which concludes the proof

because that last game does not contain any information about the message anymore. □

Lemma 1 Suppose there exists an algorithm A such that GameRealAdvA−Game0AdvA = ϵ.

Then there exists an algorithm B with advantage ϵ in breaking Assumption 1.

47

Proof. Given an adversary A that can distinguish between GameReal and Game0, we now

show how to construct an adversary B that can break Assumption 1. B receives g, X3, T

from an instance of Assumption 1. It samples random exponents α, {ai}i∈[n]
$←− ZN and sets

g = g, ui = gai . It sends the public parameters {N, u1, . . . , un, g, e (g, g)α} to A. For each key

queried by A for an index k, B samples random exponents rk, tk, and ∀j ∈ [n] : wk,j
$←− ZN

and sets:

K =
(︄

grkX tk
3 , gαurk

k X
wk,k

3 ,
{︂
urk

i X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

B receives two messages M0 and M1 from A and a challenge set S∗. B samples β
$←− {0, 1}

and forms the ciphertext:

C =
(︂
Mβe (T, g)α , T

∑︁
i∈S∗ ai , T

)︂
.

This sets gs to be equal to the Gp1 part of T . If T ∈ Gp1p2 then this is a semi-functional

ciphertext with zc = ∑︁
i∈S∗ ai. We note that the value of zc modulo p2 is uncorrelated with

the values ai modulo p1, so this is still properly distributed. If T ∈ Gp1 , this is a normal

ciphertext. If the adversary A outputs 0, meaning it decides we are in GameReal, B also

outputs 0, i.e. T ∈ Gp1 . Otherwise, if the adversary A outputs 1, meaning it decides we are

in Game0, B also outputs 1, i.e. T ∈ Gp1p2 . Hence, if the adversary A has an advantage in

distinguishing between both games, B also has an advantage in breaking Assumption 1. □

Lemma 2 Suppose there exists an algorithm A such that Gamej−1AdvA−GamejAdvA = ϵ.

Then there exists an algorithm B with advantage ϵ in breaking Assumption 2.

Proof. Given an adversary A that can distinguish between Gamej−1 and Gamej, we

now show how to construct an adversary B that can break Assumption 1. B receives

g, X1X2, X3, Y2Y3, T from an instance of Assumption 2. It samples random α, {ai}i∈[n]
$←− ZN ,

sets g = g, ui = gai , and sends public parameters {N, u1, . . . , un, g, e (g, g)α} to A. When A

requests a key for index k B responds with:

48

k < j: create a semi-functional key by sampling rk, zk,1, . . . , zk,n, tk
$←− ZN and set:

K =
(︄

grk(Y2Y3)tk , gαurk
k (Y2Y3)zk,k , {urk

i (Y2Y3)zk,i}i∈[n]
i ̸=k

)︄
.

This is a properly distributed semi-functional key with gγ
2 = Y tk

2 . Again, we note that

the values of tk and zk,i modulo p2 and modulo p3 are uncorrelated.

k > j: create a normal key by sampling rk, wk,1, . . . , wk,n, tk
$←− ZN and set:

K =
(︄

grkX tk
3 , gαurk

k X
wk,k

3 ,
{︂
urk

i X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

This is identical to a normal construction of a key with R3 = X tk
3 and R

(i)
3 = X

wk,i

3 for

all i.

k = j: B sets zk,i = ai and samples wk,1, . . . , wk,n
$←− ZN and sets:

K =
(︄

T, gαT zk,kX
wk,k

3 ,
{︂
T zk,iX

wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

Depending on value T this is either a normal key, i.e. if T ∈ Gp1p3 , or a semi-functional

key, i.e. when T ∈ G

At some point A will send two messages M0 and M1, and a challenge set S∗. B samples

β
$←− {0, 1} and forms the challenge ciphertext:

C =
(︂
Mβe (X1X2, g)α , (X1X2)

∑︁
i∈S∗ ai , X1X2

)︂
.

This sets gs = X1 and zc = ∑︁
i∈S∗ ai. Again, because the values ai modulo p2 are uncorrelated

to their counterparts modulo p1, these values are properly distributed.

Note that B can only create a nominally semi-functional key for position j.

If T ∈ Gp1p3 then Gamej−1 was properly simulated by B, if T ∈ G, however, this is a

simulation of Gamej . Therefore, if A responds with 0, i.e. it believes we are in Gamej−1, B

also responds with 0, i.e. T ∈ Gp1p3 . Similarly, if A responds with 1, i.e. it believes we are in

49

Gamej, B also responds with 1, i.e. T ∈ G. We can conclude that if A has an advantage

distinguishing between two games, B also has an advantage in breaking Assumption 2. □

Lemma 3 Suppose there exists an algorithm A such that GameqAdvA−GameFinalAdvA = ϵ.

Then there exists an algorithm B with advantage ϵ in breaking Assumption 3.

Proof. Given an adversary A that can distinguish between Gameq and GameFinal, we

now show how to construct an adversary B that can break Assumption 3. B receives

g, gαX2, X3, gsY2, Z2, T from an instance of Assumption 3. It samples random {ai}i∈[n]
$←− ZN ,

sets g = g, ui = gai , e (g, g)α = e (gαX2, g) and sends public parameters

{N, u1, . . . , un, g, e (g, g)α}

to A. When A requests a key for index k, B responds with a semi-functional key by sampling

ck,1, . . . , ck,n, rk, tk, wk,1, . . . , wk,n, γk
$←− ZN and sets:

K =
(︄

grkZγk
2 X tk

3 , gαX2u
rk
k Z

ck,k

2 X
wk,k

3 ,
{︂
urk

i Z
ck,i

2 X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

A sends two messages M0 and M1 and a challenge set S∗. B samples β
$←− {0, 1} and forms a

challenge ciphertext:

C =
(︂
MβT, (gsY2)

∑︁
i∈S∗ ai , gsY2

)︂
.

This sets zc = ∑︁
i∈S∗ ai, again note that this is properly distributed because of ai modulo p1

being uncorrelated to ai modulo p2.

If T = e (g, g)αs then this is a properly distributed semi-functional ciphertext with message

Mβ. If T is random in GT , then this is a semi-functional ciphertext with a random message.

Therefore, when A responds with 0, i.e. it believes we are in Gameq, B also responds with 0,

i.e. T = e (g, g)αs . Otherwise, when A responds with 1, i.e. it believes we are in GameFinal, B

also responds with 1, i.e. T
$←− GT . We can conclude that if A has an advantage distinguishing

between two games, B also has an advantage in breaking Assumption 3. □

50

3.4 SME Construction

We start by giving an adaptively secure construction of the set membership encryption

protocol. This is based on an efficient adaptively secure broadcast encryption scheme by

Waters [190] that we then combine with the identity based encryption scheme of Lewko and

Waters [141]. This construction works in composite order bilinear groups and is proven to be

adaptively secure by using the Dual System Encryption framework of Waters [190].

Setup
(︂
1λ, n

)︂
: Let G be a bilinear group of composite order N = p1p2p3. Choose random

elements u1, . . . , un, ũ1, . . . , ũn, g ∈ Gp1 and a random α ∈ ZN . Set pk = (u1, . . . , un, ũ1,

. . . , ũn, g, e (g, g)α), and msk = gα. Output (pk, msk).

KeyGen(k, pk, msk) : This algorithm takes as input a receiver k ∈ [n], a public key pk, and

a master secret key msk. Parse pk as (u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α) and msk as gα.

Pick r
$←− ZN , and R3, R

(1)
3 , . . . , R

(n)
3

$←− Gp3 and set

dk =
(︄

grR3, gα (ũkuk)r R
(k)
3 ,

{︂
ur

jR
(j)
3

}︂
j∈[n]
j ̸=k

)︄
.

Hash (pk, S) : This algorithm takes as input a public key pk and a subset S ⊆ [n]. It outputs

a digest Ŝ and state st. Parse pk as (u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α). Pick uniformly

random z
$←− Gp1 and compute: Ŝ = z

∏︁
j∈S uj. Output (Ŝ, st = z).

Encrypt
(︂
pk, k, M, Ŝ

)︂
: This algorithm takes as input a public key pk, a receiver k ∈ [n], a

message M, and a digest Ŝ. It outputs a ciphertext C = (c1, c2, c3) . Parse pk as (u1,

. . . , un, ũ1, . . . , ũn, g, e (g, g)α). Pick t
$←− ZN and set

C =
(︃

Me (g, g)αt ,
(︂
ũkŜ

)︂t
, gt
)︃

=
⎛⎝Me (g, g)αt ,

⎛⎝ũkz
∏︂
j∈S

uj

⎞⎠t

, gt

⎞⎠ .

51

Decrypt (pk, dk, S, k, C, st) : This algorithm takes as input a public key pk, a private key

dk, a subset S ⊆ [n], a receiver k ∈ [n], a ciphertext C, and state st = z. Parse pk as

(u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α) and C as (c1, c2, c3) . Parse

dk =
(︄

δ1, δ2, {δ3,j}j∈[n]
j ̸=k

)︄
.

Compute

K =
e (z, c3) e (δ2, c3) e

(︄∏︁
j∈S

j ̸=k
δ3,j, c3

)︄
e (δ1, c2)

. (3.2)

Output M ← c1K
−1.

Correctness. We show that Equation (3.2) indeed recovers K, which then can be used to

recover the plaintext message M

K =
e (δ2, c3) e

(︄∏︁
j∈S

j ̸=k
δ3,j, c3

)︄
e (δ1, c2)

=
e
(︂
gα (ũkuk)r R

(k)
3 , gt

)︂
e

(︄∏︁
j∈S

j ̸=k
ur

jR
(j)
3 , gt

)︄

e
(︃

grR3,
(︂
ũk
∏︁

j∈S uj

)︂t
)︃

=
e (g, g)αt e

(︂(︂
ũk
∏︁

j∈S uj

)︂r
, gt
)︂

e
(︃

gr,
(︂
ũk
∏︁

j∈S uj

)︂t
)︃

= e (g, g)αt

Efficiency. In this construction it can be seen that the size of the public key is 2n + 1

random elements in G and 1 element in the target group. The msk however is just 1 element

in G. The size of the keys are linear in the number of users of the protocol, i.e. n + 1 group

elements.

Hash can be computed by doing |S|− 1 multiplications within G, therefore, this algorithm

runs in time O (|S|) . The output of the algorithm is just 1 group element. On the other hand,

52

Encrypt runs in constant time, because it only computes 1 multiplication and 2 exponentiations

in G, and 1 exponentiation and 1 multiplication in GT . The output of this algorithm is 2

elements in G and 1 element in GT .

Finally decryption runs in O (|S|) because it needs to do |S| curve multiplications in G, 2

pairings, and 1 multiplication and 1 division in GT .

Privacy. To show privacy we need to create a simulator such that for any set S of size

at most n = poly (λ) for any polynomial function poly (·) , let (pk, msk) ← Setup(1λ, n),

∀i ∈ [n] : Ki = KeyGen(i, pk, msk), and (Ŝ, st)← Hash(pk, S), it holds that

(︂
pk, {Ki}i∈[n], Ŝ

)︂ c≈
(︂
pk, {Ki}i∈[n],S

(︂
1λ
)︂)︂

.

A very straight forward simulator is just sampling a uniform random element in G, because

of the randomly chosen blinding factor z during hashing, it is clear that both outputs are

perfectly indistinguishable.

Theorem 3 If Assumptions 1, 2, and 3 hold, then our set membership encryption system is

secure.

Proof. We will use the Dual System Encryption technique that was introduced by Wa-

ters [190]. Therefore, we will introduce a semi-functional version of the ciphertext as well as

a semi-functional key. A semi-functional ciphertext can still be decrypted by a normal key,

but cannot be decrypted by a semi-functional key. Similarly, semi-functional keys can still

decrypt normal ciphertexts.

Next, we will use a set of hybrids starting with the security game GameA,SME,n where the

challenger selects b′ = 0 and encrypts the real message. Next, we will change the challenge

ciphertext to be a semi-functional ciphertext. The following hybrids will replace all private

keys one-by-one with a semi-functional version. In the last hybrid we can remove the real

message and replace it with a random message. This last hybrid has no information about

53

the message anymore, therefore, statistically hides the message. One can follow the path of

hybrids backwards to end up with the security game where the challenger picks b′ = 1 and

therefore encrypts a random message.

Semi-functional Ciphertext. We let g2 denote a generator of subgroup Gp2 . First

generate a normal ciphertext C ′ = (c′
1, c′

2, c′
3) . Sample random exponents x, zc

$←− ZN . Then

C = (c′
1, c′

2g
xzc
2 , c′

3g
x
2) .

Semi-functional Key. Create a normal key d′
i =

(︄
δ′

1, δ′
2,
{︂
δ′

3,i

}︂
i∈[n]
i ̸=k

)︄
. Sample random

exponents γ, {zk,i}i∈[n]
$←− ZN . Then

di =
(︄

δ′
1g

γ
2 , δ′

2g
γzk,k

2 ,
{︂
δ′

3,ig
γzk,i

2

}︂
i∈[n]
i ̸=k

)︄
.

Decrypting a semi-functional ciphertext with a semi-functional key adds an extra blinding

factor of e (g2, g2)
xγ

(︂∑︁
i∈[n] zk,i−zc

)︂
. If ∑︁i∈[n] zk,i = zc, decryption will still work, which means

the key is nominally semi-functional.

Next, we will describe the different hybrids starting with the security game GameA,SME,n

where the challenger selects b′ = 0 and encrypts the real message, and ending with a game

that doesn’t contain any information about the message anymore.

GameReal is the security game GameA,SME,n where the challenger selects b′ = 0 and

encrypts the real message.

Gameτ is the same as GameReal except that the challenge ciphertext is semi-functional

and the first τ queried keys are also semi-functional. In Hn the ciphertext and all keys

are semi-functional.

GameFinal is the same as Hn except that the challenge ciphertext is a semi-functional

ciphertext of a random message. Note that this hybrid does not contain any information

about the plaintext message anymore.

54

We conclude the proof by using three lemmas. First, Lemma 4 proves that GameReal is

indistinguishable from Game0. Next, we show in Lemma 5 that Gameτ−1 is indistinguishable

from Gameτ , for any τ ∈ [n]. Finally, Lemma 6 proves that Gameτ is indistinguishable

from GameFinal, which concludes the proof because that last hybrid does not contain any

information about the message anymore. □

Lemma 4 Suppose there exists an algorithm A such that

GameRealAdvA −Game0AdvA = ϵ.

Then there exists an algorithm B with advantage ϵ in breaking Assumption 1.

Proof. Given an adversary A that can distinguish between GameReal and Game0, we now

show how to construct an adversary B that can break Assumption 1. B receives g, X3, T

from an instantiation of Assumption 1. It samples random exponents α, κ, {ai, ci}i∈[n]
$←− ZN

and sets g = g, ui = gai , ũi = gci . B sets pk = (u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α) and sends it

to A.

For each key query with index k, B responds by sampling random exponents rk, tk, and

wk,1, . . . , wk,n
$←− ZN and setting:

dk =
(︄

grkX tk
3 , gα (ũkuk)rk X

wk,k

3 ,
{︂
urk

i X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

B receives a set S ⊆ [n] and an element j ∈ [n], but j ̸∈ S, and a message M from A. B

computes:

C =
(︂
Me (T, g)α , T cj+κ+

∑︁
i∈S

ai , T
)︂

.

This sets gt to be equal to the Gp1 part of T . If T ∈ Gp1p2 then this is a semi-functional

ciphertext with zc = cj + κ +∑︁
i∈S ai. We note that the value of zc modulo p2 is uncorrelated

with the values ai and cj modulo p1, so this is still properly distributed. If T ∈ Gp1 , this is a

normal ciphertext. If A outputs 0, i.e. it thinks we simulated GameReal, B also outputs 0,

55

i.e. T ∈ Gp1 . Similarly, if A outputs 1, i.e. it thinks we simulated Game0, B also outputs 1,

i.e. T ∈ Gp1p2 . Hence, if the adversary A has an advantage in distinguishing between both

games, B also has an advantage in breaking Assumption 1. □

Lemma 5 Suppose there exists an algorithm A such that

Gameτ−1AdvA −Gameτ AdvA = ϵ.

Then we build an algorithm B with advantage ϵ in breaking Assumption 2.

Proof. Given an adversary A that can distinguish between Gameτ−1 and Gameτ , we

now show how to construct an adversary B that can break Assumption 2. B receives

g, X1X2, X3, Y2Y3, T from an instantiation of Assumption 2. It samples random

α, κ, {ai, ci}i∈[n]
$←− ZN ,

sets g = g, ui = gai , ũi = gci . B sends

pk = (u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α)

to A.

When receiving a query for a key at position k, B does the following:

k < τ : create a semi-functional key by sampling rk, zk,1, . . . , zk,n, tk
$←− ZN and set:

dk =
(︄

grk(Y2Y3)tk , gα (ũkuk)rk (Y2Y3)zk,k , {urk
i (Y2Y3)zk,i}i∈[n]

i ̸=k

)︄
.

This is a properly distributed semi-functional key with gγ
2 = Y tk

2 . Again, we note that

the values of tk and zk,i modulo p2 and modulo p3 are uncorrelated.

k > τ : create a normal key by sampling rk, wk,1, . . . wk,n, tk
$←− ZN and set:

dk =
(︄

grkX tk
3 , gα (ũkuk)rk X

wk,k

3 ,
{︂
urk

i X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄

56

k = τ : B sets zk,i = ai and zk,k = ck + ak and samples wk,1, . . . , wk,n
$←− ZN and sets:

dk =
(︄

T, gαT zk,kX
wk,k

3 ,
{︂
T zk,iX

wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

A few key points to note:

1. When changing a key to a semi-functional key, the adversary B itself could try

and create a semi-functional ciphertext for that specific key, to try and distinguish.

However, this is where the fact that this key is nominally semi-functional kicks in.

The created ciphertext would still be decryptable by that specific key.

2. When the adversary B itself tries to create a semi-functional key for the semi-

functional challenge ciphertext, it will again become a nominally semi-functional

key, because again you would have to set zk,k = ck and zc would become cj + κ +∑︁
i∈S ai.

B receives a set S ⊆ [n] and an element j ∈ [n], but j ̸∈ S, and a message M from A. B

computes:

C =
(︂
Me (X1X2, g)α , (X1X2)cj+κ+

∑︁
i∈S

ai , X1X2
)︂

.

This sets gt = X1 and zc = cj + κ +∑︁
i∈S ai. Again, because the values ai and cj modulo p2

are uncorrelated to their counterparts modulo p1, these values are properly distributed.

If T ∈ Gp1p3 then Gameτ−1 was properly simulated by B, if T ∈ G, however, this is a

simulation of Gameτ . If A outputs 0, i.e. it thinks we are in Gameτ−1, B also outputs 0,

i.e. T ∈ Gp1p3 . Similarly, if A outputs 1, i.e. it thinks we are in Gameτ , B also outputs

1, i.e. T ∈ G. Hence, if the adversary A has an advantage in distinguishing between both

hybrids, B also has an advantage in breaking Assumption 2. □

Lemma 6 Suppose there exists an algorithm A such that

GamenAdvA −GameFinalAdvA = ϵ.

57

Then we build an algorithm B with advantage ϵ in breaking Assumption 3.

Proof. Given an adversary A that can distinguish between the two games, Gamen and

GameFinal, we now show how to construct an adversary B that can break Assumption 3. B

receives g, gαX2, X3, g
t
D[L]Y2, Z2, T from an instantiation of Assumption 3. It samples random

κ, {ai, ci}i∈[n]
$←− ZN , sets g = g, ui = gai , ũi = gcie (g, g)α = e (gαX2, g) . B sends

pk = (u1, . . . , un, ũ1, . . . , ũn, g, e (g, g)α)

to A.

When receiving a query for a key at position k, B computes a semi-functional key by

sampling

v1, . . . , vn, rk, tk, wk,1, . . . , wk,n, γk
$←− ZN

and sets:

dk =
(︄

grkZγk
2 X tk

3 , gαX2 (ũkuk)rk Z
vk,k

2 X
wk,k

3 ,
{︂
urk

i Z
vk,i

2 X
wk,i

3

}︂
i∈[n]
i ̸=k

)︄
.

An important note to make is that B itself cannot create a real key, but only semi-functional

keys, because the master secret key gα is tied to an element of Gp2 .

B receives a set S ⊆ [n] and an element j ∈ [n], but j ̸∈ S, and a message M from A. B

computes:

C =
(︃

MT,
(︂
gtY2

)︂cj+κ+
∑︁

i∈S
ai

, gtY2

)︃
.

This sets zc = cj + κ +∑︁
i∈S ai. Same argument about the correlation of ai and cj.

If T = e (g, g)αt then this is a properly distributed semi-functional ciphertext with message

M . If T is random in GT , then this is a semi-functional ciphertext with a random message. If

A outputs 0, i.e. it thinks we are in Gamen, B also outputs 0, i.e. T = e (g, g)αt. Similarly,

if A outputs 1, i.e. it thinks we are in GameFinal, B also outputs 1, i.e. T
$←− GT . Hence,

if the adversary A has an advantage in distinguishing between both hybrids, B also has an

advantage in breaking Assumption 3. □

58

3.5 SME with Constant Size Decryption Keys

Next, we introduce a construction that can reduce the decryption keys from O (n) to constant

size, more specifically one group element. Unfortunately, by doing so we use the weaker

selective security definition. This selectively secure scheme is based upon the broadcast

encryption scheme by Boneh, Gentry, and Waters [41]. The original scheme was selectively

CPA secure, therefore, we can only hope to distill a selectively secure SME from this

construction.

Setup
(︂
1λ, n

)︂
: Let G be a bilinear group of prime order p. Choose random generator

g ∈ G and random α, {βi}i∈[n] ∈ Zp. Compute gi = g(αi) ∈ G for i ∈ [2n] \ {n + 1},

and gβi ∈ G for i ∈ [n]. Also, choose γ ∈ Zp and set v = gγ ∈ G. Output pk =(︃
g, {gi}i∈[2n]\{n+1} ,

{︂
gβi

}︂
i∈[n]

, v
)︃

, and msk =
(︂
γ, {βi}i∈[n]

)︂
KeyGen (k, pk, msk) : This algorithm takes as input a receiver k ∈ [n], a public key pk, and

a master secret key msk. Parse pk as
(︃

g, {gi}i∈[2n]\{n+1} ,
{︂
gβi

}︂
i∈[n]

, v
)︃

and msk as
(︂
γ, {βi}i∈[n]

)︂
. Output dk = gγ

kgβk
k .

Hash (pk, S ⊆ [n]) : This algorithm takes as input a public key pk and a subset S ⊆ [n]. It

outputs a digest Ŝ and a state st. Parse pk as
(︃

g, {gi}i∈[2n]\{n+1} ,
{︂
gβi

}︂
i∈[n]

, v
)︃

. Pick

uniformly random z
$←− G and compute Ŝ = zv

∏︁
j∈S gn+1−j.Output (Ŝ, st = z)

Encrypt
(︂
pk, i, M, Ŝ

)︂
: This algorithm takes as input a public key pk, a receiver i ∈ [n], a

message M, and a digest Ŝ. It outputs a ciphertext C∗ = (Hdr, C) . Parse pk as (g,

{gi}i∈[2n]\{n+1} ,
{︂
gβi

}︂
i∈[n]

, v). Pick t
$←− Zp and set

Hdr =
(︃

gt,
(︂
gβiŜ

)︂t
)︃

=
⎛⎝gt,

⎛⎝vgβi
∏︂
j∈S

gn+1−j

⎞⎠t⎞⎠ .

59

Compute K = e (g, gn+1)t , note that you can compute e (g, gn+1) as e (g1, gn) . Set

C = M ·K and output C∗ = (Hdr, C).

Decrypt (pk, di, S, i, C, st) : This algorithm takes as input a public key pk, a private key di,

a subset S ⊆ [n], a receiver i ∈ [n], a ciphertext C, and a state st = z Parse pk as(︃
g, {gi}i∈[2n]\{n+1} ,

{︂
gβi

}︂
i∈[n]

, v
)︃

and C as (Hdr, C) . Parse Hdr = (c1, c2) . Compute

K = e (gi, c2)

e

(︄
di
∏︁

j∈S

j ̸=i
gn+1−j+i, c1

)︄ . (3.3)

Output M ← C ·K−1.

Correctness. We show that Equation (3.3) indeed recovers K, which then can be used to

recover the plaintext message M

e (gi, c2)

e

(︄
di
∏︁

j∈S

j ̸=i
gn+1−j+i, c1

)︄ =
e
(︃

g(αi),
(︂
vgβi

∏︁
j∈S gn+1−j

)︂t
)︃

e

(︄(︂
g(αi)

)︂γ (︂
g(αi)

)︂βi ∏︁
j∈S

j ̸=i
gn+1−j+i, gt

)︄

=
e
(︂
g(αi), gn+1−i

)︂t
e

(︄
g(αi), v

∏︁
j∈S

j ̸=i
gn+1−j

)︄t

e
(︂
g(αi), gβi

)︂t

e

(︄(︂
g(αi)

)︂γ ∏︁
j∈S

j ̸=i
gn+1−j+i, gt

)︄
e
(︃(︂

g(αi)
)︂βi

, gt

)︃

= e (g, gn+1)t

e

(︄
g, v(αi)∏︁

j∈S

j ̸=i
gn+1−j+i

)︄t

e

(︄(︂
g(αi)

)︂γ ∏︁
j∈S

j ̸=i
gn+1−j+i, g

)︄t

= e (g, gn+1)t = K

Efficiency. In this construction it can be seen that the size of the public key is 3n + 1

elements in G. The msk is n + 1 elements in Zp. The size of the secret keys is just 1 group

element, which is a big improvement in comparison with our first construction in Section 3.4.

Hash can be computed by doing |S| multiplications within G, therefore, this algorithm

runs in time O (|S|) . The output of the algorithm is just 1 group element. On the other hand,

60

Encrypt runs in constant time, because it only computes 1 multiplication and 2 exponentiations

in G, and 1 pairing, 1 exponentiation, and 1 multiplication in GT . The output of this algorithm

is 2 elements in G and 1 element in GT .

Finally decryption runs in O (|S|) because it needs to do |S|−1 multiplications, 2 pairings,

and 1 multiplication and 1 division in GT .

Privacy. To show privacy we need to create a simulator such that for any set S of size

at most n = poly (λ) for any polynomial function poly (·) , let (pk, msk) ← Setup(1λ, n),

∀i ∈ [n] : Ki = KeyGen(i, pk, msk), and (Ŝ, st)← Hash(pk, S), it holds that

(︂
pk, {Ki}i∈[n], Ŝ

)︂ c≈
(︂
pk, {Ki}i∈[n],S

(︂
1λ
)︂)︂

.

A very straight forward simulator is just sampling a uniform random element in G, because

of the randomly chosen blinding factor z during hashing, it is clear that both outputs are

perfectly indistinguishable.

Security. We introduce a selective BDHE assumption, note that this can be stated as a

GBDHE, except that some of the parameters can be chosen adversarial in advance. We can

prove this assumption to be generically secure (i.e. in the generic bilinear group model [180]),

by using the generic proof template of Boneh, Boyen, and Goh [40].

Assumption 4 After given S ⊂ [n] and i ∈ [n], with i ̸∈ S by an adversary, a challenger

outputs⎛⎝g, h = gt,
{︂
gi = g(αi)

}︂
i∈[2n]\{n+1}

,
{︂
gβi

}︂
i∈[n]

, v = gγ,
{︂
gγ

i gβi
i

}︂
i∈[n]

,

⎛⎝vgβi
∏︂
j∈S

gn+1−j

⎞⎠t⎞⎠ ,

and a value T that is either e (h, gn+1) or a random element in GT . The assumption states

that the adversary has negligible advantage in distinguishing between the two possibilities of T.

61

Lemma 7 Given S ⊂ [n] and i ∈ [n], the above assumption is a selective BDHE assumption,

ie: for the following polynomials, f is independent of (P, Q), if i ̸∈ S.

P =
⎛⎝1, t,

{︂
αk
}︂

k∈[2n]\{n+1}
, {βk}k∈[n] , γ,

{︂
γαk + βkαk

}︂
k∈[n]

, κ, γt + βit + κt + t
∑︂
j∈S

αn+1−j

⎞⎠
Q = (1)

f = tαn+1

Proof. To show that f is independent of (P, Q) we have to show that f cannot be constructed

in the following way: f = ∑︁
i

∑︁
j pipj + ∑︁

k qk, where pi, pj are polynomials in P and qk

polynomials in Q.

To create the term tαn+1, we need to look at the term γt + βit + κt + t
∑︁

j∈S αn+1−j,

because none of the other terms contain αn+1, or any αk in combination with t. To achieve the

term we multiply this with αk for k ∈ S. This results in γtαk + βitα
k + κt + t

∑︁
j∈S αn+1−j+k.

Now, to cancel out the term βitα
k, we note that k ̸= i because i ̸∈ S, therefore we cannot

hope to use any of the γαk + βkαk. The only option to try and cancel out that term is by

using γt + βit + κt + t
∑︁

j∈S αn+1−j again if k = n + 1− j for some j ∈ S and multiply it with

βi. However, now we introduced the term β2
i t, the only way this term can be created is in

the same way we did, which will lead us in circles. This concludes the proof. □

Theorem 4 If Assumption 4 holds, then our SME construction above is a selectively secure

SME.

Proof. Given an adversary A for our SME construction, we build an adversary B to break

Assumption 4. First B receives a set S ⊂ [n] and an index i ∈ [n], but i ̸∈ S. It forwards

these elements to the challenger of the assumption. B receives⎛⎝g, h = gt,
{︂
gi = g(αi)

}︂
i∈[2n]\{n+1}

,
{︂
gβi

}︂
i∈[n]

, v = gγ,
{︂
gγ

i gβi
i

}︂
i∈[n]

, z,

⎛⎝zvgβi
∏︂
j∈S

gn+1−j

⎞⎠t⎞⎠

62

from the challenger. It sends

pk =
(︃

g, {gi}i∈[2n]\{n+1} ,
{︂
gβi

}︂
i∈[n]

, v
)︃

to the adversary A. A will respond with a message M. Now, B can respond with a correctly

constructed digest Ŝ = zv
∏︁

j∈S gn+1−j, a state z,

Hdr =
⎛⎝h,

⎛⎝zvgβi
∏︂
j∈S

gn+1−j

⎞⎠t⎞⎠ ,

and C = M ·T which is a correctly formed ciphertext that encrypts M when T = e (h, gn+1) ,

and an encryption of a random message when T is random. If A says this is an encryption of

the message M then B responds to the challenger that T = e (h, gn+1) . On the other hand,

if A says this is an encryption of a random message, then B responds to the challenger by

saying T is random. If A has a non-negligible advantage in breaking this SME, then B has a

non-negligible advantage in breaking Assumption 4. □

3.6 Extensions and Applications

In this section we introduce several extensions and improvements upon our construction of

laconic OT, as well as a specific application for our new primitive SME. First we show how

to decrease the CRS size by increasing the size of the digest. Next, we present how to get

updatable laconic OT for our schemes, which is an extension of normal laconic OT that was

introduced by Cho et al. [59] and that is important for the applications presented in their

paper.

3.6.1 Optimization of the Laconic OT Construction

Given the fact that the CRS in our laconic OT constructionsis still quadratic and linear in

the size of the database, respectively, we introduce the following optimization by striking a

new balance between the sizes of the different components. We decrease the size of the CRS

63

by increasing the size of the digest. By doing this we break the efficiency definition of laconic

OT that states that the digest can only depend on the security parameter, however, as we

show in Section 3.7.2, we get a much more practical result by doing so.

We start with the laconic OT construction based on an SME scheme as shown in Sec-

tion 3.2.1, remember that we set E =
{︂
2i−D[i]

⃓⃓⃓
∀i ∈ [|D|]

}︂
,with D being the original

database. Now we initiate the SME with size 2
√︂
|D|, instead of n = |E|. We distribute

all positions L ∈ D to their respective bucket of size 2
√︂
|D|. We can do this by computing

y =
⌊︃

i√
|D|

⌋︃
, next we compute ∀y, Ey = {x− y

√
n | x ∈ E ∩]y

√
n, (y + 1)

√
n]} .The size of

the CRS clearly decreases to O
(︂√︂
|D|

)︂
, however, the digest will grow to size O

(︂√︂
|D|

)︂
.

3.6.2 Updatable Laconic OT

For the applications in the original paper by Cho et al. [59] we need a slightly different version

of laconic OT which the researchers called updatable laconic OT. They introduced two more

algorithms SendWrite and ReceiveWrite, and required some form of sender privacy where the

receiver would not learn the original digest. This definition was very tailored to their specific

construction and application. Instead we propose a new version of updatable laconic OT by

introducing an algorithm called UpdateDigest, an algorithm that the sender can run on their

own, followed by sending the necessary information to the receiver, sender privacy can then

be achieved by performing this operation in a garbled circuit.

Definition 9 (updatable laconic OT) An updatable laconic OT scheme exists of the al-

gorithms (crsGen, Hash, Send, Receive) as defined in Definition 1, additionally the algorithm

UpdateDigest is added with the following syntax.

UpdateDigest(crs, digest, L, b)→ digest∗. It takes as input a common reference string crs, a

digest digest, a location L ∈ N, a bit b ∈ {0, 1} to be written. It outputs a new digest

digest∗.

64

On top of the properties of the normal laconic OT scheme we require the following properties:

Correctness with regards to writes: For any database of size ℓ = poly (λ) for any

polynomial function poly (·) , any memory location L in[ℓ], any bit b ∈ {0, 1} the

following holds. Let D∗ be identical to D except that D∗[L] = b,

Pr

⎡⎢⎢⎢⎢⎣digest∗ = digest′

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

crs← crsGen(1λ, ℓ)
(digest, D̂)← Hash(crs, D)

(digest∗, D̂
∗)← Hash(crs, D∗)

digest′ ← UpdateDigest(crs, digest, L, b)

⎤⎥⎥⎥⎥⎦ = 1,

where the probability is taken over the randomness of crsGen and UpdateDigest.

Note that the definition is quite similar to the definition in the original paper with respect

to correctness, as described above, we leave sender privacy to the addition of a garbled circuit.

Moreover, this algorithm outputs the updated digest in a normal representation while Cho et

al. represent it by using a label corresponding to every bit, however, this is very tailored

to the applications and setting they were working in, we believe there is major benefit in

defining this more generally the way we do.

Updatable Laconic OT Construction Based on SME of Section 3.4. First, we

show the construction of this new algorithm UpdateDigest in the context of the laconic

OT construction that is derived from the SME scheme in Section 3.4. Correctness of this

algorithm follows by simple inspection and as mentioned earlier sender privacy follows from

the properties of the garbled circuit when performing this algorithm in a garbled circuit.

We define UpdateDigest as follows:

UpdateDigest(crs, digest, L, b) : Output digest·u2L−b̄

u2L−b
.

Updatable Laconic OT Construction Based on SME of Section 3.5. Similarly, we

show the construction of this new algorithm UpdateDigest in the context of the laconic OT

construction that is derived from the SME scheme in Section 3.5.

65

We define UpdateDigest as follows:

UpdateDigest(crs, digest, L, b) : Output digest·gn+1−2L+b̄

gn+1−2L+b
.

Note on Achieving Cho et al.’s Applications. When running the above instantiations of

updatable laconic OT inside a garbled circuit we have all the same components as presented

in Cho et al., therefore, we can use our version of ℓOT in their applications. However, in terms

of efficiency, we have to look at the increased CRS size in our construction in comparison with

the construction of Cho et al. We note that in the application, the CRS is hard coded inside

a garbled circuit, leading to a large garbled circuit, but given our much more efficient overall

construction, this is still better than using Cho et al.’s construction. The other difference we

have to take into account is receiver time, but given that this algorithm is running outside of

garbled circuits, we refer the reader to our comparison in Section 3.7 to note that the overall

efficiency of our scheme will easily outweigh Cho et al.’s construction. One downside remains

the trusted setup that our construction needs, which Cho et al. does not.

3.7 Evaluation and Comparison

In this section we will evaluate our laconic OT scheme as derived from the SME constructions

in Section 3.4 and Section 3.5, how to derive a laconic OT scheme can be found in Section 3.2.1.

More specifically we will look at the concrete efficiency and compare this with previous work.

We recall that we compare the derived laconic OT schemes instead of another primitive for

ease of presentation and such that we can compare with the initial work of Cho et al. [59].

A difficulty in comparing with previous work is the plethora of papers that build upon the

initial work, improving the construction step by step, but usually focusing on the underlying

techniques and not necessarily laconic OT itself. Understanding how these all fit together is

no easy task. Therefore, when we talk about Cho et al., we actually mean a combination

66

of different papers. The basic construction is taken from the work by Cho et al., but quite

immediately after that paper, some improvements were made by Dottling and Garg [70]. The

last improvement on which we base ourselves was made by Cong et al. [62], which in turn

based their improvements on Goyal and Vusirikala [107].

Furthermore, we compare with the work from Goyal et al. [108] that introduces construc-

tions for One-Way Functions with Encryption (OWFE). It is easy to see that OWFE implies

laconic OT when the one-way function has the necessary compression to act as the hash

function in the laconic OT scheme. Goyal et al. have such construction and we compare with

their most efficient construction based on the q-DBDHI assumption.

Finally, we also compare with the work of Alamati et al. [9] that shows a construction for

laconic OT from the ϕ-hiding assumption based on another OWFE construction by Goyal et

al. [108]. Although, this construction seems to have great asymptotic efficiency, because of

the ϕ-hiding assumption the construction happens in a rather large RSA group leading to

concrete inefficiencies.

3.7.1 Asymptotic Efficiency

First we compare the asymptotic efficiency between previous work and this work. We

compare the laconic OT scheme that is constructed from the SME constructions in Section 3.4,

Section 3.5, and with the optimization described in Section 3.6.1. In Table 3-II we show

the computational and communication efficiency of the different algorithms. In terms of

computation time, we make a log n improvement for both Hash and Send in comparison with

Cho et al., but we go from polylogarithmic to linear decryption time.

In terms of communication complexity, the common reference string in our scheme is

much larger compared to Cho et al. Nevertheless, the size of the encryption generated by

Send decreases from logarithmic to constant size.

67

Table 3-II. Comparison of asymptotic computation and communication efficiency.

crsGen Hash Send Receive crs size Hash size Send size
Cho et al. [59] O (1) npoly (log n) poly (log n) poly (log n) O (1) O (1) O (log n)
Goyal et al. [108] O (n) O (n) O (1) O (n) O (n) O (1) O (1)
Goyal et al. [108] + §3.6.1 O (

√
n) O (n) O (1) O (

√
n) O (

√
n) O (

√
n) O (1)

Alamati et al. [9] O (1) O (n) O (1) O (n) O (1) O (1) O (1)
This work §3.4 O (n2) O (n) O (1) O (n) O (n2) O (1) O (1)
This work §3.4 + §3.6.1 O (n) O (n) O (1) O (

√
n) O (n) O (

√
n) O (1)

This work §3.5 O (n) O (n) O (1) O (n) O (n) O (1) O (1)
This work §3.5 + §3.6.1 O (

√
n) O (n) O (1) O (

√
n) O (

√
n) O (

√
n) O (1)

All our asymptotic efficiencies are similar to the ones in Goyal et al., but Alamati et al.

achieve better asymptotic efficiency by reducing the common reference string to constant size,

hence, achieving overall better efficiency than Cho et al. with the exception of receiving time.

3.7.2 Concrete Efficiency

Now we will look into concrete efficiency of our scheme in comparison with previous work.

To the best of our knowledge, Cong et al. [62] are the only ones to make an estimate of

the Send size in Cho et al. [59], they estimate that size to be 11TB, this is based on one

curve multiplication at every level in their tree based construction.5 However, when looking

closely to the circuits that get garbled at every stage of the tree, they contain ∼ 2λ curve

multiplications, leading to a much bigger circuit. Because in the work of Cong et al. they

use a database of size 231, we will be using the same number throughout our comparisons.

Computing Efficiency for Cho et al.. To compute the concrete efficiency of Cho et al. we

will use secp192k1 [170], because this seems to be the only curve for which someone actually

computed the number of gates a circuit would contain when doing a curve multiplication [128].

Because this curve only has 96 bits of security, we do not hope to achieve any better security,

and will use this security parameter for all other computations as well.

Moreover, we take the 30% optimization of Cong et al. into account as well, leading to a
5Remember that the construction in Cho et al. [59] contains a path from root to leaf on a tree, while at

each level a garbled circuit is computed.

68

size of 1.2 petabytes. We compute the size using the following formula:

size = ((2λ× d + 1)× 19 200 000 000× 160 bits)× 0.7,

where λ is the security parameter, d is the number of levels in the tree, the number 19.2

billion corresponds to the amount of non-XOR gates for doing a curve multiplication [128],

and finally, by using half gates [200] for each non-XOR gate [135] we need two ciphertexts

for each non-XOR gate which we will assume are 80 bits each. We also use the 0.7 factor

to account for the 30% optimization by Cong et al. Also note that d is O (log n), but not

exactly log n because each leaf can contain 2λ bits, we compute d accordingly.

Computing Efficiency for Goyal et al.. We compute the concrete efficiency of Goyal et

al. over the BLS12-381 curve, similar to how we compute our efficiency. Given the fact that

both constructions are very similar we see very similar results. Only in receiver time, we

see that our construction really shines in comparison with Goyal et al. We give some more

details about computing this concrete receiver time below.

Computing Efficiency for Alamati et al.. To compute the concrete efficiency for

Alamati et al. we have to compute a few of the parameters first. We note that the authors

mention a security parameter λ, but next take an RSA composite number N with λ bits.

If we want to achieve about 128 bit security, we need to take λ = 2, 048. Next, for their

PPRF trick that reduces the crs to constant size, we need to compute the value ξ. They

write that this value needs to be O
(︂
(log 2κ)2

)︂
, where κ is the size of the different primes

they use as exponents and 5κ ≤ λ. Therefore, κ needs to be around 409 bits, which leads to

ξ ≈ (409 · log 2)2 ≈ 15, 129. Finally, we work in the group ZNξ+1 , i.e. a group with numbers

of size up to 2, 048 · 15, 130 = 30, 986, 240. Although, this is all still practically doable as the

numbers in Table 3-III show, it is not ideal.

Moreover, receiver time is still linear in the database size and it is not possible to use the

same √-optimization as described in Section 3.6.1 because this would grow the digest size to

69

Table 3-III. Comparison of concrete efficiency, with n = 231. Cho et al. is estimated over elliptic
curve secp192k1 with λ = 96, Goyal et al. and our work are estimated on the BLS12-381 curve
with security parameter roughly 120 bits, and Alamati et al. is estimated using an RSA group of
2048 bits to achieve around 128 bit security. (kB = 1000 bytes, MB = 1 million bytes, GB = 1
billion bytes, PB = 1 quadrillion bytes, EB = 1 quintillion bytes)

λ crs size Hash size Send size Receive
Cho et al. [59] 96 bits 4.6kB 48 bytes 1.2PB -
Goyal et al. [108] ∼ 120 bits 103.1GB 48 bytes 1.25kB 8.1 days
Goyal et al. [108] + §3.6.1 ∼ 120 bits 2.2MB 2.2MB 1.25kB 15.1s
Alamati et al. [9] ∼ 128 bits 0.8MB 3.9MB 7.7MB 85.9s
This work §3.4 ∼ 120 bits 221.4EB 48 bytes 1.34kB 27.7 minutes
This work §3.4 + §3.6.1 ∼ 120 bits 103.1GB 2.2MB 1.34kB 38.7ms
This work §3.5 ∼ 120 bits 412.3GB 48 bytes 1.34kB 27.7 minutes
This work §3.5 + §3.6.1 ∼ 120 bits 8.9MB 2.2MB 1.34kB 38.7ms

around 180GB, which is clearly undesirable in a laconic OT scheme.

Computing Concrete Receiver Computation Time. Finally we show how we achieve

concretely better receiver time in comparison with all previous work. First, we note that

computing the receiver time in the work by Cho et al. is nearly impossible, but given the

Send size of 1.2PB it would already take 11 days just to transfer this amount of data over a

10Gbps line, let alone handle this amount of data on a reasonably sized computer.

Therefore, we focus our efforts on comparing receiver time with the work of Goyal et

al. and Alamati et al. To get a fair estimate of the receiving time in all constructions we

benchmarked all operations on an Apple M1 Max. For Goyal et al. and our work we use:

775ns for a multiplication, 325µs for an exponentiation, 1393µs for a pairing, and 4.5µs for a

multiplication in the target group. In Goyal et al., we ignored the symbolic evaluation of a

degree-n polynomial. For Alamati et al. we benchmarked a multiplication in the respective

group to take 40ns, we ignored the single exponentiation.

In Table 3-III, we show the full comparison of concrete efficiency.

70

3.8 Related Work

Laconic Oblivious Transfer (OT) was first introduced by Cho et al. [59] in comparison with

regular OT, laconic OT requires the receiver’s outgoing message to be small, more specifically,

it shouldn’t grow with the size of the database. They prove their system to be secure based

on the Decisional Diffie-Hellman (DDH) assumption in the common reference string (CRS)

model. To achieve this they use somewhere statistically binding (SSB) hash functions [122]

combined with hash proof systems. This specific technique has been refined in several

subsequent papers changing names to Chameleon Hashing [70], Hash Encryption [71], or

Hash Garbling [47]. Most recently this technique was further optimized in the context of

Registration Based Encryption (RBE) [62, 90, 92, 107]. Even with all these improvements

the construction remains merely theoretical, although the asymptotic efficiency seems quite

optimal, implementing the scheme would require giant garbled circuits impossible to create

and evaluate on any normal sized computer.

Goyal et al. [108] introduced a construction for One-Way Functions with Encryption

(OWFE) from which you can easily build laconic OT in the special case where the one-way

function also has a compression property. This is the case for their particular construction,

both the common reference string and the receiver time is linear in the database size, similar

to our constructions. However, receiver time in our scheme is orders of magnitude faster.

In 2021, Alamati et al. [9] improved one of the schemes from Goyal et al., achieving nearly

optimal asymptotic efficiency, but receiver time is still linear. Moreover, it is not possible

to apply the square root-optimization to their scheme, because the digest size would grow

to several gigabytes. The scheme is also based on the ϕ-hiding assumption, which is not

desirable.

The application that was presented in the original paper on laconic OT [59], has been

further developed in work by Garg et al. [91] Other laconic primitives such as laconic function

71

evaluation were achieved by Döttling et al. [72], Quach et al. [168], and Agrawal and Roşie [8].

In the work of Döttling et al. [73], they introduce the slightly stricter definition of private

laconic OT.

We create the new primitive Set Membership Encryption inspired by Broadcast Encryption,

a primitive that was first introduced by Fiat and Naor [82]. We are interested in the

instantiations that have a short ciphertext as introduced by Boneh et al. [41], which has very

good efficiency, but we can only prove a derivative of this scheme to be selectively secure.

Therefore, we look to adaptively secure broadcast encryption schemes that are proven secure

using the Dual System Encryption technique of Waters [190], but we distill a broadcast

encryption system of the follow-up work by Lewko and Waters [141] in a composite order

bilinear group, unfortunately, the private keys grow to O (n) .

3.9 Conclusion

We introduced a new primitive which we call set membership encryption, where one party

can define a set of receivers and a second party can encrypt to one specific receiver if and

only if that receiver was part of the original set of receivers. We show how to build laconic

OT from this primitive. Next, we show two constructions of this new primitive, the first

one has linear sized decryption keys, but can be proven adaptively secure, while the second

construction has constant sized decryption keys, but is only selectively secure.

Finally, we evaluate the efficiency of the laconic OT schemes that can be derived from

said set membership encryption constructions. We compare with previous work on laconic

OT and show that ours is several orders of magnitude more efficient.

Future Work. Improving the size of the public parameters is important future work to

further increase the efficiency of this primitive. Given work on improving the efficiency

of broadcast encryption we could hope to similarly improve this new primitive. Studying

72

if this could happen under the stronger adaptive security should be part of that future

work. Another interesting question is if we can create a private or anonymous version of set

membership encryption similar to what has been studied for private/anonymous broadcast

encryption.

We give a few pointers of what can be investigated in future work:

Using different broadcast encryption schemes Given the extensive literature on

broadcast encryption, it seems likely that other schemes might have the same type of

property, where two keys for a different set of receivers can somehow be bound together.

This could lead to even more efficient laconic OT constructions from bilinear maps or

other assumptions.

Decreasing CRS size Given the nature of how we use broadcast encryption, it seems

inherent that the CRS is always going to be linear in the size of the database. However,

we can hope to create constructions that can generate both public key and private keys

on the fly. Note that for the private keys, this would mean that the master secret key

or some derivation probably needs to be part of the CRS, in which case it is important

that the binding between both parts of the key is happening inside the msk.

Decreasing decryption time Although the linear decryption time follows directly from

the BE schemes that we use, there is a lot of research on anonymous BE schemes. These

schemes do not take the receiver set as input during decryption, therefore, we could

hope that they will not be linear in the size of that set of receivers and therefore, not

linear in the size of the database during decryption.

73

Chapter 4

Efficient Proofs of Software
Exploitability for Real-world
Processors

This chapter is based on joint work with Matthew Green, Mathias Hall-Andersen, Eric

Hennenfent, Gabriel Kaptchuk, and Benjamin Perez, published at PoPETs 2023 [111]

4.1 Introduction

The proliferation of complex and critical software systems has given rise to the bug bounty

paradigm, in which independent vulnerability research teams uncover and disclose ways to

exploit deployed software in exchange for financial rewards. This process has resulted in the

disclosure of several high-profile exploits in recent years [166], and hundreds of millions of

dollars are awarded in bounties annually.

While bug bounty programs are invaluable to improving the security of software, they

are plagued by issues of trust. Because vulnerability researchers and bug bounty program

managers are not part of the same organization—and likely have no prior relationship—each

side must trust that the other will fulfill their obligations honestly. Specifically, bug bounty

program managers must trust that vulnerability research teams are not overselling their

74

capabilities and have discovered a serious exploit. On the other hand, vulnerability research

teams worry that those managing bug bounty programs will adaptively change the reward

after disclosure of the exploit, claiming that the exploit does not meet some criteria.

Currently, vulnerability researchers and bug bounty program managers bridge this trust

gap by having the vulnerability research team “prove” its knowledge of an exploit using a

video recording. Concretely, the bug bounty program will challenge the vulnerability research

team to perform an operation that should be impossible (e.g., launching the calculator

application) and visually record the program execution. These proofs lack soundness, as

video can easily be manipulated and cannot prove that the runtime environment matches the

one specified by the bug bounty program. As such, the state of the art still leaves significant

trust gaps within the bug bounty ecosystem.

In this work, we design a toolchain that bridges this trust gap using cryptographically

sound proofs of exploit. These proofs give a computational guarantee that the vulnerability

research team can exploit the system within the specified runtime environment, and they

cannot be manipulated or forged. To ensure that these proofs do not disclose anything else

to the bug bounty program team, we employ zero-knowledge (ZK) [99, 100] proofs, a class

of proof systems that reveals nothing to the verifier beyond the veracity of the statement.

Access to ZK proofs of exploit would allow vulnerability researchers and bug bounty programs

to negotiate rewards without requiring significant leaps of faith.

Designing efficient ZK proofs of exploit requires both overcoming significant engineering

challenges and non-trivial theoretical contributions. While prior work [115, 116] has contem-

plated similar applications, their systems are limited to proving the existence of potential

vulnerabilities or bugs in publicly available source code—falling short of meeting the needs of

the vulnerability research market. In our work, we precisely model real processor architectures

and runtime environments within the ZK protocol, allowing our proofs to reason directly

75

about compiled binaries. Therefore, the proofs that our toolchain produces guarantee that

the exploits will work on hardware. This level of fidelity is essential for allowing vulnerability

research teams to precisely articulate and demonstrate their capabilities.

Envisioned Workflows. In order to illustrate the value of our techniques, consider three

concrete ways that cryptographically sound proofs of exploit could be used:

(1) A vulnerability research (VR) team responds to a public bug bounty by submitting

their ZK proof of exploit. Once the sponsor has verified the proof, a reward amount is

determined and put into escrow until the VR team submits the exploit.

(2) A VR team discovers a bug in a piece of software for which there is no bug bounty

program. If the developers choose not to award a bounty after initial discussions, the

VR team could post the ZK proof of exploit to a public website, informing users that

their existing systems are at risk. Critically, this does not reveal the exploit to malicious

actors who might want to use the exploit to attack live systems. We note that this

would also put pressure on developers to issue a bounty and patch their software, as

responsible users will likely transition away from their products.

(3) A VR team discovers a bug in a piece of legacy software which is no longer maintained,

or is running on devices that cannot perform firmware updates. The VR team can post

the proof of vulnerability to a public website, creating a highly trustworthy warning

against using the legacy software. If using the legacy software is unavoidable, we note

that users could crowdsource funds to hire the VR team to design and issue a patch.

We note that these are only potential examples, and proofs of exploit may be valuable in

other workflows.

76

4.1.1 Contributions

In this work, we design the first end-to-end modular toolchain that facilitates the creation

of ZK proofs of program exploitability.6 The toolchain takes in two inputs: (1) a public

compiled binary,7 and (2) the prover’s private input that exploits a vulnerability in that

program. Given these inputs, it then produces a non-interactive zero-knowledge proof (NIZK)

of correct execution. This is conducted by evaluating the binary as a RAM program using a

Boolean processor circuit. While previous work has explored the evaluation of RAM machines

using custom-built processors, our system employs real-world processor architectures; to make

our system efficient, we introduce several novel processor-agnostic techniques that reduce the

size of the resulting circuit. Specifically, we reduce the size of the circuit from O(t log(t)) to

O(t), where t is the number of processor cycles executed during program execution.

To evaluate the effectiveness of our toolchain, we produced ZK proofs of exploit for

MSP430 binaries. First, we design a custom circuit implementation of the MSP430 processor

that is optimized for ZK; this requires modeling system calls (syscalls) and complex addressing

modes while minimizing the number of non-linear gates. Second, we provide the first public,

generic implementation of the Katz, Kolesnikov, and Wang (KKW) “MPC-in-the-head” ZK

protocol [132] and incorporate several significant improvements. Specifically, we show that

the MPC-in-the-head with preprocessing paradigm that they propose can be modified to allow

for optimized ring switching between Boolean and arithmetic representations, resulting in

significantly more efficient proofs. Finally, we demonstrate the effectiveness of our approach

by producing proofs of exploit for the Microcorruption CTF [3], a set of hacking challenges

that run on an MSP430 processor and cover many common exploitation techniques such
6Although prior work has explored the possibility of proving the existence of bugs in source code, our work

addresses a fundamentally harder problem of demonstrating that a bug can be exploited into a full exploit.
We carefully contrast these two approaches in Section 4.3.

7Our toolchain can naturally also operate from program source, which is compiled using a standard
compiler.

77

as buffer overflow, command injection, and ROP gadgets. The Microcorruption challenges

also require bypassing mitigations such as address space layout randomization (ASLR), data

execution protection (DEP), and stack canaries. Our toolchain can produce NIZK proofs

about MSP430 programs at 216 instructions per second and 119 KB per instruction.8

Limitations. Our approach allows proofs about exploits that can be represented as a

predicate over the processor states over a program’s execution. This means that there are

some classes of exploits about which we cannot provide proofs, like exploits that rely on

microarchitectural bugs such as Spectre and Meltdown. Similarly, Row Hammer-style exploits

cannot be expressed as such a predicate, as they require modeling physical properties of RAM.

Accurately modeling these systems is challenging, independent of zero-knowledge proving; as

such, these exploits are beyond the scope of this work. We note, however, that only the most

sophisticated actors could successfully launch such an attack, and there are no documented

cases of such exploits being used in the wild.

We note that our proofs do not attempt to conceal the running time of the exploit; the

number of processor ticks required is included as a public part of the statement. This is a

standard relaxation in prior work [29, 30, 32, 115], and given the trade-off of less efficient

proofs, it is easy to “pad-out” the running time to conceal the trace length. Additionally, we

note that any low-entropy probabilistic protections (e.g. ASLR) will always be vulnerable to

computationally powerful adversaries, both for adversaries attacking live systems, e.g. using

brute force, and for a prover generating a proof of exploit, e.g. grinding on random seed

selection. This means that the meaning of a proof of exploit that overcomes low-entropy

probabilistic defenses are nuanced: (1) when a proof is generated interactively and the

processor randomness is sampled by the verifier, the proof implies that the prover has an

exploit strategy that works on average, but may not always work; (2) when the proof is

generated non-interactively, i.e. a computationally powerful prover may (invisibly) expend
8For hardware specifications, see Section 4.8

78

significant resources generating an accepting proof, the proof implies that there exists processor

randomness such that the prover possesses a working exploit strategy.

Finally, we note that while our solution demonstrates the proofs of exploit are already

practical, there remains more effort—both research and engineering—for the solution to be

simple and easy to use. For example, vulnerability researchers must select the statement

that they wish to prove carefully. Choosing the wrong statement could result in a proof that

verifies but is semantically meaningless.

Ethical Concerns. Software exploits can be used to cause harm to people and organizations

and there exist online markets where exploits are sold for nefarious purposes. As such,

the techniques that we develop might also be used by individuals intent on causing harm.

We note, however, that our techniques do not meaningfully increase the capabilities of

these communities; allowing hackers prove—with cryptographic soundness error—that they

know an exploit only serves to make exploit markets more trustworthy and more easily

monitored. Critically, our techniques do not make it easier for attackers to discover or exploit

vulnerabilities or meaningfully increase a hacker’s power to conduct blackmail.

4.2 Technical Overview

4.2.1 Background: Zero-Knowledge and Ben-Sasson et al.’s RAM
Reduction

Zero-knowledge proofs of knowledge (ZK) [99, 100] allow a prover to convince a verifier that

they hold a witness demonstrating that some public statement is a member of an NP language

without revealing anything beyond the membership itself. ZK techniques are now concretely

efficient [10, 22, 34, 35, 50, 57, 66, 96, 116, 127, 132, 192, 196, 197] and power a number of

practical applications [31, 148, 185, 201]. For formal definitions of ZK proofs of knowledge,

see [163].

79

Most research on ZK focuses on the case in which the statement is provided in a format

amenable to efficient proving systems (e.g., a circuit or algebraic relation). Therefore, most

proof techniques now require that the relations have such a representation. This requirement

can be unnatural and cumbersome, forcing implementers to translate a relation from its

“natural” representation to the representation supported by the prover. This process frequently

involves error-prone manual effort or the use of an immature circuit compiler [28, 145, 151, 189].

RAM Reduction. Ben-Sasson et al. [29, 30, 32] proposed an efficient circuit-based approach

for proving the correct execution of RAM programs which has also been used by more recent

works [85, 115, 117]. They represent the execution of the RAM program with two different

traces. The first is the execution-ordered trace, wherein each step represents a single iteration

of a processor circuit, including instruction bytes, a register file, and the alleged contents

of memory being accessed. The second is the memory-ordered trace, containing the set of

memory reads and writes sorted by address, with ties broken by the operation that was

executed first. Proving that these traces represent an honest execution of the RAM program

consists of the following:

1. Execution Trace Consistency. For each step in the execution trace, the proof must

demonstrate that the input and output states represent a valid transition. This is done

using a circuit that represents the processor. The input to each evaluation of this circuit

is a fixed number of values drawn from RAM, a register file, and other auxiliary data

that may be useful in verifying correct execution. This circuit will output 1 if the circuit

produces the same output as the real RAM program.

2. Memory Trace Consistency. Each step in the trace involves reading and writing some

values from RAM. Naïvely ensuring that these reads and writes are consistent with the

previously executed instructions would require verifying the entire contents of RAM in each

step. Instead, they maintain an address-ordered list called the memory trace, consisting

80

One-Time Statement-Independent Preprocessing

Statement-Dependant Computation

Private Input

Software
(MSP430 Assembly)

Processor Model
(MSP430)

Processor
Emulator

(MSP430 Emulator)

Circuit Compiler
(Verilog and Yosys)

RAM Reduction Assembler

Single
Instruction
Processor

Permutation
Proof

Circuitry

Memory
Checker
Circuitry

Trace Length Zero-Knowledge
Prover

(Reverie)

Witness: Program Trace

Statement:
Processor Circuit

π

Figure 4-1. A high level overview of our toolchain for producing efficient zero-knowledge proofs
for RAM programs on real processors. (1) The process starts with a one-time preprocessing phase
which compiles the processor model into building blocks which are later assembled into a complete
circuit. The circuit compiler (which we instantiate using Verilog and Yosys) generates the circuit
for evaluating a single instruction, and the circuitry required to perform the permutation proof and
check memory correctness. (2) When the prover wishes to create a proof, they feed the software,
represented as assembly in the appropriate ISA, and any private program inputs into the processor
emulator. The processor emulator runs the program to its conclusion and outputs the execution
trace. (3) Based on the length of the trace, the RAM Reduction Assembler takes the preprocessed
circuit components and creates the completed circuit. (4) The program trace, produced by the
processor emulator, and the completed circuit, produced by the RAM reduction assembler, into
any zero-knowledge prover to produce the final proof. We include the instantiations we use for
our proofs of vulnerability in parenthesis.

of tuples of the form (step, operation, address, value), where step is a unique index in

the execution trace, operation can either be read or write, and address is a location in

memory [30]. The memory consistency circuit ensures that each read operation contains

the same value as the most recent write operation to that address.

3. Permutation Check. The two proofs above ensure that the execution trace is consistent

with the processor circuit and that the operations in the memory trace are valid. However,

we must still demonstrate that these traces are consistent with one another; that is, the

values provided to the execution trace consistency circuit correspond to the elements

verified using the memory trace consistency circuit. To ensure this consistency, we employ

81

a permutation check that proves a one-to-one mapping between each read/write in the

execution trace and some entry in the memory trace.

4.2.2 Formalizing Exploits

In order to produce cryptographically sound proofs of exploitability, we must have a formal

NP language of which we can show a binary is a member. In our work, we are able to prove

any exploit that is an arbitrary boolean predicate over the execution trace. Specifically, we

can show that repeatedly applying the processor circuit to the processor state (for some

public number of iterations) resulted in a processor state (or series of process states) that

should have been impossible under honest execution. As such, we begin by designing circuit

representations of real-world processors that are ZK friendly.

MSP430. In this work, we demonstrate the concrete feasibility of producing proofs of

exploit for unaltered MSP430 binaries. MSP430 is a family of microprocessors commonly

used in low-power environments. The version of the MSP430 ISA on which we focus has

27 instructions, including 12 double operand instructions (e.g. MOV, ADD, AND, SUB), 7 single

operand instructions (e.g. PUSH, CALL), and 8 jump instructions (e.g. JEQ, JNE) [123, 147].

There are several significant obstacles to designing a circuit that implements the MSP430

instruction set architecture (ISA). MSP430 goes beyond a classic load/store architecture by

incorporating 13 addressing modes. We augment our processor circuit using a set of memory

hints in each step that provide the processor with the required information to complete the

cycle’s operation. The contents of the memory hints are interpreted based on the current

instruction and are verified using the memory checker.

Given that the MSP430 is a small embedded processor it does not have an equivalent to

system calls (syscalls) that are common in modern processors supported by full operating

systems. Nevertheless, in some applications, including the Microcorruption CTFs, a library

82

can introduce the equivalent of certain system calls. We take a similar approach as in the

creators of the Microcorruption CTFs to add syscalls to the MSP430 ISA. We will give more

details about this modeling in Section 4.4.2.

Processor Predicates. There are many predicates over the execution trace that are highly

relevant to demonstrating exploitability. For example, one simple predicate would be that

the final program counter (PC) in the trace is some particular challenge value; if an attacker

can set the PC arbitrarily, they likely can execute arbitrary code. We also consider more

complex predicates, like showing that a syscall was executed during the trace that should

have been impossible (e.g. turning on the device’s microphone). Predicates about syscalls

can also be used to show privilege escalation, by showing that the GETEUID syscall returned

the value 0. Selecting the right predicate—or set of predicates—is an exploit-specific task

that can be done by either the vulnerability researcher (once they have found an exploit) or

the bug bounty program when setting their bounties.

To support such predicates, we add syscall support to our processor circuit, making it the

first ZK processor to include syscalls. When the program encounters a syscall, the processor

freezes the registers and enables the finite state machine. The processor executes the syscall

for an arbitrary number of steps until some exit condition is met (e.g., for the GETS syscall,

until the processor reads a maximum number of characters or encounters a null byte). The

processor then unfreezes and continues execution. This allows syscalls to be unrolled on the

fly without requiring significant, special-purpose circuitry.

4.2.3 Producing Efficient ZK Proofs of Exploit

With a formalization of exploits in hand, we develop a toolchain to produce proofs of exploit.

An overview of our toolchain can be found in Figure 4-1, including a processor emulator,

the RAM reduction assembler, and the ZK prover. The remaining task is to develop the

83

necessary cryptographic optimizations such that the proofs of exploit that our toolchain

produces are efficient.

Notation. We use [b] for a share of a bit b, similarly we will use JxK for an arithmetic share

of an element x in the respective arithmetic ring.

Reverie. Our second main technical contribution in this work is Reverie, the first publicly

available,9 general use implementation of the KKW MPC-in-the-head ZK protocol [132].

Reverie is written in Rust and incorporates many optimizations to make it more efficient,

including bit slicing, memory efficient representations of the circuit, and proof streaming. The

prover can compute the root of a Merkle tree with 256 leaves in just 8 seconds, significantly

faster than prior NIZK implementations (see Table 4-II in Section 4.8).

Reverie also improves on KKW’s initial protocol by including efficient ring switching

based on edaBits [78]. To switch an element between rings, the prover generates shares of

random elements in the two relevant rings during preprocessing. The prover then masks

the value, reconstructs it in the clear, ring switches the public element, and removes the

secret-shared mask.

For example, consider ring switching a value v ∈ F232 into an equivalent binary decompo-

sition (v1, v2, . . . , v32) ∈ F32
2 . The prover begins by generating random sharings of the values

r ∈ F232 and (r1, r2, . . . , r32) ∈ F32
2 for the simulated players during the preprocessing, subject

to the constraint r = ∑︁32
i=1 ri2i. During online execution, the simulated parties publicly

reconstruct the value v + r and then decompose the public value into its binary representation

(v1 + r1), . . . , (v32 + r32). The simulated parties then subtract their local shares of r1, . . . , r32,

resulting in a valid secret sharing of the values (v1, v2, . . . , v32) ∈ F32
2 . This ring switching

protocol is very efficient because generating verifiable, structured correlated randomness

during preprocessing is very communication and computation efficient when using the KKW
9https://github.com/trailofbits/reverie

84

https://github.com/trailofbits/reverie

ZK protocol.

Efficient Permutation Proof. The RAM reduction outlined in Section 4.2.1 uses a routing

network to implement the permutation proof between the execution trace and the memory

trace. The routing network has asymptotic complexity O(t log(t)), where t is the trace length,

and large constants. A more efficient permutation proof, first explored by [45, 156], shows

that two secret lists {Ai}i∈[ℓ] and {Bi}i∈[ℓ] are permutations by sampling a random challenge

x
$←− Zq and testing if

ℓ∏︂
i=1

(Ai − x) ?=
ℓ∏︂

i=1
(Bi − x).

To ensure that this test has negligible soundness error, it must be performed in a large

field. However, our MSP430 processor operates over F2. Thus, the ring switching technique

introduced above is vital to facilitating this permutation proof. Without access to an efficient

ring switching technique, the test would have to be carried out in a small field with large

soundness error, or the processor would need to operate over a large field, which would

introduce high computational overhead. Concretely, the permutation proof costs just 380

AND gates and 2 multiplications for each element in the list.

Evaluation. We evaluate our toolchain by producing ZK proofs of exploitability for the

Microcorruption Capture The Flag (CTF) exercises. Microcorruption CTF is a series of

popular embedded device (MSP430) exploitation exercises that are freely available online.

These exercises serve as a common entry point for individuals wishing to learn binary

exploitation. Each challenge is named after a world city (see Table 4-I), and the exercises

cover many common exploit techniques, such as heap and buffer overflows. Additionally, the

processor implements important mitigation strategies, such as stack canaries, DEP, and ASLR.

Thus, producing proofs of exploits for the Microcorruption CTF exercises demonstrates a

wide variety of exploitation techniques, demonstrating the practicality of our approach.

The prover begins by initializing the processor emulator to a fresh state and loads the

85

public binary. The prover then emulates the binary when run on the private input, which

produces an execution trace containing the processor state for each step and a memory trace

containing the memory operations for each step. This emulation process stops once the

desired processor state is reached (e.g., the processor makes a restricted syscall). The prover

then assembles the unrolled circuit from the pre-compiled library of components based on the

length of the traces. The assembled circuit is provided as the statement to the ZK prover,

and the traces are provided as a witness. Note that the only requirement we make of the ZK

prover is that it is capable of performing ring switching.

Concretely, in one second, our implementation can produce a NIZK of correct processor

execution of 216 MSP430 instructions requiring 119 KB of communication per instruction.

4.3 Related Work

Modeling RAM programs in ZK. TinyRAM [30] and BubbleRAM [115] are two custom

ISAs developed to maximize performance with existing ZK schemes. They both use a

load/store architecture with fewer than 30 instructions and ensure that decoding each

instruction is inexpensive within a ZK prover. Among such works are vRAM [202] which

constructs verifiable computation with a universal trusted setup for the TinyRAM ISA. The

aims of our work differs from those in the verifiable computation literature in a number of

important ways: (1) the proof size is linear (in particular the verifier complexity is linear).

(2) we aim for concretely efficient prover complexity by using only symmetric key operations

as opposed, e.g. to pairings in vRAM. (3) our techniques do not rely on a trusted setup

(universal or otherwise) (4) we target real-world architecture. Despite proving a much more

complicated architecture the proving speed (emulated CPU cycles/second) in this work (for

MSP430) is ≈ 5 times greater than vRAM (for TinyRAM). While Ben Sasson et al. [32] later

modified TinyRAM to have a von Neumann architecture, BubbleRAM remains a Harvard

86

architecture processor, which prevents it from reasoning about exploits that inject malicious

code onto the stack or heap. As we discuss in the next subsection, the use of these custom

ISAs limits the capabilities of a prover. For example, provers compile source code to the

custom ISA, and source code is not available for many pieces of security critical software.

Proofs of Exploitability. In discussing prior work, we emphasize the difference between a

vulnerability and an exploit. An exploit is maliciously crafted program input that produces

unintended program behavior—or may even allow an attacker to affect the state of the

computer beyond the program itself. A vulnerability, on the other hand, is a software

weakness that could potentially be used in designing an exploit, for example an out-of-bounds

memory write or a use-after-free bug. Vulnerabilities do not depend on architecture-specific

constructs like the stack, heap, or mitigations such as ASLR, DEP, and pointer authentication

codes (PAC). An exploit, however, is intrinsically linked to processor semantics. Therefore, it

is not sufficient to reason only about source code when demonstrating the existence of an

exploit.

Prior work on using ZK proofs for vulnerability disclosure [115, 116] has focused on

manually annotating C code with assertions that a prover must demonstrate they can violate.

This is accomplished by compiling the annotated code either directly to a circuit or to a

custom ZK processor (e.g., TinyRAM [30] or BubbleRAM/BubbleCache [115, 117]). While

this approach is capable of proving many interesting vulnerabilities with extremely high

efficiency, it has several drawbacks.

First, annotation of complex, real-world programs is time-consuming and error-prone.

Source annotations cannot express many of the most commonly exploited classes of bugs [149,

183], and even the bugs theoretically detectable with annotations are difficult for programmers

to find. Even if all these limitations could be overcome, this approach inherently requires

access to source code, which is often not available.

87

Second, bugs in source do not always translate to exploits on a real processor. The example

used by Heath and Kolesnikov [116] focuses on proving the existence of an out-of-bounds

memory access—an operation many compilers will automatically prevent.

Finally, while bugs in source are common, successful exploits are rare. Fuzzing campaigns

often find a large number of software bugs, but rarely convert these bugs into meaningful

exploits. Research teams are unlikely to disclose a simple out-of-bounds read in ZK, as most

such bugs do not lead to meaningful system compromise. Real bug bounties and vulnerability

research consists of demonstrating how to leverage a vulnerability into an exploit (e.g.,

privilege escalation, arbitrary code execution, or reading protected memory). Proving these

capabilities cannot be done with source alone and are intrinsically linked to the compiled

binary and architecture. For example, Heath et al. [117] claim that they can prove the

existence of vulnerabilities in sed and gzip despite using a Harvard architecture. While it is

true that they can prove vulnerabilities on such an architecture, they would not be able to

demonstrate that the vulnerability is exploitable if the exploit involved executing malicious

code off the stack, since the machine would not be able to fetch instructions stored in RAM.

4.4 Modeling Real-World Processors

In this section we discuss the technical details of modeling our target real-world processor,

MSP430. First we discuss the necessary modeling to cover the basic MSP430 processor

semantics and then discuss additions to the processor semantics that are helpful when

modeling exploits.

4.4.1 Modeling MSP430 Processor Semantics

The MSP430 is a ubiquitous microcontroller [159], making it the perfect target for proofs

of exploit. The MPS430 architecture contains 27 instructions, 13 addressing modes, and

88

16 registers with 16-bit words. We design a circuit which models the state transition

associated with each of these instructions. We note, however, that MSP430 is not a load/store

architecture—unlike the processor designed for ZK proofs—which increases the complexity of

modeling memory.

Modeling Memory. Prior work on ZK processors use load/store architectures to cleanly

separate memory accesses and logical operations. This allows the RAM reduction to treat

non-memory operations as no-ops when performing the memory consistency check and

permutation proof. However, many real-world processors, such as the MSP430, use a variety

of addressing modes that prevent such a clean distinction from being made. For example,

consider the instruction add add @r5, 2(r6), which adds the contents of memory at the

address r5 to the contents of memory at address r6+2 and stores the result at address r6+2.

Not only does this instruction both access memory and use the processor’s ALU, but it

actually performs two reads and a write.

Our processor model handles such instructions by augmenting each instruction in the

program trace to include three memory hints, which are used by the decoded instruction

and verified with the memory checker. The hints are separated into two read hints, src and

dst, and a single write hint. The hints each contain the relevant information for the implicit

load/store operations encoded into some instructions (e.g. the address and value of memory

to read/write). Specifically, the memory hints have the following structure:

• 1-bit On/Off indicator

• 16-bit Memory Address

• 19-bit Timestamp

• 1-bit Read/write indicator

• 1-bit Byte Mode indicator

• 1-bit Byte Mode Offset

89

• 16-bit Value

MSP430 supports byte operations on memory, so each memory hint indicates if it is in

byte mode and the index of the byte on which the instruction is operating, if applicable.

Because MSP430 is a Von-Neumann architecture, fetching instructions constitutes a

memory read. Each MSP430 instruction consists of a one-word opcode and up to two

immediates, each of which requires its own read hint. Thus, the memory trace will contain six

entries for each entry in the program trace. Checking these memory operations for consistency

is straightforward, requiring only 194 AND gates per entry, so the memory checker requires

1,164 AND gates/cycle.

4.4.2 Interacting with the Program

In order to facilitate proofs of exploit, we choose to extend the base MSP430 ISA with cleanly

modeled methods that allows the prover to interact with the program. Specifically, we are

concerned with loading the program into the runtime, getting user inputs, and providing the

program with entropy. While there are many potential ways to add these capabilities to the

base ISA, we choose to add system calls that support these capabilities. This choice is inspired

by the Microcorruption CTF challenges, which modeled system calls similarly in their version

of the MSP430 ISA; by mirroring the choices made by the designers of the Microcorruption

CTF challenges, we are able to “natively” support solutions for the challenges by directly

mapping their syscalls onto our syscalls.

Modeling System Calls. System calls are an integral component of real-world software,

providing the program access to key resources, including randomness, memory management,

and user input. Many successful exploit strategies—and the techniques used to prevent such

exploits—depend on the low-level details of syscall operations. For example, many processors

implement memory protections such as ASLR by using system entropy to randomize the

90

address space layout. Prior work on ZK processors ignores syscalls and does not provide the

processor with randomness.

We provide a general approach to handling syscalls initiated via software interrupts. Our

approach does not rely on adding new instructions or storing information in registers or

memory, as this would change the low-level processor behavior we aim to preserve. Instead, we

augment each trace entry with a 48-bit value that encodes a finite state machine representing

the current syscall status. This finite state machine is fed to a co-processor which is only

triggered once a software interrupt is called. When a syscall is triggered, the following

sequence of events occurs:

1. The processor freezes the register file, turns on the syscall flag, and loads the arguments

and opcode into the syscall register.

2. Execution continues, but the processor operates on the syscall register instead of the

register file.

3. Once the exit condition has been met, the syscall flag is turned off and normal execution

resumes.

To better demonstrate this approach, we give the full details for our implementation of the

LOAD, GETS, and RAND syscalls.

Getting user input. Before program execution begins, the prover uses the LOAD syscall to

pre-load their input into a special memory bank that is read-only once program execution

begins. Pre-loading input is important for reasoning about exploits that circumvent ASLR

and stack canaries, since knowing or influencing the random values used in such mitigations

would make significant parts of the exploit trivial.

When the processor starts execution, the PC is set to the first instruction in the input

binary, but the syscall co-processor is turned on and set to LOAD. The first instruction of

91

the trace declares how many bytes of input will be loaded, and this value is placed in the

syscall register. The processor will then continue to execute LOAD instructions, each time

decrementing the syscall register until it reaches zero. At this point the syscall flag is turned

off and program execution begins. At each step of the program, the processor checks that

the prover cannot call LOAD after execution begins.

Once the input has been pre-loaded, the processor accesses it via the GETS syscall. GETS

takes two arguments off the stack: the address to which the input will be written, and the

maximum allowed length of the input in bytes. The syscall will exit once a null byte is

encountered in the input or the maximum number of bytes is written.

When our MSP430 model encounters a call to GETS, the register file is frozen by turning

on the syscall flag, and the target address and length are loaded into the syscall register.

Subsequent clock cycles will use the memory hints in the trace to load user input byte-by-byte

into memory, incrementing the address and decrementing the length variable in the syscall

register. At each step, the input is checked for a null byte and the length variable is verified

not to be zero. If either is zero, the syscall flag is turned off and normal processor execution

resumes. Using this approach, the processor can emulate syscall operations — including the

unrolling of variable length loops within the syscall logic — without altering the binary or

memory state.

Processor Entropy. Our target version of MSP430 uses the RAND syscall to generate

random values. In general, generation of high-entropy random values can be done using

Fiat-Shamir. However, sometimes applications may use low-entropy random values, which

cannot be generated using Fiat-Shamir while providing strong soundness guarantees, as the

prover could grind to ensure that the randomness has the desired value. For example, 16-bit

random values are used when calculating ASLR offsets and stack canaries. This limitation

is inherent in the architecture itself — defenses that rely on low-entropy randomness will

92

always be vulnerable to computationally powerful adversaries.

To provide some meaningful soundness in the case where low entropy defenses are used,

we design our processor to naturally extend to interactive proofs in which the verifier can

supply randomness directly. First, the prover commits to all inputs that will be fed into the

program by loading these values into a special memory bank prior to program execution, as

specified in the previous section. Then, the verifier supplies a random seed value seed from

which all randomness for the RAND syscall will be generated.

Specifically, the processor executes a special GETRANDSEED syscall to load the verifier

supplied randomness seed into an auxiliary RAND register. The GETRANDSEED syscall can

only be called once and only after the initial LOAD syscall has finished executing. The processor

circuit will fail if the prover attempts to call GETRANDSEED again.

Once the prover has completed the LOAD phase, they execute the following steps in the

clear:

1. Show the verifier that the PC is set to the program entry point, the syscall flag is

turned on, and the syscall opcode is set to GETRANDSEED

2. Acquire the randomness seed from the verifier

3. Load the randomness into a public auxiliary RAND register

4. Turn the syscall flag off

Since the syscall flag is turned off once GETRANDSEED is finished, program execution must

proceed normally from the binary entry point. During each processor cycle, the prover will

evaluate PRF(seed, step), where PRF is a pseudorandom function, and step is a counter

indicating the number of processor cycles that have been executed. The first 16 bits of

the output are then fed into the processor as the potential output of the RAND syscall. We

emphasize that returning only 16 bits of randomness is inherent to the architecture. By

93

making the prover commit to all their inputs to the program before learning the seed, they

must commit to an exploit strategy that can work for any value of randomness generated.

We repeat that the meaning of a proof of exploit that circumvents low-entropy protections is

nuanced; we refer the reader back to Section 4.1.1 for a discussion.

Users are provided with the option to disable processor randomness, since many applica-

tions do not need this feature. Additionally, note that running these proofs interactively is

only necessary when there are low-entropy defense mechanisms that the prover must overcome,

like ASLR.

4.5 Formalizing Exploits

Our aim is to provide vulnerability researchers with the necessary tools to precisely demon-

strate exploits in real software without revealing underlying techniques. Therefore, we focus

on creating a system that allows the prover to show that it knows some inputs such that

running a public binary on those inputs on a real machine would result in a concrete exploit.

This proof requires two components: demonstrating a given trace is valid, and demonstrating

the trace triggered an exploit. The first component is handled using the previously discussed

RAM reduction. We now discuss how exploits are shown during execution.

Many exploits can be detected by determining whether the attacker has arbitrary PC

control. In this setting, the verifier challenges the prover to demonstrate they were able to

produce a valid program trace concluding with the PC set to the challenge address. A similar

protocol is used in the context of exploits that gain the ability to arbitrarily read or write

memory.

A variety of exploits conclude with the execution of a syscall that should not have been

accessible to the attacker. In an embedded systems context, this may manifest itself as

turning on a microphone, turning off a security camera, or unlocking a door. This particular

94

notion of exploit is relatively straightforward to formalize in a ZK context. The prover

simply needs to demonstrate that at some point during a valid program execution, a known

malicious syscall was executed. This can be checked at the processor level by checking at

each step whether the syscall flag is on and then examining the syscall opcode as specified

in Section 4.4. All of these checks can be fed to a large OR statement at the conclusion of the

proof to demonstrate whether a malicious syscall was executed. As we discuss in Section 4.8,

this is how we formalize the Microcorruption exploits, all of which conclude in a call to the

special UNLOCK interrupt.

Proving privilege escalation exploits — exploits which allow the prover to execute com-

mands with root privileges on the machine — is more complicated. Generally, this would

involve calling the GETEUID syscall and demonstrating the output is 0, using a similar approach

as above. However, this would require modeling a runtime environment complex enough

to have a notion of user privileges. We leave modeling a complex runtime environment as

important future work.

Generally speaking, our approach facilitates proofs about exploits that can be represented

as a Boolean expression on each processor state across the entire program execution. All

of the above techniques are examples of this broader paradigm (e.g., there exists a step of

execution such that the instruction loaded by the processor is a malicious syscall). While

this approach is sufficiently general to cover most common exploits, it has some fundamental

limitations. In particular, our proof of exploit toolchain is incapable of reasoning about

exploits that rely on microarchitectural bugs such as Spectre and Meltdown. Similarly, a

Row Hammer type attack would also be out of scope since unintended physical properties of

RAM cannot be simulated within a ZK context. Fortunately, most real-world exploits do not

rely on microarchitectural bugs, so we do not view this as a major limitation.

Barriers to Easy Use. Although our toolchain allows provers to produce proofs for any

95

predicate over the processor states, the process of selecting the right predicate may be

non-trivial—especially for vulnerability researchers without zero-knowledge expertise. Indeed,

in our envisioned workflow (Section 4.1), we imagine that a sponsor might post a bug bounty

to which vulnerability researchers could respond. One approach would be to have the bug

bounty itself formalize the statement to prove in zero-knowledge; this approach is implicitly

used in the Microcorruption CTF exercises, as the UNLOCK syscall is part of the challenge

description. In more complex systems, there may be a huge number of potential processor

states that would be considered problematic, such that enumerating all the processor states

would be impractical. In such cases, the burden of selecting the correct statement—and

demonstrating the statement’s importance—would fall to the vulnerability researcher. Making

these processes easier is important future work.

4.6 Circuit Compiler

The ZK proof system that we target accepts statements as either Boolean or arithmetic

circuits. There are several tools created specifically for ZK statement generation such as

Frigate [150], libsnark [2], and Circom [4], but they mostly target arithmetic circuits, which

are not performant when handling real-world processor models. Frigate synthesizes code

written in a subset of C. However, we found that it did not give us the granularity necessary

to optimize circuits for MSP430.

Instead, we chose to write our processor circuit in Verilog, a widely used hardware descrip-

tion language (HDL) with mature open-source tooling. In particular, we used Yosys [194] to

synthesize our core circuit components and Icarus Verilog for simulation and testing. Using

Verilog allowed us to divide our RAM reduction into a collection of discrete Boolean modules,

including the single-step MSP430 processor circuit and the memory consistency checker. We

use Yosys to synthesize these components to a BLIF [1] file that encodes the hierarchical

96

arrangement of the components and their logic gates. Finally, we assemble these components

into a flat, non-hierarchical encoding of the RAM reduction in the Bristol Fashion [16] using

a circuit flattening library.

We designed our in-house flattener to take advantage of the fact that our circuit is

highly structured, so we can aggressively cache flattened versions of the components and

avoid repeating work. Using this approach of flattening components once and stapling them

together, our flattening library can assemble the full RAM reduction for traces with 7k steps

in 6 minutes using 20GB of RAM—an improvement of 99% in running time and 88% in RAM

usage over using Yosys for flattening.

As described in Section 4.7.1, our permutation proof is prohibitively complex to be

evaluated via a Boolean circuit, so we elected to specify it via an arithmetic circuit on Z264 .

Yosys and Verilog are only designed to operate on Boolean circuits, which presents a problem

because using a HDL like Verilog is substantially easier than working at the level of individual

gates when designing complex circuits.

We, however, use blackbox modules—a feature of Yosys designed to connect circuits to

unknown hardware—to create models for the arithmetic logic gates in Verilog, which we then

used to specify our permutation proof circuit. While we still had to ultimately specify the

circuit at the gate level, working in Verilog broke up the circuit into hierarchical modules

and assigned names to wires, greatly reducing debugging time.

After synthesizing the permutation circuit to a BLIF file, we pass it to our circuit

compositor—a modified version of the circuit flattener that can accept a flattened Boolean

circuit and a flattened arithmetic circuit and generate a specification for connecting the

outputs of the Boolean circuit to the inputs of the arithmetic circuit using specialized

BooleanToArithmetic gates. The 3-tuple of circuits consisting of the Boolean circuit, the

connection circuit, and the arithmetic circuit is then passed to Reverie, which evaluates it as

97

the complete ZK statement.

4.7 Cryptographic Optimizations

Choice of Proof System. To instantiate our toolchain and optimize our proof system,

we must first select a proof system. A number of considerations are relevant when selecting

a suitable proof system for our particular application, most notably: (1) Prover/Verifier

Complexity: Many widely deployed ZK proof systems are based on succinct non-interactive

arguments of knowledge (SNARKs) (e.g. [112, 162]), which produce compact proof size at

the expense of high prover runtime, complicated knowledge assumptions, and a trusted setup

phase. While these tradeoffs are practical for space-limited applications, e.g. decentralized

ledgers, the overhead of this approach would limit the complexity of RAM programs and

exploits about which we could reason. Therefore we prioritize reducing concrete prover

time rather than bandwidth. In order to somewhat offset the larger proof size we ensure

that proofs can be verified in a streaming manner, meaning the verifier can process the

proof as he is downloading it (without storing it). (2) Interactive vs Non-interactive: While

interactive (private-coin) proofs systems can enable more efficient/flexible proofs, we opt for

non-interactive proofs to enable a wider variety of use cases, as discussed in the introduction.

This includes posting the proof for public verification and inclusion in long-term bug tracking

logs. Non-interactivity can also be valuable when the prover may no longer be online or

moving proofs across air-gaps (security researchers might be wary about allowing arbitrary

people to open connections to the server holding the sensitive zero-day exploit).

These considerations lead us to believe that the KKW proof system [132] is well-suited for

our application. Throughout this section we denote the party that executes the preprocessing

in KKW as P0 and use n to denote the number of parties in the MPC. We note that several

improvements to the initial KKW system have been proposed recently, e.g. [22, 66], that

98

Input. Secret lists A = {Ai}i∈[ℓ] and B = {Bi}i∈[ℓ].
Public Input. A random challenge x ∈ Zq.
Circuit. Compute and compare

ℓ∏︂
i=1

(Ai − x) ?=
ℓ∏︂

i=1
(Bi − x)

Output. 1 if the above check is valid, 0 otherwise.

Figure 4-2. Unknown Permutation Proof Circuit (Cshuffle). The circuit checks if two secret lists
are permutations of each other.

could be integrated into our approach in future work.

4.7.1 Memory Permutation Proof (over Zq)

An unknown permutation proof is a zero-knowledge proof of knowledge that shows that

the prover has two lists that are a permutation of each other, i.e. list A = {Ai}i∈[ℓ] and

B = {Bi}i∈[ℓ] such that π(A) = B for some permutation π. As the verifier does not know the

lists nor the permutation, the proof is done with respect to a commitment to each list. We

require an unknown permutation proof that will be efficient within MPC-in-the-head.

We implement the unknown permutation proof using the circuit defined in Figure 4-2

over a large ring, based on techniques first introduced by Bootle et al. [45], and first explored

by Neff [156]. This stand-alone circuit receives two secret shared lists and a public randomly

selected challenge x. Within the circuit, we view A and B as the set of roots of two polynomials,

evaluate them at x and check equality, i.e. asserting ∏︁i(Ai − x) = ∏︁
i(Bi − x). Intuitively,

perfect completeness follows on the commutativity of multiplication, while statistical soundness

relies on the Swartz-Zippel lemma stating that two polynomials with distinct roots share an

evaluation at a random point only with small probability10.

For soundness, the random challenge x must be selected after the prover has committed
10When the size of the field dominates the degree of the polynomials. Note we do not need the soundness

error to be negligible, but only to be dominated by n−1/n from KKW.

99

to the secret shared lists, however the subsequent computation depends on the challenge. We

accommodate this by introducing an additional round (5 rounds total)11 in which the verifier

samples x, after the prover has committed to the inputs/witness, but before committing to

the views of every party.

Theorem 5 (Unknown Permutation Proof) Given two lists A and B with ℓ elements in

Zq and an instance of the KKW protocol with n participants and m preprocessing repetitions.

Using the above circuit and the challenge input inside a KKW protocol is an honest-verifier

ZKPoK to prove knowledge of two lists A and B such that there exists a permutation π such

that π(A) = B with soundness/knowledge error max
{︂

1
m

, 1
n

+ ℓ
q−1 −

ℓ
q−1

1
n

}︂
.

Proof.

Perfect completeness follows from the completeness of the KKW protocol as well as from

the correctness of the circuit, which can be easily verified by inspection. Therefore, we will

focus on proving honest-verifier zero-knowledge and soundness.

To prove that this protocol achieves perfect zero-knowledge, we can take the simulator

SKKW that was used in KKW. The only change we have to make is that the simulator also

chooses the challenge x ∈ Zq uniformly at random. The same hybrid argument can be used

as in the original proof. Given that the original simulator was indistinguishable from a real

execution, we can conclude that this simulator is also indistinguishable from a real execution.

Similarly, to prove witness extraction, we can use the witness extractor from KKW. Note

that after a full run of the protocol we have all messages as if we ran a normal KKW protocol

for the circuit Cshuffle, with a public input x, i.e. we don’t have to extract x because it is

part of the transcript. Hence, we can use the witness extractor as described in KKW to

extract A and B, such that π(A) = B, for some permutation π(·).
11We reason that this additional round does not affect the knowledge error of the Fiat-Shamir transform,

compared to the original 3 rounds. Note that, in general, soundness of the Fiat-Shamir transform decreases
exponentially in the number of rounds.

100

The soundness error induced by the shuffle proof is ℓ
q−1 , which follow directly from the

Schwartz-Zippel lemma. To see this, note that the x is selected at random and the number of

points that are shared by the two polynomials is bounded by their degree ℓ. The soundness

of the MPC-in-the-head protocol is max
{︂

1
m

, 1
n

}︂
, as we are only considering the non-amplified

version of KKW. To violate soundness, the prover must either succeed in the cheating during

the preprocessing or the online phase. During the preprocessing, the probability is 1
m

. During

the online phase, either the prover must cheat or produce an invalid shuffle proof. The

probability of this happening is 1
n

+ ℓ
q−1 −

ℓ
q−1

1
n
. Therefore, the overall soundness error is

max
{︂

1
m

, 1
n

+ ℓ
q−1 −

ℓ
q−1

1
n

}︂
. □

Table 4-I. Benchmarks for proofs of exploits (at 128 bits of security) for a representative subset of
the Microcorruption exercises. The selected exercises cover the most important exploit categories,
including buffer overflow, code injection, and bypassing memory protection. These exercises are
ordered by the difficulty of the exercise, as estimated by the Microcorruption creators.

Exercise Name Processor Cycles Prover (sec) Verifier (sec) Size (mb) Exploit Type
New Orleans 2392 22 7 295 Password embedded in binary
Hanoi 6199 25 18 322 Buffer overflow
Cusco 5178 21 15 269 Buffer overflow
Montevideo 6676 28 20 358 Code injection via strcpy bug
Johannesburg 6311 26 19 332 Stack cookie bypass
Santa Cruz 12835 754 39 680 Code injection via strcpy bug
Addis Ababa 5360 23 17 296 Format string vulnerability
Novosibirsk 19833 89 63 1100 Format string vulnerability
Vladivostok 50823 454 152 6048 ASLR bypass

4.7.2 Ring Switching

One drawback of the permutation proof described in the previous section is that it relies

on a large field/ring for soundness which leads to inefficient proofs of Boolean circuits.

Unfortunately, real-world processors are most efficiently realized as Boolean circuits that

pay a high cost for multiplication gates. The permutation proof can be implemented in

a Boolean circuit by simulating a larger ring, however the log2(q) overhead introduced by

simulating the ring multiplication negates the improvements over the routing network used

101

in the work of Ben-Sasson et al. To avoid simulating arithmetic in a large ring, while still

enabling application logic (CPU specification) to be proved using a Boolean circuit we rely on

ring-switching techniques: enabling us to switch/pack a collection of Booleans into an element

in a ring of sufficiently large order. This technique introduces an overhead of 3 AND-gates

for every bit that needs translating. In our case, where we will switch to Z264 , this means

192 AND-gates for every element in both lists. We base our ring-switching technique on the

use of edaBits as introduced by Escudero et al. [78], which in turn was based on daBits by

Rotaru and Wood [171]. We will apply the preprocessing optimization of KKW to achieve

these results.

Preprocessing. Let ξ be the number of bits required to represent values of the larger

field. During the preprocessing phase, we generate secret shares for the MPC players of

the correlated random values r and r0, . . . , rξ−1, where r is a value in the larger ring and

r0, . . . , rξ−1 are Boolean values, subject to the constraint r = ∑︁ξ−1
i=0 ri2i, in the larger field.

Thus, the players receive Boolean sharings [r0], . . . , [rξ−1] and an arithmetic sharing JrK. Note

that none of the participants have any of the values r, r0, . . . , rξ−1 in the clear, they only

possess a share of these values. Generation of this correlated randomness can be done using

the same techniques used for Beaver triple generation in KKW: the dealer (P0) generates

and “sends” the shares to the respective players.

Online. The translation of ([x0], . . . , [xξ]) into JxK with

x =
ξ∑︂

i=0
xi2i

is done in the following way:

(1) In the Boolean circuit compute the Zq addition of r + x using a full adder, i.e. compute:

[(x + r)0], . . . , [(x + r)ξ−1] =

([x0], . . . , [xξ−1]) +Zq ([r0], . . . , [rξ]))

102

(2) Reconstruct the masked bits (x + r)0, . . . (x + r)ξ−1 ∈ Z2, lift the bits to the ring Zq

and and convert the decomposition into x + r ∈ Zq by publically computing the linear

combination: x′ = x + r = ∑︁ξ−1
i=0 2i(x + r)i ∈ Zq

(3) In the arithmetic circuit subtract the randomness r from x′ the input coming from the

Boolean circuit, i.e. x = x′ − r.

Note that only (1) has non-linear (over Z2) operations.

Theorem 6 (Ring Switching) Given a Boolean circuit Cbool and an arithmetic circuit

Carith that need to be run consecutively, a definition of which output wires from Cbool are going

into Carith, and an instance of the KKW protocol with n participants and m preprocessing

repetitions. The above protocol is an honest-verifier ZKPoK with soundness/knowledge error

max
{︂

1
m

, 1
n

}︂
.

Proof.

Completeness follows immediately from the completeness of the KKW protocol as well as

the basic arithmetic used for transforming output from the boolean circuit to input to the

arithmetic circuit.

To show perfect zero-knowledge we build the following simulator:

• Use the simulator SKKW on Cbool,

• Actually do the transformation as it is done in the real protocol.

• Use the simulator SKKW on Carith,

Because SKKW generates a proof transcript that is indistinguishable form a real proof, and

the second step is done exactly like it is done in the real protocol, we can conclude that this

new simulator also produces a proof transcript that is indistinguishable from a real execution.

103

Witness extraction can be shown by first extracting the witness of the second circuit, and

then using that witness for extracting the witness of the first circuit, which is also the witness

for the complete circuit.

Soundness error is the maximum between both circuits of the soundness error as computed

in KKW. To achieve better soundness, we can choose the number of executions according to

the circuit with the worst soundness error. □

4.8 Implementation and Evaluation

Reverie. Our prover ‘Reverie’ [5] is an optimized implementation of the KKW [132] proof

system in the Rust programming language. Reverie is generic and can be instantiated over

any commutative ring. Reverie optimizes KKW for our particular application as follows:

• Streaming. Rather than compute the correlated randomness for the entire circuit before

evaluation, Reverie interleaves the preprocessing with the online execution: in effect player

P0 is implemented as a coroutine. This avoids storing all the preprocessed material in

memory.

• Bit Slicing. Every online player in KKW executes the same simple operation during

the evaluation of addition and multiplication gates, hence bit-slicing ‘across the players’

allows executing every player in parallel, e.g. for the ring R = F2 and n = 64 the values

of two wires can be added using a single XOR of 64-bit integers.

• Shadowing. The model of execution in ‘Reverie’ is a straight-line RAM program: there

is an array of cells and a program consists of a list of Input/Add/Mul/Output instructions

reading/writing to cells. A circuit is a straight-line program in single assignment form (i.e.

every cell is only written to once). Since the execution of a CPU is very local, this allows

us to reclaim memory by overwriting cells, in practice reclaiming > 95% over naïvely

104

Table 4-II. Comparative Measurements for NIZKs computing 511 iterations of SHA256 (Merkle
tree with 256 leaves). Measurements for prior work from [196] on an Amazon EC2 c5.9xlarge
with 70GB of RAM and Intel Xeon platinum 8124m CPU with 18 3GHz virtual cores. Because
these proof systems and implementations were unable to exploit parallelism, all benchmarks were
run on a single thread. Reverie was benchmarked on a Digital Ocean virtual machine with 32
virtual cores and 256GB of memory. We note that our choice of protocol and our implementation
is able to take advantage of the parallelism offer by the multiple cores, which is part of the reason
Reverie is able to dramatically out-perform prior work.

Proof System
Gen
(sec)

Prove
(sec)

Ver
(sec)

Size
(KB)

Aurora [35] - 3,199 15.2 174.3
Bulletproofs [50] - 2,555 98 2
libSTARK [33] - 2,022 0.044 s 395
Hyrax [188] - 1,041 9.9 185
Ligero [10] - 400 4 1,500
libSNARK [32] 1027 360 0.002 .013
Libra [196] 210 201 0.71 51
Reverie (This Work) - 8 7.67 113,848

loading the circuit.

• Parallel. KKW requires many repetitions for soundness, these are executed in parallel.

All of these optimizations contribute to Reverie’s exceptionally fast performance. Reverie is

able to prove 511 iterations of SHA256 in 8 seconds. We compare this to the benchmarks

reported in prior work from [196] in Table 4-II. We note that these are not strictly apples-to-

apples comparisons as we were unable to control for the benchmarking environment for prior

work. However, we note that Reverie does strikingly well. Libsnark requires 1,387 seconds,

Bulletproofs requires 2,555 seconds, and Ligero requires 400 seconds (see Table 4-II). The

proofs generated by Reverie are larger than the other three, but since it supports streaming all

that is required is a network connection between prover and verifier with modest bandwidth.

Proofs of Exploitability: Microcorruption. We chose to use the Microcorruption CTF as

a benchmark set for our ZK proof of vulnerability system. The CTF challenges involve hacking

105

Table 4-III. Breakdown of processor circuit components

Component Non-linear Gates Per Instruction
Memory checker 1,164
Permutation proof 2,280
Processor 7,247
Decoder 568
ALU 549
Hint verifier 237
Operand fetching 2,176
Register file 2,880

a smart lock controlled by an MSP430 using common exploitation techniques such as buffer

overflows, code injection, and bypassing memory protections. While the challenges contain a

wide variety of bugs, ultimately they all conclude with a call to the UNLOCK system call. For

example, the Addis Ababa challenge can be solved by using a format string vulnerability to

overwrite a segment of memory that contains information about whether the correct password

was entered or not, leading to a successful call to the UNLOCK system call.12.

Therefore our ZK proofs of vulnerability check both that the witness trace is valid, and

that at least one step of execution was a call to the UNLOCK system call. An advantage of

this approach is that all ZK performance metrics are linear in the trace size, regardless of

exploit technique.

Performance. We present benchmarks for a representative set of the Microcorruption

exercises in Table 4-I. This set of benchmarks covers many of the most important exploit

types, including buffer overflow, code injection, and bypassing memory protection. Each of

these benchmarks was computed on a Digital Ocean virtual machine with 32 virtual cores

and 256GB of memory. We found that our implementation produces a proof for 216 MSP430

instructions every second. Overall, each instruction requires 10,691 AND gates to execute. In
12For more details about the Microcorruption challenges, we point the reader to https://microcorrupt

ion.com or the reference manual [147]

106

https://microcorruption.com
https://microcorruption.com

Table 4-III, we give a breakdown of the gate count for each component of the RAM reduction,

along with the major components of the processor. Although the resulting proofs produced

are large and may take a non-trivial time to create, we note that these resources and time

are insignificant compared to the effort it takes to develop the exploit and the time that the

parties would spend negotiating disclosure.

107

Chapter 5

Abuse Resistant Law Enforcement
Access Systems

This chapter is based on joint work with Matthew Green and Gabriel Kaptchuk, published

as: Abuse Resistant Law Enforcement Access Systems. In: Canteaut, A., Standaert, FX.

(eds) Advances in Cryptology – EUROCRYPT 2021. Lecture Notes in Computer Science, vol

12698. Springer, Cham. at Eurocrypt 2021 [110]

5.1 Introduction

Communication systems are increasingly deploying end-to-end (E2E) encryption as a means

to secure physical device storage and communications traffic. E2E encryption systems differ

from traditional link encryption mechanisms in that keys are not available to service providers,

but are instead held by endpoints: typically end-user devices such as phones or computers.

This approach ensures that plaintext data cannot be accessed by providers and manufacturers,

or by attackers who may compromise their systems. Widely-deployed examples include

messaging protocols [14, 181, 193], telephony [13], and device encryption [12, 104], with some

systems deployed to billions of users.

The adoption of E2E encryption in commercial services has provoked a backlash from

the law enforcement and national security communities around the world, based on concerns

108

that encryption will hamper agencies’ investigative and surveillance capabilities [20, 83, 191].

The U.S. Federal Bureau of Investigation has mounted a high-profile policy campaign called

“Going Dark" around these issues [79], and similar public outreach has been conducted by

agencies in other countries [139]. These campaigns have resulted in legislative proposals in

the United States [109, 167, 178] that seek to discourage the deployment of “warrant-proof”

end-to-end encryption, as well as adopted legislation in Australia that requires providers to

guarantee access to plaintext in commercial communication systems [187].

The various legislative proposals surrounding encryption have ignited a debate between

technologists and policymakers. Technical experts have expressed concerns that these

proposals, if implemented, will undermine the security offered by encryption systems [6, 154,

182], either by requiring unsafe changes or prohibiting the use of E2E encryption altogether.

Law enforcement officials have, in turn, exhorted researchers to develop new solutions that

resolve these challenges [20]. However, even the basic technical requirements of such a system

remain unspecified, complicating both the technical and policy debates.

Existing Proposals for Law Enforcement Access. A number of recent and historical

technical proposals have been advanced to resolve the technical questions raised by the

encryption policy debate [24, 27, 68, 139, 174, 186, 195]. With some exceptions, the bulk

of these proposals are variations on the classical key escrow [69] paradigm. In key escrow

systems, one or more trusted authorities retain key material that can be used to decrypt

targeted communications or devices.

Technologists and policymakers have criticized key escrow systems [6, 77, 155], citing

concerns that, without additional protection measures, these systems could be abused to

covertly conduct mass surveillance of citizens. Such abuses could result from a misbehaving

operator or a compromised escrow keystore. Two recent policy working group reports [77, 155]

provide evidence that, at least for the case of communications services, these concerns are

109

shared by members of the policy and national security communities.13 Reflecting this

consensus, recent high-profile technical proposals have limited their consideration only to the

special case of device encryption, where physical countermeasures (e.g., physical possession

of a device, tamper-resistant hardware) can mitigate the risk of mass surveillance [27, 174].

Unfortunately, expanding the same countermeasures to messaging or telephony software

seems challenging.

Abuse of Surveillance Mechanisms. Escrow-based access proposals suffer from three

primary security limitations. First, key escrow systems require the storage of valuable key

material that can decrypt most communications in the system. This material must be

accessible to satisfy law enforcement request, but must simultaneously be defended against

sophisticated, nation-state supported attackers. Second, in the event that key material

is surreptitiously exfiltrated from a keystore, it may be difficult or impossible to detect

its subsequent misuse. This is because escrow systems designed to allow lawful access to

encrypted data typically store decryption keys, which can be misused without producing any

detectable artifact.14 Finally, these access systems require a human operator to interface

between the digital escrow technology and the non-digital legal system, which raises the

possibility of misbehavior by operators. These limitations must be addressed before any law

enforcement access system can be realistically considered, as they are not merely theoretical:

wiretapping and surveillance systems have proven to be targets for both nation-state attacks

and operator abuse [49, 105, 153].

Overcoming these challenges is further complicated by law enforcement’s desire to access

data that was encrypted before an investigation is initiated. For example, several recent
13The Carnegie Institution report [77] concludes that “In the case of data in motion, for example, our

group could identify no approach to increasing law enforcement access that seemed reasonably promising to
adequately balance all of the various concerns”.

14This contrasts with the theft of e.g., digital certificates or signing keys, where abuse may produce
artifacts such as fraudulent certificates [158] or malware artifacts that can be detected through Internet-wide
surveillance.

110

investigations requested the unlocking of suspects’ phones or message traffic in the wake

of a crime or terrorist attack [142]. Satisfying these requests would require retrospectively

changing the nature of the encryption scheme used: ciphertext must be strongly protected

before an investigation begins, but they must become accessible to law enforcement after an

investigation begins. Satisfying these contradictory requirements is extraordinarily challenging

without storing key material that can access all past ciphertexts, since a ciphertext may be

created before it is known if there will be a relevant investigation in the future.

Law enforcement access systems that do not fail open in the face of lost key material

or malicious operators have been considered in the past, e.g., [24, 37, 195]. Bellare and

Rivest [24] proposed a mechanism to build probabilistic law enforcement access, in order to

mitigate the risk of mass surveillance. Wright and Varia [195] proposed cryptographic puzzles

as a means to increase the financial cost of abuse. While these might be theoretically elegant

solutions, such techniques have practical limitations that may hinder their adoption: law

enforcement is unlikely to tolerate arbitrary barriers or prohibitive costs that might impede

legitimate investigations. Moreover, these proposals do little to enable detection of key theft

or to prevent more subtle forms of misuse.

Towards Abuse Resistant Law Enforcement Access. In this work, we explore if it

is technically possible to limit abuse while giving law enforcement the capabilities they are

truly seeking: quickly decrypting relevant ciphertexts during legally compliant investigations.

To do this, we provide a new cryptographic definition for an abuse resistant law enforcement

access system. This definition focuses on abuse resistance by weaving accountability features

throughout the access process. More concretely, our goal is to construct systems that realize

the following three main features:

– Global Surveillance Policies. To prohibit abuse by authorized parties, access systems

must enforce specific and fine-grained global policies that restrict the types of surveillance

111

that may take place. These policies could, for example, encompass limitations on the

number of messages decrypted, the total number of targets, and the types of data

accessed. They can be agreed upon in advance and made publicly available. This

approach ensures that global limits can be developed that meet law enforcement needs,

while also protecting the population against unlimited surveillance.

– Detection of Abuse. We require that any unauthorized use of escrow key material can

be detected, either by the public or by authorized auditing parties. Achieving this

goal ensures that even fully-adversarial use of escrow key material (e.g., following an

undetected key exfiltration) can be detected, and the system’s security can be renewed

through rekeying.

– Operability. At the same time, escrow systems must remain operable, in the sense

that honest law enforcement parties should be able to access messages sent through

a compliant system. We aim to guarantee this feature by ensuring that it is easy to

verify that a message has been correctly prepared.

We stress that the notion of abuse-resistance is different from impossible to abuse. Under our

definitions abuse may still happen, but the features described above will allow the abuse to

be quickly identified and system security renewed. The most critical aspect of our work is

that we seek to enforce these features through the use of cryptography, rather than relying on

correct implementation of key escrow hardware or software, or proper behavior by authorities.

Prospective vs. retrospective surveillance. We will divide the access systems we discuss into

two separate categories: prospective and retrospective. When using a prospective system, law

enforcement may only access information encrypted sent or received from suspects after those

suspects have been explicitly selected as targets for surveillance: this is analogous to “placing

an alligator clip on a wire” in an analog wiretap. A retrospective access system, as described

112

above, allows investigators to decrypt past communications, even those from suspects who

were not the target of surveillance when encryption took place. Retrospective access clearly

offers legitimate investigators more capabilities, but may also present a greater risk of abuse.

Indeed, achieving accountable access in the challenging setting of retrospective key escrow,

where encryption may take place prior to any use of escrow decryption keys, is one of the

most technically challenging aspects of this work.

Our contributions. More concretely, in this work we make the following contributions.

– Formalizing security notions for abuse resistant law enforcement access systems.

We first provide a high-level discussion of the properties required to prevent abuse in a

key escrow system, with a primary focus on the general data-in-motion setting: i.e.,

we do not assume that targets possess trusted hardware. Based on this discussion, we

formalize the roles and protocol interface of an Abuse-Resistant Law Enforcement Access

System (ARLEAS): a message transmission framework that possesses law enforcement

access capability with strong accountability guarantees. Finally, we provide an ideal

functionality FARLEAS in Canetti’s Universal Composability framework [53].

– A prospective ARLEAS construction from lossy encryption or non-interactive

secure computation. We show how to realize ARLEAS that is restricted to the

case of prospective access: this restricts the use of ARLEAS such that law enforcement

must identify surveillance parameters before a target communication occurs. We

first show that this can be constructed efficiently using lossy encryption and efficient

simulation sound NIZKs, with the limitation that warrants must explicitly specify the

identities of users being targeted for surveillance. We then show a generalization of

this construction such that warrants can be arbitrary predicates to be evaluated over

each message metadata; our construction of this generalization relies on non-interactive

secure computation [126].

113

– A retrospective ARLEAS construction from proof-of-publication ledgers and

extractable witness encryption. We show how to realize ARLEAS that admits retro-

spective access, while still maintaining the auditability and detectability requirements of

the system. The novel idea behind our construction is to use secure proof-of-publication

ledgers to condition cryptographic escrow operations. The cryptographic applications of

proof-of-publication ledgers have recently been explored (under slightly different names)

in several works [60, 106, 130, 175]. Such ledgers may be realized using recent advances

in consensus networking, a subject that is part of a significant amount of research.

– Evaluating the difficulty of retrospective systems. Finally, we investigate the minimal

assumptions for realizing retrospective access in an accountable law enforcement access

system. As a concrete result, we present a lower-bound proof that any protocol realizing

retrospective ARLEAS implies the existence of an extractable witness encryption scheme

for some language L which is related to the ledger functionality and policy functions of

the system. While this proof does not imply that all retrospective ARLEAS realizations

require extractable witness encryption for general languages (i.e., it may be possible

to construct languages that have trivial EWE realizations), it serves as a guidepost to

illustrate the barriers that researchers may face in seeking to build accountable law

enforcement access systems.

5.1.1 Towards Abuse Resistance

In this work we consider the problem of constructing secure message transmission protocols

with abuse resistant law enforcement access, which can be seen as an extension of secure

message transmission as formalized in the UC framework by Canetti [53, 56]. Before discussing

our technical contributions, we present the parties that interact with such a system and

discuss several of the security properties we require.

114

The ARLEAS Setting. An ARLEAS system is comprised of three types of parties:

1. Users: Users employ a secure message transmission protocol to exchange messages

with other users. From the perspective of these users, this system acts like a normal

messaging service, with the additional ability to view public audit log information about

the use of warrants on information sent through the system.

2. Law Enforcement: Law enforcement parties are responsible for initiating surveillance

and accessing encrypted messages. This involves determining the scope of a surveillance

request, obtaining a digital warrant, publishing transparency information, and then

accessing the resulting data.

3. Judiciary: The final class of parties act as a check on law enforcement, determining

whether a surveillance request meets the necessary legal requirements. In our system,

any surveillance request must be approved by a judge before it is activated on the

system. In our model we assume a single judge per system, though in practice this

functionality can be distributed.

At setup time an ARLEAS system is parameterized by three functions, which we refer to as

the global policy function, p(·), the warrant transparency function, t(·), and the warrant scope

check function, θ(·).15 The purpose of these functions will become clear as we discuss operation

and desired properties below. Finally, our proposals assume the existence of a verifiable,

public broadcast channel, such as an append-only ledger. While this ledger may be operated

by a centralized party, in practice we expect that such systems would be highly-distributed,

e.g. using blockchain or consensus network techniques.

ARLEAS Operation. To initiate a surveillance request, law enforcement must first identify a

specific class of messages (e.g. by metadata or sender/receiver); it then requests a surveillance
15We later introduce a fourth parameterizing function, but omit it here for the clarity of exposition.

115

warrant w from a judge. The judge reviews the request and authorizes or rejects the request.

If the judge produces an authorized warrant, law enforcement must take a final step to activate

the warrant in order to initiate surveillance. This activation process is a novel element of

an abuse resistant access scheme, and it is what allows for the detection of misbehavior. To

enforce this, we require that activation of a warrant w results in the publication of some

information that is viewable by all parties in the system. This information consists of two

parts: (1) a proof that the warrant is permissible in accordance with the global policy function,

i.e. p(w) = 1, and (2) some transparency data associated with the warrant. The amount and

nature of the transparency data to be published is determined by the warrant transparency

function t(w). Once the warrant has been activated, and the relevant information has been

made public, law enforcement will be able to access any message that is within the scope of

the warrant, as defined by the warrant scope check function θ(w).

ARLEAS Properties. For a law enforcement access system to be considered abuse resistant,

it must satisfy the following intuitive properties:

– Messages Secure without a Warrant. A system must provide strong crypto-

graphic security against attackers who are not authorized to receive messages, and law

enforcement can only access the message if a judge has issued an applicable warrant.

– Global Surveillance Policies. Even in cases where all escrow authorities (i.e. law

enforcement and judges) collude, surveillance requests must always obey a set of global

limits defined by the global policy function which was chosen during system setup.

– Abuse Detectability. To enable detection of abuse or theft of key material, we require

that whenever a warrant w is activated, law enforcement must publish t(w) to all parties

in the system, where t(·) is a warrant transparency function defined at system setup.

This publication must occur even in cases where all escrow authorities collude.

116

– Target Anonymity. To preserve the integrity of investigations, users should learn no

information about the contents of a warrant beyond what is revealed by the transparency

function.

– Escrow Verifiability. Escrow authorities must be assured that the access system will

decrypt messages within the scope of an activated, valid warrant. Because senders can

always behave dishonestly (e.g. using alternative encryption mechanisms or encode

messages using steganography), this guarantee cannot be enforced for all possible sender

behavior. Instead, we mandate a weaker property that we call escrow verifiability: this

ensures that recipients and/or service providers can filter messages that will decrypt

differently for receivers and law enforcement. This ensures that compliant messages

will be accessible by escrow authorities under appropriate circumstances.

In Section 5.3 we formalize this intuition and present a concrete security definition for an

ARLEAS.

5.1.2 Technical Overview

We now present an overview of the key technical contributions of this work. We will consider

this in the context of secure message transmission systems, which can be generalized to the

setting of encrypted storage. Our overview will begin with intuition for building prospective

ARLEAS, and then we will proceed to retrospective ARLEAS.

Accountability From Ledgers. For an ARLEAS the most difficult properties to satisfy

are accountability and detectability. Existing solutions attempt to achieve this property by

combining auditors and key escrow custodians; in order to retrieve key material that facilitates

decryption, law enforcement must engage with an auditor. This solution, however, does

not account for dishonest authorities, and is therefore vulnerable to covert key exfiltration

and collusion. In our construction, we turn to public ledgers — a primitive that can be

117

realized using highly-decentralized and auditable systems — as a way to reduce these trust

assumptions.

Ledgers have the property that any party can access their content. Importantly, they also

have the property that any parties can be convinced that other parties have access to these

contents. Thus, if auditing information is posted on a ledger, all parties are convinced that that

information is truly public. We note that using ledgers in this way is fundamentally different

from prior work addressing encrypted communications; our ledger is a public functionality

that does not need to have any escrow secrets. As such, if it is corrupted, there is no private

state that can be exploited by an attacker.

Warm up: Prospective ARLEAS. To build to our main construction, we first consider

the simpler problem of constructing a prospective access system, one that is capable of

accessing messages that are sent subsequent to a warrant being activated. For our practical

construction, we make a further simplifying assumption that law enforcement will target

specific parties for surveillance. We then extend this paradigm to allow law enforcement to

target messages using arbitrary predicates.

A key aspect of this construction is that we consider a relatively flexible setting where

parties have network access, and can receive periodic communications from escrow system

operators prior to transmitting messages. We employ a public ledger for transmission of

these messages, which provides an immutable record as well as a consistent view of these

communications. The goal in our approach is to ensure that escrow updates embed information

about the specifics of surveillance warrants that are active, while ensuring that even corrupted

escrow parties cannot abuse the system.

Escrow lossy encryption. The basic intuition of our approach is to construct a “dual-

trapdoor” public-key encryption system [48] that senders can use to encrypt messages to

specific parties. This scheme is designed with two ciphertexts c1 and c2, such that c1 can be

118

decrypted by the intended recipient using a normal secret key, while c2 can be decrypted by

law enforcement only if the recipient is under active surveillance. A feature of this scheme is

that for all recipients not the target of surveillance, c2 should contain no information about

the plaintext.

Lossy encryption [165] is a natural tool to use to encrypt c2, as an injective key can be

used to encrypt c2 when the recipient is under surveillance (preserving the plaintext) and a

lossy key can be used to encrypt c2 when the recipient is not under surveillance (destroying

any information about the plaintext). A naive solution would have law enforcement generate

either an injective key or a lossy key information for each user, as only law enforcement

knows which users are under surveillance. Instead, we realize a more efficient construction

using a tag-based variant of lossy encryption [25, 118, 119, 165] that we call none-but-N

lossy-tag-based encryption, or LTE. In this scheme, key generation creates public parameters

mpk with respect to the set of user identifiers (tags) T that are under active surveillance,

along with a secret decryption key. The public parameters are proportional in size to the

number of users under surveillance. When encrypting a message, a sender encrypts under

both the recipient’s public key and tag, along with mpk.

An LTE scheme must satisfy three main security properties. First, if the parameter

generation process is run honestly with some set of user identifiers T and any (even biased)

random coins r, then even an adversarial law enforcement should not be able to retrieve

the message m if the receiver is not in T . Second, to ensure that law enforcement access is

possible, we require that adversarial encryptors cannot produce a ciphertext that appears

correctly formatted but does not admit decryption. Finally, we require that mpk must at

least computationally hide the set of users that are being targeted for surveillance, i.e. no

efficient adversary with mpk should be able to recover any information about T , beyond the

size of its description. In Section 2.1.7 we discuss candidate constructions for LTE schemes

based on the lossy encryption scheme in [25].

119

Building prospective ARLEAS for identities from LTE. Given an appropriate lossy

tag-based encryption scheme, the remainder of the ARLEAS construction proceeds as follows.

The global parameters of the scheme are created at setup: these include a public verification

key for the judge presiding over the system, as well as a global transparency function t and

policy function p agreed on by system participants.

When a law enforcement agency wishes to add a user to those being surveilled, it creates

a new warrant w embedding the tag of that user and adds it to the set of active warrants

W . Law enforcement then runs the LTE parameter generation algorithm on the set of tags

T embedded in the warrants in W , obtaining mpk and the corresponding secret key. Law

enforcement next contacts the judge to obtain a signature over w, and proceeds to generate a

NIZK π that the following statements hold: (1) the prover posses a signature from the judge

for each warrant in W, (2) the parameter mpk was correctly generated with respect to the

user-set T specified in the warrants inW , (3) each warrant w ∈ W is permissible according to

the global policy function p, and (4) the transparency information info← {t(w),∀w ∈ W} was

calculated honestly. Finally, it transmits (mpk, info, π) to a global ledger. Each participant

in the system must ensure that this message was correctly published, and verify the proof π.

If this proof verifies correctly, the participants will accept the new parameter mpk and use

this value for all subsequent encryptions.

A critical security property of this system is that, even if law enforcement and judges

collude (e.g., if both parties become catastrophically compromised), users retain the assurance

that issued warrant in violation of the global policy p cannot be used. Moreover, even in this

event, the publication of a transparency record info ensures that every warrant activated in

the system produces a detectable artifact that can be used to identify abuse.16

16The flexible nature of the transparency function t ensures that these records can contain both publicly-
visible records (e.g., a quantized description of the user set size, as well as private information that can be
encrypted to auditors.

120

Prospective ARLEAS for Arbitrary Predicates. The solution presented above is

inherently identity based, which restricts the types of warrants that a judge is able to

issue. We now describe a version of this system that facilitates law enforcement access

to messages if they possess a valid warrant embedding an arbitrary predicate such that

this predicate, evaluated over the message metadata, is satisfied. Unlike the identity-based

solution, generating key material for each possible situation cannot work; while the number

of identities in the system may be bounded, there are an exponential number of predicate

functions that law enforcement might want to embed into warrants. Instead, we rely on non-

interactive secure computation (NISC) [126], a reusable, non-interactive version of two-party

computation. NISC for an arbitrary function f allows a receiver to post an encryption of

some secret x1 such that all players can reveal f(x1, x2) to the receiver with only one message,

without revealing anything about x2 beyond the output of the function. We leverage such a

scheme to have senders reveal the message plaintext to law enforcement if and only if law

enforcement’s input to the NISC scheme contains a valid, pertinent warrant.

As before, law enforcement computes the transparency information for their warrant

info← t(w) along with the first message of the NISC scheme, embedding the warrant. Both

of these are posted onto the ledger, along with a non-interactive zero-knowledge proof of

correctness and compliance with the policy function. Whenever a sender sends a message m,

they generate c1 as normal and then generate c2 which, using the NISC scheme, allows law

enforcement to compute

f(w, (m, meta)) = m ∧ θ(meta, w),

where θ(·, ·) evaluates if the warrant applies to this particular message (we will discuss

θ(·, ·) in more detail in Section 5.3). Notice that if θ(meta, w) = 0, then the output of the

NISC evaluation is uncorrelated with the message. However, if θ(meta, w) = 1, meaning law

enforcement has been issued a valid warrant, then the message is recovered. As before, users

121

are assured that all activated warrants are acceptable according to the policy function and

detectable artifacts must be generated before any messages can be decrypted.

From Prospective to Retrospective. The major limitation of the ARLEAS construction

above is that it is fundamentally restricted to the case of prospective access. Abuse resistance

derives from the fact that “activation” of a warrant results in a distribution of fresh encryption

parameters to users, and each of these updates renders only a subset of communications

accessible to law enforcement. A second drawback of the prospective protocol is that it

requires routine communication between escrow authorities and the users of the system,

which may not be possible in all settings.

Updating these ideas to provide retrospective access provides a stark illustration of the

challenges that occur in this setting. In the retrospective setting, the space of targeted

communications is unrestricted at the time that encryption takes place. By the time this

information is known, both sender and recipient may have completed their interaction and

gone offline. Using some traditional, key-based solution to this problem implies the existence

of powerful master decryption keys that can access every ciphertext sent by users of the

system. Unfortunately, granting such power to any party (or set of parties) in our system

is untenable; if this key material is compromised, any message can be decrypted without

leaving a detectable artifact. The technical challenge in the retrospective setting is to find

an alternative means to enable decryption, such that decryption is only possible on the

conditions that (1) a relevant warrant has been issued that is compliant with the global

policy function, (2) a detectable artifact has been made public. This mechanism must remain

secure even when encryption occurs significantly before the warrant is contemplated.

Ledgers as a cryptographic primitive. A number of recent works [60, 61, 106, 130, 175]

have proposed to use public ledgers as a means to condition cryptographic operations on

published events. This paradigm was initially used by Choudhuri et al.[60] to achieve fairness

122

in MPC computations, while independently a variant was proposed by Goyal and Goyal [106]

to construct one-time programs without the need for trusted hardware. Conceptually,

these functionalities all allow decryption or program execution to occur only after certain

information has been made public. This model assumes the existence of a secure global

ledger L that is capable of producing a publicly-verifiable proof π that a value has been

made public on the ledger. In principle, this ledger represents an alternative form of “trusted

party” that participates in the system. However, unlike the trusted parties proposed in past

escrow proposals [68], ledgers do not store any decryption secrets. Moreover, recent advances

in consensus protocols, and particularly the deployment of proof-of-work and proof-of-stake

cryptocurrency systems. e.g., [44, 65, 93, 133], provide evidence that these ledgers can be

operated safely at large scale.

Following the approach outlined by Choudhuri et al. [60], we make use of the ledger to

conditionally encrypt messages such that decryption is only possible following the verifiable

publication of the transparency function evaluated over a warrant on the global ledger.

For some forms of general purpose ledgers that we seek to use in our system, this can be

accomplished using extractable witness encryption (EWE) [46].17 EWE schemes allow a sender

to encrypt under a statement such that decryption is possible only if the decryptor knows of

a witness ω that proves that the statement is in some language L, where L parameterizes the

scheme. While candidate schemes for witness encryption are known for specific languages

(e.g. hash proof systems [63, 88]), EWE for general languages is unlikely to exist [89].

Building Retrospective ARLEAS from EWE. Our retrospective ARLEAS construction

assumes the existence of a global ledger that produces verification proofs πpublish that a

warrant has been published to a ledger. As mentioned before, we aim to condition law

enforcement access on the issuance of a valid warrant and the publication of a detectable
17Using the weaker witness encryption primitive may be possible if the ledger produces unique proofs of

publication.

123

artifact. In a sense, we want to use this published detectable artifact as a key to decrypt

relevant ciphertexts. Thus, in this construction, a sender encrypts each message under a

statement with a witness that shows evidence that these conditions have been met. This

language reasons over (1) the warrant transparency function, (2) a function determining the

relevance of the warrant to ciphertext, (3) the global policy function, (4) the judge’s warrant

approval mechanism, and (5) the ledger’s proof of publication function.

On the Requirement of EWE. We justify the use of EWE in our construction by showing

that the existence of a secure protocol realizing retrospective ARLEAS implies the existence

of a secure EWE scheme for a related language that is deeply linked to the ARLEAS protocol.

Intuitively, the witness for this language should serve as proof that the protocol has been

correctly executed; law enforcement should be able to learn information about a message if

and only if the accountability and detectability mechanisms have been run. For the concrete

instantiation of retrospective ARLEAS, we give in Section 5.6, this would include getting

a valid proof of publication from the ledger. If the protocol is realized with a different

accountability mechanism, the witness encryption language will reason over that functionality.

No matter the details of the accountability mechanism, we note that it should be difficult for

law enforcement to locally simulate the mechanism. If it were computationally feasible, then

law enforcement would be able to circumvent the accountability mechanism with ease.

5.1.3 Contextualizing ARLEAS In The Encryption Debate

This work is motivated by the active global debate on whether to mandate law enforcement

access to encrypted communication systems via key escrow. Reduced to its essentials, this

debate incorporates two broad sub-questions. First: can mandatory key escrow be deployed

safely? Secondly, if the answer to the first question is positive: should it be deployed?

We do not seek to address the second question in this work. Many scholars in the policy

124

and technical communities have made significant efforts in tackling this issue [6, 20, 77, 155]

and we do not believe that this work can make a substantial additional contribution. We

stress, therefore, that our goal in this work is not to propose techniques for real-world

deployment. Numerous practical questions and technical optimizations would need to be

considered before ARLEAS could be deployed in practice.

Instead, the purpose of this work is to provide data to help policymakers address the first

question. We have observed a growing consensus among stakeholders that key escrow systems

should provide strong guarantees of information security as a precondition for deployment.

Some stakeholders in the law-enforcement and national security communities grant that key

escrow systems should not be deployed unless they can mitigate the risk of mass-surveillance

via system abuse or compromise.18 Unfortunately, there is no agreement on the definition

of safety, and the technical community remains divided on whether traditional key escrow

security measures (such as the use of secure hardware, threshold cryptography and policy

safeguards) will be sufficient. We believe that the research community can help to provide

answer these questions, and a failure to do so will increase the risk of unsound policy.

Our contribution in this paper is therefore to take a first step towards this goal. We

attempt to formalize a notion of abuse-resilient key escrow, and to determine whether it

can be realized using modern cryptographic techniques. Our work is focused on feasibility.

With this perspective in mind, we believe that our work makes at least three necessary

contributions to the current policy debate:

Surface the notion of cryptographic abuse-resistance. We raise the question of whether

key escrow can be made abuse resistant using modern cryptographic technologies, and

investigate what such a notion would imply. A key aspect of this discussion is the
18For evidence of this consensus, see e.g., the 2018 National Academies of Sciences Report [155], which

provides a framework for discussing such questions. See also a recent report by the Carnegie Endowment [77]
which chooses to focus only on the problem of escrow for physical devices rather than data in motion,
providing the following explanation: “it is much harder to identify a potential solution to the problems
identified regarding data in motion in a way that achieves a good balance” (p. 10).

125

question of detectability: by making abuse and key exfiltration publicly detectable, we

can test law enforcement’s belief that backdoor secrets can remain secure, and renew

security by efficiently re-keying the system.

Separate the problems of prospective and retrospective surveillance. By emphasizing the

technical distinctions between prospective and retrospective surveillance, we are able

to highlight the design space in which it is realistic to discuss law enforcement access

mechanisms. In particular, our technical results in this work illustrate the cryptographic

implausibility of retrospective ARLEAS: this may indicate that retrospective surveillance

systems are innately susceptible to abuse.

Shift focus to public policy. In defining and providing constructions for prospective and

retrospective ARLEAS, we formalize the notion of a global policy function and a

transparency function (see Section 5.3). By making these functions explicit, we hope

to highlight the difficult policy issues that must be solved before deploying any access

mechanism. As noted by Feigenbaum and Weitzner [81], there are limits what cryp-

tography can contribute to this debate; legal and policy experts must do a better job

reducing the gray area between rules and principles so that technical requirements can

be better specified.

Finally, we note that the existence of a cryptographic construction for ARLEAS may not

be sufficient to satisfy lawn enforcement needs. The mathematics for cryptographically

strong encryption systems is already public and widespread, and determined criminals may

simply implement their own secure messaging systems [76]. Alternatively, they may use

steganography or pre-encrypt their messages with strong encryption to prevent “real” plaintext

from being recovered by law enforcement while still allowing contacts to read messages [120].

These practical problems will likely limit the power of any ARLEAS and must be considered

carefully by policy makers before pushing for deployment.

126

5.2 Related work

The past decade has seen the start of academic work investigating the notion of accountability

for government searches. Bates et al.[21] focus specifically on CALEA wiretaps and ensuring

that auditors can ensure law enforcement compliance with court orders. In the direct aftermath

of the Snowden leaks, Segal et al. [177] explored how governments could accountably execute

searches without resorting to dragnet surveillance. Liu et al. [143] focus on making the

number of searches more transparent, to allow democratic processes to balance social welfare

and individual privacy. Kroll et al. [136, 137] investigate different accountability mechanisms

for key escrow systems, but stop short of addressing end-to-end encryption systems and the

collusion problems we address in this work. Kamara [129] investigates cryptographic means

of restructuing the NSA’s metadata program. Backes considered anonymous accountable

access control [17], while Goldwasser and Park [102] investigate similar notions with the

limitation that policies themselves may be secret, due to national security concerns. Frankle

et al. [84] make use of ledgers to get accountability for search procedures, but their solution

cannot be extended to the end-to-end encryption setting. Wright and Varia [195] give a

construction that uses cryptographic puzzles to impose a high cost for law enforcement to

decrypt messages. Servan-Schreiber and Wheeler [179] give a construction for accountability

that randomly selects custodians that law enforcement must access to decrypt a message.

Panwar et al. [161] attempt to integrate the accountability systems closely with ledgers,

but do not use the ledgers to address access to encryption systems. Finally, Scafuro [175]

proposes a closely related concept of “break-glass encryption” and give a construction that

relies on trusted hardware.

127

5.3 Definitions

5.4 Lossy Tag Encryption

We will require a specific generalization of lossy encryption we call lossy-tag encryption (LTE).

Intuitively, this is an encryption scheme with a single public key in which encryption takes as

input a “tag” in addition to the public key and plaintext. Encrypting under a tag from a

specific subset will produce in an injective ciphertext, while the remaining tags will produce

a lossy ciphertext. This notion is closely related to numerous previous works, including lossy

encryption [25], lossy trapdoor functions [165], identity-based lossy trapdoor functions [26]

all-but-one functions [165], and all-but-n functions [118]. We define lossy-tag encryption

formally as follows:

Definition 10 A lossy-tag encryption (LTE) scheme with respect to a tag space T consists

of a tuple of algorithms (KeyGen, Enc, Dec) defined as follows:

– KeyGen(1λ, T) takes in a set of tags T ⊂ T of polynomial size in λ and outputs a public

key mpk and a secret key msk.

– Enc(mpk, tag, m) encrypts the message m under the public key mpk and tag ∈ T to

produce ciphertext c.

– Dec(msk, tag, c) takes in the secret key msk, tag ∈ T and a ciphertext c and either

outputs a message m or ⊥.

We require that the above algorithms satisfy the follow properties

– Correctness on injective tags:

Pr

⎡⎢⎣m = Dec(msk, tag, Enc(mpk, tag, m))

⃓⃓⃓⃓
⃓⃓⃓ tag ∈ T

(mpk, msk)← KeyGen(1λ, T)

⎤⎥⎦ = 1

128

– Lossiness on lossy tags: for all messages m0, m1 and all sets T , if tag ̸∈ T and

(mpk, msk) ∈ KeyGen(1λ, T), then

Enc(mpk, tag, m0)
s≈ Enc(mpk, tag, m1)

– Indistinguishability of tag sets: for all sets T0 ̸= T1 such that |T0| = |T1|,

KeyGen(1λ, T0)
c≈ KeyGen(1λ, T1)

A stronger version of this definition could remove the requirement that |T0| = |T1| for

indistinguishability of tag sets. For our constructions, we do not concern ourselves with this

leakage.

Realizing lossy-tag encryption: When the size of T is polynomial in the security parameter,

it is trivial to realize lossy-tag encryption from standard lossy encryption [25] simply by

generating one lossy keypair to represent each “tag”. However, even for small sets T this may

produce unreasonably large public keys. In this work, we present a direct instantiation of a

lossy-tag encryption scheme based on DDH, such that the public parameters mpk that are

linear in |T |.

Let G be a cyclic group of order p. Define pk = (g, h, g̃, h̃) ∈ G4, and

DoubleEncrypt(pk, m; r1, r2)

to output (gr1hr2 , g̃r1h̃
r2 ·m). As noted in [25], if pk is a DDH tuple then this encryption

is injective, but if pk is a random tuple then the encryption is statistically lossy. We now

present a construction ΠLTE for lossy-tag encryption as follows:

• KeyGen(params, T)→ (mpk, msk). Sample params = p,G, g, h, ĝ, ĥ where G has order

p and g, h, ĝ, ĥ are generators of G. Sample a random polynomial A(x) in Zp of degree

k = |T | such that for each s ∈ T , A(x) = 0. Then compute B(x) = d2A(x) for some

129

constant d2 ̸= d0
d1

. Let αi be the ith coefficient of A(x) and βi be the ith coefficient of B(x).

Use rejection sampling to sample random η0 . . . ηk such then when ηi is interpreted

as the ith coefficient of a polynomial E(x), E(tag) ̸= 0 for all tag ∈ T . Compute

mpk = ((gηk ĝαk , . . . , gη0 ĝα0), (hηk ĥ
βk

, . . . , hη0ĥ
β0)). Compute msk = (η0, η1, . . . , ηk) and

output mpk, msk.

• Enc(params, mpk, tag, m)→ c.

– Parse ((gηk ĝαk , . . . , gη0 ĝα0), (hηk ĥ
βk

, . . . , hη0ĥ
β0))← mpk

– Compute the user public key

pk = (g, h,
k∏︂

i=0
(gηi ĝαi)tagi

,
k∏︂

i=0
(hηiĥ

βi)tagi)

– Sample r1, r2 ← Zp

– Compute and return

c = (gr1hr2 ,

(︄
k∏︂

i=0
(gηi ĝαi)tagi

)︄r1

·
(︄

k∏︂
i=0

(hηiĥ
βi)tagi

)︄r2

·m)

• Dec(params, msk, tag, c)→ m

– Parse (η0, η1, . . . , ηk)← msk

– Parse (c1, c2)← c

– Compute y = ∑︁k
i=0 η0(tag)k

– Compute and return m = c2
cy

1
.

Proof. We now prove that ΠLTE above realizes the the functionality of lossy-tag encryption.

To do so, we recall the construction of a lossy encryption scheme in Section 4.1 of [25].

As mentioned above, they observe that ElGamal double encryption is injective when the

public key has the structure (g, h, gx, hx), but is lossy when the public key has the structure

(g, h, gx, hy), for x ̸= y.

130

Correctness on injective tags. For injective tags, A(x) = B(x) = 0. Recall that the public

key used during encryption is computed as (g, h,
∏︁k

i=0(gηi ĝαi)tagi
,
∏︁k

i=0(hηiĥ
βi)tagi). Written

another way, this is (g, h, gE(tag)ĝA(tag), hE(tag)ĥ
B(tag)). Because A(x) = B(x) = 0, the public

key is (g, h, gE(tag), hE(tag)), where E(tag) is non-zero. Note that this form is the same form as

an injective key from [25], so the resulting ciphertext is injective with corresponding private

key E(tag).

Lossiness on lossy tags. For lossy tags, A(x) ̸= B(x) ̸= 0. This can be observed because

B(x) = kA(x), and there are at most |T | zeros of a degree |T | polynomial, and all all these

zeros were set to be the injective tags. The public key used for encryption is, as before,

(g, h, gE(tag)ĝA(tag), hE(tag)ĥ
B(tag)). Without loss of generality, the public key can then be

written as

(g, h, gE(tag)+d0A(tag), hE(tag)+d1B(tag)).

Note that because B(·) was sampled such that d2A(x) = B(x), and d0
d1
̸= d2, then E(tag) +

d0A(tag) ̸= E(tag) + d1B(tag). Thus this public key is structured exactly like the lossy key

from [25], so the resulting ciphertext is lossy.

Indistinguishability of tag sets. Due to the key indistinguishability of [25], it is clear

that a lossy key and an injective key, when computed during encryption, are statistically

indistinguishable. All that remains to argue is that the public parameters leak no information

about the tag set besides its size (note that the size of mpk trivially leaks |T |). Notice that

it is sufficient to show that this property holds when two sets differ in only a single tag,

as a straightforward hybrid argument in which a single tag is swapped in each hybrid can

generalize the result. Next, notice that each element in mpk is formed like a Pendersen

commitment [164] to αi or βi. Thus, it is clear to see that if there exists an adversary

that can distinguish between sets, it can be used to break the hiding property of Pendersen

commitments.

131

5.4.1 Defining ARLEAS

We now formally define the notion of an Abuse-Resistant Law Enforcement Access System

(ARLEAS). An ARLEAS is a form of message transmission scheme that supports accountable

access by law enforcement officials. To emphasize the core functionality, we base our security

definitions on the UC Secure Message Transmission (FSMT) notion originally introduced by

Canetti [53]. Indeed, our systems can be viewed as an extension of a multi-message SMT

functionality [56], with added escrow capability.

Parties and system parameters. An ARLEAS is an interactive message transmission

protocol run between several parties and network components:

• User Pi: Users are the primary consumer of the end-to-end encrypted service or

application. These parties, which may be numerous, interact with the system by

sending messages to other users.

• Judge PJ : The judge is responsible for determining the validity of a search and issuing

search warrants to law enforcement. The judge interacts with the system by receiving

warrant requests and choosing to deny or approve the request.

• LawEnforcement PLE: Law enforcement is responsible for conducting searches pursuant

to valid warrants authorized by a judge. Law enforcement interacts with the system by

requesting warrants from the judge and collecting the plaintext messages relevant to

their investigations.

A concrete ARLEAS system also assumes the existence of a communication network that

parties can use to transmit encrypted messages to other users. To support law enforcement

access, it must be possible for law enforcement to “tap” this network and receive encrypted

communications between targeted users. For the purposes of this exposition, we will assume

that law enforcement agents have access to any communications transmitted over the network

132

(i.e., the network operates as a transparent channel.) In practice, a service provider would

handle the transmissions of ciphertexts. This service provider would also be responsible for

storing ciphertext and metadata, and providing this information to law enforcement. Our

simplified model captures the worst case network security assumption, where the service

provider cooperates with all law enforcement requests. Service providers would also be

responsible for checking that messages sent by users are compliant with the law enforcement

access protocol. We move this responsibility to the receiver for simplicity. We discuss the

role of service providers more in Section 5.8.

An ARLEAS system is additionally parameterized by four functions, which are selected

during a trusted setup phase:

• t(w): the deterministic transparency function takes as input a warrant w and outputs

specific information about the warrant that can be published to the general public.

• p(w): the deterministic global policy function takes as input a warrant w and outputs 1

if this warrant is allowed by the system.

• θ(w, meta): the deterministic warrant scope check takes as input a warrant w and

per-message metadata meta. It outputs 1 if meta is in scope of w for surveillance.

• v(meta, aux): The deterministic metadata verification functionality takes as input

metadata associated with some message meta and some auxiliary information aux and

determines if the metadata is correct. This auxiliary information could contain the

ciphertext, global timing information, or some authenticated side channel information.

We discuss concrete instantiations of these functions in Section 5.8.

ARLEAS scheme. An ARLEAS scheme comprises a set of six possibly interactive protocols.

We provide a complete API specification for these protocols in later sections:

133

• Setup. On input a security parameter, this trusted setup routine generates all necessary

parameters and keys needed to run the full system.

• SendMessage. On input a message m, metadata meta, and a recipient identity, this

protocol sends an encrypted message from one party to another.

• RequestWarrant. On input a description of the warrant request, this procedure allows

law enforcement to produce a valid warrant.

• ActivateWarrant. Given a warrant w, this protocol allows law enforcement and a judge

to confirm and activate a warrant.

• VerifyWarrantStatus. Given a warrant w, this protocol is used to verify that a warrant

is valid and active.

• AccessMessage. in the retrospective case, this protocol is used by law enforcement to

open a message.

UC ideal functionality. To define the properties of an ARLEAS system, we present

a formal UC ideal functionality FARLEAS in Figure 5-1. Recalling that ARLEAS can be

instantiated in one of two modes, supporting only prospective or retrospective surveillance,

we present a single definition that supports a parameter, mode ∈ {pro, ret}.

Ideal World. For any ideal-world adversary S with auxiliary input z ∈ {0, 1}∗, input vec-

tor x, and security parameter λ, we denote the output of the ideal world experiment by

IdealS,Fv,t,p,θ,mode
ARLEAS

(1λ, x, z).

Real World. The real world protocol starts with the adversary A selecting a subset of the

parties to compromise PA ⊂ P, where PA ⊂ {{Pi}, {PLE}, {PLE, PJ}}, where we denote

sender with Pi and receiver with Pj . We limit the subsets of parties that can be compromised

to these cases, because any other combination is trivial to simulate or can be deducted from

134

Functionality Fv,t,p,θ,mode
ARLEAS

The ideal functionality is parameterized by mode ∈ {pro, ret}, a metadata verification function v :
{0, 1}∗×{0, 1}∗ → {0, 1}, the transparency function t(·), the global policy function p(·), and the warrant
scope check functionality θ(·, ·). The three latter functions are as defined above. We denote the session
identifier as sid to separate different runs of the same protocol. We have several parties:

• P1, . . . , Pn: participants in the system

• PJ : the generator of a warrant

• PLE: Law enforcement that can read the message given a valid warrant

Send Message: Upon receiving a message (SendMessage, sid, Pj , m, meta, valid) where valid ∈ {0, 1}
from party Pi, it sends (Sent, sid, meta) to the adversary. If (sid, c) is received from the adversary,

• If valid = 0 or v(meta, aux) = 0, send (Sent, sid, meta, c, m) to Pi and send
(Sent, sid, meta, c, 0) to PLE.

• If valid = 1, v(meta, aux) = 1, and there is no entry w in the active warrant table Wactive
send (Sent, sid, meta, c, m) to Pi and Pj , and send (Sent, sid, meta, c) to PLE.

• If valid = 1, v(meta, aux) = 1, and there is an entry w in the active warrant table Wactive
send (Sent, sid, meta, c, m) to Pi, Pj , and PLE.

Finally, store (Sent, sid, meta, c, m) in the message table M .

Request Warrant: Upon receiving a message (RequestWarrant, sid, w) from PLE, the ideal functionality
first checks if p(w) = 1, responding with ⊥ and aborting if not. Otherwise, the ideal functionality
sends (ApproveWarrant, w) to PJ . If PJ responds with (Disapprove), the trusted functionality
sends ⊥ to PLE. If PJ responds with (Approve), the trusted functionality sends (Approve) to PLE,
and stores the entry w in the issued warrant table Wissued.

Activate Warrant: Upon receiving a message (ActivateWarrant, sid, w) from PLE, the ideal function-
ality checks to see if w ∈ Wissued, responding with ⊥ and aborting if not. If w ∈ Wissued, the
trusted functionality adds the entry w to the active warrant table Wactive, computes t(w), and
sends (NotifyWarrant, t(w)) to all parties and the adversary.

Verify Warrant Status: Upon receiving message (VerifyWarrantStatus, sid, c, meta, w) from PLE,
if mode = pro, the ideal functionality responds with ⊥ and aborts. Otherwise, if
(Sent, sid, meta, c, m) ∈ M and w ∈ Wactive such that θ(w, meta) = 1, the ideal functionality
returns 1. Finally, if θ(w, meta) = 0 or w ̸∈Wactive, it returns 0.

Access message: Upon receiving message (AccessData, sid, c, meta, w) from PLE, if mode = pro, the
ideal functionality responds with ⊥ and aborts. Otherwise, if (Sent, sid, meta, c, m) ∈ M and
w ∈Wactive such that θ(w, meta) = 1, the ideal functionality returns m. Finally, if θ(w, meta) = 0
or w ̸∈Wactive, it returns 0.

Figure 5-1. Ideal functionality for an Abuse Resistant Law Enforcement Access System.

135

Protocol RealA,Π(1λ, x, z)

RealA,Π(1λ, x, z) is parameterized by the protocol
Π = (Setup, SendMessage, RequestWarrant, ActivateWarrant,
VerifyWarrantStatus, AccessMessage) and a variable mode ∈
{pro, ret}.

1. When RealA,Π(1λ, x, z) is initialized, then all parties engage
in the interactive protocol Π.Setup

2. When Pi is activated with (SendMessage, sid, Pj , m, 1), par-
ties Pi, Pj , and PLE engage in the interactive protocol
Π.SendMessage. PLE learns some metadata meta about the
message.

3. When Pi is activated with (SendMessage, sid, Pj , m, 0),
parties Pi, and PLE engage in the interactive protocol
Π.SendMessage (with Pj not getting output). PLE learns
some metadata meta about the message.

4. When PLE is activated with (RequestWarrant, sid, ŵ), par-
ties PLE and PJ engage in the interactive protocol
Π.RequestWarrant.

5. When PLE is activated with (ActivateWarrant, sid, w), all par-
ties engage in the interactive protocol Π.ActivateWarrant.

6. When PLE is activated with
(VerifyWarrantStatus, sid, c, meta, w), if mode = pro, PLE
returns ⊥. Otherwise, PLE calls the non-interactive
functionality Π.VerifyWarrantStatus(c, meta, w)

7. When PLE is activated with (AccessData, sid, c, meta, w), if
mode = pro, PLE returns ⊥. Otherwise, PLE calls the non-
interactive functionality Π.AccessMessage(c, meta, w)

Figure 5-2. The real world experiment for a protocol implementing Fv,t,p,θ,mode
ARLEAS

the other cases. For example, if both Pi and Pj would be corrupted, there is nothing stopping

them from not using the system. Moreover, we also don’t consider the case where PJ is the

only corrupted party, this case is a more specific then when both PLE and PJ are corrupted

and PJ on its own doesn’t have any additional information to achieve anything different. All

parties engage in a real protocol execution Π, the adversary A sends all messages on behalf

of the corrupted parties and can choose any polynomial time strategy.

In a real world protocol we assume that communication between a sender Pi and receiver

Pj happens over a transparent channel, meaning all other parties are able to receive all

136

communication. We make this choice to simplify the protocol and security proofs. In the real

world, this can be modeled with a service provider relaying messages between Pi and Pj that

always complies with law enforcement requests and hands over encrypted messages when

presented with a valid warrant. Note that this makes our modeling the worst case scenario,

and therefore captures more selective service providers. Additionally, in practice, this service

provider would validate if messages are well-formed to make sure Pi and Pj follow the real

protocol.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector x, and security

parameter λ, we denote the output of Π by RealA,Π(1λ, x, z).

Definition 11 A protocol Π is said to be a secure ARLEAS protocol computing Fv,t,p,θ,mode
ARLEAS if

for every PPT real-world adversary A, there exists an ideal-world PPT adversary S corrupting

the same parties such that for every input x and auxiliary input z it holds that

IdealS,Fv,t,p,θ,mode
ARLEAS

(1λ, x, z) c≈ RealA,Π(1λ, x, z)

5.5 Prospective Solution

In this section we describe a prospective ARLEAS scheme, the first of which work with

warrants that specify the target’s identity and the second of which supports arbitrary

predicates. Recall that the key feature of the prospective case is that warrants must be

activated before targets perform encryption. A key implication of this setting is that new

cryptographic material can be generated and distributed to users each time law enforcement

updates the set of active warrants. The technical challenge, therefore, is to ensure that this

material is distributed in such a way that the surveillance it permits is accountable, without

revealing to targets any confidential information about which messages are being accessed.

The need for accountability restricts us from using many natural cryptographic tools. For

example, Identity Based Encryption (IBE) systems provide a natural form of key escrow.

137

Unfortunately, in a standard IBE scheme this key escrow is absolute: the master authority

can decrypt any ciphertext in the system. To enable limited surveillance, we require a

system in which only a subset of communications will be targeted at any time epoch, and no

additional information about non-targeted plaintexts will be revealed to the authorities. The

first scheme relies on the ΠLTE scheme presented in Section 2.1.7 and ensures that messages

sent to recipients under surveillance contain a copy of the ciphertext that can be decrypted

by law enforcement, while messages send to recipients not under surveillance contain only a

lossy ciphertext.

For generality, our main second construction supports targeting by allowing warrants

to specify an arbitrary predicate over the metadata of a transmitted messages. In practice,

we realize this functionality through the use of public ledgers and non-interactive secure

computation techniques.

5.5.1 UC-Realizing Fv,t,p,θ,pro
ARLEAS for Identity-Based Predicates

Our first construction only permits warrants that specify the identity of individuals to

surveil and leverages the ΠLTE scheme presented in Section 2.1.7. With this encryption

scheme, encrypting to some public keys create information theoretic lossy ciphertexts, while

using other public keys results in injective ciphertexts. We use this scheme to allow law

enforcement to decrypt messages exactly when they have activated a warrant corresponding

to the recipient’s identity. When sending a new message, a user encrypts directly to the

recipient as normal and creates a second ciphertext using the ΠLTE scheme. The key material

used for the second ciphertext comes public parameters generated by law enforcement that

are posted onto the public ledger.

Our construction makes use of a CCA secure encryption system ΠEnc, a SUF-CMA secure

signature scheme ΠSign, a lossy-tag encryption scheme ΠLTE (presented in Section 2.1.7). We

now present a protocol πv,t,p,θ
PRO in the LVerify, FΠNIZK.ZKSetup

CRS , FAUTH hybrid model. Our scheme

138

consists of the following interactive protocols:

πv,t,p,θ
PRO .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for

the NIZK scheme.

• Each user Pj computes (pkj, skj)← ΠEnc.KeyGen(1λ) and selects a unique tag tagj

and sends (pkj, tagj) to PLE and to each other user Pi via FAUTH .

• The judge PJ computes (pksign, sksign)← ΠSign.KeyGen(1λ) and send pksign to all

other users via FAUTH .

• Law enforcement PLE runs πv,t,p,θ
PRO .ActivateWarrant with as input an empty set ∅ as

the valid warrants.

πv,t,p,θ
PRO .SendMessage :

• The sender Pi computes the ciphertext (c1, c2, π, meta) as follows, and sends it to

Pj and PLE via FAUTH :

– Send (GetCounter) to LVerify and receive the current counter ℓ. Then query

LVerify on (GetVal, ℓ) to receive the latest posting (ℓ, x, πpublish). Parse x as

(mpk, π, info). If ΠNIZK.ZKVerify(mpk, info, π) = 0 or

LVerify.Verify(ℓ∥(mpk, π, info), πpublish) = 0

return ⊥ and halt.

– c1 ← ΠEnc.Enc(pkj, m; r1), where r1
$←− {0, 1}λ

– c2 ← ΠLTE.Enc(mpk, tagj, m; r2) where r2
$←− {0, 1}λ

– Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

⎧⎪⎨⎪⎩(m, r1, r2) :
c1 = ΠEnc.Enc(pkj, m; r1)∧

c2 = ΠLTE.Enc(mpk, tagj, m; r2)

⎫⎪⎬⎪⎭
139

– Create meta← tagj

• Upon receiving c from Pi, Pj calls πv,t,p,θ
PRO .VerifyMessage on c. If the output is 1,

then recover the message as m← ΠEnc.Dec(skj, c2)

• Upon receiving c from Pi, PLE calls πv,t,p,θ
PRO .VerifyMessage on c. If the output is 1,

then recover the message as m← ΠLTE.Dec(msk, tagj)

πv,t,p,θ
PRO .VerifyMessage :

• Any party parses (c1, c2, π, meta)← c and verifies that π is correct and computes

v(meta, aux), aborting if the output is 0. Otherwise, output 1.

πv,t,p,θ
PRO .RequestWarrant:

• PLE sends (RequestWarrant, tag) to PJ via FAUTH . PJ then either decides to send

(Disapprove) to PLE and halt or executes the following:

– Verify that p(tag) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(sksign, tag)

– Send the signed warrant (tag, σ) to PLE via FAUTH .

πv,t,p,θ
PRO .ActivateWarrant:

• PLE adds the new warrant w to the set of valid warrants W . It then extracts the

set of tags T ← {tag|(tag, σ) ∈ W}

• Compute (mpk, msk)← ΠLTE.KeyGen(1λ, T ; r) for r
$←− {0, 1}λ

• Compute info← {t(tag, σ)|(tag, σ) ∈ W}

140

• Use ΠNIZK.ZKProve to compute π such that

π ← NIZK{(W , T , msk, r) : info = {t(tag, σ)|(tag, σ) ∈ W}∧

T ← {tag|(tag, σ) ∈ W}∧

(mpk, msk) ∈ ΠLTE.KeyGen(1λ, T ; r)∧

∀(tag, σ) ∈ W , ΠSign.Verify(pksign, tag, σ) = p(tag) = 1}

• Send (Post, (mpk, π, info)) to LVerify and receive (ℓ, x, πpublish).

Theorem 7 Assuming a CCA secure public key encryption scheme ΠEnc, a SUF-CMA

secure signature scheme ΠSign, a NIZK scheme ΠNIZK, and a lossy-tag encryption scheme

ΠLTE, πv,t,p,θ
PRO UC-realizes Fv,t,p,θ,pro

ARLEAS initialized in prospective mode in the LVerify, FΠNIZK.ZKSetup
CRS ,

FAUTH−hybrid model for meta that contains receiver identity θ(w, meta) = (w == meta).

Proof. We prove that the above construction securely realizes Fv,t,p,θ,pro
ARLEAS by showing that

there does not exist a distinguisher Z that can distinguish between an interaction with the

ideal functionality and a simulator S and the real protocol πv,t,p,θ
PRO . We define the interaction

with the real protocol as follows: The experiment is initialized with N users P1, . . . PN ,

law enforcement PLE and a judge PJ . The adversary A chooses a subset of these users

to corrupt. Then, users run πv,t,p,θ
PRO .Setup, with A controlling the actions of the corrupted

parties. Honest users then, according to their arbitrary strategy, run πv,t,p,θ
PRO .SendMessage

to exchange messages with other users. Law enforcement interacts with the judge to get

warrants via πv,t,p,θ
PRO .RequestWarrant and uses πv,t,p,θ

PRO .ActivateWarrant to start surveilling a user.

Honest parties follow an arbitrary strategy, but follow the protocol and corrupted parties are

controlled by the adversary.

We start our proof by first considering the case where a single user Pi is corrupted.

Pi is corrupted.

141

We begin by showing that πv,t,p,θ
PRO UC-realizes the Fv,t,p,θ,pro

ARLEAS when a user Pi is compromised.

We construct the simulator S as follows:

1. S generates the common reference string for the NIZK scheme directly, and stores

the trapdoor τ . S runs (pksign, sksign) ← ΠSign.KeyGen(1λ) as the judge would in the

real protocol, and outputs pksign to the adversary A. S initializes an instance of the

ideal functionality in prospective mode. Finally, S runs πv,t,p,θ
PRO .ActivateWarrant with an

empty active warrants set.

2. S computes (pkj, skj) ← ΠEnc.KeyGen(1λ) and samples a unique tagj ← Zp for all

honest Pj and sends (pkj, tagj) to A. Additionally, S waits to receive pki, tagi from Pi.

3. When S receives (c1, c2, π, meta) from A intended for uncorrupted Pj, S begins by

verifying π and checking that meta is correct. If these checks pass, set b← 1, and b← 0

otherwise. S computes m← ΠEnc.Dec(skj, c1). S then sends (SendMessage, Pj, m, b) to

the ideal functionality.

4. Upon receiving (Sent, meta, c, m) from the ideal functionality, S computes (c1, c2, π, meta)

using πv,t,p,θ
PRO .SendMessage and forwards it to Pi.

5. Upon receiving (NotifyWarrant, t(w)) from Fv,t,p,θ,pro
ARLEAS , S aggregates t(w) from all

(NotifyWarrant, ·)

messages seen so far into info. S then randomly chooses a set of tags T such that

|T | = |info| and computes (mpk, msk) ← ΠLTE.KeyGen(1λ, T). S then simulates the

proof π and sends (Post, (mpk, π, info)) to L.

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in

the real world interaction.

142

H1 : Let H1 be the same as H0, but instead of having the common reference string

generated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)←

ΠNIZK.ZKSetup(1λ). Note that the common reference string is selected from exactly the same

distribution, so the difference in the distribution of the view of A between H0 and H1 is 0.

H2 : Let H2 be the same as H1, but when an honest PLE sends (Post, (mpk, π, info))to L,

the proof π is instead simulated with τ . Because of the perfect zero-knowledge property of

ΠNIZK, the adversary’s view in H2 and H1 is statistically close.

H3 : Let H3 be the same as H2, but when an honest PLE sends (Post, (mpk, π, info))to

L, let mpk be generated with an random set of tags with the correct size. Because of the

indistinguishability of tag sets property of ΠLTE, the difference in the distribution in the view

of the A is negligible.

Because the view of A in H3 is distributed the same as in the ideal world with simulator

S, the proof is done. Notice that this proof extends directly to multiple corrupt users, as the

views of the users are independent, except when they send messages to each other. However,

such messages do not require simulation. Thus it suffices to simulate each one independently.

PLE is corrupted. We now extend the previous proof to include corrupted PLE. We extend

S to simulate the view of PLE. Note that step 5 described in S above is no longer applicable

for corrupted users, as the notification mechanism from the actual protocol will look correct.

1. S generates the common reference string for the NIZK scheme directly, and stores the

trapdoor τ . Then, S sets ValidParameters to true. S then runs ΠSign.KeyGen(1λ) →

(pksign, sksign) as the judge would in the read protocol, and outputs pksign to the adversary

A. S initializes an instance of the ideal functionality in prospective mode. S computes

(pkj, skj) ← ΠEnc.KeyGen(1λ) and samples a unique tagj ← Zp for all honest Pj and

sends (pkj, tagj) to A. When S detects (mpk, π, info) posted on L, it verifies the proof

π, and sets ValidParameters to false if it does not verify or |info| ≠ 0. S then initializes

143

an empty warrant table W .

2. We split the case of receiving (Sent, meta, c) from Fv,t,p,θ,pro
ARLEAS intended for PLE into three

cases. All begin by S extracting the recipient Pj from meta:

(a) If ValidParameters is false, S silently drops the message.

(b) If ValidParameters is true and Pj is not corrupted, S and chooses a message m0

and computes the ciphertext (c1, c2, π, meta) by encrypting m0 using

πv,t,p,θ
PRO .SendMessage(pkj, tagj, m0).

(c) If ValidParameters is true and Pj is corrupted, S will also receive (Sent, meta,

c, m) from the ideal functionality, intended for Pj. S then encrypts m using

πv,t,p,θ
PRO .SendMessage(pkj, tagj, m)

Finally, S sends the resulting ciphertext to A.

3. Upon receiving (Sent, meta, c, 0) from Fv,t,p,θ,pro
ARLEAS intended for PLE, S samples a random

message and creates a ciphertext with πv,t,p,θ
PRO .SendMessage. Then, it generates a false

proof instead of the real proof.

4. Upon receiving (Sent, meta, c, m) from Fv,t,p,θ,pro
ARLEAS due to an active warrant,

if ValidParameters is true, S calls the send message algorithm of the real protocol on

πv,t,p,θ
PRO .SendMessage(pkj, tagj, m)

and sends the output to A.

5. Upon receiving (RequestWarrant, tagj) from the adversary, intended for PJ , S generates a

warrant w for the ideal functionality that only targets Pj and sends (RequestWarrant, w)

to Fv,t,p,θ,pro
ARLEAS . If Fv,t,p,θ,pro

ARLEAS answers with (Approve), S uses the sksign for PJ to form and

144

sign (tagj, σ) as in the real protocol and adds (w, False) to W . If Fv,t,p,θ,pro
ARLEAS responds

with (Disapprove), S send ⊥ to the adversary.

6. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter ℓ.

Then query L on (GetVal, ℓ) to receive the latest posting (ℓ, (mpk, π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(mpk, info, π) = 1. If the proof does not verify, the S sets

ValidParameters to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W , T , msk, r) from π. If

extraction fails, the simulator halts with an error.

(d) If there is an entry (w, False) in W for w ∈ W S sends (ActivateWarrant, w) to the

ideal functionality and sets the entry to be (w, True).

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in

the real world interaction.

H1 : Let H1 be the same as H0, but instead of having the common reference string

generated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)←

ΠNIZK.ZKSetup(1λ). Note that the common reference string is selected from exactly the same

distribution, so the the distribution in the view of A between H0 and H1 is statistically close.

H2 : Let H2 be the same as H1, except the proof of ciphertexts consistency in a ciphertext

(c1, c2, π, meta) bound for an honest user for which there is no active warrant is simulated.

Due to the zero-knowledge property of ΠNIZK, the difference in the view of the adversary in

H2 and H1 is negligible.

H3 : Let H3 be the same as H2, except when S receives a ciphertext (c1, c2, π, meta)bound

for an honest user for which there is no active warrant, S samples a message m0 that would

145

result in the same metadata and sets c1 ← ΠEnc.Enc(pkj, m0; r1). By the CCA security of

ΠEnc the advantage of A in distinguishing between H3 and H2 is negligible.

H4 : Let H4 be the same as H3, except the second ciphertext element c2 in a ciphertext

(c1, c2, π, meta) bound for an honest user for which there is no active warrant is computed

as ΠLTE.Enc(mpk, tagj, m0; r2). By the lossy property of ΠLTE, H4 and H3 are statistically

indistinguishable.

H5 : Let H5 be the same as H4, except the proof of ciphertexts consistency in a ciphertext

(c1, c2, π, meta) bound for an honest user for which there is no active warrant is computed

honestly with respect to the plaintext message m0. Again, by the zero-knowledge property of

ΠNIZK, the difference in the view of the adversary in H5 and H4 is negligible.

H6 : Let H6 be the same as H5, except when A detects (mpk, π, info) being posted on

the ledger, S attempts to run the extractor ΠNIZK.Extract and abort the experiment if it fails.

However, because the extractor only fails with negligible probability, the difference in the

view of the adversary between H6 and H5 is negligible.

H6 has the same distribution as S, concluding the proof. In the real world, PLE would

be denied warrants at the same rate as in the ideal world, as an honest PJ handles warrant

requests in the same way. One note is that law enforcement can “deactivate” warrants in

way not possible in the ideal functionality. However, when warrants are deactivated, honestly

encrypting the message still hides the plaintext from the adversary.

PJ and PLE are corrupted. We now focus on the case when PJ and PLE are both corrupted.

Note that step 4 of the above simulator description is no longer relevant, as the warrant

request is handled internally by A. Our simulator requires on minor changes to steps 1 and

5, which we show below.

1. Do the setup as before, but waiting to receive pksign from A
...

146

5. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter ℓ.

Then query L on (GetVal, ℓ) to receive the latest posting (ℓ, (mpk, π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(mpk, info, π) = 1. If the proof does not verify, the S sets

ValidParameters to false and halts.

(c) Set ValidParameters to true and runs (W , T , msk, r)← Extract(CRSZK , τ, x, π). If

extraction fails, the simulator halts with an error.

(d) for each warrant w ∈ W for which there does not exist an entry (w, True) in W ,

the S executes the following steps

i. S generates a warrant w for the ideal functionality that only targets Pj and

sends

(RequestWarrant, w) to Fv,t,p,θ,pro
ARLEAS .

ii. When Fv,t,p,θ,pro
ARLEAS sends (ApproveWarrant, w) to the S intended to PJ , S responds

(Approve) on behalf of PJ

iii. S sends (ActivateWarrant, w) to the ideal functionality

iv. S adds (w, True) to W

In fact, the hybrid argument above holds directly in this case as well. First notice that

there are no additional messages that require simulation. By giving the adversary control

of PJ , we give it the ability to create valid warrants independently. However, there is no

change in behavior expected until those warrants are activated. As such, those warrants can

be requested from the ideal functionality right as they are being activated. □

5.5.2 UC-Realizing Fv,t,p,θ,pro
ARLEAS for Arbitrary Predicates

The prospective solution we have presented is limited in the flexibility of warrants; unlike the

ideal functionality, warrants were limited to specifying a single individual. It is clear that

147

it would be better to support arbitrary warrants whose applicability to some meta could be

checked with the warrant scope functionality θ.

First, we note that directly extending the existing solution’s intuitions is insufficient,

as creating a one-to-one correspondence between tags and meta would clearly result in

exponentially sized public parameters. We require a mechanism that evaluates the warrant

scope predicate θ(w, meta) and outputs the message only if the result is 1. Clearly this can be

accomplished using extractable witness encryption, and indeed we will use extractable witness

encryption to accomplish a similar goal in Section 5.6. However, we are able to leverage the

prospective nature of this case to realize prospective ARLEAS from non-interactive secure

computation (NISC) [126]. Recall that a NISC scheme for some function f allows a receiver

to post an encryption of some secret x1 such that all players can reveal f(x1, x2) to the

receiver with only one message, without revealing anything about x2 beyond the output of

the function. For the following construction, we require an NISC scheme for the function Ik,

defined as

Ik((w1, w2, . . . , wk), (m, meta)) = m ∧ (θ(meta, w1) ∨ . . . ∨ θ(meta, wk)).

This function evaluates the warrant scope check functionality on the metadata over k different

warrants. If any of them evaluate to true, the message is output. Otherwise, Ik outputs 0.

Note that the number of warrants is an explicit parameter of the function and its circuit

representation.

Law enforcement begins by posting the first message of the NISC scheme, embedding as

input their k warrants, along with the transparency information and proof of correctness. As

before, senders send a ciphertext (c1, c2, π). c1 remains a normal public key ciphertext for

the recipient. c2 is modified (from the previous construction) to be the second message of

the NISC scheme. This message must embed the inputs (m, meta). Most known realizations

of NISC rely on garbled circuits, with the second message containing the garbling of the

148

intended function and hardcoding the sender’s inputs. As such, we need to ensure that

the sender computes the second message of the NISC scheme with respect to the correct

functionality; this can be handled by requiring malicious security from the underlying NISC

scheme or by including a correctness in the NIZK π. As we require a proof of consistency

(i.e. c1 and c2 embed the same message), we already require non-blackbox use of the NISC

scheme.

Upon receiving the resulting ciphertext, law enforcement can attempt to decrypt by

evaluating the NISC ciphertext. By the security of the NISC scheme, law enforcement will

only learn information about the plaintext if they have a relevant warrant and posted the

required transparency information, accomplishing our goal.

We now proceed to give a formal description of this protocol.

πv,t,p,θ
PRO .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for

the NIZK scheme and all users send (CRS) to FΠNISC.GenCRS
CRS to retrieve the common

reference string for the NISC scheme CRSNISC.

• Each user Pj computes (pkj, skj)← ΠEnc.KeyGen(1λ) and sends pkj to PLE and to

each Pi via FAUTH .

• The judge PJ computes (pksign, sksign)← ΠSign.KeyGen(1λ) and send pksign to all

other users via FAUTH .

• Law enforcement PLE runs πv,t,p,θ
PRO .ActivateWarrant with an empty set ∅ as the valid

warrants.

πv,t,p,θ
PRO .SendMessage :

• The sender Pi computes the ciphertext (c1, c2, π, meta) as follows, and sends it to

Pj and PLE via FAUTH :

149

– Send (GetCounter) to LVerify and receive the current counter ℓ. Then query

LVerify on (GetVal, ℓ) to receive the latest posting (ℓ, x, πpublish). Parse x as

(niscpublic
1 , π, info). If ΠNIZK.ZKVerify(niscpublic

1 , info, π) = 0 or

LVerify.Verify(ℓ∥(niscpublic
1 , π, info), πpublish) = 0

return ⊥ and halt.

– c1 ← ΠEnc.Enc(pkj, m; r1), where r1
$←− {0, 1}λ

– Create meta

–

nisc2 ← ΠNISC.NISC2(CRSNISC, I|info|, (m, meta), niscpublic
1 ; r2),

where r2
$←− {0, 1}λ

– c2 ← nisc2

– Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

⎧⎪⎨⎪⎩(m, r1, r2) :
c1 = ΠEnc.Enc(pkj, m; r1)∧

c2 = ΠNISC.NISC2(CRSNISC, I|info|, (m, meta), niscpublic
1 ; r2)

⎫⎪⎬⎪⎭
• Upon receiving c from Pi, Pj calls πv,t,p,θ

PRO .VerifyMessage on c. If the output is 1,

then recover the message as m← ΠEnc.Dec(skj, c2)

• Upon receiving c from Pi, PLE calls πv,t,p,θ
PRO .VerifyMessage on c. If the output is 1,

then recover the message as m← ΠNISC.Evaluate(CRSNISC, nisc2, niscprivate
1)

πv,t,p,θ
PRO .VerifyMessage :

• Any party parses (c1, c2, π, meta)← c and verifies that π is correct and computes

v(meta, aux), aborting if the output is 0. Otherwise, output 1.

πv,t,p,θ
PRO .RequestWarrant:

150

• PLE sends (RequestWarrant, ŵ) to PJvia FAUTH . PJ then either decides to send

(Disapprove) to PLE and halt or executes the following:

– Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(sksign, ŵ)

– Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

πv,t,p,θ
PRO .ActivateWarrant:

• PLE adds the new warrant w to the set of valid warrantsW . Let w∗ = w1∥ . . . ∥w|W|

for wi = (ŵi, σi) ∈ W .

• (niscpublic
1 , niscprivate

1)← ΠNISC.NISC1(CRSNISC, w∗; r) and record niscprivate
1

• Compute info← {t(w)|w ∈ W}

• Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(W , niscprivate

1 , r) :

info = {t(w)|w ∈ W}∧

(niscpublic
1 , niscprivate

1)← ΠNISC.NISC1(CRSNISC, w∗; r)∧

∀(ŵ, σ) ∈ W , ΠSign.Verify(pksign, ŵ, σ) = p(ŵ) = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
• Send (Post, (niscpublic

1 , π, info)) to LVerify and receive (ℓ, x, πpublish).

Theorem 8 Assuming a CCA secure public key encryption scheme ΠEnc, a SUF-CMA secure

signature scheme ΠSign, a NIZK scheme ΠNIZK, and an NISC scheme ΠNISC, πv,t,p,θ
PRO UC-

realizes Fv,t,p,θ,pro
ARLEAS initialized in prospective mode in the LVerify, FΠNIZK.ZKSetup

CRS , FΠNISC.GenCRS
CRS ,

FAUTH−hybrid model.

Proof. As above, we now prove that our construction securely realizes Fv,t,p,θ,pro
ARLEAS by showing

that there does not exist a distinguisher Z that can distinguish between an interaction

with the ideal functionality and a simulator S and the real protocol πv,t,p,θ
PRO . We define the

interaction with the real protocol as above.

151

We start our proof by first considering the case where a single user Pi is corrupted.

Pi is corrupted.

We begin by showing that πv,t,p,θ
PRO UC-realizes the Fv,t,p,θ,pro

ARLEAS when a user Pi is compromised.

We construct the simulator S as follows:

1. S generates the common reference string for the NIZK scheme and (CRSNISC, τNISC)←

ΠNISC.GenCRS(1λ)directly, and stores the trapdoors (τ, τNISC). S runs (pksign, sksign)←

ΠSign.KeyGen(1λ)as the judge would in the real protocol, and outputs pksign to the

adversary A. S initializes an instance of the ideal functionality in prospective mode.

Finally, S runs πv,t,p,θ
PRO .ActivateWarrant with an empty active warrants set.

2. S computes (pkj, skj)← ΠEnc.KeyGen(1λ) for all honest Pj and sends pkj to A. Addi-

tionally, S waits to receive pki from Pi.

3. When S receives (c1, c2, π, meta) from A intended for uncorrupted Pj, S begins by

verifying π and checking that meta is correct. If these checks pass, set b← 1, and b← 0

otherwise. S computes m← ΠEnc.Dec(skj, c1). S then sends (SendMessage, Pj, m, b) to

the ideal functionality.

4. Upon receiving (Sent, meta, c, m) from the ideal functionality, S computes (c1, c2, π, meta)

using πv,t,p,θ
PRO .SendMessage and forwards it to Pi.

5. Upon receiving (NotifyWarrant, t(w)) from Fv,t,p,θ,pro
ARLEAS , S aggregates t(w) from all

(NotifyWarrant, ·)

messages seen so far into info. S then chooses random inputs for the first round

messages of the NISC scheme to get (niscpublic
1 , ·) and simulates the proof π and sends

(Post, (niscpublic
1 , π, info)) to L.

152

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in

the real world interaction.

H1 : Let H1 be the same as H0, but instead of having the common reference string gen-

erated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (CRSZK , τ)←

ΠNIZK.ZKSetup(1λ) and (CRSNISC, τNISC)← ΠNISC.GenCRS(1λ). Note that the common refer-

ence strings are selected from exactly the same distribution, so the difference in the distribution

of the view of A between H0 and H1 is 0.

H2 : Let H2 be the same as H1, but when an honest PLE sends (Post, (niscpublic
1 , π, info))to

L, the proof π is instead simulated with τ . Because of the perfect zero-knowledge property

of ΠNIZK, the adversary’s view in H2 and H1 is statistically close.

H3 : Let H3 be the same as H2, but when an honest PLE sends (Post, (niscpublic
1 , π, info))to

L, let niscpublic
1 be generated on random input of the right length. By the security of ΠNISC,

the difference in the distribution in the view of the A is negligible.

Because the view of A in H3 is distributed the same as in the ideal world with simulator

S, the proof is done. Notice that this proof extends directly to multiple corrupt users, as the

views of the users are independent, except when they send messages to each other. However,

such messages do not require simulation. Thus it suffices to simulate each one independently.

PLE is corrupted. We now extend the previous proof to include corrupted PLE. We extend

S to simulate the view of PLE. Note that step 5 described in S above is no longer applicable

for corrupted users, as the notification mechanism from the actual protocol will look correct.

1. S generates the common reference string for the NIZK scheme and (CRSNISC, τNISC)←

ΠNISC.GenCRS(1λ)directly, and stores the trapdoors (τ, τNISC). S runs (pksign, sksign)←

ΠSign.KeyGen(1λ)as the judge would in the real protocol, and outputs pksign to the

adversary A. S initializes an instance of the ideal functionality in prospective mode.

Finally, S runs πv,t,p,θ
PRO .ActivateWarrant with an empty active warrants set. S computes

153

(pkj, skj) ← ΠEnc.KeyGen(1λ) for all honest Pj and sends pkj to A. When S detects

(niscpublic
1 , π, info) posted on L, it verifies the proof π, and sets ValidParameters to false

if it does not verify or |info| ≠ 0. S then initializes an empty warrant table W .

2. We split the case of receiving (Sent, meta, c) from Fv,t,p,θ,pro
ARLEAS intended for PLE into three

cases. All begin by S extracting the recipient Pj from meta:

(a) If ValidParameters is false, S silently drops the message.

(b) If ValidParameters is true and Pj is not corrupted, S and chooses a message m0

and computes the ciphertext (c1, c2, π, meta) by encrypting m0 using

πv,t,p,θ
PRO .SendMessage(pkj, m0).

(c) If ValidParameters is true and Pj is corrupted, S will also receive (Sent, meta,

c, m) from the ideal functionality, intended for Pj. S then encrypts m using

πv,t,p,θ
PRO .SendMessage(pkj, m)

Finally, S sends the resulting ciphertext to A.

3. Upon receiving (Sent, meta, c, 0) from Fv,t,p,θ,pro
ARLEAS intended for PLE, S samples a random

message and creates a ciphertext with πv,t,p,θ
PRO .SendMessage. Then, it generates a false

proof instead of the real proof.

4. Upon receiving (Sent, meta, c, m) from Fv,t,p,θ,pro
ARLEAS due to an active warrant, if ValidParame-

ters is true, S calls the send message algorithm of the real protocol on

πv,t,p,θ
PRO .SendMessage(pkj, m)

and sends the output to A.

5. Upon receiving (RequestWarrant, ŵ) from the adversary, intended for PJ , S sends

(RequestWarrant, ŵ) to Fv,t,p,θ,pro
ARLEAS . If Fv,t,p,θ,pro

ARLEAS answers with (Approve), S uses the sksign

154

for PJ to form and sign w = (ŵ, σ) as in the real protocol and adds (w, False) to W . If

Fv,t,p,θ,pro
ARLEAS responds with (Disapprove), S send ⊥ to the adversary.

6. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter ℓ.

Then query L on (GetVal, ℓ) to receive the latest posting (ℓ, (niscpublic
1 , π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(niscpublic
1 , info, π) = 1. If the proof does not verify, the S

sets ValidParameters to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W , niscprivate
1 , r) from π. If

extraction fails, the simulator halts with an error.

(d) If there is an entry (w, False) in W for w ∈ W S sends (ActivateWarrant, w) to the

ideal functionality and sets the entry to be (w, True).

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in

the real world interaction.

H1 :Let H1 be the same as H0, but instead of having the common reference string gen-

erated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (CRSZK , τ)←

ΠNIZK.ZKSetup(1λ) and (CRSNISC, τNISC)← ΠNISC.GenCRS(1λ). Note that the common refer-

ence strings are selected from exactly the same distribution, so the the distribution in the

view of A between H0 and H1 is statistically close.

H2 : Let H2 be the same as H1, except when S receives a ciphertext (c1, c2, π, meta)such

that no signed warrant w has been issued such that θ(w, meta) = 1, the the ciphertexts

consistency proof π is simulated. Due to the zero-knowledge property of ΠNIZK, the difference

in the view of the adversary in H2 and H1 is negligible.

H3 : Let H3 be the same as H2, except when S receives a ciphertext (c1, c2, π, meta)such

that no signed warrant w has been issued such that θ(w, meta) = 1, S samples a message m0

155

that would result in the same metadata and sets c1 ← (ΠEnc.Enc(pkj, m0; r1). By the CCA

security of ΠEnc the advantage of A in distinguishing between H3 and H2 is negligible.

H4 : Let H4 be the same as H3, except when S receives a ciphertext (c1, c2, π, meta)such

that no signed warrant w has been issued such that θ(w, meta) = 1, S computes c2 as

ΠNISC.NISC2(CRSNISC, C, (m0, meta), niscpublic
1 ; r2). By the security of ΠNISC.NISC2, A can

only learn the correct output of C. Because there is no issued warrant θ(w, meta) = 1, this

means the output of C is independent of m0. Therefore, H4 and H3 are computationally

indistinguishable.

H5 : Let H5 be the same as H4,except when S receives a ciphertext (c1, c2, π, meta)such

that no signed warrant w has been issued such that θ(w, meta) = 1, π is computed honestly

with respect to the plaintext message m0. Again, by the zero-knowledge property of ΠNIZK,

the difference in the view of the adversary in H5 and H4 is negligible.

H6 : Let H6 be the same as H5, except when A detects (niscpublic
1 , π, info) being posted

on the ledger, S attempts to run the extractor ΠNIZK.Extract and abort the experiment if it

fails. However, because the extractor only fails with negligible probability, the difference in

the view of the adversary between H6 and H5 is negligible.

H6 has the same distribution as S, concluding the proof. In the real world, PLE would

be denied warrants at the same rate as in the ideal world, as an honest PJ handles warrant

requests in the same way. One note is that law enforcement can “deactivate” warrants in

way not possible in the ideal functionality. However, when warrants are deactivated, honestly

encrypting the message still hides the plaintext from the adversary.

PJ and PLE are corrupted. We now focus on the case when PJ and PLE are both corrupted.

Note that step 4 of the above simulator description is no longer relevant, as the warrant

request is handled internally by A. Our simulator requires on minor changes to steps 1 and

5, which we show below.

156

1. Do the setup as before, but waiting to receive pksign from A
...

5. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter ℓ.

Then query L on (GetVal, ℓ) to receive the latest posting (ℓ, (niscpublic
1 , π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(niscpublic
1 , info, π) = 1. If the proof does not verify, the S

sets ValidParameters to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W , niscprivate
1 , r) from π. If

extraction fails, the simulator halts with an error.

(d) for each warrant w ∈ W for which there does not exist an entry (w, True) in W ,

the S executes the following steps

i. S sends (RequestWarrant, w) to Fv,t,p,θ,pro
ARLEAS .

ii. When Fv,t,p,θ,pro
ARLEAS sends (ApproveWarrant, w) to the S intended to PJ , S responds

(Approve) on behalf of PJ

iii. S sends (ActivateWarrant, w) to the ideal functionality

iv. S adds (w, True) to W

In fact, the hybrid argument above holds directly in this case as well. First notice that

there are no additional messages that require simulation. By giving the adversary control

of PJ , we give it the ability to create valid warrants independently. However, there is no

change in behavior expected until those warrants are activated. As such, those warrants can

be requested from the ideal functionality right as they are being activated. □

157

5.6 Retrospective Solution

In the previous section we proposed a protocol to realize ARLEAS under the restriction that

access would be prospective only. That protocol requires that law enforcement must activate

a warrant and post the resulting parameters on the ledger before any targeted communication

occurs. In this section we address the retrospective case. The key difference in this protocol

is that law enforcement may activate a warrant at any stage of the protocol, even after a

target communication has occurred.

In this setting we assume law enforcement has a way of getting messages that were sent in

the past. As described before, we take the simplifying assumption that messages automatically

get send to law enforcement. In practice, either a service provider can forward them, after

checking the warrant. One can try to avoid surveillance by using expiring messages, but

service providers can be forced to keep encrypted messages for a certain period of time. Or

law enforcement can actively record messages in transit.

Our construction makes use of an extractable witness encryption scheme ΠEWE (see

Definition 7) to encrypt the law enforcement ciphertext c2. This scheme is parameterized by

a language LEWE that is defined with respect to the transparency function t(·), the policy

function p(·), the targeting function θ(·, ·), the warrant signing key pksign, and the ledger

verification function L.Verify, as follows:

LEWE =

⎧⎪⎨⎪⎩meta

⃓⃓⃓⃓
⃓⃓⃓∃w, (t, info, πpublish) s.t.

w = (ŵ, σ),L.Verify((ℓ∥info), πpublish) = 1,
info = t(w), ΠSign.Verify(pksign, ŵ, σ) = 1,
p(ŵ) = 1, θ(ŵ, meta) = 1

⎫⎪⎬⎪⎭
Intuitively, these ciphertexts can only be decrypted by law enforcement once they have

performed all the accountability tasks required by the ARLEAS.

Our construction also makes use of a simulation-extractable NIZK scheme ΠNIZK satisfying

158

Definition 4. We will prove statements in the following languages:

L1
NIZK =

{︄
(c1, c2, pk, meta)

⃓⃓⃓⃓
⃓∃(r, r1, r2) s.t. c1 = ΠEnc.Enc(pk, r; r1) ∧

c2 = ΠEWE.Enc(meta, r; r2)

}︄

L2
NIZK =

{︄
(info, pksign)

⃓⃓⃓⃓
⃓∃(ŵ, σ) s.t. ΠSign.Verify(pksign, ŵ, σ) = 1 ∧

x← t(w)

}︄

We will describe our protocol in a hybrid model that makes use of several functionalities.

These include L, FD
CRS , GpRO and FAUTH .

5.6.1 UC-Realizing Fv,t,p,θ,ret
ARLEAS

We now provide a description of the retrospective ARLEAS protocol πv,t,p,θ
RET .

πv,t,p,θ
RET .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for

the NIZK scheme.

• PJ computes (pksign, sksign)← ΠSign.KeyGen(1λ) and sends pksign to all other users

via FAUTH .

πv,t,p,θ
RET .SendMessage:

• The sender Pi computes the ciphertext (c1, c2, c3, π, meta) as follows, and sends it

to Pj and PLE via FAUTH :

– Sample r ← {0, 1}λ

– Query the random oracle to obtain the hashes:

(HashConfirm, r1)← GpRO(HashQuery, (“ENC”∥r∥m)),

(HashConfirm, r2)← GpRO(HashQuery, (“WE”∥r∥m)), and

(HashConfirm, r3)← GpRO(HashQuery, (“RP”∥r))

– c1 ← ΠEnc.Enc(pk, r; r1), c2 ← ΠEWE.Enc(meta, r; r2), and c3 ← m⊕ r3

159

– Use ΠNIZK.ZKProve to compute

π ← NIZK{(r, r1, r2) : c1 = ΠEnc.Enc(pkj, r; r1)∧c2 = ΠEWE.Enc(meta, r; r2)}

• Upon receiving (send, c), Pj performs the following steps:

– Call πv,t,p,θ
RET .VerifyMessage on c, aborting if the output is 0;

– Compute r′ ← ΠEnc.Dec(skj, c1)

– (HashConfirm, r3)← GpRO(HashQuery, (“RP”∥r′))

– Compute m′ ← c3 ⊕ r3

– (HashConfirm, r1)← GpRO(HashQuery, (“ENC”∥r′∥m′))

– (HashConfirm, r2)← GpRO(HashQuery, (“WE”∥r′∥m′))

– Then to verify that the message has not been mauled, Pj recomputes c′
1 ←

ΠEnc.Enc(pkj, r′; r1) and c′
2 ← ΠEWE.Enc(meta, r′; r2). If c1 ̸= c′

1 or c2 ≠ c′
2,

return ⊥. Otherwise, return m′.

• Upon receiving (send, c), PLE calls πv,t,p,θ
RET .VerifyMessage on c, aborting if the output

is 0, and then calls πv,t,p,θ
RET .AccessMessage on c.

πv,t,p,θ
RET .VerifyMessage :

• Any party parses (c1, c2, c3, π, meta)← c and verifies that π is correct and computes

v(meta, aux), aborting if the output is 0. Otherwise, output 1.

πv,t,p,θ
RET .RequestWarrant:

• PLE sends (RequestWarrant, ŵ) to PJ via FAUTH . PJ then either decides to send

(Disapprove) to PLE and halt or executes the following:

– Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(wsk, ŵ)

160

– Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

πv,t,p,θ
RET .ActivateWarrant:

• PLE computes info← t(w); uses ΠNIZK.ZKProve to compute

π ← NIZK{(w) : w = (ŵ, σ), ΠSign.Verify(pksign, ŵ, σ) = 1 ∧ info← t(w)};

and sends (Post, (info, π)) to LVerify. It receives and returns (ℓ, info, πpublish).

πv,t,p,θ
RET .VerifyWarrantStatus:

• PLE calls ΠEWE.Dec(c2, meta, (ŵ, σ), (ℓ, info, πpublish)). If the output is ⊥, return 0.

Otherwise, return 1.

πv,t,p,θ
RET .AccessMessage:

• PLE computes r′ ← ΠEWE.Dec(c2, meta, (ŵ, σ), (ℓ, info, πpublish)).

• (HashConfirm, r3)← GpRO(HashQuery, (“RP”∥r′))

• Recovers m′ ← c3 ⊕ r3.

• (HashConfirm, r1)← GpRO(HashQuery, (“ENC”∥r′∥m′))

• (HashConfirm, r2)← GpRO(HashQuery, (“WE”∥r′∥m′))

• Recomputes c′
1 ← ΠEnc.Enc(pkj, r′; r1) and c′

2 ← ΠEWE.Enc(meta, r′; r2). If c′
1 = c1

and c′
2 = c2, PLE returns m′ and ⊥ otherwise.

Theorem 9 Assuming a CCA-secure public key encryption scheme ΠEnc, an extractable

witness encryption scheme for LEWE, a SUF-CMA secure signature scheme ΠSign, and

a simulation-extractable NIZK scheme ΠNIZK, πv,t,p,θ
RET UC-realizes Fv,t,p,θ,ret

ARLEAS in the LVerify,

FΠNIZK.ZKSetup
CRS ,GpRO−hybrid model.

161

Proof. As in the prospective case in Section 5.5, we show that πv,t,p,θ
RET UC-realizes Fv,t,p,θ,ret

ARLEAS

in a series of steps. First, we prove this for a single corrupt user, then extend that argument

to multiple users. We then expand our analysis to consider corrupted law enforcement and

corrupted judges.

Pi is corrupted. We begin with the simple case of a single corrupted user Pi controlled

by an adversary A. We construct a simulator S to mediate A’s interaction with the ideal

functionality as follows.

1. S begins by generating (pksign, sksign) as PJ would do. S then performs key generation

for each honest party Pj. S then outputs all the public information to A. Finally, S

receives pki from A.

2. When receiving a (CRS) request from A, S generates (CRSZK , τ)← ΠNIZK.ZKSetup(1λ)

and returns CRSZK to A and keeps τ .

3. Whenever S receives (send, c) from Pi intended for Pj, S parses c = (c1, c2, c3, π, meta)

and verifies π. If it does not verify, set b ← 1, and set b ← 0 otherwise. Next,

(r, r1, r2) ← ΠNIZK.Extract(CRSZK , τ, x, π), queries the random oracle (HashConfirm,

r3) ← GpRO(HashQuery, (“RP”∥r)). It then computes m ← c3 ⊕ r3 and verifies the

structure of c1, c2 by re-computing the ciphertexts c1, c2 as in the real protocol. If some

passes do not check, set b← 0. Finally, it sends (SendMessage, sid, Pj, m, b) to the ideal

functionality.

4. When S receives (Sent, sid, meta, c, m) from the ideal functionality destined for Pi, it

identifies the public key for Pi and computes the ciphertext c = (c1, c2, c3, π, meta) as

in the real protocol. It sends the resulting ciphertext to Pi.

162

5. When S receives (NotifyWarrant, t(w)) from the ideal functionality, it simulates the

proof π, and sends (Post, (t(w), π)) to L.

We prove that A’s interaction with the real protocol and the ideal functionality, mediated

by S are computationally indistinguishable by using the following hybrids.

Let H0 denote the distribution of the view of A in the real world interaction.

H1 : Let H1 be the same as H0, but instead of having the common reference string

generated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)←

ΠNIZK.ZKSetup(1λ). Note that the common reference string is selected from exactly the same

distribution, therefore, the distribution of the view of A between H0 and H1 is the same.

H2 : In this hybrid we will use the extractor ΠNIZK.Extract to get the randomness and

create the ciphertext as in step 3. H1 and H2 are computationally indistinguishable as Extract

will only fail with negligible probability.

H3 : At this point we will simulate the proof π when publishing on the ledger. H2 and

H3 are indistinguishable because of the zero knowledge property of ΠNIZK.

The view of the adversary in H3 is the same as its view when talking with S in the ideal

world, which concludes the hybrid argument.

This argument extends to multiple parties as all ciphertexts can be properly simulated

by either extracting from the NIZK or actually receiving the message in case the receiver is

corrupted.

Subset of users and PLE are corrupted. We now extend S from above to handle a

corrupt PLE. Note that step 5 of the above description is not longer relevant, as notifications

will come directly from the ledger for the corrupt parties.

1. S runs the same setup as above. Additionally, S initializes an empty message equivoca-

tion table T .

163

2. When receiving a (CRS) request from A, S generates (CRSZK , τ)← ΠNIZK.ZKSetup(1λ)

and returns CRSZK to A and keeps τ .

3. We split the case of receiving (Sent, sid, meta) from Fv,t,p,θ,ret
ARLEAS intended for PLE into two

cases:

(a) If Pj is not corrupted, S samples r, r1, r2, r3 ← {0, 1}poly(λ) (where poly(·) is a

polynomial function that upper-bounds the longest random string necessary) and

computes the ciphertext components as follows

• c1 ← ΠEnc.Enc(pkj, r; r1)

• c2 ← ΠEWE.Enc(meta, r; r2)

• c3 ← r3

• Use ΠNIZK.ZKProve to compute

π ← NIZK
{︄

(r, r1, r2)
⃓⃓⃓⃓
⃓ c1 = ΠEnc.Enc(pk, r; r1) ∧

c2 = ΠEWE.Enc(meta, r; r2)

}︄

S adds an entry (r, r1, r2, r3, c1, c2, c3, π, meta) to T .

(b) If Pi or Pj is corrupted, S will also receive (Sent, sid, meta, c, m) from the ideal

functionality, intended for Pj. S then encrypts m using πv,t,p,θ
RET .SendMessage,

programming the random oracle honestly as needed.

S then sends the resulting ciphertext to both the ideal functionality and A.

4. Upon receiving (Sent, meta, c, 0) from Fv,t,p,θ,ret
ARLEAS intended for PLE, S samples a random

message and creates a ciphertext with πv,t,p,θ
RET .SendMessage. Then, it generates a false

proof instead of the real proof.

5. When S receives (RequestWarrant, ŵ) fromA, intended for PJ , S sends (RequestWarrant,

ŵ) to the trusted party. If the trusted party responds with ⊥, S sends (Disapprove) to

164

A. Otherwise, S generates a warrant ŵ and signs it with σ = ΠSign.Sign(sksign, ŵ) and

sends w = (ŵ, σ) to A.

6. When S notices new posts on L it retrieves that information by sending t← (GetCounter)

and (t(w), π)) ← (GetVal, t) to L. S uses τ to extract w from π. Without loss of

generality, let w be for user Pi. S sends (ActivateWarrant, w, Pj) to the ideal func-

tionality. Next, S checks to see if there is an entry (r, r1, r2, r3, c1, c2, c3, π, meta)

for which θ(ŵ, meta) = 1 in T and sends (AccessData, (c1, c2, c3, π), w) to the ideal

functionality for all such records. If the ideal functionality responds with ⊥, abort.

Otherwise, the ideal functionality will return a message m. S then programs the

random oracle by sending (ProgramRO, r, (r3 ⊕m)), (ProgramRO, (“WE”r∥m), r2) and

(ProgramRO, (“ENC”∥r∥m), r1), and responds to the initial query.

To show that the simulation above is computationally indistinguishable from the real experi-

ment in the view of A, we proceed with a hybrid argument. Let H0 denote the distribution

of the view of A in the real world interaction.

H1 : Let H1 be the same as H0, but instead of having the common reference string

generated by the FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)←

ΠNIZK.ZKSetup(1λ). Note that the common reference string is selected from exactly the same

distribution, therefore, the distribution of the view of A between H0 and H1 is the same.

H2 : In this hybrid we change the NIZK proof for L1
NIZK to be a simulation. Because of

the zero knowledge property of ΠNIZK, H2 is statistically close to H3.

H3 : Choose r1, r2, and r3 uniformly at random in {0, 1}λ to replace the randomness

used to compute c1, c2, and c3 respectively. Also, send (ProgramRO, (“ENC”∥r∥m), r1),

(ProgramRO, (“WE”∥r∥m), r2), and (ProgramRO, r, r3) to GpRO. Clearly the only way the

view between H1 and H2 can differ is when GpRO was queried on these inputs before S

programs them, in which case the protocol aborts, but this only happens with negligible

165

probability which we prove in Lemma 8.

H4 : Change the simulated NIZK proof back to a real proof. Again, by the zero-knowledge

property H3 and H4 are indistinguishable.

H5 : Now, do everything as described in step 5 to recover the message m. Next, we

change the ciphertext c3 in step 3 to be r3 and change the programming of GpRO to be

(ProgramRO, r, m⊕ r3) in step 5. Note that by security of the one-time pad H4 and H5 are

indistinguishable.

Now, the view of the adversary in H5 is exactly the same as its view when talking with S

in the ideal world, which concludes the hybrid argument.

□

Lemma 8 For any adversary A against H4 in the security proof of πv,t,p,θ
RET where PLE is com-

promised, the probability that A queries or programs GpRO on r, “ENC”∥r∥m, or “WE”∥r∥m

without sending (Post, (t(w), π)) to L is negligible, for r
$←− {0, 1}λ and m uniformly at random

from the message space, both used inside H4.

Proof. Assume such adversary A exists, then if A has queried or programmed GpRO on one

of the inputs it must have had r. Either A has selected r by accident which can only happen

with probability 2−λ, or it has extracted it from the ciphertext, which we will now show with

a series of hybrids can only happen with negligible probability.

H′
0 : This looks exactly the same as H4. The encryption is created in the following way:

• sample r ← {0, 1}λ

• (HashConfirm, r1)← GpRO(HashQuery, (“ENC”∥r∥m)),

• (HashConfirm, r2)← GpRO(HashQuery, (“WE”∥r∥m)), and

• (HashConfirm, r3)← GpRO(HashQuery, (“RP”∥r))

166

• Create the components or the encryption in the following way:

– c1 ← ΠEnc.Enc(pkj, r; r1)

– c2 ← ΠEWE.Enc(meta, r; r2)

– c3 ← m⊕ r3

– Use ΠNIZK.ZKSimulate to simulate the proof

H′
1 : Replace all three calls to GpRO with uniform random values r1, r2, r3. By the properties

of GpRO the view of A doesn’t change between H′
0 and H′

1. Note that we only care about the

view of A up until it calls GpRO on one of the three values, so we don’t have to program GpRO

accordingly.

H′
2 : Now we replace c1 by ΠEnc.Enc(pkj, r′; r1), which is possible because the proof is

simulated. By the security of ΠEnc the view of the adversary doesn’t change.

H′
3 : Next, we replace c2 with ΠEWE.Enc(meta, r′; r2). If there would be a distinguisher

for H′
2 and H′

3 we can build a distinguisher for ΠEWE, by the extractable security of ΠEWE

we can now extract a witness, but this is in contradiction with the ideal functionality Gledger,

as we assumed it was not called. Therefore, H′
2 and H′

3 must be indistinguishable.

We see that H′
3 does not contain any reference to r, and A would not have changed its

strategy as the difference between its view in H′
0 and H′

3 is computationally indistinguishable.

□

Subset of users, PJ , and PLE are corrupted. We further extend our analysis to cover

both corrupt law enforcement and corrupt judges. Notice that step 4 of the previous simulator

description is no longer relevant, as these requests are handled inside A. The proof is exactly

the same is in the previous case.

167

5.7 On the Need for Extractable Witness Encryption

The retrospective solution we present in Section 5.6 relies on extractable witness encryption.

Intuitively, this strong assumption is required in our construction because a user must

encrypt in a way that decryption is only possible under certain circumstances. Because the

description of these circumstances can be phrased as an NP relation, witness encryption

represents a “natural” primitive for realizing it. However, thus far we have not shown that

the use of extractable witness encryption is strictly necessary. Given the strength (and

implausibility [89]) of the primitive, it is important to justify its use. We do this by showing

that any protocol ΠA that UC-realizes Fv,t,p,θ,ret
ARLEAS implies the existence of extractable witness

encryption for a related language. Notice that this does not mean the existence of a particular

ARLEAS instantiation implies the existence of generic extractable witness encryption scheme,

but rather a specific, non-trivial scheme.

Before proceeding to formally define this related language, we give some intuition about

its form. We wish to argue that a protocol ΠA acts like an extractable witness encryption

scheme in the specific case where an adversary has corrupted the escrow authorities PLE and

PJ (along with an arbitrary number of unrelated users). Recall that in order to learn any

information about a message sent in ΠA, the following conditions must be met: specifically, law

enforcement must correctly run the protocol for ΠA.RequestWarrant and ΠA.ActivateWarrant

such that if ΠA.VerifyWarrantStatus were to be called, it would output 1.19 For the protocol

we presented in Section 5.6, this corresponds to obtaining a correct proof of publication from

the ledger. Importantly, it must be impossible for law enforcement and judges to generate

this information independently; if it were possible, it would be easy for these parties to

circumvent the accountability mechanism.

We give a formal definition of this language L below. We denote the view of a user Pi as
19As specified in the ideal functionality, during verification it will be checked that a warrant was properly

requested and activated.

168

VPi
, where this view is a collection of the views of running all algorithms that appear. We

abuse notation slightly and denote the protocol transcript resulting from a sender PS sending

a message m to PR as ΠA.SendMessage(·, PS, PR, m)

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(meta, sid)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
∃

⎛⎜⎝w, c,

⎧⎪⎨⎪⎩
VPLE ,VPJ

,

VP0 , . . . ,VPn

⎫⎪⎬⎪⎭
⎞⎟⎠ s.t.

c, meta← ΠA.SendMessage(sid, PS, PR, m),

(Approve)← ΠA.RequestWarrant(sid, w),

(NotifyWarrant, t(w))← ΠA.ActivateWarrant(sid, w),

1← ΠA.VerifyWarrantStatus(sid, w, meta, c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In this language, the statement comprises some specified metadata and a valid instance

of the protocol ΠA from the perspectives of the parties PLE, PJ , and the users Pi without the

sender and receiver. This setup specifies all the relevant components of the protocol (including

the ledger functionality, in the case of the protocol presented in Section 5.6). The witness is

a valid transcript starting with that setup, that includes the sending party sending a message

with the appropriate metadata and concludes with a call to ΠA.VerifyWarrantStatus that

returns 1. Note that if VerifyWarrantStatus returns 1, then in the real protocol, AccessMessage

would return the relevant plaintext. Unlike other common witness encryption languages, we

note that all correctly sampled statements are trivially in the language and have multiple

witnesses. Therefore, we need the strong notion of extractable witness encryption. As we will

discuss, finding a witness for the statement remains a difficult task.

Consider the implications if it were computationally feasible for an adversary to generate

a witness for an honestly sampled statement for L. This would imply that an adversary

corrupting PLE and PJ interacting with the real protocol has a correct witness, which includes

a call to ActivateWarrant, this implies our accountability property. Such a protocol could

never succeed in meeting our original goals; law enforcement would always be able to simulate

the steps required for proper accountability. An accountability mechanism that can be locally

simulated cannot guarantee that all parties can monitor the mechanism, undermining the

purpose of the protocol.

169

To formalize this intuition, we begin by describing an extractable witness encryption

scheme ΠEWE for language L given access to an ARLEAS protocol ΠA.

Enc(x, m) parses (meta, sid) from x and calls ΠA.SendMessage(sid, m, PS, PR) such that it

outputs meta, c. It then returns the views {VPLE ,VPJ
,VP0 , . . . ,VPn} resulting from that

run, excluding the private information associated with sending the message.

Dec(c, ω) parses c, w, meta, sid from c and ω, calls m ← ΠA.AccessMessage(sid, w, meta, c)

and returns the result.

It is easy to see that this construction satisfies the correctness property of extractable

witness encryption. Notice that a valid witness needs to contain inputs to VerifyWarrantStatus

such that it outputs 1. Because VerifyWarrantStatus is defined to return 1 exactly when

AccessMessage will return a message, the above decryption algorithm will return a message

only with a valid witness.

We introduce the metadata in the statement in order to fix a witness to a particular

statement. Note that our protocol generates an encryption as running part of the protocol,

actually generating part of the witness. If metadata is not included in the statement, then

any witness for a particular setup can be used to decrypt any ciphertext generated by the

encryption oracle under the same statement. While this is not inherently problematic for

extractable witness encryption, it no longer corresponds neatly to ARLEAS. Recall that

warrants in ARLEAS specify the metadata for which they are relevant through the warrant

scope check functionality θ(·, ·) and this property must be enforced in the language. We now

proceed to show that the above scheme ΠEWE satisfies extractable security if ΠA UC-realizes

Fv,t,p,θ,ret
ARLEAS .

Theorem 10 Given a protocol ΠA that UC-realizes Fv,t,p,θ,ret
ARLEAS , ΠEWE is a secure extractable

witness encryption scheme for the language L.

170

Proof. Given an adversary A with non-negligible advantage in the extractable witness

encryption game for language L, either

1. We construct an extractor ExtA(1λ, x, aux) by verifying if the adversary A ran

ΠA.RequestWarrant(sid, w)

and ΠA.ActivateWarrant(sid, w) such that ΠA.VerifyWarrantStatus(sid, w, meta, c) = 1.

If this was the case, the extractor would have all information to form a witness that it

can output;

2. else, if such extractor does not exist, we construct a distinguisher Z that distinguishes

between ΠA and ARLEAS ideal functionality. Z proceeds as follows

(a) When A asks to sample a statement, Z instantiates ΠA with parties {PLE, PJ ,

P0, . . . , Pn, PS, PR} on honest random coins. Z then generates some arbitrary

metadata meta associated with a message that PS could send in the future. and

returns meta, sid to A.

(b) WhenA sends the challenge plaintexts m0, m1 (such that |m0| = |m1|) on statement

x, Z then flips a coin b
$←− {0, 1}, Z has PS call

ΠA.SendMessage(sid, mb, PS, PR)

such that it outputs c, meta. Z then returns the updated views of PLE, PJ and the

N other users to A.

(c) When A outputs the guess b′ and halts, Z outputs b′ == b, where 1 indicates the

real world and 0 indicates the ideal world.

Note that in the ideal functionality, the joint views of law enforcement and the judge

contain no information about the plaintext, because the ciphertext is chosen by the

171

ideal world adversary without access to the plaintext. As such, if the adversary is able

to distinguish between messages with non-negligible probability, Z must be interacting

with the real world protocol.

□

Implications For Practical Retrospective ARLEAS. The relationship between ret-

rospective ARLEAS and extractable witness encryption is an indication of the difficulty

of realizing retrospective ARLEAS in practice. In very specific cases, it may be possible

to phrase certain existing encryption schemes as witness encryption schemes, for example

some IBE schemes. General purpose extractable witness encryption, on the other hand, is

considered implausible [89]. The extractable witness encryption language we have described

above must reason over the ledger authentication language and the various functionalities that

parameterize an retrospective ARLEAS system. As such, the difficulty of realizing a practical

retrospective ARLEAS will hinge on the complexity of the ledger and the parameterizing

functionalities. If they are centralized and simple, it may be possible to instantiate an

retrospective ARLEAS using the protocol we provided in Section 5.6 and known encryption

techniques. However, the security provided by a centralized ledger is not significant, as a

compromised central authority could circumvent the accountability properties of the system.

Thus, we believe that this result indicates that instantiating an retrospective ARLEAS with

meaningful security is impractical with known techniques.

5.8 An ARLEAS’ Parameterizing Functions in Practice

In the name of being generalizable, we have presented both our definition and protocols with

a significant number of parameterized functions, making our construction very abstract. To

better understand how an ARELAS might actually work in practice, we give possible choices

for various parts of the system.

172

5.8.1 Service Providers

For simplicity, in the protocols and ideal functionalities we present in this work, there is

no service provider. Users send ciphertexts directly to law enforcement. In practice, law

enforcement does not directly operate a communication network, and thus a service provider

is crucial. We do not give a formal treatment of the responsibilities of the service provider, as

it is not central to our work, but assume that the service provider’s role is similar to modern

systems. This includes authenticating users, delivering messages, and verifying that messages

are properly constructed. Moreover, we assume that the service provider is transparent to

law enforcement, i.e. all requests for data will be approved.

5.8.2 Transparency Functionalities

Recall that when law enforcement wants to activate an issued warrant, an ARLEAS re-

quires that they make some information, determined by the transparency function, about

that warrant public. In practice, choosing a transparency function is a balance between

robust accountability and operability (i.e. not tipping off individuals that they are under

surveillance).

We briefly consider three possible transparency functions:

• Counting Warrants. A baseline transparency function would leak the number of

warrants activated over time. Each time law enforcement activates a group of warrants,

the transparency function counts these valid warrants and outputs this count. While

the impact of this simple transparency function may seem limited, it provides a way

for the government to detect key exfiltration. This can be done by observing when the

number of warrants activated is greater than those known about.

• Issuing Court. Another possible transparency function would leak the identity of

the court that issued the warrant. While this could potentially leak more information

173

about where an activated warrant is going to be used (i.e. if it was issued by a local

court), it also provides significantly stronger protections and oversight. For instance,

if the warrant signing keys of a particular court are compromised, a system with this

transparency will quickly identify the problem and be able to re-key just that court.

• Differential Private Analytics. The above transparency functions do not leak any

information about the contents of the warrant. As our final example transparency

function, we consider a function that leaks differentially private [74, 75] information

about activated warrants. The analytics could, for instance, include the racial identity

of targeted individuals, so that civil liberties groups could monitor courts with a

problematic history. Computing these differential private analytics could either be done

with randomized response or by modifying the interface to the transparency function to

take in all active warrants. Either way, the random coins used must be deterministically

generated from the warrants, as a possibly adversarial law enforcement would be able

to choose them otherwise. Additionally, special attention must be paid to the privacy

budget if iterative analytics will be run over the same warrants.

5.8.3 Policy Functionalities

While the transparency function allows for detection of malicious behavior, the policy function

prevents certain types of warrants altogether. As part of activating a warrant, law enforcement

must prove (in zero-knowledge) that all the warrants being activated satisfy the policy function.

Thus it will be impossible to activate warrants that are not compliant with the policy function,

even if a malicious judge does issue such warrants.

We consider three possible choices of policy functions, which limit the space of possible

valid warrants:

• Warrants Must Specify Individual Targets. In order to limit the risk of unfettered

174

surveillance, it may be prudent to require that warrants specify individuals, rather than

an entire group. Note that this does not inherently limit the power of law enforcement,

as a group can be monitored by simply issuing individual warrants for each member.

However, it could prevent unintentionally issuing a warrant with an overly broad scope.

To mitigate this risk, the system can be set up with a policy function that checks the

structure of each warrant and ensures that it specifies only a single individual.

• Warrants Must Have A Limited Time Scope. It may be desirable to require

all warrants to specify the length of time for which they are valid. Put another way,

warrants should only apply to messages encrypted within a fixed time-frame. This

could prevent unintended mission creep or reuse of old, stale warrants. As before, this

does not affect the power of law enforcement (renewed warrants can be issued at will)

but it does reduce the possibility for unintentionally using warrants after a case has

been concluded.

• Warrants Issued By Problematic Courts Must Be Subject To Additional

Oversight. Many law enforcement organizations in the United States have a prob-

lematic history of violating civil rights. In these cases, it is common to have Federal

bodies oversee the actions of these law enforcement organizations. This oversight

continues until the federal government is convinced that it is no longer warranted.

This arrangement can be formalized by requiring warrants to bear the signature of the

federal oversight body. Alternatively this role could be outsourced to a civil liberty

group instead of a federal body.

5.8.4 Metadata and Warrant Scope Check Functionalities

Each message sent in an ARLEAS has associated metadata that is added by the sender.

This metadata is information about the message that is public to the service provider and

175

law enforcement. In modern systems, some metadata may be added by the sender while

other metadata may be added by the service provider relaying the message. We explicitly

consider the following three kinds of metadata, but note that the space of potential metadata

information could be significantly larger:

• Sender/Receiver Identity. A service provider is responsible for routing messages

from a sender to a receiver. As such, it is important the service provider is able to know

these identities so that it can fulfill this functionality. Warrants that targets specific

users can use this information to determine if a message should be decryptable.

• Timestamp. Timestamp information is a common piece of information included with

a message in modern systems. As mentioned above, including timestamp information

in message metadata and in warrant scopes is an important way of ensuring that a

warrant is only used to surveil the intended targets and not used surreptitiously after

an investigation has finished.

• Geolocation. Geolocation information gives a message a physical origin and can be

provided either by global positioning systems or by identifying the first piece of static

networking equipment through which the message is transmitted (e.g. a cell tower).

This information could be used by law enforcement to target groups moving through a

specific location. For instance, law enforcement may have a strong justification that

illicit activity is happening in a remote area, but are unable to identify who is visiting

the area. Allowing warrants to reason over geolocation is a powerful investigative tool,

but should be considered carefully as to not accidentally enable dragnet surveillance.

While we are not overly interested in designing a system secure against malicious senders

(see Section 5.1.3), it would be preferable for a service provider to be able to drop messages

that are flagrantly flaunting the system using the metadata verification function v(·, ·). This

176

function verified if metadata associated with a particular message is correctly. There are

two main approaches for a metadata verification functionality. The first is a “common sense”

approach: the service provider checks that the metadata supplied by the user is reasonable

from the view of the service provider. A second approach would be to get authenticated

metadata sources, where appropriate. For instance, existing GPS satellite messages could

be modified to transmit a cryptographically signed version of their signal, and messages

could include this in the metadata. Alternatively, a mobile device get an attestation from

all connected cell towers proving their location. Neither approach is foolproof — colluding

devices in different geolocations might be able to spoof a location — but they could raise the

difficulty of circumventing the system.

Warrant Scope Check. In addition to being input to the metadata verification functionality,

the metadata also is an input to the warrant scope check θ(·, ·). This functionalities take in a

warrant and some metadata, and decides if the associated message is within the scope of the

supplied warrant. We do not specify how this check would work in practice, as it is tightly

coupled to the format of warrants and metadata. A minimal implementation might be to

split the warrant into a list of clauses or requirements and ensure the metadata satisfies each

one.

177

Conclusions and general discussion

In this work we studied three types of imbalanced cryptographic protocols, namely, computa-

tional, communicational, and functional imbalanced cryptographic protocols. In all three

categories we looked at some interesting protocols and their applications, more specifically,

the possibilities of constructing these protocols in a practical setting. More than just looking

into theoretical improvements, we have looked at concrete optimizations and implementations.

In all cases practical efficiency was paramount.

In the category of computationally and communicationally imbalanced protocols, we

looked at the area of laconic cryptography. The most famous example is laconic Oblivious

Transfer, where the intent is to optimize both communication and computation over general

Oblivious Transfer. We have looked at a novel approach to construct such laconic Oblivious

Transfer protocol, leading to a more concretely efficient construction in comparison with

previous work. We did a thorough analysis of our system to properly compare with related

work.

Furthermore, we have looked at the most famous communicationally imbalanced protocol,

the non-interactive zero knowledge proof. Instead of trying to optimize the primitive, we

studied the very practical application of proving the existence of an exploit in a compiled

binary for a real-world processor. To achieve this, we built an optimized version of the KKW

protocol in combination with the techniques first outlined by Ben-Sasson et al., as well as a

complete toolchain to start with the binary and the exploit and create a full non-interactive

178

proof.

Finally, we looked into a functionally imbalanced protocol, by exploring backdoors in end-

to-end encryption. In such protocols, law enforcement has a very different role in comparison

with other parties in the system. They can only access the relevant messages if they fulfill

certain requirements, whereas a normal recipient of the message should always be able to

read the message. One of these requirements that law enforcement needs to fulfill is a form

of abuse resistance. We split the definition into two parts, prospective and retrospective,

and show that the former case can be somewhat practically achieved, but the retrospective

case can only be achieved by using extractable witness encryption, moreover, we show that

extractable witness encryption is necessary for achieving this primitive.

We believe imbalanced cryptographic protocols to be a very active field of research on

all different aspects, we have merely touched upon some interesting topics, protocols, and

applications in this broad category. We have showed that most of these protocols are becoming

very practical, albeit with some limitations. Nevertheless, we think this topic can be pushed

further towards practical implementations that can be valuable in very different settings.

179

References

[1] Berkeley logic interchange format (blif). 1992.
[2] libsnark: a c++ library for zksnark proofs, 2012-2020. https://github.com/scipr-lab/l

ibsnark.
[3] Microcorruption: Embedded security ctf, 2013. https://microcorruption.com.
[4] Circom: a circuit compiler for zksnarks, 2018. https://github.com/iden3/circom.
[5] Reverie: An efficient and generalized implementation of the ikos-style kkw proof system, 2022.

https://github.com/trailofbits/reverie.
[6] Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield Diffie,

John Gilmore, Matthew Green, Susan Landau, Peter G. Neumann, Ronald L. Rivest, Jeffrey I.
Schiller, Bruce Schneier, Michael A. Specter, and Daniel J. Weitzner. Keys under doormats:
mandating insecurity by requiring government access to all data and communications. Journal
of Cybersecurity, 1(1):69–79, 11 2015. ISSN 2057-2085. doi: 10.1093/cybsec/tyv009. URL
https://doi.org/10.1093/cybsec/tyv009.

[7] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014.
doi: 10.1007/978-3-642-55220-5_22.

[8] Shweta Agrawal and Razvan Roşie. Adaptively secure laconic function evaluation for NC1.
2021.

[9] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and
Sihang Pu. Laconic private set intersection and applications. Cryptology ePrint Archive,
Report 2021/728, 2021. https://eprint.iacr.org/2021/728.

[10] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM
Press, October / November 2017. doi: 10.1145/3133956.3134104.

[11] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443–458. IEEE Computer Society Press, May 2014. doi: 10.1109/SP.2014.35.

[12] Apple. icloud security overview. Available at https://support.apple.com/en-us/HT202303,
. URL https://support.apple.com/en-us/HT202303.

180

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://microcorruption.com
https://github.com/iden3/circom
https://github.com/trailofbits/reverie
https://doi.org/10.1093/cybsec/tyv009
https://eprint.iacr.org/2021/728
https://support.apple.com/en-us/HT202303
https://support.apple.com/en-us/HT202303

[13] Apple. Facetime. Available at https://apps.apple.com/us/app/facetime/id1110145091,
. URL https://apps.apple.com/us/app/facetime/id1110145091.

[14] Apple. imessage. Available at https://support.apple.com/explore/messages, . URL
https://support.apple.com/explore/messages.

[15] Diego Aranha, Chuanwei Lin, Claudio Orlandi, and Mark Simkin. Laconic private set-
intersection from pairings. Cryptology ePrint Archive, Report 2022/529, 2022. https:
//eprint.iacr.org/2022/529.

[16] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo Sijacic,
and Nigel Smart. ’bristol fashion’ mpc circuits. https://homes.esat.kuleuven.be/~nsmar
t/MPC/, 2022.

[17] Michael Backes, Jan Camenisch, and Dieter Sommer. Anonymous yet accountable access
control. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,
WPES ’05, pages 40–46, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595932283. doi: 10.1145/1102199.1102208. URL https://doi.org/10.1145/110219
9.1102208.

[18] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a trans-
action ledger: A composable treatment. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, August
2017. doi: 10.1007/978-3-319-63688-7_11.

[19] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 913–930. ACM Press, October 2018. doi: 10.1145/3243734.3243848.

[20] William Barr. Attorney General William P. Barr Delivers Keynote Address at the International
Conference on Cyber Security. Available at https://www.justice.gov/opa/speech/attor
ney-general-william-p-barr-delivers-keynote-address-international-conferenc
e-cyber, July 2019.

[21] Adam M. Bates, Kevin R. B. Butler, Micah Sherr, Clay Shields, Patrick Traynor, and Dan S.
Wallach. Accountable wiretapping -or- I know they can hear you now. In NDSS 2012. The
Internet Society, February 2012.

[22] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of
LNCS, pages 495–526. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45374-9_17.

[23] Donald Beaver. Correlated pseudorandomness and the complexity of private computations.
In 28th ACM STOC, pages 479–488. ACM Press, May 1996. doi: 10.1145/237814.237996.

[24] Mihir Bellare and Ronald L. Rivest. Translucent cryptography - an alternative to key escrow,
and its implementation via fractional oblivious transfer. Journal of Cryptology, 12(2):117–139,
March 1999. doi: 10.1007/PL00003819.

[25] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In Antoine Joux, editor, EU-
ROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer, Heidelberg, April 2009. doi:

181

https://apps.apple.com/us/app/facetime/id1110145091
https://apps.apple.com/us/app/facetime/id1110145091
https://support.apple.com/explore/messages
https://support.apple.com/explore/messages
https://eprint.iacr.org/2022/529
https://eprint.iacr.org/2022/529
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1145/1102199.1102208
https://doi.org/10.1145/1102199.1102208
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber

10.1007/978-3-642-01001-9_1.
[26] Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy) trapdoor

functions and applications. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 228–245. Springer, Heidelberg, April 2012. doi:
10.1007/978-3-642-29011-4_15.

[27] Steven M. Bellovin, Matt Blaze, Dan Boneh, Susan Landau, and Ronald R. Rivest. Analysis of
the CLEAR protocol per the National Academies’ framework. Technical Report CUCS-003-18,
Columbia University, May 2018. URL https://mice.cs.columbia.edu/getTechreport.p
hp?techreportID=1637.

[28] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party
computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008,
pages 257–266. ACM Press, October 2008. doi: 10.1145/1455770.1455804.

[29] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems: extended abstract.
In Robert D. Kleinberg, editor, ITCS 2013, pages 401–414. ACM, January 2013. doi:
10.1145/2422436.2422481.

[30] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013. doi: 10.1007/978-3-642-40084-1_6.

[31] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society
Press, May 2014. doi: 10.1109/SP.2014.36.

[32] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association, August 2014.

[33] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

[34] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge
with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg, August 2019. doi:
10.1007/978-3-030-26954-8_23.

[35] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, Heidelberg, May 2019. doi: 10.1007/978-3-030-17653-2_4.

[36] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
421–439. Springer, Heidelberg, August 2014. doi: 10.1007/978-3-662-44381-1_24.

[37] Matt Blaze. Oblivious key escrow. In Ross Anderson, editor, Information Hiding, pages

182

https://mice.cs.columbia.edu/getTechreport.php?techreportID=1637
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1637
https://eprint.iacr.org/2018/046

335–343, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-49589-5.
[38] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without

random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238. Springer, Heidelberg, May 2004. doi: 10.1007/978-3-540-24676
-3_14.

[39] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001. doi: 10.1007/3-540-44647-8_13.

[40] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, Heidelberg, May 2005. doi: 10.1007/11426639_26.

[41] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 258–275. Springer, Heidelberg, August 2005. doi: 10.1007/11535218_16.

[42] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, Heidelberg,
February 2005. doi: 10.1007/978-3-540-30576-7_18.

[43] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg,
March 2011. doi: 10.1007/978-3-642-19571-6_16.

[44] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018. doi: 10.1007/978-3-319-96884-1_25.

[45] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya:
Nearly linear-time zero-knowledge proofs for correct program execution. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages
595–626. Springer, Heidelberg, December 2018. doi: 10.1007/978-3-030-03326-2_20.

[46] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, February
2014. doi: 10.1007/978-3-642-54242-8_3.

[47] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous IBE,
leakage resilience and circular security from new assumptions. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 535–564.
Springer, Heidelberg, April / May 2018. doi: 10.1007/978-3-319-78381-9_20.

[48] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-key cryp-
tosystem with a double trapdoor decryption mechanism and its applications. In Chi-Sung
Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 37–54. Springer, Heidelberg,
November / December 2003. doi: 10.1007/978-3-540-40061-5_3.

[49] Cassell Bryan-Low. Vodafone, Ericsson Get Hung Up In Greece’s Phone-Tap Scandal. The Wall
Street Journal, June 2006. URL https://www.wsj.com/articles/SB115085571895085969.

[50] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg

183

https://www.wsj.com/articles/SB115085571895085969

Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.
doi: 10.1109/SP.2018.00020.

[51] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rij-
men, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer,
Heidelberg, April / May 2018. doi: 10.1007/978-3-319-78381-9_11.

[52] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design and
composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press,
November 2019. doi: 10.1145/3319535.3339820.

[53] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001. doi: 10.1109/SF
CS.2001.959888.

[54] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001. doi:
10.1007/3-540-44647-8_2.

[55] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM
Press, May 2002. doi: 10.1145/509907.509980.

[56] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer,
Heidelberg, August 2003. doi: 10.1007/978-3-540-45146-4_33.

[57] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Octo-
ber / November 2017. doi: 10.1145/3133956.3133997.

[58] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45721-1_26.

[59] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65. Springer,
Heidelberg, August 2017. doi: 10.1007/978-3-319-63715-0_2.

[60] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 719–728. ACM Press, October / November 2017. doi: 10.1145/3133956.3134092.

[61] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding secure computation on
blockchains. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume

184

11477 of LNCS, pages 351–380. Springer, Heidelberg, May 2019. doi: 10.1007/978-3-030-176
56-3_13.

[62] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption.
Cryptology ePrint Archive, Report 2021/499, 2021. https://ia.cr/2021/499.

[63] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002. doi: 10.1007/3-5
40-46035-7_4.

[64] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally
composable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC 08,
volume 5461 of LNCS, pages 318–335. Springer, Heidelberg, December 2009.

[65] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, April / May 2018. doi: 10.1007/978-3-319-78375-8_3.

[66] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-
knowledge MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 3022–3036. ACM Press, November 2021. doi: 10.1145/3460120.3484595.

[67] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 566–598. Springer, Heidelberg, August 2001. doi: 10.1007/3-540-44647-8
_33.

[68] Dorothy E. Denning. The US key escrow encryption technology. Computer Communications,
17(7):453–457, 1994. doi: 10.1016/0140-3664(94)90099-X. URL https://doi.org/10.1016/
0140-3664(94)90099-X.

[69] Dorothy E Denning and Dennis K Branstad. A taxonomy for key escrow encryption systems.
Communications of the ACM, 39(3):34–40, 1996.

[70] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman assumption.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 537–569. Springer, Heidelberg, August 2017. doi: 10.1007/978-3-319-63688-7_18.

[71] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New constructions
of identity-based and key-dependent message secure encryption schemes. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 3–31. Springer,
Heidelberg, March 2018. doi: 10.1007/978-3-319-76578-5_1.

[72] Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic conditional disclosure
of secrets and applications. In David Zuckerman, editor, 60th FOCS, pages 661–685. IEEE
Computer Society Press, November 2019. doi: 10.1109/FOCS.2019.00046.

[73] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostro-
vsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 3–32. Springer,
Heidelberg, August 2019. doi: 10.1007/978-3-030-26954-8_1.

185

https://ia.cr/2021/499
https://doi.org/10.1016/0140-3664(94)90099-X
https://doi.org/10.1016/0140-3664(94)90099-X

[74] Cynthia Dwork. Differential privacy: A survey of results. In International conference on
theory and applications of models of computation, pages 1–19. Springer, 2008.

[75] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume
3876 of LNCS, pages 265–284. Springer, Heidelberg, March 2006. doi: 10.1007/11681878_14.

[76] EncroChat. Encrochat network. http://encrochat.network/.
[77] Encryption Working Group. Moving the Encryption Policy Conversation Forward. Technical

report, Carnegie Endowment for International Peace, 2019. URL https://carnegieendowm
ent.org/files/EWG__Encryption_Policy.pdf.

[78] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved
primitives for MPC over mixed arithmetic-binary circuits. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 823–852. Springer,
Heidelberg, August 2020. doi: 10.1007/978-3-030-56880-1_29.

[79] Federal Bureau of Investigation. Going Dark. Available at https://www.fbi.gov/services
/operational-technology/going-dark.

[80] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, October 1990. doi: 10.1109/FSCS.1990.89549.

[81] Joan Feigenbaum and Daniel J Weitzner. On the incommensurability of laws and technical
mechanisms: Or, what cryptography can’t do. In Cambridge International Workshop on
Security Protocols, pages 266–279. Springer, 2018.

[82] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, CRYPTO’93,
volume 773 of LNCS, pages 480–491. Springer, Heidelberg, August 1994. doi: 10.1007/3-540
-48329-2_40.

[83] Lorenzo Franceschi-Bicchierai. FBI Director: Encryption Will Lead to a ’Very Dark Place’.
Mashable, October 2014. URL https://mashable.com/2014/10/16/fbi-director-encry
ption-going-dark-speech/.

[84] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J. Weitzner.
Practical accountability of secret processes. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 657–674. USENIX Association, August 2018.

[85] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai
Weng. Constant-overhead zero-knowledge for RAM programs. Cryptology ePrint Archive,
Report 2021/979, 2021. https://eprint.iacr.org/2021/979.

[86] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 44–61. Springer, Heidelberg, May / June 2010. doi: 10.1007/978-3-642-13190-5_3.

[87] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[88] Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable statistical zero
knowledge. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 494–511.

186

http://encrochat.network/
https://carnegieendowment.org/files/EWG__Encryption_Policy.pdf
https://carnegieendowment.org/files/EWG__Encryption_Policy.pdf
https://www.fbi.gov/services/operational-technology/going-dark
https://www.fbi.gov/services/operational-technology/going-dark
https://mashable.com/2014/10/16/fbi-director-encryption-going-dark-speech/
https://mashable.com/2014/10/16/fbi-director-encryption-going-dark-speech/
https://eprint.iacr.org/2021/979
https://eprint.iacr.org/2019/953

Springer, Heidelberg, March 2012. doi: 10.1007/978-3-642-28914-9_28.
[89] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-

inputs obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535.
Springer, Heidelberg, August 2014. doi: 10.1007/978-3-662-44371-2_29.

[90] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718.
Springer, Heidelberg, November 2018. doi: 10.1007/978-3-030-03807-6_25.

[91] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled RAM from la-
conic oblivious transfer. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 515–544. Springer, Heidelberg, August 2018. doi:
10.1007/978-3-319-96878-0_18.

[92] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi
Sekar. Registration-based encryption from standard assumptions. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 63–93. Springer, Heidelberg,
April 2019. doi: 10.1007/978-3-030-17259-6_3.

[93] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In 2019 IEEE
Symposium on Security and Privacy, pages 139–156. IEEE Computer Society Press, May 2019.
doi: 10.1109/SP.2019.00040.

[94] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with
short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
171–188. Springer, Heidelberg, April 2009. doi: 10.1007/978-3-642-01001-9_10.

[95] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 426–443. Springer, Heidelberg, August 2014. doi:
10.1007/978-3-662-44371-2_24.

[96] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for
Boolean circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
1069–1083. USENIX Association, August 2016.

[97] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems.
SIAM J. Comput., 25(1):169–192, February 1996. ISSN 0097-5397. doi: 10.1137/S009753979
1220688. URL https://doi.org/10.1137/S0097539791220688.

[98] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994. doi: 10.1007/BF00195207.

[99] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th FOCS,
pages 174–187. IEEE Computer Society Press, October 1986. doi: 10.1109/SFCS.1986.47.

[100] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer, Heidelberg, August 1987.
doi: 10.1007/3-540-47721-7_11.

187

https://doi.org/10.1137/S0097539791220688

[101] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. doi: 10.1145/28395.28420.

[102] Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws: Can they coexist? a
cryptographic proposal. In Proceedings of the 2017 on Workshop on Privacy in the Electronic
Society, WPES ’17, pages 99–110, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450351751. doi: 10.1145/3139550.3139565. URL https://doi.org/10
.1145/3139550.3139565.

[103] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Heidelberg,
August 2008. doi: 10.1007/978-3-540-85174-5_3.

[104] Google. Encrypt your data - pixel phone help. Available at https://support.google.com/p
ixelphone/answer/2844831?hl=en. URL https://support.google.com/pixelphone/an
swer/2844831?hl=en.

[105] Siobhan Gorman. NSA Officers Spy on Love Interests. The Wall Street Journal, August 2013.
URL https://blogs.wsj.com/washwire/2013/08/23/nsa-officers-sometimes-spy-o
n-love-interests/.

[106] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using
blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 529–561. Springer, Heidelberg, November 2017. doi: 10.1007/978-3-319-70500-2
_18.

[107] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 621–651. Springer, Heidelberg, August 2020. doi: 10.1007/978-3-030-56784-2_21.

[108] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. New constructions of hinting
PRGs, OWFs with encryption, and more. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 527–558. Springer, Heidelberg,
August 2020. doi: 10.1007/978-3-030-56784-2_18.

[109] Sen. Lindsey Graham. Eliminating abusive and rampant neglect of interactive technologies
act of 2020. https://www.congress.gov/bill/116th-congress/senate-bill/3398/text,
March 2020.

[110] Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant law enforcement access
systems. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part III, volume 12698 of LNCS, pages 553–583. Springer, Heidelberg, October 2021. doi:
10.1007/978-3-030-77883-5_19.

[111] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin
Perez, and Gijs Van Laer. Efficient proofs of software exploitability for real-world processors.
Cryptology ePrint Archive, Paper 2022/1223, 2022. URL https://eprint.iacr.org/2022
/1223.

[112] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016. doi: 10.1007/978-3-662-49896-5_11.

188

https://doi.org/10.1145/3139550.3139565
https://doi.org/10.1145/3139550.3139565
https://support.google.com/pixelphone/answer/2844831?hl=en
https://support.google.com/pixelphone/answer/2844831?hl=en
https://support.google.com/pixelphone/answer/2844831?hl=en
https://support.google.com/pixelphone/answer/2844831?hl=en
https://blogs.wsj.com/washwire/2013/08/23/nsa-officers-sometimes-spy-on-love-interests/
https://blogs.wsj.com/washwire/2013/08/23/nsa-officers-sometimes-spy-on-love-interests/
https://www.congress.gov/bill/116th-congress/senate-bill/3398/text
https://eprint.iacr.org/2022/1223
https://eprint.iacr.org/2022/1223

[113] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Heidelberg, August
2017. doi: 10.1007/978-3-319-63715-0_20.

[114] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111.
Springer, Heidelberg, August 2006. doi: 10.1007/11818175_6.

[115] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge processor with BubbleRAM.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 2055–2074. ACM Press, November 2020. doi: 10.1145/3372297.3417283.

[116] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge proofs.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of
LNCS, pages 569–598. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45727-3_19.

[117] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. Zero knowledge for
everything and everyone: Fast ZK processor with cached ORAM for ANSI C programs. In
2021 IEEE Symposium on Security and Privacy, pages 1538–1556. IEEE Computer Society
Press, May 2021. doi: 10.1109/SP40001.2021.00089.

[118] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen ciphertext
security. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 70–88. Springer, Heidelberg, December 2011. doi: 10.1007/978-3-642-25385-0_4.

[119] Dennis Hofheinz. All-but-many lossy trapdoor functions. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 209–227. Springer,
Heidelberg, April 2012. doi: 10.1007/978-3-642-29011-4_14.

[120] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert
backdoored encryption: Security against adversaries that decrypt all ciphertexts. In Avrim
Blum, editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January 2019. doi: 10.4230/
LIPIcs.ITCS.2019.42.

[121] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two
rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129.
Springer, Heidelberg, August 2007. doi: 10.1007/978-3-540-74143-5_7.

[122] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM,
January 2015. doi: 10.1145/2688073.2688105.

[123] Texas Instruments. Msp430x1xx family user guide. https://www.ti.com/lit/ug/slau049f
/slau049f.pdf, 2006.

[124] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003. doi: 10.1007/978-3-540-45146-4_9.

[125] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
572–591. Springer, Heidelberg, August 2008. doi: 10.1007/978-3-540-85174-5_32.

189

https://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://www.ti.com/lit/ug/slau049f/slau049f.pdf

[126] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient
non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011. doi: 10.1007/978-3-6
42-20465-4_23.

[127] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, November 2013.
doi: 10.1145/2508859.2516662.

[128] Bargav Jayaraman, Hannah Li, and David Evans. Decentralized certificate authorities. CoRR,
abs/1706.03370, 2017. URL http://arxiv.org/abs/1706.03370.

[129] Seny Kamara. Restructuring the NSA metadata program. In Rainer Böhme, Michael Brenner,
Tyler Moore, and Matthew Smith, editors, FC 2014 Workshops, volume 8438 of LNCS, pages
235–247. Springer, Heidelberg, March 2014. doi: 10.1007/978-3-662-44774-1_19.

[130] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless: Augmenting
trustworthy computation with ledgers. In NDSS 2019. The Internet Society, February 2019.

[131] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. Journal of Cryptology, 26(2):191–224, April 2013.
doi: 10.1007/s00145-012-9119-4.

[132] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October
2018. doi: 10.1145/3243734.3243805.

[133] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
August 2017. doi: 10.1007/978-3-319-63688-7_12.

[134] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31.
ACM Press, May 1988. doi: 10.1145/62212.62215.

[135] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 486–498. Springer, Heidelberg, July 2008. doi: 10.1007/978-3-540-70583-3_40.

[136] J Kroll, E Felten, and Dan Boneh. Secure protocols for accountable warrant execution. 2014.
[137] Joshua A Kroll, Joe Zimmerman, David J Wu, Valeria Nikolaenko, Edward W Felten, and

Dan Boneh. Accountable cryptographic access control.
[138] Enrique Larraia. Extending oblivious transfer efficiently - or - how to get active security

with constant cryptographic overhead. In Diego F. Aranha and Alfred Menezes, editors,
LATINCRYPT 2014, volume 8895 of LNCS, pages 368–386. Springer, Heidelberg, September
2015. doi: 10.1007/978-3-319-16295-9_20.

[139] Ian Levy and Crispin Robinson. Principles for a more informed exceptional access debate.
Lawfare, Thursday 2018. URL https://www.lawfareblog.com/principles-more-informe

190

http://arxiv.org/abs/1706.03370
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate

d-exceptional-access-debate.
[140] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime

order setting. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 318–335. Springer, Heidelberg, April 2012. doi: 10.1007/978-3-6
42-29011-4_20.

[141] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS,
pages 455–479. Springer, Heidelberg, February 2010. doi: 10.1007/978-3-642-11799-2_27.

[142] Eric Lichtblau and Joseph Goldstein. Apple Faces U.S. Demand to Unlock 9 More iPhones.
The New York Times, February 2016. URL https://www.nytimes.com/2016/02/24/techn
ology/justice-department-wants-apple-to-unlock-nine-more-iphones.html.

[143] J. Liu, M. D. Ryan, and L. Chen. Balancing societal security and individual privacy:
Accountable escrow system. In 2014 IEEE 27th Computer Security Foundations Symposium,
pages 427–440, July 2014. doi: 10.1109/CSF.2014.37.

[144] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-lock
encryption. Designs, Codes and Cryptography, 86(11):2549–2586, Nov 2018. ISSN 1573-7586.
doi: 10.1007/s10623-018-0461-x. URL https://doi.org/10.1007/s10623-018-0461-x.

[145] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. In Matt Blaze, editor, USENIX Security 2004, pages 287–302. USENIX
Association, August 2004.

[146] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2111–2128. ACM Press, November 2019. doi: 10.1145/3319535.3339817.

[147] Microcorruption. Lockitall lockit pro user guide. https://microcorruption.com/public/m
anual.pdf, 2013.

[148] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous
distributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages
397–411. IEEE Computer Society Press, May 2013. doi: 10.1109/SP.2013.34.

[149] Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mitigation
landscape. https://github.com/Microsoft/MSRC-Security-Research/blob/master/pr
esentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20chal
lenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf, Feb
2019.

[150] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. Frigate: A validated, extensible, and
efficient compiler and interpreter for secure computation. In 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pages 112–127, 2016. doi: 10.1109/EuroSP.2016.20.

[151] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor. Frigate:
A validated, extensible, and efficient compiler and interpreter for secure computation. In 2016
IEEE European Symposium on Security and Privacy (EuroS&P), pages 112–127. IEEE, 2016.

[152] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. 2008. URL http:

191

https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.nytimes.com/2016/02/24/technology/justice-department-wants-apple-to-unlock-nine-more-iphones.html
https://www.nytimes.com/2016/02/24/technology/justice-department-wants-apple-to-unlock-nine-more-iphones.html
https://doi.org/10.1007/s10623-018-0461-x
https://microcorruption.com/public/manual.pdf
https://microcorruption.com/public/manual.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

//www.bitcoin.org/bitcoin.pdf.
[153] Ellen Nakashima. Chinese hackers who hacked Google gained access to sensitive data, U.S.

officials say. The Washington Post, May 2013. URL https://www.washingtonpost.com/wor
ld/national-security/chinese-hackers-who-breached-google-gained-access-to-s
ensitive-data-us-officials-say/2013/05/20/51330428-be34-11e2-89c9-3be8095fe
767_story.html.

[154] National Academies of Sciences, Engineering, and Medicine. Exploring Encryption and
Potential Mechanisms for Authorized Government Access to Plaintext. The National Academies
Press, 2016.

[155] National Academies of Sciences, Engineering, and Medicine. Decrypting the Encryption Debate:
A Framework for Decision Makers. The National Academies Press, Washington, DC, 2018.
URL https://www.nap.edu/catalog/25010/decrypting-the-encryption-debate-a-f
ramework-for-decision-makers.

[156] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Michael K. Reiter
and Pierangela Samarati, editors, ACM CCS 2001, pages 116–125. ACM Press, November
2001. doi: 10.1145/501983.502000.

[157] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer, Heidelberg,
March 2009. doi: 10.1007/978-3-642-00457-5_22.

[158] Johnathan Nightingale. Fraudulent *.google.com Certificate, August 2011.
[159] Emmanuel Odunlade. Top 10 popular microcontrollers among makers. https://www.electr

onics-lab.com/top-10-popular-microcontrollers-among-makers/, Jun 2020.
[160] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero knowledge

proofs (extended abstract). In 28th FOCS, pages 462–471. IEEE Computer Society Press,
October 1987. doi: 10.1109/SFCS.1987.43.

[161] Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra, and Austin Bos. SAMPL: Scalable
auditability of monitoring processes using public ledgers. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2249–2266.
ACM Press, November 2019. doi: 10.1145/3319535.3354219.

[162] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013. doi: 10.1109/SP.2013.47.

[163] Rafael Pass and abhi shelat. A Course In Cryptography. https://www.cs.cornell.edu/c
ourses/cs4830/2010fa/lecnotes.pdf, January 2010.

[164] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992. doi: 10.1007/3-540-46766-1_9.

[165] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.
doi: 10.1145/1374376.1374406.

[166] Ryan Pickren. Hacking the apple webcam (again). https://www.ryanpickren.com/safari

192

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://www.washingtonpost.com/world/national-security/chinese-hackers-who-breached-google-gained-access-to-sensitive-data-us-officials-say/2013/05/20/51330428-be34-11e2-89c9-3be8095fe767_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-who-breached-google-gained-access-to-sensitive-data-us-officials-say/2013/05/20/51330428-be34-11e2-89c9-3be8095fe767_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-who-breached-google-gained-access-to-sensitive-data-us-officials-say/2013/05/20/51330428-be34-11e2-89c9-3be8095fe767_story.html
https://www.washingtonpost.com/world/national-security/chinese-hackers-who-breached-google-gained-access-to-sensitive-data-us-officials-say/2013/05/20/51330428-be34-11e2-89c9-3be8095fe767_story.html
https://www.nap.edu/catalog/25010/decrypting-the-encryption-debate-a-framework-for-decision-makers
https://www.nap.edu/catalog/25010/decrypting-the-encryption-debate-a-framework-for-decision-makers
https://www.electronics-lab.com/top-10-popular-microcontrollers-among-makers/
https://www.electronics-lab.com/top-10-popular-microcontrollers-among-makers/
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss

-uxss, 2021.
[167] Cody M. Poplin. Burr-feinstein encryption legislation officially released. Lawfare, April 2016.

URL https://www.lawfareblog.com/burr-feinstein-encryption-legislation-offic
ially-released.

[168] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.
In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society Press, October
2018. doi: 10.1109/FOCS.2018.00086.

[169] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. https://eprint.iacr.org/2005/187.

[170] Certicom Research. Sec 2: Recommended elliptic curve domain parameters, January 2010.
URL https://www.secg.org/sec2-v2.pdf. [Online; Accessed on October 27, 2021].

[171] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and Boolean circuits with
active security. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, INDOCRYPT 2019,
volume 11898 of LNCS, pages 227–249. Springer, Heidelberg, December 2019. doi: 10.1007/97
8-3-030-35423-7_12.

[172] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999. doi:
10.1109/SFFCS.1999.814628.

[173] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.
doi: 10.1007/11426639_27.

[174] Stefan Savage. Lawful device access without mass surveillance risk: A technical design
discussion. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, pages 1761–1774, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243758. URL
https://doi.org/10.1145/3243734.3243758.

[175] Alessandra Scafuro. Break-glass encryption. In Dongdai Lin and Kazue Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 34–62. Springer, Heidelberg, April 2019.
doi: 10.1007/978-3-030-17259-6_2.

[176] Peter Scholl. Extending oblivious transfer with low communication via key-homomorphic
PRFs. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 554–583. Springer, Heidelberg, March 2018. doi: 10.1007/978-3-319-76578-5_19.

[177] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catching bandits and only bandits: Privacy-
preserving intersection warrants for lawful surveillance. In 4th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 14), San Diego, CA, August 2014. USENIX
Association. URL https://www.usenix.org/conference/foci14/workshop-program/pre
sentation/segal.

[178] Sen. Marsha Blackburn Sen. Lindsey Graham, Sen. Tom Cotton. Lawful access to 5 encrypted
data act. https://www.judiciary.senate.gov/press/rep/releases/graham-cotton-b
lackburn-introduce-balanced-solution-to-bolster-national-security-end-use-o
f-warrant-proof-encryption-that-shields-criminal-activity, June 2020.

193

https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss
https://www.lawfareblog.com/burr-feinstein-encryption-legislation-officially-released
https://www.lawfareblog.com/burr-feinstein-encryption-legislation-officially-released
https://eprint.iacr.org/2005/187
https://www.secg.org/sec2-v2.pdf
https://doi.org/10.1145/3243734.3243758
https://www.usenix.org/conference/foci14/workshop-program/presentation/segal
https://www.usenix.org/conference/foci14/workshop-program/presentation/segal
https://www.judiciary.senate.gov/press/rep/releases/graham-cotton-blackburn-introduce-balanced-solution-to-bolster-national-security-end-use-of-warrant-proof-encryption-that-shields-criminal-activity
https://www.judiciary.senate.gov/press/rep/releases/graham-cotton-blackburn-introduce-balanced-solution-to-bolster-national-security-end-use-of-warrant-proof-encryption-that-shields-criminal-activity
https://www.judiciary.senate.gov/press/rep/releases/graham-cotton-blackburn-introduce-balanced-solution-to-bolster-national-security-end-use-of-warrant-proof-encryption-that-shields-criminal-activity

[179] Sacha Servan-Schreiber and Archer Wheeler. Judge, jury & encryptioner: Exceptional access
with a fixed social cost, 2019.

[180] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. doi: 10.1007/3-540-69053-0_18.

[181] Signal. Signal secure messaging system. URL https://signal.org/.
[182] Manish Sing. Over two dozen encryption experts call on India to rethink changes to its

intermediary liability rules. TechCrunch, February 2020. URL https://techcrunch.com
/2020/01/09/over-two-dozen-encryption-experts-call-on-india-to-rethink-chang
es-to-its-intermediary-liability-rules/.

[183] Yannis Smaragdakis. Sound analysis: Can we tell the truth about programs? https://blog.s
igplan.org/2019/09/18/sound-analysis-can-we-tell-the-truth-about-programs/,
Sep 2019.

[184] Nigel Smart. Twitter thread: How many AND gates would there be in a combinatorial circuit
for an elliptic curve point multiplication?, November 2020. URL https://twitter.com/Sm
artCryptology/status/1327280495978278914. [Online; @SmartCryptology].

[185] swisspost evoting. E-voting system 2019. https://gitlab.com/swisspost-evoting/e-vot
ing-system-2019, 2019.

[186] Matt Tait. An approach to James Comey’s technical challenge. Lawfare, April 2016. URL
https://www.lawfareblog.com/approach-james-comeys-technical-challenge.

[187] Jamie Tarabay. Australian Government Passes Contentious Encryption Law. The New York
Times, December 2018. URL https://www.nytimes.com/2018/12/06/world/australia/e
ncryption-bill-nauru.html.

[188] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy,
pages 926–943. IEEE Computer Society Press, May 2018. doi: 10.1109/SP.2018.00060.

[189] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Emp-toolkit: Efficient multiparty
computation toolkit. Available At https://github.com/emp-toolkit, 2016.

[190] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636.
Springer, Heidelberg, August 2009. doi: 10.1007/978-3-642-03356-8_36.

[191] Nicholas Watt, Rowena Mason, and Ian Traynor. David Cameron pledges anti-terror law for
internet after Paris attacks. The Guardian, January 2015. URL https://www.theguardian.
com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris
-attacks-nick-clegg.

[192] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. Cryptology
ePrint Archive, Report 2020/925, 2020. https://eprint.iacr.org/2020/925.

[193] WhatsApp. WhatsApp Encryption Overview. Available at https://scontent.whatsapp.ne
t/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Securit
y-Whitepaper.pdf, December 2017.

194

https://signal.org/
https://techcrunch.com/2020/01/09/over-two-dozen-encryption-experts-call-on-india-to-rethink-changes-to-its-intermediary-liability-rules/
https://techcrunch.com/2020/01/09/over-two-dozen-encryption-experts-call-on-india-to-rethink-changes-to-its-intermediary-liability-rules/
https://techcrunch.com/2020/01/09/over-two-dozen-encryption-experts-call-on-india-to-rethink-changes-to-its-intermediary-liability-rules/
https://blog.sigplan.org/2019/09/18/sound-analysis-can-we-tell-the-truth-about-programs/
https://blog.sigplan.org/2019/09/18/sound-analysis-can-we-tell-the-truth-about-programs/
https://twitter.com/SmartCryptology/status/1327280495978278914
https://twitter.com/SmartCryptology/status/1327280495978278914
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://www.lawfareblog.com/approach-james-comeys-technical-challenge
https://www.nytimes.com/2018/12/06/world/australia/encryption-bill-nauru.html
https://www.nytimes.com/2018/12/06/world/australia/encryption-bill-nauru.html
https://github.com/emp-toolkit
https://www.theguardian.com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg
https://www.theguardian.com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg
https://www.theguardian.com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg
https://eprint.iacr.org/2020/925
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf

[194] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.
[195] Charles Wright and Mayank Varia. Crypto crumple zones: Enabling limited access without

mass surveillance. In 2018 IEEE European Symposium on Security and Privacy (EuroS P),
pages 288–306, April 2018. doi: 10.1109/EuroSP.2018.00028.

[196] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 733–764. Springer, Heidelberg, August 2019. doi: 10.1007/978-3-030-26954-8_24.

[197] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any field. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press, November 2021.
doi: 10.1145/3460120.3484556.

[198] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982. doi: 10.1109/SFCS.1982.38.

[199] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. doi: 10.1109/SFCS.1986.
25.

[200] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg,
April 2015. doi: 10.1007/978-3-662-46803-6_8.

[201] Greg Zaverucha. The picnic signature algorithm. Technical report, 2020. https://github.c
om/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf.

[202] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vRAM: Faster verifiable RAM with program-independent preprocessing. In
2018 IEEE Symposium on Security and Privacy, pages 908–925. IEEE Computer Society
Press, May 2018. doi: 10.1109/SP.2018.00013.

195

http://www.clifford.at/yosys/
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Laconic Cryptography
	Efficient Non-Interactive Proofs
	Abuse Resistant Law Enforcement Access Systems
	Organization of This Work

	Preliminaries
	Definitions
	Laconic Oblivious Transfer
	Laconic Private Set Intersection
	Broadcast Encryption
	Proof-of-publication ledgers
	Authenticated Communication
	Simulation Extractable Non-Interactive Zero Knowledge
	Lossy Encryption
	Multi-sender Non-interactive Secure Computation
	Witness Encryption and Extractable Witness Encryption
	Programmable Global Random Oracle Model

	Assumptions
	Composite Order Bilinear Groups

	Efficient Set Membership Encryption and Applications
	Introduction
	Applications
	Technical Overview

	Set Membership Encryption
	Laconic OT from Set Membership Encryption

	New Broadcast Encryption Scheme
	SME Construction
	SME with Constant Size Decryption Keys
	Extensions and Applications
	Optimization of the Laconic OT Construction
	Updatable Laconic OT

	Evaluation and Comparison
	Asymptotic Efficiency
	Concrete Efficiency

	Related Work
	Conclusion

	Efficient Proofs of Software Exploitability for Real-world Processors
	Introduction
	Contributions

	Technical Overview
	Background: Zero-Knowledge and Ben-Sasson et al.'s RAM Reduction
	Formalizing Exploits
	Producing Efficient ZK Proofs of Exploit

	Related Work
	Modeling Real-World Processors
	Modeling MSP430 Processor Semantics
	Interacting with the Program

	Formalizing Exploits
	Circuit Compiler
	Cryptographic Optimizations
	Memory Permutation Proof (over Zq)
	Ring Switching

	Implementation and Evaluation

	Abuse Resistant Law Enforcement Access Systems
	Introduction
	Towards Abuse Resistance
	Technical Overview
	Contextualizing ARLEAS In The Encryption Debate

	Related work
	Definitions
	Lossy Tag Encryption
	Defining ARLEAS

	Prospective Solution
	UC-Realizing Fv, t, p, θ, proARLEAS for Identity-Based Predicates
	UC-Realizing Fv, t, p, θ, proARLEAS for Arbitrary Predicates

	Retrospective Solution
	UC-Realizing Fv, t, p, θ, retARLEAS

	On the Need for Extractable Witness Encryption
	An ARLEAS' Parameterizing Functions in Practice
	Service Providers
	Transparency Functionalities
	Policy Functionalities
	Metadata and Warrant Scope Check Functionalities

	Conclusions and general discussion
	References

