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Abstract

Coreference resolution is a core task in natural language processing and in creating

language technologies. Neural methods and models for automatically resolving

references have emerged and developed over the last several years. This progress is

largely marked by continuous improvements on a single dataset and metric. In this

thesis, the assumptions that underlie these improvements are shown to be unrealistic

for real-world use due to the computational and data tradeoffs made to achieve

apparently high performance. The thesis outlines and proposes solutions to three

issues. First, to address the growing memory requirements and restrictions on input

document length, a novel, constant memory neural model for coreference resolution

is proposed and shown to attain performance comparable to contemporary models.

Second, to address the failure of these models to generalize across datasets, continued

training is evaluated and shown to be successful for transferring coreference resolution

models between domains and languages. Finally, to combat the gains obtained via the

use of increasingly large pretrained language models, multitask model pruning can

be applied to maintain a single (small) model for multiple datasets. These methods
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reduce the computational cost of running a model and the annotation cost of creating

a model for any arbitrary dataset. As real-world applications continue to demand

resolution of coreference, methods that reduce the technical cost of training new

models and making predictions are greatly desired, which this thesis addresses.

Primary Reader and Advisor: Benjamin Van Durme

Secondary Readers: Kenton Lee & Kenton Murray
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CHAPTER 1. INTRODUCTION

In natural language processing (NLP), one of the core problems is accurately

identifying references of pronouns and definite phrases. Consider the following sentence:

Chris visited a doctor and they decided to try a new medication.

As readers, we can determine that “they” refers to either both “Chris” and the

doctor or just “Chris”, although it is not inconceivable for “they” to instead refer to

“a doctor”. For decades, linguists and NLP researchers have tackled the challenge of

automatically resolving coreference. To date, approaches have become increasingly

driven by neural models and large amounts of annotated data.

These advances have led to significant improvements over the methods of even just

ten years ago. At the same time, so has the cost of collecting data, training a model,

and using the model. This thesis discusses efficient methods to address some of the

drawbacks of neural models for coreference resolution.

1.1 Motivation

Coreference resolution is a classic topic within NLP, warranting its own workshop1

and textbook chapter (Jurafsky and Martin, 2021). Furthermore, resolving coreference

has always been valuable within real-world systems. It has been a core component of

information extraction tasks (e.g. Grishman and Sundheim (1996)) and in discourse

1Fifth Workshop on Computational Models of Reference, Anaphora and Coreference: https:
//sites.google.com/view/crac2022/
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understanding (Elsner and Charniak, 2008). More recently, it has been commercialized2

and as discussed in Section 3.2, is still an focus in applied works.

In recent years, research has marched on, boasting improvements upon

improvements on raw accuracy on one standard evaluation set. While coreference

resolution is a classic NLP task grounded in linguistic theory, the strength of a model

for it is more aptly measured by how useful it is in specific domains, languages, and

when integrated into downstream systems. Therefore, whether or not these models

are getting closer to linguistic truth, they are not necessarily climbing the right hill in

general.

In fact, the promise of more accurate models for this classic NLP task does have

several major limitations. For one, the models grow increasingly in size and required

compute to run, with the best models requiring 128GB of memory on specialized

TPU hardware (Jouppi et al., 2017) to train and 16GB for inference (Wu et al., 2020).

Furthermore, these models leverage datasets with thousands of annotations and are

restricted to a narrow set of domains and languages. This means that performance in

other domains or languages has not kept up, primarily due to the cost of obtaining

supervision but also due to specific modeling limitations and decisions.

Therefore, while we are sprinting forward in model accuracy and apparently closing

in on human agreement rates, we are leaving everything else behind. This thesis

revisits what was left behind – how much did we climb (or descend) on the other hills?

2HuggingFace’s original chatbot product invested in a neural coref model (https://
huggingface.co/coref/).
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1.2 Contributions and Organization

This thesis is organized with this introduction (Chapter 1), followed by a

comprehensive background on the state of the field of coreference resolution, along

with factors that have affected the development of models (Chapter 2). Chapter 3

describes real-world applications that highlight the limitations of many models in the

field, motivating a need for solutions that address these issues.

The following chapters cover materials that were previously published:

1. An efficient, constant-memory model (Section 4.1, EMNLP 2020)

2. An online model for inference (Section 4.3, in CRAC 2022)

3. A short study on multilingual coreference resolution (Section 5.1, EACL Demos

2021)

4. A comprehensive study on the success of continued training for domain and

language transfer (Section 5.2, EMNLP 2021)

5. A method for reducing model size when there are multiple target tasks

(Section 6.2, ENLSP 2021).

Section 4.2 formalizes the model difference between Section 4.1 and the remainder

of the thesis, while Section 6.3 presents a proof of concept for pruning a model aimed

at multiple coreference resolution datasets. Finally, the thesis concludes (Chapter 7)

with several forward-looking future directions and goals for coreference resolution.
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CHAPTER 2. COREFERENCE RESOLUTION

This chapter begins with a description of the coreference resolution task

(Section 2.1), followed by a discussion on datasets (Section 2.2), evaluation (Section 2.3),

and models (Section 2.4, Section 2.5).

2.1 Coreference Resolution

Reference and coreference

Reference is the relationship between expressions; for the purpose of this thesis,

we are interested in text. We are interested in co-reference, which describes the

relationship between two textual expressions that have the same referent, which is

often either an entity or an action.1 In each of the following examples, selected spans

of text that have the same referent are marked in the same color and bracketed, with

the referent written in the subscript.

(1) [The cat]cat played with [its]cat toy.

(2) [Matt and Emma]{Matt, Emma} traditionally split a strawberry cake on

[their]{Matt, Emma} shared birthday. [The twins]{Matt, Emma} turn 8 this year.

(3) While [she]sumire was traveling with [Miu]miu on a Greek island,

1Coreference in NLP is typically conflated and is often a superset of anaphora, where the other
referent precedes the current expression (see example (1)). This is contrasted with cataphora, where
the other referent postcedes the expression (see example (3)). Modern algorithms for coreference
cover both phenomena, but both differ with exophoric references, where the referenced object is not
in the text (e.g. common ground or in other modalities, like visual dialogue (Kottur et al., 2018)).

6
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[Sumire]sumire, [an aspiring writer]sumire, suddenly [disappeared]disappearance.

[Miu]miu immediately alerted [her]sumire? friend of [[her]sumire

disappearance]disappearance.

These examples demonstrate some of the common types of coreference. (1)

demonstrates pronoun coreference, where “its” is coreferent with “The cat”. In

(2), observe that coreference is often a cross-sentence phenomenon, as “The twins”

and “Matt and Emma” are coreferent. In fact, the distance between the two spans

can stretch across paragraphs in an article, chapters of a book, or documents in a

corpus. Second, coreference can leverage common sense and world knowledge; in

(2), it is useful to know that sharing a birthday suggests that Matt and Emma are

twins. Along with the lack of other references, this can be used to infer who “The

twins” refers to. However, coreference can be ambiguous. In (3), it is ambiguous

whose friend Miu alerted (in “her friend”): was it Miu’s friend or Sumire’s friend?2

Example (3) also demonstrates a few other common types of coreference: verbs or

events (disappearance), appositives or copular structures (“an aspiring writer”),

and exact string match (“Miu”).3

2This example describes the plot from Murakami’s Sputnik Sweetheart. The ground truth is that
he was a mutual friend, so either interpretation would be correct.

3Amusingly, even exact string match may not be reliable. Consider the excerpt:
“[Kenton]Kenton Lee researched coreference resolution. . . . [Kenton]Kenton Murray researched model
compression.” Resolving this requires real-world knowledge in disambiguating between the two
researchers.
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Formalization of Coreference Resolution

Here, we define some commonly used terms within the literature for coreference

resolution. In the previous examples, each of the bracketed spans of text is a span

of interest and is usually referred to as a mention (or markable) span. Mentions

are typically (noun) phrases and pronomials; additional examples that were not

highlighted would include “its toy”, “a strawberry cake”, and “a Greek island.” The

set of mentions referring to the same referent is a coreference cluster or chain, like

{“The cat”, “its”} or {“Miu”, “Miu”}. A cluster with a single mention, like {“a

strawberry cake”} is called a singleton. An antecedent of a mention is a coreferring

mention that occurs earlier in the text relative to that mention.

Coreference resolution is the task of identifying which spans of text are

coreferring. Often, but not always, this simultaneously includes identifying (the

boundaries of) the mentions. The task is simple to describe. Essentially, entity (or

event) coreference resolution is looking for the answers to:

Q1. (Full coreference) If mentions are not provided: Find all mentions of each entity

(event).

Q2. (Coreference linking) If mentions are provided: Do two given spans of text refer

to the same entity (event)?

Formally, the task can be described as: given an input document4 D = x1, . . . , xn,

4Cross-document or multi-document coreference is remarked on in Section 2.6.
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output the coreference clusters C = {C1, C2, . . . , Ck} such that each cluster Ci =

{mi,1,mi,2, ...,mi,ki} consists of ki text mentions. Each mention mj is a set of nj

tokens mj = {xa, xa+1, ..., xa+nj
}.5 If the mention boundaries are provided (Q2), the

task is simpler, as we are instead given both D and a set of mentions,M, and the

task is to partitionM =
⋃︁

Ci∈C Ci into C.6

As illustrated by the examples, some mentions are easy to resolve (via simple

heuristics like exact match), while others are difficult or impossible due to missing world

knowledge or ambiguities. Automatic systems for coreference resolution face the same

challenges for the difficult cases. Further exasperating this issue is the inconsistencies

present across annotation guidelines, and therefore datasets. For example, some

datasets may be interested in only a subset of entity types, like coarse-grained entity

types (people, locations, etc) in literature (Bamman et al., 2020) or specific scientific

concepts (drugs, protein names, etc) in biomedical papers (Lu and Poesio, 2021).

Other datasets aiming for completeness might further distinguish between the part of

speech (event vs. entity), types of links (identical or appositive reference (Hovy et al.,

2006; Pradhan et al., 2007)), non-referring mentions (generics or predicative noun

phrases (Poesio et al., 2018; Chen et al., 2018)), and traces (implicit or in pro-drop

languages (Hovy et al., 2006; Recasens et al., 2010)), or even include bridging (indirect

5Typically, each mention consists of contiguous tokens, but this is not always true in the case of
split antecedents, which is occasionally studied (Yu et al., 2021). Another setting aims to predict
head words of the mentions rather than the exact boundaries.

6There are other possible task descriptions. For example, high-recall predicted mention boundaries,
like those produced by a syntactic parser, could be provided. One version of this is explored in
Section 3.2.
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references like “resident” to “building” (Poesio et al., 2018)).

Despite the fine-grained classification of reference types in discourse, the methods

for automatically resolving coreference share similarities. Even though datasets often

blur the boundary between coreference and adjacent relations, these datasets are often

bucketed under coreference resolution. For the remainder of this work, we simplify

the definition of coreferring expressions and mentions to whatever each dataset uses.

2.2 Datasets and Annotation

Despite the disagreements on what expressions are markable or coreferring, there

have been numerous attempts to create datasets for coreference resolution to encourage

both data-driven approaches and analysis. These datasets are created by formalizing

assumptions into annotation guidelines, which leads to agreement within a single

dataset but disagreement across datasets.

2.2.1 Datasets

We first give an overview of the sizes and types of datasets. Tables 2.1, 2.3, and

2.4 list datasets from various years, languages, domains, and sizes. While these lists

are not exhaustive, they provide an overview of some of the more commonly used

datasets in the field.

Broadly, we can group coreference datasets into three (or four) categories based on

10
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their primary focus. One category is English, document-level coreference resolution.

Examples are provided in Table 2.1. Work on these datasets is primarily motivated by

improved accuracy at the document level, on the end-to-end task. To do so, innovations

typically arise from new modeling contributions, while dataset contributions typically

arise from novelty in domain or in size. Furthermore, each dataset creator will make

their own domain-dependent decision regarding what spans of text are markable

mentions and what is considered a coreference link. Table 2.2 highlights some of the

different annotation decisions made for various English datasets. To date, the most

studied on dataset is OntoNotes 5.0, as it was used as part of the CoNLL 2012 Shared

Task (Pradhan et al., 2012; Weischedel et al., 2013).

Another category of datasets focus on coreference resolution in other languages,

some are listed in Table 2.3.7 Here, datasets are generally smaller than English ones

and modeling approaches focus on adapting English models and on language-specific

phenomena, such zero anaphora in Chinese (Chen and Ng, 2013), Japanese (Konno et

al., 2021), or Italian (Iida and Poesio, 2011). While many models tend to extend from

models developed mainly in English (Shibata and Kurohashi, 2018; van Cranenburgh,

2019), there are additional tricks needed to accommodate specific languages. In

addition, it is possible for insights gained from multilingual or non-English coreference

modeling to transfer to improvements in other languages (like English). There is

increased interest in that direction, e.g. the 2022 CRAC multilingual coreference

7Recently, Žabokrtský et al. (2022) release a shared task with additional languages and datasets.
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Dataset References Domain Training Dev Test

OntoNotesen Pradhan et al. (2012) Mixed written/spoken
texts

2,802 343 348

PreCo Chen et al. (2018) Reading comprehension
passages

36,120 500 500

LitBank Bamman et al. (2020) Literature 80 10 10
QBCoref Guha et al. (2015) Quiz questions 240 80 80
ARRAU Poesio and Artstein

(2008), Uryupina et al.
(2016), and Uryupina et
al. (2020)

Mixed written news 335 18 60

SARA Holzenberger and Van
Durme (2021)

Legal 138 28 28

WikiCoref Ghaddar and Langlais
(2016)

Wikipedia 0 0 30

CI Chen and Choi (2016),
Choi and Chen (2018),
and Zhou and Choi
(2018)

TV transcripts 987 122 192

OntoGUM Zhu et al. (2021) Mixed genres 0 0 168

Table 2.1: Number of documents for each of the datasets. A “document” varies
substantially; in some cases, they are only sentences while in others, each document
can contain thousands of tokens. This is not an exhaustive list, but contains several
commonly-used datasets, including those used in this work.
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Dataset Example Comments

OntoNotes
(general)

Judging from the Americana in [[Haruki Murakami’s]1
”A Wild Sheep Chase” [Kodansha]2, 320 pages,
$18.95]3, baby boomers on both sides of the Pacific
have a lot in common.

Only coreferring
mentions are
marked (no
singletons).

ARRAU
(news)

Judging from [the Americana in [[Haruki
Murakami’s]1 ”A Wild Sheep Chase” [[Kodansha]2,
[320 pages]3, [$18.95]4]5]6]7, [baby boomers on [both
sides of [the Pacific]8]9]10 have [a lot in [common]11]12.

All mentions are
marked, even if
they are
singletons.

PreCo
(general)

[Writer]1: [Ralph Ellison]1
[Novel]2: [Invisible Man]2
[Invisible Man]2 is [[Ellison’s]1 best known work]2,
most likely because [it]2 was [the only novel [he]1 ever
published during [[his]1 lifetime]3]2 and because [it]2
won [him]1 [the National Book Award]4 in [1953]5.

Singleton
mentions are
marked. Many
documents
contain the title
as its own
sentence.

LitBank
(books)

And [Jo]1 shook the blue army sock till the needles
rattled like castanets, and [her]1 ball bounded across
[the room]2.

Only certain ACE
categories are
marked.

QBCoref
(trivia)

[This author]1 wrote [a play]2 in which [the queen]3
[Atossa]3 and [the ghost of [Darius]4]5 react to news of
a military defeat; [that play]2 is [the only classical
tragedy on a contemporary, rather than mythical,
subject]2.

All characters,
authors, and
works are
annotated. Other
mentions are
ignored.

Table 2.2: These examples from different datasets illustrate the differences in
annotation standards, specifically for what is markable as a mention. Mentions
are bracketed and entity clusters are subscripted with the same number. Table
reproduced from Xia and Van Durme (2021).
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shared task (Žabokrtský et al., 2022) aims to popularize a unified set of coreference

annotations based on Universal Dependencies (Nivre et al., 2016) across 10 languages.

In addition, some of these phenomenon in other languages, like zero anaphora, are

present in specific domains in English, like recipes (Jiang et al., 2020).

Datasetlang. References Domain Training Dev Test

OntoNotesen Pradhan et al. (2012) and
Weischedel et al. (2013)

Mixed written
texts and
transcripts

2,802 343 348

OntoNoteszh 1,810 252 218
OntoNotesar 359 44 44

Semevalca Recasens et al. (2010),
Recasens and Mart́ı (2010),
Hoste and De Pauw (2006),
Pradhan et al. (2007),
Hinrichs et al. (2005), and
Rodŕıguez et al. (2010)

Mixed
written/spoken
texts

829 142 167

Semevales 875 140 168
Semevalit 80 17 46
Semevalnl 145 23 72
Semevalde 900 199 136
Semevalen 229 39 85

RiddleCorefnl van Cranenburgh (2019) Literature 23 5 5
ANCORfr Muzerelle et al. (2014) Spoken language - - -
RuCorru Toldova et al. (2014) Mixed written

texts
305 - -

AnCorru Budnikov et al. (2019) Mixed written
texts

268 0 127

Table 2.3: This table lists a couple of examples of non-English (collections of) datasets,
along with their dataset statistics. The table is far from exhaustive. The statistics for
ANCORfr and RuCorru may not be accurate as what is available and what is reported
across papers sometimes differ. ANCORfr reports 500K tokens in total.

A third group is focused on using coreference resolution as diagnostics for models,

typically focusing on pronoun resolution. For these (English) datasets, listed in
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Table 2.4, researchers are typically more interested in probing knowledge or bias of

models trained on other objectives, although there is some work on directly evaluating

on and targeting sentence-level coreference (Kocijan et al., 2019). In this setting,

the evaluation is more akin to a classification problem, as there is only one mention

of interest in each example and ambiguous examples requiring editorial oversight

are often excluded. Therefore, unlike the first and second groups, it is possible

to compare a single model more fairly across multiple datasets, and evaluation is

more straightforward, as accuracy or exact match F1 is reasonable. Beyond pronoun

disambiguation, coreference resolution is also understood to be a core NLP task, and

so there is also some work that includes coreference as part of a broader suite of

probing tasks for pretrained language models (Tenney et al., 2019b; Tenney et al.,

2019a).

Dataset References Probing
phenomenon

Training Dev Test

WSC Levesque et al. (2011)
and Wang et al.
(2019a)

Commonsense 554 104 146

DPR Rahman and Ng (2012) Commonsense 1,316 0 564
Winogender Rudinger et al. (2018) Gender bias 0 0 720
Winobias Zhao et al. (2018) Gender bias 0 1,580 1,580
GAP Webster et al. (2018) Gender bias 2,000 400 2,000
Edge probing Tenney et al. (2019b) Coreference 207,830 26,333 27,800

Table 2.4: Some examples of probing datasets. Most of the examples in these datasets
are sentences or sentence pairs. For edge probing, each example targets a different
mention, and so each sentence often occurs multiples in the dataset.

Finally, there are a few datasets for cross-document coreference resolution, such
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as Cybulska and Vossen (2014, ECB), Cattan et al. (2021b, SciCo), and Ravenscroft

et al. (2021, CD2CR). In this setting, rather than drawing mentions from just a single

document D, mentions can be drawn from any document in a corpus, D ∈ D, each

coming from a different author or source. This can lead to more interesting clusters

than within-document coreference, especially with regards to events and technical

terminology, as independent authors may describe the same entity or event differently.

This setting notably contrasts with single-document coreference resolution as the

authors are not writing with the intention of references resolving across documents.

Furthermore, only recently have larger-scale datasets been published, and only in

English.

2.2.2 Annotation

There have been several interfaces used for coreference resolution annotation. The

main interfaces used are the brat rapid annotation tool8 (Stenetorp et al., 2012),

MMAX2 (Müller and Strube, 2006), and SACR (Oberle, 2018). These tools are

tailored for fast local (offline) expert annotation and designed for multiple layers of

linguistic annotation.

Coreference resolution is challenging to annotate for several reasons. First, to

ensure consistency, there are many rules and edge cases to learn (the OntoNotes

coreference guidelines are 12 pages long and assume a linguistics background). It

8http://brat.nlplab.org
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is also structured at the document-level, meaning each annotation requires more

attention and cognitive load compared to many sentence-level tasks that can be

crowdsourced at scale. Nonetheless, there has been recent work towards simpler

interfaces for crowdsourcing coreference resolution (Yuan et al., 2021). Unlike previous

interfaces, where users select the span and then link it to a previously selected span,

Yuan et al. (2021) suggests spans to the user, as determined by another model (e.g. a

syntactic parser or a different coreference system). The spans are subsequently merged

during postprocessing (or not at all, in their setting for active learning). Crucially, by

treating each span independently and precomputing a high-recall set of markables,

the task is more easily crowdsourceable as the question asked from annotation is the

simpler Q2 as opposed to Q1.

To measure annotation agreement (e.g. in the case of Pradhan et al. (2012,

OntoNotes) or Chen et al. (2018, PreCo)), a subset is typically annotated with 2-way

redundancy and then checked for mention boundary agreement (in some cases where

mentions are already provided via an NER model or parser, this step can be skipped)

and cluster agreement. For any disagreeing annotations, a third party can be brought

in to adjudicate, resulting in a set of gold annotations. Then, the original annotations

can be compared the gold clusters with the MUC metric, described in the next section.

The 2-way redundant annotations can also be compared by the MUC metric.
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2.3 Evaluation of coreference systems

There are a few standard metrics used to measure the accuracy of predictions for

coreference resolution. However, since there are several dimensions (mention detection,

mention linking, and mention clustering), there is no single, universal metric that

absolutely measures the performance of a system. Many works also perform qualitative

error analysis to identify the types of mistakes made by a model, which cannot be

easily discerned from the quantitative metrics.

2.3.1 Quantitative Evaluation

Nonetheless, there are two commonly accepted quantitative metrics. The first

measures the system’s ability to perform mention detection. The second concerns the

model’s ability to perform coreference linking.

Mention Detection

The mention detection metric is calculated using the F1 score of the exact match

of the span boundaries. In a system which first detects mentions before linking what is

found, the recall of mentions is a more important metric to optimize, as the subsequent

linking or clustering model can filter out false positives but would not rediscover false

negatives.
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CoNLL 2012 Clustering Metrics

There are three metrics for evaluating the links and clusters, and the standard

approach suggested by the CoNLL 2012 shared task (Pradhan et al., 2012) is to

report the unweighted average of the three metrics. Following prior convention, we let

K = {k1, ..., kCk
} be the set of Ck keys (i.e. gold) clusters and R = {r1, ..., rCr} be the

set of Cr response (predicted) clusters. These metrics are not perfect (Moosavi and

Strube, 2016); in fact, perhaps the only reason they continue to be used is because it

is the easiest way to compare against prior work, such as those shown in Table 2.6.

The MUC (Vilain et al., 1995) metric aims to capture the accuracy of the

predictions in terms of link edit distance, i.e. how many links need to be added or

removed between R and K. For a cluster ki ∈ K, let pR(ki) be the set of clusters in

R such that they “partition” ki with elements not in R treated as singletons, i.e.

pR(ki) = {rj ∈ R | rj ∩ ki ̸= ∅} ∪ {{ki} | ki ̸∈
⋃︂
rj∈R

rj}. (2.1)

Then, the MUC recall metric is defined as

MUCrecall =
∑︂
ki∈K

|ki| − |pR(ki)|
|ki| − 1

. (2.2)

As an example, if a key cluster ki = {A,B,C,D} were split into r1 = {A,B}, r2 =

{C,D,E} in the response, it would only take one link edit to merge r1 and r2, hence,

the numerator is only one smaller than the denominator.
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Furthermore, this metric only measures recall. Precision is computed by switching

the key and response, i.e.

MUCprecision =
∑︂
rj∈R

|rj| − |pK(ri)|
|rj| − 1

. (2.3)

This metric alone has several flaws (Bagga and Baldwin, 1998; Luo, 2005; Cai and

Strube, 2010; Moosavi and Strube, 2016). First, it incorrectly assigns importance

to links: a split of a size-2 cluster is deemed more harmful than the split of the

largest cluster, while an overmerge of two singletons is also more harmful to the metric

than merging the two largest clusters. Yet, for most applications, we would expect

predictions related to the largest clusters to be more critical. Second, it can be easily

gamed by overmerging, as recall would be perfect and precision would only be slightly

affected since there are not too many links that would need to be broken. Also, this

metric does correctly account for singleton clusters as there are no links in singleton

clusters. However, accurate scoring of singleton clusters is valuable for almost all

datasets.

B3 (Bagga and Baldwin, 1998) address some of the problems of MUC by accounting

for cluster size. Rather than computing an aggregate recall based on the number

of links in each cluster of the key, this metric computes the precision and recall per

mention of the key, which now better takes into account entity size. In particular, the

mention recall for a particular mention mi is
|R(mi)∩K(mi)|

|K(mi)| , where R(mi) and K(mi)

corresponds to the clusters containing mi. Furthermore, this is averaged across all
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mentions,

B3
recall =

∑︂
ki∈K

∑︂
mj∈ki

1

ki

|R(mi) ∩K(mi)|
|K(mi)|

(2.4)

=

∑︁
ki∈K

∑︁
rj∈R

∑︁
mj∈rj∩ki

|ri∩kj |
|kj |∑︁

ki∈K |ki|
(2.5)

=

∑︁
ki∈K

∑︁
rj∈R

|ri∩kj |2
|kj |∑︁

ki∈K |ki|
(2.6)

This further rewards larger clusters. As a concrete example, suppose a cluster of

size 2n could be split into two clusters of n each or into two clusters of 2n− 1 and 1.

Under MUC, this would have the same recall of 2n−2
2n−1

. However, under B3, there is

substantially more error in the former split than the latter.9 Like MUC, B3 precision

is computed by swapping K and R.

However, there are still some issues unresolved by B3. Like MUC, if a response

decides to merge all clusters into a single cluster (or treat them all separately as

singletons), the metric will yield perfect recall or precision.

CEAFϕ4 (Luo, 2005) argues that the counterintuitive precision and recall from

MUC and B3 arise from the reliance on intersection between the key and response

clusters. They address this by instead computing an alignment between the key and

response clusters first by finding an optimal bipartite matching where edges are scored

9The former would have 0.5 while the latter would have a higher value of 1− 1
n + 1

2n2 .
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using the Dice similarity function, ϕ4(Ki, Rj) =
2|Ki∩Rj |
|Ki|+|Rj | .

10

After aligning each k to g∗(ki) ∈ R, the recall can be computed by comparing

against the optimal matching (scoring K with itself), and precision is computed by

swapping K and R, as before.

CEAFrecall =

∑︁
ki∈K ϕ(ki, g

∗(ki))∑︁
ki∈K ϕ(ki, ki)

(2.7)

One issue with this metric is that because each cluster is only aligned to one cluster,

correct predictions in a second cluster may be ignored in the recall computation and

penalized in the precision computation.

Other metrics

Other metrics have been proposed to further address the issues, although they

have not been widely adopted. These include BLANC (Recasens and Hovy, 2011) and

LEA (Moosavi and Strube, 2016), which offer some improvements around singletons

and further balancing the importance of cluster sizes. However, with the CoNLL 2012

shared task implementing and releasing and official scorer averaging MUC, B3, and

CEAFe (Pradhan et al., 2012), most recent research in coreference resolution has

reported on the average of these three metrics, and it has become the de facto standard

metric used for comparing subsequent research. Despite the widespread adoption,

10This is also known as the entity-based CEAF. There is a less commonly-used mention-based
CEAF with ϕ3(Ki, Rj) = |Ki ∩Rj |.
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these metrics all depend on an exact boundary match, which may not generalize well

to all languages.

2.3.2 Qualitative Analysis

In addition to quantitative metrics, researchers also perform qualitative analysis

for learning about the errors made by their systems. Kummerfeld and Klein (2013)

introduce an automated method to analyze the error types (over-merging, over-splitting,

conflation). Subsequent work on coreference resolution has introduced their own set of

qualitative analysis. For example, Lee et al. (2017) look at longer spans, head words,

similar strings, and world knowledge, and Joshi et al. (2019) additionally analyze head

words, pronouns, and document length. Generally, the findings are model-dependent,

but doing this type of analysis helps us better understand where gains are coming

from when they are obtained, such as when increasing model size.

2.4 Automatic systems

Coreference resolution was classically treated as a syntactic task (e.g. Hobbs (1978)),

where the mention spans are provided along with the document and algorithms are

used on top of syntactic parses to resolve references. Many approaches therefore saw

boosts with the emergence of improved parsers. System development improved thanks

to these parsers, along with richer features like curated word lists. As one example of
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such system, I describe the multipass sieve (Raghunathan et al., 2010), which is the

culmination of several rich rule and feature-based systems and still has an influence

on models a decade later (Otmazgin et al., 2022). Then, I show how learned neural

features have replaced and simplified several of the rules while still maintaining a

pipeline-like system design.11

2.4.1 Sieve-based approach

The multi-pass sieve-based approach (Raghunathan et al., 2010) combines several

rules, features, and constraints from prior work into a single system. By starting

with high-precision rules (e.g. exact string match), the system makes easier decisions

first. As the rules are relaxed, precision is traded off for recall, leaving a final set

of predictions that is balanced between precision and recall. The final clusters are

formed using the transitive closure of all pairwise links.

The rules take advantage of a variety of syntactic constraints and features,

reproduced in Table 2.5, along with the effect of each additional pass on pairwise

precision and recall. These passes take advantage of syntactic parses, head-finding

rules, relative parse tree structure, NER labels, and other curated or mined lexical

resources for acronyms, demonyms, stop words, gender, and animacy. One feature

11See Elango (2006), Clark and González-Brenes (2008), and Ng (2010) for more comprehensive
surveys of methods and datasets at that time. In particular, there were many supervised models
prior to the multipass sieve system rooted in machine learning models like SVMs or log-linear models.
While they involved learning, they did not use learned representations (Luo et al., 2004; Rahman
and Ng, 2009; Durrett et al., 2013), which I discuss in Section 2.4.2.
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they exclude is using semantic head matching (Haghighi and Klein, 2009), which relies

on additional mined semantic constraints. Each pass uses a subset of these features

to generate rules for new links in the coreference clusters. As a result, each pass

lowers precision while improving recall, and the full sieve results in a balance between

both. One modern drawback is that the system cannot easily learn from data, and

therefore is fully deterministic across datasets. Yet because of this determinism, it

has predictable behavior across datasets.

2.4.2 Learned features

With advances in statistical modeling and neural methods, features used in

coreference resolution shifted to being learned instead. This gives scoring or ranking

functions between mentions access to continuous and trainable information in addition

to binary (or discrete) rule-based features that were used previously, such as those in

the multipass sieve. For example, a combination of features can be learned to optimize

whether a text span is a mention and whether two mentions are coreferring (Wiseman

et al., 2015). Similarly, several models have made used entity-level, or global, features

that include features like cluster size or shape (Björkelund and Kuhn, 2014). These

features can also be learned with neural models, resulting in entity representations

(Wiseman et al., 2016; Clark and Manning, 2016b). Together, these improvements

using learned representations improved the state-of-the-art by over 3 F1 points.

However, these models were still focused on the scoring or ranking of mention-pairs

25



CHAPTER 2. COREFERENCE RESOLUTION

Pass Type Features P R Avg. F1

1 N exact extent match - - -

2 N, P appositive | predicate nominative | role appositive
| relative pronoun | acronym | demonym

97.5 42.6 58.6

3 N cluster head match & word inclusion & compatible
modifiers only & not-i-within-i

97.0 51.1 66.6

4 N cluster head match & word inclusion &
not-i-within-i

94.4 57.1 71.1

5 N cluster head match & compatible modifiers only &
not-i-within-i

93.6 58.3 71.5

6 N relaxed cluster head match & word inclusion &
not-i-within-i

92.4 59.1 72.0

7 P pronoun match 85.9 74.2 79.6

Table 2.5: This table, reproduced from Raghunathan et al. (2010), shows what rules
are used for each pass of the sieve and the average (MUC and B3) precision, recall,
and F1 on the ACE2004-ROTH-DEV set (Bengtson and Roth, 2008). “Type” refers
to the types of antecendents (Pronominal vs. Nominal) that are targeted by that
pass. The sieve targets initially high-precision rules and the later passes trade off
precision for recall, ultimately boosting F1. In pass 2, two of the constraints need to
be satisfied; these constraints are determined by syntactic parsers, acronym detection
algorithm, an Wikipedia demonyms. not-i-within-i refers to one NP not being a child
of another NP in the antecedent cluster. Pronouns are enforced by number, gender,
person, animacy, and entity type agreement.
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and cluster-pairs. Despite their claims that their models were end-to-end, they focus

on the easier linking version of the task, where mention boundaries are provided by a

different system. This setting is fair, and perhaps even common, for applications of

coreference resolution (discussed later in Chapter 3). However, the inability to jointly

learn the mention boundaries despite learned mention and entity representations led

to the current generation of end-to-end neural models.

2.5 End-to-end neural models

In the previous section, the methods described all have multiple steps. Typically,

they consist of mention detection, mention pair scoring or ranking, and subsequently

mention-entity clustering or ranking. Mentions are detected through a syntactic parser

(or rule-based system), mention pairs were scored using a mix of heuristics and learned

features. Formation of the clusters varied based on approach: some approaches used

a simple transitive closure while others used global features based on the full entity

cluster.

Lee et al. (2017) combine all steps into a single end-to-end model (e2e). They

introduce an approach which combines the first two steps by relying on text span

representations, while they take the transitive closure to determine the full clusters.

By directly learning high-dimensional span embeddings that are used both for mention

detection and linking, this approach was found to be more effective than the pipeline
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approach. This foundational model in discussed in more detail in Section 2.5.1.

With the introduction of the end-to-end model, research on neural coreference

models has diverged into several directions as to improve the model’s technical

foundations, address some architectural limitations, and “catch up” to relevant

pre-neural work. Section 2.5.2 discusses 1) extensions of the original model by

improving the mention detection, linking, and clustering algorithms; 2) limitations of

the end-to-end model adaptations to accommodate larger inputs; 3) an approach that

revisits the notion of “span” and argues instead for word-level (and therefore smaller)

embedding sizes.

2.5.1 End-to-end (e2e) model

Lee et al. (2017) introduced the first end-to-end model (e2e) for coreference

resolution by jointly detecting mentions and coreference with a single objective. For

an input document D, the task is formulated as labeling each text span with either a

preceding text span or a non-span “dummy” label which indicates that the span is

not a mention. Doing so is sufficient to recover the full coreference clusters by using a

transitive closure between the predicted links. This process is illustrated in Figure 2.1

(reproduced from Lee et al. (2017)).

Formally, the model considers all spans up to a certain length, T , such that each

span is fully contained within a sentence. There are no additional syntactic constraints

on these spans. For each span i, the set of possible antecedents are all preceding spans,
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General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span
representation (g)
Span head (x̂)

Bidirectional
LSTM (x∗)

Word & character
embedding (x)

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ϵ) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2.1: These figures, reproduced from Lee et al. (2017), show the overall framework
of end-to-end neural coreference systems. First (top), text is encoded into span
representations, in this case, LSTMs are used. Next (bottom), span representations
are scored pairwise and against a dummy ϵ “span” which receives a fixed score of 0.
For each span representation, the best-scoring preceding span is its label.

which is denoted as Y(i) = {ϵ, 0, 1, ..., i− 1} where ϵ is “dummy” label. The goal is

to correctly predict the assignments yi, i.e. maximize the conditional probability of

P (y1, ...yN | D), which can be decomposed as

N∏︂
i=1

exp(s(i, yi))∑︁
y′∈Y(i) exp(s(i, y

′))
(2.8)
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The scoring function is further decomposed to include a mention scoring function,

sm, and a pairwise scoring function, sa. For non-dummy spans s(i, j) = sm(i)+sm(j)+

sa(i, j) while s(i, ϵ) = 0.

To score spans, the e2e model creates contextualized span and token

representations. To do so, each token is first embedded with the concatenation

of two word embeddings (Pennington et al., 2014; Turian et al., 2010), and a

bidirectional LSTM is used at the sentence level.12 Then, span representations are

formed by using an attention weighted “head” mechanism, and the final representation

gi = [xstart,xend,xhead, ϕ(i)] where ϕ is an embedding based on the size of i.

With span representations defined, both sm and sa can be defined,

sm(i) = WmFFNNm(gi) (2.9)

sa(i, j) = WaFFNNa([gi,gj,gi ◦ gj, ϕ(i, j)]), (2.10)

where ϕ(i, j) is a feature function capturing the distance between the two spans, the

document genre (of OntoNotes), and whether i and j were spoken by the same speaker.

To train the model, the log-likelihood of the antecedents for each span is maximized,

Because there are multiple correct antecedents, the probability of all antecedents are

maximized.

12Later adaptations of the e2e model would instead use contextualized encoders, typically a
pretrained language model, like Peters et al. (2018).
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Lcoref = − log
N∏︂
i=1

∑︂
ŷ∈Y(i)∩Gold(i)

P (ŷ) (2.11)

Because the objective is fully differentiable, all parameters can be trained with

backpropagation. Note that the mention scorer is implicitly learned as it receives

training signal from the final objective; there is no auxiliary signal to encourage “good”

mentions or heads.

Finally, some of the hyperparameters are carefully chosen to keep the model

tractable on a single GPU. First, only spans up to a certain length, L, are considered

initially. Second, these spans are pruned to keep the top λ|D| total spans (where

λ = 0.4), and finally, only the most recent K antecedents are considered. Implicitly,

this encodes some biases about the size of spans, frequency of mentions, and selectional

constraints.

As highlighted in Table 2.6, this approach substantially outperformed previous

methods. However, there were still several limitations of this work, which subsequent

work explored:

1. Addressing the artificial constraints used to keep the model tractable on a single

GPU.

2. Better methods (than transitive closure) for decoding pairwise scores into clusters.

3. What happened to the semantic and syntactic agreement constraints that were

relied on in prior work?
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4. Extensions of the model to datasets with singleton clusters.

2.5.2 Variations of neural end-to-end models

Due to the success of the new model and approach, the e2e model raised several

questions that were answered by subsequent work, leading up to the present day. This

section discusses several of the variations.

Using a coarse-to-fine pairwise scorer

In OntoNotes, there are spans of text that are longer than the maximum length

of L = 10 specified in the e2e model. However, increasing the length of spans under

consideration also increases the total number of spans, which causes the number

of candidate antecedents per span, K, to be reduced. In the e2e model, K is the

determined to be the most recent preceding spans. By reducing K, the model would

limit the distance between mentions. Lee et al. (2018) propose an adjustment by using

a coarse scorer to determine K. Instead of selecting K by recency, a bilinear coarse

scorer, parameterized by the matrix Wc, is learned to inexpensively score between

the embeddings for spans i and j : sc(i, j) = g⊤
i Wcgj. The top-K scoring spans j are

chosen for each span i. These are then used by the fine scoring function, sa(i, j) from

e2e.
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“Their heads are gone, if it please your Majesty!” [the soldiers] shouted in reply.
“That’s right!” shouted the Queen. “Can [you] play croquet?”

[The soldiers] were silent, and looked at [Alice], as the question was evidently meant
for [her].

“Yes!” shouted [Alice].

Figure 2.2: In this dialogue from Caroll’s Alice’s Adventures in Wonderland, the
pairwise score of (the soldiers, you) is high, as that is who the Queen is speaking to.
In addition, because Alice responds, the score of (you, Alice) is also high. However,
(the soldiers, Alice) would get a low score. Higher-order inference aims to resolve
this puzzle.

Higher order inference

One of the types of mistakes that appeared preventable in the predictions made

by the e2e model was inconsistent clusters. Consider the example in Figure 2.2, two

pairwise predictions (A, B) and (B, C) may score positively given the local context,

but (A, C) would score negatively. As the cluster decoding is naively performed

greedily based on the pairwise scores (by taking argmax for each span), it is possible

to erroneously merge (A, C). Given the already-computed pairwise scores, it should

be possible to avoid these errors.

Lee et al. (2018) propose higher-order inference to address the issue of global

coherence. They introduce a span refinement method which updates gi given its

current representation and the representation of its attended antecedent, which is

the weighted sum of antecedent embeddings by their probabilities, P (y). Kantor and

Globerson (2019) simplify the process further by treating each embedding as the sum

of its antecedents. Xu and Choi (2020) propose clustering methods of span refinement

where the mention representation is updated to be an interpolation between the
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original embedding and an attended entity embedding. Span refinement is a process

that can be iterated, resulting in updated representations gn
i for each span i on

iteration n.

However, Xu and Choi (2020) also find that higher-order inference may have a

fairly small effect in resolving the inconsistencies, as many of them appear to be

resolved through improved contextualized representations. It is also possible that the

hardest instances presented, like in Figure 2.2, are rare in OntoNotes 5.0 but more

common in other domains or languages.13

Contextualized embeddings and neural scorers

In line with the adoption of pretrained language models for encoding text (see

survey by myself and coauthors (Xia et al., 2020b)), improved contextualized text

representations have also boosted performance of coreference resolution models and are

one of the most significant contributors to performance gains in the last several years.

By replacing the word embeddings and sentence-level LSTM with ELMo (Lee et al.,

2018), BERT (Joshi et al., 2019), SpanBERT (Joshi et al., 2020), and LongFormer

(Beltagy et al., 2020), performance on OntoNotes 5.0 has improved significantly despite

minimal changes in model architecture. In particular, the LongFormer architecture

13While cases like Figure 2.2 are rare and occasionally intentionally ambiguous, e.g. to build
suspense, systems that perform poorly and over-rely on proximity, exact string match, and other
person or gender heuristics may even fail on example (3) from Section 2.1. Even a few errors of
this type can have a large impact, especially for large clusters or in longer texts. In this example,
if hersumire? incorrectly selects Miu, then the subsequent hersumire and all future instances may
become conflated with Miu, essentially merging two clusters that should be distinct.
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has allowed the models to tractably handle longer documents, like LitBank, without

artificially limiting the context size (Toshniwal et al., 2020b). Part of the strength of

the larger pretrained models comes from their pretraining strategies, which consumes

text that is orders of magnitude larger than what is available in coreference corpora.

This leads to gains in difficult semantic situations, where world knowledge might be

useful.

Another area of improvement is the neural scorer. In the e2e model, the pairwise

scoring function is fairly simple, consisting of a single network that takes as input

the concatenation of the start embedding, end embedding, an attention-weighted

head word, and relatively simple features. Wu et al. (2020) reframed the coreference

resolution task as a question-answering (QA) task. In particular, to compute the

pairwise probability P (i → j), they predict the probability span j is the answer to

a query regarding i. This is a considerably more expensive step as it requires rules

to set up the query and expensive memory usage and inference time to compute the

scores. However, it yields better performance and is the best-performing model on

OntoNotes 5.0 to date. Furthermore, this model uses auxiliary QA data for additional

training. Nonetheless, due to its cost and difficulty of reproducibility, the QA-style

neural scorer has not been an active area of research.
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Singletons

The field of coreference resolution, around 2013-2020, has over-relied on a single

dataset: OntoNotes. While OntoNotes 5.0 covers multiple languages and domains, its

fundamental flaw is that singletons, or clusters of size 1, are not annotated. This means

that the models that are developed, like e2e, are incapable of predicting singletons.

This was less an issue when mention detection and clustering were pipelined, as the

unlinked mentions could be treated as singletons. However, with end-to-end models,

it is less clear that “high-scoring” unlinked mentions are necessarily singletons, and in

fact I explore this further in Chapter 3.

Several works attempt to address this issue by including mention classification

as an auxiliary objective and observe that it results in minor improvements (Zhang

et al., 2018a; Swayamdipta et al., 2018). In particular, ifM is the set of mentions

kept by the mention pruning step and m∗
i is the correct label for mi (either it is a

valid mention (1) or it is not (0)), we can write the probability that mi is correctly

predicted as,

P (m∗
i ) = m∗

i (sigmoid(sm(i))) + (1−m∗
i )(1− sigmoid(sm(i))) (2.12)
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Then, the new loss resembles

Ljoint = αcLcoref + αmLmentions (2.13)

= −αc log
N∏︂
i=1

∑︂
ŷ∈Y(i)∩Gold(i)

P (ŷ)− αm log
∏︂

mi∈M

P (m∗
i ), (2.14)

for some tuneable hyperparameters αc, αm. However, this method was initially only

investigated with the OntoNotes 5.0 dataset. Subsequent work has explored this type

of auxiliary objective for other datasets and it is now a standard way of detecting and

separately predicting singleton clusters (Xu and Choi, 2020; Toshniwal et al., 2020a;

Toshniwal et al., 2021; Xia and Van Durme, 2021). In Section 4.2, a more rigorous

treatment of singletons, in the context of the model used throughout this thesis, is

presented.

Incremental models

One limitation not addressed by the prior models is the case where documents are

too long. This leads to two issues: 1) The encoder cannot use the full context to encode

tokens; and 2) As n increases, the memory usage of the model also increases linearly.

Both of these issues can be addressed by taking an incremental approach (Webster and

Curran, 2014). In the incremental approach, entity clusters are formed while the model

is processing each sentence. They argue that this is psycholinguistically motivated, as

reading order in discourse is typically sufficient to disambiguate references. Concretely,
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the method assumes a set of named entities and noun phrases extracted from the

document. Then, for each mention, the algorithm finds the best existing cluster

(including a new cluster) that it should link to. Their scoring function between mention

and cluster is determined by rich discourse, like syntax and semantics (Raghunathan

et al., 2010), and stack features, like depth.

This approach has been neuralized in an end-to-end manner where the mentions

are detected using the mechanism from the e2e model and the mention-cluster pairs

are scored via a learned neural scorer (Xia et al., 2020a; Toshniwal et al., 2020b; Yu

et al., 2020b). This model is discussed in more detail in Chapter 4. The result of this

approach is that the model can accommodate much longer, book-length, documents in

constant memory and subsequently, has led to improvements on datasets with longer

documents, like LitBank. There has also been recent extensions to the online setting,

which is common in dialogue (Xu and Choi, 2022; Xia and Van Durme, 2022).

Revisiting Heuristics

As contextualized models have improved, there has been a resurgence of word-level

models that revisit some of the pre-neural heuristics. Lee et al. (2017, e2e) softened

the notion of “head words” within each mention span by using an attention-weighted

span representation. This contrasts with prior work, such as Bengtson and Roth (2008),

which found success in first predicting head words, before subsequently computing the

extent of the syntactic span. Many of the features used in that system hinged on the
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head word. While the neural span-based methods were initially better, recent work

has revisited the idea of word-level models. For example, Dobrovolskii (2021) takes an

approach almost identical to Bengtson and Roth (2008), except it uses modern neural

models and pretrained language models. Kirstain et al. (2021) place importance only

on the span boundary tokens rather than the full span. These models both discard the

attention-weighted span representation, and as a result, these word-based approaches

significantly reduce the size of a mention representation. They both demonstrate

superior performance to the comparable span-based models.

Recently, Jiang and Cohn (2021) and Jiang and Cohn (2022) have found that

providing the models with additional syntax or semantic supervision via parse trees

and semantic roles during training can lead to additional improvements, mirroring

prior work on joint modeling, like Durrett and Klein (2014). The drawback to these

methods is the reliance on gold syntactic and semantic supervision at training time.

This is rarely available, and it is unclear whether the gains observed transfer to new

domains.

2.6 Remarks

What is state-of-the-art?

Table 2.6 shows reported claims for state-of-the-art models over the last several

years. Currently, the state-of-the-art model is Wu et al. (2020), reporting a score
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of 83.1 on OntoNotes 5.0. A standing record for over 2 years is unusual in the

modern NLP landscape. However, due to the cost of that model, most research in

coreference resolution iterates on the coarse-to-fine (c2f) model with SpanBERT

encoder (Lee et al., 2018; Joshi et al., 2020; Xu and Choi, 2020). These have

yielded small improvements as a result of better features and heuristics, or perhaps

better hyperparameter search and engineering, and closing the gap while maintaining

relatively light, single-GPU models. There are now multiple models that feature

improvements over the c2f SpanBERT model, yet no attempt to assemble the lessons

learned from each method into a single model. Are the gains derived from these works

complementary or overlapping?

The original OntoNotes dataset is two-way annotated, although the report only

mentions inter-annotator MUC score for various genres. Meanwhile, the MUC score

of the best systems are beginning to approach those agreement scores, and so another

area to explore is a better understanding of the human baselines and how they compare

to model predictions.

While work continues on OntoNotes 5.0 and closes the gap towards Wu et al. (2020)

and human baselines, the focus in this thesis is on efficient and practical approaches

for applying coreference resolution as part of a larger system. To this end, improving

the state-of-the-art is not the focus; catching up on what was left behind is. Chapter 3

describes a few case studies motivating the need for efficient methods.
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Model
(contribution)

Type MUC B3 CEAFϕ4

P R F1 P R F1 P R F1 Avg. F1

Pradhan et al.
(2012)

human 83.2-96.0 - - - - - - - - -

Jiang and Cohn
(2022)

syntax 87.3 87.1 87.2 81.1 80.9 81.0 78.8 77.2 78.0 82.1

Jiang and Cohn
(2021)

syntax 87.2 86.7 87.0 81.1 80.5 80.8 78.6 77.0 77.8 81.8

Dobrovolskii
(2021)

word 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0

Kirstain et al.
(2021)

word 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3

Wu et al. (2020) QA 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1
Xu and Choi
(2020)

hoi 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2

Joshi et al. (2020) PLM 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Joshi et al. (2019) PLM 84.6 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
Kantor and
Globerson (2019)

hoi 82.6 84.1 83.4 73.3 76.2 74.7 72.4 71.1 71.8 76.6

Lee et al. (2018) hoi, PLM 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
Lee et al. (2017) e2e 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Clark and
Manning (2016b)

LF 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Wiseman et al.
(2016)

LF 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

Table 2.6: Claims of state of the art results on OntoNotes 5.0 (which is the CoNLL-2012
shared task), starting around 2015 with a few pipeline models followed by the e2e
models and several of its variations. LF = learned features; e2e = end-to-end; hoi
= higher order inference; PLM = pretrained language models or encoders; QA =
question answering reformulation; word = word-based models; syntax = incorporating
gold syntactic annotations at training.
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Imprecise task definition

As discussed in Section 2.1, there are many definitions for the coreference task

depending on the specific phenomena of interest. However, the most common

benchmark is OntoNotes, which is also one of the harder-to-use English datasets

because it lacks singletons. As a result, models trained on OntoNotes are good at

answering “which spans corefer?” but perform poorly at the task to completely

“find all the entities.” The mismatch leads to inconsistent datasets and part of the

contribution of this work is to provide methods to unify and leverage multiple, different

datasets, as discussed in Chapter 5.

Pipeline and end-to-end approaches

Among the contributions of the e2e model is its decision to omit the use of a

syntactic parser or NER model. In fact, they find that using parser-predicted spans

hurts performance. This follows a general trend within NLP of favoring fully end-to-end

approaches. While there are some efforts in bringing back syntax into coreference

resolution models, until recently, they have only seen limited success (Swayamdipta

et al., 2018; Jiang and Cohn, 2021). Furthermore, this has not led to the return to

pipeline systems for achieving state of the art performance on OntoNotes.

On the other hand, taking a pipeline approach is still a core component of proposing

mentions for annotation purposes, as manually selecting span boundaries is a fairly
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expensive process, and a pipeline approach can be better tuned to fit the specifications

of the downstream task. Furthermore, Chapter 3 discusses downstream applications

consisting of model pipelines, where another system is first run to extract mentions

(e.g. semantic arguments, protein names, literary characters) and for those settings,

we should still be interested in the pipeline setting by reporting metrics with gold

mentions or disentangling mention detection and linking (Wu and Gardner, 2021).

As a probe for language understanding

Coreference resolution has also been included as a standard “task” in several

probing benchmarks for language models and language understanding, as highlighted

in Table 2.4. While many NLU challenges can be accurately cast into coreference

resolution, they are not representative of the natural distribution of coreference.

Furthermore, these datasets usually assume or provide mention boundaries are used

for binary classification. Thus, from the lens of probing, coreference resolution is

viewed as a semantic task, and challenges lie primarily in real-world understanding

(Tenney et al., 2019b). Researchers have used these datasets to draw conclusions

about pretrained language models. They find that the more recent, larger language

models have an improved ability for common sense reasoning, under the Winograd

Challenge, while they are also appear better at avoiding gender biases (Tenney et al.,

2019a; Wang et al., 2019b; Raffel et al., 2020; Brown et al., 2020a). On the other hand,

from the perspective of coreference resolution, the probing benchmarks are artificial

43



CHAPTER 2. COREFERENCE RESOLUTION

and rarely studied or used to evaluate coreference resolution models, with GAP being

the primary dataset that is explored (Joshi et al., 2019; Kirstain et al., 2021).

Cross-document coreference resolution

While the scope of this dissertation does not extend to cross-document coreference

resolution, this task, at the surface, shares many similarities with within-document

coreference resolution described in this chapter. This section briefly contrasts

the methods and challenges between cross-document coreference resolution and

single-document coreference resolution; Bugert et al. (2021) gives a more comprehensive

overview of recent methods and datasets.

In particular, many underlying models extend from the e2e model in terms

of mention detection, scoring, and clustering. Furthermore, some of these models

have also recently transitioned to sequential or incremental models, similarly citing

efficiency concerns (Allaway et al., 2021). Furthermore, they have also seen significant

improvement in performance when switching to a cross-document pretrained language

model (Cattan et al., 2021a).

A major difference between the two tasks is how the dataset is typically annotated.

The datasets used for cross-document coreference resolution are grouped by topic

and subtopic. While the mix of topics aims to make topic matching harder, simple

clustering methods in preprocessing can completely disentangle the topic clusters

and coreference resolution can subsequently be performed between document pairs
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with known shared entities or events. Another difference is that not all mentions

are annotated in the cross-document dataset, pronouns are rarer while events are

typically annotated. This means that without gold mention boundaries, prediction on

these datasets are inconsistent and incomparable. Neural cross-document coreference

resolution, especially datasets to support it, in the academic setting still lags behind

those of within-document coreference resolution, despite the wide potential industrial

applications.
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Motivation: Coreference resolution

in practice
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This chapter describes two case studies. One (Section 3.1) is a mildly negative

result regarding pipeline coreference resolution models, where separating mention

detection from coreference linking and training a pipeline hurts performance. On the

other hand, Section 3.2 describes several real-world applications that precisely require

a pipeline system due to domain or language changes. These studies motivate the

remainder of the thesis, especially looking towards using coreference resolution models

in practice.

3.1 Recovering Singletons

Note

This section discusses an attempt to reconstruct singleton clusters from OntoNotes

5.0, with the goal of showing that doing so will improve performance on OntoNotes

5.0 itself. This study was conducted in 2018, and so the state-of-the-art model at

the time was by Lee et al. (2018) with ELMo (Peters et al., 2018) or BERT (Devlin

et al., 2019). This model is described in more detail in Section 2.5.2. The work was

written up as “Singletons Matter: Complete Span-based Entity Mention

Detection and Coreference Resolution”,1 although it was never published due

to the relatively weak empirical results. Certainly, it was not as strong as our later

1This work was performed with Ryan Culkin and advised by Benjamin Van Durme. Ryan worked
on constructing the recovered spans while Ben advised the project.
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work in Toshniwal et al. (2021), where we again reconstructed singleton clusters and

named them “pseudo-singletons.” In that work, we found that training with additional

(predicted) (pseudo-)singletons can improve generalizability across datasets and also

lead to a 1.1 F1 improvement on OntoNotes.

3.1.1 Abstract

This study presents a span-based neural model for noun-like mention detection

and coreference resolution. One component directly optimizes for detecting mentions

by augmenting training data with additional, syntactically derived singleton mentions

from gold annotations, while another is trained on coreference linking. The pipeline

performs comparably to the state of the art on OntoNotes, while outperforming it in

predicting these mentions. While coreference resolution is fundamentally a clustering

task, practical uses of models for the task desire high recall predictions of all mentions,

including singletons, that can be referred to.

3.1.2 Background

As discussed in Section 2.1, in-document coreference resolution is the task of

linking textual mentions of the same entity or event to each other within the same

discourse. In the pipelined approach (Section 2.4), the mentions are first discovered

(Raghunathan et al., 2010; Durrett and Klein, 2013) and subsequently linked or
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(1): Hong Kong Wetland Park, which is currently under construction, is also
one of the designated new projects of the Hong Kong for advancing the tourism
industry.
(2A): This is a park intimately connected with nature, being built by the Hong Kong
government ...
(2B): Hong Kong Disneyland, opening next year, is yet another one of these projects.

Figure 3.1: (1) contains two entity mentions, either of which could reasonably be
referred to later in the discourse: (2A,B) are both plausible continuations. In
OntoNotes, (2A) is the true subsequent sentence, and thus the orange mentions are
both annotated, while the violet mention in (1) is a singleton referrent, and therefore
unannotated in the dataset.

clustered using pairwise scorers and global features (Wiseman et al., 2016; Clark and

Manning, 2016a; Clark and Manning, 2016b). These steps can be jointly combined

in an end-to-end model which ranks candidate mentions and links them (Lee et al.,

2017). Since a mention without links, or a singleton mention or cluster, is not related

to any other mention in the text, they are ignored in the most commonly-used dataset

(OntoNotes) and even in one of the metrics (MUC) for the task.

For systems relying on coreference resolution predictions, the ignored singleton

clusters (mentions) are useful as they can be linked to either future mentions that the

system has yet to see (if the data is streaming)2 or to known entities from a knowledge

base. Figure 3.1 shows an example of two entities, the park and the projects , that

a downstream system may need to track. However, coreference resolution datasets,

like OntoNotes, are not typically exhaustively annotated for mentions. In the example,

only one span of the park is annotated in the data, leaving the projects ignored

or possibly treated as negative example of a span. This leads to models that are

2Chapter 4 is focused exactly on this streaming scenario.
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trained on weak signal and partial annotations that are unable to use or predict these

singleton mentions, if needed later. As a result, coreference models can have either

low precision in matching syntactic constituents or low recall in extracting referable

mentions, depending on how spans are extracted.

OntoNotes 5.0 coreference resolution annotations

The most commonly used and widely annotated benchmark for document

coreference resolution is OntoNotes 5.0 (Pradhan et al., 2013; Weischedel et al., 2013),

which consists of documents spanning multiple genres: news broadcasts, newswire,

phone calls, and religious texts. Further, it is heavily annotated with gold syntactic

parses, named entity types, coreference clusters, word senses and propositions. These

rich annotations and size of the dataset3 make it an attractive choice for training

information extraction systems.

However, systems trained on OntoNotes will obtain the idiosyncrasies present in

OntoNotes. In particular, only coreference links are annotated and so not all mentions

are labeled (Figure 3.1). On the other hand, high recall systems for knowledge base

generation or entity linking will expect exhaustive annotation of entities from the

document. While it is possible to use rule-based systems to generate the mentions

(Raghunathan et al., 2010; Durrett and Klein, 2013), surprisingly, they perform

worse than the nonexhaustive annotations when used to train an end-to-end neural

3The English training, development, and test splits contain 2802, 343, and 348 annotated
documents respectively.
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coreference resolution system (Lee et al., 2017).

Span-based neural models

Vector-based span representations gained attention due to their contribution to

performance in models for coreference resolution (Lee et al., 2017), semantic role

labeling (He et al., 2018), semantic parsing (Peng et al., 2018), and knowledge graph

extraction (Luan et al., 2018), and probing (Tenney et al., 2019b).

Most closely related to this work, Swayamdipta et al. (2018) effectively make use

of syntactic annotations for both semantic role labeling and coreference resolution in

a non-ELMo setting. However, they do not report the performance on the auxiliary

span classification task or whether the knowledge was still retained by the end of

training. Relative to that work, this study asks whether it is possible to for a model

to retain its syntactic scaffold at inference.

Mention detection

Mention detection, along with named entity detection, is often presented as

sequence tagging problem with a neural CRF-based tagger (Lample et al., 2016). Xu

et al. (2017) addressed the case where named entities (and noun-like mentions) are

nested (e.g. “[University of [[Toronto]]”) by using a span-based approach and showed

that it was competitive with sequence labeling techniques.

This study also takes a span-based approach for both exhaustively recovering
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unannotated mentions because of the nested nature which can also occur in tasks

like coreference resolution. For this task specifically, Hong Kong , Hong Kong

Wetland Park , and Hong Kong Wetland Park, which is currently under

construction from Figure 3.1 are all referable by pronouns. Downstream systems

such as entity linkers need the ability to treat each of these mentions separately, and

completeness is valuable. Section 3.2 discusses a system for which this was the case

(Chen et al., 2019).

Baseline model

The baseline model is the c2f model described in Section 2.5.2 (Lee et al., 2017;

Lee et al., 2018). Recall that this which consists of a two-step beam search. First

all spans are scored and ranked, keeping the top k. Next, spans are scored pairwise

and the top c possible antecedents for each of the k spans are re-scored. Notably, the

learning objective does not assign loss to mentions that are not in the top k or make

a distinction between singletons and non-mentions.

Zhang et al. (2018a) attempts to address this issue with a binary cross-entropy loss

for gold mention detection. However, this objective still incorrectly penalizes singleton

mentions. Furthermore, analysis of the baseline model showed that longer spans,

which are rare in data, are also less frequently proper syntactic constituents than

shorter spans (Lee et al., 2017). Both the scarcity of long spans and incorrect penalties

in training objective motivate an exhaustive span-based approach for computing a
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loss for all noun-like mentions rather than just gold mentions.

3.1.3 Augmenting Mention Annotations

Since the OntoNotes dataset is not annotated for singleton mentions, we develop a

simple method to automatically extract noun-like expressions from several OntoNotes

annotation layers, effectively augmenting OntoNotes with the missing singleton

mentions. In this procedure, we extract all the noun phrases (NPs) and possessive

pronouns4 from the gold constituency parses, extract named entities from the named

entity annotation layer, and then union the resulting recovered spans (r-spans). Note

that in other works, noun phrases and possessives are always considered markable even

if they are non-referential (Pradhan et al., 2007; Poesio and Artstein, 2008). While

using gold named entities is unrealistic for most datasets, it is not far from other work

which also assumes gold non-syntactic information, like semantic roles, at training

(Jiang and Cohn, 2021).

Table 3.1 reports precision and recall for several r-span configurations; the final

configuration achieves 97.73% recall and 32.24% of OntoNotes coreference cluster spans

using an exact-match scoring protocol. The high recall functions as a sanity check –

this method recovers virtually all of the non-singleton spans – while the low precision

4Other phrase- and word-level tag types (e.g. singular or plural noun, wh-pronouns, etc.) were
found to almost always (1) overlap with an identical NP span or (2) overgenerate – e.g. For “the
hype” (a NP), “hype” should not be included; NP is a reasonable level of abstraction that picks out
text spans likely to be referred to by a pronoun. We include possessive pronouns because they are
largely disjoint from NPs.
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Configuration P. R.

NPs only 32.21% 86.83%
+ Possessive pronouns 34.16% 95.34%
+ Named entities 32.24% 97.73%

Table 3.1: Precision and recall of several r-span configurations treating OntoNotes
coreference cluster spans as ground truth.

indicates that we recover missing singleton spans. Upon manual inspection, virtually

all of the false negatives (2.27%) are events, which is expected since verb-like phrases

are not extracted even though they are present in the dataset. The false positives are

mentions by definition; they are either NPs, possessive pronouns, or named entities,

all of which should be considered markable and belonging to a singleton.5

Previous work (Haghighi and Klein, 2010; Kummerfeld et al., 2011) has addressed

the issue of missing singletons and made use of a similar procedure to recover

missing singleton spans, with some important differences. First, where our approach

considers all NPs (including nested NPs), prior work only considers the maximal NP

projection. For example, given “The government in Hong Kong”, we would recover

“The government”, “Hong Kong”, and “The government in Hong Kong”, whereas prior

work would only recover the single maximal phrase. This is needed to be complete in

collecting mentions.

Second, we include gold named entity annotations because they capture additional

noun-like expressions that are not represented in the constituency parses, perhaps

5In retrospect, these could also contain non-referential NPs, and one flaw of this recipe is that
these were not identified or filtered those out.
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owing to quirks or errors in the annotations. Without named entity spans, i.e. with

only the spans derived from the constituency parses, we recall 95.34% of the OntoNotes

coreference cluster spans; adding named entity spans increases recall 2.39 percentage

points to 97.73%.

Finally, whereas previous work in pipeline models use the Berkeley parser (Petrov

et al., 2006) to obtain automatic parses and then used those as the base for extraction,

we used gold constituency parses, so the resulting extracted spans are of higher quality.

3.1.4 Experiments and Results

The augmented dataset can be used in several experiments. The baseline end-to-end

model is from Lee et al. (2018), discussed in Section 3.1.2. To accommodate the

mention detection task, a binary cross-entropy loss was used in a multitask setting on

all possible spans, following Zhang et al. (2018a). We sample each task at a rate λtask.
6

To extract mentions, including singletons, from the baseline model, the scores of the

top spans in the first beam are used. Both a fixed score threshold and a span-ranking

approach was attempted to determine the top k candidate mentions to be considered

for clustering. For training, a burn-in period of 20K iterations on mention detection

was applied to reduce early stage memory issues with a low score threshold, though

both the score threshold and burn-in did not have significant effects on performance

on the development set. Finally, I also train a baseline linking-only model purely on

6λmention = 0.05, λcoref. = 0.95 was determined to work best after a small search. Note that this
contrasts against subsequent work which use equal coefficients.
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Model r-spans Gold
P. R. F1 P. R.

Baseline 66.8 73.8 70.1 28.4 97.0
Multitask 81.4 96.4 88.3 26.6 97.4
MD 95.1 93.1 94.1 31.6 95.4

Table 3.2: Precision and recall for r-span and gold mention detection. MD is the
span-based single-task mention detector. Gold numbers show that the current models
all overgenerate candidate spans; the numbers are also comparable to Table 3.1.

the oracle spans, following the “w/ oracle mentions” model of Lee et al. (2017). All

other model parameters follow those from Lee et al. (2018).

Entity mention detection

Table 3.2 reports the precision and recall of the span predictions of the model after

the initial span-ranking step on both r-spans and gold coreference spans. While the

r-span F1s can be further tuned based on the number of desired candidate spans,7 for

fair comparison, I generate the same number8 for each model. Additionally, a model

trained only for mention detection is included for comparison. These results show that

the baseline model is insufficient in capturing noun-like mentions, while a multitask

one performs much closer to one trained on just noun-like mentions.

7This did not help for coreference resolution.
80.4 spans per token in the document.
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Coreference Resolution

Armed with an improved mention detector, I can now evaluate on the full

coreference resolution task.9 For the pipelined setup, each model uses the spans

predicted using the previous models: predicted baseline spans, predicted r-spans, gold

r-spans, and gold coref spans. These spans are used in lieu of the candidates generated

by each of the models (when both mention generation and linking models are the

same, it is equivalent to the end-to-end setup). The results in Table 3.3 primarily

highlight the usefulness of gold annotations and the strength of the baseline.

Note that the baseline model is robust to which mentions it receives. While it is

possible to improve it by providing gold or gold-derived mentions, the predicted spans

are not helpful. Similarly, the mention scorer of the baseline model is also apparently

strong, outperforming the end-to-end multitask model and even the gold r-spans in

the linking-only model. At the same time, note that the linking-only model is highly

reliant on having gold mentions, as even the gold-derived r-spans yield a precipitous

drop, especially in precision.

Also, these results suggest that optimizing for r-span F1 may not always lead to

performance gains in the pipelined setting, as the models with worse r-span F1 can

perform competitively in the coreference task. However, given perfect r-spans, the

state of the art can be improved (74.2 F1). With predicted r-spans, this study yields

a pipelined model for which the r-span F1 is high and coreference F1 is still near the

9The mentions predicted by just the mention detector yielded consistently lower performance,
and so are omitted from the table.
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Model MUC B3 CEAFϕ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg.

c2f (+ l) 82.0 79.2 80.6 72.8 68.7 70.7 68.7 66.7 67.7 73.0
c2f + r 82.4 78.8 80.5 73.2 68.0 70.5 69.4 65.6 67.4 72.8
c2f + rg 83.6 80.0 81.8 74.6 69.6 72.0 71.1 66.9 68.9 74.2
c2f + g 92.2 81.4 86.5 82.8 71.5 76.7 85.6 63.2 72.7 78.6

Multitask (+ r) 82.0 78.8 80.3 72.4 68.1 70.2 68.9 64.7 66.7 72.4
Multitask + l 81.6 79.1 80.3 71.9 68.7 70.3 68.7 65.2 66.9 72.5
Multitask + rg 82.9 79.5 81.2 73.0 69.1 71.0 70.2 65.0 67.5 73.2
Multitask + g 91.7 81.0 86.0 81.4 71.0 75.9 85.2 61.6 71.5 77.8

Linking (+ g) 93.5 92.1 92.8 85.8 84.6 85.2 88.3 80.9 84.5 87.5
Linking + l 41.3 77.0 53.7 33.7 66.7 44.8 27.7 67.9 39.4 46.0
Linking + r 29.6 73.8 42.3 22.4 62.8 33.1 20.8 59.0 30.8 35.4
Linking + rg 36.3 80.8 50.1 28.0 71.1 40.1 26.1 66.8 37.5 42.6

Table 3.3: Performance in a pipeline and multitask setting on the OntoNotes 5.0 test
set. Pipelined models (+) are given spans as input. l spans are from Lee et al. (2018);
r spans are from Multitask; rg are the gold r-spans derived from gold annotations; and
g are the gold coreference spans. A linking-only model does not train a mention scorer
for the first beam step. Nothing is bolded because most rows are not comparable as
some models use gold spans.

original baseline.

3.1.5 Discussion and weaknesses

This study attempted to move the spotlight back onto spans for coreference

resolution by showing that existing models are insufficient at predicting noun-like

mentions that are desired by downstream systems. A mention detector is trained

with a multitask objective and used in a pipelined coreference model; these variants

are compared to the existing state-of-the-art. While they do not improve on the

coreference resolution task itself, the method and model does make significant gains in
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detecting the noun-like mentions while still being comparable at coreference resolution.

Besides the original motivation (that singletons are useful), this study also

highlights, perhaps, the need for more adoption of datasets that do have singletons

annotated. In particular, there is likely a mismatch between the motivation behind

r-spans and the types of mentions present in OntoNotes, and that this incompatibility

means that improving r-span detection would not affect coreference linking. However,

there are now smaller, preexisting datasets with singletons, like PreCo (Chen et al.,

2018). Thus, this study could have seen more success with datasets that do contain

mentions more similar to r-spans. Indeed, this is what we later find in Toshniwal et al.

(2021), when training with the silver “pseudo”-singletons derived from an OntoNotes

mention detector (as opposed to the syntactically derived r-spans). Further, the

“multitask” training objective used in this study has since been used as a standard

method for modeling datasets with singletons both at training and inference (Xu and

Choi, 2020; Toshniwal et al., 2020a; Xia and Van Durme, 2021; Yuan et al., 2021).
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3.2 A coreference pipeline in information

extraction in practice

Note

This section describes a real-world application for coreference resolution. This is

work directly related to the DARPA AIDA program and tangentially related to the

DARPA KAIROS program. There are contributions towards two systems used for

the evaluations. One is towards a pipeline approach described in the previous section,

although it was retrained for non-English languages. The other contribution was a

(still pipeline) more optimized, multilingual approach to coreference in real-world

systems that was subsequently featured in a EACL 2021 Demo paper (Xia et al., 2021)

and described more in Section 5.1.

3.2.1 Streaming Multimedia Knowledge Base

Population (SM-KBP)

In the SM-KBP (2018, 2019, 2020) task,10 there are three tracks, or subtasks.

In-document knowledge extraction is the focus of the first task, where systems

must extract knowledge elements from a stream of English, Russian, and Ukrainian

10https://tac.nist.gov/2018/SM-KBP/index.html, https://tac.nist.gov/2019/
SM-KBP/index.html, https://tac.nist.gov/2020/KBP/SM-KBP/index.html
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documents. For each document, the goal is to produce a knowledge graph containing

the entities, events, relations, and their arguments. Naturally, one component of this

task is to perform coreference resolution so that the text spans are clustered into

(typed) entities that the events and relations can reference for their argument roles.

Furthermore, given the disparate tasks and lack of datasets with complete annotations

following the specific ontology for this task, training an end-to-end model is infeasible,

and a multi-module pipeline system was the engineering approach that we took.

Our first attempt (Xia et al., 2018) was a pipeline where coreference resolution was

run independently of the entity typing or the event and relation extraction. In this

system, the e2e (Lee et al., 2017) model is used on the raw text (or its translation).

Then, a fuzzy aligner merges predictions made by this model and those from the

entity typing and event/relation extraction models. Each entity cluster is assigned

an entity type based on the majority prediction, and these clusters are subsequently

treated as canonical entities participating in the events/relations and as the knowledge

elements in the document-level knowledge graph. Even in this setting, some documents

(over 5,000 tokens) cannot be processed due to memory constraints and need to be

(arbitrarily) split. Even though this accounts for fewer than 5% of the total number

of documents, it still called for specific, separate engineering and troubleshooting

to handle these rare cases. Furthermore, note that this coreference model does not

handle singletons. For this system, this was not detrimental, since unlinked mentions

found by the argument extraction models can be upgraded to their own entity element
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Knowledge Population Pipeline System
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Figure 3.2: This figure, reproduced from Chen et al. (2019), shows the overall system
for our team’s second submission to the SM-KBP task. Note that coreference resolution
(including Entity Mention Detection and Coreference Resolution) plays a tiny role
and is neither the first nor last model. Due to its intermediary role, the coreference
model may be optimised more for recall or precision. In this case, higher recall of
detected entity mentions is desired, if possible, because subsequent systems can filter
unused mentions.

in the knowledge graph.

In our second pipeline attempt (Chen et al., 2019), coreference resolution is still

an intermediate component of the full system, although it is additionally depended

upon for mention detection. Based on the findings of Section 3.1, we used the “c2f +
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r” approach as it leads to better F1 for mention detection at a relatively small cost

on the coreference metrics (-0.2 F1), as it was believed that r-spans were closer to the

types of spans in the corpus than the intermediate predictions from the end-to-end

model (“c2f + l”). This detects mentions first, which can be used for subsequent

entity typing models.

The SM-KBP document stream consists of documents in multiple languages. With

the rise of multilingual pretrained encoders like mBERT (Devlin et al., 2019) and

XLM-R (Conneau et al., 2020), a new approach was viable. Rather than forcing a

translation layer somewhere in the pipeline, we can instead train (the same) model

multilingually and rely on the strength of cross-lingual transfer. Nonetheless, the

remainder of the system (entity typing, argument linking, coreference) was still

dependent on separate models, and so a pipeline system is still necessary.

Our last attempt featured a multilingual coreference resolution model that uses

XLM-R, a pretrained multilingual encoder (Conneau et al., 2020).11 However, this was

focused on only the linking task, using initial spans and entity type predictions from

Lin et al. (2020). For this task, evaluation was not based on the typical coreference

resolution metrics. Instead, it was based on typed entity F1. We found that by

re-clustering (without retraining) and using a naive majority vote, we were able

to substantially improve scores over the baseline, which is an English-only system

(although the details are not available). In English, we improved from 40.39 to 42.81

11More details are in Section 5.1.2.
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(+2.42); in Russian, we improved from 26.2 to 33.25 (+7.05 F1), and in Spanish, we

improved from 21.73 to 24.79 (+3.06). Note that our model did have access to some

Russian and Spanish data (see Section 2.2.1 for details). This last attempt resulted

in the creation and release of LOME, an information extraction system for which

multilingual coreference resolution is one component (Xia et al., 2021) and will be

discussed in more detail in Section 5.1.

3.2.2 Discussion

These real-world systems and evaluations demonstrate that coreference resolution

models can be useful as both an end-to-end task where predicted mentions are used

by other systems and as a linker-only model, which takes in mention boundaries as

inputs. Which “mode” to operate in depends on the task, data, and the relative

strength of the other parts of the pipeline. For example, the second attempt described

in Section 3.2.1 relies on mentions predicted by the coreference model because we

believed the linguistic motivation behind r-spans was close to the actual markables in

the dataset. For the last attempt (and in LOME), the upstream models were selected

for mention prediction as in-domain data was more readily available in that form and

mention detection could be more readily learned.

Thus, contrary to the message of Lee et al. (2017) and Section 3.1, treating

coreference resolution linking as a sub-task within a pipeline, as opposed to a

fully self-contained end-to-end system allows for flexibility in designing information
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extraction systems. In other words, there are benefits to the modularity gained

by disentangling mention detection and linking, like gaining the ability to interface

well with mentions from upstream systems or reusing the mentions in downstream

systems. Second, basic cross-lingual transfer and multilingual coreference models can

be created cheaply thanks to cross-lingual abilities of multilingual pretrained models

like XLM-R, but they still do not achieve high performance, and especially not in

the full coreference setting. This is investigated further in Chapter 5, with the goal

of improving cross-lingual transfer. Meanwhile, the theme of using a single model

for multiple languages or datasets is revisited more thoroughly in Section 5.1.2 for

multilinguality and Chapter 6 in the context of model size and parameter efficiency.

3.3 Takeaways

This chapter retells use cases and raises research questions for coreference resolution

beyond chasing the next state-of-the-art model on OntoNotes. In particular, it

motivates several questions:

1. If the goal is to better model coreference resolution, how can mention prediction

(for singletons) be used as an intermediate task? Or, is it really an “artificial”

and unrelated task?

2. How can we address the practical issues surrounding inference time and memory?

Specifically, coreference resolution models should “just work” on any input, and
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therefore have the ability to process long documents without raising memory

issues.

3. How do we go beyond OntoNotes to datasets that do annotate singletons? A

singletons-friendly model would be a useful component towards building models

for pipelined systems.

4. More generally, how can we create coreference resolution systems for new datasets

or languages? Coreference annotation is expensive.

5. Going further, then, what does a fast, memory-efficient model for arbitrary

coreference resolution datasets and languages look like? Recall that, as discussed

in Section 2.2, different datasets (even for the same language) disagree on

annotation guidelines.

The common thread between these questions is one of efficiency. (1), (2), and (5)

can be answered by improvements to the underlying modeling algorithms, which are

explored in Chapter 4. (3) and (4) are related to data and annotation efficiency, for

which continued training is shown to be an effective strategy in Chapter 5. Finally,

Chapter 6 also explores (4) and (5) by looking at efficient multitask, or multi-dataset,

models.

The methods in this thesis are aimed at improving real-world applications for

coreference resolution models. For several years, the progress in the field has remained

fairly stagnant as it continues to benchmark on linguistically correct datasets like
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English OntoNotes12 instead of ones directly used by downstream applications. While

neural models climb higher on OntoNotes, users of coreference resolution systems still

find large performance gaps between the publicly released models and their own needs.

One of the non-technical goals and contributions of this thesis is to shift more attention

in the sub-field towards general solutions for real-world use cases and problems, and

Section 7.2 reflects on the success of that effort.

12There’s immense intrinsic value here too, as many model advancements do transfer over to new
domains and languages; however, there is also overfitting to OntoNotes and many of the top models
have accrued some research debt for real-world use cases.
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This chapter details ICoref, a constant-memory incremental coreference resolution

model. Section 4.2 describes how the model should be extended to predict singleton

clusters, while Section 4.3 studies the model in the online setting.1

4.1 Constant memory coreference

resolution

Note

This work is adapted from “Incremental Neural Coreference Resolution in

Constant Memory”, presented at EMNLP 2020, with João Sedoc and Benjamin

Van Durme.

Abstract

This study investigates modeling coreference resolution under a fixed memory

constraint by extending an incremental clustering algorithm to utilize contextualized

encoders and neural components. Given a new sentence, this end-to-end algorithm

proposes and scores each mention span against explicit entity representations created

from the earlier document context (if any). These spans are then used to update the

1The code for the ICoref model, which is used throughout this thesis, is available at https:
//github.com/pitrack/incremental-coref/.
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entity’s representations before being forgotten; the model only retain a fixed set of

salient entities throughout the document. A high-performing model (Joshi et al., 2020)

is successfully converted into a constant-memory version, asymptotically reducing its

memory usage to constant space with only a 0.3% relative loss in F1 on OntoNotes

5.0.

4.1.1 Background

Recall that models for coreference resolution typically encode the entire text

before scoring and subsequently clustering candidate mention spans which could

be either found by a parser (Clark and Manning, 2016b) or learned jointly (Lee

et al., 2017). Prior work has primarily focused on improving pairwise span scoring

functions (Raghunathan et al., 2010; Clark and Manning, 2016a; Wu et al., 2020)

and methods for decoding into globally consistent clusters (Wiseman et al., 2016; Lee

et al., 2018; Kantor and Globerson, 2019; Xu and Choi, 2020). Recent models have

also benefited from pretrained encoders used to create high-dimensional input text

(and span) representations, and improvements in contextualized encoders appear to

translate directly to coreference resolution (Lee et al., 2018; Joshi et al., 2019; Joshi

et al., 2020).

These models typically rely on simultaneous access to all spans – Θ(n) for a

document with length n – for scoring and all scores – up to Θ(n2) – for decoding.

As the dimensionality of contextualized encoders, and therefore the size of span
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representations, increases, this becomes computationally intractable for long documents

or under limited memory. Given these constraints, expensive scoring functions are

increasingly difficult to explore. Further, prior models depart from how humans

incrementally read and reason about coreferent mentions; Webster and Curran (2014)

argue in favor of a limited memory constraint as a more psycholinguistically plausible

approach to reading and model coreference resolution via shift-reduce parsing.

Motivated by scalability and armed with advances in neural architectures, I revisit

that intuition by creating a constant-memory coreference model. Following prior work

as described in Section 2.5, this model begins with a SpanBERT encoding of a text

segment to form a list of proposed mention spans (Joshi et al., 2019; Joshi et al.,

2020). Clustering is performed online: each span either attaches to an existing cluster

or begins a new one. Memory usage is substantially minimized during inference by

storing only the embeddings of the active entities in the document and a small set of

candidate mention spans. The two contributions of online clustering and storing of a

constant size set of active entities result in an end-to-end trainable model that uses

O(1) space with respect to document length while sacrificing little in performance (see

Figure 4.1).

4.1.2 Model

The algorithm revisits the approach taken by Webster and Curran (2014) for

incrementally making coreference resolution decisions (online clustering). The major
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differences lie in explicit entity representations, neural components, and learning.

Baseline

The baseline is derived from the coreference resolution model described by Joshi

et al. (2019) with SpanBERT-large (Joshi et al., 2020), which is described in detail

in Section 2.5. For each document, the model enumerates all spans, embeds, and

scores them. These spans are then ranked and pruned to the top Θ(n) mentions. For

each remaining span, the model learns a distribution over its possible antecedents (via

a pairwise scorer) and the training objective maximizes the probability of its gold

labeled antecedents. The entire model (including finetuning the encoder) is trained

end-to-end over OntoNotes 5.0.

Inference

The proposed method in this study (Algorithm 1) stores a permanent list of entities

(clusters), each with its own representation. For a given sentence or segment, the

model proposes a candidate set of spans. For each span, a scorer scores the span

representation against all the cluster representations. This is used to determine to

which (if any) of the pre-existing clusters the current span should be added. Upon

inclusion of the span in the cluster, the cluster’s representation is subsequently updated

via a (learned) function. Periodically, the model evicts less salient entities, writing
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them to disk. Under this algorithm, each clustering decision is permanent.2

Algorithm 1 FindClusters(Document)

Create an empty Entity List, E
for segment ∈ Document do

M ← Spans(segment)
for m ∈M do

scores← PairScore(m,E)
top score← max(scores)
top e← argmax(scores)
if top score > 0 then

Update(top e,m)
else

Add new entity(E,m)

Evict(E)

return E

Concretely, the incremental coreference (ICoref) model uses a contextualized

encoder, SpanBERT (Joshi et al., 2020), to encode an entire segment. Given a segment,

Spans returns candidate spans, a result of enumerating all spans up to a fixed width,

encoding spans as a combination of the embeddings within the span, and pruning

using a learned scorer, following prior work (Lee et al., 2017; Joshi et al., 2019).

PairScore is a feedforward scorer which takes as input the concatenation of a

mention span and entity representation along with additional embeddings for distance

and genre. Update updates the entity representation (etop e) with the newly linked

span representation (em). This study uses a learned weight, α = σ(FF([etop e, em]))

and updates etop e ← αetop e + (1− α)em.
3 Here, FF is a feedforward network and σ

is the sigmoid function.

2This uses greedy decoding; exploring decoding strategies is beyond the scope of this work, which
is focused on memory. Section 4.3 revisits greedily-made decisions.

3Using a simple moving average performs slightly worse.
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To ensure constant space, Evict moves some entities from E to CPU. These

entities are never revisited; the offsets are stored on CPU solely for evaluation purposes.

The evictions are based on cluster size and distance from the end of the segment.

The algorithm is independent of these components, so long as they satisfy the

correct interface. Specifically, this algorithm is compatible with entirely different

models, like the one by Wu et al. (2020). They use a query-based pairwise scorer,

which could be adopted in place of the feedforward pairwise scorer. The use of abstract

components in this algorithm also allows for comparison of different encoders or update

rules.

Training

Similar to prior work (Lee et al., 2017), the training objective is to maximize the

probability of the correct antecedent (cluster) for each mention span. However, rather

than considering all correct antecedents, the objective is only interested in the cluster

for the most recent one. Scoring is between mention spans and entity clusters, so

there should be a single correct cluster.4 For each mention m, scores is treated as an

unnormalized probability distribution P (e | m) for e ∈ E, where E is the entity list

that includes an ε target label which represents the action of starting a new cluster.

The exact objective is to maximize P (e = egold | m); egold is the gold cluster of m (i.e.,

the cluster the most recent antecedent was assigned to).5

4This assumption is revisited later, in Section 4.2. Maximizing for all antecedents works well too.
5See Section 4.2 for a correction that maximizes all antecedents instead.
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However, the entirely sequential algorithm also introduces sample inefficiency, as

most mentions have the same label (ε) and do not accrue significant loss. Training is

sped up by accumulating gradients periodically, trading computation time for space.

This tradeoff is similar to that of batching by documents, which is impractical from a

memory perspective. Like prior work, the parameters are updated once per document

(and not once per mention).6

For comparability, pretrained components are prioritized: not only are the encoder

weights that are already finetuned on this dataset reused as initialization for the

encoder, but also the mention and pairwise scorers from Joshi et al. (2020) are used as

initialization for Spans and PairScore. The implementation of Joshi et al. (2020)

and Joshi et al. (2019) was the most amenable to extension and experimentation and

therefore serves as the illustrative example of converting a memory-intensive model

into a constant memory one.

4.1.3 Experiments

Since the weights from Joshi et al. (2020) (the baseline) are reused, the main

experiment is to compare their model to the constant space adaptation in both task

performance and memory usage. Additionally, I analyze document and segment length,

conversational genre, and explicit clusters.

6It can also be updated once per segment, especially if the corpus contains few, but long,
documents.
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Data

This study focuses on OntoNotes 5.0 (Weischedel et al., 2013; Pradhan et al.,

2013), which consists of 2,802, 343, and 348 documents in the training, development

and test splits respectively. These documents span several genres, including those

with multiple speakers (broadcast and telephone conversations) and those without

(broadcast news, newswire, magazines, weblogs, and the Bible). Later sections and

chapters of this thesis will reuse this model for other datasets.

Implementation

The model dimensions and training hyperparameters match the baseline model,

a publicly available coreference resolution model by Joshi et al. (2019) and Joshi

et al. (2020). As discussed, their (trained) parameters are used as initialization for

the encoder, span scorer, and span pair scorer. However, ICoref does not make

use of speaker features, since it is not meaningful to assign a speaker to the cluster

representation. At the end of each segment, the model evicts singleton (size 1) clusters

more than 600 tokens away from the end of the segment. Additionally, it evicts all

clusters whose most recent member is more than 1200 tokens away. In this work, the

encoder is frozen—further finetuning the encoder provided little, if any, benefit likely

because the encoder has already been finetuned on this dataset and task. This is

in contrast to subsequent work, both in the field and in this thesis, which will find

benefits via finetuning. Additional details, including our choice of eviction function,
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are described in Section 4.1.8. All experiments are performed on either a single

NVIDIA 1080 TI (11GB) or GTX Titan X (12GB).

4.1.4 Results

4.1.4.1 Performance

Table 4.1 presents the OntoNotes 5.0 test set scores for the metrics: MUC (Vilain

et al., 1995), B3 (Bagga and Baldwin, 1998), and CEAFϕ4 (Luo, 2005) using the official

CoNLL-2012 scorer. I reevaluated the baseline and report the scores for CorefQA

directly from Wu et al. (2020). These is a small drop in performance compared to the

baseline and no apparent drop with eviction.

MUC B3 CEAFϕ4

P R F1 P R F1 P R F1 Avg. F1

Joshi et al. (2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Ours 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
Ours (without eviction) 85.7 84.9 85.3 78.1 77.5 77.8 76.2 74.2 75.2 79.4

Wu et al. (2020) 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1

Table 4.1: Complete results of our model on the OntoNotes 5.0 test set with three
coreference resolution metrics: MUC, B3, and CEAFϕ4 . For completeness, scores for
the contemporaneous (and still current) state-of-the-art are included. All models use
an encoder derived from SpanBERT-large.

4.1.4.2 Document Length

The goal of this study is a constant-memory model that is comparable to the

baseline. Table 4.2 shows the average F1 broken down based on the length (in
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Subset #Docs JS-L Ours ∆ -evict

All 343 80.1 79.5 -0.6 79.7
0-128 57 84.6 84.5 -0.1 84.5

129-256 73 83.7 83.6 -0.1 83.6
257-512 78 82.9 83.4 +0.5 83.4
513-768 71 80.1 79.3 -0.8 79.3
769-1152 52 79.1 78.6 -0.5 79.0

1153+ 12 71.3 69.6 -1.7 69.8

1 Speaker 268 81.1 81.0 -0.1 81.2
2+ Speakers 75 76.7 75.0 -1.7 75.0

Test 348 79.6 79.4 -0.2 79.4

Table 4.2: Average F1 score on the development set broken down by document length
and number of speakers. JS-L refers to the spanbert large model from Joshi et al.
(2020), which is the baseline, and -evict refers to the model without eviction.

subtokens)7 of the document and number of speakers. ICoref is competitive on

most document sizes and in the single speaker setting. On longer documents, eviction

has a minor effect. Because ICoref does not make use of speaker embeddings, it

performs worse on documents with multiple speakers. This drop due to speaker

features matches previous findings (Lee et al., 2017). One way to include speakers

and retain speaker-independent entity embeddings is by treating speakers as part of

the input text (Wu et al., 2020) and adopted in Section 4.3.

4.1.5 Inference Memory

Next, we can look towards space. Table 4.3 shows the GPU memory needed to

perform inference over the entire development set. Compared to the baseline and its

7This split of the development set differs from that used by Joshi et al. (2019) which counts the
number of 128-subtoken sized segments. I directly count subtokens.
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Model GPU Memory (GB) Dev. F1

ICoref (1 sent.) 1.7 66.7
ICoref (10 sent.) 2.0 77.1

ICoref (128 toks.) 1.6 74.7
ICoref (512 toks.) 2.0 79.5

No eviction 2.0 79.7

JS-B 6.4 77.7
JS-L >11.9 80.1

Table 4.3: Space needed and performance over the development set. JS-B and JS-L
refer to the base and large variants SpanBERT used in the baseline.

Figure 4.1: Total size of GPU-allocated tensors for each document in the development
set. The base (JS-B) and large (JS-L) models of the baseline use apparently linear
space, while ours with inference segment lengths of 128 and 512 use constant space.

smaller base version, ICoref uses substantially less memory. In practice, eviction

also has little effect on memory and F1 on this dataset. However, it is a necessary

part of guaranteeing that the model will not crash on arbitrarily long inputs, which is

objective 2.) from Section 3.3.

Usage in practice is subject to the memory allocator, and this implementation

(PyTorch) differs in framework from the baseline (TensorFlow). To fairly compare
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the two models, I computed the maximum space used by the allocated tensors for

each document during inference.8 Figure 4.1 compares this value of peak theoretical

memory usage of several models against the dataset. It shows the baseline is dominated

by a term that grows linearly with length, while that is not the case for our model,

which has constant space usage.

ICoref reduces the asymptotic memory usage to O(1). In addition, these plots

do not clearly show asymptotic memory usage: the baseline and other derivative

models have a quadratic component for scoring span pairs (with a small coefficient).

The encoder, SpanBERT, adds a significant constant term (with respect to document

length) to all models. While there is some work in sparsifying Transformers (Child

et al., 2019; Kitaev et al., 2020), there (still) does not yet exist a sparse SpanBERT,

which would be useful in this setting. Chapter 6 discusses some efforts in pruning

(rather than sparsifying) the encoder to reduce the inference time and memory.

These plots show that models have relatively modest memory usage during inference.

However, their usage grows in training, due to gradients and optimizer parameters.

This additional memory usage would render training and finetuning the underlying

encoder infeasible for the baseline but possible using ICoref with 12GB GPUs.

8For profiling, I use run op benchmark for TensorFlow 1.15 and pytorch memlab 0.0.4 and
torch.cuda for PyTorch 1.5.
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4.1.6 Segment Length

The memory usage at each step (and therefore of the algorithm) is also dependent

on the segment length due to the encoder. Table 4.4 explores the effect of the length of

each segment (split at sentence boundaries), which gives further insight into the tradeoff

between performance and memory reduction. These models are compared without

eviction and the confirm observations from Joshi et al. (2019) that larger context

windows compatible with the encoder input size improve performance. Additionally,

models trained on shorter sequences can be scaled, at inference time, to longer

sequences and obtain gains in performance. There is an unsurprising substantial drop

using single sentences, owing to coreference being largely a cross-sentence phenomenon.

Inference Length
Train↓ 1 sent. 10 sent. 128 toks. 512 toks.

se
n
ts
.

1 70.0 76.4 75.2 76.9
10 68.9 77.8 76.2 78.9

to
k
s.

128 70.1 77.2 76.3 77.7
256 69.1 77.9 76.5 78.8
384 67.7 77.3 76.1 79.1
512 67.1 77.7 75.6 79.7

Table 4.4: Average dev. F1 score for models trained and evaluated across a range of
segment lengths (either fixed number of sentences or subtokens).

4.1.7 Span Representations

Figure 4.2 visualizes the proposed span representations for a single document in

the development set. The colors/shapes represent our predictions, and each point is
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annotated with the text, the gold cluster label, and the (normalized) α for each span

(recall α is used in the Update function to determine a span’s contribution to its

entity embedding).

President Clinton may travel to North
Korea in an attempt to improve
relations with that country. The
announcement comes after two days of
talks between American and North
Korean leaders in Washington.
Secretary of State Madeleine Albright
has accepted an invitation to visit North
Korea and meet with leader Kim Jong-il.
She made the unexpected announcement
at a dinner last night in Washington.
North Korea’s top defense official hosted
the event. The country is on a U.S. list
of nations that sponsor terrorism. The
Clinton administration is trying to
persuade North Korea to halt its
ballistic missile program as a way it can
get off the list. There’s no word yet
when Albright’s trip will take place.

Figure 4.2: t-SNE plot (left) of span representations of a single document (right) in
the development set (cnn 0040 0). Each color/shape is a predicted cluster, while light
gray circles indicate predicted singletons. For each span, the gold cluster label (-1, if
not annotated) and its contribution to the entity embedding is noted in parentheses.

Given these embeddings, the figure supports the viability of clustering approaches:

gold coreference clusters tend to be “close” in embedding space. Regarding α, some

spans are weighted equally (“Clinton”) while others are not (“North Korea”). This

could be a result of online updates biasing more recent spans with higher weights.

Alternatively, it may suggest that some spans (like names) are more informative than

others (like pronouns).
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4.1.8 Technical Appendix

This section describes implementation details and additional experiments.

Gradients are accumulated until memory usage exceeds 7.5GB. One drawback of

ICoref is that, because of its sequential nature, it is considerably (up to 2x) slower

than pairwise-scoring models, like most variations of e2e. In initial trials, I explored

sampling losses for negative examples (spans that do not have an antecedent). While

sampling with a rate of 0.2 (for example) would speed up training and inference,

ultimately it contributed up to a one point deficit in F1.

I also explored teacher forcing, in which spans are added to the gold cluster during

training instead of the predicted one. This would “correct” the training objective to

match prior work. However, this did not have a noticeable effect on performance in

this setting. Likewise, it is also possible to train a competitive model for which only

the SpanBERT encoder from Joshi et al. (2019) was retained and the span scorer and

pairwise scorer were randomly initialized. However, this was not chosen for the final

experiments because training in this setting is more time-intensive. Further, learning

span detection is not guaranteed by this objective, leading to high variance across runs

(most notably in the number of epochs). Thus, the effect of other hyperparameters

would not be as apparent.

Additionally, I attempted further finetuning the encoder with a separate learning

rate of [1e-5, 5e-6], but was unsuccessful in improving the performance. Training

(without finetuning) roughly takes 70 min/epoch with negative sample rate 0.2, 100
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min/epoch without sampling loss, and 160 min/epoch when finetuning. All runs are

stopped after 5 to 15 epochs due to early stopping (patience = 5).

For eviction, a policy which evicts singletons distance > 600 and all clusters

distance > 1200 would have a recall of 99.57% over the training set. This is a result

of sweeping over [200, 300, 400, 500, 600, 900] for singletons and [400, 600, 800, 1000,

1200, 1800] for all clusters. I also tried using a single fixed distance, as well as other

non-constant schemes (e.g. size × distance as thresholds). Here, distance is between

the current point in the document and the average of the start and end indices of the

most recent span added to the cluster. I selected this policy from several other choices

due to the recall it achieved.

The ICoref model dimensions otherwise match up exactly with Joshi et al. (2019).

Rather than omitting the speaker embedding and segment length embedding entirely

(which would affect pairwise scorer dimensionality), these embeddings are replaced

with 0.

Concretely, I performed grid searches over dropout ([0.3, 0.4, 0.5]), sample rate

([0.2, 0.5, 0.75, 1.0]), and update method ([alpha, mean]). I find that 0.4 dropout,

1.0 sample rate, and alpha weighting were the best after 2 epochs. Alpha weighting

resulted in, on average, approximately 0.1 F1 improvement (after 2 epochs).

Alpha weighting uses a two-layer MLP: the first layer has size 300 and ReLu

nonlinearity, while the final layer then projected to a scalar with a sigmoid activation.

After fixing those values, I explored learning rate ([5e-5, 1e-4, 2e-4, 5e-4]), eviction
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policy at training ([no eviction, eviction]), and gradient clipping value ([1, 5, 10]). The

best combination is 2e-4, no eviction, and gradient clipping at 10, which performs

slightly better, although there was little difference between them after these models

were allowed to converge. Given the final set of hyperparameters, I performed five

training runs, resulting in average development set F1 of [79.4, 79.5, 79.5, 79.5, 79.7].

the best-performing model for the results in this study. For Table 4.4, each model was

only trained once.

For these experiments, ICoref contains 377M parameters, of which 340M is

SpanBERT-large (Joshi et al., 2020).

4.1.9 Conclusions

This study proposes an online algorithm for space efficient coreference resolution

that incorporates contributions from recent neural end-to-end models. It demonstrates

how to transform a model which performs document-level inference into an incremental

algorithm. Doing so greatly reduces the memory usage of the model during inference

at virtually no cost to performance, thereby providing an option for researchers and

practitioners interested in modern coreference resolution models for tasks constrained

by memory, like the modeling of book-length texts.

Additionally, the inference (and training) algorithm implicitly creates singleton

clusters for discourse-new referents. This naturally decomposes the coreference

resolution model into an intermediate mention detection task which is directly used
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in the model instead of merely as an auxiliary objective. Nonetheless, it is not hard

to modify ICoref to properly predict singletons, described in in the next section,

Section 4.2

4.2 Adapting ICoref beyond OntoNotes

This section is a short formal description of the ICoref model and how it can be

extended to predict singletons at inference, along with some mathematical justification

for the training objective.

Model formalization

Given a text segment of length n with (sub)tokens x1 . . . xn, ICoref enumerates

all spans xa,b ∈ X, where xa,b = [xa, xa+1, ..., xb] up to a certain length, respecting

sentence boundaries. The span embedding xa:b is then computed as a function

of the component embeddings, determined by the output of an encoder: xa:b =

[xa;xb; f([xa, ...,xb]);ϕ(a, b))] where f is an attention-weighted average and ϕ(a, b) is

a width feature. This is identical to the representation used by Lee et al. (2017). Like

prior work, sm(xi) is a learned scoring function intended to rank the likelihood the

given span is a coreference mention.

ICoref iterates through the spans, collecting a list of clusters, C (initially empty).

Each span xi is scored by a pairwise scorer, sc(xi, c), against the clusters already found

by the model. Specifically, sc(xi, c) = sm(xi) + sa(xi, c), which means this score is
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influenced by the likelihood xi is a mention. This is akin to the pairwise antecedent

scorer from prior work. However, in ICoref, the scores are computed against clusters

instead of against spans, which reduces the need for cluster decoding later.

If maxcj∈C(sc(xi, cj)) ≤ 0, a new cluster, cnew = {xi} with embedding xi, is created

and added to C. Otherwise, xi is merged into the top-scoring cj, with the new

embedding,

c′j = αxi + (1− α)cj,

where α is a learned function of xi and cj.

The training objective aims to minimize − log
∏︁

xi∈X P (c∗xi
|xi), where c∗xi

is the

correct cluster determined by the cluster containing the most recent antecedent of xi.

If no such antecedent exists, then the correct cluster is the dummy cluster, ϵ, and

sc(xi, ϵ) = 0. Letting Cϵ = C ∪ {ϵ}, the probability can then be computed as

P (c∗xi
|xi) =

exp(sc(xi, c
∗
xi
))∑︁

cj∈Cϵ
exp(sc(xi, cj))

.

Training objective correction

The training objective can be modified to optimize for all antecedents of x, Ant(x),

instead of the most recent one:

− log
∏︂
xi∈X

∑︂
yi∈Ant(xi)

P (cyi |xi)

|Ant(xi)|
. (4.1)
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This leads to comparable (or slightly better) performance than using the most

recent antecedent. Note that this is not quite the same, mathematically, as the

objective in the e2e model which also optimizes for all antecedents. In that objective,

the antecedent probabilities are all weighted equally, while here, clusters containing

more correct antecedents are weighted higher.

Genres

Finally, sa usually incorporates a genre embedding determined by the genre of

the document (within OntoNotes). We still retain that small set of parameters for

compatibility reasons but assume all documents have the same genre. This genre

embedding is rarely used (only for OntoNotes downloaded models), and future work

can be focused on better incorporation of parameters specific to a single genre, domain,

or task – especially when looking towards multi-purpose models (e.g. multilingual

models in Section 5.1.2 or multitask models in Chapter 6).

Singletons

For most datasets and many downstream tasks, singleton entity mentions need to be

predicted. For OntoNotes, all singleton mentions would be removed in postprocessing.9

Prior work adds an auxiliary objective that maximizes sm(xi) if xi is an entity mention

(Section 3.1, Zhang et al. (2018b)) and only prune out singleton mentions sm(xi) < 0

in postprocessing. Instead, the reformulation presented next is similar to the choices

9Or, more dangerously, ignored in the evaluation script.

88



CHAPTER 4. EFFICIENT INFERENCE OF COREFERENCE RESOLUTION
MODELS

made by Toshniwal et al. (2020b) and possible due to incremental nature of the model.

Instead of taking the top kn of all spans at span pruning, the algorithm prunes to

the top kn spans only from the set {xi ∈ X : sm(xi) > 0} (which could have fewer

than kn elements). In other words, it only retains spans that are predicted to be

mentions and is faster during the forward pass. Now, the training objective is to

minimize sm(xi) if xi is not an entity mention, and maximize sm(xi) + sa(xi, c
∗
xi
) if it

is, where c∗xi
is the gold cluster. This latter term is identical to sc(xi) from the earlier

formulation.

Mathematically, this change can be interpreted as now modeling the joint

distribution of whether xi is an entity mention (a binary random variable M) and

which entity cluster (E) is the best match, according to sa. The joint probability

decomposes to,

P (E,M | xi) =
∑︂

m∈{0,1}

P (E|m,xi)P (m,xi).

This can further split into the components,

P (E|M = 1, xi) =
exp(sa(xi, c

∗
xi
))∑︁

cj∈Cϵ
exp(sa(xi, cj))

(4.2)

P (E|M = 0, xi) = 1 (4.3)

P (M = 1, xi) =
exp(sm(xi))

1 + exp sm(xi)
(4.4)

P (M = 0, xi) = 1− P (M = 1, xi) (4.5)
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The M = 1 objective is the same as training without singleton mentions (as in

OntoNotes), while the M = 0 term accounts for singletons. Note that if M = 0, then

we can always make the correct “cluster” decision by ignoring it for the remainder of

the algorithm, which allows for this simplification.

This is different from simply adding an objective maximizing P (M), since that

would incorrectly handle cases when M = 0. In practice, however, this does not affect

accuracy on the task, although it validates the approach of pruning spans earlier,

which results in a faster model.

4.3 Low-latency online coreference

resolution

Note

This work is adapted from “Online Neural Coreference Resolution with

Rollback,” which was presented at CRAC 2022, with Benjamin Van Durme. It is a

modeling extension to ICoref, as it resolves the drop in performance that arises for

short segment sizes and is tested in the streaming, online setting, which is common

in conversational contexts. This results in a model that is operable fully online with

only a small drop in F1.
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Abstract

Humans process natural language online, whether reading a document or

participating in multiparty dialogue. Recent advances in neural coreference resolution

have focused on offline approaches that assume the full communication history as

input. This is neither realistic nor sufficient to support dialogue understanding in

real-time. This study benchmarks two existing, offline, models and highlights their

shortcomings in the online setting. These models are modified to perform online

inference and rollback, a short-term mechanism to correct mistakes, is introduced.

The effectiveness of this approach is validated across five datasets against an offline

and a naive online model in terms of latency, final document-level coreference F1, and

average running F1.

4.3.1 Motivation and Introduction

In environments like multiparty spoken dialogue and social media streams, text in

the form of tokens and sentences are available in (near) real-time. To promptly make

use of this data, NLP systems often need to process text before additional tokens or

sentences are available. For example, this could enable interruptions with a response

or a clarification question (Boyle et al., 1994; Li et al., 2017), make decisions during

a social media stream (Mathioudakis and Koudas, 2010), or recognize and translate

speech live (Oda et al., 2014; Ma et al., 2020). While some language technologies
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Joey Y’know what, I kinda need to work on my stuff  tonight.

Lauren Oh, okay. I’ll see you tomorrow. G’night.

Kate Yeah, I guess.

Hey! So, since we’re getting off  early, do you want to go 

paint mugs?Lauren

This is a terrible play! I’ll see you in the morning.Director

Kate I can’t believe we go in, in a week.

Joey Ah, are you okay?

Joey Hey, it’s gonna be all right.

t = 6

t = 7

Figure 4.3: In this scene from Friends, viewers can deduce who “you” refers to at
t = 6, and we want coreference models to be similarly capable. At t = 7, viewers may
need more context, such as the identity of the next speaker, to be certain of who “you”
refers to. Absent that context for a text-based model, its predictions will be incorrect.
Rollback is a cheap and local revision mechanism that corrects these type of mistakes.

operate incrementally in the online setting, many document-level understanding

models and tasks do not.

A core task in language understanding is resolving references. Recent work has

made significant progress on improving accuracy for single documents (Lee et al., 2017;

Wu et al., 2020) and in the cross-document setting (Caciularu et al., 2021). However,

this focus on document-level resolution makes use of global higher order inference

and document-level encodings. As interest in coreference resolution is shifting back

towards dialogue (Khosla et al., 2021), the offline setting is inconsistent with how

dialogue is found in the real world. Now equipped with neural models and large-scale

data, I revisit the online coref setting (Stoness et al., 2004; Schlangen et al., 2009).10

10Contemporaneously, Xu and Choi (2022) study the online setting.
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This work is motivated by the human ability to resolve references without looking

into the future (Figure 4.3). The online scenario is simulated for two offline models

(Xu and Choi, 2020; Xia et al., 2020a) by making full predictions after each sentence

and masking the future context. This either leads to significantly increased latency or

lowered accuracy. The latter model (ICoref) is then modified to properly perform

online inference and while accuracy does drop relative to the offline baselines, the

latency is substantially lower. To ameliorate this, rollback is introduced, which is a

backtracking method that allows the model to correct recently made decisions. On

several coreference datasets, this can recover performance comparable to that of the

offline model with the latency of online models.

4.3.2 Task: Online Coreference Resolution

In offline (single doc) coref, the input is a document D, and the output is a set of

clusters (or chains) of text mentions, C = {C1, ..., Cn} such that any two mentions in

a given Ci corefer. Document-level evaluation, S(Cpred, Cgold), compares the predicted

clusters to the gold reference clusters with an average three corpus-level metrics (MUC,

B3, and CEAFϕ4) for the accuracy of mentions, links, and clusters. When each metric

is instead computed at the corpus level instead before averaging, we refer to this as

final F1 (identical to CoNLL 2012 F1).

In the sentence-level online setting, D = [X1, X2, ..., XT ] is a stream of sentences

or utterances. After time t, the model needs to predict clusters Cpred,t = {C1,t, ..., Cn,t}
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conditioned on only [X1, ...Xt]. The reference clusters, Cgold,t, are restricted to contain

only mentions up to sentence Xt. This may lead to empty clusters which are ignored

when calculating the score.11 To evaluate accuracy in the online setting, I propose

additionally computing a running F1 for each document which is averaged across all

time t,

Srunning(Cpred, Cgold) =
T∑︂
t=1

1

T
S(Cpred,t, Cgold,t).

These document-level scores are subsequently averaged across the corpus

(macro-average), in contrast to the already corpus-level metrics of final F1.

This is not the first study to observe that references should be resolvable without

future context. Prior work (Stoness et al., 2004; Schlangen et al., 2009; Poesio and

Rieser, 2011) has also emphasized the importance of incremental (online) prediction of

reference, especially in the context of dialogue. Since most models at that time already

operated at the sentence level, their work is at the token-level granularity. This study

does not go as far; the goal is to first rein back document level neural models to

the sentence level, which is still appropriate in applications where full utterances are

available.

Another measure of performance is the latency of different systems. Unlike

token-level work in speech (Zhang et al., 2016) or translation (Gu et al., 2017),

this study is primarily interested sentences, especially as timestamps are not readily

11Singletons may also be ignored depending on the convention in the dataset.
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available. Furthermore, modern models can process a single sentence in under a

second, while sentences take substantially longer to be spoken or typed. Therefore,

I chose to primarily report document-level latency, which is the wait time between

the end of the document and production of predictions. This choice is revisited and

discussed sentence-level latency in Section 4.3.4.4.

4.3.3 Method

4.3.3.1 Datasets

As one goal is to analyze a variety of domains, several coreference datasets

are studied.12 The CoNLL 2012 Shared Task (OntoNotes) (Pradhan et al., 2013)

is split into into the conversational (telephone and broadcast conversations) and

nonconversational text (newswire, newsgroups, broadcast news, weblogs, religious

texts) genres. Character Identification (CI) (Zhou and Choi, 2018) consists of

transcripts from the TV show Friends and is another source of social and informal

conversations. LitBank (Bamman et al., 2020) is a collection of long excerpts from

literature, which allows us to study latency scaling. Finally, QBCoref (Guha et al.,

2015) is a collection of trivia questions where players are expected to interrupt with

the answer, which is an example of a task needing a fast NLU model.

12These were introduced in more detail in Section 2.2.1.
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Preprocessing

The preprocessing follows that of prior work: Joshi et al. (2019) for OntoNotes,

Xia and Van Durme (2021) for LitBank (first fold) and QBCoref (first fold), and

Toshniwal et al. (2021) for CI. For the genre split in OntoNotes, while the full dataset

into a conversational and text-based component, some weblog documents are also

conversations on message boards. The genre-based split is justified because the weblog

documents less conversational than spoken dialogue. While OntoNotes does have

non-English splits, only English data is used in this study.

Since ICoref does not readily take speaker embeddings, the underlying text of

CI is augmented with speakers by prepending each utterance with the name of the

speaker(s), following the strategy outlined by Wu et al. (2020), and these prefixes are

filtered out before evaluation. There could be other ways of representing the speakers,

especially in plural situations, which is beyond the scope of the work. While this

follows the same preprocessing as Toshniwal et al. (2021), this does not need to be

done for the c2f model because speakers are used directly as a feature. CI evaluation

uses the conventional CoNLL 2012 score instead of the one outlined in Zhou and Choi

(2018) because the goal is to explore online coreference and high-level trends by using

the dialogue and conversational nature of the dataset and not focus on the plural

mentions and multiparty aspect.
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4.3.3.2 Models

c2f (implemented by Xu and Choi (2020)) and ICoref (Section 4.1) are used as

the offline baselines. The inference procedure of the latter is modified for the online

experiments.

C2F (Xu and Choi, 2020) is a reimplementation of the coarse-to-fine coreference

model (Lee et al., 2018) which detects mention spans in the entire document, scores

them with each other, and finds the most likely antecedent for each span. It then

uses higher order decoding strategies to promote pairwise consistency within a cluster.

This study does not use these higher order decoding strategies because they are slower

and only improve performance slightly. I do, however, use the extension of the training

loss that accommodates singletons (Xu and Choi, 2021).

ICoref (Xia et al. (2020a), Section 4.1) is a memory-efficient incremental

coreference resolution model, itself a variant of the C2F model. The model naturally

segments the document into pieces and incrementally processes each piece. After each

text segment, the predictions for that segment are committed. This hard decision

foregoes any higher-order decoding strategies, but this locality offered is exactly what

should be extended in the sentence-level online setting.

Naive online C2F is a baseline where C2F is used to make full predictions after

every sentence. For a document with n sentences, this costs n calls to the full C2F

model, and effectively acts as an upper limit on model performance.

Online ICoref. For the online models, the inference process in ICoref is modified.
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Like prior models, ICoref encodes a variable number of sentences per encoder forward

pass, and each sentence would have access to future contexts. The fully online version

of the algorithm segments the text by sentences instead of by tokens. Thus, instead

of making predictions every fixed number of tokens, predictions are written every u

sentences. Setting u = 1 would make an online model at the sentence level.

Online ICoref with rollback. A drawback of both ICoref and online modeling

in general is the inability to correct mistakes in light of future context. This study

proposes “rollback,” which is run every r sentences (Algorithm 2). This process

reverts all predictions made in the previous r sentence-window and remakes them all,

batch-mode, with the full (r-sentence) context. The trade-off of increasing r is that

the intermediate prediction quality can suffer, while decreasing r incurs additional

latency.

4.3.4 Experiments and Results

First, I show that current models rely on future context, which is not readily

available in the online setting. Next, I demonstrate the effectiveness of online models

under latency and average running F1. In particular, I analyze the benefits of rollback.

Finally, I verify that for reasonable input stream speeds, online approaches are indeed

appropriate.

98



CHAPTER 4. EFFICIENT INFERENCE OF COREFERENCE RESOLUTION
MODELS

4.3.4.1 Masking the future

I first investigate the dependence of the two baseline (offline) models, C2F and

ICoref, on future context. As shown in Figure 4.3, models often use future contexts

to make predictions such as linking “you” with the next speaker. For each model,

a sentence-level causal mask is applied to the encoder and global or future-looking

decoding algorithms are removed. The causal mask restricts each token’s attention

only to other tokens in its sentence or a previous one. With this mask at inference,

performance of both models drops considerably (Table 4.5; full version in Table 4.6).

However, by finetuning with the causal mask, the C2F model recovers from these

drops in the masked setting. This suggests that coreference resolution models can be

retrained to make better use of previous context and rely less on “easy” future signals.

This finding is also quite promising for future investigation into training methods.

On the other hand, masked training does not appear to affect the performance of

the ICoref model. Nonetheless, the incremental nature of ICoref is more amenable

to extension to an online setting, and ICoref (without masking) is used as the model

to be adapted into the online setting.

4.3.4.2 Online inference strategies

To properly evaluate online performance (as opposed to only simulating masking

the future), the modified ICoref (as described in Section 4.3.3.2) is evaluated on

running F1, final F1, and wait time. I find that increasing update sizes, u, interpolates
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∆ Final F1 C2F ICoref
Masked Training? No Yes No Yes

OntoNotesconv -7.8 -1.8 -8.0 -7.6
OntoNotestext -6.0 -0.3 -8.0 -6.9
LitBank -5.3 -1.9 -5.1 -5.4
QBCoref -4.9 -0.5 -1.1 -2.7
CI -5.5 -1.0 -11.0 -9.6

Table 4.5: A model is trained with and without sentence-level causal attention masks.
This table reports the difference in F1 between inference with and without these mask
in the offline setting. The numerical results are also reported in Table 4.6.
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Figure 4.4: These plots show the average wait time against the final F1 (test) and
the running F1 (×) for select models. Varying the update frequency interpolates
between online and offline ICoref models in both final F1 and wait time. The
naive online C2F baseline is also included for comparison. The proposed method of
rollback offers a strong compromise with higher F1s and comparable wait times vs.
the fastest online models, and a final F1 comparable to the offline models.
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Algorithm 2 Online coreference resolution with rollback

Input: Sentences S = s1, s2, ...; update frequency u; rollback frequency r; initial clusters
C0 = ∅.
for st ∈ S do

if t ≡ 0 (mod ur) then
Ct−ur+1 = Revert(Ct−1)
Ct = ICoref(S[t− ur + 1 : t], Ct−ur+1)

else if t ≡ 0 (mod u) then
Ct = ICoref(S[t− u+ 1 : t], Ct−1)

else
Ct = Ct−1

yield Ct

∆ Final F1 C2F ICoref
Masked Training? No Yes No Yes
Masked Inference? Yes No Yes No Yes No Yes No

OntoNotesconv 69.2 77.0 75.0 76.7 68.2 76.2 68.4 76.0
OntoNotestext 74.7 80.6 79.9 80.2 72.5 80.5 73.4 80.3

LitBank 66.9 72.2 68.8 70.7 67.6 72.7 67.5 72.9
QBCoref 64.9 69.8 70.0 70.5 70.8 71.9 69.7 72.5

CI 67.6 73.0 71.8 72.8 60.9 71.9 61.2 70.9

Table 4.6: This is the full version of Table 4.5, on the test set. Each entry instead
shows the score with mask and the score without mask instead of the difference.

between an online model (u = 1) and the unmasked offline ICoref model (where

u is the encoder window size). This “hybrid” mode trades off wait time for F1, as

increasing u leads to longer wait times but better performance. Additionally, changing

the rollback frequency does not correlate with time because larger updates are both

costlier and rarer. So, the best r is chosen based on each dev set.

Figure 4.4 shows that the online and hybrid models are faster than the offline

ICoref model and do better on running F1, but worse on final F1. Online with

rollback is usually the best approach, as it achieves high F1 scores across all datasets,
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naive online C2F ICoref
Metric Run. F1 Fin. F1 wt (ms) Run. F1 Fin. F1 wt (ms)

OntoNotesconv 79.2 77.0 237.8 24.9 76.2 319.3
OntoNotestext 82.3 80.6 195.2 28.9 80.5 223.8

LitBank 73.8 72.2 807.4 54.5 72.7 173.3
QBCoref 76.6 70.5 107.9 15.6 71.9 82.3

CI 74.7 73.0 137.5 14.2 71.9 227.8

Online ICoref + rollback
Metric Run. F1 Fin. F1 wt (ms) Run. F1 Fin. F1 wt (ms)

OntoNotesconv 74.8 72.7 52.0 76.6 75.2 79.0
OntoNotestext 77.8 77.4 62.1 79.1 79.9 87.9

LitBank 71.9 70.6 73.5 72.6 71.3 93.7
QBCoref 72.5 71.1 45.8 72.7 71.6 54.9

CI 65.1 66.7 47.3 67.3 70.1 59.3

Table 4.7: Final F1, running F1, and wait time for each datasets and four inference
algorithms. The proposed rollback mechanism offers a strong compromise with higher
F1s and comparable wait times vs. the fastest online models, and a final F1 comparable
to offline ICoref. Naive online C2F is the strongest method, but also the slowest.

while it also has short wait times. Naive online C2F performs well on F1, but it is

substantially slower on especially short or long documents.

The small margin on QBCoref could be explained by the fact that the forward

pass for online ICoref is equal to that of a causally masked offline model and Table 4.5

shows that the gap between a masked and unmasked model is small.
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Dataset #Edits Ment. New Existing

LitBank 453 12.1, 9.3 12.6, 10.4 27.2, 6.0
QBCoref 145 20.0, 8.3 16.6, 13.1 16.6, 7.6

CI 429 4.9, 4.4 17.0, 5.6 27.0, 13.3

Table 4.8: The edits made in each dev set via rollback are categorized: Mention
detection errors, missed New clusters, and incorrect links to Existing clusters. We
report the percentage of (wrong→right, right→wrong) edits. The unreported fraction
of edits are wrong→wrong.

4.3.4.3 Error correction with rollback

In Table 4.8,13 I record the number of predictions that are changed with rollback.14

In general, more edits are corrections (wrong→right) than errors (right→wrong),

which demonstrates the effectiveness of rollback. For all three datasets, many of the

corrections made address correctly assigning spans to existing clusters, such as the

“you” in Figure 4.3. In QBCoref, many corrections are un-predicting a non-mention,

while in CI, many corrections are correctly predicting new starts of entity clusters.

4.3.4.4 Latency analysis

The running assumption in this work is that each sentence arrives after all

computation has been completed for the previous sentence, which motivates wait time

as a metric. However, this assumption may not always be true in situations where

utterances are highly frequent or short, like in online chat rooms.

13OntoNotes is omittted because they remove singleton clusters before evaluation, making this
type of analysis difficult.

14Each mention identified by the model either before or after rollback is split based on its gold
reference antecedent: not a mention, discourse-new, or part of another cluster. For the first two
classes, this counts the number of revisions. For the third, a cluster link is correct if the majority of
the predicted cluster overlaps with the reference cluster.
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To verify this empirically, I run simulations to find the token arrival rate for which

offline and online models have equivalent sentence latency. To compute sentence-level

latency, (sub)token arrivals are assumed to be uniform at a fixed prespecified rate.

When the last token of a sentence arrives, if the model decides to process the preceeding

chunk, I simulate running inference over the previous sentence(s). In parallel (in this

simulation), tokens continue arriving.

The latency metric of interest is the time between the end of each sentence and

when the predictions for that sentence are produced by the simulated model. Since

ICoref is sequential, if the model is due to process a segment before the previous

one is completed, the next segment is blocked until the previous one is complete. To

simulate this, the forward pass is run once to obtain the size of the job for each of these

segments, and then used to simulate sentence-level latency with different token arrival

rates. The goal is to gain some intuition over token arrival rates. To demonstrate the

extremes and collect a lower bound on the arrival speed of tokens for which offline

models will have less latency, the online and offline ICoref models, which were usually

the fastest and slowest were the targets of the simulation (Figure 4.5).

For all datasets, the point at which offline and online models have equivalent

sentence latency is at over 200 words per second (wps). Additionally, if the stream is

slower than 20 wps, there is never a ”delay” caused by processing a sentence. This

is substantially faster than the speaking (Yuan et al., 2006) and reading (Brysbaert,

2019) rates of around 3-5 wps. Therefore, sentence-level predictions are being made
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Figure 4.5: Simulated mean sentence-level latency given different token arrival rates.

faster than tokens are produced, which validates our metric of wait time in this work.

This may not extend to some settings with high arrival rates, like livestream comments.

4.3.5 Technical Appendix

The default hyperparameters are used for both the C2F model and ICoref. For

C2F, I tried training with mention detection loss (coefficient=1), as it may help with

singletons. It has a small effect in training, and so for QBCoref and LitBank, we use

a mention detection loss. In addition, following the previous findings on continued

training (Gururangan et al., 2020; Xia and Van Durme, 2021), each model continues

training from the publicly released OntoNotes checkpoints. Each model is trained once,

as the goal is to highlight online coreference resolution, specifically, online inference.

To that end, I also explore several values of u ∈ [1, 2, 3, 4, 5, 6, 7, 8] and r ∈

[2, 4, 5, 6, 8, no rollback] for each of the datasets. The results for various values of u

is reported in Figure 4.4, which is an interpolation between the online and offline

models. The best values were: r = 4 for QBCoref, r = 6 for LitBank, and r = 8 for
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the other splits. Furthermore, following the findings in Section 4.3.4.1, all models are

trained with and without the causal mask, although in practice models without the

mask performs better.

For each test set and model (i.e. plotted point in Figure 4.4), inference is run

three times and the minimum time is reported rather than the average. Minimum is

used because in rare cases, one of the runs would be significantly slower, which would

disproportionately affect the average. Overall, the mean difference between the max

and min wait time across all datasets is around 10.5ms, or 12% relative to the min

wait time, and the median is 5.8ms.

All experiments are run on a single NVIDIA RTX Quadro 6000 GPU. Training

each model completes in under 24 hours, with some datasets like QBCoref taking

significantly less times (under an hour). Inference takes 1-5 minutes per trial.

4.3.6 Conclusions and Limitations

Section 4.3 looks at reining back document-level models for neural coreference

resolution to the utterance level by proposing a shift towards online inference. I

propose a model with the capability for making predictions online, after every sentence.

This leads to lower latency than a corresponding offline model, and maintains a

consistently high running F1 after each sentence. To edit predictions made without

future context, I introduce a rollback mechanism which reverts and corrects recently

made predictions, bringing the F1 closer to that of the offline model while maintaining
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its ability to make online predictions with low latency.

This is still only the first steps towards efficient inference for coreference resolution,

especially as the underlying encoders grow increasingly large (and slow). Future

steps would consider extensions to this approach by handling online processing at the

word-level, revisiting the scenario considered by Schlangen et al. (2009). Furthermore,

it would be exciting to connect this to a real-world application and demonstrate benefits

in efficiency for downstream tasks like semantic parsing or dialogue understanding.
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This chapter contains two studies, Section 5.1 uses the efficient model from

Chapter 4 as part of a full information extraction system. This leads to investigating

(and finding deficiencies) around multilingual models. Section 5.2 looks closer at

methods for transferring models across domains and languages for the full coreference

resolution task.

5.1 A multilingual information extraction

system

Note

LOME: Large Ontology Multilingual Extraction was a system built by a

large team at Johns Hopkins University and University of Rochester and demonstrated

at EACL 2021 System Demos.1 Information on using the Docker container, web demo,

and demo video at https://nlp.jhu.edu/demos. I contributed to parts of the full

system demonstration, and I have additional multilingual findings not featured in the

original paper that are discussed in Section 5.1.2.

1Guanghui Qin contributed equally by creating the FrameNet model and standing up the demo
site.
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5.1.1 An overview of Large Ontology Multilingual

Extraction (LOME)

LOME (Xia et al., 2021) is a system for performing multilingual information

extraction. Given a text document as input, our core system identifies spans of

textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It

subsequently performs coreference resolution, fine-grained entity typing, and temporal

relation prediction between events. By doing so, the system constructs an event and

entity focused knowledge graph. We can further apply third-party modules for other

types of annotation, like relation extraction. Our (multilingual) first-party modules

either outperform or are competitive with the (monolingual) state-of-the-art. We

achieve this through the use of multilingual encoders like XLM-R (Conneau et al.,

2020) and leveraging multilingual training data. LOME is available as a Docker

container on Docker Hub. In addition, a lightweight version of the system is accessible

as a web demo.

As information extraction capabilities continue to improve due to advances in

modeling, encoders, and data collection, we can now look (back) toward making richer

predictions at the document-level, with a large ontology, and across multiple languages.

Li et al. (2020a) noted that despite a growth of open-source NLP software in general,

there is still a lack of available software for knowledge extraction. We wish to provide

a starting point that allows others to build increasingly comprehensive document-level
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Figure 5.1: Architecture of LOME, reproduced from Xia et al. (2021). The system
processes text documents as input and first uses a FrameNet parser to detect entities
and events. Then, a suite of models enrich the entities and events with additional
predictions. Each individual model can be trained and tuned independently, ensuring
modularity of the pipeline. Annotations between models are transferred using
Concrete, a data schema for NLP.

knowledge graphs of events and entities from text in many languages.

Therefore, we demonstrate LOME, a system for multilingual information extraction

with large ontologies. Figure 5.1 shows the high-level pipeline by following a

multilingual input example. A sentence-level parser identifies both ingestion events

and their arguments. To connect these events cross-sententially, the system clusters

coreferent mentions and predicts the temporal relations between the events. LOME,

which supports fine-grained entity types, additionally labels entities like the rabbit

with living thing/animal.

Several prior packages have also used advances in state-of-the-art models to build

comprehensive information extraction systems. Li et al. (2019) present an event,

relation, and entity extraction and coreference system for three languages: English,
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Russian, and Ukrainian. Li et al. (2020a, GAIA) extend that work to support

cross-media documents. However, both of these systems consist of language-specific

models that operate on monolingual documents after first identifying the language.

On the other hand, work prioritizing coverage across tens or hundreds of languages is

limited in their scope in extraction (Akbik and Li, 2016; Pan et al., 2017).

Like prior work, LOME is focused on extracting entities and events from raw

text documents. However, LOME is language-agnostic; all components prioritize

multilinguality. Using XLM-R (Conneau et al., 2020) as the underlying encoder paves

the way for both training on multilingual data (where it exists) and inference in

many languages.2 Our pipeline includes a full FrameNet parser for events and their

arguments, neural coreference resolution, an entity typing model over large ontologies,

and temporal resolution between events.

Our system is designed to be modular: each component is trained independently

and tuned on task-specific data. To communicate between modules, we use Concrete

(Ferraro et al., 2014), a data schema used in other text processing systems (Peng

et al., 2015). One advantage of using a standardized data schema is that it enables

modularization and extension. Unless there are annotation dependencies, individual

modules can be inserted, replaced, merged, or bypassed depending on the application.

We discuss two example applications of our Concrete-based modules, one of which

further extracts relations and the other performs cross-sentence argument linking for

2XLM-R itself is trained on CommonCrawl data spanning one hundred languages.
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events.

The primary application of LOME is to extract an entity- and event-centric

knowledge graph from a textual document. In particular, we are interested in using

these graphs to support a multilingual schema learning task (KAIROS3) for which

data has been annotated by the LDC (Cieri et al., 2020). As a result, some parts of

LOME are designed for compatibility with the KAIROS event and entity ontology.

Nonetheless, there is significant overlap with publicly available datasets.

Clearly, LOME is much larger in scope than the focus of this thesis. However,

this subsection provides context on how (and why) an efficient multilingual model is

integral to a fast and functioning system (and demonstration). The next subsection

describes some specific findings related to the coreference resolution component.

5.1.2 Multilingual Coreference Resolution

The coreference resolution model is based on ICoref (Section 4.1) because

it achieves near state of the art performance with additional benefits. The main

motivation for this model choice is robustness: LOME needs the ability to soundly

run on all document lengths, and so ICoref is favored over other slightly better

performing but brittler systems. In addition, because this coreference resolution

model is part of a broader entity-centric system, the module used in this system

3This goal is to develop a system that identifies, links, and temporally
sequences complex events. More information at https://www.darpa.mil/program/
knowledge-directed-artificial-intelligence-reasoning-over-schemas.
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does not perform the mention detection step (which is left to the FrameNet parser).

Instead, both training and inference assumes given mentions, and the primary task

here is mention linking. However, there are also some findings for the full multilingual

coreference task.

Coreference Linking

ICoref is trained with XLM-R (large) as the underlying encoder and with

additional multilingual data. Unlike that work, gold spans are provided. This

necessitated by the location of coreference in LOME, as mentions are passed to the

coreference module as input. In addition, while I previously used a frozen encoder,

I find that finetuning improves performance.4 Finally, The multilingual data used

consists of the full OntoNotes 5.0 (Weischedel et al., 2013; Pradhan et al., 2013), a

subset of SemEval 2010 Task 1 (Recasens et al., 2010), and two additional sources of

Russian data, RuCor (Toldova et al., 2014) and AnCor (Budnikov et al., 2019).

The performance of our model on each language is benchmarked with the average

F1 (MUC, B3, and CEAFϕ4) by language in Table 5.1. The model’s performance

can also be compared to monolingual gold-mention baselines, where they exist. For

English, the gold-mention baseline is an identical model using SpanBERT (Joshi et al.,

2020) instead.

That model achieves 92.2 average (dev.) F1, compared to the 92.7 of the

4Using AdamW and a learning rate of 5× 10−6.
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Language # Training # Eval Docs -ru All

Arabico 359 44 69.4 70.7
Catalans 829 142 66.6 65.7
Chineseo 1810 252 89.5 90.2
Dutchs 145 23 65.0 65.1

Englisho 2802 343 92.4 92.8
Italians 80 17 56.4 56.0

Spanishs 875 140 66.1 66.5

Russiana 573 127 77.2 79.2

Table 5.1: Average F1 scores by language trained with gold mentions, with and
without Russian data in training. The superscripts o indicates data from OntoNotes
5.0 (dev), s indicates data from SemEval 2010 Task 1 (dev), and a is the AnCor data
(test). Note: this table differs from that of Xia et al. (2021), as that paper reports
numbers specifically for the model checkpoint in the demo. For reasons unclear to me
now, the model included in the demo performs slightly worse in most languages.

multilingual model. There is also a comparable system for Russian AnCor from

Le et al. (2019), which achieves 79.9 F1 using the model from Lee et al. (2018) and

RuBERT (Kuratov and Arkhipov, 2019), which is comparable to the that of the

multilingual model (79.2). This shows that a single, multilingual model can perform

comparably to monolingual models, with the advantage that with a single model, it

does not need to perform language ID and is a fraction of the size of a system with one

model per language. This finding mirrors prior findings showing multilingual encoders

are strong cross-lingually (Wu and Dredze, 2019).

Additionally, the benefits of encoder finetuning can be more carefully investigated

by sweeping over layers to determine whether there is benefit to finetuning the entire

XLM-R large model.5 This sweep, shown in Figure 5.2, confirms that finetuning more

5This question is explored a little differently in Chapter 5.
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layers (except the vocabulary embeddings) leads to generally better improvements in

score, although a big improvement already arises from finetuning even the top 4 or 8

layers.
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Figure 5.2: Performance of multilingual coreference linking model as the number of
trainable layers in XLM-R is increased.

Full Coreference Resolution

While not reported in Xia et al. (2021), a similar multilingual model was trained

on the full coreference resolution task using the OntoNotes (en, zh, ar) and SemEval

2010 (it, nl, ca, es) datasets. This is the same model as the one in the previous

section, except the model is no longer provided gold mentions. One constraint

was that because the language is not known at inference it is not possible to pick
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language-specific hyperparameters. Notably, this affects the the “maximum span

length” considered by the model. I chose 15 (sub)tokens for these experiments,

reported in Table 5.2. Unsurprisingly, finetuning the (full) encoder also leads to

better results. Disappointingly, in this setting, none of the scores reported are close in

performance compared to monolingual models. This motivates the following section

Section 5.2, which partially aims to improve scores on each dataset without annotating

additional data.

Language Frozen Finetuned

Arabico 23.1 41.4
Catalans 32.2 55.3
Chineseo 51.7 68.0
Dutchs 32.8 50.9

Englisho 61.3 77.1
Italians 19.5 42.4

Spanishs 32.9 57.1

Table 5.2: Average F1 scores by language trained without gold mentions, with
and without a finetuned XLM-R encoder. The superscripts o indicates data from
OntoNotes 5.0 (dev), s indicates data from SemEval 2010 Task 1 (dev).

5.2 Model transfer

Note

This section is adapted from Moving on from OntoNotes: Coreference

Resolution Model Transfer presented at EMNLP 2021.6 Code and pretrained

6This work was done in 2021 with Benjamin Van Durme.
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models for this section are available at https://nlp.jhu.edu/coref-transfer.

Abstract

Academic neural models for coreference resolution are typically trained on a single

dataset, OntoNotes, and model improvements are benchmarked on that same dataset.

However, real-world applications of coreference resolution depend on the annotation

guidelines and the domain of the target dataset, which often differ from those of

OntoNotes. I aim to quantify transferability of coreference resolution models based on

the number of annotated documents available in the target dataset. I examine eleven

target datasets and find that continued training is consistently effective and especially

beneficial when there are few target documents. Doing so establishes new benchmarks

across several datasets, including state-of-the-art results on PreCo.

5.2.1 Introduction

Starting initially with neurally-learned features (Clark and Manning, 2016a; Clark

and Manning, 2016b), end-to-end neural models for coreference resolution (Lee et

al., 2017; Lee et al., 2018) have been developed and imbued with the benefits from

contextualized language modeling (Joshi et al., 2019; Joshi et al., 2020) and additional

pretraining (Wu et al., 2020). At the same time, the number of parameters used in

these models have increased, raising questions of overfitting our research to a specific
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dataset. Several studies show that fully-trained neural models on preexisting large

datasets do not transfer well to new domains (Aktaş et al., 2020; Bamman et al., 2020;

Timmapathini et al., 2021), and that rule-based baselines can still be superior (Poot

and Cranenburgh, 2020). Further, while prior work has analyzed fully-trained models

for mention pairs, like gender bias (Rudinger et al., 2018; Webster et al., 2018; Zhao

et al., 2019), there has not been a comprehensive comparison analyzing transfer across

datasets for document-level coreference resolution.

This study aims to bridge the current gap in understanding between the strength

of pretrained models in contrast to the value of annotated target data, in light of

the strong few-shot capabilities demonstrated by pretrained language models (Brown

et al., 2020b; Schick and Schütze, 2021). While transfer in other NLP tasks have been

studied more in-depth, transfer in coreference resolution has scarcely been examined

despite recent models containing hundreds of millions of parameters. I investigate

model transfer across datasets with continued training, in which a fully-trained model

on a source dataset is further trained on a small number of target dataset examples

(Sennrich et al., 2016; Khayrallah et al., 2018).7

This work contributes first study of neural coreference resolution transfer, showing

that continued training is effective on eleven datasets spanning different domains,

annotation guidelines, and languages. I find evidence that OntoNotes, a widely-used

but license-requiring dataset for benchmarking coreference resolution, is no better

7I use continued training to refer to full model adaptation, in contrast to finetuning which is more
strongly associated with encoders that are trained without supervision (Hinton and Salakhutdinov,
2006).
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for model transfer than the freely-available PreCo. Additionally, continued training

establishes modern (neural) benchmarks on several understudied datasets, including

state-of-the-art results on PreCo. Finally, I analyze practical considerations regarding

model selection, catastrophic forgetting, and parameter sharing.

5.2.2 Coreference Resolution

As discussed in Chapter 2, entity coreference resolution is the challenging task of

finding clusters of mentions within a document that all refer to the same entity.

Specifically, as discussed in Section 2.2.2, annotation guidelines for coreference

resolution differ across these datasets based on the intended goals of the creators.

Despite such differences, OntoNotes 5.0 (Weischedel et al., 2013) emerged as the most

widely-used benchmark for the full task, and widely used public models are based on

this dataset (Manning et al., 2014; Gardner et al., 2018). Table 2.2 (from Section 2.2.1)

shows some of the concrete differences between OntoNotes and a few other datasets

considered in this work.

However, I’ve argued in this thesis that OntoNotes-based models are not always

appropriate. OntoNotes is a collection of several thousand documents across just

seven genres from the 2000s (or earlier), and many datasets fall outside of the scope of

those genres or time period. And, unlike other datasets, singletons are not annotated.

In modeling OntoNotes, genre and speaker features are needed to improve on the

state-of-the-art, both of which are idiosyncrasies of the OntoNotes dataset. It is
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unclear how well these models transfer to a new, target dataset, especially if it is

annotated and usable in (continued) training.

Prior work on domain adaptation for coref has focused on a single dataset and

often with non-neural models. Yang et al. (2012) use an adaptive ensemble which

adjusts members per document. Meanwhile, Zhao and Ng (2014) use an active

learning approach to adapt a feature-based coref model to be on par with one trained

from scratch while using far less data. Moosavi and Strube (2018) study model

generalization by including carefully selected linguistic features, aiming to improve

out-of-the-box general performance. Aktaş et al. (2020) adapt a model to Twitter by

retraining with a target-dependent subset of genres of OntoNotes.

While these studies shed insight on single datasets, this chapter aims to set broader

expectations and guidelines on effectively using new data for model adaptation, both

in terms of quantity and allocation of data between training and model selection.

5.2.3 Methods

5.2.3.1 Continued Training

I adopt the formulation of continued training from Luong and Manning (2015)

where a model is first trained on a source dataset until convergence. This fully-trained

model is then used to initialize a second model which is trained on a target dataset.

This framework has been used for other tasks where annotation guidelines or
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domains shift significantly between datasets, like in syntactic parsing (Joshi et al.,

2018), semantic parsing (Fan et al., 2017; Lialin et al., 2021) and neural machine

translation (Luong and Manning, 2015; Khayrallah et al., 2018). In addition, continued

training can be staggered at different granularities (Gururangan et al., 2020) or use

mixed in-domain and out-of-domain data (Xu et al., 2021).

5.2.3.2 Incremental Coreference Model

For this work, it is helpful to view end-to-end models for coreference resolution

as having four parts: a text encoder, a scorer for mention detection, a scorer for

mention pair linking, and an algorithm for decoding clusters. The ICoref model

(Xia et al., 2020a) used in this work uses SpanBERT (Joshi et al., 2020), followed by

mention detection and linking as described in Chapter 4, and decoding is done greedily

(offline, without rollback). In particular, the encoder is a pretrained component that is

substantially larger (in size) than all the mention detection and linking parameters in

the other three parts. This model was chosen because of its competitive performance

against the line of end-to-end neural coreference resolution models (Joshi et al., 2019)

and memory efficiency, which allows for experiments on longer documents.

However, ICoref, like the models before it, is originally designed around

OntoNotes. As a result, the minor modifications described in Section 4.2 are made for

this study.
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Dataset Training Dev Test # Folds

OntoNotesen 2,802 343 348 -
OntoNoteszh 1,810 252 218 -
OntoNotesar 359 44 44 -

PreCo 36,120 500 500 -
LitBank 80 10 10 10
QBCoref 240 80 80 5

ARRAURST 335 18 60 -
SARA 138 28 28 7

Semevalca 829 142 167 -
Semevales 875 140 168 -
Semevalit 80 17 46 -
Semevalnl 145 23 72 -

Table 5.3: Number of documents for each of the datasets considered in this work. For
the smaller datasets, we perform k-fold cross-validation.

5.2.3.3 Data

This study explores a total of two source datasets and eleven target datasets,

described in Table 5.3. For smaller datasets, evaluation is performed via k-fold

cross-validation, following the original authors.

OntoNotes 5.0 (Weischedel et al., 2013) is a dataset spanning several genres

including telephone conversations, newswire, newsgroups, broadcast news, broadcast

conversations, weblogs, and religious text. The dataset contains annotations of

syntactic parse trees, named entities, semantic roles, and coreference. Notably,

however, it does not annotate for singleton mentions, while it does link events. It also

includes data in English (en), Chinese (zh), and Arabic (ar), which is referred to using

superscripts.

PreCo (Chen et al., 2018) is a dataset consisting of reading comprehension passages
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used in test questions. The authors argue that because its vocabulary is smaller than

that of OntoNotes, it is more controllable for studying train-test overlap. While they

detail many ways in which their annotation scheme differs from OntoNotes, notably,

they annotate singleton mentions and do not annotate events. Furthermore, this

corpus is sufficiently large that it is possible to train a general-purpose coreference

resolution model. Finally, because the official test set has not been released, the official

“dev” set is used as the test set, and a separate 500 training examples as the “dev” set.

LitBank (Bamman et al., 2020) is an annotated dataset of the first, on average,

2,000 words of 100 public-domain books. While they annotate singletons, they also

limit their mentions only to those which can be assigned an ACE category.

QBCoref (Guha et al., 2015) is a set of 400 quiz bowl8 literature questions that are

annotated for coreference resolution. This dataset also includes singleton annotations,

and it only considers a small set of mention types. The documents are short and dense

with (nested) entity mentions, as well as terminology specific to literature questions.

ARRAU (Uryupina et al., 2020) is the second release9 of ARRAU, a corpus first

created by Poesio and Artstein (2008) which spans several genres. The fine-grained

annotations mark the explicit type of coreference, and the dataset also includes

phenomena like singleton mentions and non-referential mentions. This study only uses

the coarsest-grained coreference resolution of the RST subcorpus, which is a subset of

the Penn Treebank (PTB) newswire documents, and therefore uses the same splits as

8Quiz bowl is a trivia competition where passages give increasingly easier hints towards a common
answer, such as a book title, author, location, etc.

9LDC2013T22
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PTB (Poesio et al., 2018). Thus, this dataset overlaps with OntoNotes, which also

includes sections of PTB. However, ARRAU is used to analyze annotation transfer.

SARA v2 (Holzenberger and Van Durme, 2021) is a collection of legal statutes

in which text spans identified as arguments of legal structures are also annotated for

coreference. Each document is a single short legal statute, and so the overall number

of clusters is low while many clusters are singletons.

SemEval 2010 Task 1 (Recasens et al., 2010) is a dataset for multilingual

coreference resolution for studying the portability of coref systems across languages.

It consists of data in English (overlapping with OntoNotes), German, Spanish (es),

Catalan (ca), Italian (it), and Dutch (nl). Due to dataset overlaps and licensing, only

the latter four languages are used in this paper.

Dataset Preprocessing

Following prior work (e.g. Joshi et al. (2019)), all documents are processed into

sentence-separated and subtokenized segments of sizes at most 512. For all English

datasets, the SpanBERT tokenizer is used, while the XLM-R tokenizer is used for the

cross-lingual experiments.

For QBCoref, the dataset is split into five splits after shuffling the initial dataset.

For LitBank, the published splits are used (Bamman et al., 2020). In ARRAURST,

several mentions are “split” (non-consecutive). Correctly modeling split spans is an

active area of ongoing work (Yu et al., 2020a; Yu et al., 2021). Since ARRAURST
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primarily used for intrinsic comparisons, I defer to the minimum span if a mention is

split. This means I replaced a subset of markables, listed in Table 5.4. In addition,

a small number of markables do not have an annotated coreference cluster, while a

couple split markables failed to reduce because there is no minimum span annotated.

These two phenomena did not affect the test set. Nonetheless, the model’s inability to

address split markables affects comparability against prior work.

Split Total Split No “coref” No “min”

train 57,686 677 4 2
dev 3,986 40 0 0
test 10,341 145 0 0

Table 5.4: Statistics of markables that are either reduced or ignored from the
preprocessing of ARRAURST to convert it into a format consistent with the ICoref
model used for the other datasets in this work.

Table 5.5 shows the number of training examples that were considered for each

dataset. Datasets are shuffled once initially, so larger training sets are always a

superset of a smaller one.

5.2.3.4 Source models

Since decoding in ICoref is greedy, it has three learned components: an encoder,

a mention scorer, and a mention linker. This can be split into experiments where only

the encoder is initialized and where the full model is initialized.
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Dataset # Training examples

OntoNoteszh [0, 10, 25, 50, 100, 250, 500, 1810]
OntoNotesar [0, 10, 20, 40, 80, 160, 359]

PreCo [5, 10, 25, 50, 100, 250, 500]
LitBank [5,10, 20, 40, 80]
QBCoref [5, 15, 30, 60, 120, 240]

ARRAURST [10, 20, 40, 80, 160, 335]
SARA [10, 20, 40, 80, 138*]

SemEvalca [10, 25, 50, 100, 250, 829]
SemEvales [10, 25, 50, 100, 250, 875]
SemEvalit [10, 20, 40, 80]
SemEvalnl [10, 20, 40, 80, 145]

Table 5.5: Training set sizes considered for each dataset. *For SARA, the entire fold
is used, which contains 138 documents on average.

Pretrained encoders

For these models, only the encoder is initialized with a pretrained one and the

rest of the model is randomly initialized. Joshi et al. (2020) trained the SpanBERT

encoder on a collection of English data with a span boundary objective aimed at

improving span representations. In addition, they finetune SpanBERT by training a

coreference resolution system on OntoNotes (Joshi et al., 2019), which they release

separately. This finetuned encoder is referred to as SpanBERT-On. Conneau et al.

(2020) trained XLM-R, a cross-lingual encoder, on webcrawled text in 100 languages.

As demonstrated in Section 5.1.2, it is effective at cross-lingual transfer, including

coreference linking. In general, the “large” sizes of each model are used, except for

one experiment with the “base” size of SpanBERT-on.
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Trained models

Alternatively, the full model can be initialized with prior checkpoints. Transfer

(on) is a model downloaded directly from Xia et al. (2020a). I also train models on

PreCo with SpanBERT-large (Transfer (pc)) and on OntoNotesen with XLM-R

(Transfer (en)).10 A variant of each model is also trained with gold mention

boundaries, which skips the mention scorer.

5.2.4 Experiments and Results

For a single source model and target dataset, I train several models using a different

number of input training examples described in Table 5.5. Coreference is evaluated

with the average F1 between MUC, B3 and CEAFϕ4 .
11

Training Details

The hyperparameters are mostly the same as those of Xia et al. (2020a): k = 0.4 to

select the top 0.4n spans; learning rates of 2e-4 for training the non-encoder parameters

(with Adam); 1e-5 for the encoder (with AdamW); gradient clipping of 10; training up

to 100 epochs with patience of 10 for early stopping based on dev F1. For all models,

the full encoder is fine-tuned (except for Section 5.2.4.4). The max span width is 10

for SARA, 15 for PreCo and ARRAURST, 20 for LitBank and QBCoref, and 30 for all

10Cross-lingual models are trained separately because XLM-R and SpanBERT use different
tokenizations.

11We score exact match for SARA (following prior work).
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other datasets. These choices are made based on prior work or the statistics of the

training set.

Each model was trained on a single 24GB Nvidia Quadro RTX 6000s for between

20 minutes to 16 hours, depending on the number of training examples. Due to the

cost of training over 500 models, each model was trained only once. The English

models use 373M parameters, of which 334M is the SpanBERT-large encoder. The

multilingual models use 599M parameters, of which 560M is XLM-R large.

5.2.4.1 How effective is continued training for domain

adaptation?

Continued training

Figure 5.3 shows that it is always beneficial to perform continued training on a

source model, even if there is a large amount of target data. However, intuitively

the differences are most pronounced in low-resource settings (with 10 fully-annotated

documents) where it is still possible to adapt a strong model to perform non-randomly.

These conclusions for coreference are similar to those drawn by Gururangan et al.

(2020) on the effectiveness of domain- and task- pretraining of encoders for language

classification tasks. These findings also support the intuition used by Urbizu et al.

(2020), who choose PreCo as a pretraining corpus for ARRAU.

Continued training (and finetuning) is a core component of most NLP models,
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Figure 5.3: Each subplot shows the test performance for each model and (English)
dataset when trained with a different number of documents. The first and second rows
are coreference and mention boundary F1 in the end-to-end setting, while the third
row is the coreference F1 with gold mentions. SpanBERT is a pretrained encoder,
while the SpanBERT-On encoders are further finetuned on OntoNotes by Joshi et al.
(2020), with base and Large designating its size. Unlike these (dashed lines) models
for which we initialize the encoder, the Transfer models (solid lines) use continued
training and initialize the full model with one that has already been trained on a
source dataset, either OntoNotes (on) or PreCo (pc).

as text embeddings are typically derived from large pretrained models. Joshi et al.

(2018) find that model adaptation with contextualized word embeddings only requires

a small set of partial annotations in the new domain for syntactic parsing. Meanwhile,

Brown et al. (2020b) and Schick and Schütze (2021) find that pretrained language

models can effectively learn a broad suite of sentence-level understanding, translation,
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and question-answering tasks with just a few examples. This study corroborates their

findings for a document-level information extraction task, since these models, based

on strong pretrained encoders, perform well with just 5 or 10 training documents.

OntoNotes vs. PreCo

This study also finds that OntoNotes (Transfer (on)), despite being the

benchmark dataset, is on par (or worse) as a pretraining dataset compared to PreCo

(Transfer (pc)). One possibility is that because PreCo annotates for singletons, it

is closer to the target datasets that also annotate singletons. This is evident when

we compare the mention detection accuracy of the two models in low-data settings

(e.g. LitBank or QBCoref at 5 examples). In the next setting, all models are given

gold mention boundaries in pretraining, continued training, and testing, which would

effectively evaluate just the linker. However, in this setting, PreCo outperforms

OntoNotes even more on QBCoref, LitBank, as well as ARRAURST. This suggests

PreCo as a preferred pretraining dataset over OntoNotes when there are few annotated

documents.

Model size and pretraining

The publicly available models use the “base” and “large” encoders. While there

are even larger encoders, coreference models using them are rare. For future model

development, one may decide between using a publicly available small model and
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retraining a large one from scratch. To simulate this, I compare a small encoder

finetuned on OntoNotes, SpanBERT-On (b), with SpanBERT (L), which has

not been trained on the task. This is also a realistic setting if there are hardware or

compute limitations.

In all datasets, there is benefit to having some pretraining. When there is not

much training data, the smaller (finetuned) encoder outperforms the larger encoder

without finetuning. However, with enough data, the large model appears to surpass

the smaller model. Nonetheless, there exist scenarios where continued training of a

smaller model is desirable.

New benchmarks

Table 5.6 shows the test scores of our best model compared to prior work. For

PreCo, we directly evaluate on the fully-trained model without continued training, as

the full dataset is sufficiently large. Since some of these datasets are understudied,

these are primarily intended as stronger baselines for future work.12 The purpose

is to quantify the effectiveness of continued training and highlight PreCo as an

alternative pretraining dataset. Note that this strong performance is achieved without

hyperparameter tuning or incorporating any language or domain specific features.

For Table 5.6, the score of the best model between Transfer (on) and Transfer

(pc) is reported, based on their dev scores on each dataset. These are listed below in

12Contemporaneous and subsequent work has since established even stronger baselines for several
of datasets, e.g. LitBank (Thirukovalluru et al., 2021).
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Dataset Prior work Previous Model Previous Score Our best Our Model

PreCo Wu and Gardner (2021) SpanBERT + C2F 85.0 88.0 pc
LitBank Thirukovalluru et al. (2021) SpanBERT + C2F 78.4 76.7 on
QBCoref Guha et al. (2015) Berkeley < 35 78.1 on

ARRAURST Yu et al. (2020b) BERT + cluster ranking 77.9 79.1* pc
SARA Holzenberger and Van Durme (2021) string match baselines 55.1 72.9 on

OntoNoteszh Chen and Ng (2012) Multi-pass sieve 62.2 69.0 en
OntoNotesar Aloraini et al. (2020) AraBERT + C2F 63.9 58.5 en
SemEvalca Attardi et al. (2010) feature-based + MaxEnt 48.2 51.0 en
SemEvales Attardi et al. (2010) feature-based + MaxEnt 49.0 51.3 en
SemEvalit Kobdani and Schütze (2010) feature-based + decision tree 60.8 36.7 en
SemEvalnl Kobdani and Schütze (2010) feature-based + decision tree 19.1 55.4 en

Table 5.6: Test F1 on all datasets and the previous state-of-the-art on each dataset,
to the best of our knowledge. Again, the goal is to benchmark the general method
of continued training described in this study, which will not necessarily outperform
models that incorporate domain or language specific knowledge. The best Transfer
model is determined by the dev set. *ARRAURST is not directly comparable to
prior work as it is test on a slightly differently-preprocessed subset. Multi-pass sieve
(Raghunathan et al., 2010), Berkeley (Durrett and Klein, 2013), and C2F (Lee et al.,
2018) refer to widely-used coreference resolution models.

Table 5.7.

Dataset on pc en

PreCo 82.4 85.2 -
LitBank 77.3 76.3 -
QBCoref 79.1 78.7 -

ARRAURST 77.7 79.3 -
SARA 77.7 75.4 -

OntoNoteszh - - 69.0
OntoNotesar - - 62.3
SemEvalca - - 51.4
SemEvales - - 52.1
SemEvalit - - 36.1
SemEvalnl - - 48.3

Table 5.7: Dev. F1 scores on each of the models and datasets presented in Table 5.6.
For the English dataset, the test score of the model with the best performing score is
reported in Table 5.6.

133



CHAPTER 5. IMPROVING DATA EFFICIENCY VIA MODEL TRANSFER

Cross-lingual transfer

Figure 5.4 shows the results for multilingual coreference resolution. The gap

in performance at low-data conditions (and the high initial starting point) shows

that transfer via continued training is also effective cross-lingually in the end-to-end

document-level task. These results corroborate prior work (Conneau et al., 2020) by

providing more evidence for XLM-R’s cross-lingual transfer ability, in this case on the

full end-to-end task. Given these results, joint multilingual pretraining followed by

continued training might be an even more effective recipe for creating the best models

for each language. This is out of scope for this study, which is focused on transfer

from single datasets.

5.2.4.2 How to allocate annotated documents?

In Figure 5.3, the experiments for each dataset used the same dev set for model

selection to improve comparability. At the same time, I observe that adding even a

few more training examples can lead to improved performance. For some datasets,

like PreCo, the size of the dev set used for model selection in our experiments greatly

outnumbers the number of training documents. Next, I explore allocating fewer

documents for model selection.

20 models for PreCo are trained with a different number of examples using

SpanBERT-On (L) and Transfer (On). Each model is trained for 60 epochs and

makes predictions on all 500 dev examples. Next, for each dev set size, a subset of
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Figure 5.4: Like Figure 5.3, this plot demonstates the effectiveness of continued
training across different languages. XLM-R uses a pretrained encoder (dashed line),
while Transfer (en) is first trained on OntoNotesen (solid line).

the full predictions is sampled and used to determine, post-hoc, the checkpoint at

which the model would have stopped had that sampled subset instead been the dev

set. This is performed 20 times, yielding 20 such subsets, which is used to compute

the expected scores and standard deviation for each model, along with how frequently

the subset agreed with the full dev set.

Figure 5.5 summarizes the results, showing remarkable stability in expectation

even with tiny dev sets, often less than a couple points behind using the full dev set.

Given a fixed budget of documents or annotations, these results suggest that it is
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Figure 5.5: The expected test F1 (and standard deviation) on the PreCo dataset for a
given number of training documents and 20 sampled subsets of dev documents for
two models described in Section 5.2.3.4. The number of runs matching the best full
dev checkpoint is in the lower-right. We find that the dev set size has relatively little
impact.

beneficial to allocate as many documents as possible towards training, leaving behind

a small set for model selection.

5.2.4.3 How much do the source models forget?

To measure the degree of catastrophic forgetting (McCloskey and Cohen, 1989),

the source datasets of each Transfer model is revisited and its performance is

measured in the presence of more training data.13 In Figure 5.6, it is evident that on

some datasets, the performance drop is especially pronounced after training on just

13For datasets with k-folds, the mean across folds is reported.
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10 examples in the target dataset.

I hypothesize that this is due to easy-to-learn changes between the annotation

guidelines that are incompatible between the two datasets, like the annotation of certain

entity types. Two pairs, (OntoNotesen→OntoNoteszh) and (PreCo→ARRAURST) are

less affected by continued training. For OntoNotes, the same guidelines are used for

all languages. Meanwhile, PreCo and ARRAURST are more similar in annotation

guidelines than any other pair since they both include singletons. On the other hand,

(OntoNotes→ARRAURST) shows a substantial drop in performance despite the two

datasets containing overlapping documents.

In the cross-lingual setting, the drops are smaller than across English datasets. This

could be due to several factors. The XLM-R encoder is already trained multilingually

and has strong crosslingual performance (Conneau et al., 2020), while English encoders

are not well-suited for all domains, like law (Chalkidis et al., 2020). The crosslingual

datasets in this study (OntoNotes and SemEval) are primarily in the same domain

(newswire) and share similar annotation guidelines. And, in some cases where the

trend looks flatter (SemEvalit, Semevalnl, and even SARA), the training dataset is

also smaller.

5.2.4.4 Which encoder layers are important?

Training the entire encoder is an expensive cost of continued training, both in

terms of training time and in the number of new parameters introduced by a new
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Figure 5.6: Average F1 of the models on both the target and the original datasets as
different number of (target) training examples are used in continued training. The
dashed lines are the scores on the target dataset (mirroring Figure 5.3) while the solid
lines show performance on the original dataset.

target dataset. I experiment with freezing some parameters of the encoder and training

the top-k layers, along with the rest of the model, for each of the “large” encoders.

This is motivated by Section 5.1.2, prior work which uses just the top four layers

(Aloraini et al., 2020), and by findings from encoder probing that higher layers are

more salient for coreference (Tenney et al., 2019a). I explore this question on three

datasets (LitBank, QBCoref, OntoNoteszh).

Figure 5.7 shows that there are gains to training some layers, but it is not always

necessary to train the full model. In particular, for transferred models, unfreezing

more layers of the encoder could even lead to worse performance. On the other hand,

untrained models generally benefit from training more of the encoder. These trends are
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methods follow those used throughout the paper.

observed in both datasets and data quantities. This is also observed for OntoNoteszh

and in medium data conditions.

5.2.5 Conclusion and Limitations

Section 5.2 comprehensively examines the transferability of neural coreference

resolution models. I explore several model initialization methods across a wide set

of domains and languages, and with a different number of training examples, to

demonstrate the universal effectiveness of continued training. Additionally, this
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method results in improved performance over prior work on many of these datasets.

Furthermore, I find that PreCo can be effectively used for pretraining, suggesting a

viable alternative to OntoNotes.

Upon further analysis, I find that: given a fixed number of annotated documents,

few need to be allocated for model selection; continued training also suffers from

catastrophic forgetting; and continued training is effective with partially frozen

encoders. This study and its set of benchmarks serve as a reference for future work

in coreference resolution model adaptation, especially for scenarios where annotation

can be expensive or data may be scarce.

140



Chapter 6

Reducing model size

141



CHAPTER 6. REDUCING MODEL SIZE

This chapter first describes a brief overview of neural model compression and

pruning methods. While it is not aimed to be a comprehensive survey, it provides

additional context for my subsequent contributions. Section 6.2 subsequently describes

a general study and method for pruning multitask models. The goal is two-fold. First,

I want to create a single model that can perform well across multiple tasks (akin

to the multilingual attempt in Section 5.1.2 or multi-dataset attempt in Toshniwal

et al. (2021)). However, I also wish to address the relatively large size of the encoder

(relative to the parameter count for mention detection and linking). I explore a method

for simultaneously training a multi-task model while compressing. In Section 6.3, I

apply this method to ICoref as a proof of concept, showcasing one possible method

for reducing the size of multi-dataset coreference resolution models.

6.1 A brief overview of model

compression

The goal of model compression is to start with a large model and produce a smaller

model without substantially affecting accuracy, typically with the goal of improving

inference speed or (on-disk) model size. There are a few broad classes of methods

for doing so: knowledge distillation, model pruning, factorization techniques, and

quantization. This is not an exhaustive set; more in-depth discussion can be found in

several comprehensive surveys on model compression (Cheng et al., 2017; Deng et al.,
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2020; Xu and McAuley, 2022).

In knowledge distillation (Bucila et al., 2006; Hinton et al., 2015), a larger model

(or ensemble) is used to “teach” a smaller model. Given a large model Mlarge and

labeled data (X, Y ), a smaller model Msmall can use both the label y and the soft

labels (e.g. logits scores or intermediate attention weights) M(x) as part of its training

signal. This general purpose machine learning technique has been applied to a variety

of models and architectures in NLP (Kim and Rush, 2016; Sanh et al., 2020a).

Model pruning refers to removing unimportant weights in a model by setting them

to zero (LeCun et al., 1990). There are several methods for determining the importance

of the weights: directly using the magnitude of the weights (Han et al., 2015; Frankle

and Carbin, 2019), including a regularization loss on individual or groups of weights

(Murray and Chiang, 2015; Alvarez and Salzmann, 2016), or learning importance

scoers (Sanh et al., 2020b). Generally, after pruning, the model needs to be trained

further to recover performance. If the pruning is performed in a structured manner

by dropping out entire attention heads, layers, or columns (Michel et al., 2019; Fan

et al., 2019; Murray et al., 2019), then this would also result in a substantially smaller

model in practice. On the other hand, pruning can also be unstructured ; in this case,

the model might not shrink in size as neither the dimensions of the matrices nor the

computation graph shrink in size (See et al., 2016). Thus, this would only lead to

speedups in practice with fast implementations of sparse matrix operations.

Another approach includes matrix or tensor factorization, which aims to
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reparameterize matrices of size with low-rank approximations by using singular value

decomposition (Sainath et al., 2013; Haeffele et al., 2014). This results in overhead at

inference, but can substantially reduces the number of parameters of the model if the

rank is sufficiently reduced.1 This has been used for several neural architectures, like

Transformers (Ben Noach and Goldberg, 2020), LSTMs (Grachev et al., 2017) and

CNNs (Idelbayev and Carreira-Perpinan, 2020).

Finally, quantization is a different approach which still keeps the number of

parameters fixed but reduces the number of bits for each float within the weights

(for example, switching from 32-bit floating point to 8-bit integers) (Micikevicius et al.,

2018; Jacob et al., 2018). This shrinks the effective size of the model in terms of

number of bytes. Some of the main challenges are correctly computing gradients

during training and ensuring speedups on real hardware. Subsequent work has applied

quantization to models in NLP (e.g. Shen et al. (2020) or Bai et al. (2021)) and is

often used in conjunction with other methods.

In this chapter, I take a deeper dive into model pruning as it best supports the

paradigm of continued training established in Section 5.2. Specifically, I build on a

pre-existing pruning method (Sanh et al., 2020b) that is geared towards fine-tuning

(encoders) on a new task. However, all of the methods described are complementary,

and are often combined when optimizing for the smallest and fastest model (e.g. (Kim

and Hassan, 2020)).

1A more detailed explanation is in Section 6.2.2.1.
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6.2 Multitask Model Pruning

Note

This was presented as Pruning Pretrained Encoders with a Multitask

Objective at the NeurIPS 2021 Workshop on Efficient Natural Language and Speech

Processing (ENLSP).2

Abstract

The sizes of pretrained language models make them challenging and expensive

to use when there are multiple desired downstream tasks. This work adopts recent

strategies for model pruning during finetuning to explore the question of whether

it is possible to prune a single encoder so that it can be used for multiple tasks.

I allocate a fixed parameter budget and compare pruning a single model with a

multitask objective against the best ensemble of single-task models. Under two

pruning strategies (element-wise and rank pruning), the approach with the multitask

objective outperforms training models separately when averaged across all tasks, and it

is competitive on each individual one. Additional analysis finds that using a multitask

objective during pruning can also be an effective method for reducing model sizes for

low-resource tasks.

2The work was done in 2021 with Richard Shin.
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6.2.1 Introduction and Background

In the last few years, NLP models have relied on pretrained text encoders like BERT

(Devlin et al., 2019), which perform well when finetuned across many downstream NLP

tasks. At the same time, these models are often overparameterized for the downstream

task, leading to a surge of interest in reducing encoder size while retaining most of its

performance on downstream tasks (Sun et al., 2020b; Sanh et al., 2020a).

Meanwhile, there has been interest in adapting a single model to multiple

downstream tasks through the use of a small number of additional, task-specific

parameters (Houlsby et al., 2019; Shin et al., 2020; Hu et al., 2021). These techniques

are useful for efficiently sharing large base models during training by freezing the

underlying encoder and finetuning parameters dependent on the target task. Switching

between tasks is also cheap: only a small component is changed.3 These methods for

extending models of size N with only ϵ parameters per task can perform well on t

tasks at the cost of N + tϵ instead of tN parameters, and architectural innovations

have led to smaller ϵ (Karimi Mahabadi et al., 2021a; Karimi Mahabadi et al., 2021b).

In practice, this allows for deployment of models for multiple tasks at the cost of a

single model in terms of memory or disk space.

This section describes the possibility of further reducing the number of parameters

used by these multitask models to be substantially smaller than N . Specifically, this

is done by pruning multitask models using a multitask training objective. To get all

3These can be viewed as a more expensive version of the genre embedding features in OntoNotes
coreference resolution models.
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of the benefits described above, the goal is a substantially pruned model that also

performs well on multiple tasks. In addition, I ask whether performance on individual

task can be improved by leveraging data from the other tasks, which is a strategy

employed by general-purpose language modeling (Liu et al., 2019; Aghajanyan et al.,

2021).

This is an empirical study specifically for pruning in the multitask scenario, which

contributes:

• An extension of both structured and unstructured pruning methods to the

multitask setting.

• Under both methods, findings that suggest a multitask model consistently

outperforms a combination of single-task models for a given, fixed budget.

• A multitask objective does not necessarily lead to a loss in performance on any

individual task. In some cases, it enables improved performance for tasks with

smaller dataset sizes.

6.2.2 Approach

In model pruning, elements of a weight matrix are pruned or set to zero. This is

usually determined using a heuristic such as a fixed magnitude threshold or relative

top-k cutoff which is gradually increased during training on the task dataset. The
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objective is to create a model with high sparsity,4 which measures the fraction of

removed (or zeroed out) weights.

6.2.2.1 Pruning Methods

I explore 8 settings (Table 6.1) for model pruning: what gets pruned (element-wise,

unstructured pruning vs. rank, structured pruning), varying pruning method

(magnitude vs. movement), and uniformity of pruning (global vs. local).

Variable Choices How it changes pruning objective

Structure
Element-wise Prune parameters independently from each other
Rank SVD then prune diagonal entries (rank)

Selection
Magnitude Remove model weights with smallest magnitudes
Movement Learned importance scores per weight

Scope
Global top-k computed across entire model
Local top-k computed per weight matrix

Table 6.1: The main variable in our pruning comparison experiments is structure,
although we also explore two other variables. There are 3 variables with 2 choices
each, leading to 23 = 8 combinations for model settings.

Unstructured vs. structured pruning

In prior work for model pruning, individual elements of a weight (matrix) are

typically pruned separately, or element-wise, in an unstructured manner, which can

lead to inconvenient sparsity patterns for a single weight matrix. This pattern means

that it can be difficult to realize real-world gains in efficiency on typical hardware,

particularly on GPUs (Gale et al., 2020). As such, other work considers structured

4Equivalently, low density.
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pruning of entire rows or columns of the matrices, which makes it much easier to

realize efficiency gains (Fan et al., 2021; Lagunas et al., 2021).

Both the theoretical setting and the real-world setting are important towards

achieving efficiency in practice. Thus, an alternative structured pruning approach is

explored: rank pruning (Yang et al., 2020).

Starting with a weight W ∈ Rm×n, SVD lets us approximate W = UΣV where

U ∈ Rm×k, Σ ∈ Rk×k is diagonal, and V ∈ Rk×n. Initially, k = min(m,n). By

pruning values from the diagonal of Σ, we reduce its rank from k to k′. Consequently,

entire columns in U and rows in V can be pruned, resulting in three reduced matrices:

U′, Σ′, and V′.

The resulting matrices can be stored as U′Σ′ ∈ Rm×k′ and V′ ∈ Rk′×n, which uses

k′(m+ n) parameters. If k′ < k
2
, this is smaller than the original m× n size of W.5

Similarly, decomposing W and pruning in this way would lead to faster inference

– for an input x ∈ Rm×l, W⊤x costs lmn scalar multiplication operations while

5If k′ > k
2 , we can recover the unfactorized form, W′ = U′Σ′V′. Thus, rank pruning would

never use more parameters or computation than element-wise pruning. For a single weight matrix
W ∈ Rm×n, the original weight matrix has size mn.

After performing SVD, W = UΣV. After pruning to a final rank k′, the reduced U′ has k′m
elements and V′ has k′n elements, and so storing the decomposed matrix costs k′m+ k′n.

When k′ < min(m,n)
2 , then

k′m+ k′n <
min(m,n)

2
(m+ n) (6.1)

≤ min(m,n)

2
· 2 ·max(m,n) (6.2)

= min(m,n)max(m,n) = mn. (6.3)

Note that this bound is not tight, and when m ̸= n, k′ can be higher. This occasionally turns out
to be the case in the feedforward layers of BERT. Nonetheless, this bound is sufficient for all m,n
and is the one used here.
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((U′Σ′)V′)⊤x only needs lk′(m+ n).

The elements in Σ are initially the singular values of W, and so their magnitudes

are interpretable as the importance of a particular dimension. Yang et al. (2020)

prune directly on the magnitudes and use orthogonal regularization to constrain Σ to

be close to the singular values. In contrast, SVD is only used as initialization without

additional regularization. Thus, interpreting the weights as singular values may not be

valid after finetuning, and so there may be better selection heuristics than magnitude

pruning.

Magnitude vs. movement pruning

Two pruning selection heuristics are considered. Magnitude pruning is a

well-studied method which incrementally removes (sets to zero) the smallest-magnitude

weights during training, until only the top-k largest weights remain at completion

(LeCun et al., 1990; Han et al., 2015; Zhu and Gupta, 2018). In this section, k refers

to a fraction of the weights, and so it directly controls the size of the pruned model.

Movement pruning (Sanh et al., 2020b) is a first-order method which prunes by

using learned importance scores that correspond to the cumulative change during

finetuning of each weight matrix element, effectively retaining weights moving away

from 0. Formally, for a weight W, this method associates with it a set of scores S.

In the forward pass, a binary mask M = Topk(S) is applied to the weight, and so

for an input x, (W ⊙M)x is used instead, where ⊙ is the element-wise product. In
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the backward pass, all weights are updated as Topk is ignored and its gradient is

approximated using a straight-through estimator (Bengio et al., 2013). Sanh et al.

(2020b) showed this to be effective for finetuning a pretrained model using a new

objective.

There are extensions to both methods which use an minimum threshold rather

than top-k; however, controlling the sparsity would then requires a threshold sweep

per task to discover the best threshold, which is expensive especially in the multitask

setting. For simplicity, this study directly controls k.

Global vs. local pruning

Finally, pruning can be either local (each weight matrix is pruned to the same

sparsity) or global (only the entire model needs to hit a target sparsity). Pruning

globally allows for more aggressive pruning of less useful model components or layers,

assuming weights are globally comparable.

6.2.2.2 Multitask extension

Extending these methods to the multitask setting is straightforward. Separate,

unpruned classification heads for each task can be learned while each task model

shares a common set of pruned encoder weights (and learned importance scores, in

the case of movement pruning) across all tasks.6 In multitask pruning, each task is

6One could also selectively prune weights (and learn importance scores) based on the task (Liang
et al., 2021). However, I found that doing so results in about the same or worse task performance
while incurring a higher parameter cost.

151



CHAPTER 6. REDUCING MODEL SIZE

sampled uniformly at random and optimized for that task’s objective.

6.2.2.3 Model and Datasets

Like prior work (Jiao et al., 2020; Sun et al., 2020b; Sanh et al., 2020b), I prune

the BERT-base model (Devlin et al., 2019). The reported pruning fraction is relative

only to the 12-layer Transformer. The embedding and output classification layers

are considered a fixed cost. This is also the treatment in Sanh et al. (2020b). The

single-task baselines use their best hyperparameters for all main experiments.

Specifically, for the single-task baseline models, the best hyperparameters from

Sanh et al. (2020b) are used. For rank pruning the learning rate of Σ is increased to

5× 10−3 after a small search. The multi-task models are trained for 8 epochs with 2

initial and 2 final warm-up epochs. This is close the average of the number of epochs

used for the three separate tasks.

Like Sanh et al. (2020b), English language understanding datasets act as the

primary benchmark: MNLI (Williams et al., 2018), SQuADv1.1 (Rajpurkar et al.,

2016), and QQP (Iyer et al., 2017). Since the goal in this section is to evaluate the

compressibility of a multitask model, there are no claims regarding specific tasks.
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Figure 6.1: Left: The performance on MNLI (dev) across [magnitude, movement]
and [global, local] pruning strategies. Within each plot, we show the performance
of pruned element-wise and rank-pruned models. Right: Comparison of the runtime
of a model using rank pruning relative to an entirely dense model, showing that the
structured sparsity ensured by rank pruning can lead to practical benefits. Density is
1 - sparsity.

6.2.3 Experiments and Results

6.2.3.1 Comparison of pruning methods

First, I establish the relative task performance difference between element-wise

and rank pruning and confirm that rank pruning (a structured approach) outperforms

element-wise pruning (an unstructured approach) in practice. BERT-base is pruned

to various target sparsities while finetuning on MNLI for each of the parameter

combinations described in Section 6.2.2.1. This is done in the single-task setting to

compare the possible benefits that can be derived from rank pruning and to find the

best configuration for both methods.
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Task performance

The results in element-wise pruning once again demonstrate the superiority of

global movement pruning (Sanh et al., 2020b). In contrast, for rank pruning, local

magnitude pruning is generally the best strategy. The poor performance of global

pruning can be explained by the fact that it is possible to prune some parameters

marginally (i.e. not beyond the k
2
threshold needed to see improvements) and so some

of the budget allocated towards pruning is unused. Furthermore, the magnitudes of

the singular values of the feedforward and self-attention layers are not necessarily

comparable, as the attention layers were found to be pruned more aggressively.

Comparing between the best settings for unstructured (element-wise) and

structured (rank) pruning, it appears that unstructured pruning retains performance

better when the parameter count is low.

Runtime comparison

In Figure 6.1, I make a simplifying assumption that unstructured pruning does

not shrink the size of any individual matrix, and so the runtime at any sparsity would

be equal to that of an unpruned model. Under that assumption, rank pruning offers

substantial speedups and is almost immediately (at around 10% sparsity) faster than

the dense model.

However, sparsifying a matrix can lead to specialized hardware and algorithmic

optimizations as demonstrated by sparse multiplication libraries (Gale et al., 2020).

154



CHAPTER 6. REDUCING MODEL SIZE

Lagunas et al. (2021) optimize element-wise unstructured pruning in a simple manner

by removing entirely pruned rows, columns or attention heads. They show that even at

high sparsities (more than 90%), this strategy achieves at most around a 1.5× speedup.

Meanwhile, rank pruning achieves a comparable speedup at just 50% and almost a

2.5× speedup at 90%. While rank pruning has lower F1 under a fixed parameter

budget, it is a competitive option given a fixed latency budget.

Global rank pruning

One limitation of global rank pruning is that the initialization is not normalized

across weights. Specifically, with magnitude as the selection heuristic, attention

weights are pruned more aggressively because most of their singular values are smaller

than those of the feedforward parameters. This could result in important weights

in the attention layers being pruned before less important ones in the feedforward

layers, and explain why global rank pruning performs poorly at high sparsities (as

shown in Figure 6.1a). The opposite behavior is observed for rank movement pruning,

where pruning globally is slightly preferred over pruning locally. This suggests that

first-order information might be more comparable globally.

Future work can investigate finding a balance between using the interpretability of

the magnitudes of the singular values and first-order information from the finetuning

process. Alternatively, one could explore a hybrid pruning strategy: with magnitude

pruning, separate thresholds (or k) for the attention and the feedforward parameters.
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(a) Unstructured (element-wise) pruning
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(b) Structured (rank) pruning

Figure 6.2: Given a fixed parameter budget (expressed as a fraction of a single model
size), a single model pruned with a multitask objective (blue) is compared against the
best combination of 3 individual task models for a given size. The red line (“mixture”)
is the Pareto frontier of these combinations.

6.2.4 Multitask pruning

With the above baseline established, the next experiments are in the multitask

setting with MNLI, QQP, and SQuAD. The goal is to answer: given a fixed parameter

budget for all tasks, is it better to train (and prune) three specialized models or one

substantially larger multitask model for all three tasks?

Concretely, models are pruned to varying sparsities using four separate objectives:

MNLI, QQP, SQuAD, and multitask. The best mixture of single-task models is

compared to a single model pruned with a multitask objective. The best mixture is

determined by the Pareto frontier of all possible collections of models. Each single-task

model was pruned to [1, 2, 3, 4, 5, 10, 15, 30] percent and the Pareto frontier (i.e.

the best mixture) was calculated based on dev. macro average F1 while single-task
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Model Rank Prune % MNLI SQuAD QQP QNLI SST-2 MRPC STSB RTE CoLA Avg.
393K 87.6K 364K 105K 67K 3.7K 7K 2.5K 8.5K

No pruning – 100% 84.0 84.9 89.1 90.7 92.3 86.5 88.5 65.7 56.3 82.0

RP (3) 38 7.6% 73.8 64.3 83.1 - - - - - - -
RP (1) 38 7.6% 73.6 64.4 75.2 80.0 87.4 75.7 14.4 52.7 0 58.2
BNG 150 29.2% - - - - 91.3 ± 0.4 87.8 ± 0.6 - - 38.7 ± 1.6 -

RP (9) 38 7.6% 72.1 54.2 81.3 84.7 87.6 83.6 86.3 67.1 23.6 71.2
RP (9) 76 15.0% 76.8 70.5 84.5 88.2 89.8 87.5 88.0 70.4 34.6 76.7

Table 6.2: Individual task performance (dev.) of a model pruned using rank pruning
with the multitask objective. The size of the training set for each task is also listed.
RP (9) is trained on all nine tasks, RP (3) is the three-task model from Section 6.2.4,
and RP (1) represents 9 separate single-task baseline models. BNG (Ben Noach and
Goldberg, 2020) is three separate single-task low-rank models tuned using knowledge
distillation.

models were selected based on dev. F1. Figure 6.2 shows that the multitask model

outperforms the mixture on a macro-averaged 3-task metric. In addition, it matches

or exceeds the performance on individual tasks.

Multitask pruning outperforms the mixture with both element-wise pruning and

rank pruning, suggesting that the ability to leverage a multitask objective during

pruning may extend to other, novel methods for pruning.

6.2.5 Auxiliary multitask pruning objective

In Section 6.2.4, I observed that in some cases, a multitask pruning objective is

helpful even when only one task (e.g. QQP) is of interest. This motivates a follow-up

question: if we only care about a single task, should we still use a multitask objective?7

To test this hypothesis further, I expand the three tasks to 9 and prune a model

7This is related to similar themes from Section 5.1.2, where including additional non-Russian
multilingual data can help Russian coreference performance.
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with a 9-task objective, sampling each task uniformly at random. In addition to the

three aforementioned tasks, this includes CoLA (Warstadt et al., 2019), SST-2 (Socher

et al., 2013), MRPC (Dolan and Brockett, 2005), STSB (Cer et al., 2017), and QNLI

(Rajpurkar et al., 2016), and RTE (Dagan et al., 2005).

Table 6.2 shows the performance on each of the tasks when pruning using this

9-task objective with local magnitude rank pruning. For comparison, a single-task

model is also pruned with the same method. The multitask models (RP (9)) perform

well on the smaller datasets of RTE, CoLA, and STSB, outperforming the single-task

baseline (RP (1)) and they come close to prior models which are larger and also use a

separate hyperparameter search for each task (Ben Noach and Goldberg, 2020). In

contrast, this method in this setting required no additional hyperparameter tuning

(beyond pruning heuristic decisions made in Section 6.2.3.1). These results collectively

suggest that multitask-based pruning offers another way to effectively prune models

for low-resourced tasks.

6.2.6 Discussion and Limitations

This section is limited to multitask compression, which aims to perform well on

multiple tasks with a given parameter budget smaller than the size of single-task

model. Under both unstructured (element-wise) pruning and structured (rank) pruning

strategies, pruning with a multitask objective outperforms a combination of multiple

models pruned separately on individual task objectives. Additionally, pruning with
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a multitask objective (without additional hyperparameter tuning) can help further

prune the model for tasks with smaller datasets. These lessons learned from this

restricted setting can guide future work in compressing multitask models.

Specifically, it suggests a method for pruning coreference resolution models.

Throughout the thesis, I demonstrate that models struggle to generalize across datasets

and domains without additional in-domain data. We can view each dataset, domain,

and language as a “task” under the framework of this multitask pruning method.

Under this framing, a (small) multi-dataset coreference resolution model can be created

and evaluated. This is explored next.

6.3 Reducing model size for multiple

coreference datasets

This section applies the techniques from the previous section to coreference

resolution models. I demonstrate a proof of concept approach for reducing model size

and speculate on additional directions to reduce model size. Concretely, this experiment

simultaneously contributes two rarely-studied areas of coreference resolution: a

multi-dataset model with parameter sharing at the encoder-level and an attempt

to reduce the size of these coreference resolution models.
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6.3.1 Background

One model, many datasets

There is substantial prior work in creating models aimed at multiple target datasets

for coreference resolution. Section 5.1.2 aggregates datasets from several languages

to train a single multilingual model. In addition, Toshniwal et al. (2021) create a

single model aimed at multiple English datasets from different domains. OntoNotes

5.0 itself is a collection of multigenre data (Weischedel et al., 2013), and modeling for

this dataset typically use the document genre as an input to the model (e.g. Clark and

Manning (2016b)). We could reinterpret this learned genre vector as “task-specific”

parameters, like adapters (Houlsby et al., 2019), tuned prefix embeddings (Li and

Liang, 2021), or even tuned bias terms (Ben Zaken et al., 2022).

From the perspective of encoder pretraining, some models use disparate tasks as a

multitask training objectives and (Liu et al., 2019; Sun et al., 2020a). These model

architectures share the the transformer encoder parameters while they have separate

classifiers for each task or type of task. Going further, some models targeting multiple

data distributions only share lower layers of encoders while the higher-up layer are

specialized (Sun et al., 2021).

This study demonstrates a proof of concept for bridging the gap by sharing the

underlying encoder while keeping the mention scoring and pair scoring modules

separate per task (dataset). This ensures that a single model can still perform well on

vastly different domains. The motivation is that by sharing the underlying encoder,
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the span representations produced could be useful for general coreference resolution,

while coreference scoring parameters can learn about specific annotation guidelines or

domain-specific text.8

Reducing model size

There is little work focused on reducing the model size of a coreference resolution

model. Most work focused on efficiency prioritize inference memory usage (Kirstain

et al., 2021; Dobrovolskii, 2021) as opposed to number of parameters. These works do

not target the encoder. On the other hand, there is a vast literature on compressing

encoders for general purpose usage (Sanh et al. (2020a), Jiao et al. (2020), inter alia).

These models could subsequently be used for finetuning coreference resolution. In this

section, I directly target reducing the encoder size using the coreference task objective.

6.3.2 Methods

Section 6.2 suggests that it should be fairly straightforward to apply any of those

multitask pruning methods to any task. For this experiment, I use local movement

pruning, which was one of the competitive approaches previously identified. The

previous section also suggests that 1) minimal hyperparameter tuning can yield

promising results and 2) multitask models can provide benefits to smaller datasets. I

8As mentioned in Section 6.1, assuming a coreference resolution model with N encoder parameters
and M span scoring parameters, this would reduce the size of an ensemble of models for k datasets
down from k(N +M) to N + kM , which may offer benefits over single general model of size N +M.
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test these claims by adopting similar hyperparameters as Section 6.2 with a minimal

search on total training epochs.

Four datasets are used: PreCo (Chen et al., 2018), LitBank (Bamman et al., 2020)

which is a collection of literature, QBCoref (Guha et al., 2015) which is a collection of

trivial questions, and SARA (Holzenberger and Van Durme, 2021), which is a set of

legal statutes (these are also described in Table 2.1).9 While these four datasets are

small, the same splits were usable as training data in Section 5.2.

Concretely, the model encoder is a SpanBERT (Joshi et al., 2020) architecture

model which is initialized with the weights of the encoder of a coreference resolution

model that has converged on a larger coreference dataset. The weights of the span

scoring and linking models are also initialized to the weights of the pretrained model.

Mask scores used in local movement pruning are initialized to 0 for all of the weights

in the encoder (only). Each training step, an example are sampled from the combined

three datasets and the document is encoded with the encoder that is being pruned.

The final token representation are used in the ICoref model and those parameters

are not pruned.

6.3.3 Proof of concept

One multitask model is pruned to various target densities, and single-task models

are also pruned to the same target densities. The models are trained for 40 total

9For each of these datasets, only the first split is used. For PreCo, I sample 500/100/500 train,
dev, and test documents.
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Dataset Density Avg. F1
PreCo QBCoref LitBank SARA

All 1.0 58.4 64.1 58.1 59.0
0.9 57.6 63.0 55.2 57.2
0.7 56.1 60.3 52.1 58.5

All - PreCo 1.0 – 65.6 59.5 67.2
0.9 – 60.3 49.0 64.0

Shared 1.0 58.8 64.3 59.0 55.7
Shared - Preco 1.0 – 64.4 60.3 68.4

PreCo 1.0 58.8 – – –
0.9 57.0 – – –
0.7 55.7 – – –

QBCoref 1.0 – 64.8 – –
0.9 – 58.2 – –

LitBank 1.0 – – 60.0 –
SARA 1.0 – – – 56.6

Table 6.3: Test F1 of several models on each dataset based on whether they are
pruned and which dataset(s) they are trained on. All uses all 4 datasets with separate
coreference resolution model parameters for each dataset. All - PreCo omits the
(larger) PreCo dataset. Shared is a single model shared across all tasks (and Shared
- PreCo omits PreCo). PreCo, QBCoref, LitBank, and Sara are single-task models.
Pruning any model further resulted in divergence.

epochs, with 4 epochs of initial and final warmup, following similar ratios as Section 6.2

and Sanh et al. (2020b). Models with PreCo were trained for 16 total epochs, with 2

epochs of initial and final warmup. A single maximum span width of 15 was used for

all the datasets. The remaining hyperparameters for ICoref are not changed from

those in Section 5.2, and the learning rate hyperparameters are not changed from the

defaults in Section 6.2. The final model checkpoint is evaluated. Models were trained

with pruning rates in the range [0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 (no pruning)].

Most of the training runs diverged (on the dev. set); the non-diverged model scores

163



CHAPTER 6. REDUCING MODEL SIZE

are evaluated on the test sets in Table 6.3. The numerical results show that pruning a

multidataset coreference resolution model could be possible, as an encoder was pruned

to 70% of the original size. However, substantially more data or training iterations

may be required to avoid divergence. Nonetheless, the multitask model did not diverge

at 70% for most datasets while the single-task models did. This provides further

evidence to support the hypothesis from Section 6.2.5 that auxiliary training tasks

could help pruning, or perhaps make convergence smoother. In particular, without

PreCo, I found that the model diverged even at 70%.

Looking at the unpruned models, the multitask model appears to be competitive

against the single-task models and the baselines. This suggests that it is possible

to share an encoder for disparate domains, and reducing a model from k(N + M)

parameters to N + kM incurs little cost in accuracy while significantly reducing the

number of parameters.

6.3.4 Discussion

Conclusiveness

Since most of the training runs diverged, this speculative experiment suggests that

while a movement pruning approach might be viable, it is not necessarily the best

option. Nonetheless, without a more exhaustive sweep over all the hyperparameters

and comparison to other compression methods, these numerical results are inconclusive.
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It does demonstrate that the method described in Section 6.2 may not be as generally

applicable out of the box as it was on the tasks used in that study.

This proof of concept shows that it is still possible to apply movement pruning

methods to a span-level information extraction task like coreference resolution, which

contrasts with the set of tasks studied both by Sanh et al. (2020b) and Section 6.2 that

were focused on sentence-level classification or question-answering tasks. In particular,

this is one of the first, to my knowledge, attempts to prune the encoder specifically

for a coreference resolution model.

Alternatives to compression

One alternative for reducing model size is to use a smaller pretrained encoder, like

SpanBERT-base. This was discussed in Section 5.2.4.1. In that setting, the same

datasets were used in continued training, and substantially fewer training epochs were

needed for the model to converge. Thus, one recommendation based on this proof of

concept is that when reducing model size, for smaller datasets, it may be beneficial

to start with a smaller encoder altogether rather than attempting to compress larger

models. On the other hand, this proof of concept demonstrates that encoder sharing

is viable, and so if coreference resolution is needed for multiple, disparate domains,

then the total number of parameters can still be reduced by sharing an (unpruned)

encoder.

Gordon et al. (2020) suggests that low levels (30%-40%) of pruning should not
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affect pre-training loss or downstream transfer. However, that is still does not bridge

the gap to encoders that are small to begin with.

Pruning the coreference parameters

This experiment does not prune the coreference resolution parameters. In this

case, the size of the encoder (340M) dominates the size of the task-specific parameters.

However, the task-specific parameters are not tiny (37M per dataset), and so future

work could additionally optimize the size of the model after obtaining span embeddings.

6.4 Future directions

This chapter only explores one potential method for reducing the model size,

and more broadly only discusses model compression techniques and one coreference

resolution model. However, there are other possible methods for reducing model

size. For example, unlike some natural language understanding tasks, coreference

resolution has been well-studied for decades and there exist a spectrum from non-neural

deterministic models to lightweight learned models. While these perform worse on

some datasets compared to their neural counterparts, there is yet to be a comparison

across domains or limiting model size, yet some of these approaches may outperform

the state of the art models.

More investigation into existing methods may shed light on whether model

compression would even be in the right direction. For example, we need to better
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understand the types of errors that are made (and corrected) as model size changes.

One possibility is that only scaled-up models capture common sense or world knowledge

that are essential to resolving a reference, as suggested by work on “emergent abilities”

(Wei et al., 2022). And, this knowledge might be retained as the (initially large) model

is compressed (Li et al., 2020c). In that case, model compression would obtain the

benefits of large language models without incurring the cost of model size. On the

other hand, it may be the case that the hardest examples require many parameters;

then, practitioners should decide how to trade off accuracy and model size.

If the goal is simply to aggressively reduce model size as a machine learning

engineering problem, we already have the toolkits needed, as described in Section 6.1.

One could adopt the approach used by Kim and Hassan (2020) and combine all model

compression techniques into one system. If there are multiple datasets to target (and

there is sufficient data), then the approach described in this chapter can also be

included. Nonetheless, doing so gains little insight into what methods work and more

crucially, where errors come from and how to fix them.

Stepping back, coreference resolution datasets are highly heterogeneous, as

exemplified by the different underlying domains and annotation guidelines. Easier

datasets may be resolvable by significantly smaller models than harder ones. Thus,

in the setting where there are multiple datasets requiring an encoder to form word

or span representations, it’s possible that the dataset-specific models should vary

significantly in size. Alternatively, at inference, an “early exit” mechanism (Xin et al.,
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2020) could be impactful.
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Conclusions and Future Directions

169



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary

In this thesis, I discussed the current state of the field in coreference resolution

(Chapter 2). In doing so, I highlighted several limitations of modern neural approaches.

These limitations affect efficiency and generalizability of models and hinder their

use in real-world applications (Chapter 3). To overcome some of these limitations,

I devised: a more time and space efficient model for coreference resolution that

maintains competitive accuracy (Chapter 4), a study that shows the effectiveness of

using continued training as a method of overcoming data deficiencies (Chapter 5), and

a method for reducing the model size of a multitask model (Chapter 6).

Crucially, these methods are aimed to be general purpose: the inference time

modifications can, in theory, be made to any publicly released model that follows

the e2e framework of detecting-then-linking, as the model parameters are directly

lifted from existing models. Meanwhile, the continued training recipe is successful

across multiple datasets and languages and the multitask pruning method is a general

technique for pruning pretrained language models, which now are an integral component

of and ubiquitous in all coreference resolution models.

7.2 Impact

In addition to the studies presented here, I have further used these findings,

either directly or in collaboration, to raise concerns around the impracticality of the
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OntoNotes-driven development of the field. For example, Yuan et al. (2021) seeks to

improve annotation efficiency through active learning and learning through partial

annotations, which is achievable through the ICoref model. Toshniwal et al. (2021)

is another work which aims to look broadly across many datasets to address the

incompatibility of singletons and speaker features.

More efficient memory usage has also been the focus of subsequent work like Kirstain

et al. (2021), which reduces the complexity of span representations, and Allaway et al.

(2021), which uses a similar incremental algorithm to ICoref for cross-document

coreference resolution. Similarly, Schröder et al. (2021) use an incremental model to

explore coreference in German books, as books would typically be too long for other

models.

LOME (Section 5.1.1) itself is an intermediate result of a substantial subset of work

in this thesis. It enjoys the memory benefits of ICoref and makes use of XLM-R as

a step towards multilingual generalizability across languages. As a result, the model

makes reasonable predictions for inputs of any size in many languages, unlike other

memory- or language- bound models.

The code for ICoref is one of few neural coreference resolution codebases that was

not designed specifically for OntoNotes. For example, the configuration file structure

is designed for users to think about dataset choices, like whether gold mentions should

be included and whether singletons should be predicted (or scored). It also encourages

users consider the choice of pretrained encoder, checkpoints, and memory usage. With
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the code publicly released, I hope that researchers and users of ICoref consider

modeling coreference resolution not as a single task and dataset but as a broader

challenge with many hills to climb simultaneously.

7.3 Short-term future directions

Looking forward, I suggest a couple challenges that this thesis did not directly

address, but are now closer in scope.

Revisiting long-document coreference resolution

Chapter 4 gave a solution to inference memory usage and latency. One of the

arguments made in that chapter is that ICoref is able to process and make predictions

on longer documents. However, as noted in Table 4.2, the model’s accuracy drops as

the document size increases. For documents with thousands of tokens, perhaps the

simplification of clusters to single vectors adopted by limited memory incremental

models is incorrect.

Instead, maybe the correct formulation is to index the entity representations with

richer information, like predicted types relations to other entities. In other words,

this would grow a knowledge graph for a document rather than an entity set. There

could be fairly minor modifications to model specific relations between entities already

collected by the entity set in the ICoref model, and this would be an interesting
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incremental direction to explore. This model, like ICoref would run locally (over a

segment) and periodically link up entities in its set to the knowledge “graph,” and

subsequently update the graph. This is different from the current formulation, which

assumes that the contextual information and span embeddings contain sufficient

information to represent an entity. Extrapolating this extension further to multiple

documents and more complex information in the graph, this converges towards the

full SM-KBP task (Section 3.2.1).

However, this may not be the right direction. Instead, perhaps our current methods

are still best suited for shorter passages of text and local coreference resolution. For

longer documents or passages, there may need to be another layer which integrates

the predictions made by local models. This way, local models could be optimized

for shorter windows while a separate model, trained differently, aggregates across

long distances. Such a system may have applications to cross-document coreference

resolution, or perhaps unite the cross-document and within-document subfields of the

field.

Multilinguality and zero anaphora

In Chapter 5, I discussed methods for creating multilingual and cross-lingual

models. One limitation of this approach is its disregard towards any language-specific

coreference phenomena. For example, consider the following Chinese sentence from

Chapter 21 of Jurafsky and Martin (2021):

173



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

• [我] 前一会精神上太紧张。[0] 现在比较平静了。

[I] was too nervous a while ago. ... [0] am now calmer.

In this example, the subject (I) in the second sentence is omitted. As discussed

in Section 2.2.1, this is present in several languages and even in certain English

domains. Subsequent directions in the multilingual and generalization direction would

be to devise a more flexible scheme for mention representation and evaluation to

accommodate features of other languages that imply referents, like zero anaphora,

traces, morphology, and split mentions.

Dialogue and social coreference resolution

Another area of focus is on multi-party communications, which is a general domain

present in everyday speech that is challenging for coreference resolution and also

underexplored. While several of the datasets in Section 2.2.1 are in the dialogue

domain, they are almost all between two people or task-driven. The errors and

ambiguities in a multi-person conversation and in social settings (e.g. Figure 4.3) are

different from the two-person datasets.

One reason for the underexploration is the lack of datasets. Given a dataset, there

are many more questions we can ask just beyond what was asked in this thesis. For

example, social situations carry common ground, background context, and possibly

even visual cues: how can those be used to improve disambiguation? Multi-person

conversations often make use of plural entities with overlapping or changing subsets
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of the speakers. How can those be discerned? Additionally, can we infer who the

listeners are for each utterance, and does that help resolve references?

In particular, multi-party communications are real-time and additional data would

complement the online modeling from Section 4.3. Recently, we have started to

work on addressing the paucity of datasets for multi-party communication, and in a

multilingual context (Zheng et al., 2022).

Bridging, deixis, and visual coreference

This work does not interact with most of the work in discourse on bridging (e.g.

“Washington” to refer to the U.S. Government), discourse deixis (e.g. “this” and “that”

in discourse (Webber, 1988)), and visual coreference. The ICoref model is amenable

to extensions to some extent: for example, bridging can be predicted using a different

type of pairwise scorer, where the entity cluster representation is only updated partially

or not at all. Discourse deixis is harder, as it may require encoding longer spans or

discourse units as markables; still, the ICoref model has an advantage in that it will

not be as memory-limited compared to other models due to the longer spans. Finally,

the model is not extendable to visual coreference, when defined between images and

captions. However, an incremental and online model might be amenable to visual

coreference in video, although this would need further exploration.
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Comparison of annotation interfaces

It is evident, based on Chapter 5, that in-domain labels are always beneficial.

Therefore, to build a model for a new domain or language, data needs to be annotated.

While there is already some work in active learning (Li et al., 2020b; Yuan et al., 2021)

for selecting which spans to annotate, there are other parts of the data collection

pipeline that have not been addressed. What is the fastest way to collect and clean

annotations for the new data? Which ones are the easiest for a non-expert to use? What

are the best practices for displaying instructions, selecting spans, and adjudicating

annotations?

Unlike other tasks in NLP, collecting annotations via crowdsourcing is nascent for

coreference resolution. However, we can’t rely on the datasets in Section 2.2.1 for all

applications, and so these open questions still need answers.

Automatic data annotation

Devlin et al. (2019) (among others) showed that by using a self-supervised training

objective, models can leverage magnitudes of unannotated data. Coreference resolution

has intersected with this idea by using Wikipedia hyperlinks (Kocijan et al., 2019)

and through the use of silver coreference data (Ye et al., 2020). However, there has

yet to be a compelling method for a self-supervised coreference objective that can be

used on arbitrary collections on unlabeled data.
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Again, Chapter 5 showed that to transfer to new domains, we need annotations for

a particular domain. Furthermore, success of pretrained language models on diagnostic

tasks suggest that large language models can be good coreference resolvers (Beyer

et al., 2021). One path forward in this direction could be to leverage the knowledge

within large language models to label a few documents of an arbitrary dataset and

subsequently (continued) train a smaller model using these documents. This could be

a recipe for achieving competitive, dataset-adapted baselines for any dataset.

7.4 Rethinking the “task” of coreference

There are also longer-term goals for coreference resolution to which this work is

only one of many steps. One of the main challenges is to properly define the scope and

task description of coreference resolution. Even in this thesis, I presented two versions:

one with and one without given mention boundaries. In this section, I suggest that

we should no longer think of coreference resolution as a single task or even a useful

standalone research objective.

For many years, coreference linking with system (gold) mentions was a setting

that researchers evaluated on (e.g. Recasens et al. (2010)). In fact, I argued in

Chapter 3 that this setting was still useful because of the gap in performance we

observed on datasets other than OntoNotes and because OntoNotes itself is incomplete.

In other words, I believe the community acted too hastily in throwing away a useful
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experimental and evaluation setting. However, now that we do finally have models

that explicitly predict singletons (Section 2.5.2, Section 4.2) and more widespread

evaluation on multiple datasets, we might be able to ignore the gold mentions setting

for good, at least in research (in full systems like LOME (Section 3.2), we would still

find it useful). To support this, consider the trends in Figure 5.3 and Figure 5.4. We

see that the end-to-end task performance roughly matches the behavior of mention

detection and coreference linking, as does the rough relative comparisons between

models and data quantity. So methods that work well on one interpretation of the

task may work well more generally and vice versa.

Next, coreference resolution is rarely useful as a standalone task. Instead, its

outputs are used by downstream systems or analysts for a different end goal. In those

scenarios, it would be more fruitful to co-develop the coreference aspects jointly with

the rest of the system. In particular, I believe we are close to the point where a

“good enough” initial model should be readily and cheaply available and that model

development should no longer be a priority. Many of the recent performance gains

are due to general NLP advances, and coreference resolution will continue to benefit

from those innovations.1 Meanwhile, using one of these models as a starting point is

cheap and this thesis presented only a small number of ways of extending those models

based on real-world constraints like compute and data. Thus, the future direction in

coreference resolution should be studying how it can be best integrated as a component

1Core modeling contributions might improve performance, but it’s difficult to know a priori how
many of those contributions would simply be subsumed by improved general NLP and NLU methods.
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of a larger system.

As a historical point of comparison, consider Penn Treebank parsing. It is now a

less common topic of research but still a commonly used tool taken for granted that is

used by other systems. It also enjoyed benefits from improved word representations.

Now, sufficiently well-performing and performant toolkits are readily available for

any practitioner. Of course, syntactic parsing is not solved, especially in low-resource

languages or less-studied domains. Nonetheless, the technology is usually good enough

to be used without much scrutiny by downstream applications as a first pass. Similarly,

I believe coreference resolution will reached that status in the near future, if we aren’t

already there.

Implicitly defined clusters

Concretely, here is one suggestion of “tight” integration in a real-world task.

Suppose a task requires resolving coreferences. The proposed approach from this thesis

is to take the approach from Section 3.2 and create a dedicated model and collect

sufficient data to properly (continued) train that model as described in Section 5.2.

Instead, I suggest a different approach, looking towards future models and joint or

“deeper” end-to-end systems. It might be sufficient to inject the bias that latent entity

clusters, or even just antecedent links, should exist at all. In doing so, they could be

implicitly used and helpful towards a downstream task without explicit coreference

supervision. There is some precedent to these types of approaches, e.g. Kim et al.
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(2019) assumes latent trees for syntactic parsing.

One full-stack model

As another example, consider the role of coreference resolution in an information

extraction stack (i.e. the SM-KBP task). The long-term vision would be to create a

single end-to-end neural model that completes the full stack quickly and efficiently

on arbitrarily large collections of documents with high accuracy. Drawing from the

themes of this thesis, this would only be possible with efficient components throughout

the model and with task-specific modules each trained on different tasks (or datasets).

I claim that eventually, these model should not have an explicit e2e-based model

as an underlying component. This is because the task data may not have exhaustive

annotation and these models are increasingly driven large language models shared

across all components. Thus, it is unclear how research solely on coreference resolution

models could contribute to such a model.

Regardless of what the model looks like, it would imply that coreference resolution

was successfully integrated into a single, end-to-end, information extraction model,

which would conclude years of research in joint modeling (e.g. Durrett and Klein

(2014)). However, this may require a new approach independent from the lessons

learned from this thesis. Thus, I suggest future-looking research to first identify why

we are interested in coreference resolution (what precisely is the downstream task?

what data exists?) before studying it.

180



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.5 Closing Remarks

This thesis advances the current state of efficient models for coreference resolution

through a focus on inference efficiency, use of data transfer, and model compression.

However, it is only the start of efficiently scaling up coreference resolution. There

are still a multitude of questions around document length, non-English coreference,

nonconversational text like dialogue, looser notions of coreference like bridging, and

annotation. Research in each of these areas could be enabled by some of the lessons

learned from this thesis.

Stepping back, however, I envision coreference resolution will always be used

as a component of a real-world system for a different task. The requirements for

each task will be different, and so it is important to explore general approaches for

data annotation and model development. At the same time, coreference could be a

deeply embedded part of those systems and so each system would require customized

methodology for handling coreference. Perhaps the biggest open problem is creating

methods for coreference resolution that scale across a variety of downstream needs

when each uses a different definition of coreference.
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Kepa Joseba Rodŕıguez, Francesca Delogu, Yannick Versley, Egon W. Stemle, and

Massimo Poesio (May 2010). “Anaphoric Annotation of Wikipedia and Blogs in

the Live Memories Corpus”. Proceedings of the Seventh International Conference

on Language Resources and Evaluation (LREC’10). Valletta, Malta: European

Language Resources Association (ELRA). url: http://www.lrec- conf.org/

proceedings/lrec2010/pdf/431_Paper.pdf (cited on page 14).

Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme (June

2018). “Gender Bias in Coreference Resolution”. Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana:

Association for Computational Linguistics, pages 8–14. doi: 10.18653/v1/N18-2002.

url: https://aclanthology.org/N18-2002 (cited on pages 15, 119).

Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana

Ramabhadran (2013). “Low-rank matrix factorization for Deep Neural Network

training with high-dimensional output targets”. 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 6655–6659 (cited on

page 144).

226

http://www.lrec-conf.org/proceedings/lrec2010/pdf/431_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/431_Paper.pdf
https://doi.org/10.18653/v1/N18-2002
https://aclanthology.org/N18-2002


BIBLIOGRAPHY

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf (2020a).

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.

arXiv: 1910.01108 [cs.CL] (cited on pages 143, 146, 161).

Victor Sanh, Thomas Wolf, and Alexander M. Rush (2020b). “Movement Pruning:

Adaptive Sparsity by Fine-Tuning”. NeurIPS. url: https://proceedings.neurips.

cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html (cited

on pages 143, 144, 150–152, 154, 163, 165).

Timo Schick and Hinrich Schütze (June 2021). “It’s Not Just Size That Matters:

Small Language Models Are Also Few-Shot Learners”. Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Online: Association for Computational

Linguistics, pages 2339–2352. doi: 10.18653/v1/2021.naacl- main.185. url:

https://aclanthology.org/2021.naacl-main.185 (cited on pages 119, 130).

David Schlangen, Timo Baumann, and Michaela Atterer (Sept. 2009). “Incremental

Reference Resolution: The Task, Metrics for Evaluation, and a Bayesian Filtering

Model that is Sensitive to Disfluencies”. Proceedings of the SIGDIAL 2009

Conference. London, UK: Association for Computational Linguistics, pages 30–37.

url: https://aclanthology.org/W09-3905 (cited on pages 92, 94, 107).
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Zdeněk Žabokrtský, Miloslav Konoṕık, Anna Nedoluzhko, Michal Novák, Maciej
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