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Abstract

Technological advances in image-guidance have made a significant impact in surgical

standards, allowing for safer and less invasive procedures. Ultrasound and photoa-

coustic imaging are promising options for surgical guidance given their real-time

capabilities without the use of ionizing radiation. However, challenges to improve

the feasibility of ultrasound- and photoacoustic-based surgical guidance persist in the

presence of bone.

In this thesis, we address four challenges surrounding the implementation of

ultrasound- and photoacoustic-based surgical guidance in clinical scenarios inside

and around the spine. First, we introduce a novel regularized implementation of

short-lag spatial coherence (SLSC) beamforming, named locally-weighted short-lag

spatial coherence (LW-SLSC). LW-SLSC improves the segmentation of bony structures

in ultrasound images, thus reducing the hardware and software cost of registering pre-

and intra-operative volumes. Second, we describe a contour analysis framework to

characterize and differentiate photoacoustic signals originating from cancellous and

cortical bone, which is critical for a safety navigation of surgical tools through small

bony cavities such as the pedicle. This analysis is also useful for localizing tool tips

within the pedicle. Third, we developed a GPU approach to SLSC beamforming to

improve the signal-to-noise ratio of photoacoustic targets using low laser energies,

thus improving the performance of robotic visual servoing of tool tips and enabling

miniaturization of laser systems in the operating room. Finally, we developed a novel

acoustic-based atlas method to identify photoacoustic contrast agents and discriminate
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them from tissue using only two laser wavelength. This approach significantly reduces

acquisition times in comparison to conventional spectral unmixing techniques.

These four contributions are beneficial for the transition of a combined ultrasound-

and photoacoustic-based image-guidance system towards more challenging scenarios of

surgical navigation. Focusing on bone structures inside and surrounding the spine, the

newly combined systems and techniques demonstrated herein feature robust, accurate,

and real-time capabilities to register to preoperative images, localize surgical tool tips,

and characterize biomarkers. These contributions strengthen the range of possibilities

for spinous and transthoracic ultrasound and photoacoustic navigation, broaden the

scope of this field, and shorten the road to clinical implementation in the operating

room.
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Chapter 1

Introduction

1.1 Image-Guided Surgery

1.1.1 Overview

For several centuries, at the patient’s table, surgeons have asked themselves the

same four questions: (1) Where am I anatomically? or more precisely, where is my

surgical tool? (2) where is my organ, tissue, or mass of interest? (3) how do I reach it

without compromising other nearby structures in my path? and (4) how is my patient

doing as I am operating? [1]. Over the past three decades, recent discoveries in physics

and advances in technology and computing have achieved significant milestones in

addressing these four questions, which has transformed surgical standards, allowing

for safer and less invasive procedures [2]. From the first non-invasive visualization of

the human bone in 1895 with the invention of X-rays [3], to the advent of stereotactic

system for surgical guidance in the mid-70s [4], to the introduction of robotic-surgery

by the end of last century [5], safe and sophisticated approaches have been proposed

and developed to tackle challenging scenarios of surgical navigation in the operating

room (OR).
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1.1.2 Challenges for Current Image-Guided Approaches

Surgical image-guidance is the field of medical imaging where the surgeon relies

on feedback from images representing the physical properties of an interrogating

region to assess the outcome of a specific pathway during a procedure [6]. Computed

tomography (CT), fluoroscopy, and magnetic resonance imaging (MRI), are some of

the most commonly used imaging technologies for computer-assisted intervention, as

they provide preoperative information that can be later used as a map for navigating

a surgical tool with the aid of tracking and registration devices. However, CT-based

imaging techniques use ionizing radiation which can be harmful for the patient,

operators, and children in misused dose and exposure times, while MRI imaging

techniques require long processing times and considerable space in the OR, often

making both CT and MRI imaging infeasible for providing real-time information of

the targets of interest during surgery.

1.1.3 Ultrasound- and Photoacoustic-Based Image Guidance

Overcoming many of the limitations noted in Section 1.1.2, ultrasound imaging

provides real-time capabilities at low cost and portability which are suitable for

intraoperative use [7, 8]. With the use of pressure waves instead of ionizing radiation,

radiologists can visualize a map representing the acoustic impedance of the interrogated

tissue at a higher resolution than CT or MRI.

Complementary to ultrasound, photoacoustic imaging is an emerging imaging

modality that has shown promise to exceed penetration depths in comparison purely

optical imaging methods, provide similar spatial resolution to ultrasound imaging,

and determine functional information based on changes in optical properties in tissue

[9]. This technique is utilizes a light source, instead of an ultrasound pressure wave,

to excite tissue [10]. When the optically absorbing targets of interest are illuminated,

they undergo thermal expansion, which results in an initial pressure distribution that
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Figure 1-1. Example of a spinal fusion technique, adapted from [29].

relaxes to form a pressure wave. This pressure wave propagates through a localized

region of the body and is received by an ultrasound transducer [11].

In the last decade, a wide range of applications of photoacoustic imaging for

surgical guidance has been proposed [12, 13], including visualization of tool tips and

blood vessels during fetal surgeries [14], endonasal surgeries [15–18], hysterectomy

procedures [19, 20], core needle biopsies [21], abdominal surgeries [22], cardiac catheter

interventions [23–25], brachytherapy procedures [26], as well as incorporation of

robotics with teleoperated surgery [19] and robotic visual servoing [27, 28].

1.2 Challenges for Photoacoustic and Ultrasound
Image-Guided Surgery in the Presence of Bone

1.2.1 Spinal Fusion Surgery

Spinal fusion surgeries are invasive procedures conducted to treat spine instability

caused by degenerative disorders, trauma, and primary or metastatic cancer. These

procedures involve drilling holes into the pedicles of vertebrae, inserting pedicle screws,

and attaching each screw to a metal rod with the goal of stabilizing the spine to allow

for bony fusion to occur, as illustrated in Fig. 1-1. When cannulating pedicles, it is

critical to ensure the correct trajectory during drilling in order to avoid accidental

bone breaches and screw misplacement. In particular, pedicle screw misplacement

3



occurs in approximately 14–39.8% of procedures [30–33], which compromises neigh-

boring structures such as nerves (and in some cases, spinal cord), erodes long-term

biomechanical stability, [34, 35], and causes adjacent degeneration [36, 37].

The presence of bone in spinal fusion procedures hinders the application of ul-

trasound and photoacoustic-based image guidance in relation to other environments

due to the increased speed-of-sound, attenuation coefficient, and scattering present in

the medium [38, 39]. However, the application of image guidance in the spine is not

only a challenge but an opportunity to develop novel ultrasound- and photoacoustic-

based solutions that register to preoperative images, characterize tissue contents,

autonomously track surgical tool tips, and contribute to the feasibility of surgical

guidance when navigating through bone. In addition, acoustic solutions designed for

bone structure (i.e., in the spine) may be similarly applied to enhance the performance

of image-guided tasks in soft tissue and vascularity (i.e., surrounding the spine).

1.2.2 Spinal Needle and Catheter Insertions

Regional anesthesia techniques such as epidural injections are perioperative proce-

dures applied in regions surrounding the spine for managing chronic pain [40]. While

traditional protocols resort to palpation for identifying key anatomical landmarks in

order to provide an accurate needle trajectory, followed by catheter insertion, chal-

lenges arise for obese patients with high body mass index [41]. As a complementary

tool for surgical guidance, ultrasound imaging has shown promise to enhance the

accuracy of epidural injections by providing non-invasive, safe, and real-time feedback

of the bone surface without exposing the patient to ionizing-radiation [40]. However,

while some studies of ultrasound-guided epidural catheter placement report reduced

placement times and number of needle passes when compared to landmark palpation

[42, 43], other randomized controlled trials showed no benefit of procedural ultrasound

imaging to epidural guidance [44].
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Figure 1-2. (a) Example of an epidural administration with a needle followed by catheter
insertion, adapted from [46]. (b) Location of heart at the thoracic level of the spine and
cardiac catheter placement within the abdominal aorta, adapted from [47]. (c) Illustration
of a cardiac catheter within a heart, which is the final destination for cardiac catheter
interventions, adapted from [48]

.

To enhance the benefits of ultrasound-guidance for spinal needle and catheter dug

delivery interventions, fluoroscopy-based contrast agents have been used to determine

epidural spreading and characterize the success of spinal injections [45]. However, as

fluoroscopy uses ionizing radiation, a more suitable alternative to contrast enhancement

can possibly be achieved with photoacoustic-based contrast agents. To demonstrate

initial feasibility, we turn our attention to a related catheter intervention that suffers

from similar challenges (i.e., cardiac catheter interventions), yet does not require

operation in narrow interspinous spaces with limited intraoperative flexibility (which

are considered secondary challenges to integrating photoacoustic-based contrast agents

with interventional spinal procedures).

1.2.3 Cardiac Catheter Interventions

Cardiac catheter-based procedures (e.g., percutaneous coronary interventions, per-

cutaneous transluminal angioplasty, catheter angiography, cardiac radiofrequency

ablation) occur at the thoracic level of the spine, as illustrated in Fig. 1-2. Advances
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in ultrasound- and photoacoustic-based techniques for image-guidance of these proce-

dures consist of either placing an ultrasound transducer externally on the intercostal

space or utilizing an internal catheter transducer that fits within the intravascular

region. In particular, photoacoustic imaging provides additional benefits to identify

pathological structures in the vessel wall with the insertion of light-sensitive contrast

agents or exogenous chromophores. However, depending on the dose, exposure time,

and number of target cells, adverse effects due to misuse of contrast agents include

acute inflammation [49], apoptosis [49, 50], necrosis [51], cellular toxicity [52], allergies

[53], reduction in cellular viability [54], nephropathy [55], hemolysis [56], and photo-

damage [57]. Therefore, it is critical to monitor the concentration levels of exogenous

chromophores mixed with endogenous chromophores (e.g., blood and lipids) when

deploying photoacoustic-based contrast agents.

1.3 Image-Guided Tasks Inside and Surrounding
the Spine

1.3.1 Overview

Fig. 1-3 summarizes key challenges presented in Section 1.2 for ultrasound- and

photoacoustic-based image-guidance inside and surrounding the spine and four as-

sociated tasks to consider when navigating to the spine, through the pedicle, and

administering photoacoustic contrast agents: (1) enable 2D ultrasound-to-CT regis-

tration, (2) differentiate cortical from cancellous bone, (3) track the tip of a surgical

tool (e.g., drill, pedicle probe) with low laser energies, and (4) monitor and control

administered contrast agent doses.

1.3.2 Ultrasound-to-CT Registration

The first step to implementing an ultrasound- and photoacoustic-based guidance

system requires identification of anatomical landmarks for registration to pre-operative
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Figure 1-3. Challenges of photoacoustic and ultrasound imaging for surgical guidance,
tasks, and major contributions of this thesis.

volumes. Current methods for this first step include measuring the bone contours

obtained from ultrasound volumes and registering the ultrasound-based measurement

to pre-operative CT volumes [58–61]. However, these techniques rely on the accuracy of

the bone contours and require significant computational resources for fast registration.

To avoid the use of ultrasound volumes, this dissertation presents a novel regularized

beamformer for enhanced landmark segmentations that enable two-dimensional (2D)

ultrasound-to-CT registration. The same beamformer is then applied to localize a

surgical tool tip in photoacoustic images when navigating through the spine.

1.3.3 Differentiation of Cortical from Cancellous Bone

The differentiation of cortical (hard) from cancellous (spongy) bone plays a critical

role in avoiding accidental pedicle breaches. As the cancellous core of the pedicle is

rich with blood in comparison to surrounding cortical bone, photoacoustic imaging is

an ideal for identifying, validating, and course-correcting regions targeted for pedicle

screw insertion. Building on the novel landmark segmentation method noted in Section

1.3.2, this dissertation presents the first known combined ultrasound and photoacoustic

image guidance system optimized for pedicle cannulation in posterior spinal fusion
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surgery. This contribution demonstrates that both amplitude- and coherence based

beamforming methods are mutually beneficial for localization of surgical tool tips and

differentiation of cortical from cancellous bone.

1.3.4 Surgical Tool Tip Tracking

The surgical guidance system noted in Section 1.3.3 can be augmented with

robotic assistance to autonomously track the surgical tool tip (i.e., visual servoing)

by segmenting photoacoustic targets. To provide accurate segmentation, previous

photoacoustic-based visual servoing implementations were implemented with laser

energies ranging 300 µJ to 3.4 mJ [23, 62]. Although this approach maximizes the

amplitude of photoacoustic signals, it introduces side lobes and other photoacoustic

image artifacts. In contrast, coherence-based beamforming improves the quality of

photoacoustic signals acquired with lower laser energies (e.g., 2.4 µJ to 8 µJ) [63], which

is advantageous to ensure laser safety. Miniaturized low-energy light delivery systems

are additionally beneficial for portability in the operating room. This dissertation

presents the first known implementation of a real-time coherence-based beamformer

for photoacoustic imaging, which was enabled by a graphical processing unit (GPU)

and parallel processing techniques. This contribution allows tracking of the surgical

tool tip with low laser energies (e.g., 118µJ to 364 µJ), which is beneficial for visual

servoing and system miniaturization.

1.3.5 Contrast Agent Administration

Monitoring and controlling administered photoacoustic-based contrast agents is

critical during drug delivery in order to avoid adverse effects. Spectral unmixing is a

photoacoustic-based technique typically implemented to measure the concentration

of endogenous and exogenous chromophores. However, this technique requires long

acquisition times due to the responses required from multiple (e.g., 45 [64]) laser

wavelengths, which is prohibitive to real-time surgical guidance. This dissertation
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presents a novel acoustic-based photoacoustic estimator that relies on training sets to

estimate concentration levels from mixtures of photoacoustic-sensitive materials. In

particular, the method is evaluated with mixtures of methylene blue (an exogenous

chromophore) and hemoglobin (an endogenous chromophore). By using the normalized

photoacoustic response from only two laser wavelengths, this estimator is beneficial

for real-time monitoring the concentration of contrast agents in the operating room or

interventional suite.

1.4 Dissertation Outline

The primary content of this thesis relies on peer-reviewed publications presented

in their original, unaltered form. These contributions address initial barriers to

implementing ultrasound- and photoacoustic-based image guidance systems inside

and surrounding the spine according to the following outline:

• Starting with pre-operative registration, Chapter 2 presents a novel regularized

coherence-based beamformer for segmentation of bone boundaries and assessment

of bone content, which are necessary tasks for spinal fusion surgeries.

• Moving on to tissue characterization, Chapter 3 describes a photoacoustic-based

contour analysis for differentiation of cortical from cancellous bone in order to

avoid accidental bone breaches. Similarly, complementary information regarding

the fiber tip location is achieved with the coherence-based beamformer described

in Chapter 2.

• Coherence-based beamformers are computationally intensive. Therefore, Chap-

ter 4 introduces a GPU-based coherence beamformer for photoacoustic segmen-

tation and robotic surgical guidance.

• Transitioning to catheter interventions, Chapter 5 summarizes a novel acoustic-

frequency analysis for the identification of endogenous and exogenous chro-
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mophores requiring photoacoustic acquisitions from only two laser wavelength

emissions. The GPU-based beamformer described in Chapter 4 is utilized to

identify catheter tip positions.

• To monitor concentration levels of mixed chromophores, Chapter 6 expands the

framework of Chapter 5 to estimate fractional methylene blue and hemoglobin

contents, which is beneficial to avoid adverse effect due to misused dose during

enhanced catheter interventions.

• Finally, Chapter 7 summarizes the major contributions of this dissertation and

presents future directions for surgical guidance based on combined ultrasound

and photoacoustic imaging.
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Chapter 2

Segmentation of Bone Boundaries
and Assessment of Bone Content

The work presented in this chapter was published in the following manuscript:

E. A. Gonzalez, A. Jain, and M. A. L. Bell, “Combined ultrasound and photoacous-

tic image guidance of spinal pedicle cannulation demonstrated with intact ex vivo

specimens,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 8, pp. 2479–

2489, 2020. This publication is licensed under a Creative Commons Attribution 4.0

International License.

2.1 Introduction

Spinal instability can be caused by degenerative disorders, trauma, and primary

or metastatic cancer [2]. These abnormalities are commonly treated with spinal

fusion surgeries, which help to alleviate pain and recover neurological functionality.

Contemporary posterior spinal fusion surgeries involve drilling holes into the pedicles

of vertebrae, inserting pedicle screws, and attaching each screw to a metal rod

with the goal of stabilizing the spine to allow for bony fusion to occur. When

cannulating pedicles, it is critical to ensure the correct trajectory during drilling in

order to avoid accidental bone breaches and screw misplacement. In particular, pedicle

screw misplacement occurs in approximately 14–39.8% of procedures [3–6], which
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compromises neighboring structures such as nerves (and in some cases, spinal cord),

erodes long-term biomechanical stability, [7, 8], and causes adjacent degeneration [9,

10].

Computer assisted spinal surgery methods are becoming increasingly prevalent,

as they improve the accuracy of pedicle screw placement and patient outcomes in

comparison to the conventional free-hand screw fixation [11]. Currently, these methods

utilize computed tomography (CT) [12], 2D or 3D fluoroscopy navigation [13, 14], and

robotic assistance [15] to provide intraoperative information, which can be registered

to preoperative CT images. The surgical tool and anatomical landmarks are then

identified in the registered images to help surgeons localize the pedicle anatomic

corridor location. However, limitations of these methods include exposure to ionizing

radiation, the requirement to insert reference and intraoperative markers, and relatively

prolonged surgery times.

Ultrasound imaging is a safer alternative to potentially provide real-time intraoper-

ative information for pre-operative CT image registration [16]. However, limitations

with ultrasound imaging for pedicle screw guidance include sound attenuation in the

presence of bone, poor signal-to-noise ratios (SNRs), and the presence of clutter and

speckle noise. Conventional ultrasound imaging has limited ability to detect deep-lying

features beneath bone tissue due to sound attenuation and sound speed differences,

requiring the use of several ultrasound slices as redundant information for registration

(i.e., 3D ultrasound imaging) [17–19]. The feasibility of multiple slice registration is

accomplished with additional tracking devices and custom hardware [20].

To overcome limitations with ultrasound imaging, photoacoustic imaging [21] has

been proposed as a guidance method for pedicle screw insertion [22]. The proposed

technique consists of delivering laser light to generate an acoustic pressure response.

The acoustic pressure is then received by an ultrasound probe, and beamforming is

applied to create a photoacoustic image. Applications of photoacoustic imaging to
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surgical guidance include visualization of tool tips such as a neurosurgical drill tip [23],

a needle tip [24–27], or a cardiac catheter tip [28], visualization of underlying structures

such as blood vessels [29], and photoacoustic-based guidance during a range of surgeries,

such as fetal surgeries [30], endonasal surgeries, [31–33], hysterectomy procedures [34,

35], and prostate surgeries [36]. The incorporation of robotics with teleoperated surgery

[34] and robotic visual servoing [37, 38] has also been demonstrated. Applications

related to the spine include stem cell injection guidance [39] and discrimination

of cortical bone from cancellous bone to identify optimal insertion points prior to

initiating pedicle screw placement [22]. Despite these remarkable advances, no previous

studies investigate the accuracy of photoacoustic signal visualization and localization

within the pedicle of a vertebra.

This paper investigates two hypotheses. First, based on previous studies to visualize

photoacoustic signals from the surface of human vertebrae [22], we hypothesize that

similar visibility can be achieved beneath the bony structure in a more realistic setup

and closer to the surgical environment of a spinal fusion surgery. Second, we hypothe-

size that improvements to 2D ultrasound imaging would reduce the computational

burden associated with requiring 3D ultrasound images to complete the segmentation

task for ultrasound-to-CT registration. To address the poor 2D ultrasound segmenta-

tion that otherwise compromises the performance of ultrasound-to-CT registration,

we propose a novel coherence-based beamforming technique named locally weighted

short-lag spatial coherence (LW-SLSC) beamforming. LW-SLSC beamforming is a

regularized version of short-lag spatial coherence (SLSC) beamforming [40], designed

to minimize the trade off between contrast and spatial resolution. Therefore, LW-

SLSC has the potential to enhance the vertebral boundaries adjacent to soft tissue

when compared to conventional delay-and-sum (DAS) beamforming, as previously

demonstrated in an ex vivo caprine vertebra [41].

Our hypotheses were tested with ex vivo caprine and human vertebrae. First, the
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segmentation enhancement achieved with LW-SLSC beamforming was compared to

that obtained from SLSC beamforming and conventional DAS beamforming in an

ex vivo caprine vertebra. Then, we demonstrated the visualization of photoacoustic

signals originating from inside the lumbar vertebrae located inside a human cadaver

during pedicle hole creation, using the same methods implemented during spinal fusion

surgeries. Validation of the photoacoustic signal locations was based on manual regis-

tration of post-operative CT volumes to co-registered ultrasound and photoacoustic

images. This registration relied on identified landmarks within segmented ultrasound

images that were enhanced with LW-SLSC beamforming. Finally, we successfully

differentiated photoacoustic signals originating from cancellous and cortical bone inside

the human cadaver by measuring the areas of -6dB contours of DAS photoacoustic

images.

This chapter is organized as follows. Section 2.2 details our acquisition, beamform-

ing, segmentation, and registration methods. Section 2.3 presents our experimental

results. Section 2.4 discusses insights from the experimental results. Section 2.5

summarizes our conclusions.

2.2 Methods

2.2.1 Coherence-Based Beamforming Methods
2.2.1.1 Short-Lag Spatial Coherence

Unlike the conventional amplitude-based DAS beamformer, SLSC beamforming

[40] displays the similarity of received signals in the aperture domain, as a function of

element separation m. A received time-delayed sample is represented as si(n), where

i is the channel index and n is the depth index in a zero-mean radio frequency signal

si. First, the coherence function R̂(m) is calculated using an axial kernel as follows:
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R̂(m) = 1
N − m

N−m∑︂
i=1

∑︁n2
n=n1 si(n)si+m(n)√︂∑︁n2

n=n1 s2
i (n)∑︁n2

n=n1 s2
i+m(n)

, (2.1)

where N is the the number of elements in the aperture, and n1 and n2 are the limits

of the axial kernel k in units of sample number. Then, an SLSC image is generated as

the integral of the spatial coherence function over the first M lags:

SLSC(M) =
∫︂ M

1
R̂(m)dm ≈

M∑︂
m=1

R̂(m). (2.2)

2.2.1.2 Locally Weighted Short-Lag Spatial Coherence

Enhancement of bone boundaries can be achieved by implementing a regularized

version of the SLSC beamformer [41]. Instead of averaging the cumulative sum up

to a lag value M (out of a preselected total of NL lags, where M< NL), LW-SLSC

beamforming computes the weighted coefficients for NL lags by minimizing the total

variation (TV) of the weighted sum within a moving kernel R̂i ∈ Rkz×kx×NL obtained

from the correlation matrix R̂ ∈ RNz×Nx×NL . In order to preserve the high resolution

information available at higher lags (i.e., M>15), this adaptive solution was regularized

using the L2-norm with a gradient operator. Then, the TV minimization was defined

as:

wiˆ = argmin
wi

{TV(f(wi, R̂i)) + α2∥∇wi∥2
2} (2.3)

f(wi, R̂i) =
NL∑︂

m=1
R̂i[m].wi[m]

Subject to : ∥wi∥1 = 1

0 ≤ wi ≤ 1

where TV is the 2D total variation with the L2-norm applied to the cost function

f , R̂i is the kernel i of the correlation matrix R̂, and wi ∈ R1×NL is the optimized

weight vector for the calculated summed lags of R̂i. The weighted sum kernels wiˆ Ri
ˆ

were stacked into multiple layers and positioned relative to the center of each R̂i. The
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LW-SLSC image was the median of the stacked kernels wiˆ Ri
ˆ . The main advantage

of LW-SLSC relies on the adaptive selection of lower lags in kernels surrounding

isoechoic regions, which enhances contrast, and higher lags otherwise, which enhances

resolution. The selective combination of higher and lower lags is known to reduce the

noise commonly observed in SLSC images created with higher lags [42].

The original formulation in (2.3) can be simplified using the framework of Barbero et

al. [43] for Total Variance alternatives. However, these simplifications only hold when

computing TV with the L2-norm. The gradient operator ∇ (i.e., 1D TV operator)

used in the penalty term is simplified to:

D =
⎛⎝ −1 1

−1 1
... ...

−1 1

⎞⎠

TV1D(wi) = ∥Dwi∥p D ∈ R(NL−1)×NL (2.4)

Similarly, the two dimensional TV operator used in the fidelity term is reduced

to:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
... ...

−1 1
... ...

−1 1
... ...

−1 1
−1 1

... ...
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TV2D(X) ≈ ∥BX∥p, B ∈ R(2kzkx−kz−kx)×(kzkx) (2.5)

Reshaping R̂ into the form Ri
ˆ ∈ Rkzkx×NL and using (2.4) and (2.5) in (2.3), results

in the following expression:

ŵ = argmin
w

{∥BRi
ˆ w∥2

2 + α2∥Dw∥2
2} (2.6)

= argmin
w

{wT Hw}, H = (BRi
ˆ )T BRi

ˆ + α2DT D (2.7)
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The reduction presented in (2.7) has several advantages over (2.3). First, by assuming

the kernel size is constant during the LW-SLSC computation, the term α2DT D is

independent from the kernel Ri and thus can be computed only once. Second, matrix

operations in (BRi
ˆ )T BRi

ˆ can be parallelized using built-in libraries for computational

speed up, where the matrix B is pre-computed. Finally, the Hessian H allows

quadratic programming using Newton step optimizers instead of the conventional

gradient descent, featuring faster convergence rates. In this study, the primal-dual

interior point method [44] is used for estimating the solution of (2.7).

2.2.2 Segmentation of an Ex Vivo Caprine Vertebra

The segmentation accuracy of bony structures achieved with DAS, SLSC and

LW-SLSC were tested on an ex vivo caprine thoracic vertebra (with surrounding tissue

intact). This vertebra was imaged with a L3-8 linear array ultrasound probe connected

to an Alpinion E-CUBE 12R ultrasound system (Alpinion, Seoul, South Korea), as

shown in Fig. 2-1. The linear array had 128 elements, 0.3 mm pitch and 0.06 mm

kerf. Raw ultrasound data were acquired with a center frequency of 4 MHz, an image

depth of 40 mm, and a focus located at 30 mm depth. To compare with conventional

techniques used for image guidance during spinal fusion surgeries, CT acquisitions

were performed using a Siemens ARCADIS Orbic 3D C-Arm with 190 raw projections,

generating a 6 cm3 volume of 0.12 mm3 voxel resolution.

SLSC images were computed with a M value of 9 and an axial kernel of 2Λ, where

Λ is the wavelength of the transmit frequency. LW-SLSC images were computed

with a 1.20 mm (lateral) x 1.92 mm (axial) kernel, 50% overlap, NL = 28, and a

regularization factor α = 0.12.

Bone boundaries from DAS, SLSC, and LW-SLSC images were computed by

applying a binary threshold of 50% of the maximum pixel amplitude and selecting

the closest contour to the vertebral foramen. These boundaries were registered with
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manually selected horizontal slices from volumetric 3D CT data. The registration

used Mattes Mutual Information as the similarity metric [45], with One Plus One step

evolutionary as the heuristic optimizer [46].

Figure 2-1. Acquisition setup for evaluating bony structure enhancement with an ex vivo
caprine vertebra.

2.2.3 Vertebral Imaging of a Human Cadaver
2.2.3.1 Specimen and Surgery Details

An adult male human cadaver was placed in prone position and dissection was

carried along the cranio-caudal axis with the aid of a Cobb elevator to reveal the

spinous process, lamina, and facet joints at each level from L1 to S1. The specimen

had no reports of spine pathologies, malformations, or previous spinal surgeries, which

was also confirmed with pre-operative CT imaging. The pedicles were cannulated

bilaterally from L2 through L4 along anatomic trajectories using a standard free hand

technique with a pedicle probe. Intentional medial and lateral breaches were made in
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some of the pedicle cannulation attempts. The total depth of the pedicle tracts from

the bone surface ranged from 14 mm to 25 mm, as measured with the ruler on pedicle

probe.

2.2.3.2 Data Acquisition

Fig. 2-2 shows the acquisition setup for ultrasound and photoacoustic data from

the human lumbar vertebrae. A 1-mm diameter optical fiber was inserted to touch

the bottom of the pedicle hole. The optical fiber was used to transmit 750 nm

wavelength laser light from a Phocus Mobile laser (Opotek Inc., Carlsbad, CA, USA)

with an energy of 13.4 mJ at the fiber tip. Photoacoustic signals were received

by a SC1-6 convex array ultrasound probe connected to an Alpinion E-CUBE 12R

ultrasound system. The probe was positioned in an oblique axis across several lumbar

laminae. Enhanced real-time visualization of photoacoustic signals was achieved with

GPU implementation of SLSC [38, 47, 48] for a convex array. This photoacoustic

beamforming method was chosen because it was the best real-time imaging option

available to assist the surgeon with fiber tip localization during the surgery.

2.2.3.3 Ultrasound and Photoacoustic Imaging

Ultrasound and photoacoustic radiofrequency data were acquired up to a depth of

70 mm, with a focal depth of 25 mm for the ultrasound data. No frame averaging was

applied in order to avoid the blurring artifacts that would hinder the performance of

ultrasound-to-CT registration. SLSC ultrasound images were computed with M =

5 and 1Λ axial kernel length, whereas LW-SLSC ultrasound images were computed

with NL = 15, a 2.0 mm (lateral) × 3.1 mm (axial) kernel, 60% overlap, and α =

1. Similarly, SLSC photoacoustic images were computed with M = 15 and 1Λ axial

kernel length, whereas LW-SLSC photoacoustic images were computed with NL = 25,

a 2.0 mm (lateral) × 3.1 (axial) kernel, 60% overlap, and α = 1.
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Figure 2-2. Setup to acquire ultrasound and photoacoustic data from the lumbar region
of an ex vivo human cadaver. (a) Insertion of the optical fiber into the pedicle hole while
the ultrasound transducer is placed across several lumbar laminae. (b) Posterior view of
the lumbar vertebrae when the optical fiber is inserted into the pre-drilled pedicle hole.

2.2.3.4 Ultrasound and Photoacoustic Segmentation

The segmentation of bony structures and their respective centers of mass were

measured from DAS, SLSC, and LW-SLSC ultrasound images, whereas the segmen-

tation of the tip of the optical fiber and its respective center of mass was measured

from DAS, SLSC, and LW-SLSC photoacoustic images. Note that the fiber tip was in

contact with bone during each image acquisition, thus the fiber tip segmentation was

considered to be representative of a bony landmark within the created hole. To achieve

the ultrasound and photoacoustic segmentations, binary masks were computed with

30% maximum pixel amplitude threshold. Then, the removal of isolated pixels was

achieved with morphological opening with a structuring element size of 0.38 mm ×
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0.38 mm, whereas small holes in the bony masks were filled with morphological closing

with a structuring element size of 0.63 mm × 0.63 mm. Ultrasound and photoacoustic

images were filtered with the computed mask and further segmented into separated

bony structures through a connected component routine. For each component, the

center of mass was calculated based on the position of pixels and the amplitude of

the ultrasound or photoacoustic image, which was normalized over the maximum

amplitude of each component.

2.2.3.5 Landmark Registration

Pre-operative and post-operative CT volumes (512 x 512 x 192 samples) of the

human cadaver were acquired with an O-arm O2 (Medtronic, Minnesota, USA) using

140 kV-peak and 0.78 × 0.78 × 0.83 mm3 voxel resolution. The CT volumes were

optimized for bone visualization by adjusting the window level to 2000 Hounsfield

units (HU) and the window width to 2000 HU. Centers of mass calculated from both

ultrasound and photoacoustic images were used as fiducial markers for landmark

registration, which was conducted with 3D Slicer [49]. The corresponding fiducial

markers in the CT volume were manually placed to match bony contours in the

registered CT slices to those in the ultrasound images. The registered CT volume was

displayed in X-Z and Y-Z views, where X, Y, and Z represent the lateral, elevation,

and axial dimensions of the ultrasound probe.

2.2.3.6 Cancellous vs. Cortical Bone Differentiation

Photoacoustic imaging was used to differentiate signals originating from cortical

and cancellous bone. Photoacoustic signals from cancellous bone were acquired when

the tip of the optical fiber was either touching cancellous bone after being placed

within a correctly created pedicle hole or touching the cortical bone surrounding

walls of the pedicle after creating an intentional medial or lateral breach. Medial and

lateral breaches in the cortical bone were confirmed with the CT volume described in

26



Section 2.2.3.5.

SNR was calculated to determine which signals would be included in the analysis

of bone differentiation, using the equation:

SNR = µi

σo

, (2.8)

where µt and σb are the mean and standard deviation of signals within photoacoustic

target and background regions of interest (ROIs), respectively, prior to log-compression.

To identify appropriate target ROIs, LW-SLSC images were used to estimate the

center of the photoacoustic targets (which was challenging with DAS photoacoustic

images because of the diffuse patterns observed in some cases [22]). Then, a 10 mm

× 10 mm ROI was centered on the photoacoustic target and a background ROI was

placed 25 mm above the center of the target.

As demonstrated in the Appendix, photoacoustic acquisitions that yielded a SNR

value of 3 or less were considered as out-of-plane signals to be discarded from additional

analysis. We reasoned that signals with SNR > 3 were more likely to be associated

with a photoacoustic signal from the fiber tip, while SNR values below this threshold

produced images that mostly contained noise. These noisy images were suspected to

result from signal sources located outside of the imaging plane.

After removing the out-of-plane signal cases, 6 cases of cancellous bone and 5 cases of

cortical bone were analyzed. For each case, DAS, SLSC, and LW-SLSC photoacoustic

images were processed with the same parameters as described in Section 2.2.3.3. Then,

contours of -6dB were computed around a 10 mm × 10 mm ROI that was centered on

the photoacoustic target. This process was repeated for 10 acquired frames from each

cortical and cancellous bone case. Finally, a t-test was used to evaluate the statistical

significance (p < 0.01) of the difference in areas generated from the contours measured

when the optical fiber was touching either cancellous or cortical bone. This statistical

analysis was repeated for each beamformer.
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2.2.4 Image Quality Assessments and Data Representation

The generalized contrast-to-noise ratio (gCNR) [50, 51] was used to assess the

separability of bone structures and surrounding soft tissue in ultrasound images,

defined as:

gCNR = 1 −
1∑︂

x=0
min

x
{pi(x), po(x)}, (2.9)

where pi and po are the probability density functions of signal amplitudes within regions

of interest (ROIs) inside and outside of the lamina, respectively. The probability

density functions were calculated from histograms computed with 256 bins. Similarly,

the contrast-to-noise ratio (CNR) was measured and compared, defined as:

CNR = |µi − µo|√︂
σ2

i + σ2
o

, (2.10)

where µi and σi are the mean and standard deviation, respectively, within a ROI

inside of the target prior to log-compression and µo and σo are the mean and standard

deviation, respectively, of a ROI outside of the target prior to log-compression.

Results from measurements of the thickness of segmented lines (Section 2.2.2)

and from areas of photoacoustic signal originating from cancellous and cortical bone

(Section 2.2.3.6) are both presented as box-and-whiskers plots in Section 2.3. In these

plots, the horizontal lines represent the median, the upper and lower edges of each

box represents the upper and lower quartiles of each data set, the top and bottom

lines extending from the boxes indicate the maximum and minimum of each data

set, and the crosses indicate outliers (defined as any value larger than 1.5 times the

interquartile range).

2.3 Results

2.3.1 Bony Segmentation of an Ex Vivo Caprine Vertebra

Fig. 2-3 shows examples of CT, DAS, SLSC and LW-SLSC images of the ex vivo

caprine thoracic section. The SLSC and LW-SLSC images were computed with
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parameters that maximized gCNR, yielding values of 0.98 and 0.99, respectively, for

the selected regions of interest. The gCNR of the DAS image was 0.67. In addion

to improving gCNR, SLSC and LW-SLSC imaging improved the boundary between

soft tissue and the spinous, lamina, and transverse processes of the vertebra, when

compared to DAS imaging. CNR was also enhanced in the SLSC and LW-SLSC

images (2.13 and 4.59, respectively), when compared to that of the DAS image, which

was 0.55.

Figure 2-3. Examples of reconstructed CT, DAS, SLSC (M = 9) and LW-SLSC (NL =
28, α=0.1) images of the caprine sample (not registered). Regions selected for gCNR
measurements are denoted by the dashed boxes.

Fig. 2-5(a) shows the registration of vertebral boundaries segmented from CT and

ultrasound images. While the segmented boundaries successfully converged in the
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Figure 2-4. Examples of photoacoustic images overlaid on ultrasound images from an
oblique view of L3-L5 vertebrae reconstructed with (a) DAS, (b) SLSC and (c) LW-SLSC
ultrasound and photoacoustic beamforming. Top row: beamformed images. Bottom
row: segmented masks. The triangles and circles represent the center of mass of isolated
components from ultrasound and photoacoustic images, respectively, which are later
combined and used as landmarks for CT registration. The insets show magnified views of
the photoacoustic signal originating from the fiber tip.

final ultrasound-to-CT registration, a notable difference was observed with DAS when

compared to SLSC and LW-SLSC boundaries. Specifically, a fuzzier segmentation was

produced from the DAS image, while the coherence-based methods reduced outliers

and produced finer contours. An additional reduction of pixel outliers is observed for

the LW-SLSC image result which more closely follows the CT contour when compared

to SLSC image result.

Fig. 2-5(b) shows the corresponding thickness difference for the lateral and axial

dimension of the segmented boundaries. To quantitatively compare the thickness of

the segmented boundaries, the integration of the segmented regions was calculated in

the axial and lateral dimensions for each boundary. The differences between these

integrated segmentation thicknesses at each lateral or axial position was computed

to compare the obtained CT boundary with each of the ultrasound boundaries. The
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Figure 2-5. (a) Registered US-CT bone boundaries after applying threshold segmentation
to images of the ex vivo caprine vertebra. The ultrasound images were beamformed using
DAS (left) SLSC (middle) and LW-SLSC (right). (b) Differences in the integrated thickness
of the segmented bone boundary in lateral and axial dimensions, when comparing CT
results to DAS, SLSC, and LW-SLSC results. Each boxplot shows the median (horizonal
black line), interquartile range, maximum and minimum values of the differences in the
integrated thickness.

overall thickness of the CT contour in each dimension (axial: 1.84 mm, lateral: 1.79

mm) was closer to that obtained from the LW-SLSC image (axial: 2.09 mm, lateral:

2.03 mm) than that obtained from the SLSC image (axial: 2.98 mm, lateral: 2.89

mm) or DAS image (axial: 5.86 mm, lateral: 5.67 mm).
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2.3.2 Vertebral Imaging of a Human Cadaver

Fig. 2-4 shows examples of ultrasound and photoacoustic images from a lumbar

vertebra inside an intact human cadaver. The top row shows the photoacoustic images

overlaid on ultrasound images created with DAS, SLSC, and LW-SLSC beamforming.

The discrimination of bone structures in the ultrasound images was determined using

the ROIs shown in the Appendix (not shown in Fig. 2-4 to facilitate the comparison

between matched images). SLSC and LW-SLSC beamforming produced average

gCNR values of 0.98 and 0.88, respectively, which were both higher than the average

0.77 gCNR calculated from corresponding DAS images. The enhancement of bone

visualization is additionally confirmed with the average CNR values, which measured

1.17, 1.75, and 2.68 in DAS, SLSC, and LW-SLSC images, respectively. A summary

of the individual gCNR and CNR measurements is presented in Table 2-1.

The photoacoustic signals in Fig. 2-4 are shown registered to the ultrasound images,

with a magnified view shown as a figure inset. These photoacoustic signals arise from

the tip of the optical fiber that was inserted into the prepared pedicle hole. Coherence-

based images were qualitatively observed to produce more focused photoacoustic

signals when compared to DAS photoacoustic images, which is expected to enhance

the estimation accuracy of the fiber tip location. Quantitatively, the distance between

the center of mass and the brightest pixel of each photoacoustic image created with

DAS, SLSC, and LW-SLSC beamforming was 0.26 mm, 0.21 mm, and 0.18 mm,

respectively, where a shorter distance represents a more compact and less diffuse

photoacoustic signal.

The bottom row of Fig. 2-4 shows the segmented ultrasound and photoacoustic

masks for the three beamformers. The green triangles and magenta circles represents

the center of mass of the isolated components from ultrasound and photoacoustic

masks, respectively. The segmented masks from the DAS ultrasound image includes

undesirable soft tissue and a single bony structure, while coherence methods identify at
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least 3 bony structures. Similarly, SLSC images created with greater M values have an

increased number of outliers (i.e., pixels with coherence values that differ significantly

from their surroundings and from their values at other lags [42]) and decreased SNR

and CNR [40], which caused some otherwise continuous bony structures to appear

disconnected, affecting the estimation of center of mass and resulting in redundant

landmarks. This effect is mitigated with LW-SLSC.

Table 2-1. Discrimination of bone structures in ultra-
sound images of vertebrae in a human cadaver (determined
using the ROIs shown in the Appendix)

Method Beamformer S1 S2 S3 Mean
gCNR DAS 0.34 0.98 0.99 0.77

SLSC 0.84 0.87 0.93 0.88
LW-SLSC 0.98 0.99 1.00 0.98

CNR DAS 0.54 2.09 2.10 1.17
SLSC 1.61 1.64 2.21 1.75

LW-SLSC 2.49 2.66 4.50 2.68

Fig. 2-6 shows the registration of the post operative CT volume with the landmarks

obtained from the segmented ultrasound and photoacoustic LW-SLSC images. The

shape of the segmented LW-SLSC ultrasound image closely resembles that of the

lamina of the L3, L4 and L5 vertebrae in the CT image. Similarly, the fiducial markers

for the photoacoustic signals originating from the optical fiber is visualized near the

end of the pedicle hole.

Fig. 2-7 shows the X-Z and Y-Z views of the registered CT volume and the fiber

tip fiducial marker segmented from the LW-SLSC photoacoustic image. To assess

the proximity of the registered fiducial marker to the bottom of the pedicle hole,

five manual markers were selected around the border of the pedicle hole for each

X-Z (Fig. 2-7(a)) and Y-Z view (Fig. 2-7(b)). The position of the manual markers

represents the potential positions of the optical fiber tip when it was inserted in

the pedicle hole. Euclidean distances between the fiducial marker and each of the
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Figure 2-6. Co-registered ultrasound (color) and CT (grayscale) images using ultrasound
and photoacoustic landmarks (magenta) from segmented LW-SLSC images.

manual markers are reported in Table 2-2. The minimum distances are shown in bold,

indicating the marker associated with the location of the bone surface that the tip of

the optical fiber was most likely touching when inserted in the pedicle hole.

Table 2-2. Euclidean distances between the fiducial
marker segmented from the LW-SLSC photoacoustic
image and each of the manual markers of the pedicle
hole obtained from the registered CT images in
Fig. 2-7

X-Z view Y-Z view
Marker 1 2.02 mm 1.16 mm
Marker 2 1.49 mm 0.72 mm
Marker 3 1.91 mm 1.06 mm
Marker 4 1.28 mm 1.69 mm
Marker 5 0.98 mm 2.48 mm
Average 1.53 ± 0.39 mm 1.42 ± 0.61 mm

Fig. 2-8 shows examples of co-registered LW-SLSC ultrasound images and DAS

photoacoustic images when the tip of the optical fiber was placed in holes corresponding
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Figure 2-7. (a) X-Z and (b) Y-Z planes of the CT volume registered to the ultrasound
and photoacoustic images. The yellow marker represents the centroid of the photoacoustic
signal reconstructed with the LW-SLSC image, which was used as a fiducial marker for
landmark registration. The blue markers show the outline of the pedicle hole.

to a medial breach (Fig. 2-8(a)), a lateral breach (Fig. 2-8(b)), and the cancellous core

of the pedicle (Fig. 2-8(c)). The corresponding CT slices were chosen to optimize visual

confirmation of the fiber placement description, and therefore they are not registered to

the photoacoustic and ultrasound images. It was not possible to perform ultrasound-to-

CT registration for these figures, because of the absence of clear anatomical landmarks

in the ultrasound image of the lumbar vertebrae. Our primary goal was instead to

obtain ground truth images while touching the tip of the hole identified by post-

operative CT images, without regard to the presence of suitable bony landmarks in

the ultrasound images. Axial slices of the CT volume are shown in Fig. 2-8 in order

to clearly visualize the pedicle hole and intentional lateral and medial breaches.

In particular, the medial breach in the CT image of Fig. 2-8(a) shows the tip of
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Figure 2-8. Examples of photoacoustic signals generated when the tip of the optical
fiber is touching a (a) medial breach, (b) lateral breach, and (c) cancellous core. Left
column: CT axial slice. Right column: LW-SLSC ultrasound image co-registered with DAS
photoacoustic image.

the hole coinciding with high density bone (i.e., the cortical bone) where the tip of

the optical fiber was placed. Similarly, the tip of the fiber is in close proximity to the

outer cortical wall of the pedicle in Fig. 2-8(b). In contrast, the tip of the hole in

Fig. 2-8(c) is surrounded by low density bone (i.e., cancellous bone). Qualitatively,
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Figure 2-9. Areas of -6dB-contours around the center of photoacoustic targets from
cortical and cancellous core using DAS beamforming. Each boxplot shows the median,
interquartile range, maximum and minimum values of the estimated areas over 10 frames
for cancellous (left) and cortical (right) bone.

DAS photoacoustic images show distinct pattern differences when the optical fiber was

touching either cancellous or cortical bone. Specifically, DAS photoacoustic signals

from the cancellous core produced signals with greater area coverage than that present

with lateral and medial breaches (i.e., fiber touching cortical bone) when images

were displayed with the same dynamic range of 25 dB. Because coherence-based

methods reduced the appearance of incoherent signals, the area of photoacoustic

signals originating from cancellous bone (see Fig. 2-4) was reduced when compared to

the same signals in DAS photoacoustic images, resulting in reduced differentiation

between these signal origins with the coherence-based images.

Fig. 2-9 shows quantitative comparisons of the differences observed in Fig. 2-8, as

measured by the enclosed area of the -6dB contours generated from DAS photoacoustic

images. These results are grouped by the expected location of the optical fiber tip,

touching either cortical or cancellous bone, based on the corresponding CT images.

The total mean area measured within the -6dB-contours was 7.59 mm2 greater when
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Figure 2-10. Comparison of -6dB-contours from photoacoustic targets inside cortical and
cancellous bone in a human cadaver vertebrae using DAS, SLSC and LW-SLSC beamforming.
Each boxplot shows the median, interquartile range, maximum and minimum values of the
estimated areas over 60 frames for cancellous and 50 frames for cortical bone.

touching cancellous bone compared to cortical bone (p<0.01). In addition, greater

standard deviations in these measurements were observed for cancellous bone (5.22

mm2) when compared to cortical bone (0.96 mm2).

Fig. 2-10 compares areas of the -6dB contours obtained from DAS, SLSC, and

LW-SLSC images of the optical fiber touching either cortical or cancellous bone. The

mean ± one standard deviation of measurements from DAS images was 10.06 ± 5.22

mm2 for cancellous bone and 2.47 ± 0.96 mm2 for cortical bone. In comparison,

the mean ± one standard deviation of measurements from SLSC images was 1.64 ±

0.88 and 1.06 ± 0.59 mm2 for cancellous and cortical bone, respectively. The mean

± one standard deviation of measurements from LW-SLSC images was 2.60 ± 2.25

and 1.51 ± 0.77 mm2, for cancellous and cortical bone, respectively. While the three

beamformers showed statistically significant differences between the mean of measured

areas from cortical and cancellous bone (p<0.01), DAS images offered the greatest

distinction.
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2.4 Discussion

We successfully demonstrated that combined ultrasound and photoacoustic imaging

has the potential to improve pedicle screw placement during posterior spinal fusion

surgeries. Coherence-based beamforming plays an important role in both ultrasound

and photoacoustic image formation for this task. Specifically, coherence-based ul-

trasound imaging improves the visualization of bone structures (Figs. 2-3 and 2-4),

which enables individual landmarks for each independent bone structure during the

registration of ultrasound to CT images (Figs. 2-4 and 2-6). As a complement to this

information, coherence-based photoacoustic imaging enables localization of fiber tips

(Fig. 2-4).

On the other hand, amplitude-based methods such as DAS photoacoustic imaging

of signals inside the lumbar vertebrae allowed differentiation between cortical and

cancellous bone. As observed in Fig. 2-8, DAS photoacoustic images show a diffuse

pattern when the optical fiber was inside the pedicle, where its core is composed of

cancellous bone. This pattern is understandable, as reflections within the porous,

blood-rich structure of the cancellous bone are expected to compromise the alignment

of the delayed signals during the beamforming process. In contrast, a well-defined,

compact signal was observed for the medial and lateral breaches, which can be explained

by the wall surrounding the pedicle being composed by cortical bone, which is more

dense than cancellous bone [52] and is expected to produce less signal reflections.

Similar signal appearance differences were previously obtained prior to the removal

of any bone, presenting photoacoustic imaging as a potential option to find the ideal

starting points for pedicle screw insertion [22]. The new contributions of this work

demonstrate that these same differences in bone appearance can be used to determine

if the pedicle hole is being created with the correct trajectory to avoid impending bone

breaches. As out-of-plane signals need to be identified and excluded for successful
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implementation of this concept, the use of a 2D ultrasound array to identify the

out-of-plane photoacoustic signals is a promising alternative to our empirical SNR>3

threshold.

We additionally note that coherence-based beamforming was not sufficient to

visualize nor quantify differentiation between cortical and cancellous bone (Fig 2-4).

These coherence-based beamformers reduced the incoherent signals associated with the

cancellous bone, which is a necessary feature of bone differentiation that is emphasized

with amplitude-based beamforming methods. However, the added value of coherence-

based beamforming is its ability to localize the coherent signal source with more clarity

for photoacoustic signal tracking during pedicle hole creation. Thus, we conclude that

amplitude- and coherence-based photoacoustic beamformers are synergistically and

mutually beneficial for the clinical task of guiding spinal fusion surgeries. Specifically,

SLSC and LW-SLSC beamformers have the potential to improve target localization

that is otherwise difficult in the presence of noise [38] or diffuse patterns from the

cancellous core of the pedicle [22], while DAS beamforming can assist with determining

proximity to cortical bone based on the shape of the amplitude-based signal.

In a previous study, a single vertebra with tissue attachments removed was sub-

merged in a water tank [53], and the presence of reverberations required the introduc-

tion of some assumptions about fiber tip positions in order to estimate true locations

within pre-drilled pedicle holes. However, the human cadaver study presented in this

chapter did not require these additional assumptions. As observed in Figs. 2-4 and 2-8,

photoacoustic signals from the optical fiber tip did not produce additional artifacts

that would otherwise negatively impact tip position estimates (compared with Fig. 2 in

[53]). While the previous study differed from the cadaver study by using a custom drill

bit that surrounded the optical fiber, we hypothesize that reverberations in [53] were

primarily generated by the absence of muscle, nerves, fat, and blood vessels. These

additional artifacts were substantially reduced in the human cadaver experiments
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because of sound attenuation in the surrounding soft tissue, which emphasizes the

importance of conducting cadaver studies on the path to clinical translation of this

photoacoustic-guided surgery concept, as noted in [54].

Regarding real-time capabilities, DAS and SLSC or LW-SLSC photoacoustic images

can be interleaved during surgeries. Previous work describing a real-time GPU

implementation of the SLSC beamformer on a research ultrasound system indicates

that this is a viable possibility [38]. We demonstrated that photoacoustic SLSC images

can be displayed in high-noise-level environments generated with < 200 µJ laser

energies at 41 frames per second [38]. Given that LW-SLSC operates on independent

kernels Ri
ˆ as described in Section 2.2.1.2, real-time imaging can be similarly achieved by

concurrent execution of each Ri
ˆ in a separate thread inside the GPU. The complexity

of the operations per thread is further reduced by pre-computing matrix B and

α2DT D, which are defined in Section 2.2.1.2. With a GeForce GTX Titan X graphic

card, we estimated a computation time of 60 ms based on the number of cores of

the GPU (i.e., 3072 cores) and the computation time when executed in MATLAB

(i.e., approximately 3 minutes). This estimation does not consider memory transfer

and pre-computation times. In addition, we previously developed a deep neural

network architecture (i.e., CohereNet) to estimate spatial coherence functions [55],

which are foundational to LW-SLSC imaging. This deep learning approach achieved

real-time computational processing times and can potentially be adapted to include

the additional regularization steps needed for LW-SLSC imaging.

We envision several implementation possibilities to achieve the stated benefits of

combined amplitude- and coherence-based ultrasound and photoacoustic images. First,

as the fiber tips are ultimately envisioned to be inserted into the hollow core of custom

drill bits [22, 37, 53, 56], the observed benefits of coherence-based photoacoustic images

can potentially be extended to benefits for tracking the tips of common surgical tools

used during spinal fusions surgeries (e.g., drill tips, pedicle probe tips). The feasibility
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of this concept was demonstrated for drill bits in a previous publication from our

group [56]. As observed in Fig. 2 of [56], a stationary optical fiber was connected

to the laser source, and the opposite end of the fiber was inserted into a stationary

interface. The other end of this stationary interface accommodated a rotating drill

bit, which was custom-fabricated with holes on both ends to house a rigidly attached

optical fiber that rotated with the drill bit. Both the stationary and rotating optical

fibers were air coupled to each other to permit light transmission from the stationary

laser to the tip of the rotating drill bit. If attachment to tool tips are not possible,

a surgeon may periodically check trajectories by removing the pedicle probe (or any

other surgical instrument used to create pedicle holes) and replacing the instrument

with an optical fiber, as implemented for the human cadaver study described in this

chapter.

2.5 Conclusions

This chapter presents the first known combined ultrasound and photoacoustic

image guidance system with software capabilities that are optimized for pedicle can-

nulation in posterior spinal fusion surgery, demonstrating that both amplitude- and

coherence-based beamforming methods are mutually beneficial for this task. Specifi-

cally, coherence-based beamforming of ultrasound images improved the visualization

of bone for ultrasound-to-CT registration, while coherence-based beamforming of

photoacoustic images has the potential to improve target localization and tracking

during pedicle hole creation. Amplitude-based photoacoustic beamforming has the po-

tential to provide complementary quantitative information regarding proximity to the

cortical bone surrounding the desired pedicle hole trajectory. Overall, this proposed

combination of imaging modalities and beamforming methods is promising to assist

surgeons with identifying and avoiding impeding bone breaches during spinal fusion

surgeries. These new findings are complementary to previous work demonstrating that
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photoacoustic imaging is useful to determine optimal entry points into the pedicle [22].

Together with these previous findings, we have successfully demonstrated a complete

system that has the potential to significantly impact the standard of image guidance

methods for spinal fusion surgery.
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2.7 Appendix: Out-of-plane Photoacoustic Signals
Originated Inside Human Vertebrae

To provide additional justification and rationale for omitted acquisitions, Fig. 2-

11(a) shows examples of DAS photoacoustic images chosen from the lowest SNR cases

for the cancellous core, the cortical bone, and signals originating from outside of the

imaging plane. The corresponding mean ± one standard deviation SNR were 3.45

± 0.06, 3.88 ± 0.07, and 2.09 ± 0.03, respectively. In contrast to signals originating

from the cancellous or the cortical bone, our observation and experience indicate

that of out-of-plane signals are characterized by a high noise level throughout the

entire DAS image and a relatively small area coverage around the target identified

with LW-SLSC beamforming. SNR measurements were calculated as described in

Section 2.2.3.6. Fig. 2-11(b) quantifies the SNR within DAS images from photoacoustic

targets originating from cancellous core, cortical bone, and out-of-plane signals. By

empirically defining a threshold SNR of 3, out-of-plane signals were discarded from

the area analysis.
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Figure 2-11. Qualitative and quantitative assessment of photoacoustic images originating
from out-of-plane signals. (a) Examples of cancellous, cortical, and out-of-plane DAS
photoacoustic images. (b) SNR assessment measured from photoacoustic signals associated
with the cancellous core, cortical bone, and characteristic out-of-plane signals. The shaded
area represents signals that did not achieve the SNR>3 threshold and were therefore not
included in the area results of Figs. 2-9 and 2-10.

2.8 Appendix: Image Quality Assessment of Re-
constructed Ultrasound Images of Human Ver-
tebrae

To facilitate comparisons between the DAS images and each SLSC and LW-SLSC

image, ROIs are not shown in Fig. 2-4. However, to provide a reference point, Fig. 2-12

shows the ROIs used for quantitative assessment of ultrasound image quality reported
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in Table 2-1.

Figure 2-12. Examples of ultrasound and co-registered photoacoustic images from an
oblique view of L3-L5 vertebrae reconstructed with DAS, SLSC and LW-SLSC. S1, S2, S3,
and B denote the selected regions for quantitative assessments.
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Chapter 3

Countour Analysis of Photoacoustic
Signals from Cortical Bone,
Cancellous Bone, and a Fiber Tip

The work presented in this chapter was published in the following manuscript:

E. Gonzalez, A. Jain, and M. A. L. Bell, “Photoacoustic differentiation of cortical

from cancellous bone in the lumbar vertebrae of an intact human cadaver to prevent

bone breaches during spinal fusion surgeries,” in Photons Plus Ultrasound: Imaging

and Sensing 2021, International Society for Optics and Photonics, vol. 11642, 2021,

p. 1 164 210

3.1 Introduction

When cannulating pedicles, it is critical to ensure the correct trajectory during

the hole creation process in order to avoid accidental bone breaches and screw mis-

placement [2], which compromises neighboring structures of the peripheral and central

nervous system, erodes long-term biomechanical stability [2, 3], and causes adjacent

degeneration [4, 5]. These breaches occur in 14% to 38.5% of procedures, characterized

by misplaced screws within the surrounding cortical bone rather than the cancellous

core of the pedicle [6], as shown in Fig. 3-1.

Based on previous studies to visualize photoacoustic signals from the surface of
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Figure 3-1. Examples of accurate and inaccurate pedicle screw placement [8].

human vertebrae [7], we hypothesize that similar visibility can be achieved beneath

the bony structure in a more realistic setup and closer to the surgical environment of

a spinal fusion surgery.

One key difference between cancellous and cortical bone is the greater porosity of

the cancellous bone when compared to the more dense, more compact cortical bone [9].

This difference can be visualized in conventional computer-assisted methods such as

computed tomography (CT) [10], 2D- [11], and 3D-fluoroscopy navigation [12], where

the brightest pixels are indications of high attenuation values originating from cortical

bone. However, limitations of these methods include exposure to ionizing radiation, the

requirement to insert reference and intraoperative markers, and relatively prolonged

surgery times.

To overcome the limitations listed above, our group recently proposed photoacoustic

imaging as a guidance method for pedicle screw insertion [7, 13]. The proposed

technique consists of delivering laser light at the tip of a device (e.g., pedicle probe,

drill) while it is being inserted into the pedicle to create a hole for the screw. The

emission of laser pulses generate an acoustic pressure response from the surrounding

bone. The acoustic pressure is then received by an externally placed ultrasound probe,

and beamforming is applied to create a photoacoustic image. As cancellous bone is

more blood-rich in comparison to cortical bone, a distinctive photoacoustic response

is expected between these two types of bone. This distinction was demonstrated when
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visualizing photoacoustic signals from the surface of a human vertebra [7] and when

visualizing photoacoustic signals from beneath the bony surface in a more realistic

setup and closer to the surgical environment of a spinal fusion surgery [14].

The work in this chapter expands our previous work [14] by providing a more

detailed analysis of the ability to distinguish cortical from cancellous bone when

photoacoustic signals originate from beneath the bone surface. This more detailed

analysis is performed in the lumbar vertebrae of an intact human cadaver, with the

ultimate goal of developing a novel photoacoustic surgical system to prevent breaches.

Coherence-based beamforming techniques such as short-lag spatial coherence (SLSC)

[15] and locally weighted short-lag spatial coherence (LW-SLSC) [16] were investigated

in addition to conventional delay-and-sum (DAS) beamforming to characterize signal

morphology as well as to determine the location of the fiber tip that initiates the

photoacoustic effect.

3.2 Method

An adult male human cadaver was placed in the prone position and dissection was

carried along the cranio-caudal axis with the aid of a Cobb elevator to reveal the

spinous process, lamina, and facet joints at each level from L1 to S1. The specimen

had no reports of spine pathologies, malformations, or previous spinal surgeries, which

was also confirmed with pre-operative CT imaging. The pedicles were cannulated

bilaterally from L2 through L4 along anatomic trajectories using a standard free hand

technique with a pedicle probe.

Six pre-bored holes were created in the cancellous core of the pedicle, and five

pre-bored holes either created an intentional breach of the lateral wall or an obvious

path toward an intentional breach (leaving the surrounding cortical bone intact). The

total depth of the pedicle tracts from the bone surface ranged from 14 mm to 25

mm, as measured with the ruler on pedicle probe. A 1-mm diameter optical fiber was
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inserted into the bottom of the pre-bored pedicle holes. The optical fiber was used

to transmit 750 nm wavelength laser light from a Phocus Mobile laser (Opotek Inc.,

Carlsbad, CA, USA) with an energy of 13.4 mJ at the fiber tip. An Alpinion SC1-6

convex array ultrasound transducer, which was connected to an Alpinion E-CUBE

12R ultrasound system (Alpinion, Seoul, South Korea), was placed on the exposed

tissue surface to receive the photoacoustic signals originating from the tip of the fiber.

To assist the surgeon with fiber tip localization, a GPU implementation of SLSC for

photoacoustic imaging [17–19] was used during the surgery.

For each fiber tip location, 10 photoacoustic image frames were acquired. SLSC and

LW-SLSC beamforming were used to determine the position of the optical fiber tip,

which was difficult to determine from DAS photoacoustic images due to the presence

of incoherent signals that were removed with the coherence-based beamforming [14,

18]. Photoacoustic images were overlaid on co-registered ultrasound image acquisitions

that were interleaved with photoacoustic image acquisitions. For each photoacoustic

acquisition, contour maps were created from the DAS, SLSC, and LW-SLSC pho-

toacoustic images within a 15 mm × 15 mm region surrounding the center of the

target identified by LW-SLSC images. The -6, -10, -15, and -20 dB contour lines were

displayed in each contour map.

The total area encompassed by each contour line was calculated for each of the four

contour levels. A Mann-Whitney test was used to evaluate the statistical significance

(p<0.001) of the difference in areas measured when the optical fiber was touching either

cancellous or cortical bone. The bone type was based on ground truth information

available in post-operative CT images. This statistical analysis was repeated for each

contour level and for each beamforming method.
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3.3 Results

Fig. 3-2 shows CT, ultrasound, and overlaid photoacoustic images of an accurately

created hole, a lateral breach, and a medial breach, from left to right respectively.

The CT slices (top row) were chosen to optimize visual confirmation of the fiber

placement description and are not registered to the ultrasound and photoacoustic

images. The left CT image shows the tip of the hole surrounded by low density bone

(i.e., cancellous bone), where the tip of the optical fiber was placed to generate the

corresponding photoacoustic image. The middle and right CT images show the tip of

the hole in close proximity to high density bone (i.e., cortical bone). Corresponding

photoacoustic signals from the cancellous core and the cortical bone are shown in

the bottom row. Qualitatively, the DAS photoacoustic images show a more spatially

Figure 3-2. CT axial slice (top) and corresponding LW-SLSC ultrasound images co-
registered with DAS photoacoustic image (bottom). The photoacoustic images represent
example signals obtained when the tip of the optical fiber touches the bottom of the
cancellous core, the cortical bone of a lateral breach, and the cortical bone of a medial
breach, from left to right, respectively. The yellow boxes indicate regions of interest for
Fig. 3-3.

55



Figure 3-3. Contour plots of photoacoustic DAS, SLSC, and LW-SLSC images, taken
from the region highlighted with the yellow box in Fig. 3-2, when the tip of the optical
fiber was touching cancellous (top) or cortical (bottom) bone.

Figure 3-4. Difference of areas from DAS, SLSC, and LW-SLSC images of photoacoustic
targets inside cortical and cancellous bone using contours of (a) -6dB, (b) -10dB, (c)
-15dB, and (d) -20 dB. Each boxplot shows the median, interquartile range, maximum and
minimum values of the estimated areas over 60 frames for cancellous bone and 50 frames
for cortical bone. ***p <0.001.
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diffuse pattern when the optical fiber was touching cancellous bone compared to the

pattern generated when the fiber was touching cortical bone.

Fig. 3-3 shows contour plots of the photoacoustic signals originating from cancellous

bone (top) and cortical bone (bottom), when zooming in on the regions highlighted

by the yellow boxes in Fig. 3-2. Contour lines are shown after beamforming the

associated signals with DAS (left), SLSC (middle), and LW-SLSC (right) beamformers.

The diffuse pattern of signals originating from cancellous bone, as observed with

DAS beamforming in Fig. 3-2, complicates localization of the fiber tip. Localization

was improved with the use of coherence-based beamforming methods. In particular,

the -6 dB and -10 dB contours occupy less total area and are closer together in

the corresponding SLSC and LW-SLSC photoacoustic, which enables more accurate

localization of the fiber tip. The total areas of the -6 dB contours for the cortical

bone were 3.41, 0.40, and 1.06 mm2 for DAS, SLSC, and LW-SLSC, respectively. In

contrast, the total areas of the -6 dB contours for the cancellous bone were 17.55, 0.42,

and 0.47 mm2 for DAS, SLSC, and LW-SLSC, respectively.

Fig. 3-4 compares the total areas enclosed by the -6, -10, -15, and -20 dB contour

levels in DAS, SLSC, and LW-SLSC images, for the cancellous and cortical bone cases

shown in Fig. 3-3, combined with 5 additional cases from an optical fiber in contact

with cancellous bone within a prepared pedicle hole and 4 additional cases from an

optical fiber in contact with cortical bone after an intentional breach.

Each box plot shows the median, interquartile range, maximum, and minimum

values of the estimated areas over 60 frames for cancellous and 50 frames for cortical

bone (i.e., from 10 repeated acquisitions per case). Overall, DAS, SLSC, and LW-SLSC

images showed statistically significant differences between the medians of measured

areas from cortical and cancellous bone (p<0.001) for contours of -10 dB and -15 dB.

In addition, DAS sufficiently differentiated between these two types of bone structures

with statistical significance (p<0.001) at -6 dB contours. SLSC and LW-SLSC achieved
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differentiation with statistical significance (p<0.001) at -20 dB contour levels, while

DAS did not.

3.4 Discussion

The work presented in this chapter is the first to investigate the morphology of

photoacoustic signals originating from cancellous and cortical bone within an ex vivo

human cadaver at multiple contour levels. Previously, we analyzed the feasibility of

differentiating photoacoustic signals from cortical and cancellous bone at a contour

level of -6 dB, using DAS, SLSC, and LW-SLSC beamforming [14]. This chapter

presents results for three additional contour levels (i.e., -10, -15, and -20 dB), with

the goal of summarizing the relative differentiation capabilities.

While results show that photoacoustic differentiation is possible with either of

the three beamformers at contour levels of -10 and -15 dB, using the amplitude-

based beamformer (i.e., DAS) and a contour level of -6 dB is considered the most

robust solution. The rationale for this robustness is that a contour level of -6 dB

allows more localized visualization of the photoacoustic response from the fiber tip

(either independently or possibly attached to a surgical tool) without confusing this

response from that of surrounding tissue. In addition, differentiation based on the

-6 dB contour level is recommended for clinical translation, as out-of-plane signals

and photoacoustic reverberations contribute to additive noise that affects higher

contour levels, making these higher levels less reliable for differentiation. In contrast,

coherence-based photoacoustic imaging enables the localization of fiber tips, which is

advantageous in conjunction with anatomical landmarks obtained from ultrasound

acquisitions [14], because surgeons can track the tool tip as the hole is being created

in order to ensure a correct trajectory. Accurately created pedicle holes reduce the

risk of complications surrounding bone breaches during spinal fusion surgeries.

The improved localization of the tool tip can be appreciated by estimating the
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centroid of the -6 dB contour levels for the SLSC and LW-SLSC images represented in

Fig. 3-3 (in comparison that of the DAS image). Therefore, amplitude- and coherence-

based photoacoustic images can be synergistically employed to differentiate between

signals originating from cortical and cancellous bone at -6 dB contour levels and to

detect the tip of surgical tools, respectively.

In a clinical scenario, the optical fiber can be inserted in the core of the tool used

to bore the hole, providing simultaneous DAS-based and SLSC-based photoacoustic

images in real-time [18]. A computer vision algorithm could be incorporated into

the framework to display in real-time the areas of the -6 dB DAS photoacoustic

signals surrounding the fiber tip. When creating the pedicle hole, the area of this

contour level would then be expected to decrease if the fiber tip approaches the cortical

walls. Therefore, the displayed areas would serve as additional information to the

surgeon regarding undesirable proximity to cortical bone, which has the potential

to prevent a lateral or medial breach during spinal fusion surgery. In addition to

correcting trajectories during the hole creation process, previous work demonstrates

that photoacoustic imaging can also be used to determine the appropriate starting point

for pedicle cannulation [7]. The combination of these findings with the contributions

of this chapter constitute a complete photoacoustic-based solution to avoid accidental

bone breaches [14].

3.5 Conclusion

In this chapter, we analyzed the morphology of photoacoustic signals originating

from cancellous and cortical bone in the pedicles of an ex vivo human cadaver, using

amplitude-based and coherence-based beamforming techniques. By measuring the

area at different contour levels, DAS beamforming provided better photoacoustic

differentiation between cancellous and cortical bone in comparison to coherence-based

SLSC and LW-SLSC beamforming at the -6 dB contour level. This contour level
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also enabled both fiber tip localization with the coherence-based beamformers. These

results are promising for surgical guidance within the desired cancellous core of the

pedicle and away from the surrounding cortical bone, in order to avoid costly and

painful bone breaches during spinal fusion surgery.
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Chapter 4

GPU Implementation of
Photoacoustic SLSC Imaging for
Segmentation and Robotic Surgical
Guidance

The work presented in this chapter was published in the following manuscript:

E. A. Gonzalez and M. A. L. Bell, “GPU implementation of photoacoustic short-

lag spatial coherence imaging for improved image-guided interventions,” Journal of

Biomedical Optics, vol. 25, no. 7, pp. 1–19, 2020

4.1 Introduction

Visual servoing [2–4] is a promising approach to maintain visualization of surgical

tools during minimally invasive procedures and to keep track of the location of nearby

anatomical targets within the body. This approach broadly refers to vision-based robot

control, and the robot “vision” that we focus on in this chapter is provided through

photoacoustic images [5, 6]. Photoacoustic imaging is achieved by transmitting pulsed

light to a structure of interest, which absorbs the light, undergoes thermal expansion,

and generates an acoustic response that is received by a conventional ultrasound

probe [7–9]. This photoacoustic imaging technique was previously demonstrated for

multiple applications that require surgery or interventions, such as visualization of
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brachytherapy seeds [10, 11], intravascular imaging [12], cardiac catheter visualization

[6], fetal surgeries [13], prostate surgeries [14], and endonasal surgeries [15–17]. In

these applications, structures of interest include blood vessels, nerves, drill tips, and

catheter or needle tips [6, 18, 19]. One or more optical fibers may be coupled to

the tool, catheter, or needle tips in order to transmit the light pulses [12, 20–22].

Alternatively, a fiber or fiber bundle may be operated independently to provide a

photoacoustic-based anatomical guidance in the absence of surgical tools [23–25].

With the rise of robotic surgery [26–29], we can reasonably envision photoacoustic

system components that are robotically controlled to enable more successful surgeries

and interventions [30]. A summary of the procedures required to achieve achieve

photoacoustic-based visual servoing in particular is summarized in Fig. 4-1, starting

with a robot-held ultrasound probe that receives photoacoustic signals. Receive

beamforming techniques are then applied to create a photoacoustic image, and an image

segmentation algorithm locates features of interest within the image. Beamforming

techniques are implemented rather than photoacoustic reconstruction techniques like

backprojection due to two considerations. First, beamforming is sufficient to accurately

quantify the position and size of photoacoustic sources [31], which are two parameters

of primary interest for photoacoustic-based visual servoing. Second, conventional linear

or phased array ultrasound probes would be placed externally for the proposed visual

Figure 4-1. Overview of photoacoustic-based visual servoing.
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servoing application, rather than the ring arrays (i.e., spherical or cylindrical detection

surfaces) that are more favorable for backprojection algorithms and quantitative

photoacoustic applications [31]. After beamforming and image segmentation, the

ultrasound probe motion is controlled by the robot to ensure that targets of interest

remain at the center of the image.

Previous photoacoustic-based visual servoing studies implemented conventional

delay-and-sum (DAS) receive beamforming [5, 6]. However, DAS photoacoustic

images contain poor SNR when using low laser energies, which compromises the

performance of the segmentation step shown in Fig. 4-1. This limitation may be

overcome by increasing the incident laser energy or otherwise enhancing the amplitude

of photoacoustic signals. Although stable segmentation is often achieved with high

laser energies, these energies tend to introduce side lobes and other artifacts. Therefore,

alternative options for signal amplitude enhancement would be more suitable. For

example, frame averaging enables the use of lower energies and simultaneously reduces

incoherent noise and artifacts [32, 33], but this option introduces motion artifacts [34,

35], which negatively impact the overall accuracy of visual servoing.

Alternatives to DAS beamforming have demonstrated potential to overcome the

limitations of poor target visibility without assistance from frame averaging. For

example, minimum variance (MV) beamforming has been shown to suppress off-axis

signals and improve spatial resolution by decreasing main lobe widths [36]. However,

MV beamforming is sensitive to sound speed changes and requires sub-array averaging

[37], more than one stage of MV calculations, or the combination of weighting factors

[36, 38]. These additional steps increase the computational burden of this beamforming

alternative. Similarly, a synthetic aperture focusing approach is beneficial with regard

to enhancing lateral resolution along the depth (or axial) dimension [39, 40], as well as

reducing reverberation artifacts [41]. However, these techniques require a combination

of delay sequences for each pixel in the reconstructed image [42], which increases
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computational burden. Additional beamforming alternatives include coherence factor

(CF) weighting [43] or a combination of beamforming methods (e.g., DAS+CF [44],

SAF+CF [45], and MV+CF [38]), and these options suffer from similar challenges

stated above.

Short-lag spatial coherence (SLSC) beamforming [46–49] is another option that has

shown substantial promise in multiple interventional tasks [10, 16, 30, 50]. Therefore,

SLSC is considered to be one of the more suitable beamforming options available to

improve photoacoustic-based visual servoing. SLSC beamforming requires multiple

normalized cross-correlations of delayed data in order to directly display measure-

ments of aperture-domain spatial coherence rather than amplitude. Although SLSC

beamforming is known to be insensitive to signal amplitude [49, 51], the proposed

application of visual servoing and surgical tool tracking does not require this sen-

sitivity. The benefits of using SLSC beamforming for the proposed application are

that it enhances the contrast of single-frame photoacoustic images (i.e., no frame

averaging required) [16, 47, 52] and triples effective penetration depths when compared

to DAS beamforming [10]. In addition, SLSC beamforming improves the quality of

photoacoustic signals acquired with low laser energies [53], which is advantageous

because the use of low laser energies can help to ensure laser safety. Miniaturized

low-energy light delivery systems (such as pulsed laser diodes [53–55] or light emitting

diodes [56]) are additionally beneficial for portability in the operating room and to

increase frame rates when compared to Q-switched lasers. Therefore, we are interested

in exploring capabilities and limitations of SLSC beamforming with regard to low

energy light sources.

Drawing on this history of promise and success, this chapter extends our two

previous conference publications [57, 58], which describe elements of the first known

real-time implementation of the SLSC beamformer for photoacoustic imaging, uti-

lizing the graphical processing unit (GPU) of an FDA-approved joint clinical and
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research Alpinion E-CUBE 12R ultrasound system. The new contributions of this

chapter include a detailed assessment of the relationships among SLSC beamforming

parameters, processing time, and image quality, as well as reports of photoacoustic

signal-to-noise ratios (SNRs) obtained with a range of laser energies, target depths,

and SLSC beamforming parameters. This information is then used to evaluate the two

essential visual servoing tasks of fiber tip tracking and probe centering and to compare

these tasks with both the real-time SLSC beamformer and the DAS beamformer.

Finally, our presented GPU-SLSC approach is evaluated with in vivo data.

This chapter is organized as follows. Section 4.2 details the framework of our

GPU-SLSC photoacoustic implementation and describes the methods used to assess

performance. Section 4.3 demonstrates GPU-SLSC feasibility for real-time applications,

as well as the improved SNR and increased tracking accuracy achieved with GPU-SLSC

during visual servoing with low laser energies. Section 4.4 discusses these findings and

their implications. Finally, Section 4.5 concludes the chapter with a summary of the

major technical contributions and achievements of this work.

4.2 Method

4.2.1 GPU Implementation of Photoacoustic SLSC Imag-
ing

The steps to implement real-time SLSC imaging with photoacoustic data acquired

with an Alpinion E-CUBE 12R system, are presented in Fig. 4-2. First, raw channel

data were acquired by the ultrasound system, which was triggered by a signal from the

laser system. Depending on the ultrasound system memory allocation and the number

of available channels, a regrouping process (i.e., “Regroup channels” in Fig. 4-2) was

performed and transferred to the device texture memory as a Ni ×Nz matrix, where Ni

is the number of elements and Nz is the number of axial samples. The total number of

acquisitions needed before processing the data is an integer computed as NA = Ni/Nc,
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Figure 4-2. Workflow for acquiring a real-time photoacoustic SLSC image with the
Alpinion ultrasound system. The diagrams on the right shows graphical displays of GPU
kernel distributions for the “Remove DC”, “Receive delay”, and “Norm. log compress”
(Normalize and Log compress) steps of real-time photoacoustic SLSC imaging. The x, y,
D, and d shown in the CUDA kernels denote the input memory, output memory, high pass
filter coefficients, and receive delays, respectively. Variables t, q, and l are indices for axial
sample, channel, and scanline, respectively.

where Nc is the number of channels.

The ordered raw data was stored in texture memory (i.e., read-only cached memory

that optimizes physically adjacent 2D operations). DC removal was then computed by

applying 1D convolutions of time-domain kernels, executed independently along the

axial dimension. This operation is graphically displayed to the right of the “Remove

DC” block in Fig. 4-2, showing operations at the compute unified device architecture

(CUDA) kernel level when transitioning from texture memory to global memory (i.e.,

the general memory of the GPU device that lasts for the duration of the process).

The Hilbert transform was then computed along the axial dimension using the fast

Fourier transform (FFT) libraries embedded in CUDA (NVIDIA, Santa Clara, CA,
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USA). Here, FFT kernels ran independently across the element dimension Ni.

Next, synthetic receive aperture imaging was performed to generate a specific

number of scanlines, Nx, determined by the user as an input parameter, obtaining

a Ni × Nx × Nz matrix. This operation is graphically displayed to the right of

the “Receive delay” block in Fig. 4-2, showing operations at the CUDA kernel level

when transitioning from texture memory to global memory. The computation of

receive delays was performed in the device texture memory, optimized for 2D linear

interpolation, and kernels were distributed with a ratio of one thread per axial sample,

executed independently across elements.

The SLSC computations were the same as those described for a comparative

Verasonics ultrasound system implementation [59] developed by Hyun et al. [60].

These processes are denoted as the dark gray boxes in Fig. 4-2. In contrast to the

original SLSC implementation [46], the GPU approach computes a single ensemble

correlation coefficient from an ensemble sum of coherence factors Cij, Cii, and Cjj

rather than an average over each coherence value from element pairs separated by a

lag m, as described by the following equations:

Cij(z, x, m) =
Ni−m∑︂

i=1
si(z, x)si+m(z, x)∗ (4.1)

Cii(z, x, m) =
Ni−m∑︂

i=1
|si(z, x)|2 (4.2)

Cjj(z, x, m) =
Ni−m∑︂

i=1
|si+m(z, x)|2 (4.3)

where si(z, x) is a complex signal at element i, scanline x, and axial sample z, and ∗

denotes the complex conjugate. The coherence factors (Cij , Cii, and Cjj) were stored

in the device global memory, then compounded across an axial kernel size, k, and a

cumulative lag, M , which is defined as the cumulative sum up to the first M lags, as

follows:

SLSC(z, x) =
M∑︂

m=1

∑︁
ẑ∈k

Cij(ẑ, x, m)√︃∑︁
ẑ∈k

Cii(ẑ, x, m) ∑︁
ẑ∈k

Cjj(ẑ, x, m)
(4.4)
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Finally, the negative SLSC values were set to zero [61], and the SLSC image was

then normalized and log-compressed. The maximum term for normalization was

computed using logarithmic reduction strategies [62]. A graphical representation of

the logarithmic reduction is shown to the right of the “Norm. log compress” block

in Fig. 4-2 for two consecutive CUDA kernels. The first CUDA kernel computed the

maximum value across the lateral dimension given a specific depth. This computation

was performed by calculating a vector of maximum values from a layer of element pairs.

The vector of maximum values was then distributed to a smaller layer of element pairs

until a single maximum remains. The maximum value across the lateral dimension

was stored in an axial vector, where a second CUDA kernel calculated the maximum

value of the image with the same steps as the first CUDA kernel.

The entire GPU-SLSC photoacoustic implementation represented in Fig. 4-2 was

executed on a GeForce GTX 1080 GPU (NVIDIA Corporation, Santa Clara, CA,

USA), with 8GB of VRAM and a core clock speed of 1733 MHz. This GPU was

installed on the Alpinion E-CUBE 12R ultrasound research system.

4.2.2 Processing Time Assessments

Processing times of the GPU-SLSC photoacoustic implementation were assessed

as functions of beamforming parameters M and k, and as a function of the overall

image depth, d. M was varied from 5 to 35 in increments of 5, k was evaluated as 3,

11, 19 and 31 axial samples, and d was evaluated as 5 cm and 15 cm axial depths. An

axial depth of 15 cm was evaluated as a worst-case scenario in which memory transfer

between CPU and GPU would limit real-time imaging capabilities.

In order to provide computation time measurements that are not limited by the laser

pulse repetition frequency (i.e., 10 Hz), the external trigger from the laser (needed for

synchronization of the laser and ultrasound systems to perform photoacoustic imaging)

was disabled. While no synchronization between the laser system and ultrasound
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system results in meaningless photoacoustic data, this absence of synchronization

does not affect algorithm processing times nor the speed of the GPU-SLSC algorithm.

In the absence of wait times for synchronization, each acquisition and beamforming

process was performed immediately after the previous frame was displayed on the

ultrasound software of the Alpinion E-CUBE 12R. The inverse of the frame rate

displayed with the laser trigger disabled was reported as the processing time estimate

of the real-time GPU-SLSC algorithm. Robustness in the estimation of computation

times was achieved by averaging 10 readings of frame rate obtained over a time span

of 10 seconds.

In addition to measuring overall processing times, the processing time for each stage

of the flow diagram shown in Fig. 4-2 was measured for the GPU and CPU versions of

SLSC beamforming (with the selected optimal values of M , k, and d defined in more

detail in Section 4.2.3). CPU-SLSC computations were conducted in a MATLAB

environment using the host CPU of the Alpinion E-CUBE 12R system, which is an

Intel Xeon E5-1620 with 3.5 GHz clock speed and 32 GB RAM. The processing times

from 10 CPU-SLSC executions were averaged to achieve robust estimates.

4.2.3 Image Quality Assessments

The experimental setup to asses image quality consisted of photoacoustic signals

originating from an optical fiber tip inserted in ex vivo bovine muscle. The optical

fiber was used to transmit 900 nm wavelength laser light from a Phocus Mobile

laser (Opotek Inc., Carlsbad, CA, USA) with an energy of 726 µJ at the fiber tip.

Photoacoustic signals were received by a L3-8 linear array ultrasound probe that was

attached to a Sawyer robot arm (Rethink Robotics, Boston, MA), as shown in Fig. 4-3.

To incorporate the effects of acoustic scattering and the expected depth-dependent

image degradation, the optical fiber tip was located at depths of s = 4 cm and s =

7 cm. Considering that the primary source of photoacoustic signals is expected to
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Figure 4-3. Photoacoustic acquisition setup. An optical fiber was attached to translation
stage and inserted into ex vivo bovine tissue. As the optical fiber was translated, an
ultrasound probe connected to a robot arm performed visual servoing.

originate from the tip of the fiber in interventional applications [6], we did not attach

the fiber to any surgical tools in this study.

The overall image depth, d, was adjusted based on the target depth (i.e., d = 5

cm when s = 4 cm and d = 10 cm when s = 7 cm). M and k were additionally

varied for each target depth using the same ranges and increment sizes reported in

Section 4.2.2 (i.e., M was varied from 5 to 35 in increments of 5 and k was evaluated

as 3, 11, 19 and 31 axial samples). The selection of optimal M and k values for

these experiments were obtained by implementing three optimization criteria: (1)

maximizing the differentiation between photoacoustic signals and background noise,

(2) minimizing side lobes, and (3) minimizing temporal resolution (i.e., processing

times).

The generalized contrast-to-noise ratio (gCNR) [63–65] was used to assess the
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likelihood of discrimination between regions of interest (ROIs) of beamformed photoa-

coustic data and after normalization but before log compression stage (i.e., the first

optimization criterion for parameter selection):

gCNR = 1 −
1∑︂

x=0
min

x
{pi(x), po(x)} (4.5)

where pi and po are the probability density functions of signal amplitudes within ROIs

inside and outside of the target, respectively. The probability density functions were

calculated from histograms computed with 256 bins. The inside ROI was a 3 mm × 3

mm rectangle centered on the target center, which was defined as the brightest pixel

within the photoacoustic image. The outside ROI was the same size and shifted 5 mm

to the right of the lateral center of the target.

The lateral width of the photoacoustic target, r∆, was assessed to quantify the

extent and minimize the presence of side lobes (i.e., the second optimization criterion

for parameter selection). This assessment was obtained by measuring the full width at

half maximum (FWHM) of line plots passing through the center of the photoacoustic

target, defined as :

r∆ = FWHM (4.6)

To determine the minimum possible energy limits for SLSC and DAS beamforming,

the same experimental setup shown in Fig. 4-3 and described above was implemented

with a shallower target depth of s = 2.5 cm. Although the real-time parameters were

optimized for deeper depths, it is reasonable to assume that similar or better image

quality will be achieved at shallower depths. Given the 1 mm-core-diameter optical fiber

geometry and the current standards for skin [66], the maximum permissible exposure

(MPE) was 50 mJ/cm2. This MPE translates to a maximum energy safety limit of 394.6

µJ. The laser energy was varied relative to this MPE (i.e., laser energies of 118, 184,

268, 364, 463, 570, and 645 µJ) for multiple photoacoustic image acquisitions.

The resulting SNR for each laser energy was evaluated with real-time SLSC and
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off-line DAS beamforming as follows:

SNR = µi

σo

, (4.7)

where µi is the mean value within a ROI of beamformed photoacoustic data inside

of the target (after normalization but before log compression stage) and σo is the

standard deviation within a ROI of beamformed photoacoustic data outside of the

target (after normalization but before log compression stage). The ROI for the signal

was manually defined as a rectangle of approximately 2.5 mm x 2.5 mm, centered on

the target. Five independent background ROIs of the same size were placed 10-15

mm to the left of the lateral center of the target to obtain 5 SNR measurements that

were used to report the mean ± standard deviation of SNR measurements. For each

laser energy, SNR differences between DAS and either CPU-SLSC or GPU-SLSC, as

well as SNR differences between CPU-SLSC and GPU-SLSC, were each evaluated

using a repeated-measure analysis of variance to determine statistical significance (p

< 0.05).

4.2.4 Application to Visual Servoing

The visual servoing process (outlined in Fig. 4-1 and detailed as the velocity-based

visual servoing procedure reported in our previous publication[6]) initiated with the

acquisition of a real-time photoacoustic image that was then sent to a post-processing

algorithm for target detection. Fast computation and transferring of the photoacoustic

image is a critical component of the visual servoing algorithm in order to avoid

bottlenecks, as well as to enable smooth ultrasound probe motions. Morphological

operations such as dilation and erosion were then performed on the beamformed

photoacoustic image in order to detect a single connected component and calculate

its centroid. The lateral position of the centroid p⃗ was then saved and compared

with the lateral center line of the image p0⃗. The lateral difference was similarly

computed (∆p⃗ = p⃗ − p0⃗). Finally, the ultrasound probe was positioned with the goal
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of minimizing ∆p⃗, effectively centering the ultrasound probe on the fiber tip.

Two visual servoing experiments were conducted in the ex vivo bovine muscle to

assess the performance of visual servoing with real-time SLSC (i.e., GPU-SLSC) and

real-time DAS beamforming. The first visual servoing experiment consisted of a probe

centering test [5]. During the initialization of this experiment, the probe was placed

on the surface of the bovine tissue, and the length of the optical fiber was aligned

with the imaging plane (i.e., ∆p⃗ = 0). Then, the tip of the optical fiber was laterally

displaced 6 mm from the center of the image. Visual servoing was deployed with the

goal of ensuring that the final position of the lateral center of the ultrasound probe

coincided with the segmented location of the fiber tip.

The second visual servoing experiment was performed after the ultrasound probe

was centered. This experiment tested the ability of the visual servoing system to

follow the fiber tip over a total distance of 10 mm, using a translation stage to achieve

fiber advancement in tissue and to obtain ground truth displacement measurements.

We refer to this second experiment as the fiber tracking experiment. The two visual

servoing experiments (i.e., probe centering and fiber tracking) were performed with

laser energies of 169, 248, and 322 µJ, which were lower than the maximum energy

required to achieve laser safety with our system configuration (i.e., 394.6 µJ at the fiber

tip, as reported in Section 4.2.3). The statistical significance of performance differences

between real-time SLSC and real-time DAS was evaluated with a Mann-Whitney U

test [67].

4.2.5 In vivo Segmentation Assessment

Ideally, the experiments described in Section 4.2.4 would be repeated in an in

vivo setting. However, the use of low laser energies were difficult to detect with

DAS beamforming and repeated fiber tracking and probe centering experiments were

anticipated to unnecessarily extend the duration of an in vivo study, potentially
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causing unnecessary animal discomfort.

Therefore, we implemented an alternative plan. The segmentation performance with

DAS, CPU-SLSC, and GPU-SLSC imaging was tested with in vivo data obtained from

a previously completed experiment consisting of an optical fiber inserted in a porcine

heart, as described in more detail in our previous publication[6]. To summarize the

data acquisition procedure, the optical fiber was first inserted into a cardiac catheter,

then the fiber-catheter pair was guided to the right atrium of the heart. The fiber

emitted a laser wavelength of 750 nm with a pulse energy of 2.98 mJ. A total of 10

frames of resulting photoacoustic data were acquired with an Alpinion SP1-5 phased

array ultrasound probe. This study was approved by the Johns Hopkins University

Animal Care and Use Committee.

Considering the relatively high laser energy that was utilized in this previous

experiment [6], Gaussian-distributed noise was added to the raw in vivo channel data

as a surrogate for decreasing the laser energy. The resulting channel SNR of the raw

in vivo data was evaluated as follows:

SNRc = 20 log10

(︄
signalrms

noiserms

)︄
, (4.8)

where the rms subscript refers to the root mean square of either the signal or the

noise. The signal was defined as the entire channel data recording, and the noise was

defined as the Gaussian random matrix added to the channel data. The channel data

with added noise were then beamformed using DAS, CPU-SLSC, and GPU-SLSC, and

photoacoustic signals were segmented using the algorithm described in our previous

publication[6]. The locations of the segmented signals were compared with ground

truth segmentations derived from corresponding in vivo channel data with no noise

added. A failed segmentation was defined as either no segmentation result or no

overlap of the segmented signal with the ground truth segmentation.
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4.3 Results

4.3.1 Selection of Beamforming Parameters

Fig. 4-4 shows GPU-SLSC processing time results for several pairs of M and k

at two imaging depths. These processing times are limited by the maximum pulse

repetition period (PRP) of any laser, which equals 100 ms for our laser which has

a 10 Hz pulse repetition frequency (PRF). Ideally, the processing times would be

maintained below this limit (indicated by the dashed line) in order to avoid bottlenecks

due to signal processing.

At 5 cm image depth, GPU-SLSC imaging reconstructs frames below this limit. At

15 cm image depth (which represents a worst-case scenario for internal light delivery

with external ultrasound probe placement [10, 16, 47, 50, 68]), the majority of possible

M and k parameters also fell below this limit. Specifically, pairs of [M > 20, k ≥ 31]

and [M > 25, k ≥ 19] resulted in processing times above the laser PRP indicated

by the dashed line. In addition, the observed increase in standard deviation as M

increased is proportional to the increased number of loops in the CUDA kernels.

Fig. 4-5 shows image quality metrics as functions of M , k, and d. The discrimination

between the source and the background provided by the gCNR metric (top of Fig. 4-5)

is the worst for both depth values when k = 3, although the gCNR is generally good

in most of these cases. The mean ± one standard deviation of gCNR values shown in

Fig. 4-5 is 0.97 ± 0.02 and 0.89 ± 0.70 when d = 5 cm and d = 10 cm, respectively.

When d = 10 cm, the lowest M and k values in Fig. 4-5 show decreased gCNR, and

gCNR is otherwise constant as M increases. The bottom of Fig. 4-5 shows that lateral

resolution improves as M increases, which is expected [10, 46, 49].

The optimal M and k values were selected based on our observations of Figs. 4-4

and 4-5. Specifically, lateral resolution improvement was minimal when M>25 (see

Fig. 4-5) and temporal resolution generally remained below the 100 ms PRP limit at M
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Figure 4-4. GPU-SLSC processing times for a single image frame, acquired with d=5 cm
and d=15 cm imaging depths, while varying the cumulative lag M and axial kernel size k.

= 25 (see Fig. 4-4). Therefore, M = 25 was selected as optimal. The optimal k value

was selected by maximizing gCNR, considering that successful discrimination between

target and background is critical for the visual servoing segmentation algorithm. A

value of k = 11 was chosen because this value results in a gCNR of approximately 1

and increasing k beyond this value is expected to decrease temporal resolution and

axial resolution, as previously reported for ultrasound SLSC implementations [60,

69].

4.3.2 Speedup of GPU-SLSC Compared to CPU-SLSC

A depth of d = 5 cm and the optimal values determined in Section 4.3.1 (i.e., M

= 25 and k = 11) were implemented to compare computation times. The size of the

raw data was a 3328 × 128 matrix of 16-bit resolution for this evaluation. Fig. 4-6
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Figure 4-5. Image quality comparisons of gCNR (top) and lateral resolution (bottom) as
functions of cumulative lag and axial kernel size for imaging depths of d = 5 cm (left) and
d = 10 cm (right).

shows the average processing times for each stage of the SLSC beamforming flow

diagram with GPU-SLSC and CPU-SLSC implementations. GPU-SLSC imaging

reduced computation times for each of the processing stages in comparison to CPU-

SLSC imaging, with speedups of 13.5x, 49.7x, 12.1x, 711.2x, 550.9x, and 16.9x for

the “Reorder”, “No DC”, “Hilbert”, “Delays”, “SLSC”, and “Normalize” stages,

respectively.

Comparing the sum of the processing times (i.e., 15.91 ms) with the computation

time between frames (i.e., 24.3 ms) resulted in a measured overhead of 8.39 ms. This

overhead, likely due to memory transfer and intrinsic subroutines of the ultrasound

software of the Alpinion E-CUBE 12R, was included when assessing the overall perfor-

mance of our real-time implementation. With this inclusion, GPU-SLSC provided an

overall speedup of 348.7x when compared to CPU-SLSC. Translating the computation

time to real-time imaging scenarios, GPU-SLSC enabled a frame rate up to 41.2
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Figure 4-6. Processing times for each stage of SLSC beamforming using GPU and CPU
implementations.

Hz.

4.3.3 Performance in Ex Vivo Tissue

Fig. 4-7 shows examples of beamformed photoacoustic images of the fiber tip

acquired with a laser energy of 268 µJ (Fig. 4-7(a)) along with SNR measurements

as a function of laser energy (Fig. 4-7(b)). The SLSC and DAS images in Fig. 4-7(a)

Figure 4-7. (a) Photoacoustic images of the optical fiber inserted into ex vivo bovine
muscle at 25 mm axial depth, operating at 268 µJ laser energy. Images were reconstructed
with DAS, CPU-SLSC and GPU-SLSC beamformers. (b) SNR results from the optical
fiber inserted into into ex vivo bovine muscle as a function of the laser energy.
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were normalized, log-compressed and displayed with a dynamic range of 15 dB. The

mean ± one standard deviation of the SNR measured in the DAS, CPU-SLSC, and

GPU-SLSC images of Fig. 4-7(a) were 3.5 ± 0.9 dB, 11.4 ± 2.9 dB, and 12.1 ± 4.2

dB, respectively. In Fig. 4-7(a), SLSC imaging consistently outperforms DAS imaging

and visualizes low-energy signals (≤ 268 µJ) with a mean SNR of 11.2 ± 2.4 (p <

0.05) The corresponding DAS SNR was 3.5 ± 0.8. The mean SNR difference between

the CPU-based and GPU-based SLSC implementations was 1.14. This difference was

not statistically significant (p > 0.05).

Fig. 4-8 shows results from the probe centering experiment. Photoacoustic images

acquired with one low laser energy (i.e., 110 µJ) and one higher laser energy (i.e., 645

Figure 4-8. (a) Example of probe centering results for high and low laser energies with
DAS and GPU-SLSC photoacoustic images. The first and second columns for each energy
show the initial and final position of the fiber before and after probe centering, respectively.
The dashed blue line represents the center of the image. The blue circle denotes the target
detected by the segmentation algorithm. Video 1 contains a real-time display of these
results, including additional photoacoustic images acquired between the before and after
still frames (Video 1, MP4, 8.34 MB) (b) Probe centering experiment errors.
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µJ) are displayed in Fig. 4-8(a). For the higher laser energy (which is higher than the

safety limit of 394.6 µJ), visual servoing with either DAS or GPU-SLSC beamforming

successfully accomplished the probe centering task. The left side of Fig. 4-8(a) shows

the position of the fiber tip before and after the execution of visual servoing. The

segmented target (denoted by the blue circle) is present and constant in both DAS

and SLSC images at 645 µJ. The right side of Fig. 4-8(a) shows a corresponding result

for the lower laser energy. While visual servoing with DAS generally failed to segment

the target due to the low SNR, visual servoing with SLSC beamforming successfully

performed the probe centering task.

Probe centering errors measured between desired centering locations and the actual

robot positions are displayed in Fig. 4-8(b) for three energies below the safety energy

limit and within the range of energies shown in Fig. 4-8(a). These probe centering

errors were obtained over a time period of 12 to 15 s after the first intersection of

segmented target position with the center of the image. Five error measurements were

computed for each energy. The horizontal line inside each box displays median error.

The upper and lower edges of each box represent the first and third quartiles of the

data set. The vertical lines connected to the boxes show the minimum and maximum

values in each data set.

Figure 4-9. Fiber tracking results. (a) Example of robot positions with fiber tracking at
248 µJ. The circles represent time stamps when the visual servoing algorithm failed to
segment the photoacoustic signal. (b) Fiber tracking errors at mid-range energies.
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With 169 µJ laser energy, the median and interquartile range (IQR) of tracking

errors were 1.71 mm and 0.71 mm, respectively, with DAS-based visual servoing and

1.11 mm and 0.39 mm, respectively, with SLSC-based visual servoing. Similarly, with

248 µJ laser energy, there was a higher median tracking error with DAS beamforming

(i.e., 1.11 mm) than that obtained with SLSC beamforming (i.e., 0.52 mm). However,

SLSC beamforming had a higher IQR of tracking errors (i.e., 0.79 mm) when compared

to DAS beamforming (i.e., 0.29 mm) at the same laser energy. With 322 µJ laser

energy, the median and IQR of tracking errors were 0.46 mm and 0.05 mm, respectively,

with DAS-based visual servoing. These errors were lower than the median and IQR

of tracking errors obtained with SLSC beamforming, which were 0.77 mm and 0.47

mm, respectively. Overall, for the three laser energies (i.e., 169 µJ, 248 µJ, and 322

µJ), the median and IQR of tracking errors were 1.10 mm and 0.85 mm, respectively,

with DAS and 0.81 mm and 0.68 mm, respectively, with SLSC. For each laser energy

in Fig. 4-8(b), the differences between the median probe centering error results with

SLSC- and DAS-based visual servoing were statistically significant (p<0.01).

Fig. 4-9 shows results from the fiber tracking experiment. The trajectories of the

robot-held ultrasound probe obtained during DAS- and SLSC-based visual servoing are

compared to the desired trajectory in Fig. 4-9(a). Ideally, the trajectories generated

with visual servoing would be closely related to the desired trajectory performed

manually with the translation stage and indicated with the dashed line. Both DAS-

and SLSC-based visual servoing followed the fiber displacement during the 0 s to 18

s time interval. After 18 seconds, the noise present in the DAS image contributed

to failed segmentations, resulting in a visual servoing failure, which is shown as the

circles in Fig. 4-9(a).

When consecutive instances of failed segmentation were recorded over a 1 s time

period, the robot performed a search around the current region in the lateral and

elevation ultrasound probe directions. This searching algorithm was responsible for
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the increased deviation of the segmented target locations from desired locations with

DAS-based visual servoing, as observed in the red shaded region of Fig. 4-9(a) (i.e.,

within the 21 s to 38 s time interval). During this time interval, the median and

IQR of tracking errors were 10.64 mm and 7.68 mm, respectively, with DAS-based

visual servoing. When excluding this interval, the median and IQR of the difference

between actual and desired trajectories were 2.02 mm and 0.41 mm, respectively, with

DAS beamforming and 1.17 mm and 0.68 mm, respectively, with SLSC beamforming.

Therefore, the real-time SLSC approach produced less deviations from the desired

trajectory overall.

Tracking errors measured between the desired locations and the measured robot

positions are summarized in Fig. 4-9(b). These errors were computed from visual

servoing data obtained between two timestamps. The first timestamp was acquired

when both the robot position and the desired location were initialized (i.e., p⃗ = p0⃗, t =

0). The second timestamp was acquired after the fiber was displaced by 10 mm with

the translation stage. Generally, tracking errors were larger with DAS compared to

SLSC beamforming for each laser energy shown in Fig. 4-9(b). Overall, for the three

laser energies (i.e., 169 µJ, 248 µJ, and 322 µJ), the median and IQR of tracking errors

were 2.01 mm and 8.97 mm, respectively, with DAS beamforming and 0.64 mm and

0.52 mm, respectively, with SLSC beamforming. For each laser energy, the differences

between the median tracking error results with SLSC- and DAS-based visual servoing

were statistically significant (p<0.01).

4.3.4 In Vivo Performance

Fig. 4-10(a) shows in vivo images created with DAS, CPU-SLSC, and GPU-

SLSC beamformers after adding noise resulting in -30 dB channel SNR (i.e., SNRc

in Eq. 4.8).The percentage of failed segmentations measured from 10 frames of

photoacoustic data is shown as a function of channel SNR in Fig. 4-10(b), represented
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Figure 4-10. (a) Examples of in vivo DAS, CPU-SLSC, and GPU-SLSC photoacoustic
images, created from the same raw data after adding Gaussian-distributed noise to
achieve -30 dB channel SNR. The segmentation algorithm failed on the DAS image and
succeeded with the CPU-SLSC and GPU-SLSC images. (b) For each channel SNR, the
percentage of failed segmentations is represented as the mean ± one standard deviation
of 10 measurements obtained after varying the amplitude threshold in the segmentation
algorithm from 35% to 66% of the maximum amplitude within each photoacoustic image.

as the mean ± one standard deviation of measurements obtained after varying the

amplitude threshold in the segmentation algorithm from 35% to 66% of the maximum

amplitude within each photoacoustic image. At -36 dB channel SNR, each beamforming

method completely fails to segment the photoacoustic target (i.e., 100% failure). As

channel SNR improved, the percentage of failed segmentations was reduced with

CPU-SLSC and GPU-SLSC beamforming, measuring an average of 2.5% from -28 dB

to -20 dB channel SNR. On the other hand, DAS beamforming resulted in a higher

percentage of failed segmentations for the same range of channel SNRs. For channel

SNRs greater than -20 dB, the noise levels were not sufficient to affect the segmentation

performance of each beamformer, which is consistent with our observations at higher

laser energies.
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4.4 Discussion

Image-guided interventions often require visualization and tracking of important

targets and structures. This requirement is well-suited to photoacoustic-based visual

servoing of surgical tool tips. GPU-SLSC beamforming in particular provides three

advantages to photoacoustic-based visual servoing in comparison to DAS and offline

SLSC implementations. The first advantage is the reduction in computation times when

compared with CPU-SLSC with minimal alterations to the precision of the coherence

value estimations, as qualitatively observed in Fig. 4-7(a). The SNR difference between

CPU-SLSC imaging and GPU-SLSC imaging is 1.14 ± 3.99. Although minimal and

not statistically significant, this difference is likely due to the single-precision libraries

and linear interpolation in the GPU texture memory. Specifically, the GPU-SLSC

algorithm utilizes CUDA embedded functions such as the inverse square root, power,

and cosine functions. These single precision functions have a unit-in-the-last-place

error of 9, 2, and 2, respectively [70], which decreases the precision of the coherence

factors and the overall SLSC value. In addition, a GPU-SLSC imaging frame rate

of 41.2 Hz, as reported in Section 4.3.2, allows visual servoing without overlapping

subsequent acquisitions controlled by the laser trigger, which had a pulse repetition

frequency of 10 Hz. After the SLSC image generation, a wait time of approximately

75 ms was required until the next trigger event, because raw data were acquired every

100 ms and GPU-SLSC generated an image every 24.3 ms.

The second advantage of GPU-SLSC beamforming is the improvement of photoa-

coustic signals at low energy levels, as demonstrated in Fig. 4-7(b). We focus on

low-energy lasers for two reasons. First, low laser energies enable miniaturization of

the light delivery system. Second, low laser energies ensure minimal risk of damage to

tissues in cases where no safety limits currently exist (which is true for most tissues

with the exception of skin and eyes [66]). Although we can increase the laser energy,
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the presence of artifacts may be misinterpreted by the visual servoing algorithm if the

energy is too high, and in other cases within the safety limit, a smaller increase in

laser energy does not affect the GPU-SLSC visual servoing performance, as shown

in Figs. 4-8(b) and 4-9(b). From this perspective, the focus of our work is targeted

toward clinical applications that will require miniaturized systems with reduced risk

of exposure to patients. With the experimental setup shown in Fig. 4-3, the laser

safety limit for skin is 394.6 µJ, as determined by the diameter of the optical fiber

and wavelength of excitation. An optical fiber with a smaller diameter would produce

a lower safety limit at this same excitation wavelength (e.g., 142 µJ for a 0.6 mm-

diameter optical fiber). Because GPU-SLSC can successfully recover signals obtained

with energies as low as 118µJ (particularly in cases where DAS beamforming failed),

our results indicate that GPU-SLSC will be beneficial in smaller and more portable

light delivery systems [53], which is a necessary design requirement for effective visual

servoing in the operating room.

The third advantage of GPU-SLSC beamforming is the robustness of SLSC-based

visual servoing to segmenting and tracking signals at low (e.g., 110µJ) and mid-

range (e.g., 169 to 322 µJ) laser energies, when compared to photoacoustic-based

visual servoing with DAS images. This robustness is particularly advantageous when

considering that the visual servoing algorithm initiates a search process after a series

of unsuccessful segmentation events are recorded [6]. The probe centering and fiber

tracking results (Figs. 4-8(a) and 4-9, respectively) indicate that the search process

would be triggered more often with DAS than SLSC (see example provided in Video

1). This search motion would hinder effective tool tracking during surgery and add

delays to the overall surgical or interventional procedure. GPU-SLSC beamforming

has the potential to avoid these interruptions, which is additionally supported by the

in vivo results presented in Fig. 4-10.

One detail that does not support these three advantages of SLSC is the similar probe
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centering errors obtained at the mid-range energies shown in Fig. 4-8(b). However,

DAS beamforming produced considerably higher fiber tracking errors than SLSC

beamforming (i.e., the difference between the IQR of tracking errors reported in Fig.

4-9(b) was 8.45 mm). Based on the combined outcome of these two experiments and

the minimal overall percentage of failed segmentations with GPU-SLSC, GPU-SLSC

is preferred over DAS when considering clinical photoacoustic-based visual servoing

applications utilizing energies within existing laser safety limits.

The computation times reported in Fig. 4-4 suggest that real-time GPU-SLSC

imaging is achievable for most clinical scenarios where the photoacoustic source is

located as deep as 10 cm, with a laser PRP of 100 ms or higher. Fig. 4-4 indicates that

image depth d has the largest effect on the processing time (of the three parameters

varied), as frame rate decreases by a factor of approximately 2 when increasing d

from 5 cm to 15 cm. While the feasibility of real-time imaging modalities depends

on the amount of data to process, an imaging depth of 15 cm is uncommon for most

interventional applications of photoacoustic imaging, including cardiac [6], abdominal

[71], intravascular [72], hysterectomy [73], and spinal fusion surgery [52, 74] applications,

suggesting that image depths as large as 15 cm is an unlikely concern for the real-time

feasibility of GPU-SLSC in a majority of these cases. Nonetheless, the presented

results at this 15 cm depth provide us with a worst-case scenario for system speed with

internal light delivery and external ultrasound probe placement in these interventional

applications.

The frame rate of 41.2 Hz (i.e., processing time of 24.3 ms) obtained with GPU-

SLSC is either similar to or better than that obtained with GPU implementations

of other advanced beamforming techniques. For example, real-time, 4 cm-deep DAS,

delay-multiply-and-sum (DMAS), DAS+CF, or DMAS+CF imaging was achieved

with processing times of 7.5, 7.6, 11.1, or 11.3 ms, respectively (with the exclusion

of memory transfer times between the GPU and CPU)[44]. A variation of DMAS,
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namely the multiple delay and sum with enveloping beamformer, was implemented

on a Quadro P5000 GPU to reconstruct 512 × 512 images in 41.62 ms [75]. Another

version of DMAS, proposed by Miri et al. [76], reported a 12 ms processing time

for images of size 256 × 256 pixels. In addition to these beamformers, the reported

GPU-SLSC frame rate is better than that achieved with a parallel backprojection

algorithm reporting 17 Hz frame rates when reconstructing 1024 × 512 duplex images

[77]. A more detailed comparison of processing speeds requires standardization of

factors such as input data size, output image size, memory transfer evaluation, GPU

hardware, and overhead.

An additional observation is that photoacoustic targets reconstructed with SLSC

beamforming produced signals with different shapes when compared to targets re-

constructed with DAS beamforming, as seen in Fig. 4-8(a). This change in signal

morphology is caused by the degradation in axial resolution with the chosen axial

kernel size of k = 11 and the improved lateral resolution with the chosen M = 25.

Although an axial kernel size of k = 11 was chosen to maximize the gCNR value

between signal and background regions, the associated axial resolution degradation

does not significantly affect the performance of our visual servoing algorithm, which

tracks the displacement of the optical fiber in the lateral dimension.

One study limitation is that the the number of scanlines and high pass filter

coefficients were not varied nor evaluated. However, we determined that a line

density of 1 (i.e., 128 scanlines) was sufficient to visualize an optical fiber fiber with

a core diameter of 1 mm, considering that the resolution in the lateral dimension

is approximately half the element pitch (i.e., 0.15 mm). Although an increased

number of high pass filter coefficient ensures the removal of DC components without

compromising the frequency spectrum of the radiofrequency signals of interest, in

practice, the radiofrequency signals are band-pass filtered to the operation range of the

ultrasound probe before being stored in memory. Therefore, increasing the high pass
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filter coefficient is not expected to affect the overall quality of the SLSC images.

Future work will advance implementation of GPU-SLSC beamforming for clinical

visual servoing applications with the primary goal of reducing the risk of ionizing

radiation exposure by substituting fluoroscopy usage with the proposed approach

[6, 78]. For example, the in vivo setup described in our previous publication[6]

implemented visual servoing with DAS beamforming to guide a cardiac catheter tip

using a fluence of 365.5 mJ/cm2, which is higher than the 25.2 mJ/cm2 safety limit

for skin at the same 750 nm wavelength [66]. SLSC-based visual servoing has the

potential to provide similar visual servoing performance to higher energy DAS results

when using energies below existing safety limits, as indicated by the results in Fig.

4-10. In addition, the SNR enhancement provided with GPU-SLSC is expected to

be beneficial in other applications with high noise and high acoustic scattering or

attenuation, such as navigating inside bony anatomy during spinal fusion surgeries

[52] or endonasal transphenoidal surgeries [17], as well as navigating within liver tissue

during surgeries, biopsies, or radiofrequency ablations [71, 79].

4.5 Conclusion

This paper presents the first known implementation of real-time SLSC beamforming

for photoacoustic imaging, which was enabled by GPUs and parallel processing

techniques. When selecting optimal beamforming parameters for visual servoing tasks,

a factor of 348 speedup was achieved when compared to CPU-SLSC implementations.

This speedup allows real-time visualization of photoacoustic images for any laser with

pulse repetition frequencies up to 41.2 Hz. Ex vivo results with bovine tissue and in

vivo results from cardiac data demonstrate that GPU-SLSC imaging has the potential

to enable visualization of photoacoustic signals obtained with low laser energies

during photoacoustic-guided interventions, which is promising for the miniaturization

of lasers to perform photoacoustic-based visual servoing in the operating room or
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interventional suite. In addition, GPU-SLSC imaging outperformed DAS imaging

when jointly comparing probe centering, image segmentation, and fiber tracking tasks

in the presence of low channel SNRs and when using laser energies that meet existing

laser safety requirements.
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Chapter 5

Acoustic Frequency-Based
Identification of Photoacoustic
Surgical Biomarkers

The work presented in this chapter was published in the following manuscript:

E. A. Gonzalez, C. A. Graham, and M. A. Lediju Bell, “Acoustic frequency-based ap-

proach for identification of photoacoustic surgical biomarkers,” Frontiers in Photonics,

vol. 2, 2021. doi: 10.3389/fphot.2021.716656

5.1 Introduction

In photoacoustic imaging, spectral unmixing techniques [2] are often used to isolate

signal origins in the fields of oxymetry [3–5], reporter genes [6, 7], and molecular details

[8]. Clinical applications include detection of tumors [9] and discriminating among

critical chromophores (e.g., blood, contrast agents, lipids) during surgical interventions

[10].

Existing spectral unmixing techniques generally consist of generating an overde-

termined system of equations (i.e., more equations than variables) from the signal

response of each chromophore at different laser wavelengths, which can then be solved

with an optimization technique based on the known optical absorption coefficient for

each chromophore at each wavelength. For example, Xia et al. [11] used a pseudo
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inverse approach to differentiate photoacoustic responses originating from water,

blood, and lipids. Ding et al. [12] investigated the effect of alternative versions with

non-negativity constraints to determine the concentration levels of contrast agent

injected in in vivo mice. More recently, Grasso et al. [13] proposed an iterative

approach to discriminate blood oxygenation levels by solving the system of equations

with a non-negative matrix factorization, which compensates for the ill-conditioned

invertibility of the absorption coefficient matrix.

Despite their effectiveness, these spectral unmixing techniques are typically not

feasible for most real-time applications because of the lengthy acquisition times

associated with transmitting multiple laser wavelengths to achieve a single estimate.

Traditional spectral unmixing techniques also do not typically consider differences

in acoustic spectra, which has the potential to provide additional information for

differentiation between biomarkers or different soft tissues.

An alternative to optimization techniques is to consider an analysis of the acous-

tic spectra using spectral parameters. Initially, spectral parameters obtained from

photoacoustic signals were used for characterization of tissues. For example, Kumon

et al. [14] conducted an in vivo study to detect prostate adenocarcinomas using the

intercept, slope, and mid-band fit of the frequency response of photoacoustic RF

signals, where the use of mid-band fit resulted in statistically significant differentiation

between pathological and healthy tissue (p < 0.01). Similarly, Strohm et al. [15]

used both the slope of a linear fit and the spectral peak to discriminate between

concentrations of red blood cells. Later, Wang et al. [16] used the slope parameter to

accurately differentiate (p < 0.01) the photoacoustic signals from particles of different

diameters in phantom experiments. However, by reducing the dimensionality of the

feature space, spectral parameter methods provide a limited snapshot of frequency

characteristics. In addition, these methods use a calibration stage from a reference

spectra whose source varies among studies (e.g., hair fibers [14], stainless steel blocks
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[17], gold-films [15], and black-dyed polymer micro-spheres [16]), which limits the

repeatability of classification performance for in vivo applications.

In contrast to spectral unmixing methods, two distinct approaches (i.e., F-mode

imaging [18] and a method proposed by Cao et al. [17]) utilize the complete acoustic

spectra for differentiation of photoacoustic targets. F-mode imaging [18] consists of

dividing the spectra with filter banks and displaying a series of images of a specific

frequency content, which are later combined with a label-free photoacoustic microscopy

(PAM) map to selectively enhance the visualization of organelles. The method proposed

by Cao et al. [17] uses the acoustic spectra filtered with the frequency response of

the ultrasound transducer to perform k-means clustering of photoacoustic signals

originating from two different photoacoustic-sensitive materials. These two approaches

share two limitations. First, in contrast to spectral unmixing techniques, labelled

regions for each desired chromophore are required. Second, these labelled regions rely

on a priori information about the location of materials to be differentiated. These

limitations are not ideal for image guidance during surgical interventions and reduce

overall classification performance.

To overcome these challenges with traditional spectral unmixing [11, 13], F-mode

[18], and k-means clustering [17], we propose a novel, more general acoustic frequency-

based analysis method to discriminate photoacoustic responses from different materials.

The proposed method does not depend on a reference spectrum (as opposed to k-

means clustering [17]). In addition, the proposed method applies a classification

framework using training and testing sets containing known photoacoustic-sensitive

materials (i.e., no a priori signal location information is required, unlike F-mode

[18] and traditional spectral unmixing techniques [11, 13]). We hypothesize that our

proposed method, which relies on an analysis of the acoustic frequency response from

a single- or dual-wavelength emission, is sufficient to differentiate biomarkers and

has the potential to increase possible frame rates for real-time implementation in the
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operating room.

To test our hypothesis, a frequency analysis was applied to the received photoa-

coustic signals from two chromophores – blood and methylene blue. The necessity to

differentiate these two chromophores is motivated by recently proposed photoacoustic-

guided hysterectomy techniques that require differentiation of uterine arteries from

ureters containing methylene blue [19]. Although the focus of this chapter is the

distinction of these two chromophores, the proposed photoacoustic differentiation is

applicable to other chromophores of interest during a surgical procedure.

The remainder of this chapter is organized as follows. Section 5.2 details acquisition,

segmentation, and classification methods to identify photoacoustic signals originating

from either methylene blue or blood, followed by summaries of existing methods used

to benchmark the performance of our approach on the same datasets. Section 5.3

presents the quantitative and qualitative comparison of the classification performance

between the proposed and the existing methods. Section 5.4 discusses insights from

these results and Section 5.5 summarizes our conclusions.

5.2 Method

5.2.1 Experimental setup

We designed a phantom that mimics the clinical setup of photoacoustic catheter-

based interventions, where an optical fiber is attached to a cardiac catheter as it is being

inserted through a major vein [20]. Another possibility is that a contrast agent may

be injected into this vein through the same catheter. Based on these details, Fig. 5-1

shows the experimental setup used to differentiate the two photoacoustic-sensitive

materials of hemoglobin and methylene blue discussed throughout this chapter. A 29

cm × 18 cm × 10 cm (length × width × height) polyvinyl chloride-plastisol (PVCP)

phantom was fabricated to contain ten cylindrical, hollow chambers. Each chamber

had a diameter of 15 mm and a depth of 55 mm. Two of the chambers were filled
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with either a 100 µM aqueous solution of methylene blue (MB, ID: S25431A, Fisher

Scientific, Waltham, MA) or human blood (Hb), and a 1-mm-diameter optical fiber

was inserted in each of the filled chambers. These fibers originated from a bifurcated

fiber bundle that was connected to a Phocus Mobile laser (Opotek Inc., Carlsbad, CA,

USA), transmitting laser light with wavelengths ranging from 690 nm to 950 nm in 10

nm increments.

Figure 5-1. Acquisition setup to test the differentiation of methylene blue (MB) from
blood (Hb). These photoacoustic-sensitive materials fill the hollow chambers of a custom
polyvinyl chloride plastisol phantom.

The tip of each optical fiber was positioned approximately 15 mm below the top

surface of the chambers, and light was emitted from each fiber tip. By transmitting

light locally into each chamber and not globally illuminating multiple chambers

simultaneously, we minimized (or systematically controlled) fluence differences and the

related amplitude of responses to the optical excitation. The generated photoacoustic

signals were received by an Alpinion L3-8 linear array ultrasound probe (center

frequency of 5.5 MHz and pitch of 0.3 mm) that was positioned on the lateral wall of

the phantom, approximately 40 mm away from the hollow chamber cross section, as

shown in Fig. 5-1.

To evaluate the reproducibility of our proposed method, three datasets were acquired
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(i.e., Datasets 1, 2, and 3). Dataset 1 was acquired first followed by Dataset 2 (acquired

10 hours later), followed by Dataset 3 (acquired 13 hours after Dataset 2). The Hb

samples were stored with interim refrigeration at a temperature of 4◦ C. The fluence

emitted from each fiber tip measured 1.0 mJ.

To characterize the effects of unequal fluence emitted from each fiber tip, three

additional datasets were acquired with fluence pairs in the MB and Hb chambers

recorded as 0.4 and 1.8 mJ, 1.0 and 1.8 mJ, and 0.4 and 1.0 mJ, respectively. These

three datasets were labeled as “Fluence Pair 1", “Fluence Pair 2", and “Fluence Pair

3" , respectively. Each fluence pair dataset comprised three subsets, acquired with the

same time intervals described in the preceding paragraph for Datasets 1-3.

To evaluate the performance of our proposed method in more challenging environ-

ments, particularly in the presence of an aberrating media composed of mostly fatty

tissue, three additional datasets were acquired with 2-, 5-, and 7-mm-thick layers of

turkey bacon placed between the phantom and the ultrasound probe. This dataset

was acquired immediately prior to Dataset 2, thus it is expected to contain similar

Hb degradation to that of Dataset 2. The added tissue layers can be considered to

represent the fat that is commonly located within skin and within the subcutaneous

region of healthy human tissue [21]. The fluence emitted from each fiber tip measured

1.0 mJ.

5.2.2 Ground-truth Labelling

Fig. 5-2 presents an overview of the proposed framework for differentiating pho-

toacoustic signals sources. For each laser wavelength emission, 10 acquisitions of raw

radiofrequency data were acquired. Photoacoustic images were then generated using

conventional delay-and-sum (DAS) beamforming. Two regions of interest (ROIs) were

automatically defined to separate photoacoustic signals generated from MB and Hb,

located on the right and the left sides of the photoacoustic images, respectively. These
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ground-truth labels were automatically segmented using binary-thresholding of locally

weighted short-lag spatial coherence (LW-SLSC) images [22], with a regularization

factor of α = 1 and an axial correlation kernel of 0.56 mm.Binary segmentation was

performed using a -10 dB threshold mask applied to the LW-SLSC images. A single

binary mask was computed per laser wavelength emission, which was the result of

the logical inclusive “OR" operation of the 10 masks obtained from the 10 frames.

This segmentation resulted in two distinct signals on the left and right sides of the

mask, which were assigned the ground-truth labels of MB and Hb, respectively. For

each image, only those pixels included in the coherence masks were used for feature

extraction, training, and classification.

Figure 5-2. Overview of proposed method to differentiate photoacoustic signal sources
using acoustic frequency information. The blue and red coherence masks show regions of
interest for methylene blue (MB) and blood (Hb), respectively. These regions are known
for the training set and need to be correctly classified through atlas comparisons during
testing. Spectra are asymmetric with respect to frequency because baseband signals were
analyzed after IQ demodulation.

5.2.3 Atlas of Photoacoustic-Sensitive Materials

A frequency analysis of the photoacoustic pressure waves was performed. For

each material (i.e., MB and Hb), the normalized power spectra were calculated from
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a sliding window of axial kernels of in-phase and quadrature (IQ) data. Principal

component analysis (PCA) was applied to the power spectra of photoacoustic signals

acquired at each laser wavelength in order to reduce the complexity of the feature

space. When using a training set, the principal components were stored in an “atlas”

describing each material. Finally, when evaluating the spectra of a test signal, nearest

neighbor (k-NN) classification was applied with the L2-norm as the measure of distance

between the PCA of the test spectra and the PCA of the spectra within the atlas.

Datasets 1-3 (described in Section 5.2.1) were utilized to compare the performance

of the proposed atlas-based method with the performance of the existing classification

methods described in Section 5.2.4. Because these atlas methods require a training

set in addition to a test set, Dataset 1 was used for training the atlas methods when

testing with Datasets 2 and 3. In addition, to include performance when testing with

Dataset 1, Dataset 2 was arbitrarily chosen for training in this scenario.

Fig. 5-3 shows two proposed spectral analyses using either one or two wavelengths.

In the dual-wavelength analysis, the magnitude of the IQ spectra of the photoacoustic

response from a region of interest using two different wavelengths were concatenated,

resulting in a region of interest producing a spectrum of size [1×N ] from one wavelength,

where N is the number of samples of the spectrum, producing a concatenated spectra

P of size [1 × 2N ]. This concatenated spectrum was then normalized to its maximum

value. No concatenation was required for the single-wavelength analysis.

The initial parameters of the single- and dual-wavelength atlas method used in our

previous publication [23] were modified to maximize the sensitivity, specificity, and

accuracy of our approach (see Section 5.2.6 for metric definitions). In particular, the

parameters for in-phase quadrature demodulation, PCA, and k-NN were optimized

through an iterative search using laser wavelengths ranging from 690 nm to 950 nm

(see Section 5.7 for more details). The optimized parameters were utilized for the

proposed spectral analyses throughout the chapter.
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Figure 5-3. Two proposed spectral analyses for characterization based on single (top)
and dual (bottom) wavelength emissions.

5.2.4 Comparison with Previous Methods
5.2.4.1 Spectral Unmixing Techniques

Spectral unmixing techniques solve the source component reconstruction C of a

scanned region by using the multispectral measurement matrix M and an a priori

absorption coefficient matrix S of the number of chromophores present in the image.

A conventional spectral unmixing solution is the least square method presented below

[2, 11, 24]:

C = MS , C ∈ Rn×k, M ∈ Rn×m, S ∈ Rm×k, (5.1)

where C segments k number of chromophores over a grid of n pixels, m is the number

of laser wavelength acquisitions, and S is the Moore-Penrose pseudoinverse of the

absorption coefficient matrix S (i.e., S = ST (SST )−1). A more robust approach

proposed by Grasso et al. [13] used an iterative non-negative matrix factorization

(NNMF) to adjust the initial S and further reduce residual errors:

[C, Ŝ] = min
C,S

1
2∥m − CS∥2

2, S ∈ Rk×m, Cij ≥ 0, Sij ≥ 0 (5.2)

S(p + 1) = S(p) ⊗

(︂
W T M

)︂
(CT CS) , C(p + 1) = C(p) ⊗

(︂
MST

)︂
(CSST )

where ⊗ denotes multiplication. The multiplication and division steps are considered
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element-wise operations and the stopping criteria is defined by an improvement

tolerance η. Eqs. 5.1 and 5.2 are considered overdetermined systems (i.e., m > k).

Both methods were applied to DAS images of the testing data described in Section

5.2.2 and Fig. 5-3 for two chromophores (i.e., k = 2). However, because there is no

report of absorption coefficients for methylene blue at optical wavelengths greater

than 800 nm, only 12 of the 27 wavelength acquisitions were used for the construction

of the matrix m (i.e., m = 12). In addition, each equation was regularized by modifying

the initial S to:

S ′ = S + γA, (5.3)

where A is a matrix of ones, and γ is an additive coefficient that was varied from 10−1

to 103 cm−1 in multiplicative increments of 100.188 (i.e., γ[n] = 10−1 × 100.188n).

5.2.4.2 F-mode Imaging

Using the testing data, non-normalized DAS images were generated without log-

compression and segmented with the coherence mask described in Section 5.2.2.

Log-compressed power spectra were calculated from a sliding window of axial kernels

of radiofrequency signals, each 3.85 mm in length. For each spectrum, the integrated

frequency content was estimated from 4 sectors of the frequency domain of 0.2 MHz

width and center frequencies of 1, 2, 3, and 4 MHz. Then, for each segmented DAS

image, k-means clustering was applied to separate MB and Hb axial kernels. This

process was repeated for each single-wavelength acquisition and each frame. Given

that the labelling provided by k-mean clustering is arbitrary for each instance of

classification, the f value (see Eq. (5.7)) was computed for both original labels (i.e.,

“1" = Hb and “2" = MB) and inverted labels (i.e., “1" = MB and “2" = Hb) for each

testing frame. Then, the labelling convention that provided the highest f value was

chosen as the final clustering result.

107



5.2.4.3 Acoustic-Based Clustering with Calibrated Spectra

To perform the acoustic-based clustering method reported by Cao et al. [17],

the spectra of each radio-frequency axial kernel were first calibrated to a reference

spectrum that models the characteristic frequency response of the ultrasound system.

The experiment for determining the optimal reference spectra is detailed in Section 5.8.

The generation of the log spectra was similar to that of F-mode imaging. However,

each spectrum was then calibrated over the reference spectrum and then further

normalized at 0 dB, as specified in [17]. Finally, k-means clustering was conducted

using the same labelling criteria as described in Section 5.2.4.2, and the process was

repeated for each single-wavelength acquisition and each frame. For the remainder

of this chapter, we refer to this acoustic-based clustering method as the k-means

clustering method.

5.2.5 Evaluation of Laser Wavelength and Hyperparame-
ters

Table 5-1 summarizes the range of light-emission wavelengths used for each method

as well as the corresponding hyperparameter to further improve the robustness of the

classification performance. The additive coefficient γ represents a trade off between

classification performance and reproducibility for the spectral unmixing methods, as

the condition number of matrix S ′ increases when γ increases, and the system becomes

more ill-posed. The variation of the reference spectra evaluates the consistency of the

classifications results for the k-means clustering method when considering different

materials and acquisition setups.

5.2.6 Classification Performance Metrics

MB and Hb were considered to be the positive and negative samples, respectively,

when calculating sensitivity, specificity, and accuracy metrics of classification perfor-

mance. Sensitivity or true positive rate (TPR) measures the fraction of pixels that
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Table 5-1. Wavelengths and hyperparameters evaluated

Method Wavelengths evaluated Hyperparameter
Spectral unmixing 690 - 800 nm γ
Spectral unmixing + NNMF 690 - 800 nm γ
F-mode imaging 690 - 950 nm -
k-means clustering 690 - 950 nm reference spectra
Single-wavelength atlas 690 - 950 nm -
Dual-wavelength atlas 690 - 950 nm -

were correctly classified as methylene blue:

Sensitivity = TPR = TMB

TMB + FHb

, (5.4)

where TMB and FHb are the number of true MB and false Hb pixels, respectively.

Similarly, specificity or true negative rate (TNR) measures the fraction of pixels that

are correctly classified as deoxygenated blood:

Specificity = TNR = THb

THb + FMB

, (5.5)

where THb and FMB are the number of true Hb and false MB pixels, respectively. The

combination of sensitivity and specificity is described by the accuracy metric, defined

as:

Accuracy = ACC = TMB + THb

TMB + THb + FMB + FHb

(5.6)

To determine the optimal parameter for each method, the three quantitative metrics

were considered simultaneously, using the optimization expression:

Θ̂ = max
Θ

f(Θ), f(Θ) = 1
2

(︄
TPR(Θ) + TNR(Θ)

2 + ACC(Θ)
)︄

, (5.7)

where Θ is either: (1) a single wavelength for the single-wavelength atlas method,

k-means clustering or F-mode imaging method; (2) a pair of wavelengths for the

dual-wavelength atlas method; or (3) equivalent to the additive coefficient γ for the

spectral unmixing methods, while Θ̂ is the optimal Θ.
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Given that a large number of Θ values would result in non-optimal or poor classifi-

cation performance for each method, a subset of 5 best cases for each classification

method was defined for a fair comparison, with the term “case" referring to either a

wavelength, wavelength pair, or γ. For the experiment of assessing reproducibility,

we first averaged the f values among the 10 frames for each wavelength, wavelength

pair, or γ. Then, the first 5 cases with the highest average f were selected, and the

distribution was obtained from the accuracy values of each of these cases × 10 frames

per case. For the experiment of characterizing the effects of unequal fluence emitted

from each fiber tip, we first averaged the f values among the 10 frames and among the

datasets for each wavelength, wavelength pair, or γ. Then, the first 5 cases with the

highest average f were selected, and the distribution was obtained from the accuracy

values of each of these cases × 10 frames × 3 datasets per case.

Finally, a pair-wise t-test was used to evaluate the statistical significance (p <

0.001) of the difference between MB and Hb spectra obtained from either the single-

wavelength atlas or dual-wavelength atlas method. This statistical analysis used 56,800

spectral samples of MB and 43,060 spectral samples of Hb for the wavelength pair of

710-870 nm (i.e., one of the wavelength pairs that yielded a classification accuracy of

1.00).

5.3 Results

5.3.1 Image and Segmentation Examples

The left column of Fig. 5-4 shows example LW-SLSC photoacoustic images co-

registered to a DAS ultrasound image obtained with the laser wavelength indicated

on each image. The right column of Fig. 5-4 shows the corresponding segmentation

mask, where the blue and red regions represent the ground truth labeled pixels for

MB and Hb, respectively. Fig. 5-4(d) shows example compound masks generated

by the “OR" logical operation of a range of masks obtained from 690 nm to 800 nm
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wavelengths. Fig. 5-4(h) shows example compound masks generated by the “OR"

logical operation from a mask pair obtained with 690 nm and 920 nm wavelengths.

Note that the varying areas of the LW-SLSC signals and corresponding mask sizes

for the MB and Hb regions obtained with different laser wavelength emissions are

responsible for different proportions of MB-to-Hb kernel sizes when calculating the

quantitative metrics.

Figure 5-4. Locally-weighted short-lag spatial coherence (LW-SLSC) photoacoustic images
overlaid on DAS ultrasound images of MB and Hb, obtained with a laser wavelength
emission of (a) 710 nm (c), 800 nm (e) 890 nm, and (g) 920 nm. Segmented masks for
MB and Hb after a -10 dB threshold was applied to the LW-SLSC photoacoustic images
with single-wavelength masks shown for wavelengths of (b) 710 nm and (f) 890 nm, (d)
the compound mask from “OR" logical operation on masks generated from 690 nm to
800 nm, and (h) the resulting mask from the “OR" logical operation of the 690 nm and
920 nm masks.

Fig. 5-5 shows segmentation examples of the best results among the three datasets

for each of the classification approaches after estimating the corresponding optimal

parameter, using the optimization expression f defined by Eq. (5.7). The blue and
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red regions represent correctly classified pixels of MB and Hb, respectively, while the

yellow regions represent misclassified pixels. As observed previously in Fig. 5-4, the

changes in region size among the approaches are caused by the different LW-SLSC

coherence masks that were computed for either single, pairs, or groups of wavelengths,

depending on the requirements of each classification method. When qualitatively

comparing the classified regions, the dual-wavelength atlas method showed the best

classification performance, as the majority of each MB and Hb region were labelled

correctly (i.e., no yellow regions are shown). Similar performance was observed for the

spectral unmixing and spectral unmixing + NNMF, which were generated with an

additive coefficient γ of 19.31 cm−1 and 9.10 cm−1, respectively. Conversely, F-mode

and k-means clustering could not properly detect signals from MB and Hb, respectively,

showing a sensitivity and specificity of 0.76 and 0.79, respectively. A summary of the

sensitivity, specificity, and accuracy obtained with the optimal parameter for each

method is shown in Table 5-2.

Figure 5-5. Example of segmented regions of MB and Hb using different classification
approaches. The blue and red regions represent correctly classified pixels of MB and Hb,
respectively, while the yellow regions represent misclassified pixels. Each image shows the
frame of the dataset generated with the wavelength emission that achieved the highest
accuracy.

5.3.2 Comparison of Sensitivity, Specificity, and Accuracy

Fig. 5-6 shows the combined results of sensitivity, specificity, and accuracy obtained

from Datasets 1-3, using single-wavelength atlas, dual-wavelength atlas, spectral
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Table 5-2. Best classification result achieved with each method. Bold
font indicates the maximum value in each column

Method Sensitivity Specificity Accuracy
Spectral unmixing 0.98 0.98 0.98
Spectral unmixing + NNMF 0.95 0.99 0.97
F-mode imaging 0.76 0.99 0.84
k-means clustering 0.92 0.79 0.85
Single-wavelength atlas 0.93 0.82 0.91
Dual-wavelength atlas 1.00 1.00 1.00

unmixing, F-mode, and k-means clustering methods. Spectral unmixing and spectral

unmixing + NNMF were computed with γ = 6.23 cm−1 and γ = 5.18 cm−1, respectively.

Defining an accuracy ≥0.80 as good classification, spectral unmixing and spectral

unmixing + NNMF showed a good mean accuracy of 0.85 and 0.87, respectively,

among the three datasets. Similarly, dual-wavelength atlas method showed mean

accuracy values greater than 0.85 for wavelength pairs of 690 nm and 810 nm through

840 nm and 870 nm, as shown in the green-colored middle region of the triangles

showed in Fig. 5-6. In contrast, the maximum values of mean accuracy for the

single-wavelength atlas method, F-mode imaging, and k-means clustering among the

three datasets were 0.77, 0.74, and 0.72 for wavelengths of 890 nm, 750 nm, and

880 nm, respectively. These mean accuracy values were lower than the minimum

accuracy required for good classification performance, suggesting that only the dual-

wavelength atlas method and the spectral unmixing methods showed overall consistent

classification performance.

As it is equally important to identify both MB and Hb regions, a high sensitivity

and a low specificity pair, or vice-versa, corresponds in practice to a poor classification

performance. Therefore, the totality of graphs shown in Fig. 5-6 must be analyzed

from this perspective. For some accuracy regions that are shown in blue (i.e., adequate

classification), the same regions are colored in red (i.e., poor classification) for either

the corresponding specificity or sensitivity or colored in green (i.e., good classification).
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Figure 5-6. Overall classification results with dual-wavelength atlas, single-wavelength
atlas, spectral unmixing methods, F-mode, and k-means clustering using Dataset 1, 2,
and 3. Top, middle and bottom rows show the sensitivity, specificity and accuracy of
classification, respectively. The left and right columns show the mean and standard
deviation over 10 frames, respectively. For each image, the first 2 vertical stripes counting
from the left represents the results for spectral unmixing and spectral unmixing + NNMF,
respectively, which have a single value from 690 to 800 nm wavelengths. The next 3
stripes represent the results for single-wavelength atlas, F-mode, and k-means clustering,
respectively, as a function of wavelength emission. Finally, the upper triangle represents
the results of the dual-wavelength atlas for each pair of wavelength combination.

For example, the single-wavelength atlas method showed a mean ± one standard

deviation accuracy of 0.70 ± 0.06 over the wavelength range of 710-740 nm, while

showing a sensitivity and specificity of 0.78 ± 0.08 and 0.40 ± 0.14, respectively,

over the same wavelength range. Similarly, the k-means clustering method showed a

mean ± one standard deviation sensitivity of 0.89 ± 0.11 over the wavelength range

of 860-950 nm, while showing a specificity and accuracy of 0.63 ± 0.05 and 0.67 ±

0.04, respectively, over the same wavelength range. These results further support

the importance of evaluating sensitivity, specificity, and accuracy simultaneously, as

described by Eq. (5.7), to determine the overall classification performance of each
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method. The mean ± one standard deviation for this combination of accuracy,

sensitivity, and specificity (i.e., f in Eq. (5.7)), over the same wavelength ranges

described above for the single-wavelength atlas and the k-means clustering methods

were 0.65 ± 0.06 and 0.72 ± 0.04, respectively.

Table 5-3 and Table 5-4 present summaries of quantitative metrics from the average

among wavelengths and the average among the best 5 cases fir each classification

method, respectively. The quantitative results follow the same trend as those described

for the qualitative results, where the dual-wavelength atlas method achieved the

highest sensitivity, specificity, and accuracy among the other methods. Similarly, the

method with the second highest average in the best-5-cases evaluation was the spectral

unmixing + NNMF.

Table 5-3. Mean ± standard deviation of the sensitivity, specificity, and accuracy
measured across the wavelengths investigated for each method. Bold font indicates
the maximum value in each column.

Method Sensitivity Specificity Accuracy
Spectral unmixing a 0.89 ± 0.12 0.81 ± 0.16 0.86 ± 0.13
Spectral unmixing + NNMF a 0.83 ± 0.19 0.86 ± 0.16 0.85 ± 0.09
F-mode imaging 0.63 ± 0.17 0.67 ± 0.21 0.62 ± 0.09
k-means clustering 0.70 ± 0.21 0.67 ± 0.15 0.64 ± 0.08
Single-wavelength atlas 0.64 ± 0.31 0.57 ± 0.28 0.65 ± 0.16
Dual-wavelength atlas 0.88 ± 0.23 0.87 ± 0.21 0.88 ± 0.17
a Means and standard deviations were measured across the range of γ values reported in

Section 5.2.4.1

5.3.3 Spectra Examples & Multiple Possible Dual-Wavelength
Combinations

Fig. 5-7(a) shows a representative example of spectra from the dual-wavelength atlas

method and the equivalent stacked spectra from the single-wavelength atlas method.

This display method was chosen to demonstrate the improvement in classification

performance when using the dual-wavelength atlas method. For these examples, the

testing spectra of 710 nm and 870 nm wavelengths were used, as this wavelength
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Table 5-4. Average among best 5 cases for each method.aBold font indicates
the maximum value in each column.

Method Sensitivity Specificity Accuracy
Spectral unmixing 0.91 ± 0.05 0.91 ± 0.03 0.91 ± 0.03
Spectral unmixing + NNMF 0.94 ± 0.02 0.88 ± 0.09 0.91 ± 0.05
F-mode imaging 0.63 ± 0.07 0.94 ± 0.11 0.70 ± 0.08
k-means clustering 0.85 ± 0.14 0.66 ± 0.06 0.69 ± 0.05
Single-wavelength atlas 0.64 ± 0.29 0.65 ± 0.23 0.71 ± 0.12
Dual-wavelength atlas 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
a only one best case per wavelength, wavelength pair, or γ

pair was one of eighty nine to achieve a specificity and sensitivity of 1.00 when using

the dual-wavelength atlas method. The mean and standard deviation of the spectra

were calculated from the spectra of all segmented pixels of MB and Hb data acquired

with 710 nm or 870 nm wavelength for each atlas method. Error bars show one

standard deviation of the combined results from all kernels within selected ROIs, from

10 image acquisition frames, and from the 3 datasets. The overlapping spectra with

the single-wavelength atlas method applied to either 710 nm or 870 nm wavelength

acquisitions (top of Fig. 5-7(a) ) resulted in no statistically significant differences

between the amplitude of the spectra for MB and Hb (p > 0.001), while Hb and MB

differentiation was achieved with statistical significance (p < 0.001) when using the

dual-wavelength atlas method (bottom of Fig. 5-7(a)). This example illustrates that

the enhanced differentiation achieved with the dual-wavelength atlas method can be

attributed to the ability to differentiate the two spectra.

Fig. 5-7(b) shows a comparative evaluation of sensitivity and specificity between

the atlas methods in an ROC-curve format. This display is included to support

the observation that the dual-wavelength atlas method achieves high classification

performance from a range of wavelengths combinations, whereas the other methods

achieve their highest classification performance from just a few cases, based on the

results shown in Fig. 5-6. For example, when a threshold region of 0.80 sensitivity
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Figure 5-7. (a) Examples of stacked spectra of in-phase quadrature data from MB and Hb
using (top) single-wavelength atlas method and (bottom) dual-wavelength atlas method.
The spectra show combined results obtained with 710 nm and 870 nm laser wavelength. (b)
Comparison of sensitivity and 1-specificity from single- and dual-wavelengths atlas method
using a one frame per wavelength and wavelength pair, respectively. The threshold regions
delimits cases with both sensitivity and specificity greater than 0.8, which represents a
good classification performance.

and 0.80 specificity is defined as the criterion for adequate classification, Fig. 5-7(b)

demonstrates that 241 wavelength pairs and 0 single wavelengths met this criterion

for the dual- and single-wavelength atlas methods, respectively. Therefore, the dual-

wavelength atlas method provides a flexible range of light emission wavelength pairs

such that the ideal pair can be chosen to differentiate between the same chromophores

across multiple imaging environments. This flexibility is necessary when an unwanted

chromophore produces a considerable photoacoustic response at the originally selected

wavelength pair.

5.3.4 Dataset Sensitivity

Fig. 5-8 shows the accuracy results of the spectral unmixing techniques when tested

on Datasets 1-3 while varying the additive coefficient γ in Eq 5.3. The dashed line

represents the optimal γ that achieved the highest average f(γ) value among the
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three datasets. When calculating the optimal γ1, γ2, and γ3 for Datasets 1, 2, and 3,

respectively, the absolute difference between the optimal γ and each γ1, γ2, and γ3

in the conventional spectral unmixing method was 7.01 cm−1, 21.87 cm−1, and 2.70

cm−1, respectively, resulting in a standard deviation of 12.35 cm−1. In contrast, the

difference between the optimal γ and the individual γ1, γ2, and γ3 in spectral unmixing

+ NNMF resulted in a standard deviation of 1.37 cm−1. This γ difference suggests

that the optimal γ of spectral unmixing + NNMF is less sensitive to the testing data

than that of conventional spectral unmixing. However, when evaluating the standard

deviation of the classification accuracy at the optimal γ, spectral unmixing + NNMF

produced standard deviations of 6.47%, 0.54%, and 0.34% for Datasets 1, 2, and 3,

respectively, while conventional spectral unmixing produced standard deviations of

1.93%, 0.47%, and 0.48% for Datasets 1, 2, and 3, respectively. Thus, the spectral

unmixing techniques did not demonstrate accuracy robustness across different datasets,

and this detail must be considered in tandem with the γ differences.

Figure 5-8. Classification accuracy of the spectral unmixing techniques for three testing
datasets while varying the additive coefficient γ.

Fig. 5-9(a) shows a summary of the accuracy results obtained with the spectral

unmixing, single- and- dual wavelength atlas, F-mode, and k-means clustering methods

using the full range of wavelengths and additive coefficient γ. When comparing

the distributions among Datasets 1-3, the maximum difference in median accuracy
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measured for each dataset when applying spectral unmixing, spectral unmixing +

NNMF, F-mode, k-means clustering, and the single-wavelength atlas methods was

15.8%, 21.2%, 6.7%, 4.3%, and 25.5%, respectively, while the dual wavelength atlas

method showed a maximum difference in median accuracy of 1.4%. While these results

display wide variations due to the inclusion of a wide range of wavelengths, wavelength

pairs, or additive coefficient γ, only specific values can be selected in advance and

later used in clinical practice.

Figure 5-9. Classification accuracy of each method when tested on Datasets 1-3, evaluated
with (a) the full range of wavelengths and additive coefficient γ (with each distribution
obtained from 270-3510 samples, i.e., 10 acquired frames × 27-351 wavelengths, wavelength
pairs, or γ) and (b) the best 5 cases of wavelengths and γ among the datasets (with
each distribution obtained from 50 samples, i.e., 10 frames × 5 cases). SU = Spectral
Unmixing, NNMF = Non-negative Matrix Factorization.

Therefore, Fig. 5-9(b) shows a subset of accuracy distributions obtained from the

best 5 cases among the datasets, as defined in Section 5.2.6. The dual wavelength

atlas method showed a maximum difference in median accuracy between any two

datasets of 0%, which was significantly lower than that obtained from spectral unmix-
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ing (7.8%), spectral unmixing + NNMF (9.5%), F-mode (15.6%), k-means clustering

(10.1%), and the single-wavelength atlas method (3.3%). In addition, when evaluat-

ing the dual-wavelength atlas method on Datasets 1-3, the 710-870 nm wavelength

pair was present among the 5 pairs of wavelengths with the highest accuracy, with

sensitivity, specificity, and accuracy of 1.00, 1.00, and 1.00, respectively. Therefore,

the dual-wavelength atlas method implemented with this wavelength pair shows

higher reproducibility of classification performance than spectral unmixing and other

acoustic-based methods.

5.3.5 Sensitivity Against Fluence Changes

Fig. 5-10 shows the classification accuracy of each dataset acquired with varying

fluence pairs. The best 5 cases of wavelengths and additive coefficient γ, as defined in

Section 5.2.6. For each of the five existing methods, the maximum difference between

the median accuracy values reported for any two fluence pairs (including the “Equal

Fluence" Pair) was 3.3% for spectral unmixing, 3.8% for spectral unmixing + NNMF,

18.4% for F-mode, 12.9% for k-means clustering, and 11.9% for the single-wavelength

atlas method. For the dual wavelength atlas method, the maximum difference between

the median accuracy values reported for any two fluence pairs was 0.1%, which is lower

than the values reported for the five existing methods. These results demonstrate that

the dual-wavelength atlas method is robust against changes in fluence levels when

compared to acoustic-based methods that do not apply a normalization step such as

F-mode.

5.3.6 Performance with Aberrating Media

Fig. 5-11 shows the classification accuracy from the dual-wavelength atlas method

tested on the datasets obtained with added tissue layers. The five wavelength pairs are

sorted by the median accuracy obtained in the absence of a layer (i.e., in descending

order from left to right). When comparing the results obtained in the absence of a
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Figure 5-10. Classification accuracy of each method when tested with four fluence pairs,
evaluated using the best 5 cases of wavelengths and additive coefficient γ among the
datasets. Each distribution was obtained from 150 samples (10 frames × 5 cases × 3
datasets). SU = Spectral Unmixing, NNMF = Non-negative Matrix Factorization.

tissue layer, the 2-mm tissue layer resulted in no significant change to the median

accuracy for the 780-870 nm and 780-950 nm wavelength pairs and decreased median

accuracies of 3.0%, 11.9%, and 8.0% for wavelength pairs of 690-950 nm, 690-870 nm,

and 690-780 nm, respectively. When comparing the results obtained in the absence

of a tissue layer with the 5-mm tissue layer results, the 780-870 nm and 780-950 nm

wavelength pair showed a decrease in median accuracy of 3.5% and 4.9%, respectively,

which was lower than that obtained with the remaining wavelength pairs, yielding

an average median accuracy decrease of 14.4%. Finally, when comparing the results

obtained in the absence of a tissue layer with the 7-mm tissue layer results, the

780-870 nm wavelength pair showed a decrease in median accuracy of 7.1%, which was

significantly lower than that obtained with the other wavelength pairs, yielding an

average median accuracy decrease of 22.5%. Results demonstrate that the aberrating

conditions generally reduce performance due to the presence of the fatty tissue, with

a median classification accuracy of 92.9 % for a 7-mm-thick tissue layer when using a

wavelength pair of 780-870 nm.
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Figure 5-11. Classification accuracy of the dual-wavelength atlas method when varying
the thickness of the aberrating tissue layers, evaluated with 5 different wavelength pairs.
Each distribution was obtained from 10 samples (10 frames × one wavelength pair)

5.4 Discussion

We demonstrated a novel method to accurately identify biological markers by

analyzing the acoustic frequency response from either a single-wavelength emission

(i.e., single-wavelength atlas method) or two consecutive wavelength emissions (i.e.,

dual-wavelength atlas method). Overall, the best classification accuracy obtained with

the dual-wavelength atlas approach outperforms that obtained from previous methods

with similar goals, including spectral unmixing [11, 13], F-mode imaging [18], and

k-means clustering [17].

The dual-wavelength atlas method has three additional advantages over spectral

unmixing techniques. First, the dual-wavelength atlas method does not require a

significant number of wavelengths, which is often an impediment to both real-time

capabilities and surgical implementation. With only two wavelength emissions, the

overall acquisition time is significantly reduced as well as the memory bandwidth

that is proportional to the number of acquired frames. Second, our method does not

heavily depend on a hyperparameter to enhance its classification accuracy, contrary to

both conventional and NNMF spectral unmixing techniques. In addition, as observed

in Fig. 5-8(a), there was no single γ value that ensured the highest classification
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accuracy for the three datasets using the conventional spectral unmixing technique,

which suggests that testing on a fourth dataset would not necessarily have the optimal

accuracy result when using the same γ. Third, the dual-wavelength atlas method

shows consistent classification performance against different datasets, as observed in

Fig. 5-8(b). Consequently, finding the same optimal wavelength pair for both datasets

further supports the benefit of using only two wavelengths (i.e., 710 and 870 nm) for

the identification of biological markers (i.e., MB and Hb) in future cases.

Normalization plays a key role in the single-wavelength atlas, dual-wavelength

atlas, and k-means clustering methods because it prevents the use of amplitude

as a distinguishing feature for classification. This is particularly important when

characterizing structures located at different distances from the light source. By

normalizing the spectrum from a single wave, both single-wavelength atlas and k-

means clustering algorithms rely purely on the acoustic frequency content for tissue

differentiation, which is often challenged by the limited frequency content obtained

with a limited-bandwidth ultrasound transducer. In contrast, the dual-wavelength

atlas method normalizes a pair of spectra, removing the amplitude dependency between

two different regions but at the same time preserving the relative amplitude difference

of two different light emission responses from the same region. In clinical practice,

we envision dual excitation wavelengths illuminating the region of interest with a

fast-switching laser source that quickly alternates between wavelengths, providing real-

time labeling of photoacoustic-sensitive regions with comparable performance to that

achieved with more conventional spectral unmixing techniques. The proposed method

could be beneficial for a range of emerging photoacoustic imaging approaches oriented

to surgeries and interventions [25, 26], such as hysterectomies [27–29], neurosurgeries

[30–33], spinal fusion surgeries [34–36], as well as identification and distinction of

metallic tool tips [28, 37], cardiac catheter tips [20], and needle tips [38] from other

surrounding structures of interest.
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Although the average accuracy values from the dual-wavelength atlas method shown

in Table 5-3 are low (i.e., 0.88) in comparison to the best case of accuracy (i.e., 1.00),

this occurs because we included the classification results from the 351 wavelength

pairs combinations used in this study in the reported average. As observed in Fig. 5-6,

several wavelength pairs yielded classification accuracy values <0.65, which lowers

the overall accuracy. A similar decrease was observed for the single-wavelength atlas,

F-mode, and k-means clustering methods, as each method similarly used a range of

wavelengths with most wavelengths producing poor classification results. However, in

practice, only a reduced set of wavelength pairs would be used for the differentiation of

MB and Hb with the dual-wavelength atlas method. Therefore, Table 5-4 represents a

more realistic average from a reduced set of wavelength pairs for the dual-wavelength

atlas method, and a reduced set of single wavelengths and hyper parameters for the

other classification methods.

One limitation of the atlas approach is the availability of the sample material

for generating a significant number of spectra in the training set. While most of

the targeted materials for classification are either biological fluids or contrast agents,

a non-fluid biological landmark (e.g., bone) would require a new setup to couple

the tissue to the background PVCP without using additional photoacoustic-sensitive

materials. In addition, the optical and acoustic properties of the biological materials

contained in the PVCP chambers must be similar to the expected in vivo properties

in order to maximize success. With consideration that the acoustic response from

in vivo and ex vivo Hb may differ due to expected degradation of ex vivo blood,

the datasets described throughout this chapter represented Hb in different states

of degradation, and the dual-wavelength atlas method showed no significant change

in the classification accuracy under these degradation conditions. We additionally

demonstrated the robustness of the dual-wavelength atlas method against distortions

of the acoustic response due to aberrating media. Future work will explore the impact

124



of additional confounding factors when characterizing biological tissues (e.g., decrease

in blood oxygenation [39], deterioration of the lipid-rich myelin sheath of nerves [40])

on the classification performance of the dual-wavelength atlas method.

Additional future work includes improvements to the dual-wavelength atlas method

for real-time identification of tissues, through the utilization of common parallelization

and optimization strategies. The currently sequential comparison of measurements

with atlas spectra can potentially be addressed with at least one of three possible

strategies. First, graphical processing units (GPUs) may be employed for concurrent

comparisons of a test spectrum with several training spectra. The feasibility of GPU-

based NN classification has been widely studied and demonstrated in the literature [41–

45]. Second, atlas factors that affect the computation time may be carefully adjusted

(e.g., increase the coherence threshold of the LW-SLSC mask or reduce the number

of acquired frames per wavelength emission) without compromising classification

performance. Increasing the coherence threshold would produce smaller masks and

thus, less pixels to evaluate for classification. Once a new coherence threshold is defined,

the number of frames needed for classification can then be empirically determined

by maximizing the combined sensitivity, specificity, and accuracy using Eq. (5.7).

Third, rather than evaluating the photoacoustic spectra with an extensive look-up

table (i.e., spectral atlas), the classification time can be reduced by implementing an

artificial neural network (ANN) to learn and match features of the acoustic spectra

(i.e., bypassing PCA feature extraction), which has been successfully implemented in

previous studies [46, 47].

The proposed framework could be extended to multinomial classification (i.e., more

than 2 tissues to classify), which is often necessary during in vivo interventions as

photoacoustic signals originating from the surrounding tissue cannot be neglected. In

contrast to binomial classification, multinomial classification would benefit from more

robust feature extraction methods such as linear discriminant analysis (LDA) [48, 49]
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or more robust classifiers such as sparse representation-based classifiers (SRC) [50, 51].

While the increase in the algorithm complexity can be addressed with the strategies

discussed in the preceding paragraph, an alternative solution is to include a clustering

criteria within the NN classification. Specifically, for trinomial classification where

one of the regions would be labelled as a third component that does not exist in the

atlas (e.g., background noise). Then, the acoustic spectra from this region can be

identified when the error of the closest match surpasses a specific threshold, indicating

the presence of a third component. Alternatively, NN-k or fuzzy C-means classification

[52] may be employed to characterize the degree of belonging in regions where two

materials are combined, with the potential benefit of assessing the percentage of a

specific material within a region of interest.

5.5 Conclusions

We developed a novel acoustic-based photoacoustic classifier that relies on training

sets to identify photoacoustic-sensitive materials. The proposed method is robust

against changes in fluence levels and showed comparable sensitivity, specificity, and

accuracy performance to those obtained with conventional and enhanced spectral

unmixing methods. In clinical practice, we envision dual excitation wavelengths

illuminating the region of interest with a fast-tuning laser source, providing real-time

labeling of photoacoustic-sensitive regions with a GPU-based parallelized algorithm

version or deep neural network architectures. Results from the presented experiments

are promising for the identification of biological or bio-compatible markers (e.g.,

blood and contrast agents) during surgical interventions. By using the normalized

photoacoustic response from two wavelength iterations, surgeons can localize structures

of interest and surgical tools while avoiding other structures that are in close proximity

to the targeted operating region.
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5.7 Appendix: Parameter Optimization for Pho-
toacoustic Spectral Analysis

To maximize the sensitivity, specificity, and accuracy of our approach (see Sec-

tion 5.2.6 for metric definitions), the parameters for in-phase quadrature demodulation,

PCA, and NN were first optimized through an iterative search. These parameters were

the modulation frequency, filtered bandwidth, axial kernel size, number of principal

components to use, and the k nearest neighbors used to determine the most common

class in k-NN clustering. Each parameter was changed one at a time, and this search

was repeated each time the parameter was changed. During each analysis, the optimal

parameter found from the previous step was saved and used to find the new output

until the optimal set of parameters were found. For the IQ-modulation, different

combinations of bandwidth of 80-240% in intervals of 20% were tested with the modu-

lation frequency which ranged from 2 MHz to 12 MHz in intervals of 2 MHz. Similarly,

the axial kernel size was explored from 11 to 51 axial samples in increments of 2. For

the PCA, the principal components were changed from 10 to 200 in steps of 10 and

then from 1-10 in steps of 1. Finally, the NN classifier was analyzed by changing the

classifier to 2-NN through 10-NN in increments of 1. The initial parameters were

obtained from a previous publication in our group [23]. The optimization process was

conducted on datasets obtained with laser wavelengths ranging from 690 nm to 950

nm in 10 nm increments.
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Fig. 5-12 shows two known criteria to determine the optimal number of principal

components used in the dual-wavelength atlas method. Each scatter point and error

bar represents the mean and one standard deviation, respectively, of eigenvalues

(left plot) and explained variance (right plot) from the 351 wavelength pairs (see

Section 5.2.3) at a specific principal component. For the Kaiser rule [53], only the

first principal component shows a distribution with values greater than 1.00, while

the second principal component shows a mean eigenvalue less than 1.00. Similarly,

the commonly accepted 80%-explained-variance threshold filter the first and second

principal component when considering the mean value. However, when considering the

standard deviation, the second principal component surpasses the variance threshold.

Therefore, only the first principal component was used for the feature extraction in

the dual-wavelength atlas method.

Fig. 5-13 shows the mean accuracy of classification results for the dual-wavelength

atlas method before (left) and after (right) parameter optimization. The top right half

of each image represents a triangle with each pixel displaying the average accuracy of

classifying methylene blue and blood for a specific wavelength pair over 10 frames. The

new parameter set consisted of a modulation frequency of 2 MHz, bandwidth of 140%,

30 axial samples, 1 principal component, and 1-NN. For each triangle, we define the

“low-wavelength region" as wavelength pairs <800 nm, the “high-wavelength region" as

Figure 5-12. Criteria for determining the optimal number of principal components for the
dual-wavelength atlas method using the (left) Kaiser rule [53] and (right) a 80% variance
threshold.
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Figure 5-13. Mean accuracy classification results of the dual-wavelength atlas method
per wavelength pair with a dataset of 10 frames per wavelength using the initial parameters
of Gonzalez et al. [23] and the updated parameters.

wavelength pairs >850 nm, and the “mid-wavelength region” as wavelengths that do

not belong to either the low- or high-wavelength regions. For wavelength pairs located

in the mid-wavelength region, the mean accuracy increased from 85.45% to 95.67%.

In contrast, for wavelength pairs that located in either the low- or high-wavelength

region, the mean accuracy decreased from 74.67% to 67.40%. In clinical practice, we

envision the use of a reduced set of wavelength pairs, choosing those that maximize

the sensitivity, specificity and accuracy (i.e., mostly occurring in the mid-wavelength

region) and otherwise omitting wavelength pairs that result in poor classification

performance.

Fig. 5-14 shows a summary of sensitivity, specificity, and accuracy among the 351

wavelength pairs before and after parameter optimization. The mean ± one standard

deviation of sensitivity showed no significant change from 91.6 ± 16.8% to 90.9 ±

Figure 5-14. Summary of sensitivity, specificity, and accuracy results of the dual-
wavelength atlas method before and after parameter optimization.
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Figure 5-15. Setup for reference spectra acquisition. A and B represent the imaging
depths of 5 and 9 cm for aluminum, respectively. C and D represent the imaging depths
of 5 and 9 cm for steel, respectively.

14.8%. However, an increase in specificity was observed from 70.7 ± 16.9% to 81.7 ±

20.9%, which in turn resulted in an overall increase of specificity from 81.5 ± 10.4%

to 85.9 ± 17.1%. Because blood was considered as negative samples for the specificity

metric, the results suggest that the optimized version of the dual-wavelength atlas

method can identify blood with more accuracy than with the initial parameter set

used in Gonzalez et al. [23].

Figure 5-16. Mean classification accuracy of k-means clustering with different reference
spectra. The box plots represent the group of frames evaluated with laser wavelength that
achieved the overall best accuracy among reference spectra (i.e., 840 nm). The three
letter codes on the abscissa represent the material of the reference (i.e., A = Aluminum or
S = Steel), followed by the orientation of the material relative to the ultrasound transducer
(i.e., O = Orthogonal or T= Tilted), followed by the imaging depth of 5 cm or 9 cm (i.e.,
T = Top or B = Bottom, respectively).
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5.8 Appendix: Selection of Reference Spectra for
K-means Clustering

Fig. 5-15 illustrates the ultrasound acquisition setup used to evaluate the perfor-

mance variability of the method proposed by Cao et al. [17]. In particular, eight

ultrasound reference spectra were acquired from two materials: (1) an aluminium plate

and (2) a carbon-steel plate. These two materials contain relatively flat, reflective

surfaces, which make them ideal for use as reference spectra [54]. These two materials

also have acoustic properties that produce different pulse-echo responses [55, 56],

which affects the normalization process applied to the acquired spectra and results in

different classification accuracies.

Acquisitions were obtained after independently placing each material at axial depths

of 5 cm or 9 cm from the L3-8 ultrasound transducer, tilted 45◦ or 0◦ relative to the

elevation-lateral plane of the transducer. Each reference spectra was calculated by

averaging the fast Fourier transform of scan lines across the lateral dimension. Then,

a comparison of the accuracy results was conducted only for the subsets obtained from

the optimal laser wavelength Θ, defined by Eq. (5.7) in the chapter. The reference

spectra that produced the highest median classification accuracy was selected for

comparison of the method by Cao et al. [17] with other methods reported throughout

the chapter.

Fig. 5-16 shows the classification accuracy achieved after performing the k-means

clustering step of the method of proposed by Cao et al. [17], obtained with a laser

wavelength of 890 nm (which was the optimal parameter Θ̂ defined by Eq. (5.7) in

the chapter) when using the reference spectra described above. The reference spectra

reported for the k-means clustering method in Fig. 6 of the chapter was obtained from

the tilted aluminum reference with an imaging depth of 9 cm (i.e, ATB in Fig. 5-16).

This reference was chosen because it produced the greatest classification accuracy (i.e.,
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84.0%).
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Chapter 6

Estimating Fractional Chromophore
Contents during Surgical
Interventions

The work presented in this chapter was published in the following manuscript:

E. A. Gonzalez and M. A. L. Bell, “Dual-wavelength photoacoustic atlas method to

estimate fractional methylene blue and hemoglobin contents,” Journal of Biomedical

Optics, vol. 27, no. 9, p. 096 002, 2022

6.1 Introduction

Exogenous chromophores [2, 3] play a critical role in photoacoustic drug delivery [4,

5], overcoming imaging challenges associated with visualizing low signal amplitudes,

small vasculature targets, and deep structures that suffer from optical and acoustic

attenuation. Over the past 20 years, exogenous chromophores have been administered

to increase signal contrast with beneficial applications in angiogenesis for cancer

monitoring [6, 7], enhanced photoacoustic angiography [8], lymph node tracers in

breast cancer [9, 10], deep imaging [11], lymphatic drainage [12], and brain imaging

[13]. Possible contrast agent chromophores include gold nanostructures [6, 14, 15],

carbon nanotubes [16], fluorescent proteins [12, 17, 18], methylene blue (MB) [19, 20],

and indocyanine green (ICG) [8, 21, 22] dyes.
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Depending on the dose, exposure time, and number of target cells, adverse effects

due to misuse of contrast agents include acute inflammation [23], apoptosis [23, 24],

necrosis [15], cellular toxicity [25], allergies [26], reduction in cellular viability [27],

nephropathy [28], hemolysis [29], and photodamage [30]. In addition, maximum

absorption and clearance times (i.e., the time for the drug to completely leave the

system) range from 5 minutes to 24 hours among the drug delivery approaches

reported in the literature [21, 31–33], requiring different dose, delivery, and monitoring

protocols.

Currently, most approaches to measuring the concentration levels of chromophores

rely on the acquisition of photoacoustic responses from multiple laser wavelength

emissions paired with spectral unmixing methods [34–41]. However, as real-time

implementations are necessary for monitoring chromophores of short clearance time in

applications like photoacoustic-guided surgery [42–45], traditional techniques are typi-

cally not feasible because of the lengthy acquisition times associated with transmitting

multiple laser wavelengths to achieve a single estimate[46]. In addition, traditional

spectral unmixing techniques do not typically consider differences in acoustic spec-

tra, which has the potential to provide additional information for differentiation of

exogenous and endogenous chromophores.

We previously proposed an acoustic frequency-based method to discriminate pho-

toacoustic responses from different materials and overcome challenges with traditional

spectral unmixing techniques [47]. By measuring the photoacoustic response from only

two laser wavelengths, the initial version of our dual-wavelength atlas method achieved

comparable sensitivity, specificity, and accuracy to traditional spectral unmixing meth-

ods [48, 49] and related classifiers [50, 51]. Based on the linear relationship between

contrast agent concentration and photoacoustic amplitude [52–54], we hypothesize

that our method can be extended to locally characterize the volumetric ratio between

two photoacoustic-sensitive materials. Specifically, we focus on the exogenous chro-
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mophore MB and the endogenous chromophore hemoglobin (Hb), motivated by the

potential for photoacoustic-based catheter interventions performed with an optical

fiber housed within a cardiac catheter inserted through a major vein [55]. MB would

be administered through the catheter and eventually mix with Hb to enhance the

visualization of target structures in vascular pathologies (e.g., atherosclerositic plaques

[56], thrombi [57], tumor neovasculatures [58, 59], endothelia [60]), and the local

concentration of MB vs. Hb would be monitored with our proposed method with

either external [55] or intravascular [61] ultrasound sensor placement. This monitoring

will enable real-time interventions to avoid adverse effects produced by the unnecessary

accumulation of MB [62–65]. In addition, the MB used in the present study serves

as a surrogate for other potential intravascular contrast agents that would similarly

benefit from local concentration monitoring to prevent cell toxicity [25, 61].

The remainder of this paper is organized as follows. Section 6.2 details the phantom

experimental setup, a novel dual-wavelength atlas method to estimate MB and Hb

concentrations, and quantitative metrics for performance evaluation. Section 6.3

presents the quantitative evaluation of mixture estimation performance, as well as

evaluation of linear and monotonic trends of estimated concentration versus ground-

truth labels, including an assessment of appropriate region sizes to perform the

proposed estimation. Section 6.4 discusses insights from these results, and Section 6.5

summarizes the clinical impact of the proposed methods.

6.2 Method

6.2.1 Experimental setup

A polyvinyl chloride-plastisol (PVCP) phantom was fabricated with hollow cham-

bers, each with a diameter of 15 mm and a depth of 55 mm. To minimize the

variability of ultrasound scattering among chambers due to different air bubble dis-

tributions, a single chamber was filled with either a 100 µM aqueous solution of MB
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from Fisher Scientific (Waltham, MA), blood (Hb), or a combination of MB and Hb.

A 1-mm-diameter optical fiber was inserted in the filled chamber, and the fiber tip

was positioned approximately 20 mm below the top surface. The optical fiber was

connected to a Phocus Mobile laser (Opotek Inc., Carlsbad, CA, USA), transmitting

laser light with wavelengths of 710 nm and 870 nm and with a laser energy of 3 mJ.

The resulting photoacoustic signals were received by an Alpinion L3-8 linear array

ultrasound probe (Alpinion Medical Systems, Seoul, South Korea) positioned on the

lateral wall of the phantom, approximately 20 mm from the hollow chamber cross

section. This experimental setup, which is shown in Fig. 6-1(a), has been described in

previous publications [47, 66].

Two types of Hb samples were used in this study. First, 23 vials of fresh human

Hb were obtained up to two days after blood draw and storage, mixed in a single

container, and exposed to air for approximately 1 hour to minimize the variability

of Hb oxygenation levels. Second, experimental whole porcine blood (Innovative

Research, Novi, MI) was used on the fourth day of its reported 24-day lifetime.

A total of 11 concentration levels were prepared using different 2 mL mixtures of

Hb and MB. These concentrations ranged from 0% to 100% in 10% increments of MB

volume percentage. For example, for the 2 mL MB-Hb mixture, a concentration of 60%

MB consisted of 1.2 mL of 100 µM MB and 0.8 mL of Hb. Each concentration mixture

was manually stirred with a syringe in a separate container. Unless otherwise stated,

the % concentrations reported in this manuscript refer to the % MB concentration.

Five trials were conducted for each concentration level by fixing the light-delivering

optical fiber at 0◦, with 20 photoacoustic frames (10 per wavelength) acquired per

trial using a frame rate of 5 Hz. Note that two blocks of 64-channel aperture data

were required to obtain an image created from 128 receive elements, which reduced the

possible frame rate from 10 Hz (based on the 10 Hz laser pulse repetition frequency)

to 5 Hz.
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Figure 6-1. (a) Experimental setup and (b) framework of the dual-wavelength atlas
method for mixture estimation of methylene blue (MB) and Hb (Hb)

6.2.2 Dual-wavelength atlas method for mixture estimation

The framework for mixture estimation is illustrated in Fig. 6-1(b), based on the

dual-wavelength atlas method previously proposed for the identification of individual

chromophores [47]. With this setup, frequency domain information is expected to be

useful because the optical fiber is placed inside the PVCP chamber, thus generating

fluence maps that diminish radially from the tip of the optical fiber. This fluence

distribution generates unequal acoustic frequency response, as volume regions of

different sizes are being excited. Thus, the proposed algorithm is anticipated to

leverage frequency domain information to differentiate photoacoustic responses from

various concentrations of chromophores.

To implement the proposed approach, conventional delay-and-sum (DAS) beam-

forming was first employed to create photoacoustic images for each wavelength emission,

concentration, and trial. In contrast to preceding work [67], we used M-Weighted

short-lag spatial coherence (SLSC)[68] with a cumulative lag M = 20 instead of con-

ventional SLSC with M = 5 to generate the binary masks that segmented signals of

interest and provided ground-truth labels. This specific M-Weighted SLSC cumulative

lag value (i.e., M = 20) was chosen based on the comparison of SLSC[69] images with

142



M-weighted SLSC. First, a representative SLSC[69] photoacoustic image from the

blood dataset was generated with M = 5. The same photoacoustic frame was then

processed with M-weighted SLSC with M values ranging from 10 to 30. Binary masks

generated with a -3 dB threshold were then created for each image, and the similarity

was defined with the Dice coefficient [70]:

Dice Coefficient = 2∑︁AND(MaskSLSC, MaskM-Weighted SLSC)∑︁MaskSLSC +∑︁MaskM-Weighted SLSC
× 100%, (6.1)

where AND is the logical "AND" operator between the binary masks. This process was

then repeated for one trial of the humman Hb dataset, containing 11 concentrations,

2 wavelengths, and 10 frames. The Dice coefficients calculated between SLSC and

M-Weighted SLSC masks were then plotted as a function of M , resulting in M =

20 yielding the highest mean similarity to the SLSC masks with the least standard

deviation.

The modification from SLSC in our preceding work [67] to M-Weighted SLSC in

this work was implemented to increase the influence of lower lags over higher lags,

thus creating less disjointed binary masks. A single binary mask was obtained per

trial, resulting from the logical inclusive “OR" operation of 20 masks (obtained from

10 frames per two laser wavelengths).

As noted in Fig. 6-1(b) and in our previous work[67], for each image, only those

pixels included in the coherence masks were used for feature extraction, training,

and classification. In-phase and quadrature (IQ) demodulation was implemented

with 2.75 MHz and 85% bandwidth, and the resulting analytic spectra from a sliding

window of axial kernels was stacked along the frequency axis. For the last step of

feature extraction, principal component analysis (PCA) was applied to the power of

the stacked spectra in order to reduce the complexity of the feature space.

The training dataset consisted of a random trial of 0% MB (i.e., 100% Hb) and

100% MB, and the remaining trials and concentration levels were included in the
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testing datasets. After the dual-wavelength atlas was constructed (i.e., PCAMB and

PCAHb in Fig. 6-1(b)), a mixture estimation algorithm was designed to obtain the

concentration level of MB from a testing sample. First, N = 1, 000 samples were

randomly selected from the MB and Hb atlas. Then, assuming that mixtures are

linear combinations of pure MB and Hb concentrations, a concentration distribution

C ′ ∈ RN×1 was obtained using the following equation:

C ′
x = 1

2 + ||PCAx − PCAHb||1 − ||PCAx − PCAMB||1
2||PCAHb − PCAMB||1

, 0 ≤ C ′ ≤ 1 (6.2)

where PCAx is the projected spectra of x% testing concentration, ||.||1 is the Manhattan

norm, and each PCA matrix is of size RN×p with p principal components. A histogram

filter was then applied to the C ′ vector, where the bin with the highest number of

individuals out of 10 bins was extracted. The mean value C ′′ was computed from the

reduced C ′ vector, and the process was repeated for each valid pixel and frame of the

trial. Finally, a median filter was applied to the concentration maps with a kernel of

0.64 × 0.70 mm × 30 in the axial, lateral, and frame dimensions, respectively. The

0.64 mm axial kernel length was selected to reside within the frequency response of

received photoacoustic signals, which ranged 2.00 MHz to 2.75 MHz, corresponding

to wavelengths ranging 0.77 mm to 0.56 mm, respectively. As the lateral and axial

resolution of an image differs, the lateral kernel width (i.e., 0.70 mm) was chosen to

be the closest possible match to the axial kernel length. The frame dimension of the

kernel reduced the concentration tensor from C ′′ ∈ RNi×Nj×Nf to C ∈ RNi×Nj , where

Ni and Nj are the number of rows and columns, respectively, of the reconstructed

photoacoustic image.

Because Eq (6.2) is applied on frequency data, the three most influential parameters

of the dual-wavelength atlas method for the estimation of C are the axial kernel size,

threshold of spectral log compression, and number of principal components. An
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increase in axial kernel size improves the accuracy of the estimation of spectral

amplitudes in the Fourier space. The threshold of spectral log compression adds a

tolerance to the discrimination between spectral peaks, which affects the variance that

is computed in the PCA. The number of principal components controls the amount of

information that is reduced to the feature space.

To provide complementary information regarding the location of photoacoustic

targets in the imaging plane, the displayed concentration maps were overlayed with

an ultrasound image of the plastisol chamber processed with locally-weighted SLSC

(LW-SLSC) [71], using a regularization factor α = 1 and a 1.25 mm × 1.2 mm kernel.

The LW-SLSC parameters were obtained from our previous optimization study [67].

A factor of α=1 corresponded to an equal weight between cost and penalty function

for calculating the optimal coefficients in LW-SLSC. An axial kernel size of 1.25

corresponded to approximately 4.5λ where λ is the wavelength associated with the

center frequency of the L3-8 ultrasound probe.

6.2.3 Quantitative metrics

To evaluate the overall accuracy of the dual-wavelength atlas method for mixture

estimation, the estimated concentration levels C were first ordered as a function of

the ground-truth labels k. The function f1 : C(k) was then compared to f2 : C = k,

representing a 1:1 relationship between estimated and true concentrations. Finally,

the coefficient of determination R2 was used to quantify the performance of the

dual-wavelength atlas method:

R2 = 1 −
∑︁

k

∑︁
i Cki − k∑︁

k

∑︁
i Cki − C̄

(6.3)

where Cki is the estimated concentration of measurement i for a ground-truth concen-

tration k and C̄ is the mean estimated concentration. In addition, the R2 metric was

used to assess the linearity of the photoacoustic spectra obtained from mixtures of
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MB and Hb by implementing linear regression of spectral amplitudes as a function of

the ground-truth concentrations.

Similarly, monotonicity was evaluated in two cases: (1) between photoacoustic

spectral amplitudes of a specific frequency and ground-truth concentrations and (2)

between estimated and ground-truth concentrations. The monotonic trend of these

data pairs were quantified with the Spearman’s rank correlation coefficient ρ, described

in the following equation [72]:

ρ = cov(R(X), R(Y ))
σR(X)σR(Y )

(6.4)

where R(X) and R(Y ) are the rank variables of the measurements X and Y, respectively,

X is either the spectral amplitudes or estimated concentrations, Y is the ground-truth

concentration, cov represents covariance, and σ is the standard deviation of the rank

variables. Spearman’s ρ of values 1.0 and -1.0 represent perfect monotonic trends

between measurements X and Y that are increasing and decreasing, respectively. Note

that the Spearman’s ρ measures the level of monotonicity, rather than determining

whether or not an evaluated function is monotonic. In this study, we characterize

|ρ| ≥ 0.8 as a strong monotonic trend.

The mean absolute error (MAE) was used to assess the accuracy of the generated

concentration maps:

MAEk =
∑︁Nk

i=1 |Cki − k|
Nk

(6.5)

where Cki is the estimated concentration of pixel i for a ground-truth concentration k,

and Nk is the total number of pixels of the concentration map k.

Finally, processing times were computed for the each stage of the dual-wavelength

atlas method applied on the human Hb dataset. These stages were: (1) generation of

coherence masks, (2) generation of acoustic spectra and spectra stacking, (3) PCA,

and (4) estimation of MB concentrations, where the last stage included projection to

146



the feature space using the principal component coefficient obtained from the atlas.

These processing times were evaluated individually when training our method (i.e.,

constructing the atlas) and testing our method on a single frame (i.e., estimating a

concentration map). The processing times for Stages (3) and (4) were only calculated

for training and testing, respectively. For training, robustness in the estimation of

computation times was achieved by averaging the processing times from 5 different

trials of 0% concentration. Similarly, robustness in the estimation of computation times

for testing was achieved by averaging the processing times from every frame of the

testing dataset detailed in Section 6.2.2. Computation times were measured using the

MATLAB (Natick, MA) environment executed on an Intel Core i5-6600K processor

with 32 GB RAM and a TITAN Xp graphical processing unit (GPU). To enhance the

computation speed of Stage (1) for all results reported in this manuscript, M-weighted

SLSC was implemented on the GPU described above, following the architecture of

preceding work [69]. In addition, this GPU-M-Weighted SLSC approach and the

previously-reported GPU-SLSC approach[69] were both implemented to obtain results

for Equation 6.1 in Section 6.2.2.

6.3 Results

6.3.1 Concentration Estimations from MB and Human Hb

Fig. 6-2 shows the results from the photoacoustic spectra obtained with mixtures

of MB and human Hb. Stacked photoacoustic spectra are shown in Fig. 6-2(a) with

the y axis denoting mixture concentration and the x axis denoting acoustic frequency

for optical wavelengths 710 nm (left) and 870 nm (right). Each concentration block

separated by the dashed white lines in Fig. 6-2(a) shows 20,000 spectra samples that

were randomly selected from the total number of training trials, frames, and kernels.

Although a subtle frequency shift is observed in the spectra obtained with the 710 nm

wavelength when increasing the MB concentration level, the spectral shift across the
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mixture for the 710-nm response was not strongly monotonic (ρ = -0.63). Similarly, no

apparent spectral shift was observed for the 870-nm response (ρ = -0.27). One possible

cause of the frequency shift in the spectra obtained with the 710 nm wavelength is the

photoacoustic interaction with residual particles of MB in the PVCP chamber. These

particles were unable to be removed as they stained the chamber walls and they likely

added frequency components to the overall spectral response of different chromophore

concentrations.

Fig. 6-2(b) displays the linearity and monotonicity evaluation results as a function

of the acoustic frequency for multiple image dynamic ranges. The y axes denote the ρ

(left) and R2 (right) for and linearity and monotonicity evaluations, respectively. The

x axis of each plot is divided into acoustic frequencies for optical wavelengths of 710

Figure 6-2. Evaluation of monotonicity and linearity of photoacoustic spectra obtained
from mixtures of MB and Hb. (a) Stacked photoacoustic spectra of several mixture
concentration (y axis) when using 710 nm and 870 nm laser wavelength (x axis). Each
spectrum is normalized and log compressed to a 60 dB dynamic range. (b) Spearman’s ρ
coefficient and R2 values of linear regression of concentration levels vs. acoustic frequency
while varying the log compression dynamic range of the acoustic spectra. (c) Example of
an acoustic frequency whose spectral amplitude of concentration levels follow a monotonic
trend (ρ = -0.88) and a linear trend (R2 = 0.76).
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nm (left) and 870 nm (right). In the acoustic frequency range 0.5-5 MHz for 870 nm

wavelength, as the dynamic range decreases from 40 dB to 10 dB, the mean ± one

standard deviation of improvements in Spearman’s ρ and R2 were -0.47 ± 0.15 and

0.45 ± 0.14, respectively. For dynamic ranges greater than 40 dB, the results primarily

overlap, and there is less improvement. This overlap likely occurs because the log

compression reaches the resolution limit of the acquired photoacoustic amplitudes.

However, for 710 nm wavelength, only the acoustic frequency range from 2.4-5 MHz

shows ρ and R2 changes when varying the log compression from 10 to 40 dB. In

the acoustic frequency range 0.5-2.4 MHz, results primarily overlap regardless of the

chosen dynamic range. This overlap likely occurs because of the strong spectral peak

observed from 1.5 MHz to 2.5 MHz for nearly every MB concentration in Fig. 6-2(a)

(i.e., the spectral shift pattern described in the preceding paragraph). This strong

spectral peak is robust against log compression, which generates minimal changes to

the Spearman’s ρ and variation of to the R2.

Focusing on the R2 results, multiple strong linear trends were observed when results

were obtained with 870 nm laser wavelength, yielding a mean ± one standard deviation

R2 of 0.74 ± 0.14 for frequencies ranging from 0.5 to 5 MHz and thresholds from 10 to

100 dB. In contrast, no strong linearity was observed for the 710-nm region, yielding

an R2 = 0.32 ± 0.21 for the same range of frequencies and thresholds as the 870-nm

region. The strong spectral peak observed in Fig. 6-2 at 710 nm wavelength yielded

a maximum R2 of 0.55 with a dynamic range of 10 dB, while the maximum peak

observed in 870 nm was 0.81 with a dynamic range of 50 dB. These results suggest

that Hb has a stronger influence on the linear relationship of acoustic frequency vs.

concentration compared to MB.

Fig. 6-2(c) shows the linear fit for the acoustic frequency of 2.3 MHz and the

dynamic range of 60 dB (i.e., parameters that produced the maximum R2 in Fig. 6-

2(b)). The y axis denotes the log-compressed spectral amplitudes, and the x axis
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Figure 6-3. Performance optimization of the dual-wavelength atlas algorithm using the
human Hb dataset. (a) R2 values as a function of axial kernel size (z axis), threshold for
spectra log compression (x axis), and number of principal components used (y axis). (b)
Examples of mixture estimations (y axis) vs ground truth concentrations (x axis) when
using the parameter set that yielded the highest R2 value (i.e., 0.80), represented by dotted
square in (a)

denotes the ground-truth concentrations. For each violin plot, the shape, horizontal

line, white circle, and gray box represent the kernel density estimate of the data points,

mean, median, and interquartile range, respectively. R2=0.78 , suggesting a strong

linearity and monotonicity between the spectral amplitudes of photoacoustic signals

and ground-truth concentrations.The Spearman’s ρ was 0.89, which indicates that

there is a high level of monotonicity.

Fig. 6-3 shows the optimization of the dual-wavelength atlas method using the

human Hb dataset by maximizing the R2 fit of a 1:1 slope of estimated vs. ground-true

concentrations. The variation of R2 values as a function the three most influential

parameter of the dual-wavelength atlas method is shown in Fig. 6-3(a). The z

axis denotes the axial kernel size, and the orthogonal axes denotes the number of

principal components used and threshold for spectra log compression, respectively.

Although increasing the axial kernel size improved the accuracy of the spectral

amplitude generated with fast Fourier transforms, no clear improvement was observed

when measuring the overall R2 values. Similarly, parameter sets using two principal
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components yielded R2 ≥ 0.7, suggesting a good estimation performance when using

more than one principal component. However, no improvement was observed for

PC≥ 3. Finally, increasing the threshold from 20 dB to 60 dB improved the R2 values

when other parameters remained fixed, and no additional improvement was observed

for dynamic range thresholds ≥ 60 dB.

Fig. 6-3(b) shows an example of concentration estimation vs. ground-truth con-

centration when using the optimal set of parameters that yielded the greatest R2

value, denoted by the dashed black box in Fig. 6-3(a). For this optimized estimation

result, the R2 value and Spearman’s ρ was 0.80 and 0.89, respectively, indicating a

high degree of linearity and monotonicity, respectively.

6.3.2 Concentration Estimations from MB and Porcine Hb

Fig. 6-4 shows the estimated concentrations when using porcine Hb. The sensitivity

of estimated R2 values while varying two parameters of the dual-wavelength atlas

method is shown in Fig. 6-4(a) with the y-axis denoting the threshold for spectra

log compression and the x-axis denoting the number of principal components used.

These R2 values were computed by fixing the axial kernel size to 1.8 mm (i.e., optimal

Figure 6-4. Estimated concentrations from porcine Hb. (a) R2 value of a 1:1 linear fit
between estimated and true concentration levels while varying the threshold for spectra
log compression (y axis) and number of principal components used (x axis). (b) Mixture
estimation (y axis) vs ground truth concentration (x axis) when using a 40 dB threshold
and 1 principal component.
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parameter obtained in Fig. 6-3(a)). Overall, the effect of varying the number of

principal components and the dB threshold implemented prior to the estimating R2

values showed similar trends to those observed in Fig. 6-3(a) (i.e., decreasing estimation

performance with increasing the number of principal components). However, the

optimal set of parameters included a threshold of 40 dB instead of the 60 dB threshold

obtained in the experiment using human Hb (i.e., Fig. 6-3(a)), with R2=0.86 and

ρ=0.93.

Fig. 6-4(b) shows detailed estimation results when using the optimal set of parame-

ters from Fig. 6-4(a). The overall performance of the dual-wavelength atlas method

when using the porcine Hb was measured by computing the MAE between the vector

constructed with the mean of each violin plot and the ground-truth labels, yielding a

value of 6.53%. For comparison, the MAE obtained from the optimal parameter set

using the human Hb (i.e., Fig. 6-3(b)) was 10.49%. Thus, the dual-wavelength atlas

method generated more accurate estimates of MB concentration when using porcine

Hb instead of human Hb, which can be attributed to the uniformity in chemical

composition and oxygenation levels of the porcine Hb samples.

Fig. 6-5 shows example DAS photoacoustic images, coherence masks, and an

estimated concentration map for a ground-truth concentration of 60% of a single

trial. These DAS images were normalized to the maximum amplitude value obtained

from both 710-nm and 870-nm laser wavelength responses and displayed with 35 dB

dynamic range to offer a direct comparison across wavelengths. The contours within

each image represent the -3dB boundary of the coherence mask with an area of 5.32

mm2. Note that these masks include the low-amplitude regions of the photoacoustic

images which appear as if minimal signal is present, which highlights the benefit of the

coherence mask that is used to determine the presence of coherent signals, regardless

of amplitude. The MAE between the concentration map and the ground truth is

9.68%.
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Figure 6-5. Example of photoacoustic DAS images, coherence masks used for segmen-
tation, and estimated concentration map for a ground-truth concentration of 60% (i.e.,
60% MB and 40% experimental porcine Hb). The purple contours represent the masks
obtained by thresholding the coherence images at -3 dB and merging the results from 710
nm and 870 nm.

Table 6-1 reports the average processing times for each stage of the dual-wavelength

atlas method using the porcine Hb dataset. Without considering acquisition times and

transferring times of raw photoacoustic data, the construction of the dual-wavelength

atlas was completed in less than 6 minutes, while the mean ± one standard deviation

processing time of a single concentration map was 9.2 ± 0.5 seconds. This <10

minutes processing time is relatively fast in comparison to the total procedure times

of cardiovascular interventions (e.g., the average procedure time of perfusion coronary

interventions is 76 ± 31 min [73]), and it can be performed prior to the initiation of

the procedure .

Fig. 6-6 shows examples of concentration maps obtained from one trial per ground-

truth concentration results. The 30% concentration map produced the greatest MAE

of 14.80%, whereas the 100% concentration maps produced the lowest MAE of 0.72%.

These deviations agree with the overall errors shown in Fig. 6-4(b), where 30% and

100% ground-truth concentrations reported MAEs of 18.29% and 0.75%, respectively.
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Figure 6-6. Examples of concentration maps of MB and porcine Hb generated by the
dual-wavelength atlas method in a phantom experiment. The concentration maps (colored)
are overlaid on ultrasound images generated with LW-SLSC.

Overall, the dual-wavelength atlas method achieved greater accuracy when estimating

concentration levels that primarily include MB.

Our initial dual-wavelength atlas method used LW-SLSC beamforming to extract

meaningful photoacoustic data [47]. The method herein uses M-Weighted SLSC

beamforming, rather than LW-SLSC beamforming, in order to reduce the extensive

processing times required to generate coherence masks for a total of 2,200 frames

(i.e., 11 concentrations × 2 wavelengths × 10 frames × 5 trials × 2 datasets) of

photoacoustic data. However, considering that only a single ultrasound image is

needed to show the structural detail surrounding the concentration maps in Figs. 6-5

and 6-6, LW-SLSC was employed to beamform the background ultrasound image and
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Table 6-1. Processing times (in seconds) for each training and testing stage of the
dual-wavelength atlas method

Stage Training Testing (one frame)
Generate coherence
masks

135.5 ± 0.4 s 2.3 ± 0.1 s

Convert to frequency
domain

180.9 ± 23.6 s 6.4 ± 0.8 s

Apply PCA 2.6 ± 0.1 s -
Estimate concentrations - 0.6 ± 0.2 s
Total 319.2 ± 23.7 s 9.2 ± 0.5 s

improve the contrast, edges, and interpretation of the structural details surrounding

the photoacoustic signals.

6.3.3 Effect of mask size on concentration estimation perfor-
mance

To illustrate the impact of mask size on estimation performance, coherence masks

were generated from M-weighted SLSC images with coherence thresholds ranging from

0.3 to 0.9 in increments of 0.02. These masks were used to segment photoacoustic

signals from the human blood dataset and generated concentration maps of different

sizes. Then, for each coherence threshold, the mean absolute error was calculated for

the entire 10 frames per 11 concentration levels.

Figure 6-7. Mean absolute error of the estimated chromophore concentration obtained
with the dual-wavelength atlas method as a function of M-weighted SLSC coherence
thresholds.
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Figure 6-8. Example concentration maps generated with different coherence threshold
values.

Fig. 6-7 shows the performance of the dual-wavelength atlas method when using

segmented masks generated with varying coherence thresholds. Overall, the mean

absolute error decreases when using higher coherence thresholds to generate the

segmentation masks. Therefore, we selected a coherence threshold of 0.7 to generate

all coherence masks in the experiment results of manuscript.

Fig. 6-8 shows examples of concentration maps with a mixture of 30% MB (top)

and 90% MB (bottom) when using coherence thresholds of 0.32, 0.48, and 0.70 (from

left to right, respectively). The measured MAE are reported in the lower right corner

of each image. For the 30% MB mixture, when increasing the coherence threshold

from 0.32 to 0.70, a MAE decrease from 12.06% to 6.23% (i.e., 5.83% decrease) is

observed. The reduced error is attributed to absence of inaccurate estimates near the

bottom of the 0.70 concentration map. In contrast, for the 90% MB mixture, when

increasing the coherence threshold from 0.32 to 0.70, a MAE decrease of from 5.81%

to 5.06% (i.e., 0.75% decrease) is observed, which can be attributed to a more uniform

distribution of the mixture across the chamber. Overall, decreasing the mask size of
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the region of interest with more appropriate thresholding increases the performance of

the dual-wavelength atlas method, as observed in Figs. 6-7 and 6-8.

6.4 Discussion

We developed a novel photoacoustic-based, dual-wavelength atlas method that

accurately estimates and generates concentration maps of a mixture of endogenous and

exogenous chromophores (i.e., MB and Hb, respectively). The method builds on our

previous dual-wavelength approach [47] and measures the photoacoustic spectra ob-

tained from two laser wavelength emissions as a linear combination of the chromophore

spectra stored in an atlas. Linearity and monotonicity were confirmed with analyses

of acoustic spectra and estimated concentrations as the ground-truth concentration

increased, as shown in Figs. 6-3 and 6-4, respectively.

Method optimization (see Fig. 6-3(a)) resulted in requiring only the first principal

component for feature reduction, which agrees with previous optimization results of

the dual-wavelength atlas method [47, 67]. However, the number principal component

as well as the axial kernel size required for accurate estimation may increase with

noise and diverse photoacoustic responses obtained from different factors, such as

fiber tip geometries [74–76], vessel size [77–79], absorber size [80–82], ex vivo [83], and

in vivo [84, 85] data. Future studies will investigate the effect of these factors in the

optimization process of our method.

There are three main factors that contribute to the variability of the estimated

concentration maps shown in Fig. 6-6. First, the energy fluctuations provided by the

laser system translated into unequal fluence among frames (e.g., the mean ± one

standard deviation of the laser energy at the fiber tip was 3.13 ± 0.4 mJ for the

human Hb experiment). Second, decreasing the coherence threshold chosen to segment

meaningful photoacoustic signals when generating M-weighted SLSC masks decreased

the estimation performance of the dual-wavelength atlas method, as show in Figs. 6-7
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and 6-8. Third, while precautions were taken to minimize differences in oxygen

saturation among Hb samples, such variations were not negligible. Energy fluctuations

among consecutive frames and difference in oxygen-saturation levels can be reduced

when using fast-tuning lasers and fresh Hb from a single patient, respectively, in more

realistic clinical scenarios.

When extending our approach to other ultrasound systems, implementation with

a different transducer bandwidth would require an additional IQ calibration step

to maximize chromophore concentration estimation performance. Typically, the IQ

compression of radiofrequency signals is conducted using a modulation frequency equal

to the central frequency of the ultrasound transducer. However, as observed in the

stacked spectra shown in Fig. 6-2, most of the frequency content resides within 1 to 4

MHz, while the corresponding transducer center frequency is 5.5 MHz. Therefore, the

modulation frequency and bandwidth parameter of the IQ modulation step should be

adjusted [67] to segment meaningful spectra from the total bandwidth of the transducer

and thus enhance the estimation performance of the proposed algorithm.

In vivo deployment of the dual-wavelength atlas method for mixture estimation

requires two considerations. First, given that constructing a photoacoustic atlas is

relatively fast (i.e., <10 minutes), extracting presurgical Hb samples from a single

patient would be beneficial to minimize the estimation variability due to Hb samples

from different patients at different draw times in the training set. Second, smaller

vasculature are expected to yield different spectral responses because the frequency

components are dependent on the volume of the chamber that is irradiated [79, 86].

For reference, the diameter of the PVCP chamber simulated the average size of the

inferior vena cava (i.e., 0.46 to 2.26 cm in diameter [87]). Therefore, vessel-specific

parameter optimization is a possible future direction that can be explored with various

chamber diameters.
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6.5 Conclusion

The work contained herein is the first to present an acoustic-based photoacoustic

estimator that relies on training sets to estimate concentration levels from mixtures of

photoacoustic-sensitive materials. The proposed method consisted of measuring the

acoustic spectra obtained from two laser wavelength emissions as a linear combination

of the chromophore spectra stored in an atlas. This linear combination assumption was

confirmed with phantom experiments. In clinical practice, we envision dual excitation

wavelengths illuminating the region of interest with a fast-tuning laser source, providing

real-time labeling of photoacoustic-sensitive regions with a parallelized version of the

algorithm. The results from the presented experiments are promising for real-time

monitoring of the concentration of contrast agents in the operating room.
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Chapter 7

Conclusions and Future
Directions

7.1 Summary

In this dissertation, we addressed primary challenges with implementing a combined

ultrasound- and photoacoustic-based surgical guidance system aimed at clinical scenar-

ios inside and surrounding the spine. A summary of the timeline of published journal

articles and conference proceedings, color-coded by four subfields, is shown in Fig. 7-1.

First, for preoperative registration, we introduced the coherence-based LW-SLSC

beamformer to segment key landmarks associated with bone and surgical tool tips.

Once we located anatomical regions of interest, we differentiated bone content with

a novel contour analysis of photoacoustic signals in order to avoid accidental bone

breaches. To enhance the feasibility of our algorithms for real-time implementations,

we developed a GPU-SLSC beamformer that is suitable for photoacoustic-based vi-

sual servoing tasks and miniaturization of laser sources for photoacoustic imaging.

Finally, we used this real-time beamformer to localize catheter tips during cardiac

interventions, and developed a photoacoustic-based dual-wavelength atlas method

for the identification and estimation of mixture concentration from exogenous and

endogenous chromophores, which is beneficial to monitor and avoid the adverse effects

associated with incorrect contrast agent doses. These four contributions are beneficial
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Figure 7-1. Timeline of publications towards the implementation of an ultrasound- and
photoacoustic-based surgical guidance system. The publications are grouped by novel
solutions to the primary challenges tackled in this thesis: (1) image segmentation for
registration [1–3], (2) bone tissue characterization [3, 4], (3) visual servoing [5–8], and (4)
photoacoustic contrast agents [9–12]

for the transition of photoacoustic-based surgical guidance towards more challenging

clinical scenarios with real-time, reliable, and portable capabilities to characterize

biomarkers in the operating room.

The utility of coherence beamforming techniques were demonstrated for each of the

four contributions described above. Specifically, SLSC, LW-SLSC, and/or GPU-SLSC

played four unique roles throughout this dissertation: (1) enhancement of ultrasound

bone boundaries for accurate registration, (2) photoacoustic localization of surgical tool

tips, (3) enhancement of photoacoustic image signal-to-noise ratios acquired with low

laser energies, and (4) identification followed by segmentation of regions of interest for

photoacoustic spectroscopy. Therefore, coherence-based beamforming is fundamental

to successful implementation of the combined ultrasound and photoacoustic surgical

guidance system described herein.
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7.2 Future Directions

7.2.1 Real-Time Coherence-Based Bone Segmentation

LW-SLSC has demonstrated promise to segment bone structures, enabling 2D

ultrasound-to-CT registration during surgical interventions located in the spine. In

order to deploy this technique in intraoperative imaging protocols, real-time com-

putations of segmented bone structures are required. There are two possible paths

for accomplishing computational speed-up. First, given that LW-SLSC operates on

independent kernels Ri
ˆ as described in Chapter 2 (Section 2.2.1.2), real-time imaging

can be achieved by concurrent execution of each Ri
ˆ in a separate thread inside a GPU.

The feasibility of this approach has already been demonstrated in Chapter 4 with

the development of the GPU version of photoacoustic SLSC. Similarly, a parallelized

version of LW-SLSC can be optimized with the use of ad hoc libraries designed for ma-

trix multiplication [13] as well as with the use of efficient approaches for dense/sparse

matrix operations [14, 15].

The second possible pathway for computational speed-up incorporates neural

networks, which have demonstrated potential to bypass the computational complexity

of advanced beamforming techniques [16–18]. We previously developed a deep neural

network architecture (i.e., CohereNet) to estimate spatial coherence functions [19],

which are foundational to LW-SLSC imaging. This deep learning approach achieved

real-time computational processing times and can potentially be adapted to include

the additional regularization steps needed for LW-SLSC imaging.

7.2.2 Complementary Bone Characterization

In this dissertation, the discrimination of cortical from cancellous bone was achieved

by assessing the spatial morphology of the received photoacoustic responses. However,

there are other mechanical properties with similar promise to characterize bone using

photoacoustic-based techniques, such as temperature-induced amplitude changes [20,
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21], guided waves [22, 23], spectral parameters [24–26], and multiple-wavelength

behaviour of received photoacoustic signals [27–29]. Therefore, we hypothesize that

the inclusion of these mechanical properties for a more robust bone characterization

will provide the surgeon with complementary insight to avoid cortical walls when

drilling through the pedicle during spinal fusion surgeries.

7.2.3 Visual Servoing with Pulsed Laser Diodes

Because we demonstrated that successful visual servoing tasks can be achieved

with low laser energies, we can use smaller devices for our light delivery system.

Good candidates for miniaturized laser sources are pulsed laser diodes, which are

reliable, less-expensive, hand-held, and light-weight (about 200 g) alternatives in

comparison to the standard Q-switched Nd:YAG/OPO (Optical Parametric Oscillator)

lasers used in many photoacoustic imaging applications [30–32]. Hence, the next step

for the translation of a portable ultrasound- and photoacoustic-based image guided

system consists of exploring the performance of visual servoing tasks using GPU-SLSC

photoacoustic images obtained from pulsed laser diodes. The miniaturization of our

system will enable surgical guidance in compact rooms with reduced procurement

costs, which are critical requirements for implementing image-guidance at medical

facilities with low-resource infrastructures.

7.2.4 In Vivo Estimation of Mixture Concentrations

In order to transition the dual-wavelength atlas method to determine epidural

spreading during spinal injections we need to address three additional tasks. First,

as discussed in Chapter 6 (Section 6.4), a vessel-specific parameter optimization is

required when administering contrast agents in soft tissue with smaller vasculature

compared to cardiac catheter interventions. Second, the atlas should be trained with

the chromophore (i.e., lipid) corresponding to the tissue that would most likely interact

with the epidural (i.e., nerve). Third, as the method relies of the acquisition of two
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laser wavelengths, upgrading the Q-switched Nd:YAG/OPO laser sources to stimulated

Raman scattering laser sources [33, 34] could be an interesting option to ensure the

feasibility of real-time mixture estimation during catheter interventions.

7.3 Outlook

This dissertation introduces four novel contributions that are beneficial for the

transition of a combined ultrasound- and photoacoustic-based image-guidance system

towards challenging scenarios of surgical navigation. Focusing on bone structures inside

and surrounding the spine, the newly combined systems and techniques demonstrated

herein feature robust, accurate, and real-time capabilities to register to preoperative

images, localize surgical tool tips, and characterize biomarkers. These contributions

strengthen the range of possibilities for spinous and transthoracic ultrasound and

photoacoustic navigation, broaden the scope of this field, and shorten the road to

clinical implementation in the operating room.
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