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Abstract

Complex systems are abundant in chemistry and biology; they can be multiscale, possibly

high-dimensional or stochastic, with nonlinear dynamics and interacting components. It

is often nontrivial (and sometimes impossible), to determine and study the macroscopic

quantities of interest and the equations they obey. One can only (judiciously or randomly)

probe the system, gather observations and study trends. In this thesis, Machine Learning is

used as a complement to traditional modeling and numerical methods to enable data-assisted

(or data-driven) dynamical systems. As case studies, three complex systems are sourced from

diverse fields: The first one is a high-dimensional computational neuroscience model of the

Suprachiasmatic Nucleus of the human brain, where bifurcation analysis is performed by

simply probing the system. Then, manifold learning is employed to discover a latent space

of neuronal heterogeneity. Second, Machine Learning surrogate models are used to opti-

mize dynamically operated catalytic reactors. An algorithmic pipeline is presented through

which it is possible to program catalysts with active learning. Third, Machine Learning is

employed to extract laws of Partial Differential Equations describing bacterial Chemotaxis. It

is demonstrated how Machine Learning manages to capture the rules of bacterial motility in

the macroscopic level, starting from diverse data sources (including real-world experimental

data). More importantly, a framework is constructed though which already existing, partial
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knowledge of the system can be exploited. These applications showcase how Machine Learn-

ing can be used synergistically with traditional simulations in different scenarios: (i) Equations

are available but the overall system is so high-dimensional that efficiency and explainability

suffer, (ii) Equations are available but lead to highly nonlinear black-box responses, (iii) Only

data are available (of varying source and quality) and equations need to be discovered. For

such data-assisted dynamical systems, we can perform fundamental tasks, such as integration,

steady-state location, continuation and optimization. This work aims to unify traditional

scientific computing and Machine Learning, in an efficient, data-economical, generalizable

way, where both the physical system and the algorithm matter.

Primary Reader and advisor: Prof. Ioannis G. Kevrekidis

Secondary Readers: Prof. Michael Tsapatsis, Prof. Michael D. Shields
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Chapter 1

Introduction

There are various definitions of complexity across different academic fields. In the context of

dynamical systems, complex can be a system that exhibits the following three characteristics (Richardson

and Chemero, 2014; Gallagher and Appenzeller, 1999; Ottino, 2003):

i. Consists of (homogeneous or heterogeneous) interacting components/agents.

ii. The collective behavior of these components/agents exhibits coherent emergent patterns.

iii. This collective behavior is self-organized, in the sense that is not externally directed.

Equivalently, we can think of them as systems with a large range of temporal and spatial scales,

intrinsic high dimensionality, and nonlinear dynamics (Fernex, Noack, and Semaan, 2021)

As our understanding of the natural world deepens, along with breakthroughs in experimental

capabilities and computational efficiency, it is now possible (and preferred) to approach complex

systems holistically. This encourages scientists and engineers to move from reductionism (the Newtonian

paradigm) to more realistic representations of complex systems (Heylighen, Cilliers, and Gershenson

Garcia, 2007). In other words, the (post-) modern scientist does not consider the “whole” to be equal to

the sum of its parts (Aristotle, 350BCE).

This trend was accelerated with the popularization of Machine Learning algorithms and democrati-

zation of powerful computational resources. Such algorithms are naturally suited to complex systems,

as:

• They can deal with large quantities of data, which are usually required to study high-dimensional,
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highly nonlinear, multiscale phenomena (Qi and Majda, 2020; Lee et al., 2020; Chen et al., 2019;

Gkeka et al., 2020).

• They can efficiently discover patterns in large data sets, which is essential for studying emergent

behaviors in multiscale systems (Bengio, Courville, and Vincent, 2013; Jia et al., 2022).

• They can universally approximate nonlinear surfaces, where the responses (or laws) of complex

systems naturally live. Often, such approximations are smooth and tractable enabling surrogate

modeling and digital twins (Hornik, Stinchcombe, and White, 1990; Park and Sandberg, 1991;

Cybenko, 1989).

In this thesis, Machine Learning is used synergistically with traditional modeling to perform tasks

such as steady state location, numerical continuation, optimization, and system identification of complex

dynamical systems in a variety of settings. An arsenal of Machine Learning algorithms is used for

specific purposes, suited for each dynamical system:

Multiple scales: Macroscale system identification can be achieved with Machine Learning methods,

starting from microscale simulations or experiments. The amount and identity of the proper macroscale

variables can be assumed to be known a priori (e.g. through already existing approximate models) or

can be data-driven (e.g. Automatic Relevance Determination, Autoencoders, Diffusion Maps).

Nonlinear dynamics: Nonlinearly activated Neural Networks and Gaussian Process Regression schemes

are able to approximate the ground truth nonlinear dynamics given sufficient data.

High dimensionality: Unsupervised learning (e.g. Diffusion Maps, Autoencoders) can be used for

dimensionality-reduction of high-dimensional data sets. Proper initialization for numerical methods in

high-dimensional problems can be achieved with Bayesian methods.

For the purposes of this thesis, focus will be given to three categories of complex systems: Pe-

riodically forced systems (Chapters 3, 4), Multiscale systems (Chapter 5), high-dimensional sys-

tems/networks (Chapter 3, 4, 5). These categories are by no means mutually exclusive; however, there

is great value in examining each one separately.
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1.1 Periodically Forced Systems

Periodically forced systems are abundant in nature, owing mainly to the periodicity of the day-night

cycle (circadian rhythm (Edery, 2000), social dynamics (Li, Schwartz, and Indic, 2020), heat transfer

models (Sojoudi et al., 2016), meteorology (Liu and Moncrieff, 1998)) and seasonal cycle (circadian

rhythm (Edery, 2000), population dynamics (Gao, Shi, and Li, 2009), epidemiology (Chitnis, Hardy,

and Smith, 2012), meteorology (Luther and O’Brien, 1985)), but also to more complex cycles (cell cycle

(Mosheiff et al., 2018), autocatalytic reactions (Lin et al., 2004), neuronal electrophysiology (Pakdaman,

2001)). Periodically forced systems have long attracted the attention of both practitioners and theorists.

The former because by periodically forcing a dynamical system, one can significantly increase its

degrees of freedom and lead to a a rich variety of responses, many of which are possibly of practical

interest (Starosvetsky and Gendelman, 2007; Wang and Song, 2016; Qiao et al., 2008). The latter because

periodically forced dynamical systems exhibit a wealth of dynamics, which can be elegantly connected

to fundamental concepts of dynamical systems and mathematics in general (McGehee and Peckham,

1996; Jensen, Bak, and Bohr, 1983; Ding, 1987).

Such systems can be complex, due to the added degrees of freedom, and diversity of responses,

resulting from the interaction of a system’s intrinsic dynamics and forcing dynamics. Periodically forced

dynamical systems can be usefully divided into two categories: systems that exhibit periodic behavior

even in the absence of external stimulus (naturally oscillating/ exhibiting autonomous limit cycles) and

systems that do not (naturally non-oscillating, only nonautonomous oscillations possible).

1.1.1 Systems with autonomous oscillations

As mentioned, such systems exhibit periodic behavior (limit cycles) even when not forced. For

example, consider a generic autonomous dynamical system:

dx
dt

= f(x; p), (1.1)

where x ∈ Rn, p ∈ Rm, f : Rn+m → Rn. Solutions of this system are maps of the form t → x(t), x(t) :

R→ Rn (Wiggins, 1990). In certain regimes of parameter values, limit cycles arise, characterized by an

intrinsic period T0, or, equivalently, by an intrinsic angular frequency ω0 = 2π f0, where f0 = 1/T0 is

the intrinsic frequency (note that in general ω0 = ω0(p)). The intrinsic period can be found by solving

the following set of equations:
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x− P(x) = 0, (1.2)

∫︂ T0

0
⟨x(t)− x0, f(x0; p)⟩dt = 0, (1.3)

where Pi(y) :=
∫︁ T0

0 fi(x; p)dt, x(0) = y, i = 1, ..., n and x0 is some state. P(x) is called the Poincaré

map and Eq. 1.2 defines its fixed points. Eq. 1.3 is an anchor equation, necessary to also solve for T0. This

anchor equation requires orthogonality to some reference state x0, but more options are possible, such

as restricting the solution to a (n− 1)−dimensional surface.

This autonomous dynamical system becomes nonautonomous, when forced with a time-dependent

term g : Rk+2 → Rn, for example:

dx
dt

= f(x; p) + g(t; ω, p f ), (1.4)

where ω > 0, p f ∈ Rk are the forcing angular frequency and a vector with other forcing parameters (for

example parametrizing the shape, with the most fundamental being the forcing amplitude a), respectively.

Note that the forcing is usually introduced to just one (or a few ODEs) and not all; however, this suffices

to affect the periodic response of the entire n− dimensional system, given that all ODEs are coupled.

Also note that the forcing introduces extra k + 1 degrees of freedom, creating a (k + 1)− family of

dynamical systems (Peckham, 1988).

A useful example is the Brusselator, a 2D theoretical model of an autocatalytic reaction, which

exhibits limit cycles for certain parameter values. Forcing is introduced to one of the ODEs, and

has the form g(t, a, ω) = acos(ωt) The effect of the two forcing parameters (a, ω) can be explored by

constructing a bifurcation diagram. Here, reporting the bifurcation diagram constructed by Tomita and

Kai, 1978:
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Figure 1.1: Bifurcation diagram of the Brusselator w.r.t the relative forcing angular frequency ω/ω0 and
forcing amplitude a. Interested readers are referred to the original manuscript (Tomita and Kai, 1978)
for explanation of numbered/indexed points on the diagram.

As shown in the Fig.1.1 what really matters is how the forcing angular frequency changes w.r.t.

the intrinsic one (i.e. ratio ω/ω0). At certain values ω/ω0 = k/m, (where k/m is rational) k : m−

resonancies are observed, i.e. the dynamical system performs m oscillations during the time needed for

the external forcing to complete k oscillations. As expected, as a→ 0, the limit cycles of the forced system

are more and more akin to the system’s autonomous limit cycles. Shaded regions denote quasiperiodicity,

while, for higher values of the forcing amplitude, chaos emerges. Of most practical interest is the 1:1

resonance region, (called the 1:1 resonance horn) where the dynamical system is synchronized with the

external stimulus. For low amplitudes, at the bilateral boundaries of the 1:1 resonance horn, synchrony

is lost via a saddle-node bifurcation of limit cycles; at that point, a stable and an unstable limit cycle

coalesce and disappear. The closed curve formed by that stable and unstable branch (for a fixed forcing

amplitude) is called an isola.

To construct such a diagram, finding periodic steady states conveniently reduces to solving a

boundary value problem. Following the notation of Eq.1.4 and denoting F := f + g the following can be

defined:

yj+1 = S(yj), Si(y) :=
∫︂ T

0
Fi(x, t; p, ω, p f )dt, i = 1, ..., n, x(0) = y (1.5)

R(x) := x− S(x), (1.6)
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where T = ω/2π is the forcing period. S : Rn → Rn is called the stroboscopic map and R : Rn → Rn the

stroboscopic map’s residual function. One can think of the stroboscopic map as a “isophase” version of

a Poincaré map, where the period is a priori known and no anchor equation is required (Kevrekidis,

Schmidt, and Aris, 1986). Fixed points of 1.5 (or, equivalently, roots of 1.6) correspond to limit cycles of

the forced dynamical system. Continuation of such fixed points w.r.t. the forcing angular frequency ω

results in isolas, and continuation of the codimension-two bifurcations on the isola corresponding to

saddle-node bifurcations of limit cycles w.r.t. ω, a results in resonance horns. That leads to the hieararchy

of important points/loci of points better shown in Fig. 1.2.

Figure 1.2: Hierarchy of points/loci of points for the periodically forced system of the Brusselator.
Following a top-down approach: (left) 1:1 resonance horn. The blue region is where synchronization
is possible, while the gray region denotes quasiperiodicity. Every point in the blue region (boundary
inclusive) corresponds to (at least one) limit cycle. Two sample bifurcations at a = 0.001 are denoted
with red stars. (middle) projection of the isola for a = 0.001. The red stars in the left subfigure are now
the bilateral limits of the isola where the stable (blue) and unstable (red) branches coalesce. Every point
of the isola is a limit cycle (or, equivalently, a stroboscopic map fixed point). Two points are sampled
for ω/ω0 = 1. (right) limit cycles (blue-stable, red-unstable) for the two points selected in the middle
subfigure.

1.1.2 Systems without autonomous oscillations

In this case, the system’s autonomous dynamics do not exhibit limit cycles, therefore an intrinsic

angular frequency ω0 can not defined, neither a variety or resonancies are possible. However, it is

expected that the dynamics of the forced system will be periodic and in fact always synchronized with

the external forcing. Forcing parameter ω but also, any additional k degrees of freedom in p f (as in 1.4),

create a (k + 1)− family of periodic responses. This is again a complex system, as nonlinearities emerge
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from the interplay of intrinsic dynamics and the periodic function.

1.2 Multiscale Systems

Multiscale systems are those which can be studied at multiple spatial or temporal scales. In

fact, any system can be viewed as a multiscale system, depending on the desired resolution and the

experimental/computational/theoretical resources available (Weinan and Engquist, 2003; Walpole,

Papin, and Peirce, 2013).

Figure 1.3: Hierarchy of multiple scales in fluid mechanics along with suitable laws for each scale
(Weinan and Engquist, 2003).

At different scales, equations of different character are needed: For the macroscale, continuum

models are constructed (e.g. Algebraic Equations - AEs, Ordinary Differential Equations - ODEs,

Partial Differential Equations - PDEs), while for the microscale, usually stochastic (possibly discrete

space) models are preferred (e.g. Monte Carlo - MC, Master Equation - ME, Stochastic Differential

Equations - SDEs) (Vlachos, 2005; Lu and Kaxiras, 2004). The Fokker-Planck equation is mentioned here

as the quintessential example: The stochastic motion of particles under a potential (continuous-time,

uncountable-space Markov process) can be described using an SDE. In the macroscale, an analytic,

deterministic PDE can be derived describing the particle density (Givon, Kupferman, and Stuart, 2004).

Another example relevant to fluid mechanics is presented in 1.3.
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Figure 1.4: Hierarchy of multiple scales in biology along with examples of data that can be collected at
each scale (Multiscale Systems Biology and Modeling, howpublished = https://researcher.watson.ibm.
com/researcher/view_group.php?id=5372, note = Accessed: 2022-07-09 n.d.).

In most settings, only the macroscale (equivalently, in the literature: emergent, latent, hidden, slow,

low-dimensional, reduced-order, effective, collective) dynamics are of practical interest, especially when:

• Individual agents’ dynamics are not informative. The choice to study the emergent dynamics

reflects the relevance of the corresponding time/space scale to real-world problems. For example,

we are not interested in the velocities of the individual particles of a gas, but at the variance of

their velocity distribution, or equivalently the gas’ temperature (Mandl, 1988).

• It is not straightforward how to couple phenomena at different scales: Multiscale modeling

is numerically complex and computationally demanding due to separation in scales (Ricardez-

Sandoval, 2011; Lu and Kaxiras, 2004). Furthermore it is nontrivial to couple computations of

different fidelity, each performed under different assumptions. In fact, multiscale closures might

be only approximate or even intractable (Kevrekidis et al., 2003; Chatterjee and Vlachos, 2006).

• The microscale dynamics are unavailable. In this case, all one can do is probe the system,

judiciously gather data, and uncover the effective macroscopic variables and/or the laws of their

evolution in a data-driven way (Meier-Schellersheim, Fraser, and Klauschen, 2009; Dsilva et al.,

2018). This is especially useful and important in biology/biomedicine where scales are spatial,

temporal and functional (see Fig. 1.4) (Alber et al., 2019).

After examining why the focus is concentrated in macroscopic dynamics, it is worth examining some
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examples of how this can be done. Here, a non-exhaustive collection of methods is presented:

• Derived: Approximate invariant manifolds (Titi, 1990; Jolly, Kevrekidis, and Titi, 1990), averaging

and homogenization methods (G.A. Pavliotis, 2008; Ye, Yang, and Maggioni, 2021), white noise

approximation (Givon, Kupferman, and Stuart, 2004), moment closures (Xue and Othmer, 2009),

Mori-Zwanzig formalism (Mori, 1965; Zwanzig, 2001).

• Approximated / Data-driven: Equation-free framework (Kevrekidis et al., 2003), Proper Orthog-

onal Decomposition (also known as PCA/SVD) (Deane et al., 1991; Liao and Maggioni, 2019),

Dynamic Mode Decomposition (Schmid, 2010), Koopman operator (Williams, Kevrekidis, and

Rowley, 2015), Diffusion Maps (Singer et al., 2009; Kemeth et al., 2022), Deep Neural Networks

(Zhang et al., 2018), Convolutional Neural Networks (Arbabi et al., 2020), Gaussian Process

Regression (Lee et al., 2020), Recurrent Neural Networks (Vlachas et al., 2022) and Autoencoders

(Chen, Tan, and Ferguson, 2018).

1.3 High-dimensional Systems and Networks

High dimensionality has been a significant hurdle in the study of complex systems, especially in

performing tasks such as sampling, function approximation or nearest neighbor location (Rabitz and

Aliş, 1999; Scott and Thompson, 1983). For example, sampling a unit hypercube in Rd equidistantly in

each dimension (distance D), would require (1/D)d points - the well-known curse of dimensionality

(Bellman, 1957). Even geometrical intuition often fails as the dimensionality increases, e.g.: the ratio of

the volume of a sphere and its circumscribed cube approximates zero; the volume of a sphere is mostly

contained in its outer shell. These are in agreement with unusual concentration phenomena in high

dimensions in probability theory (Lee and Verleysen, 2007).

In general, the problems associated with high-dimensional systems are the great computational cost,

lack of intuition and difficult visualization. However, not all dimensions are always useful. Some of

them might be irrelevant for a specific task. Others might be relevant but not independent w.r.t. the rest.

The former case can be resolved via supervised relevance determination methods (Aha and Bankert,

1996) and the latter with unsupervised dimensionality reduction techniques (Lee and Verleysen, 2007).

High-dimensional dynamical systems are often represented as networks (or graphs). In this case,

apart from the node dynamics, the way the nodes are connected (network structure) matters and can be

decisive to the emergent dynamics (Ottino, 2003). Some popular examples are compartmental models
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in epidemiology (Brauer, 2008), social networks (Zhao et al., 2011) and coupled oscillators (Thiem et al.,

2020).
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Chapter 2

Algorithms

The main algorithms used in the rest of this thesis are presented in this chapter. They are organized

in two categories: Numerical methods (Subchapter 2.1) and Machine Learning (Subchapter 2.2). For

each category, the algorithms are presented in an increasing order of complexity of the computational

task. Specifically:

Numerical Methods: Starting in Subchapter 2.1.1 algorithms are presented that solve for periodic

steady states (limit cycles). The two Subchapters (2.1.1.1, 2.1.1.2) explore two different methodologies

for the same purpose. Following that, in Subchapter 2.1.2 numerical continuation will be discussed

and specifically pseudo-arclength continuation. This algorithm explores solution branches of periodic

steady states, using the solvers presented in 2.1.1.

Machine Learning: Following the established classification of Machine Learning Algorithms, the

first Subchapter deals with Supervised learning 2.2.1 i.e. algorithms for labeled data, suitable for system

identification. Here, these include feedforward Artificial Neural Networks (possibly Deep) (2.2.1.2) and

Gaussian Process Regression (2.2.1.1). Naturally, Unsupervised learning follows (2.2.2), i.e. algorithms

for unlabeled data. These algorithms are useful for revealing intrinsic dimensionalities in data sets

and finding data-driven coordinates for low-dimensional embeddings. The one used in this thesis are

Diffusion Maps (2.2.2.1). Lastly, Active Learning (2.2.3) is included as a separate category of Machine

Learning algorithms, even though all data are labeled. The difference is that data are sequentially
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sampled, and their sampling is conditioned on all previous data points. In this category we include

Bayesian Continuation 2.2.3.2 and Bayesian Optimization 2.2.3.1.

2.1 Numerical Methods

2.1.1 Solvers for Periodic Steady States

As mentioned in Subchapter 1.1 periodic steady states (limit cycles) can be found by locating fixed

points of the stroboscopic map (Eq.1.5) or, equivalently, roots of its residual function (Eq.1.6). For this

task, Newton’s method can be employed, provided access to the Jacobian of the stroboscopic map (or

residual function):

JR(xn) · (xn+1 − xn) = −R(xn), (2.1)

where, as a reminder, S : Rn → Rn is the stroboscopic map, R : Rn → Rn is the residual function, and

JS : Rn → Rn×n, JR : Rn → Rn×n are their Jacobians respectively. Note that because R(x) = x− S(x),

it follows that JR = In − JS, where In is the n× n identity matrix.

In the following two Subchapters ( 2.1.1.1 and 2.1.1.2) algorithms are presented that either calculate

that Jacobian, or circumvent the need for its calculation in general.

2.1.1.1 Variational approach

As a reminder from Subchapter 1.1.1, we will consider a generic dynamical system:

dx
dt

= f(x; p), (2.2)

where x ∈ Rn, p ∈ Rm, f : Rn+m → Rn. Consider J f (x; p) :=
[︂

∂f
∂x

]︂
∈ Rn×n the Jacobian of this

vectorfield and J f p(x; p) :=
[︂

∂f
∂p

]︂
∈ Rn×m the parametric derivatives matrix. We can compute the

Jacobian of the stroboscopic map and its parametric derivatives (sensitivities), by integrating the
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additional ODEs (Kevrekidis, Schmidt, and Aris, 1986):

dV
dt

= Jf ·V (2.3)

dP
dt

= Jf · P + J f p, (2.4)

where V(t) :=
[︂

∂x(t)
∂x(0)

]︂
∈ Rn×n, V(0) = In and P(t) :=

[︂
∂x(t)

∂p

]︂
∈ Rn×m, P(0) = 0n×m. Note that this is a

matrix system of ODEs, totaling n2 and nm coupled ODEs respectively. The variables V(t), P(t) can be

interpreted as the sensitivities of a trajectory of Eq.2.2 beginning from x(0) = x0 w.r.t x0 or p respectively.

By integrating 2.2 along with 2.3, 2.4 we can find:

JS(xn) =
∂S(xn)

∂xn
= V(T), JR(xn) = In −V(T) (2.5)

∂S(xn)

∂p
= P(T), (2.6)

where T = ω/2π is the forcing period associated with the stroboscopic map (see Eq. 1.4). Here, we

assume that the forcing period is independent of the parameters p or the initial state x(0).

With the Jacobian of the stroboscopic map at hand (Eq. 2.5), we can perform Newton’s method

(Eq. 2.1) and locate limit cycles given a good enough initial condition. Furthermore, calculation of the

parametric derivatives allows numerical continuation of the fixed points of the stroboscopic map (for

more details see Subchapter 2.1.2). Note that integration of the system of ODEs consisting of Eqs. 2.2,

2.3, 2.4 can be done with implicit integrators, as the Jacobian of the entire system conveniently consists

of 1 + n + m diagonal blocks of J f .

2.1.1.2 Newton-Krylov GMRES

It becomes apparent that in high dimensions (n≫ 1) the Variational approach (Subchapter 2.1.1.1)

becomes impractical (both in terms of efficiency and computational memory). In fact, independently

of the way it’s calculated, the Jacobian used in Newton’s method (of size Rn×n) requires a lot of

computational memory and prohibits efficient implementation in high-dimensionsal systems. This can

be circumvented via matrix-free methods, and specifically Newton-Krylov GMRES (Kelley, Kevrekidis,

and Qiao, 2004). This method has the following essential components:

• Estimating the matrix-vector product in the left-hand side of Eq.2.1 using directional derivatives:
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JR(xn) · y ≈
R
(︂

xn + ϵ
y
||y||2

)︂
− R(xn)

ϵ
, (2.7)

where , in this case, y = xn+1 − xn and ϵ is a user-defined sufficiently small scalar.

• Solving any linear system A · x = b by projecting the residual to the Krylov subspace of A,

defined by A, b and subspace dimension d: K(A, b, d) = span
{︂

b, Ab, ..., Ad−1b
}︂

(Kelley, 2003):

x∗ − x0 =
d−1

∑
j=0

γjA
jr0, (2.8)

where x∗, x0 are the solution and the initial guess respectively, d is the Krylov dimension, γj are

coefficients, and r0 is the initial residual of the linear system (r0 = A · x− b). Here, a new linear

system arises for every Newton iteration (Eq. 2.1.)

Combining these two components, we can efficiently implement Eq. 2.1 and locate periodic steady

states in high-dimensional systems by finding fixed points of the stroboscopic map.

2.1.2 Numerical Continuation

With an efficient solver at hand (as, for example, the ones described in Subchapter 2.1.1) we can

explore algorithms that follow entire one-parameter solution branches of periodic steady states. For that

task, a single degree of freedom is chosen (some parametrization) along with an additional equation to

solve. Each continuation algorithm decides how to expand a solution branch and, equivalently, what

the additional equation should be. The resulting algorithm is an iterative “predictor-corrector” scheme.

Here we focus on pseudo-arclength continuation which assigns the arclength s as the extra degree of

freedom, expressing both the state vector and the parameter as functions of s (Keller, 1978). Advancing

along a solution branch in terms of the arclength tackles a fundamental issue relevant to the Implicit

Function Theorem: solution curves can be continued past direction changes w.r.t the parameter, which,

in the context of dynamical systems, correspond to folds (Doedel, Keller, and Kernevez, 1991a).

In the following, the pseudo-arclength continuation algorithm will be presented for a generic

dynamical system dx
dt = f(x; λ) where f : Rn+1 → Rn, x ∈ Rn is the state vector and λ ∈ R is a

parameter. To follow steady states of that system, the pseudo-arclength algorithm seeks points that

satisfy the augmented system:
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f(x(s); λ(s)) = 0 (2.9)

(x(s)− x0)
T ẋ0 + (λ(s)− λ0)λ̇0 = s− s0, (2.10)

where ẋ0, λ̇0 are the direction vectors with respect to the arclength s (i.e. dx/ds, dλ/ds respectively) at

some point of the solution branch, where: x0 = x(s0), λ0 = λ(s0). The direction vectors can be found by

solving:

Jf ẋ +

[︃
∂ f
∂λ

]︃
λ̇ = 0 (2.11)

||ẋ||2 + λ̇
2
= 1, (2.12)

where Jf ∈ Rn×n is the Jacobian of f and
[︂

∂ f
∂λ

]︂
∈ Rn×1 its parametric derivatives. Intuitively, one can

think of Eq.2.11 as a chain rule and Eq.2.12 as normalizing the direction vector.

Consider a solution branch of points (xi, λi) where i = 1, 2, ... is an index. A very convenient

simplification for direction vectors at some point (xi, λi) is to approximate them by ẋi = xi − xi−1, λ̇i =

λi − λi−1. Using this simplification, it is no longer necessary to solve Eqs.2.11, 2.12, or, consequently,

to have the Jacobian and parametric derivatives at hand. When solving the system Eq.2.9, 2.10 (e.g.

with Newton’s method) convergence strongly depends on the initial guess. A good such guess (a

good predictor) can be intuitively formulated as (xpred
i+1 , λ

pred
i+1 ) = (xi + ∆s ẋi, λi + ∆s λ̇i), where ∆s is a

stepsize.

For a summary of the most simplified iterative scheme of pseudo-arclength continuation, see the

following algorithm (Alg. 1). Some practical considerations: (i) the stepsize ∆s is usually adaptive to the

number of Newton iterations required for convergence, (ii) If the Eqs. (2.11, 2.12) are solved instead of

the linear approximation to the direction vector, then the algorithm can be initialized with just one point

(but the initial direction needs to be specified).
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Algorithm 1 Pseudo-arclength continuation
Input: Two consecutive points on the solution branch: (x1, λ1), (x2, λ2), Number of itera-

tions Nit > 2, Stepsize ∆s.

Output: Continuation branch [xi, λi]i=1,..,Nit
.

for i = 2 to Nit − 1 do(︁
ẋi, λ̇i

)︁
← (xi − xi−1, λi − λi−1), or solve 2.12)(︂

xpred
i+1 , λ

pred
i+1

)︂
←
(︁
xi + ∆s ẋi, λi + ∆s λ̇i

)︁
(︁
xcorr

i+1 , λcorr
i+1
)︁
←
(︂

xpred
i+1 , λ

pred
i+1

)︂
, by solving the system, 2.9, 2.10 with Newton’s method

end for

A schematic of an instance of pseudo-arclength procedure can be seen in Fig. 2.1.

Figure 2.1: Pseudo-arclength continuation iteration for the steady states of dx/dt = f (x; λ) := λ + x2:
Given the direction vector (here, colored blue) the predictor for the next solution on the branch can be
found (colored red). Solving the augmented system of equations (such as Eq. 2.9, 2.10) will restrict the
next solution (colored green) on a plane perpendicular to the direction vector.

In the context of periodically forced systems, continuation is especially useful in exploring the
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bifurcation diagram of periodic responses w.r.t. the forcing parameters (for an example, see Fig. 1.2). In

this case, the solution branches to be continued are those of the stroboscopic map residual function and

the parameter is one of the forcing parameters. In the notation used in Eqs. 1.1-1.6, the pseudo-arclength

augmented system will be:

R(xi; λi) = 0 (2.13)

(xi − xi−1)
T ẋi−1 + (λi − λi−1)λ̇i−1 = ∆s (2.14)

where λ is some forcing parameter (i.e. ω or a component of p f ). The Jacobian and parametric

derivatives required in each continuation step (specifically, in Eqs.2.11, 2.12) and in Newton’s method

(Eq.2.1) can be calculated through the variational approach (Eqs. 2.5, 2.6). Note that here, it is possible

that the forcing period depends on the continuation parameter. This would affect the final expression

for trajectory sensitivities (Eq. 2.6) which should be altered to include the sensitivity of the integration

limits to the forcing parameter, according to Leibniz’s integral rule. For example, this is the de facto case

when performing the same tasks for Poincaré maps (see Eqs.1.2, 1.3). Again, the need for the Jacobian

and parametric derivatives in the pseudo-arclength continuation algorithm can be circumvented by

approximating the direction vectors from the previous points on the solution branch.

Despite the simplicity in its formulation, pseudo-arclength continuation can be augmented/modified

to perform many useful tasks in practice (adaptive stepping, bifurcation detection, branch point detec-

tion, stability analysis, and more). Importantly, in the context of this work, it can perform 2−parameter

continuation (for example, to construct resonance horns, as in Fig. 1.2). This requires solving an addi-

tional equation, constraining the solution to the loci of points of interest (e.g. some constraint on the

eigenvalues when continuing folds). In practice, this has been demonstrated by various established

software implementations, such as: AUTO (Doedel, Keller, and Kernevez, 1991a; Doedel, Keller, and

Kernevez, 1991b; Doedel et al., 2007), MATCONT (Dhooge, Govaerts, and Kuznetsov, 2003), xppaut

(Ermentrout, 2012) and COCO (Dankowicz and Schilder, 2013).

2.2 Machine Learning

In general, Machine Learning includes algorithms that are able to learn from data (Goodfellow,

Bengio, and Courville, 2016). A general enough definition of learning has been given by Mitchell (1997):
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“A computer program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks T, as measured by P, improves with experience E”

(Mitchell, 1997).

Machine Learning algorithms can be organized based on the kind of task T (discrete or continuous) or

experience E (labeled or unlabeled data). The Machine Learning algorithms relevant to this dissertation,

deal with tasks in the form of continuous functions/mappings. We organize this section as learning

from labeled data (supervised learning, Subchapter 2.2.1) or unlabeled data (unsupervised learning,

Subchapter 2.2.2). To this organization, we also include active learning (Subchapter 2.2.3) where the

Machine Learning algorithm interactively samples a system to gather and label new data (Settles, 2009).

This is juxtaposed to supervised/unsupervised learning where the data set is fixed prior to learning.

2.2.1 Supervised Learning

As mentioned in the introduction of Subchapter 2.2 supervised learning deals with the learning of

continuous functions from labeled data.

Specifically we will consider input data in the form of a design matrix X ∈ Rn×m, where n is the

number of samples and m the number of input features. The output data (or labels) are denoted as

Y ∈ Rn×k where k is the number of target features. The objective is to learn (fit) a target function

f̂ : Rm → Rk, which is considered an approximation of a ground-truth, underlying function f. The

goodness of fit is usually measured by a loss function which quantifies the proximity of yi to yiˆ := f̂(xi),

where xi, yi are the i−th rows of X, Y respectively.

In the following, two supervised learning algorithms will be presented, used in this dissertation:

Gaussian Process Regression and Artificial Neural Networks.

2.2.1.1 Gaussian Process Regression

An algorithm that learns a target function from labeled data is Gaussian Process Regression (GPR).

GPR assumes that the (here, assumed one-dimensional) target function f̂ (x), f̂ : Rm → R is distributed

according to a Gaussian process, which can be fully specified by its mean function m(x) and covariance

function k(x, x′) (Rasmussen and Williams, 2006):

f̂ (x) ∼ N (m(x), k(x, x′))
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This can be understood as setting a Gaussian prior distribution over the space of functions. The

mean is usually set to zero by centering the data during preprocessing. The covariance function k(x, x′)

is commonly formulated by a Euclidean-distance kernel function in the input space (Lee et al., 2020). A

popular choice is the Matèrn32 kernel with a constant:

k(xi, xj) = c
(︂

1 +
√

3d(xi, xj; l)
)︂

e−(
√

3d(xi ,xj ;l)), (2.15)

d(xi, xj; l) =

⌜⃓⃓⎷ n

∑
k=1

(xik − xjk)
2

lk
, (2.16)

where xi, xj are any two input feature vectors (rows of a design matrix X), c is a scalar, l is a vector with

number of entries equal to the dimension of the input space. c and l are the hyperparameters to be

optimized (here, collectively denoted θ).

The case of noisy observations is usually considered, assuming y = f (x) + ϵ, where ϵ ∼ N (0, σ2) is

i.i.d. Gaussian additive noise with known variance. Given a data set (X, Y) the optimal hyperparameter

vector θ∗ is the maximum likelihood estimator :

θ∗ = arg min
θ
{−logp(Y|X, θ)}

This estimator defines the posterior Gaussian Process given (X, Y). To find the Gaussian distribution

of the function values at test data points, we represent the multivariate Gaussian distribution with the

covariance matrix whose entries are given by a function such as Eq. 2.15:

⎡⎢⎣ y

y∗

⎤⎥⎦ ∼ N

⎛⎜⎝0,

⎡⎢⎣ K + σ2 I K∗

KT
∗ K∗∗

⎤⎥⎦
⎞⎟⎠ ,

where y∗ is a predictive distribution for test data x∗, K∗ represents a covariance matrix between training

and test data while K∗∗ represents a covariance matrix between test data. Finally, we represent a

Gaussian distribution for the target function at the test points in terms of a predictive mean and its

variance, by conditioning a multivariate Gaussian distribution:
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ŷ∗ = K∗(K + σ2I)−1y (2.17)

K(y∗) = K∗∗ −KT
∗ (K + σ2I)−1K∗,

and we assign the predictive mean (ŷ∗) as the estimated target function for the corresponding data

point. All components of Gaussian Process Regression on a simple example can be seen on Fig. 2.2.

As shown in Eq.(2.16), a large magnitude of the hyperparameter lk would nullify the contribution

along that direction to the distance metric (in the numerator), leading to the relative insignificance (low

sensitivity) of that input feature towards the predictions. In the Gaussian Process literature (Neal, 1996),

this is called “Automatic Relevance Determination”. One can a posteriori disregard inputs with too low

relevance (large lk) in order to learn simpler models, with only the important input features.

Figure 2.2: An example of Gaussian Process Regression (GPR), here learning from 10 randomly sampled
points of the ground truth function f (x) = xcos(x). The kernel used is Gaussian and the assumed
additive noise variance σ2 = 10−3 (the effect of which can be better seen at the inset). GPR provides not
only a prediction, but quantifies uncertainty around it (here, the 95% confidence interval is shown). In
fact, GPR returns the best fitted posterior distribution of output values in the input space. As expected,
the uncertainty grows where observations are sparse, especially at the boundaries of the input space.
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2.2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a family of functions constructed by composing many

affine and nonlinear elementary functions (activation functions). In (feed-forward) neural networks, a

universal approximation theorem (Cybenko, 1989; Chen and Chen, 1995) guarantees that for a single

hidden layer with (sufficient) finite number of neurons, an approximation ŷ := f̂ (x) of the unknown

target function, y := f (x) can be found for some x ∈ Rm. Here, approximation implies that the target

and learned functions are sufficiently close in an appropriately chosen norm: for all ϵ > 0 there exists an

ANN predicting f̂ (x), where : |y− f̂ (x)| < ϵ for all x ∈ A and some A ⊆ Rm. The approximate form

of the target function obtained through the feedforward neural net (here, with a single layer) can be

written as:

f̂ (x) =
Nn

∑
i=1

ψ(wT
i x + bi),

where ψ is a nonlinear activation function, wi, bi are tunable parameters (weights and biases) and Nn is

the number of neurons, which is decided a priori. To find optimal weights and biases, an optimizer is

used (employing a backpropagation scheme) to minimize the root-mean-square error cost function:

ED =
1
n

n

∑
i=1

(yi − f̂ (xi))
2,

which typically measures the goodness of the approximation. Intuitively, the success of Neural Networks

in approximating highly nonlinear functions, can be understood geometrically: the addition of optimized

nonlinear activation functions (e.g. sigmoids) creates a series of appropriately positioned “bumps” in

the input space, which, in principle can approximate any surface (Lapedes and Farber, 1987). For

multiple layers of neurons, the neuronal network is called “deep” (Goodfellow, Bengio, and Courville,

2016).

2.2.2 Unsupervised Learning

Unsupervised learning is used to discover useful structure in unlabeled data. Such structure can

inform us of a reduced, latent (intrinsic) dimensionality (Goodfellow, Bengio, and Courville, 2016). It

can also be used to construct mappings between the original (full, ambient) description and the reduced

(latent) one.

As in the supervised case (Subchapter 2.2.1), the input data will be in the form of a design matrix
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X ∈ Rn×m, where n is the number of samples and m the number of input features. Unsupervised

learning describes the mapping g : Rm → Rd, where d ≤ m. This can be thought as a change of

coordinates or an encoding. Dimensionality reduction is achieved when d < m, yet other useful tasks

can also be achieved, such as manifold learning, clustering or denoising (Lee and Verleysen, 2007).

2.2.2.1 Diffusion Maps

Diffusion maps (Coifman and Lafon, 2006; Nadler et al., 2006; Nadler et al., 2005) is a spectral

nonlinear dimensionality reduction technique based on learning the geometry of an underlying manifold

from sampled data. Fundamental to this method, is the construction of a random walk on the data.

To that end, transition probabilities are calculated using an appropriate kernel and similarity measure.

The Gaussian kernel along with the Euclidean distance are popular choices; the (symmetric) transition

probability between data points indexed i, j will then be proportional to:

wij = exp

⎡⎣−(︄ ||xi − xj||
ϵ

)︄2
⎤⎦ ,

where xi (andxj) ∈ Rm for some i (andj)= 1, .., n and ϵ a scale hyperparameter which quantifies the local

similarity for each data point (kernel bandwidth). Calculating the entries wij, the symmetric weights

matrix W ∈ Rn×n can be constructed. To remove the effect of the sampling density, the normalization

˜︂W = R−αWR−α

is performed, where R is a diagonal matrix with entries Rii = ∑n
j=1 Wij and α = 1 to factor out the

density effects. A second normalization applied on ˜︂W,

K = D−1˜︂W
gives a Markov matrix K; where D is a diagonal matrix, collecting the row sums of matrix ˜︂W. It can be

shown (Coifman and Lafon, 2006) that the matrix I−K
ϵ (the infinitesimal generator of the Markov Chain)

is a discrete approximation of the Laplacian operator ∆ on the underlying manifold.

The stochastic matrix K has a set of real eigenvalues 1 = λ1 ≥ ... ≥ λn with corresponding eigen-

vectors ϕi, i = 1, .., n. The n-dimensional representation of a particular m-dimensional ambient vector
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xi, is given by:

Ψn(xi) = [λt
1ϕi,1, λt

2ϕi,2, ..., λt
nϕi,n]

Note that not all of the above eigendirections are independent, (therefore, informative). In fact,

the independent eigenvectors are not even necessarily the ones with the leading eigenvalues (as, for

example, in Principal Component Analysis, the linear counterpart). The d independent eigenvectors

can be found by local linear regression (Dsilva et al., 2018). The final d−dimensional representation can

be thought as a change of coordinates from Rm to Rd.

For more details about the algorithm presented here, please refer to the manuscript (to be submitted)

“From partial data to out-of-sample parameter and observation estimation with Diffusion Maps and

Geometric Harmonics”.

2.2.3 Active Learning

As mentioned before (introduction of Subchapter 2.2), active learning deals with labeled data (like

supervised learning), however, the data are collected interactively, i.e. the Machine Learning algorithm

decides where to sample, as it learns (Settles, 2009). Under this general definition, we include Bayesian

Optimization and Bayesian Continuation.

In the specific context of this dissertation, we will assume an m−dimensional state space X ⊂ Rm

and an k−dimensional parameter space P ⊂ Rk and a scalar observation function on the state-space

F : Rm → R (here, F is deterministic, but that is not required in general). For specific parameter vectors

p ∈ P we assume that a state x ∈ X exists for which a certain condition is satisfied (in the form of

h(x; p) = 0). If such state is unique, the existence of a well-defined function x = x(p) is guaranteed,

and the function F can be written as F(x) = F(x(p)) = F(p). The specific goal of the algorithms of this

Subchapter is to optimize F, although their usefulness is not restricted to that task.

2.2.3.1 Bayesian Optimization

The optimization problem formulated in the introduction of Subchapter 2.2.3 is:

p∗ = argmaxpF(p), (2.18)

In the introduction of Subchapter 2.2.3 it is not given that F is analytical. In general, this is the case
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of derivative-free optimization of an expensive, black-box objective function. Bayesian Optimization (BO)

is a suitable algorithm for this category of problems (Kushner, 1964).

Bayesian Optimization’s main ingredient is a probabilistic surrogate model supplied with a prior

distribution that captures our beliefs about the behavior of the unknown objective function. This

surrogate model is sequentially refined as more data are observed, via Bayesian posterior updating

(Shahriari et al., 2016). Gaussian Processes (see Subchapter 2.2.1.1 for more details) have been very

popular as a choice for surrogate models (Rasmussen and Williams, 2006).

To sample efficiently, BO minimizes an acquisition function to determine the best possible guess

of where the optimum might lie, given all data previously sampled; this enables active learning. The

acquisition function choice and the selection of its hyperparameters reflect the trade-off between

exploration and exploitation (Brochu, Cora, and Freitas, 2010). For example, a popular choice for

minimization problems is the Lower Confidence Bound acquisition function (Shahriari et al., 2016):

a(p) = µ(p)− βσ(p), (2.19)

where µ(p), σ(p) is the mean and the standard deviation of the Gaussian Process surrogate model at

p and β is a hyperparameter. Larger values of β allows BO to search for optima at places with more

uncertainty, while smaller values of β make BO more risk averse and the search is confined in the vicinity

of already observed data. Convergence rates have been established for some cases of confidence bound

acquisition functions and GP surrogate models (Srinivas et al., 2010). Other ubiquitous acquisition

functions include Probability of Improvement and Expectation of Improvement (Brochu, Cora, and

Freitas, 2010). A pseudoalgorithm for the overall iterative BO process is presented in Alg.2.

Owing to the Gaussian Process surrogate, Bayesian Optimization results in the following useful

information:

• Optimum values and coordinates:

F∗ = maxpF(p), p∗ = argmaxpF(p),

• Objective function approximation and uncertainty estimate (from the posterior output value

distribution):

F(p) ∼ GP(µ(p), k(p, p′))

In the context of complex dynamical systems (such as the one in Subchapter 4), one can think of the

condition h(x; p) = 0 as a condition that x is a steady state of some dynamical system for a parameter
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vector p, and the function F is a performance metric on the steady state, which we seek to optimize.

Having to solve for the steady state (e.g. with Newton’s method) prevents the derivation of an analytical

function x(p) and consequently F(p), which makes the objective function a black-box.

Algorithm 2 Bayesian Optimization - LCB
Input: Observations: S = [pi, F(pi)]i=1...Ns

, β, Termination criteria

Output:
[︁
popt, Fopt]︁

while Termination criteria not met do

Fit GPF on [pi, F(pi)]i=1,...Ns

pnew ← argminpa(p), a(p) = µ(p)− βσ(p)

Append the sample S with [pnew, F(pnew)]

Ns ← Ns + 1

end while[︁
popt, Fopt]︁← [pnew, F(pnew)]

Note, that terminating the Bayesian Optimization iterative process is an important decision. In

problems with very expensive objective functions, a budget of objective function evaluations is specified.

Otherwise, iterate convergence under some norm is preferred. An example of Bayesian Optimization

iterates are shown in Fig.2.3.

Figure 2.3: En example of several Bayesian Optimization iterations borrowed from (Brochu, Cora, and
Freitas, 2010). Consecutive iterates are indexed by t. At the top row, the ground truth objective function is
shown (dashed red line), along with the GP predictive mean (blue line) and its uncertainty (represented
by the shaded region). Current sample is denoted by red points, and the last point discovered as a white
point. At the bottom row, the UCB acquisition function is shown (the maximizing counterpart of LCB).
At each iterate, the next suggested point, will be the one maximizing the acquisition function (maxima
marked by red triangles).
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2.2.3.2 Bayesian Continuation

As mentioned in Subchapter 2.2.3.1 Bayesian Optimization constructs a surrogate model for the

objective function: F(p) ∼ GP(µ(p), k(p, p′)). However, as noted in the introduction of 2.2.3 the

objective function is actually calculated on the state space, where each state vector x is a function of the

parameter vector x(p). In this Subchapter we explore the benefits of constructing an extra surrogate

model for the “solution” manifold (Renson et al., 2019), i.e. the state subspace where the condition

h(x; p) = 0 is satisfied. State vectors in the solution manifold will be denoted x∗(p) = {x ∈ X :

h(x; p) = 0}. Their (element-wise) surrogate models will have the form:

x∗i (p) ∼ GPs(µ(p), k(p, p′)), i = 1..., m, (2.20)

for each component i of the solution vector.

This extra surrogate model serves a very important role when solving for x∗ requires appropriate

initialization in the state space (e.g. Newton’s method). Indeed, if Newton’s method (for example) is

not appropriately initialized, convergence can be very slow, or Newton’s method might not converge at

all. This hinders considerably the overall performance, as the user might have to manually try different

initializations for just one calculation of the objective function. This problem is emphasized in the case of

high-dimensional, nonlinear solution manifolds, where failure to converge from random initializations

is the norm. However, when the solution manifold is also learned and updated iteratively through

Eqs. 2.20, we can access (increasingly) good predictions of where x∗ might lie for a given p. See the

pseudo-algorithm Alg.3 for more details.

The name “Bayesian Continuation” (BC) is proposed for this approach, as it resembles prediction-

correction schemes used in numerical continuation (Keller, 1978; Henderson, 2002), as explored in

Subchapter 2.1.2.
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Algorithm 3 Bayesian Continuation for Bayesian Optimization

Input: Observations: S =
[︁
pi, x∗i (pi), F(pi)

]︁
i=1...Ns

, acquisition function a(p), Termination

criteria

Output:
[︁
popt, xopt, Fopt]︁

while Termination Criteria not met do

Fit GPF on [pi, F(pi)]i=1,...Ns

Fit GPx on [pi, x∗(pi)]i=1,...Ns

pnew ← argminpa(p), for GPF

xpred ← GPx(pnew)

x∗(pnew)← xpred, pnew, with Newton’s method

F(pnew)← x∗(pnew)

Append the sample S with [pnew, xnew, F(pnew)]

Ns ← Ns + 1

end while[︁
popt, xopt, Fopt]︁← [pnew, xnew, F(pnew)]

The merits of Bayesian Continuation are not restricted to accelerating Bayesian Optimization. This

algorithm, when applied sequentially, can be utilized as an uncertainty-driven, Machine Learning-

enabled continuation method (see Fig.2.4 for an example of an implementation instance). We propose

that Bayesian Continuation can be useful for the continuation/manifold completion of surrogate func-

tions from black-box simulations or experimental observations. More details about the algorithms

presented here can be found in the manuscript (to be submitted): “Bayesian Continuation for Bayesian

Optimization”.
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Figure 2.4: En example of a Bayesian Continuation instance for one-parameter continuation of roots of
f (x; r) = r + x2. Here, a Gaussian Process fit is performed locally on the last few points on the solution
curves. This fit provides predictors (in the form of GP predictive means) of where the next solution point
might lie. As can be seen in the inset, the predictor is close enough to the actual solution (corrector).
This method can be adaptive, exploiting uncertainty estimates of the local fit (like the 95% confidence
interval shown here). Automatic Relevance Determination (see Subchapter 2.2.1.1) can also be exploited
to overcome turning points.
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Chapter 3

Discovering Limits of Entrainment

for Circadian Neuronal Networks

This work was completed in collaboration with Prof. Mihalis Kavousanakis and Prof. Ioannis

Kevrekidis. Work presented here is included in the manuscript (under preparation) “Limits of Entrain-

ment of Circadian Neuronal Networks”.

3.1 Motivation

The principal circadian pacemaker is located in the two Suprachiasmatic Nuclei of the anterior

hypothalamus. The SCN directly receives input from photosensitive cells of the retina via the retino-

hypothalamic tract (Ma and Morrison, 2022; Hastings, Maywood, and Brancaccio, 2018) while it is

also connected to the pineal gland, inducing melatonin production during the night (Sack et al., 2007b;

Ma and Morrison, 2022). The SCN also coordinates secondary cellular pacemakers across the body

by controlling biochemical (e.g. neuroendocrine) signals that entrain them (Hastings, Maywood, and

Brancaccio, 2018).

This orchestrating role, puts SCN neuronal networks at the center of numerous physiological

processes and, consequently, its dysfunction gives rise to numerous disorders. Circadian desynchrony is

linked to sleep disorders (jet lag disorder, shift work disorder, advanced sleep phase disorder, delayed
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sleep phase disorder, free-running disorder, irregular sleep-wake rhythm) (Sack et al., 2007b; Sack et al.,

2007a), cardiovascular disease, obesity, hypertension (Scheer et al., 2009), nephropathy (Nakano et al.,

1991), cancer (Savvidis and Koutsilieris, 2012), depression and bipolar disorder (Germain and Kupfer,

2008; Vadnie and McClung, 2017).

Many pharmacological interventions have been suggested to correct misalignments of the circadian

rhythm with the external day-night signal. Benzodiazepines and melatonin have been popular choices

(Turek and Losee-Olson, 1986; Sack et al., 2000). As the understanding of the the exact biochemical

processes involved deepens, more targeted therapies are developed. Small molecules like Longdaysin

(CAS No. : 1353867-91-0) have been extensively studied (in vitro and in silico) as therapeutics in circadian

rhythm disorders, as they directly intervene to the gene regulatory network giving rise to the oscillations

(Huang et al., 2020; St. John et al., 2014; Hirota et al., 2012).

In this work, we use advanced algorithms from numerical analysis/scientific computation and

nonlinear dynamics to investigate the ability of SCN neurons and SCN neuronal networks to synchronize

with the external day-night signal (in dynamics terms, with the external forcing). Specifically, we explore

entrained periodic solutions of high-dimensional dynamical systems arising from computational biology

models, with respect to different:

1. Forcing angular frequencies ω f , where ω f =
2π
Tf

, for a forcing period Tf of the day-night (light-

dark) cycle.

2. Forcing duty cycles ϕ, where ϕ =
Tlight

Tf
for a day duration of Tlight.

3. Simulated Longdaysin effects.

4. Network Heterogeneity extents.

For this purpose, several informative bifurcation diagrams are constructed and the extracted bifurcation

points demarcate the limits of entrainment of circadian neurons or neuronal networks. Moreover, we

construct a reduced, data-driven “emergent space” description of neuronal behavior heterogeneity

using unsupervised learning.

3.2 Computational Model

The computational model used is adapted from the work of Vasalou et al. (Vasalou, Herzog, and

Henson, 2011; Vasalou and Henson, 2011). They constructed a state-of-the-art computational model of

circadian neuronal networks by coupling three components:
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1. Biomolecular clock: The computational model of the biomolecular clock was developed by

Leloup and Goldbeter (Leloup and Goldbeter, 2003; Leloup and Goldbeter, 2004) and describes

the regulatory loops involving the Per, Cry, Bmal1, Clock and Erv-Erbα genes. The interaction of

these loops gives rise to circadian oscillations.

2. Electrophysiology dynamics: This component describes the membrane dynamics of circadian

neurons and the way they are coupled with neurotransmitter signaling i.e. with γ-aminobutyric

acid (GABA) and vasoactive intestinal polypeptide (VIP) signaling (To et al., 2007; Vasalou and

Henson, 2011). The firing frequency is incorporated in the model by associating membrane

voltage and ion conductances with circadian gene expression (Vasalou and Henson, 2010).

3. Network connectivity: An ensemble of 425 neurons was chosen for a realistic representation

of the SCN circadian network (Vasalou and Henson, 2011). All neurons are linked via VIP and

GABA neurotransmitter networks generated from a small-world architecture resembling neuron

connectivities in the SCN (Vasalou and Henson, 2011) (see Fig.3.1 for example).

Henson (Henson, 2013) provides a review comparing this model with others in the literature. There

is also experimental evidence supporting the model’s validity (Vasalou and Henson, 2011; Leloup and

Goldbeter, 2003).

In this model, the day-night (light-dark) cycle is modeled as a step function with period Tf =

Tlight + Tdark and duty cycle ϕ =
Tlight

Tf
. Light forcing is incorporated in the dynamical system implicitly,

by assuming that during the light phase, the AMPA/NDMA and VPAC2 receptors are saturated (in

term of model functions: bGluR (t) = 1, bVIP(t) = 1 for t ∈ [0, Tlight]) (Vasalou and Henson, 2011). In

contrast to Vasalou et al. we assume that the photic effect is uniform across all SCN (both core and shell)

neurons.

The effect of Longdaysin can also be incorporated in the model. Longdaysin is a small drug molecule

acting as a casein kinase I (CKI) inhibitor. It is hypothesized to increase the time required before the

Per-Cry complex can enter the nucleus to repress transcription (Hirota et al., 2012; St. John et al., 2014).

In our model, this effect can be simulated by different values of the parameter k1, the nuclear entry rate

of phosphorylated Per-Cry complex (St. John et al., 2014). Therefore, in our studies, increased values

of Longdaysin translate to lower values of k1. Note that, here, we assume that the concentration of

Longdaysin is constant and not subject to pharmacodynamics.

The realization of the circadian network studied here includes heterogeneity in the parameter vsP0 ,

the basal transcription rate of the Per mRNA, across the neurons. This parameter has been shown
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to strongly affect the ability of circadian neurons to sustain intrinsic oscillations, while the rhythmic

phenotype of Per has been shown experimentally to vary (Yamaguchi et al., 2003). Specifically, vsP0

has been sampled from N (1.2, σ2), similarly to (Vasalou, Herzog, and Henson, 2011) (see Fig.3.1 for

example). It is important to mention, that for reproducibility, the random seed used to generate vsP0 and

the small-world networks is always fixed.

Figure 3.1: (left) GABA adjacency matrix, (middle) VIP adjacency matrix, (right) histograms sampled
form different vsP0 considered here.

Putting all components together, each circadian neuron is described by 21 Ordinary Differential Equa-

tions (ODEs), each of which describes the time evolution of a relevant chemical species. When the entire

network is simulated, the resulting system is 8925-dimensional.

3.3 Single neuron bifurcation studies

When all neurons in a connected network are homogeneous, the network can in principle behave

as each one of its individual neurons. We, therefore, begin our analysis by studying the behavior of a

single circadian neuron.

As can be seen from Fig.??, in the absence of a photic stimulus, the circadian neuron will oscillate

with its intrinsic frequency, while, in the presence of a photic stimulus, the neuron can get entrained.

Notice that at the frequency locked “periodic steady state”, all the chemical species will oscillate with the

same frequency but will not necessarily be at the same phase (e.g. not all species reach their maximum

concentration simultaneously).

To explore entrained periodic solutions of a single circadian neuron, we perform pseudo-arclength
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Figure 3.2: Timeseries of steady state oscillations of the (left) unforced system with natural period
T0 = 22.04h, and (right) forced system with Tf = 24h.

continuation w.r.t the forcing angular frequency ω f (reminder: ω f = 2π
Tf

) resulting in bifurcation

diagrams like the one in Fig.3.3.

Figure 3.3: Bifurcation diagram for periodic steady states under photic stimulus for a single circadian
neuron. Here, the MP (Per mRNA) projection is shown. For reference ω f = 0.262rad/h for Tf = 24h.

Here, (and for the rest of continuation studies in Chapter 3) pseudo-arclength continuation is used
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(described in Subchapter 2.1.2) with a Newton-Krylov GMRES solver (described in Subchapter 2.1.1.2).

The use of the variational approach is avoided due to its computational cost.

As a reminder, in bifurcation studies of entrainment problems, such loops are common when

continuing solutions w.r.t. the forcing angular frequency (Tomita and Kai, 1979) and are termed isolas

(see Subchapter 1.1.1). Each point of the isola corresponds to a fixed point of the stroboscopic map,

or, equivalently, to a periodic steady state of the original 21-dimensional ODE system. The limiting

values of the bifurcation diagram w.r.t. the forcing angular frequency define the limits of entrainment and

constitute saddle-node bifurcations of limit cycles. That is why the periodic solutions exchange stability

at these points (see Fig. 3.3). Along the unstable branch (red) two additional saddle-node bifurcations

are observed, further destabilizing the (already unstable) entrained solution.

To simulate the effect of the drug Longdaysin, we investigate how the synchronization limits change

for different values of k1. As suggested in (St. John et al., 2014) we expect decreasing values of k1,

(which correspond to higher doses of Longdaysin) to lead to longer intrinsic (unforced) periods and

larger oscillation amplitudes for the non-driven neurons. First, we perform continuation of the unforced

system w.r.t. k1 and examine the limit cycles at the two extreme limits of the k1 interval (Fig.3.4). Then,

we select a discrete, representative set of k1 values, and calculate the limits of entrainment for each one

of these values by constructing isolas (as in Fig. 3.3) with respect to the forcing frequency. Note that

the nominal value of k1 according to (Vasalou, Herzog, and Henson, 2011) is k1 = 0.49 (also included).

Note, that in the original model k1 has units of frequency (h−1 which will be implied in the following

text, for simplicity.
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Figure 3.4: Unforced MP oscillations at the periodic steady state of k1 = 0.2 and k1 = 0.8.

We thus confirm that lower values of k1 correspond to higher circadian periods and amplitudes of

MP oscillations. It can also be seen from Fig. 3.5 that lower values of k1 result in tighter entrainment

regions. The “natural” period of unforced oscillations always lies within the respective entrainment

boundaries, as discussed in (Tomita and Kai, 1979). The bifurcation diagram in the k1 − ω f space is

equivalent to what is known in the literature as a resonance horn or Arnold tongue, and demarcates the

parameter subregion where entrainment by an external forcing signal is feasible.

Outside of the resonance horn in the the k1 − ω f space, various other dynamic responses are

expected, e.g. quasiperiodicity, frequency locking, or chaos (Tomita and Kai, 1979). Fig. 3.6 shows

quasiperiodic response for low values of k1, at ω f = 0.16746rad/h right after crossing the left saddle-

node bifurcation (at ω f = 0.16749rad/h). Indeed, as it can be seen in the right panel of Fig. 3.6 the

trajectories are now attracted to a high-dimensional torus.

For higher k1 values it is expected that different phenomena arise (Kevrekidis, Schmidt, and Aris,

1986; Tomita and Kai, 1979). Indeed, for k1 = 0.49 and ω f = 0.2446rad/h a period-6 solution arises

(frequency locking) after crossing the left bifurcation at ω f = 0.2447rad/h (left panel, Fig. 3.7).
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Figure 3.5: Bifurcation diagram for periodic steady states under photic stimulus for varying angular
frequency ω f and Longdaysin effect (k1 value) in the case of a single circadian neuron. At the bottom
subfigure, a collection of isolas is shown for discrete values of k1. At the top figure, the resonance horn is
approximated in the ω f − k1 space.
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Figure 3.6: Loss of entrainment for k1 = 0.05, ω f = 0.16746rad/h. Near the tip of the resonance
horn (low k1), quasiperiodicity is observed outside, but close to the entrainment limits. This can be
confirmed by plotting iterates of the stroboscopic map (here, shown in the MC−MP projection), where
an invariant circle is observed (left). In the phase portrait representation (right), trajectories are attracted
to a torus (here, the MP− PCC − PC projection is shown, along with stroboscopic map iterates). Note
that MP: Per mRNA, MB: Bmal1 mRNA, MC: Cry mRNA, PC: nonphosphorylated Cry protein in the
cytosol, PCC: nonphosphorylated Per-Cry protein complex in the cytosol.

.

Figure 3.7: Loss of entrainment for k1 = 0.49 : ω f = 0.2446rad/h. (left panel) ω f = 0.3639rad/h
(right panel). Stroboscopic map iterates reveal frequency-locking and chaos respectively (here in the
MC−MP projection)
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Crossing the other limit of entrainment for k1 = 0.49 (saddle-node bifurcation at ω f = 0.3638rad/h),

chaos is observed to emerge for ω f = 0.3639rad/h (right panel, Fig. 3.7).

Figs. 3.6, 3.7 stand as evidence that periodically forced circadian neurons demonstrate the entire

gamut of dynamic responses typical of periodically forced dynamical systems (Tomita and Kai, 1979).

Subsequently, we perform continuation of the periodic steady states w.r.t the duty cycle (ϕ) for a fixed

period (here, Tf = 24h or, equivalently, ω f = 0.268rad/h). In other words, we investigate entrainment

of circadian neurons when the ratio of the length of the day (and, correspondingly, the duration of the

night) changes.

Figure 3.8: Bifurcation diagram for periodic steady states w.r.t the duty cycle ϕ under photic stimulus
of fixed angular frequency ω f = 0.268rad/h and without drug intervention (k1 = 0.49) in the case of
a single circadian neuron.Notice the additional bifurcations (leading to complex dynamics) towards
lower day/night ratios.

As seen in Fig.3.8 there are entrainment limits w.r.t to the duty cycle as well. As anticipated, circadian

neurons are unable to synchronize when the day/night phases become highly unbalanced. However,

entrainment is not always lost in exactly the same way as the typical isolas we have encountered thus far.
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For high day/night phase ratios, a saddle-node bifurcation marks the upper boundary of entrainment;

but at low day/night ratios, the system undergoes a period doubling bifurcation (both the stable and the

unstable branch). This means that the circadian neurons will return to the same state after two forcing

periods. Interestingly, for some region, stable period-1 and period-2 solutions coexist, which means that

circadian neurons are briefly bi-stable (Fig. 3.9a). It is worth noting that the period-2 branches undergo

an additional period-doubling bifurcation, leading to period-4 solutions. We hypothesize that this is

the beginning of a period-doubling route to chaos (Fig. 3.9b) through a cascade of period-doubling

bifurcations.

(a) ϕ = 0.305 (b) ϕ = 0.085

Figure 3.9: Phase portraits at low ϕ values where bistability as well as chaos is observed.

3.4 Heterogeneous network bifurcation studies

In a realistic neuronal network each neuron is expected to be unique, or, in terms of computational

modeling, to have its own intrinsic parameter values. As described in Subchapter 3.2, here we consider

networks of 425 neurons that are heterogeneous w.r.t. the values of the parameter vsP0 , for each neuron.

The effect of heterogeneity can be seen when plotting projections of the (now, 8925−dimensional)

limit cycle for two variables of each neuron (Fig. 3.10). We plot these limit cycles for two extents of

heterogeneity (variance of the -here, normal- distribution of the heterogeneous parameter) and for five

different simulated Longdaysin effects (k1). As seen in Figs. 3.10 and 3.11 increasing heterogeneity causes

the trajectories of different neurons to move further apart. However, all neurons follow qualitatively

similar trajectories since the neuronal network is entrained.

48



By analogy with Fig.3.5, we can computationally construct a resonance horn for each heterogeneity

extent (Fig. 3.12). The entrainment limits do not change much with increasing neuron heterogeneity.

This would seem to suggest robustness of the neuronal network to heterogeneity variations. (Komin

et al., 2011).

As in the case of single neuron studies, we can explore how entrainment is lost in the neuronal

network. As can be seen in Fig. 3.13, after crossing the right saddle-node bifurcation for (k1 = 0.49

and σ2 = 10−2, ω f = 0.2455rad/h) a single “rogue” oscillator emerges. By that, we mean that even

though most neurons appear to oscillate in synchrony, one of them gradually desynchronizes and

starts oscillating “on its own” with varying amplitude. The emergence of such a “rogue” oscillator

can be attributed to large variance of the heterogeneity parameter and is associated with bifurcations

of the autonomous dynamical system (Bold et al., 2007). In the dynamical systems literature a simple

caricature of such a bifurcation is provided by the SNIPER (saddle-node infinite period) bifurcation

(Bertalan et al., 2017; Moon and Kevrekidis, 2006).

Figure 3.11: 2D projections of the 8925−dimensional limit cycle for an even higher value of heterogeneity
variance studied here (σ2 = 0.04), for comparison purposes. This limit cycle was calculated for
k1 = 0.49, ϕ = 0.5 with forcing period Tf = 24h. This figure should be qualitatively compared to Figs.
3.10e, 3.10f.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 3.10: 2D projections of the 8925−dimensional limit cycles, for k1 in {0.2, 0.35, 0.49 (nominal
value), 0.65, 0.8}, for heterogeneity variance 10−3 or 10−4, with forcing angular frequency equal to the
intrinsic one (for each k1) and for ϕ = 0.5.
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Figure 3.12: Superimposed resonance horns for the case of a single circadian neuron, and a neuronal
networks with varying extents of heterogeneity.

Figure 3.13: Loss of entrainment due to the emergence of a single “rogue” oscillator. Three panels show
oscillation “snapshots” along a long trajectory. Initially (left panel), all neurons seem to be oscillating
in synchrony. After some time (middle panel), the trajectory of one neuron slowly diverges from the
rest, and for longer times (right panel) it starts oscillating erratically. Variable MPi is reported for every
neuron, i while each neuron is colored by its heterogeneity vsP0 value; the rogue oscillator has the
highest. Forcing parameters and heterogeneity variance value are mentioned in the text.
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Figure 3.14: Continuation branch of periodic steady states solutions for the neuronal network w.r.t. the
duty cycle ϕ for heterogeneity variance of value σ2 = 10−3 and k1 = 0.49, Tf = 24h. Here the variable
MPi is reported for every neuron i at the initial phase of the forcing. This should be compared to the
lower branch in Fig. 3.8.

Similarly to Fig.3.8 we can also continue periodic solutions of the high-dimensional, heterogeneous

neuronal network w.r.t. ϕ, the day/night ratio (Fig.3.14). As expected, the bifurcation diagram for

a single circadian neuron is again qualitatively similar to the large, mildly heterogeneous network

diagram.

3.5 Latent heterogeneity space

Realistic neuronal networks are characterized by heterogeneity with respect to multiple physical

properties. Enumeration and identification of such heterogeneities (and respective parameters for

a computational model) from observed neuronal oscillation data is highly nontrivial, and is clearly

affected by: (a) the quality and quantity of data; (b) stochasticity/noise inherent to measurements of

biological systems; and (c) the complexity of the computational model and assumptions used in its

formulation.

With increasing model complexity, it is clear that increasing parameter heterogeneity and variability

(both for intrinsic kinetic parameters, and for structural network connectivity parameters) becomes

important. When these parameters are not explicitly known, it is the variability of the neuronal

behavior itself that encodes it; and so one can obtain a sense of the parameter heterogeneity from

the neuronal time-series variability itself. In other words, it should be possible to infer the effective

parametric heterogeneity/variability of the entire network by the richness of the variability of the
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observed oscillations of individual neurons. Here, we employ a data-driven approach to uncover

an effective heterogeneity space purely from observed oscillation data. The algorithm we employ is

Diffusion Maps (a nonlinear, manifold learning technique), to embed oscillation data in an effective,

data-driven heterogeneity space Coifman and Lafon, 2006; Thiem et al., 2021; Thiem et al., 2020; Kemeth

et al., 2018. The idea of creating such data-driven emergent spaces purely from observations was proposed

in Kemeth et al., 2018; Kemeth et al., 2022 and it was used in the simple case of Kuramoto-type oscillators

in Thiem et al., 2021.

Figure 3.15: (left) Data from a single phase of the limit cycle plotted on the space defined by the first two
nontrivial diffusion maps eigenvectors. All data points are colored by the a priori known heterogeneity
parameter vsP0 . Data are chosen from the case of ϕ = 0.5, k1 = 0.49, σ2 = 10−3 for forcing angular
velocity equal to the intrinsic one. (right) The first nontrivial diffusion maps eigenvector plotted against
the heterogeneity parameter.

As in Kemeth et al., 2018 we select data from a single phase of the limit cycle (the exact phase does not

matter); the data set therefore consists of 425 data points (number of neurons) in a 21-dimensional space

(number of variables per neuron). As shown in Fig.3.15 diffusion maps reveals that the (synchronized)

neuronal states are effectively one-dimensional, as ψ1 seems to be the only independent eigenvector.

The right panel of Fig.3.15 confirms that the observed data-based emergent heterogeneity descriptor

ψ1 in indeed one-to-one with the (true) intrinsic heterogeneity vsP0 : the data-driven heterogeneity

parametrization is one-to-one with the true physical one.

3.6 Discussion and Conclusions

This work was aimed at computationally exploring the limits of entrainment of circadian neurons

and circadian neuronal networks. We employ modern techniques from scientific computing, such

as matrix-free timestepper-based algorithms, to circumvent limitations inherent in high-dimensional
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dynamical systems. Specifically, it shown that using Newton-Krylov GMRES to find fixed points

of a 8925−dimensional stroboscopic map is computationally efficient (considering the alternative, i.e.

calculating 89252 entries of a Jacobian). These algorithms enable the exploration of the simulated effect of

(i) forcing frequency, (ii) forcing duty cycle, (iii) Longdaysin dosing level, and (iv) neuronal heterogeneity,

on the ability of circadian neurons to entrain to the day/night cycle. Lastly, an unsupervised learning

algorithm is used to discover an effective neuronal heterogeneity space from observed oscillation data.

A wealth of responses to different day/night cycle conditions is demonstrated, such as entrainment,

quasiperiodicity, phase-locking and chaos. Linking fundamental concepts of nonlinear dynamics to

computational neuroscience can lead to a holistic understanding of circadian dynamics and motivate

real world applications. Especially in the case of simulated pharmacological effects, such a model can be

thought as a computational “sandbox” for therapeutic (possibly, personalized) interventions to the SCN.

Furthermore, combining scientific computing with Machine Learning can provide significant insights

into the underlying degrees of freedom of systems as complex as the body’s own clock.
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Chapter 4

Optimizing Reactors

under Dynamic Operation

Work in this Chapter was done in collaboration with Prof. Mihalis Kavousanakis, Prof. Paul J.

Dauenhauer and Prof. Ioannis Kevrekidis. The corresponding manuscript (under preparation) is

“Computations and Optimization for Programmable Catalysts".

4.1 Motivation

Rate enhancement of heterogeneous catalytic reactors remains a focus in Chemical Engineering

research and industry, as it translates to paramount reduction in costs and environmental footprint

(Ardagh et al., 2019). It is particularly important to sustainability (e.g. carbon dioxide as feedstock

(Rodriguez et al., 2015; Dunwell et al., 2018; Vogt et al., 2019), pollutant degradation (Deka et al., 2013;

Fu et al., 2022)), basic chemicals (e.g. ammonia (Singh et al., 2018; Foster et al., 2018), monomers (Stadler

et al., 2019)) and energy (e.g. methane production (Vogt et al., 2019), biofuels (Friend and Xu, 2017)).

In many cases, the expensive catalysts (e.g. rare earth, noble metals) or extreme operating conditions

required for these processes are responsible for a significant percentage of the final cost.

One of the most common approaches in improving heterogeneous catalysis is circumventing or

removing limiting processes which constrain the overall reaction rate. For example, the Sabatier
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principle describes how either the surface reaction or the desorption step can be limiting, depending

on the binding strength between catalyst and adsorbates (Chianelli et al., 2002; Foster et al., 2018;

Gathmann, Ardagh, and Dauenhauer, 2022) . This trade-off is usually depicted with the so-called

volcano plots (Ichikawa, 1990) and naturally implies an optimum, i.e. a catalyst best suited for each

reaction. However, this applies to catalysts operating in static conditions, i.e. their activity does not

change over time. On the contrary, dynamic operation of catalytic reactors (and specifically, periodic)

can overcome these limitations and lead to great enhancement of the turnover frequency (Ardagh,

Abdelrahman, and Dauenhauer, 2019; Ardagh et al., 2020; Ardagh et al., 2019), when tuned properly.

Dynamic operation can be achieved though various mechanisms: oscillating feed concentrations (Tomita

and Kai, 1979), temperature (Qiao et al., 2008), surface potential (Shetty et al., 2020; Lim, Hülsey, and

Yan, 2021), dynamical strain (Wittreich et al., 2022) or light illumination (Lovelett et al., 2021; Sordello

et al., 2021; Qi et al., 2020).

Operating a reactor in periodic conditions goes way back: It has been systematically studied

in the trail-blazing work of Horn (Horn and Lin, 1967) and Bailey (Bailey, 1974), who introduced

the mathematical methodology for it. Tomita and Kai (Tomita and Kai, 1979) explored the response

of periodically forced chemical kinetics to different forcing parameters (such as the amplitude and

frequency of the signal) and constructed the relevant bifurcation diagrams. Kevrekidis et al. (Kevrekidis,

Schmidt, and Aris, 1999; Kevrekidis, Aris, and Schmidt, 1986b; Aronson et al., 1986; Kevrekidis, Aris, and

Schmidt, 1986a) have rigorously explored the dynamics of periodically forced reactors and constructed

detailed bifurcation diagrams for representative cases of kinetics (autocatalytic reactions, Langmuir-

Hinshelwood kinetics) and forcing parameters (concentration, temperature). Their work deals with

dynamical systems that exhibit oscillations even without forcing (i.e. autonomous periodic response),

yet the analysis and algorithms used are of more general interest. With more recent advances in

experimental methods, (specifically, precise control of the forcing schedule and real-time measurement

of the response) computational work was validated against experimental data. Specifically it was shown

(Wolff et al., 2003a; Wolff et al., 2003b; Qiao et al., 2008) how periodically forcing a Pt catalyst can lead

to significant enhancement of the overall CO oxidation rate. In that case, the forcing was introduced

through a localized temperature increase induced by a laser beam. When the laser beam visits each

point on the surface on a periodic schedule, steady state oscillations arise.

In the last years, Dynamic Catalysis has gathered renewed interest due to new modeling approaches

and experimental capabilities. Specifically, Dauenhauer et al. have shown computationally (Ardagh,

Abdelrahman, and Dauenhauer, 2019; Ardagh et al., 2020; Ardagh et al., 2019) and experimentally
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(Shetty et al., 2020; Gopeesingh et al., 2020) that periodic operation can be achieved by imposing an

electrodynamic oscillation on the catalytic surface which causes the binding energies (and consequently,

all species’ concentrations) to oscillate. When oscillating between two states on either side of the

Sabatier optimum, it is possible to continuously “switch” between limiting processes, which, when

tuned properly, can greatly improve efficiency.

In this work, we present an algorithmic toolbox to efficiently calculate the response of reactors

to external periodic forcing. With the assistance of it, we explore how different forcing parameters

affect the reactor’s response. This allows us to understand how to optimally tune the extra degrees

of freedom that arise when introducing the forcing. It also enables to locate and understand optimal

forcing function shapes.

4.2 Case studies

In general, we consider two chemical reaction schemes, and three possible reactor configurations:

Systems: Unimolecular surface reaction, Parallel surface reaction

Reactors: Constant gas pressure reactor, Batch reactor, CSTR

Out of all six combinations, three are considered in this manuscript, which are described in the following.

Pseudo-steady state unimolecular reaction

First, a simplified 2-dimensional surface catalysis model will be studied. This model is adapted and

modified from (Ardagh, Abdelrahman, and Dauenhauer, 2019) assuming constant partial pressures

for all species. Therefore, the resulting dynamical system consists of two ODEs describing the time

evolution of the surface coverages of species A and B:

dθA
dt

= k f1
PAθ∗ − (kr1 + k f2 )θA + kr2 θB (4.1)

dθB
dt

= kr3 PBθ∗ − (k f3 + kr2 )θB + k f2 θA, (4.2)
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Figure 4.1: Schematic with reaction steps and corresponding rate constants. A, B are the gas species and
A∗, B∗ the adsorbed species.

where θ∗ = 1− θA − θB denotes the coverage of empty sites, PA = 99bar is the constant partial pressure

of A and PB = 1bar is the constant partial pressure of B. Let x = [θA, θB] denote the state vector,

k = [k f1
, k f2 , k f3 , kr1 , kr2 , kr3 ] the kinetic parameters vector and f(x(t); t, k) the corresponding vectorfield

described by Eqs. 4.1, 4.2.

Most kinetic parameters are a function of the relative binding energy of B (∆BEB), as described in

(Ardagh, Abdelrahman, and Dauenhauer, 2019), and in detail, in the following:

The reaction rate constants for all forward elementary reactions shown in Fig. 4.1 are defined as:

k f1
= 106e

−Ea f1
/RTr , k f2 = 1013e

−Ea f2
/RTr , k f3 = 1013e

−Ea f3
/RTr ,

and for the respective reverse elementary reactions:

kr1 = k f1
/K1, kr2 = k f2 /K2, kr3 = k f3 /K3,

where the equilibrium constants are defined as:

K1 = 10−7e−∆H1/RTr , K2 = e−∆H2/RTr , K3 = 107e−∆H3/RTr ,

and the activation energies for the forward steps:

Ea f1
= 0J, Ea f2

= max{β + α∆H2, ∆H2, 0}, Ea f3
= ∆H3
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while the corresponding enthalpies:

∆H1 = −BEA, ∆H2 = ∆Hovr + BEA − BEB, ∆H3 = BEB

Finally the Binding energies for both A and B are:

BEA = max{BEA0 + dCorrA∆BEB(t), 0}, BEB = max{BEB0 + dCorrB∆BEB(t), 0}

Constant Value Units Description

Tr 423.15 K Reactor Temperature
R 8.314 J/mol/K Ideal gas constant

∆Hovr −20 kJ/mol Overall reaction enthalpy
α 0.8 − BEP linear-scaling parameter
β 102 kJ BEP offset

BEA0 1.3 eV Reference Binding Energy of A
BEB0 1 eV Reference Binding Energy of B

dCorrA 0.5 − Proportionality constant for A
dCorrB 1 − Proportionality constant for B

PA 99 bar Reactor partial pressure of A
PB 1 bar Reactor partial pressure of B

wcat 200 mg Catalyst mass
ρsites 2 · 10−5 mol/g Density of catalytic sites per catalyst weight

Table 4.1: Parameters used to simulate the system of Eqs.4.1, 4.2, depicted in Fig. 4.1. Note, that “BEP”
stands for Brønsted-Evans-Polyani principle (Akhade et al., 2018).

Note, that from Table 4.1 we have Nsites = ρsites · wcat (after appropriate conversions)

We will consider the case were oscillations in ∆BEB are enforced externally and the dynamical

system becomes non-autonomous as a result. Specifically, the value of ∆BEB will change according to a

step forcing function (see Fig. 4.2).
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Figure 4.2: Step forcing function

As it can be deduced from Fig.4.2 any step forcing function has four degrees of freedom (equivalently,

is a four-dimensional parameter family of shapes). Here, we will choose the following parameters for

the parametrization:

• Forcing Frequency f = 1
T

• Duty cycle ϕ = τ1
T

• Amplitude ∆U = UR −UL

• Lower oscillation end-point UL

The analytical expression of the step forcing function would be:

∆BEB(t) =

⎧⎪⎨⎪⎩ UR(:= UL + ∆U) 0 ≤ t mod T < ϕT

UL ϕT ≤ t mod T < T

Denoting p = [ f , ϕ, ϕ, ∆U, UL] we can write ∆BEB = ∆BEB(p) or k = k(p).

Batch reactor - parallel reaction pathway

Next, the ODEs and parameters used to model a parallel surface reaction pathway in a batch reactor

are presented.
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Figure 4.3: Schematic with reaction steps and corresponding rate constants. A, B, C are the gas species
and A∗, B∗, C∗ the adsorbed species.

dCA
dt

= −k1
Nsites

V
pAθ∗ + k2

Nsites
V

θA (4.3)

dCB
dt

= −k6
Nsites

V
pBθ∗ + k5

Nsites
V

θA (4.4)

dCC
dt

= −k10
Nsites

V
pCθ∗ + k9

Nsites
V

θC (4.5)

dθA
dt

= k1 pAθ∗ − (k2 + k3 + k7)θA + k4θB + k8θC (4.6)

dθB
dt

= k6 pBθ∗ + k3θA − (k4 + k5)θB (4.7)

dθc

dt
= k10 pCθ∗ + k7θA − (k8 + k9)θC, (4.8)

where pX is the partial pressure of species X, Nsites denotes the moles of available catalytic sites and

V the reactor volume. The state vector now becomes x = [CA, CB, CC, θA, θB, θc] and the parameter

vector k = [k1, ..., k10]. Note, that in this case it is the relative binding energy of A oscillating, therefore:

k = k(∆BEA)

All components of k, as shown in Fig. 4.3 are defined as:

k1 = kB
Trh e∆S1/R,
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k3 = kB
Trh e−Ea1 /RTr ,

k6 = kB
Trh e−∆S3/R,

k7 = kB
Trh e−Ea2 /RTr ,

k10 = kB
Trh e−∆S5/R,

k2 = k1/K1, k4 = k3/K2, k5 = k6K3, k8 = k7K4, k9 = k10K5,

where the equilibrium constants are defined as:

Ki = e−∆Gi/RTr , where: ∆Gi = ∆Hi − Tr∆Si, i = 1, ..., 5

and the activation energies:

Ea fi
= max

{︁
βi + αi∆H2i, ∆H2i, 0

}︁
, i = 1, 2

while the enthalpies:

∆H1 = −BE1, ∆H3 = BE2, ∆H5 = BE3

∆H2 = (H2 − BE2)− (H1 − BE1),

∆H4 = (H3 − BE3)− (H1 − BE1).

Finally, the Binding Energies:

BE1 = max{BEA0 + ∆BEA, 0 }

BEj = max{Hj + γ(BE1 − Hj)− (1− γj)δj, 0}, j = 2, 3

All necessary parameters are mentioned in the Table 4.2
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Constant Value Units Description

Tr 423.15 K Reactor Temperature
R 8.314 J/mol/K Ideal gas constant
α [0.6, 0.6] − BEP linear-scaling parameters
β [100, 100] kJ/mol BEP offsets
γ [2, 0.5] − BE proportionality constants
δ [−1.4,−1.4] eV BE common point

BEA0 1 eV Reference Binding Energy of A
Hi [0, 0, 0] kJ/mol Product Enthalpies

∆Si [−135, 0, 135, 0, 135] kJ/mol/K Reaction Entropies
V 0.0002603 L Reactor volume
h 6.621̇0−34 J/Hz Planck constant

kB 1.381̇0−23 J/K Boltzmann constant
Nsites 2.761̇0−6 mol Empty catalytic sites
pA0 100 bar Initial partial gas pressure of A

Table 4.2: Parameters used to simulate the system of Eqs.4.3 - 4.8 depicted in Fig. 4.3. Note, that “BE”
stands for Binding Energies, while “BEP” stands for Brønsted-Evans-Polyani principle (Akhade et al.,
2018)

Note that not all ODEs in the above system (Eqs. 4.3-4.8) are independent, due to the additional

equation for conservation of mass in the batch reactor:

Nt = V(CA + CB + CC + Nsites(θA + θB + θC)), (4.9)

where Nt is the constant total moles per reactor volume.

To make our system non-singular (Buckingham, 1914; Aris and Mah, 1963), we remove one of the

ODEs from 4.3-4.8 and replace the respective variable through the mass balance (Eq. 4.9). Here, we

choose to replace CB through Eq.4.9, as it has much different range of values than the rest of the variables.

We end up with a well-defined system of 5 ODEs and a reduced state vector xr = [CA, CC, θA, θB, θC].

Here, a similar forcing mechanism is introduced, as in the unimolecular surface reaction system, i.e. the

forcing is introduced to the kinetic parameters through a step forcing in the relative binding energy of A

(∆BEA). An example of the energy diagram for UR = 0.5eV, UL = −0.5eV.
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Figure 4.4: Energy diagram of the two states of the step forcing function. The state colored red UR
favors the surface reaction step, while the blue colored state UL favors desorption.

CSTR - parallel reaction pathway

Lastly, a parallel surface reaction pathway in a CSTR is also considered, adapted from (Ardagh et al.,

2020):

dCA
dt

=
q̇
V
(CA − CA f eed )− k1

Nsites
V

pAθ∗ + k2
Nsites

V
θA (4.10)

dCB
dt

=
q̇
V
(CB − CB f eed )− k6

Nsites
V

pBθ∗ + k5
Nsites

V
θA (4.11)

dCC
dt

=
q̇
V
(CC − CC f eed )− k10

Nsites
V

pCθ∗ + k9
Nsites

V
θC (4.12)

dθA
dt

= k1 pAθ∗ − (k2 + k3 + k7)θA + k4θB + k8θC (4.13)

dθB
dt

= k6 pBθ∗ + k3θA − (k4 + k5)θB (4.14)

dθc

dt
= k10 pCθ∗ + k7θA − (k8 + k9)θC, (4.15)
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where q̇ is the volumetric flow rate and CX f eed is the feed concentration of species X. As in (Ardagh et al.,

2020) we consider the case of 1% period-averaged conversion of A. To satisfy this additional constraint,

we let the volumetric flow rate q̇ vary. In fact, we can also solve for the volumetric flow rate with the

following modification: We can augment the system of ODEs (Eqs. 4.10-4.15) by:

dc
dt

=
1
T

CA f eed − CA

CA f eed

, (4.16)

where T is the forcing period. After integrating this ODE (along with Eqs. 4.10-4.15) the result is:

c(T) =
CA f eed−

1
T

∫︁ t
0 CA(t)dt

CA f eed
, which is the period averaged conversion of A. All parameters are described

in detail in Ardagh et al., 2020. Note, that in this case it is the relative binding energy of A oscillating,

therefore: k = k(∆BEA)

4.3 Discovering periodic steady states

4.3.1 Solver efficiency

One can discover steady states by brute-force integration of the system’s ODEs, until convergence

to a stable periodic steady-state (e.g. by tracking the state vector at a fixed phase, as in (Ardagh et al.,

2019)). Alternatively, one can employ the variational approach and solve for the limit cycles with

Newton’s method as fixed points of the stroboscopic map (see Subchapter 2.1.1.1). To compare these

two approaches we search for periodic steady states (with the same accuracy) initializing from the same

initial state (unloaded catalytic surface) and track some relevant performance metrics. The results can

be seen in Fig.4.5. This is performed for three frequency values ( f = 102, 103, 104 Hz). These values

where chosen a posteriori as representative values for the entire range of behaviors.
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Figure 4.5: Locating periodic steady states with brute-force integration vs. with Newton’s method
(variational formulation), for three values of forcing frequencies (colored differently). Integration
converging to the same periodic steady state as Newton’s method (denoted as stars). For the integration
only the endpoints of each phase are plotted, after the first phase. Note that the rest of the forcing
parameters are fixed at ϕ = 0.5, UL = −0.1eV, ∆U = 0.6eV.

Frequency (Hz) tNewton/tIntegration Integration Periods

102 1.32 21
103 0.20 266
104 0.03 2164

Table 4.3: Performance comparison between brute-force integration and Newton’s method (with the
variational approach), for the cases shown in Fig. 4.5.

Fig.4.5 and Table 4.3 provide useful information both for algorithmic performance and for the

system’s dynamics. To start with, all integration trajectories (Fig.4.5) start from (θA, θ∗) = (0, 1) (off plot

limits), i.e. with no adsorbates on the catalyst’s surface. These two variables were chosen for better

visualization. Upon initialization (from the first phase of the first oscillation), the catalyst rapidly loses

most of its empty sites. Following that, the rate of convergence to the periodic steady state strongly

depends on the forcing frequency. For small frequencies (equivalently, large periods), such as f = 102

Hz, integration converges after a few periods. With increasing forcing frequencies (equivalently, smaller

periods), the integration time required grows exponentially (see Table 4.3). This can be understood

in terms of the dynamics of each phase: when each phase lasts longer the system has adequate time

to move towards the respective steady state before switching to the other phase. This directly affects

the time that brute-force integration takes to converge. On the contrary, Newton’s method requires

just a couple of iterates for convergence, and the time required is not greatly affected by the forcing

71



frequency. Therefore, Newton’s method can be much more efficient, especially for larger frequencies

(taking, for example no more than 4% of the time compared to brute-force integration, as shown in

Table 4.3). It is also important to note, that brute-force integration can locate only stable periodic steady

states, while Newton’s method (depending on initialization) can also locate unstable steady states. This

makes Newton’s method suitable for stability and/or bifurcation analysis. The linear model we are

considering here, however, does not have any unstable periodic steady states.

4.3.2 Newton-Krylov GMRES

We also present the Newton-Krylov GMRES approach described in Subchapter 2.1.1.2 as an alterna-

tive to the variational approach (Subchapter 2.1.1.1). As discussed in Subchapter 2.1.1, this alternative is

used to demonstrate that our methodology can be extended to high-dimensional systems while avoiding

prohibitive memory requirements.

Figure 4.6: Newton convergence using Newton’s method with the variational approach vs. Newton
Krylov-GMRES f ≈ 6667Hz, ϕ = 0.50, UL = −1.46eV, ∆U = 0.6eV

NK-GMRES convergence seems quadratic as is the variational approach while the converged

solutions agree within the range of numerical accuracy. In fact the iterates of both methods seem

consistent, taking into account the differences in the numerical implementation of each. In general,

NK-GMRES is not expected to converge as well in general, as this is an inexact Newton’s method (Kelley,

2003).
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4.3.3 Solving for conversion constraints

In the case of the CSTR with parallel reaction pathway, the solution the solver finds, needs to satisfy

the 1% conversion constraint: c(T)− 0.01 = 0, where c(T) is defined by the Eq.4.16. As mentioned,

to that end, we let the volumetric flow rate q̇ vary. As a result, the solver is asked to find roots to the

following set of equations:

R(x; q̇) = 0 (4.17)

c(T)− 0.01 = 0 (4.18)

Let y ∈ R7 be the vector of unknown quantities: y = [x, q̇]. The challenge remaining, is to define

the Jacobian of the system Eqs.4.17, 4.18 to be used in Newton’s method (Eq. 2.1). Jacobian entries

of the form ∂Ri(x)
∂xj

can be calculated by the variational approach presented in Subchapter 2.1.1.1. That

approach is also valid for ∂Ri)
∂c , ∂c(T)

∂xj
, ∂c(T)

∂c . The column of the Jacobian corresponding to derivatives

w.r.t. q̇, can be calculated as parametric derivatives (also presented in Subchapter 2.1.1.1).

4.4 Understanding the effect of the forcing parameters

Figure 4.7: Energy diagram of the two states of the step forcing function. The state colored red UR
favors the surface reaction step, while the blue colored state UL favors desorption.
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(a) (b)

Figure 4.8: Oscillation of the binding energies between phases R and L lead to oscillations of all chemical
species (and functions thereof): (a) Four oscillations of two of the system variables: θA, the surface
coverage of A, and θ∗, the surface coverage of empty sites. Blue and red colors denote the oscillation
phase (see 4.7), (b) The limit cycle point of view of the oscillations on the left. The points of phase
change are denoted on the limit cycle. Note that these results are obtained for f = 103Hz, ϕ = 0.5, UL =
−0.1eV, ∆U = 0.6eV

All system dynamics can be described in terms of six processes: Adsorption of A, Desorption of

A, Forward and Backward surface reaction, Adsorption of B, and Desorption of B. Adsorption of both

species does not require activation, in contrast to the rest of the processes.

During phase R, the surface reaction energy barrier is reduced, and the desorption of B energy

barrier is increased. Therefore, this phase favors the surface reaction rate. On the contrary, phase L

favors the desorption of B, and the surface reaction rate is reduced. In other words, phase R induces a

bottleneck on the desorption of B, while during phase L the bottleneck is shifted to the surface reaction.

The limiting process of each oscillation phase is directly reflected on the surface coverages of the

chemical adsorbates (here, we choose again to study the surface coverage of A and the surface coverage

of empty sites - Fig.4.8a). During phase R (red) limited desorption restricts the number of empty sites

on the catalyst (low θ∗), while the A adsorbates are reacting to B adsorbates. During phase L (blue)

desorption is no longer limiting and empty surface sites appear. At the same time, the now difficult

surface reaction causes accumulation of A adsorbates (Fig. 4.8a). The limit cycle point of view is more

helpful as it removes the time dependence and makes it easier to show periodic steady states (Fig.4.8b).

As seen in Fig.4.9, the static steady states for each dynamic catalysis phase provide very useful
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(a) (b)

Figure 4.9: Oscillations of the chemical species during Dynamic Catalysis: (a) Static steady states and
their slow and fast manifolds are shown on the limit cycle figure, (b) The net desorption rate of B of a
number of points along the limit cycle. These points are separated by a fixed time step.

information about the limit cycle. As expected, the limit cycle assumes intermediate surface coverages

w.r.t the two static steady states. Each of the equilibria described by the static steady states describes

dynamics extremely favoring either adsorbate A or adsorbate B, as the rate of the entire process is

restricted to the limiting rate of each static steady state. The composition of these states is shown in

Table 4.4.

State (θA, θ∗) Coordinates Eigenvalues

Phase R (0.0132, 1.35 · 10−13) (−108,−81.9)
Phase L (9.994, 1.23 · 10−9) (−108,−194.8)

Table 4.4: Static steady states and their eigenvalues.

The eigenvalues of both static steady states (Table 4.4) confirm that both of them are stable and

reveal a significant separation in timescales. Knowing the eigendirections of the respective eigenvectors,

we can plot the slow and fast stable manifolds for both steady states. These manifolds inform us about

the slow and fast directions on the limit cycle. This is confirmed by the density of (equally spaced in

time) points on the limit cycle (Fig.4.9b): The vast majority of points can be found where the limit cycle

is moving along slow manifolds and towards static steady states. This is confirmed in Fig.4.5 where the

endpoint of each oscillation close to the steady state can be consistently found on the slow manifolds

(alternating between the two).

Fig. 4.9b associates different parts of the limit cycle with the net desorption rate of B. The net
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Figure 4.10: 3D view of the limit cycle ( f = 102Hz, ϕ = 0.5, UL = −0.1eV, ∆U = 0.6eV) where the Net
Desorption rate of B is now the z-axis,. Steady states are denoted as stars (red for phase R and blue for
L). Slow manifolds are colored green and fast ones, orange. Direction arrows on different parts of the
limit cycle are colored analogously. The projection of the limit cycle is seen on the floor of the 3D plot.

desorption rate of B is significantly greater during phase L. This fits with the qualitative understanding

we already have about that phase: Phase L promotes desorption of B, by decreasing the energy barrier

required for it. However, the closer we move to the static steady state, the lesser the net desorption rate

of B. This can be clearly seen in the Fig.4.10 where the same system is presented in 3D. As a metric for

each forcing parameter configuration, we will use the period-averaged net desorption rate of B, defined

as: NDRB = 1
T
∫︁ T

0 NDRB(t)dt.

It is interesting to notice in Fig.4.10 that both the static steady states have an extremely low net

desorption rate of B. This can be explained by the fact that the dynamics of each static system are

fully constrained by the respective limiting process (desorption or reaction). This observation further

76



corroborates the benefits of Dynamic Catalysis, by juxtaposing static and dynamic performance.

Figure 4.11: Investigating the effect of forcing frequency: (left) f = 10Hz, (middle) f = 103Hz, (right)
f = 108Hz all for ϕ = 0.5, UL = −0.1eV, ∆U = 0.6eV.

First we explore the effect of the forcing frequency on the dynamics. Fig.4.11 shows the effect of

extreme values of the forcing frequency. In the case of great reduction of frequency (left panel in Fig.4.11),

the system has enough time to move towards the respective static steady state of each phase. As a result,

the system spends considerable time on the slow manifolds, especially close to the static steady states

(where the dynamics get exponentially slow). Even if the system reaches higher net desorption rates

of B, it stays more time in less productive states and, therefore, the result is a lower period-averaged

net desorption rate of B (NDRB = 23.2s−1). The characteristic times of the slow manifolds confirm

this conclusion (2 f < λL,slow, 2 f < λR,slow). In the case of great increase of frequency (right panel in

Fig.4.11) the extremely short oscillation periods do not allow the system to reach the slow manifolds. In

fact, the oscillation periods are even shorter than the fast characteristic times of both static steady states

(2 f > λL, f ast, 2 f > λR, f ast). This means that the system doesn’t even have time to move along the fast

manifolds. However, the period-averaged net desorption rate of B is not affected (NDRB = 27.7s−1)

compared to the lower frequencies, such as that in the middle panel of Fig.4.11 (NDRB = 27.7s−1).
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Figure 4.12: Investigating the effect of the duty cycle frequency: (left) ϕ = 0.25, (middle) ϕ = 0.5, (right)
ϕ = 0.75 all for f = 103Hz, UL = −0.1eV, ∆U = 0.6eV

Fig.4.12 shows the effect of changing the duty cycle ϕ while keeping all the other forcing parameters

fixed. In the case where phase R lasts longer (right panel in Fig.4.12) the limit cycle is located closer to

the static steady state of phase R (where the dynamics are slower). Necessarily, during phase L, the limit

cycle is further away from the static steady state of phase L, which means higher net desorption rate of

B. However, this highly productive state doesn’t last long and it is on average worse (NDRB = 26.0s−1)

than the case of equally lasting phases (NDRB = 27.7s−1). On the contrary, in the case when L

phase lasts longer (left panel of Fig.4.12), the opposite effect is observed: the limit cycle approaches

the static steady state of phase L but now neither phase is productive enough to make a difference

(NDRB = 17.3s−1).

In general, when changing the duty cycle ϕ a very interest trade-off arises: more productive states

(such as those in the right panel of Fig.4.12) can be only reached for a shorter time duration, so that

the system always keeps a “safe distance” from the L static steady state. This behavior indicates the

existence of an optimum w.r.t. the duty cycle.

Similar computational examples can be performed to study the effects of the amplitude ∆U and

the lower oscillation endpoint (UL). Note that when comparing such cases, the steady states, their

eigenvalues and stable manifolds would be different every time.

4.5 Continuation

Pseudo-arclength continuation (see Subchapter 2.1.2) allows the efficient exploration of behaviors

along a large parameter range. Here we employ the commercial software AUTO 07p (Doedel et al., 2007;
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Doedel et al., 1999) to explore how the batch reactor described in Subchapter 4.2 responds to different

forcing frequencies.

Figure 4.13: Continuation of periodic steady states w.r.t the forcing frequency using the software AUTO
07p (Doedel et al., 1999). Inset figures show representative projections of the limit cycles. All other
forcing parameters were kept fixed at ϕ = 0.50, UL = −0.5eV, ∆U = 1eV.

In accordance to the analysis in Subchapter 4.4 we observe a strong dependence of the resulting

dynamics to the forcing frequency. As the projections of the limit cycles suggest, at very low frequencies

(or high periods) the system has adequate time to move towards the static steady states, and that’s why

the catalytic surface ends up being covered with either one of the two adsorbed products at each phase.

On the contrary, when the oscillations are too fast, the surface coverages don’t change by a lot, and,

in fact, the dominant surface species is the one that is most difficult to get desorbed “on average” (i.e.

species C, see Fig. 4.4).

Next, we perform continuation for a CSTR reactor with a parallel reaction pathway (described in

Subchapter 4.2). In the case of a CSTR reactor turnover frequencies can be used to quantify performance:

TOFX(p) =
q̇

TNsites

∫︂ T

0
CX(t; p) dt, (4.19)

for any species X. In Eq. 4.5, p is the forcing parameters vector, q̇ is the volumetric flow rate of the CSTR,

T is the forcing frequency (component of p), Nsites is the number of empty catalytic sites and CX is the

concentration of X, a component of the state vector.
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With the results of Ardagh et al. (Ardagh et al., 2020), as a starting point we explore how the

turnover frequency of A (TOFA) changes w.r.t. two forcing parameters. Although the duty cycle was

not considered in (Ardagh et al., 2020), here we show that tuning it can further improve TOFA. To show

this, we select the best performing UL from Fig. 3 in Ardagh et al., 2020 (i.e. UL = −1.46eV), choose

the same fixed amplitude ∆U = 0.6eV and vary the frequency f and duty cycle ϕ. To approximate the

TOFA surface, a “scaffolding” is made by evaluating it at a regular grid in the (log10 f − ϕ) parameter

space.

Figure 4.14: Two parameter solution surface approximated by a grid of points where periodic steady
states are found using Newton’s method (here, reporting the turnover frequency of A for each such
state). Red line on left panel corresponds to the zoomed region on the right. All calculations were
performed for fixed UL = −1.46eV, ∆U = 0.6eV.

As it can be seen in Fig.4.14 the CSTR is performing better at higher forcing frequencies, something

that is confirmed in Fig. 3 of (Ardagh et al., 2020). We expect that this is associated to the characteristic

times of the two steady states, as explained in Subchapter 4.4. However, there is an optimum with

respect to the duty cycle, which we hypothesize is attributed to a trade-off similar to the one presented

in Fig.4.12. As a result, we achieve a maximum turnover frequency of 107.4s−1 which can be compared

to the one found in Ardagh et al., 2020, i.e. 101s−1.
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4.6 Step forcing function optimization

After understanding Dynamic Catalysis, finding solutions efficiently and continuing them, the

next natural step is to focus on optimization. Specifically, we will deal with maximizing the turnover

frequency of A (TOFA). The optimization problem can be formulated as:

p∗ = argmax
p
{TOFA(p)} (4.20)

We will first seek to validate our approach against the results in Fig. 4.14 using the Bayesian

Optimization framework discussed in Subchapters 2.2.3.1 and 2.2.3.2. For that purpose, one-parameter

continuation is performed w.r.t ϕ for log10 f = 4 (the solution branch corresponding to the right panel of

Fig.4.14).

Figure 4.15: (left) Optimization result on top of the one-parameter continuation branch (for comparison,
see right panel, Fig. 4.14). BO optimum location in agreement with what was expected from continuation,
(right) optimal forcing function shape.

As Fig. 4.15 suggests, we are able to validate the BO approach: the optimum is located at the

optimum suggested by the continuation results (specifically, p = (log10 f ∗, ϕ∗) = (4, 0.787)). After

finding the optimal forcing parameters, we will utilize insights from Subchapter 4.4 to understand why it

is optimal.

As it can be seen in Fig.4.16 the eigendirections of the static steady states provide useful information

about the directions of the limit cycle. As expected from the analysis in Subchapter 4.4 the limit cycle

spends a lot of time on the slow manifolds at each phase. However, in this case, there are multiple

manifolds, corresponding to multiple timescales. Furthermore, the manifolds are nonlinear and the
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Figure 4.16: The limit cycle corresponding to the optimal forcing function shape found with Bayesian
Optimization (Fig.4.15). Also plotted, are the two static steady states and all relevant eigendirections/
stable manifolds. The black arrows on the limit cycle denote the direction of time.
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Figure 4.17: (left) Eigenvalues for the two static steady states, on top forcing frequency. The eigenvalues
are colored according to their corresponding relevant eigendirections shown in Fig.4.16 (if any). (right)
The turnover frequency over one period for the optimum found with BO and for less or greater ϕ values.

limit cycle high-dimensional, rendering visualization difficult; we are restricted in the qualitative study

of projections. Interestingly, the interplay of many slow manifolds on the limit cycle can be observed,

such the one here for phase L. The respective eigenvalues (Fig.4.17, left panel) can inform us about the

relation between the characteristic times of each eigendirection and the forcing frequency. As expected,

the important slow manifolds have comparable characteristic times to the imposed forcing (see left

panel Fig.4.17).

A closer examination of the timeseries in the right panel of Fig.4.17 allows us to understand the

existence of an optimum w.r.t. the duty cycle ϕ. It is evident that the optimum arises due to a trade-off

between residence times in different phases: staying longer or shorter in the reaction promoting phase R

(which also promotes A adsorption) results in lower final TOFA and because this is a shooting problem,

the overall rate will be less eventually.

4.7 Radial Basis Function optimization

What has been done so far, is optimizing the shape of the forcing function, in an (at most) 4-

dimensional family of step functions. It is possible to add degrees of freedom, (and necessarily increase

the overall complexity), if we consider a versatile set of basis functions that can parametrize shapes, for

83



(a) (b)

Figure 4.18: (a) A single Radial Basis Function (RBF) parametrized by four parameters:
w0, wamp, wcenter, wspread, (b) Random sample of RBFs.

example, Radial Basis Functions (RBFs) (Park and Sandberg, 1991).

In the context of Dynamic Catalysis, the relative binding energy of A can be expressed with RBFs,

as:

∆BEA(t) = w0 +
N

∑
i=1

wampi e
wspreadi (t−wcenteri )

2
(4.21)

This would result in 3N + 1 - dimensional family of shapes for N RBFs. The meaning of the

parameters, can be intuitively understood from Fig.4.18. Denoting w = [w0, wamp1 , ..., wampN , wcenter1 ,

..., wcenterN , wspread1
, ..., wspreadN , ] the optimization problem now becomes:

w∗ = argmax
w
{TOFA(w)} (4.22)

To establish the benefits of expressing forcing shapes with RBFs, we will attempt to further improve

the optimum step forcing function shape found with BO (Fig.4.15) by adding one radial basis function

on the L phase and optimizing its shape.
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Figure 4.19: Out of all RBFs that can be added to the L phase of the already optimal step forcing function,
BO locates the one that maximizes TO fA.

Fig.4.19 shows a sample of RBFs that can be added on the L phase of the oscillation. This can be

imposed by restricting wcenter in [ϕ∗, 1], where ϕ∗ = 0.788 as found in Fig.4.15. Note that the rest of

the step function shape parameters are kept fixed: f = 104Hz, ∆U = 0.6eV, UL = −1.46eV. To make

sure that these values are respected, we fix w0 = 0 and truncate any RBF at UR = UL + ∆U. As for the

amplitude of the RBF wamp, we arbitrarily bound it in [0, 2] and the spread wspread at [10, 104]. These

choices are arbitrary, yet reasonable: too high values of wamp seem to have little effect on the shape,

because of the truncation, and too high values of wspread create too large potential gradients.

The optimum found (shown in the right panel of Fig.4.19) is TOFA(w∗) = 112.5s−1, w∗ = [0, 2, 0.866,

3.76]. In this case, the addition of the RBF has led to further improvement of the performance of the

catalytic reactor. We argue that this improvement is not the result of additional residence in one of the

two phases, but the result of an optimal shape. As evidence, we consider the case of an equivalent forcing

function, for which all forcing parameters are the same as in the case of the optimal step forcing function

[ f , UL, ∆U] = [104Hz,−1.46eV, 0.6eV] but now the duty cycle is ϕ = 0.787 + 0.022, where 0.022 is the

additional residence time of the RBF in state UR (See plateau on top in right panel of Fig.4.19). We find

that this configuration performs worse (TOFA = 107.39s−1) that in the case of separate step and RBF.

Our hypothesis is that optimal shapes are the ones best fitted to guide the dynamics of the system to

most productive states. To provide more evidence, we plot a projection of the limit cycles of the optimal
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step and the optimal step and RBF, and turn to the eigendirection analysis for insights.

Figure 4.20: Limit cycle projections for the two optimization solutions found: one for the optimal step
forcing function (blue) and one for the optimal additional RBF (red) with the optimal step forcing
function. The left inset shows these two optimal forcing functions. The right inset shows a zoomed
region where the trajectories of the two limit cycles diverge, along with the relevant eigendirections.
Black arrows denote the time direction. Note that the steady states (and respective eigenvalues/
eigenvectors) will be slightly different for the two cases shown here, but we include only one for
simplicity.

As expected and confirmed by Fig.4.20 these two cases have similar dynamics for most of the time,

i.e. the respective limit cycles move mostly along the same slow eigendirections. In the case of the

additional RBF (colored red), the limit cycle suddenly diverges and follows a different trajectory leading

back to the slow eigendirection of phase R (coinciding with the plateau at the right panel of Fig.4.19).

After a while, the trajectory returns close to the point of divergence to join the trajectory of the step

forcing function (colored blue). While the former trajectory was kicked off its course, the latter one

ended up at an extremely slower and less “productive” eigendirection. This can be better seen in the
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inset of Fig.4.20. In other words, the optimal additional RBF prevented the trajectory from spending

useful time in an unproductive state. This observation further corroborates the case that it is the shape of

the forcing function that matters, as it can be selected to optimally assist the system dynamics to stay in

more productive states.

The next step is to completely rely on RBFs for the construction of forcing function shapes. To

demonstrate this, we formulate a new optimization problem similar to Eq.4.22 with the superposition of

two radial basis functions. We choose to keep w0 fixed at −1.46eV, and also f = 104Hz. The chosen

value of the fixed frequency is based on our knowledge of the characteristic times. We also choose to

keep the rest of the constraints used in the optimization of one RBF, with the exception of the wcenter

parameter: we contain the first RBF on the first 60% of the period and the second at the last 60%. This

constraint allows for some overlap of the RBFs but avoids problematic RBF permutations. The resulting

optimization problem is over a 6-dimensional family of shapes.

Figure 4.21: Two of the converged solutions of optimization with two RBFs. The converged solutions
approximate (left) the step forcing function (right) the step forcing function with the additional RBF,
both previously examined.

As it can be seen from Fig.4.21, BO converges to “familiar” shapes: the left panel of Fig.4.21 resembles

the optimal step forcing function shape in Fig.4.15, while the right panel of Fig.4.21 resembles the step

and added RBF shape in Fig.4.19.This similarity is reflected on similar values of TOFA. The above

observation demonstrates how RBFs can be used as an universal approximator for any shape, and thus,

can be superimposed to construct forcing functions of any complexity.
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4.8 Discussion and Conclusions

Dynamic Catalysis has the potential to significantly improve the performance of catalytic reactors

and facilitate the transition to efficient and sustainable production of valuable chemicals. In this work,

various case studies from recent literature were sourced to get deeper insights into how Dynamic

Catalysis works and what really matters when tuning the extra degrees of freedom. Combining

established numerical methods with modern Machine Learning schemes, we demonstrated efficient

location of solutions, continuation of such solutions and performance optimization.

An interesting future direction is to explore efficient optimization of more complex forcing function

shapes (e.g. with more radial basis functions, or functions of another basis). As the dimensionality of the

optimization problem increases, we hypothesize that reduced Bayesian optimization can significantly

accelerate convergence (Pozharskiy et al., 2020). We believe there is significant benefit in employing

Global optimization approaches for Gaussian Processes used in Bayesian Continuation and Optimization

(Schweidtmann et al., 2021).

It is also useful to study different objective functions, such as reactor selectivities (defined as

SX = TOFX
∑i TOFi

), or multiple objective functions (e.g. as Pareto fronts - multiobjective optimization

(Miettinen, 1998)). Apart from that, Bayesian Continuation is a “side product” of this work which, we

believe, has many promising future directions/extensions.
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Chapter 5

Learning Chemotactic PDEs

with Machine Learning

Understanding and predicting the behavior of a complex biological system (such as an ensemble

of cells) is always a challenge. In the case of multi-agent systems, when the single-agent dynamics

are known (possibly from first principles), the system can be studied and simulated at the microscale.

Macroscale behavior naturally arises from simulating sufficiently large agent ensembles. It is sometimes

possible to derive macroscale partial differential equations from the dynamics of the individual agents

(Erban and Othmer, 2004). Such PDE-level descriptions are particularly attractive, as we are usually

interested in the evolution of only a few, important macroscopic variables, rather than of the behavior

of each individual “microscopic” agent. Importantly, one also needs to know which (and how many)

macroscopic variables/observables are sufficient to usefully construct a closed macroscopic evolution

equation (e.g. (Lee et al., 2020)).

For systems of great complexity, an accurate macroscopic PDE may be out of reach. One could only

gather (full or partial) information from experiments and/or fine-scale, individual based/stochastic

simulations. This calls for a data-driven approach to “discover” a macroscopic law for a “coarse” PDE,

solely from spatiotemporal data (experimental or computational movies). Such a data-driven PDE can

then be exploited towards the following purposes:
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1. Predicting the time evolution starting from different initial conditions or in out-of-sample spa-

tiotemporal domains. This is particularly attractive when it is not easy to probe the system and

extract such profiles “on demand” from experiments or simulations.

2. Reconstructing the full behavior of the system even when only partial information is at hand (i.e.

when we do not have data for all important macroscopic variables).

3. If a qualitatively correct but quantitatively inaccurate macroscopic model is available, a quantita-

tive data-driven model can help probe and even understand different components of the system’s

behavior (Lee et al., 2022). This can be a way to shed light on the fundamental physical laws of

the studied system (explainability).

In this Chapter, data-driven PDEs are constructed for the chemotactic motility of bacteria, i.e.

their ability to direct multicellular motion along chemical gradients. This phenomenon is central to

environmental, medical and agricultural processes (Bhattacharjee et al., 2021). Since the pioneering

work of Adler (Adler, 1969), chemotaxis has been extensively studied, decoding complex mechanisms

ranging from biochemistry and molecular genetics (Parkinson, 1976; Parkinson, 1980) to the inter- (Boyd,

Krikos, and Simon, 1981; Sourjik and Berg, 2002) and intra-cellular signaling (Liu and Parkinson, 1989;

Heit et al., 2002) and from the sensory adaptation in response to external stimuli (Segel et al., 1986;

Othmer and Schaap, 1998) to the motor structure and the flagellum-related motility (Cluzel, Surette,

and Leibler, 2000) and scaling up to the emergent collective behaviour (Wu et al., 2006). Depending on

the level of information and spatio-temporal scale of analysis, a vast number of mathematical models

have been proposed ranging from the molecular/individual (Emonet et al., 2005; Coburn et al., 2013;

Othmer, Xin, and Xue, 2013; Rousset and Samaey, 2013; Yasuda, 2017) to the continuum/macroscopic

scale (Patlak, 1953; Keller and Segel, 1971; Erban and Othmer, 2004; Bellomo et al., 2010; Othmer, Xin,

and Xue, 2013; Franz and Erban, 2013; Bellomo et al., 2022) (for an extensive review of both modelling

approaches see (Tindall et al., 2008b; Tindall et al., 2008a; Othmer, Xin, and Xue, 2013; Bellomo et al.,

2022). The celebrated Keller-Segel (Keller and Segel, 1971) PDE derived for the macroscopic description

of the population density evolution, coupled with the concomitant chemoattractant field, constitutes the

cornerstone in the field. In its simplest form, the dependence of the cell density b(x, t) in space and time

evolves according to
∂b
∂t

= ∇ · (D∇b− χ(s)b∇s) , (5.1)

coupled with appropriate boundary conditions; In Eq. 5.1, D is the diffusion coefficient, χ is the

chemotactic coefficient and s is the substrate distribution. This model explicitly describes cell motility
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through two terms: a diffusion term (usually isotropic) and a chemotactic term, which encapsulates the

response of the bacteria in the presence of a substrate, i.e. chemoattractant/chemorepellent field. This

response includes signal transduction dynamics and properties of cellular chemoreceptors. In this term,

the function χ : R→ R can be tuned for different kinds of chemotactically relevant substances and their

spatial profile. Most importantly, the sign of χ distinguishes chemoattractants vs. chemorepellents. In

this work, we will deal only with chemoattractants (and specifically chemonutrients).

In fact, the effect of the substrate’s distribution s(x, t) and the bacterial density b(x, t) on both D

and χ are not generally known. In order to obtain an expression in closed-form and then attempt to

fuse experimental observations and bio-physical insight, several assumptions are made, resulting to

different closed-form approximations. For example, in the original paper of Keller and Segel, (Keller and

Segel, 1971) it is assumed that D = D(s) and χ = χ(s), i.e., that both depend on the distribution of the

substrate s. Assuming D = D(b), χ = χ(b), the Keller-Segel PDE reduces to a Fokker-Planck equation,

while for constant diffusion D and constant chemotactic χ coefficient, we obtain the Smoluchowski

equation (for a review of different closures and models refer to (Othmer and Schaap, 1998; Chavanis,

2008; Erban and Othmer, 2004; Othmer, Xin, and Xue, 2013; Painter, 2019)).

In this work, we demonstrate a toolbox of Data Mining methodologies for learning different forms

of the law of macroscopic chemotactic partial differential equations, from three types of data sets (in

order of decreasing available information and assumptions):

i Data derived from simulations of known chemotactic PDEs (Subchapter 5.1). In this case, it is possible

to explore different learning modalities and validate our approach.

ii Data derived from Agent-Based Modeling (Monte Carlo simulations), where each bacterium is

simulated as a stochastic agent (Subchapter 5.2). In this case, it is shown how data-driven PDEs can

predict emergent behaviors from microscopic computational experiments. It is also shown, how

data-driven PDEs can exploit (different levels of) information from approximate models.

iii Fluorescence data from chemotaxis experiments (Subchapter 5.3). Having validated our approaches

in the two previous cases, a data-driven model is learned from real-world chemotactic motility data,

where practical considerations become important.
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Figure 5.1: Overview of proposed algorithmic pipeline: from individual bacterium motility patterns
todata-driven, possibly partially physics-informed, surrogate models for chemotactic Partial Differential
Equations (PDEs).

This work falls in the general category of nonlinear system identification using data-driven, Machine

Learning-assisted surrogate models. Neural Networks have repeatedly demonstrated successes in

learning nonlinear Ordinary (Rico-Martinez, Anderson, and Kevrekidis, 1994) or Partial Differential

Equations (Lee et al., 2020; González-García, Rico-Martínez, and Kevrekidis, 1998; Siettos, Bafas, and

Boudouvis, 2002; Siettos and Bafas, 2002; Alexandridis et al., 2002). More recently, with the increased

accessibility of powerful computational hardware and the computational efficiency of Machine Learning

algorithms, nonlinear system identification has attracted a lot of attention (Galaris et al., 2022; Raissi,

Perdikaris, and Karniadakis, 2019; Kemeth et al., 2020; Lee et al., 2020; Vlachas et al., 2020; Chen et al.,

2021; Karniadakis et al., 2021) and has motivated the design of novel approaches and architectures.

Notable among these approaches are Neural ODEs (Chen et al., 2019) and Convolutional Neural

Networks (LeCun, Bengio, et al., n.d.; Rao et al., 2022), sparse identification (Brunton, Proctor, and Kutz,

2016) and effective dynamics identification (Vlachas et al., 2018; Vlachas et al., 2022).

Work in this Chapter was done in collaboration with Dr. Seungjoon Lee, Dr. Juan Bello-Rivas, Prof.

Constantinos Siettos, Prof. Sujit Datta, Dr. Tapomoy Bhattacharjee and Prof. Ioannis Kevrekidis. It
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includes submitted work in the manuscript “Learning black- and gray-box chemotactic PDEs/closures

from agent based Monte Carlo simulation data” (Lee et al., 2022) and the manuscript (to be submitted)

“Data-driven Discovery of Chemotactic Migration of Bacteria via Machine Learning”.
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5.1 PDE simulations

As mentioned in the introduction of Chapter 5, the first chemotaxis case study is data collected from

simulations of an a priori known PDE. This approach is used to validate the proposed data-driven PDE

methodologies, and explore different modalities which can be useful in real world scenarios, such as the

one in Subchapter 5.3. In the following, the analytical PDE model will be presented (Subchapter 5.1.1)

and the specific data-driven PDE approaches explained (Subchapter 5.1.2). Results (Subchapter 5.1.3)

and Conclusions (Subchapter 5.1.4) follow.

5.1.1 PDE model

Despite the generality and applicability of the Keller-Segel model (Eq. 5.1), the chemotactic term is in

many cases intractable. To model chemotactic motion of Escherichia coli (E. coli) in heterogeneous porous

media, Bhattacharjee et al., have used the following extension of the Keller-Segel model (Bhattacharjee

et al., 2021):

∂b
∂t

= Db∆b− χ0∇ · [b∇logF1(c)] + bγF2(c)

∂c
∂t

= Dc∆c− bκF2(c)

∇Jb(0, t) · n̂ = 0,∇Jb(R, t) · n̂ = 0

∇c(0, t) · n̂ = 0,∇c(R, t) · n̂ = 0, (5.2)

where in radial coordinates b(r, t) is the bacterial density, c(r, t) is the chemonutrient concentration, Db

is the bacterial diffusion coefficient, Dc is the chemonutrient diffusion coefficient, R (in the boundary

conditions) is the overall domain radius, F1(c) =
1+c/c−
1+c/c+

and F2(c) = c
c+cchar

, Jb is the bacterial density

flux (Jb = Db∇b− χ0b∇logF1(c)) and n̂ is the normal vector at the domain boundaries. Note that in

this case, no flux boundary conditions imply zero gradients for both fields at the circular/cylindrical

boundary. In this model, bacteria bias their motion towards the chemonutrient which they can consume

(second equation). In that process, and for initial conditions corresponding to the experimental data

presented here, they exhibit a macroscopic coherent propagating “bacterial wave”. Experiments can be
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performed to individually estimate the parameters Db, χ0, c−, c+, Dc, cchar, γ, as in (Bhattacharjee et al.,

2021) (also see Table 5.1).

5.1.2 Data driven PDEs

In this Subchapter, the main data-driven tools/algorithms will be described and their use justified.

These tools are used to train and test several versions of surrogate macroscopic data-driven description

of the chemotactic PDE(s).

Consider a system described by d macroscopic scalar variable fields (u(1), ..., u(d)). Assuming a

one-dimensional domain along the vector x̂ (for an example in cylindrical coordinates see Figure. 5.1)

discretized through m points in space (x) and n points in time (t), we are given m · n data points in Rd.

Using interpolation/numerical differentiation, we can estimate the temporal derivatives u(1)
t , ..., u(d)

t , as

well as various order derivatives in space (first, u(1)
x , ..., u(d)

x , second u(1)
xx , ..., u(d)

xx , etc). We assume that

we know a priori the largest order of relevant spatial derivatives (here, two) (Li et al., 2003), the coordi-

nate system, and the boundary conditions (here, zero flux). We also assume that the spatiotemporal

discretization satisfies the necessary criteria for a numerically converged PDE solution. Given these

derivatives, we can compute all relevant local operators, such as: ∇u(i), ∆u(i), i ∈ {1, ..., d}. In Cartesian

coordinates these operators are simply related to the spatial derivatives; but in curvilinear coordinates,

or when the evolution occurs on curved manifolds, the relation between spatial derivatives and local

operators needs a little more care.

We consider physical Euclidean space R3 (regarded as a Riemannian manifold with Euclidean

metric expressed as g = (dx)2 + (dy)2 + (dz)2 in Cartesian coordinates (x, y, z)). The gradient, grad f ,

of a smooth function f : R3 → R is a vector pointing in the direction at which f grows at its maximal

rate and whose length is said maximal rate —note that this definition is independent of the system of

coordinates on R3. The phase flow of a smooth vector field v : R3 → R3 can be regarded as the motion of

a fluid in space. The divergence of v, denoted by div v, is the outflow of fluid per unit volume at a given

point. Again, the definition is coordinate frame independent; the expression div v = ∂v1
∂x + ∂v2

∂y + ∂v3
∂z

is valid in Cartesian coordinates. The Laplacian is the composition of the gradient followed by the

divergence (in other words, ∆ = div grad), again independently of the choice of coordinates.

Our objective is to learn functions fi : R3d·m → Rm, i ∈ {1, ..., d} such that:

u(i)
t = fi(u(1), ..., u(d),∇u(1) · x̂, ...,∇u(d) · x̂, ∆u(1), ..., ∆u(d))
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This is a black box expression for the time derivative of a macroscopic field expressed as a function of

the relevant lower order coordinate-independent local spatial operators, operating on the fields. After

training (after successfully learning this function based on data) integrating this model numerically

can reproduce spatiotemporal profiles in the training set, and even hopefully predict them beyond

the training set. The arguments of fi will be the features (or input vectors) and u(i)
t will be the target

(or output vector) of our data-driven model. Note that, usually, not all features are informative in the

learning of fi (in other words, only some orders of the spatial derivatives appear in the PDE right-hand-

side). Also, note that not all macroscopic variables u(i) are always necessary for learning f j, j ̸= i. In the

spirit of the Whitney and Takens embedding theorems (Whitney, 1936; Takens, 1981), short histories

of some of the relevant variable profiles may “substitute” for missing observations/measurements of

other relevant variables.

A similar approach can be implemented when we have knowledge of a term/ some of the terms

but not of the rest of the terms of the right-hand side. In the specific context of chemotaxis, we are

interested in learning just the chemotactic term, i.e. functions gi : R3d·m → Rm, i ∈ {1, ..., d} such that:

u(i)
t − D(i)∆u(i) = gi(u(1), ..., u(d),∇u(1) · x̂, ...,∇u(d) · x̂, ∆u(1), ..., ∆u(d)),

where D(i) is an a priori known diffusivity. This is now a gray box model for the macroscopic PDE, and

is particularly useful in cases where an (effective) diffusion coefficient is easy to determine, possibly

from a separate set of experiments or simulations (Lee et al., 2022). Again, as for black box models, gray

boxes can also be formulated in the case of partial information, i.e. when not all fields u(i) are known,

by leveraging history information of the known variables.

Note that in our specific case of cylindrical coordinates, of interest in this paper, if only the

component along the radial dimension (with unit vector denoted r̂) is important, the right-hand-side of

a PDE will explicitly depend on the local radius as well. In the above formulation, this is incorporated

in the Laplacian term ∆u(i) = 1
r

∂
∂r (r

∂u(i)

∂r ). The construction of relevant differential operators in any

coordinate system using ideas from Exterior Algebra is discussed in Subchapter 5.1.4.

5.1.3 Results

Numerical simulations of Eq.5.2, to provide training data for our data-driven identification approach,

were performed using COMSOL Multiphysics 5.5 (Multiphysics, 1998), for the spatiotemporal domain
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(t, r) ∈ [0, 300] × [0, 1000], with initial conditions b(r, 0) = b0e−r2/2σ2
, c(r, 0) = c0. Note that for all

subsequent learning cases, the training data are (a suitable subset) in (t, r) ∈ [200, 230] × [0, 250]

(therefore, m · n ≤ 15, 801 in R2) and the model is validated by simulation in (t, r) ∈ [200, 290]× [0, 250].

with spatial resolution dr = 0.5µm with the results reported every δt = 0.1s (relative tolerance set at

10−7). Integration was performed using Finite Element Method and a MUMPS solver (Multiphysics,

1998). The parameters of Eq.5.2 used in the simulation are included in Table 5.1 and the results in Fig.5.3.

Parameter Value Unit

Db 2.325 µm2/s
χ0 17.9 µm2/s
c− 1 µM
c+ 30 µM

cchar 1 µM
γ 0 µM/s/µm3

Dc 800 µm2/s
κ 3000 µM/s/µm3

b0 0.95 1/µm3

σ 42.62 µM
c0 10 mM
R 17.5 mm

Figure 5.2 & Table 5.1: Parameters used for the PDE simulation of the Extended Keller-Segel Model and
a schematic representation of the computational domain.

A variety of Machine Learning-enabled data-driven models was considered; they are listed in Table

5.2; the relevant notation is summarized in the Table caption. Note that for each model, two supervised

learning algorithms are used to validate the results: An Artificial Neural Network and Gaussian Process

Regression.
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Figure 5.3: PDE simulations representing the ground truth data: (left) b(r, t) field and (right) c(r, t) field.
For clarity, arrows are added to denote the direction of time.

Model Surrogate Function Known Fields Known RHSs Output Algorithm

Black-box for 2 PDEs fGP, hGP b(r, t), c(r, t) – bt, ct GPR
fNN , hNN b(r, t), c(r, t) – bt, ct ANN

Black-box for 1 PDE fGP b(r, t), c(r, t) ct bt GPR
fNN b(r, t), c(r, t) ct bt ANN

Black-box, delays f partial
GP b(r, t), history – b(r, t + ∆t) GPR

f partial
NN b(r, t), history – b(r, t + ∆t) ANN

Gray-box gGP b(r, t), c(r, t) ct bt − Db∆b GPR
gNN b(r, t), c(r, t) ct bt − Db∆b ANN

Gray-box, delays gpartial
GP b(r, t), history – b(r, t + ∆t)− Db∆b(r, t) GPR

gpartial
NN b(r, t), history – b(r, t + ∆t)− Db∆b(r, t) ANN

Table 5.2: Listing of the data-driven models explored. Notation: f , h denote surrogate functions for
the entire RHS of the b− and c−PDE respectively, while g denotes a surrogate for the chemotactic
term. Subscripts “GPR” and “NN” denote Gaussian Process Regression and Artificial Neural Network
respectively. ∆t denotes the time delay used in all models with partial information.
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Black box learning of both PDEs with an ANN (from known fields b(r, t), c(r, t))

⎡⎢⎣bt

ct

⎤⎥⎦ =

⎡⎢⎣ f

h

⎤⎥⎦ = FNN(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c) (5.3)
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Figure 5.4: Black-box learning of both PDEs with an Artificial Neural Network: (left) Integration results
for the first data-driven PDE (for b(r, t)) and (right) relative error (%).
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Figure 5.5: Black-box learning of both PDEs with an Artificial Neural Network: (left) Integration results
for the second data-driven PDE (for c(r, t)) and (right) relative error (%).
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Black box learning of both PDEs with GPR (from known fields b(r, t), c(r, t))

⎡⎢⎣bt

ct

⎤⎥⎦ =

⎡⎢⎣ fGP(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c)

hGP(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c)

⎤⎥⎦ (5.4)
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Figure 5.6: Black-box learning of both PDEs with Gaussian Process Regression: (left) Integration results
for the first data-driven PDE (for b(r, t)) and (right) relative error (%). Note that the white horizontal
line separates the training data set from the rest of the validation data set.
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Figure 5.7: Black-box learning of both PDEs with Gaussian Process Regression: (left) Integration results
for the second data-driven PDE (for c(r, t)) and (right) relative error (%).
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With training data from both b(r, t) and c(r, t) fields, a neural network was trained of the form

described in Eq.5.3 in Python’s Tensorflow platform (Abadi et al., 2015). Training was performed with

a feedforward neural network consisting of two hidden layers, each with 18 tanh-activated neurons.

An Adams optimizer (Kingma and Ba, 2014) was used with a MSE loss function. The neural network

hyperparameters were empirically tuned: 2048 epochs and 0.02 learning rate. After training, the data-

driven PDE was integrated with a commercial BDF integrator, as implemented in Python’s solve_ivp

(Shampine and Reichelt, 1997), with relative and absolute tolerances at (10−4, 10−7). The initial profile

for integration was supplied by our simulation data, and the boundary conditions set to no flux. The

Jacobian of the data-driven PDE was provided via automatic differentiation.

Figures 5.4, 5.5 show how the data-driven PDEs are able to learn the laws of time evolution of both

b(r, t) and c(r, t). The data-driven models can be used to reproduce the training data and successfully

extrapolate as far as we attempted (here, up to t = 290s).

GPR was trained in Python’s scikit-learn framework (Pedregosa et al., 2011) with hyperparameter

α = 10−4 and an L-BFGS-B optimizer (Zhu et al., 1997). Temporal profiles used in training were

subsampled (2 used in GP for every 5 in ANN). The resulting data-driven PDE was integrated similarly

to ANN (without the Jacobian of the right-hand-side).

Figures 5.6, 5.7 show how the data-driven PDEs are able to learn the laws of time evolution of

both b(r, t) and c(r, t) through Gaussian Process Regression. The data-driven models can be used to

reproduce the training data and successfully extrapolate as far as we attempted (here, up to t = 290s).

Black box learning of bt with an ANN with known ct (from known fields b(r, t), c(r, t))

bt = fNN(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c) (5.5)
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Figure 5.8: Black-box learning with a Neural Network: (left) Integration results for the data-driven PDE
and (right) % relative error.

Black box learning of bt with GPR with known ct (from known fields b(r, t), c(r, t))

bt = fGP(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c) (5.6)
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Figure 5.9: Black-box learning with Gaussian Process Regression: (left) Integration results for the
data-driven PDE and (right) % relative error.

Figures 5.8, 5.9 showcase learning of one of the two data-driven PDEs when the second PDE is known.
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Here, the chemonutrient (c(r, t)) PDE is assumed known, and the bacterial density evolution PDE is

learned with a neural network or Gaussian Process Regression.

After the initial success of the previous section, we decided to attempt a computational experiment,

based on the spirit of the Takens embedding for finite-dimensional dynamical systems (Takens, 1981;

Whitney, 1936; Stark et al., 1997; Stark, 1999; Stark et al., 2003; Sauer, Yorke, and Casdagli, 1991).

The idea here is that, if only observations of a few (or even only one) variables involved are available,

one can use history of these observations (“time-delay” measurements) to create a useful latent space in

which to embed the dynamics -and in which, therefore, to learn a surrogate model with less variables,

but involving also history of these variables (Packard et al., 1980; Aeyels, 1981). There are important

assumptions here: finite (even low) dimensionality of the long-term dynamics, something easier to

contemplate for ODEs, but possible for PDEs with attracting, low dimensional (possibly inertial)

manifolds for their long-term dynamics. There is also the assumption that the variable whose values and

history we measure is a generic observer for the dynamics on this manifold. One can always claim that,

if a 100-point finite different discretization of our problem is deemed accurate (so, for two fields, 200

degrees of freedom), then the current discretized observation of one of the two fields (100 measurements)

plus three delayed observations of it (3× 100) plus possibly one more measurement give us enough

variables for a useful latent space in which to learn a surrogate model. Here we attempted to do it with

much less: at each discretization point we attempted keeping the current b(r, t) field measurement and

its spatial derivatives, and added only some history (the values and spatial derivatives at the previous

moment in time). The equation below is written in discrete time form (notice the dependence of the field

at the next time step from two previous time steps); it can be thought of as a discretization of a second

order partial differential equation for the b(r, t) field, based on its current value and its recent history.

Black box ANN learning of a single field evolution equation, with only partial information (only

the field b(r, t) is observed).

b(tk+1) = b(tk) + ∆t f partial
NN (b(tk), (∇b · r̂)(tk), (∆b)(tk),

b(tk−1), (∇b · r̂)(tk−1), (∆b)(tk−1)), (5.7)
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with ∆t = tk+1 − tk, for any time point tk, k ⩾ 1.
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Figure 5.10: Black-box partial-information learning with a Neural Network: (left) Integration results for
the data-driven PDE and (right) % relative error.

Black box GPR learning of a single field evolution equation, with only partial information (only

the field b(r, t) is observed).

b(tk+1) = b(tk) + ∆t f partial
GP (b(tk), (∇b · r̂)(tk), (∆b)(tk),

b(tk−1), (∇b · r̂)(tk−1), (∆b)(tk−1)), (5.8)

with ∆t = tk+1 − tk, for any time point tk, k ⩾ 1.
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Figure 5.11: Black-box partial-information learning with Gaussian Process Regression: (left) Integration
results for the data-driven PDE and (right) % relative error.

Figures 5.10, 5.11 demonstrate learning a data-driven (discrete in time here) evolution equation for

the bacterial density b(r, t) when only data for b(r, t) are at hand (partial information). Even though

we know the existence of another, physically coupled field, we cannot sample from it, so we replace

its effect on the b(r, t) field through a functional dependence on the history of b(r, t). Simulation of the

resulting model was successful in reproducing the training data and extrapolating beyond them in time.

Gray box learning with an ANN - ct known (with fields b(r, t), c(r, t) known).

bt − Db∆b = gNN(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c) (5.9)
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Figure 5.12: Gray-box learning with a Neural Network: (left) Integration results for the data-driven
PDE and (right) % relative error.

Gray box learning with GPR - ct known (with fields b(r, t), c(r, t) known).

bt − Db∆b = gGP(b,∇b · r̂, ∆b, c,∇c · r̂, ∆c) (5.10)
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Figure 5.13: Gray-box learning with Gaussian Process Regression: (left) Integration results for the
data-driven PDE and (right) % relative error.

Figures 5.12, 5.13 show the performance of gray-box models, where only the chemotactic term of the
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bacteria density PDE is considered unknown. For this gray-box model, the effective diffusion coefficient

for the bacterial density is considered known. In principle, one can also hardwire the knowledge of the

functional form of this term in the loss of the neural network, and thus obtain an estimate of this diffusivity

in addition to learning the chemotactic term in the PDE.

Gray box ANN learning of the chemotactic term, with only partial information (only the field

b(r, t) is observed).

b(tk+1) = b(tk) + ∆t(Db∆b(tk) + gpartial
NN (b(tk), (∇b · r̂)(tk), (∆b)(tk),

b(tk−1), (∇b · r̂)(tk−1), (∆b)(tk−1))), (5.11)

with ∆t = tk+1 − tk, for any time point tk, k ⩾ 1.
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Figure 5.14: Gray-box partial-information learning with a Neural Network: (left) Integration results for
the data-driven PDE and (right) % relative error.

Gray box GPR learning of the chemotactic term, with only partial information (only the field

b(r, t) is observed).
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b(tk+1) = b(tk)+∆t(Db∆b(tk)+ gpartial
GP (b(tk), (∇b · r̂)(tk), (∆b)(tk), b(tk−1), (∇b · r̂)(tk−1), (∆b)(tk−1))),

(5.12)

with ∆t = tk+1 − tk, for any time point tk, k ⩾ 1.
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Figure 5.15: Gray-box partial-information learning with Gaussian Process Regression: (left) Integration
results for the data-driven PDE and (right) % relative error.

Figures 5.14 , 5.15 demonstrate how Gray box models can also be constructed with partial informa-

tion, i.e. with knowledge only of the bacteria density field b(r, t).

Estimating the chemonutrient field given measurements of the bacterial density (b(r, t) and its

recent history).

Surrogate Function Known Fields Known RHSs Output Algorithm

CGP b(r, t), history – c(r, t) GPR
CNN b(r, t), history – c(r, t) ANN

Table 5.3: Summary of all data-driven models for C-learning.
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Following up the above success in using Takens’ embeddings (and more generally, Whitney em-

beddings) (Takens, 1981; Whitney, 1936) for low-dimensional long-term dynamics, we now attempt

to estimate (i.e. create a nonlinear observer - a “soft sensor” of) the chemonutrient field from local

measurements of the bacterial fields and its history (Altaf et al., 2017; Farhat, Lunasin, and Titi, 2017).

More specifically, we will attempt to train a neural network to learn (in a data driven manner) c(ri, tk)

as a function of some local space time information:

c(ri, tk) = CNN(b(ri, tk), (∇b · r̂)(ri, tk), (∆b)(ri, tk),

b(ri, tk−1), (∇b · r̂)(ri, tk−1), (∆b)(ri, tk−1)), (6a)

for any discretization point is space ri and time point tk, k ⩾ 1.

Indeed, if the long-term simulation data live on a low-dimensional, say m-dimensional manifold,

then 2m + 1 generic observables suffice to embed the manifold, and then learn any function on the

manifold in terms of these observables. Here we will attempt an experiment with a neural network that

uses a local parametrization of this manifold, testing if such a local parametrization can be learned (in

the spirit of the nonlinear discretization schemes of Brenner et al. (Bar-Sinai et al., 2019)).

There is, however, one particular technical difficulty: because the long-term dynamics of our problem

appear in the form of travelling waves, both the front and the back of the wave appear practically flat –

the spatial derivatives are all approximately zero, and a simple neural network cannot easily distinguish,

from local data, if we find ourselves in the flat part in front of the wave or behind the wave. We therefore

constructed an additional local observable, capable of bringing up the difference of flat profiles “before”

and flat profiles “after” the wave. Indeed, when the data represent the spatiotemporal evolution of

a traveling wave (as in our training/testing data set), we expect a singularity close to b(r, t) = 0.

This singularity arises at both “tails” of the traveling bacterial wave where b and its derivatives all

become asymptotically zero. Clearly, however, the c field is dramatically different on the two “flat

bacteria” sides. When learning such a function locally, to circumvent this singularity, we came up with a

transformation of two of the inputs: (b,∇b · r̂)→
(︃

b, arctan( (∇b·r̂)
b

)︃
, where the bar symbol denotes an

affine transformation of the respective entire feature vector to the interval [−1, 1]. This transformation

brings points at different sides of the aforementioned singularity at different ends of a line, exploiting
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their difference in sign (see Fig.5.16).
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Figure 5.16: Transformation on the inputs: (left) representative profiles of both fields b(r, t), c(r, t),
(middle) visualization of the singularity, (right) transformed variable.

Then, the Neural Network is trained to learn the estimator (nonlinear observer) of the chemonutrient

field as: c(ri, tk) = CNN(b(ri, tk), arctan

(︄
(∇b · r̂)(ri, tk)

b(ri, tk)

)︄
, (∆b)(ri, tk),

b(ri, tk−1), (∇b · r̂)(ri, tk−1), (∆b)(ri, tk−1)), (6b)

for any discretization point is space ri and time point tk, k ⩾ 1.
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Figure 5.17: Learning the c-field with a Neural Network: (left) Field prediction and (right) % relative
error.
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Analogolously, for the GPR learning approach:

c(ri, tk) = CGP(b(ri, tk), arctan

(︄
(∇b · r̂)(ri, tk)

b(ri, tk)

)︄
, (∆b)(ri, tk),

b(ri, tk−1), (∇b · r̂)(ri, tk−1), (∆b)(ri, tk−1)),

for any discretization point is space ri and time point tk, k ⩾ 1.
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Figure 5.18: Learning the c-field with Gaussian Process Regression: (left) Field prediction and (right) %
relative error.

As it can be seen from Figs.5.17, 5.18 through the model in Eqs.6b, ?? it was possible to provide

reasonable predictions for the chemonutrient field.

5.1.4 Discussion and Conclusions

A lot of interesting observations can be drawn from comparing different models or methodologies

in Subchapter 5.1.3.

• For the model in Eq.5.3, where both PDEs are data-driven it is obvious that the c(r, t) PDE is

easier to learn and predict than the b(r, t) PDE, both for the ANN and the GPR. This can be

understood in terms of complexity of these two target functions: The bt expression is highly

nonlinear (owing mostly to the logarithmic chemotactic term) and complex, as it depends on
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most of the input features. On the contrary the ct expression only depends on a handful of inputs

and is less complicated.

• When learning both PDEs (model in Eq.5.3), it is straightforward to employ an ANN for multiple

output prediction. However, multiple output GP (or co-kriging) is especially non-trivial Wang

and Chen, 2015 and therefore, multiple single-output GPs are preferred instead.

• When comparing the ANN methodology with the GPR, for the same model, it can be seen that

ANN results in more accurate predictions than GPR. may be attributed to the ANN’s versatility

and efficiency in capturing the nonlinearities and complexities of any target function. It is also

important to note that, due to memory constraints, GPR was trained only with an appropriately

chosen subset of the training data. This could cause the loss of accuracy in long term predictions.

However, it is important to note, that the error in GPR is always smooth, owing to the smoothness

of the Gaussian kernel (see Subchapter 2.2.1.1).

• Comparing the predictions for bt in Figs.5.4, 5.6 and Figs. 5.8, 5.9 it can be seen that when only

one of the PDEs is data-driven, the predictions are more accurate. This can be understood in terms

of error accumulation during integration: when both PDEs are data-driven, both of the PDEs

contribute to prediction error which will propagate along the integration trajectory.

• In the case of partial information, the model was trained with a single (therefore, fixed) delay

(tk − tk−1), and this imposes important restrictions on how we can advance the data-driven model

in time. A natural way to do this, is with a Forward Euler scheme with a timestep equal to the

delay used in training, as explicitly shown in Eqs. 5.7, 5.8, 5.11, 5.12.

In this work, it was demonstrated how data-driven models are able to learn PDEs from bacterial

migration data (even in the case of partial information). It is also possible to learn just one term of a

PDE, or a certain PDE out of a set of coupled PDEs. These data-driven models were able to reproduce

spatiotemporal profiles used for training and extrapolate further in time. This work showcases that

data-driven PDEs are a versatile tool which can be adjusted and implemented to many different problem

settings, data sets or learning objectives. It can be especially useful (if not necessary) when the derivation

of an analytical PDE is cumbersome or when there is no capacity for a large number of simulations

or experiments. In fact, data-driven PDEs can be used to estimate transients from different (nearby)

Initial Conditions, for different Boundary Conditions or spatial domains. Apart from that, learning

data-driven PDEs is one of the most compact and generalizable ways to learn a system’s behavior from

data.
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Future work includes removing some of the assumptions used here to make data-driven PDEs

more robust and generalizable. For example, it is possible to limit the number of independent, relevant

inputs in a data-driven way, using dimensionality reduction, automatic relevance determination or

other feature importance methods (Rasmussen and Williams, 2005; Ghorbani, Abid, and Zou, 2019).

Another important direction is to train these models in a coordinate - free way (Luk and Grosse,

2020; Weiler et al., 2021) using tools from Exterior Calculus. Here, we give a brief outlook on the use of

differential operators arising from exterior calculus (Flanders, 1989; Lee, 2009) to create a dictionary

of features in which to express learned operators: The gradient, curl, divergence, and Laplacian all

arise by combining the exterior derivative d, the metric tensor g, the exterior product ∧ and the inner

product of differential forms ⟨·, ·⟩, the Hodge star operator ⋆, as well as the musical isomorphisms ♯ and

♭. Consequently, we can extend the problem of learning f in

u = f (u, grad u, div grad u, . . . )

to the more general setting of learning a function f defined by compositions of the operators mentioned

above. For instance, the Navier-Stokes equations (Gurtin, 1981) can be written in coordinate-free form

as (Wilson, 2011) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ω

∂t
= − ⋆ (ω ∧ ⋆dω)− νd ⋆ dω + 1

2 d⟨ω, ω⟩ − dp

d ⋆ ω = 0,

where ν ≥ 0 is the viscosity and p is the pressure.

The use of exterior calculus and exterior differential systems (Bryant et al., 1991) in Physics-informed

neural networks is currently growing (Sitzmann et al., 2020; Weiler et al., 2021; Jenner and Weiler, 2021;

Bronstein et al., 2021) and a more in-depth study of this framework is an interesting future direction.
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5.2 Agent based modeling

After establishing and validating our approach with data collected from PDE simulations in Sub-

chapter 5.1, we turn to data from microscale simulations: high-fidelity data, produced by a detailed

biophysical Monte-Carlo model for the motility of E. coli bacteria. The parameters of this model are

calibrated from experimental data (Berg and Brown, 1972; Larsen et al., 1974; Maeda et al., 1976; Block,

Segall, and Berg, 1983; Block, Segall, and Berg, 1982; Ishihara et al., 1983; Spiro, Parkinson, and Oth-

mer, 1997; Othmer and Schaap, 1998; Cluzel, Surette, and Leibler, 2000; Othmer, Xin, and Xue, 2013).

Building on previous efforts (Rico-Martinez, Anderson, and Kevrekidis, 1994; Krischer et al., 1993;

González-García, Rico-Martínez, and Kevrekidis, 1998; Bertalan et al., 2019; Lee et al., 2020; Kemeth

et al., 2020), we propose a data-based, Machine Learning assisted framework to learn the law of the

underlying macrosopic PDE. In particular, based on automatic relevance determination (ARD) (MacKay,

1992; Sandhu et al., 2017) within the Gaussian Process Regression framework (Rasmussen and Williams,

2005; Lee et al., 2020) for feature extraction, and on Gaussian Process Regression and Artificial Neural

Networks to learn the collective dynamics (algorithms described in Subchapter 2.2.1), we:

(a) identify the right-hand-side (RHS) of an effective Keller-Segel-class PDE, thus obtaining a

black-box PDE model;

(b) reconstruct the chemotactic term only, assuming that the diffusion term can be estimated by the

high-fidelity simulations and/or knowledge of the physics, thus constructing a gray box Keller-Segel-

class PDE model; and importantly,

(c) discover data-driven corrections to established approximate closure approximations of the

chemotactic term, which have been derived analytically from kinetic theory/statistical mechanics based

on series of assumptions (Erban and Othmer, 2004).

5.2.1 ABM model

A previously derived bio-mechanical-based Monte-Carlo dynamical model (Othmer, Xin, and Xue,

2013) was used to generate data for the chemotactic motility of E.Coli bacteria in response to a fixed

chemoattractant substrate profile. The model calculates the probability of rotational directionality of

each one of the six flagellae that extend from the surface of the cell based on changes of the concentration

of the CheY-P protein, which binds to the protein FliM at the base of the rotor. The changes in the

concentration of the CheY-P protein control the direction of the flagellar rotation (Othmer, Xin, and Xue,
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2013; Sarkar, Paul, and Blair, 2010), which in turn governs the motility of the cells. When the majority

of the flagellar filaments rotate in the counter-clockwise (CCW) direction the cell swims; otherwise

it tumbles. The change in time of the concentration of CheY-P protein, say C(t) is represented by a

simple algebraic relation reading (Setayeshgar et al., 2005; Siettos, 2014): C(t) = C̄− gu1(t), where the

dynamics of u1(t) are modeled by a simple two dimensional excitation/adaptation cartoon model given

by:
du1
dt

=
f (s)− (u1 + u2)

τe
,

du2
dt

=
f (s)− u2

τa
, f (s) = k

s
Ks + s

. (5.13)

In the above model, C̄ = 2.95µM is the baseline concentration corresponding to the non-excited state

(Cluzel, Surette, and Leibler, 2000; Setayeshgar et al., 2005), g = 5 is the amplification response to

excitation (Setayeshgar et al., 2005; Othmer, Xin, and Xue, 2013), s represents the external stimulus (here,

a chemoattractant substrate), te = 0.1 and ta = 20 represent the excitation and adaptation time constants,

respectively, and f is the function encoding the signal transduction reflecting the fraction of receptors

that are occupied (Othmer, Xin, and Xue, 2013; Erban and Othmer, 2004); k = 15 is a constant that

amplifies the input signal and Ks = 1µM is the dissociation constant for the enzyme-substrate complex

(Erban and Othmer, 2004; Block, Segall, and Berg, 1983; Setayeshgar et al., 2005). The swimming speed

(v) also depends on various parameters such as the bacteria strain, the substrate, temperature and

density of cells and may vary from ∼ 10 to ∼55¯m/s (Berg and Brown, 1972; Maeda et al., 1976). For

our simulations, we have set v = 30¯m/s. Finally, we note that in the MC model, the movement of

the bacteria is not affected by their density (they are “noninteracting”). For an analogous to the above

microscopic description of the E.coli motility model, Erban and Othmer (Erban and Othmer, 2004)

with the aid of statistical mechanics/ kinetic theory, and assuming that the the signal s(x) is a time

independent scalar function, have derived the following parabolic Keller-Segel-class PDE in closed form

in 1D:
∂b
∂t

=
∂

∂x

(︃
v̄2

2λ0

∂b
∂x
− d f

ds
cv̄2ta

λ0(1 + 2λ0ta)(1 + 2λ0te)

ds
dx

b
)︃

. (5.14)

Here, b = b(x, t) is the density of the population at x and time t, v̄ is the mean speed of the bacterium’s

motion, λ0 represents the basal turning frequency (frequency of tumbles) in the absence of excitation,

and c is a positive constant parameter that amplifies the excitation signal u1 that governs the switching

frequency in the presence of a stimulus (for a detailed description of the derivation of the above PDE and

its parameters please refer to (Erban and Othmer, 2004)). Based on the above, we define the generalized
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CHemotactic term CHg as

CHg ≡
∂

∂x
(

d f
ds

cv̄2ta

λ0(1 + 2λ0ta)(1 + 2λ0te)

ds
dx

b); (5.15)

the subscript g refers to the generalized Keller-Segel PDE. The main assumptions made for the above

closed form PDE are the following: (a) all bacteria are running with a constant velocity v̄, without

colliding, (b) the tumble phase is neglected, (c) the internal excitation-adaptation dynamics are described

by the 2D cartoon model, (d) the distribution of the substrate s(x) is a time-independent scalar function,

(e) the turning frequency (frequency of tumbles in the presence of stimulus), say, λ(t) is a linear function

of u1(t) given by

λ(t) = λ0 − cu1(t), (5.16)

and finally that (f) the gradient s′(x) is shallow, so that for all practical purposes, the second order

moment of the microscopic flux is zero, i.e. that (Erban and Othmer, 2004):

j2(x, t) =
∫︂

IR
v̄ · (p+(x, z2, t)− p−(x, z2, t))dz2 = 0. (5.17)

p±(x, z2, t) is the density function of the bacteria at (x, t) with the internal state z2(x, t) = u2(t)− s(x)

that run right (+) or left (−). The above assumptions result to the following closed form for the

chemotactic coefficient χ (Erban and Othmer, 2004):

χ =
d f
ds

cv̄2ta

λ0(1 + 2λ0ta)(1 + 2λ0te).
(5.18)

5.2.2 Data driven PDEs

Before discovering effective PDE laws from microscopic simulations, there is a crucial prerequisite:

what are the macroscopic observables whose field evolution laws we want to discover? There are cases

for which this knowledge is given: in our case we know we want to derive parabolic evolution laws for

the bacterial density field. Yet this knowledge is not always a priori given, based on domain knowledge:

for the chemotaxis problem itself, we know that in different parameter regimes one needs a hyperbolic

(higher order) equation for the density field (Erban and Othmer, 2004). Discovering sets of macroscopic

observables in terms of which an evolutionary PDE can be closed is a nontrivial task; often this task

can be performed using data mining/manifold learning techniques, and has been named “variable-free

computation” (in the sense that the relevant variables are identified through, say, PCA or Diffusion Map
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processing of the fine scale simulations (Erban et al., 2007; Arbabi and Kevrekidis, 2021).

In our case (with the chemoattractant field s(x) fixed, and with Keller-Segel-class equations in mind)

we know that we want to identify a parabolic evolutionary PDE in terms of the evolution of a normalized

bacterial density b(x, t) in one spatial dimension. That is, we expect ∂b
∂t = F

(︂
b, ∂b

∂x , ∂2b
∂x2 , . . . , s, ds

dx , d2s
dx2 , . . .

)︂
.

The existence of such a relation between the local bacterial density time derivative and the local values

and spatial derivatives of this field, as well as of the chemoattractant field, is our working hypothesis.

The question then becomes: how many spatial derivatives of the b(x, t), s(x, t) fields are required in

order to infer a useful data-driven closure ? Starting with an assumed highest order of possibly in-

fluential spatial derivatives, we resolve this here using a feature selection method. More specifically,

we use the automatic relevance determination (ARD) in the Gaussian framework (Rasmussen and

Williams, 2005), which has been widely used to identify dominant input features for a certain target

output using sensitivity analysis (Liu et al., 2019; Lee et al., 2020; Lee et al., 2021), see Subchapter 2.2.1.1.

This feature selection method also provides not only computational cost reduction but also a better

physical understanding of the underlying PDEs (explainability).

We learn three different types of data-driven PDE models, namely, (1) a black-box, (2) a gray-box,

and, (3) PDE RHS’s whose closures are learned (based on GPs and ANNs) as corrections of the analytically

available Keller-Segel PDE closure; how many spatial derivatives are kept in the identified RHS relies

on the ARD process above.

In what follows, we describe the basic steps of our numerical scheme.

The first model presented is a black-box model for the local dependence of the time derivative

of the bacterial density, ∂b
∂t , on the (local) density and its spatial derivatives as well as on the local

chemoattractant concentration and its derivatives, (i.e. the chemotactic PDE RHS operator) as:

∂b
∂t

= B

(︄
b,

∂b
∂x

,
∂2b
∂x2 , . . . ,

∂mb
∂xm , s,

ds
dx

,
d2s
dx2 , . . . ,

dks
dxk

)︄
, (5.19)

The orders m and k are identified here by the ARD feature selection algorithm (see Table 5.4). In several

cases, we may know some component of the macroscopic dynamic behavior that comes from intuition,

previous studies and/or experiments. For example, one can compute, through simulations and/or

the aid of statistical mechanics, the diffusion coefficient of the bacterial density. One can then write a

gray-box model which contains a Known Term –such as the diffusion term– KT, and Unknown Terms
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Figure 5.19: A schematic of the proposed data-driven numerical methodology: given the bacterial
density profile in space and time, as well as the chemoattractant profile, (and, for the closure correction
approach, the analytically available approximate chemotactic term CHg) from Eq.(5.14) and their spatial
derivatives, we extract possible candidates as input features for learning the PDE right-hand-side (RHS)
operator. Then, we train our Machine Learning models (ANN or GP) to approximate ∂b

∂t or CH (the
“ground truth” chemotactic term).

(the chemotactic terms) UT:

∂b
∂t

= UT

(︄
b,

∂b
∂x

,
∂2b
∂x2 , . . . ,

∂mb
∂xm , s,

ds
dx

,
d2s
dx2 , . . . ,

dks
dxk

)︄
+ KT. (5.20)

Here, we assume knowledge (or ability to infer) the diffusion term, including the corresponding

diffusion coefficient, D, i.e., KT = D ∂2b
∂x2 . In fact, here D is computed from appropriately designed

microscopic random-walk/Brownian motion Monte Carlo simulations in the absence of a chemical gradient.

Therefore, in our case, the Unknown Terms include just the chemotactic term, i.e. ∂b
∂t = D ∂2b

∂x2 + CH or

CH = ∂b
∂t − D ∂2b

∂x2 .

If some partial information is known (e.g. some of the terms in the RHS of the PDE), we can

apply the gray-box approach discussed. However, sometimes, we may have a closed form, analytical,

qualitatively good (but less accurate quantitatively) PDE model/closure, capable of describing in a

qualitative manner similar macro-scale dynamics. For example, we may have a closed-form PDE RHS that

is capable of predicting qualitative trends, but is not suitable for our particular experimental setup (e.g.,

one obtained for different types of chemoattractants, different types of bacteria, etc). This can be thought

of as a “low-fidelity” model and it can be used in the same spirit it would be used in a multifidelity data

fusion context (Lee et al., 2019; Perdikaris et al., 2017). Exploiting such existing approximate models, we
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propose a different type of gray-box Machine Learning scheme to calibrate the model to observation

data, so as to match our specific experimental set-up/our detailed numerical simulations.

We propose four types of data-driven closure corrections to enhance the accuracy of an effective

“low-fidelity” PDE. In particular, we used the “generalized PDE” model for the chemotactic dynamics

introduced in (Erban and Othmer, 2004) (Eq.5.14) as the low-fidelity reference model we want to correct.

The four types of closure correction models are detailed in Table 5.4. First, we used a Machine Learning

scheme (based on GP or an ANN), to correct the chemotactic term CHg of the generalized PDE so as to

learn the true chemotactic term CH. It may be that the quantitative closure is a simple, smooth function

F of the analytical approximate closure CHg in the general form of:

CH(b,
∂b
∂x

, . . . ,
∂mb
∂xm , s,

ds
dx

, . . . ,
dks
dk2 ) = F(CHg(b,

∂b
∂x

, . . . ,
∂mb
∂xm , s,

ds
dx

, . . .
dks
dk2 )). (5.21)

More often than not, this does not suffice, and more information/more variables are necessary for

quantitative prediction. Our first approach is to exploit data-driven embedding theories (in the spirit of

Whitney/Takens embeddings (Whitney, 1936; Nash, 1966; Takens, 1981; Lee et al., 2019)) to discover

corrections from the known CHg to the unknown CH using the first functional derivatives of CHg wrt. its

variables (Lee et al., 2019):

CH = H(CHg,
∂CHg

∂b
,

∂CHg

∂bx
,

∂CHg

∂s
,

∂CHg

∂sx
,

∂CHg

∂sxx
). (5.22)

Within the GP framework, we also identified a second “version” of this closure correction, using fewer,

dominant such derivatives via ARD analysis as:

CH = H(
∂CHg

∂b
,

∂CHg

∂bx
,

∂CHg

∂s
,

∂CHg

∂sx
,

∂CHg

∂sxx
). (5.23)

As a second idea, also conceptually based on embedding theories, we also considered another

closure correction approach, in which the equation RHS was not just a function of the approximate CHg,

but also included additional local inputs (in our first attempt we included the local bacterial density

b and the local chemoattractant s) as additional information, so that the corrected closure is a learned

function of the form

CH = h(CHg, b, s). (5.24)

Finally, we also tried a simple “additive” correction; we learned the bias term between the observed
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chemotactic term and the approximated chemotactic term of the generalized PDE in the form:

CH − CHg = H(b,
∂b
∂x

,
∂2b
∂x2 , s,

ds
dx

,
d2s
dx2 ). (5.25)

Data-driven Model Input Features Output

Black-box (Full) b, ∂b
∂x , ∂2b

∂x2 , s, ds
dx , d2s

dx2
∂b
∂t

Black-box (Reduced) b, ∂b
∂x , ∂2b

∂x2 , s, ds
dx

∂b
∂t

Gray-box (Full) b, ∂b
∂x , ∂2b

∂x2 , s, ds
dx , d2s

dx2 CH

Gray-box (Reduced) b, ∂b
∂x , ∂2b

∂x2 , s, ds
dx CH

Functional Correction (Full) CHg, ∂CHg
∂b , ∂CHg

∂bx
, ∂CHg

∂s , ∂CHg
∂sx

, ∂CHg
∂sxx

CH

Functional Correction (Reduced) ∂CHg
∂b , ∂CHg

∂bx
, ∂CHg

∂s , ∂CHg
∂sx

, ∂CHg
∂sxx

CH

Correction (No derivatives) CHg, b, s CH

Additive Correction b, ∂b
∂x , ∂2b

∂x2 , s, ds
dx , d2s

dx2 CH − CHg

Table 5.4: Selected groups of input features and the corresponding predicted quantity (output) for
different data-driven PDE law correction approaches. “Reduced” represents models constructed using
the (fewer) input features selected via ARD within the Gaussian process framework. We only reduce
GP models through ARD; the corresponding NN reduction was not attempted.

5.2.3 Results

For our computations, we run a Monte Carlo simulation of n = 5000 bacteria initially located at

x = 5.5, from t = 0 to t = 5000s with dt = 2s as reporting horizon, and collect the training data. For

training, we collected data from four (fixed in time) different chemo-nutrient concentration profiles,

all with a Gaussian distribution s(x) = 1√
2πσ2

exp(− 1
2
(x−µ)2

σ ): (1) µ = 6, σ = 1; (2) µ = 6, σ = 1.5;

(3) µ = 7, σ = 1.5; (4) µ = 7, σ = 1.25. Specifically, from 5000 individual trajectories of the bacterial

motion, we estimated the normalized bacterial density b(x, t) on a uniform grid from x = 3 to x = 9

with dx = 0.05 at every time step using kernel smoothing (Bowman and Azzalini, 1997) as:

b(x, t) =
1

nh

n

∑
i=1

K
(︃

x− xi(t)
h

)︃
, (5.26)

where K(·) represents the kernel smoothing function (here, a Gaussian function), and h is the bandwidth

(here, set to h = 0.3). For the approximation of the first ∂b/∂x and ∂b/∂t and the second ∂2b/∂x2 partial

derivatives of the density profile, we used central finite differences. Thus, our data-driven models

124



are constructed based on six input features (b, ∂b/∂x, ∂2b/∂x2, s, ds/dx and d2s/dx2) that are used for

learning the corresponding time derivative ∂b/∂t.

Gaussian Process learning was performed in Matlab using a RBF kernel with ARD. For feature

selection, the cut-off is 105. That is, if the optimal hyperparameter value is higher than 105, we eliminate

the corresponding input features. Neural Network learning was performed in Python using Tensorflow

(Abadi et al., 2015) with two hidden layers with [9, 8, 8] neurons each (Black box, Gray box, Correction

model respectively), equipped with a hyperbolic tangent activation function. The Neural Network was

trained using an Adam optimizer (Kingma and Ba, 2014) and the training hyperparameters were tuned

empirically (Epochs [2, 560, 10, 240, 2, 560], Batches [800, 000, 750, 000, 300, 000], Initial Learning Rate

0.02 with a plateau learning rate scheduler with patience 1, 200 epochs and factor 0.5).

After learning the time evolution operator, we first tested whether the laws identified could re-

produce the trajectories from which the training data were collected. For illustration, we performed

numerical integration with the data-driven learned PDEs (using both GP and FNN) from t = 20s to

t = 4020s with dt = 2s using a 4-th order Runge-Kutta scheme, as well as a commercial package

integrator (explicit Runge-Kutta method of order 5(4) (Dormand and Prince, 1980) as implemented by

solve_ivp in Python, resulting in a maximum absolute error of 4 · 10−6 and the corresponding integrator

(and tolerances) in Matlab with maximum absolute error of 9 · 10−4. High spatial frequency Fourier

modes of the bacterial density profile were consistently filtered (a procedure analogous to adding hy-

perviscosity in hydrodynamic models, (Thiem et al., 2021)) The ground truth spatiotemporal evolution

of the bacterial density is shown in Figure 5.20(a) and the corresponding relative errors are shown

in Figure 5.20(b) while in Figure 5.20(c), we show the reconstructed profile at t = 1000s for one of

our training chemo-nutrient profiles s(x) = 1√
2π1.252

exp(− 1
2
(x−7)2

1.252 )) The performance of our several

different data-driven PDE closure corrections was assessed in terms of the relative approximation

error between the ground truth density profiles (bGT(x, t)) and the profiles (bDD(x, t)) resulting from

numerical integration of the learned approximate PDE right-hand-sides. This error was defined as

Er = 100 |b
GT(x,t)−bDD(x,t)|

max bGT(x,t) ; a comparison to the density profile of the full Monte Carlo simulations at

t = 1000s is also provided.

After that, we tested the performance of the data-driven PDE closure corrections with the test

data from a new chemoattractant concentration profile (not included in the training data set): s(x) =

1√
2π1.352

exp(− 1
2
(x−6.5)2

1.352 ). The ground truth of the testing case is plotted in Figure 5.21(a). The predicted

profile at t = 1000s and the corresponding relative errors are shown in Figures 5.21(b) and (c), respec-

tively. Table 5.4, summarizes the different data-driven models with respect to (1) Machine Learning
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techniques, (2) selected features, and (3) the corresponding predicted quantity.

A benefit of reduced feature selection is that the computational cost in the training phase is reduced,

while (as shown in Figures 5.20 and 5.21) the predictive accuracy is retained. Regarding the black-box

trajectory reconstruction relative error for the training data set, the GP data-driven models never exceed

14% relative error when integrated for a long time (15% for the ARD-reduced GP), while the FNN

data-driven models never exceed 4% relative error. For the test data-set, the respective maximum

relative errors are 20% and 12% for the GP (full or reduced) and FNN, respectively.

Interestingly, the largest errors observed for the GP are concentrated during the fast, initial transient,

while the trajectories become more accurate at later times as they approach steady state. FNNs seem to

perform better in capturing this initial transient.

As shown in Figures 5.20 and 5.21, the gray-box models provide comparable, yet slightly improved

accuracy, compared to the black-box ones. Specifically, the maximum reconstruction relative errors for

the training data set are 9% for the GP (12% for reduced GP) and 10% for the FNN models, while for the

testing case these are 12% for the GP (19% for reduced GP) and 10% for the FNN models. These results

confirm the capabilities of gray-box models, which combine partial physical knowledge (exact, or even

approximate) with data-driven information towards accurate and efficient data-assisted modelling of

complex systems.

There are, of course no guarantees here for the accurate generalization of the predictions beyond the

training data; yet the performance of our models over the test set, and also for chemoattractant profiles

not included in the training, appears promising. Our expectation is that the closure correction models,

by always making use of the “low-fidelity” (qualitative) information at every time step, may generalize

better.

Here, results are presented for two of the four closure correction approaches , i.e. the ones described

in Eq.(5.22, 5.23). In particular, the maximum relative errors for the training case were 10% for the GP

(8% for reduced GP) and 6% for the FNN models, while for the testing case they were 5% for the GP

(4% for reduced GP) and 4% for the FNN models. Thus, all different closure correction approaches

(even though the figures for the “additive” and the “no derivatives” corrections are not included for

economy of space), provide reasonable accuracy for validation as well as test profiles qualitatively and

even quantitatively.
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Figure 5.20: (a) Training/reconstruction case. Ground Truth (GT) evolution for µ = 7, σ = 1.25:
smoothened profiles of bacterial density derived from post-processing agent-based simulations. (b)
Quantitative performance of representative data-driven models (DD) trained by Gaussian Process
Regression (GP), reduced Gaussian Process Regression with ARD (GP+ARD) or a Neural Network
(NN): relative error (%) based on maximum density for black-box model, gray-box model, and correction
model (first, second and third rows respectively). (c) Qualitative comparison of profiles of bacterial
density at t = 1000s: PDEs learned through (left) Gaussian process; (middle) Reduced Gaussian
processes (with ARD); and (right) Neural Networks.Profiles are colored as follows: blue – ground truth,
orange – black box, green – gray box, purple – PDE Eq.[3]. The bottom row is a blowup of the profile’s
peak. Note that for the Monte-Carlo simulations the initial state (t = 0s) is at x = 5.5cm for all agents,
while all PDE simulations (DD models, PDE in 5.14) begin at t = 20s. No flux boundary conditions
were used, consistent with (Erban and Othmer, 2004).
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Figure 5.21: (a) Testing case. Ground Truth (GT) evolution for µ = 6.5, σ = 1.35: smoothened profiles of
bacterial density derived from post-processing agent-based simulations. (b) Quantitative performance
of representative data-driven models (DD) trained by Gaussian Process Regression (GP), reduced
Gaussian Process Regression with ARD (GP+ARD) or a Neural Network (NN): relative error (%) based
on maximum density for black-box model, gray-box model, and correction model (first, second and third
rows respectively). (c) Qualitative comparison of profiles of bacterial density at t = 1000s: PDEs learned
through (left) Gaussian process; (middle) Reduced Gaussian processes (with ARD); and (right) Neural
Networks.Profiles are colored as follows: blue – ground truth, orange – black box, green – gray box,
purple – PDE Eq.[3]. The bottom row is a blowup of the profile’s peak. Note that for the Monte-Carlo
simulations the initial state (t = 0s) is at x = 5.5cm for all agents, while all PDE simulations (DD models,
PDE in 5.14) begin at t = 20s. No flux boundary conditions were used, consistent with (Erban and
Othmer, 2004).
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5.2.4 Discussion and Conclusions

Here, a Machine Learning framework is presented for the inverse problem in chemotaxis. In partic-

ular, we showed how one can learn black-box and gray-box parabolic PDEs for the emergent dynamics

of bacterial density evolution (and, importantly, unknown closures and their corrections) directly from

high-fidelity microscopic/stochastic simulations. Specifically, we introduced a computational data-

driven framework for nonlinear PDE/closure identification and correction; the framework consisted

of three progressively more physics-informed processes: (a) learning a black-box PDE (learning the

right-hand-side of an coarse-scale PDE including the diffusion term), (b) learning a gray box PDE (an

entire unknown closure, with a known Diffusion term), and (c) obtaining closure corrections (providing

a correction of an analytically available closure in a low-fidelity, approximate PDE model). Within this

framework, we exploited the Automatic Relevance Determination (ARD) algorithm for feature selection,

in order to reduce the number of variables on which the learned quantity depends. The overall approach

forms a bridge between analytical/mechanistic/physical understanding, and data-driven “black-box”

or “gray-box” learning of physical process dynamics, allowing for a synergy between varying types of

physical terms/models and data-driven terms/models.
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5.3 Experiments

The final data source is experiments and, specifically, bacterial motility tracking through fluorescence

measurements. This case appears to be the most involved as it comes with the challenge of working

with real-world biological data. The work shown in Subchapter 5.1 will facilitate the data-driven PDE

model selection and provide with intuition.

5.3.1 Experiment description

As shown in (Bhattacharjee et al., 2021), chemotactic motion can be tracked using confocal fluores-

cence microscopy of E. coli populations; thus, we use the data from these prior experiments here. As

detailed further in (Bhattacharjee et al., 2021), we 3D-printed a long, cylindrical inoculum of densely-

packed cells within a transparent, biocompatible, 3D porous medium comprised of a packing of hydrogel

particles swollen in a defined rich liquid medium. Because the individual particles were highly swollen,

their internal mesh size was large enough to permit free diffusion of oxygen and nutrient (primarily

L-serine, which also acts as a chemoattractant), but small enough to prevent bacteria from penetrating

into the individual particles; instead, the cells swam through the interstitial pores between hydrogel

particles. The cells constitutively express fluorescent protein in their cytoplasms, enabling us to track

their motion as they expanded radially outward from the initial cylindrical inoculum in 3D. The fluo-

rescence measurements were collected with spatial resolution dr = 2.48 µm and temporal resolution

dt = 10 min, and were then azimuthally averaged, only considering signal from the transverse, not the

vertical, direction. The fluorescence signal thereby determined is directly proportional to the density

of metabolically-active bacteria, and we will denote it as b̃(r, t); cells are left behind in the wake of the

moving chemotactic front, but become immobilized and lose fluorescence as they run out of oxygen and

nutrients.

5.3.2 Data driven PDE

The training profiles were selected appropriately so that the traveling wave is not too close to the

spatial boundaries, and the cylindrical coordinate system remains valid. Profiles were smoothed in

space using a local Savitzky-Golay filter and globally using Gaussian Smoothing (Savitzky and Golay,

1964; Getreuer, 2013). The resulting smooth profiles were interpolated in time using Gaussian Radial

Basis Functions (Fasshauer, 2007).
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We hypothesize that the spatiotemporal behavior of cell density observed in the experiments results

from a PDE similar to Eq.5.2. However, we have no measurements of the spatiotemporal evolution of

the chemonutrient, therefore, we turn to the methodology described earlier for data-driven models with

partial information (for more details, see Subchapter 5.1.2 and specifically, the model with Eq. 5.7).

Interpolation in time allows for well-approximated time derivatives as we can choose data along t

as dense as necessary. In fact, it is possible to estimate second order in time derivatives, which can be

used to learn a second order in time continuous-time PDE in lieu of a delay model (Packard et al., 1980),

such as that used in 5.7.

btt = f exp
NN(b,∇b · r̂, ∆b, bt) (7)
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Figure 5.22: Pre-processing of experimental measurements: (left) Smoothing in space (right) Interpola-
tion in time.

This can be treated as two coupled PDE fields (and integrated as such), by introducing an artificial

field u(r, t):

ut = f exp
NN(b,∇b · r̂, ∆b, u)

bt = u

131



5.3.3 Results

Given the nutrient-starved/hypoxic conditions at r ≈ 0, our training data were selected away

from the origin. In addition, we assign bilateral boundary corridors which are not used for training

or validation of our data-driven model, but only to provide data-informed boundary conditions when

integrating the learned PDE.

The learning algorithm consists of a Deep feed-forward Neural Network with 3 hidden layers and

90 neurons per layer. When integrating the data-driven model, SVD filtering was used: ut is projected

to a lower-dimensional space, defined by the dominant singular vectors of the the ut(r, t) data used in

training (Halko, Martinsson, and Tropp, 2010). This is a procedure analogous to adding hyperviscosity

in hydrodynamic models (Thiem et al., 2021). Here, the eight first singular vectors were used, containing

> 99% of the variance. The model was validated by integration in the spatiotemporal domain of the

formation and propagation of the traveling wave (shown in red in Fig. 5.22).
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Figure 5.23: Segmentation of the pre-processed data into: boundary corridors/ discarded data, training
subset (the complement), subset chosen for reproduction (red rectangle).
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Figure 5.24: Reproduction of experimental observations using a Data-driven Neural Network for the
traveling wave regime: (left) Ground Truth, (middle) Neural-Network PDE integration results, (right) %
Relative Error.

5.3.4 Discussion and Conclusions

The methodology initially presented in Subchapter 5.1 was applied to data from chemotactic

bacterial motility experiments. This demonstrates that the proposed data-driven PDE methodologies

can be implemented even when the data at hand are partial, noisy, and/or sparse.

The conclusions from Subchapter 5.3 are aligned with those from Subchapter 5.1: A second order

model can indeed capture the dynamics of a data set with partial information. In this case, a deeper

Neural Network is required to capture the real-world dynamics from experimental observations. Indeed,

the data-driven PDE manages to capture important characteristics of the traveling wave, such as its

speed and amplitude. It also manages to capture the dynamics on the left of the traveling wave: the

bacteria density remains stationary, as in that region the chemonutrient gradient is negligible. Note

that, as discussed in (Bhattacharjee et al., 2021), analytical models fail to capture this behavior without

non-autonomous correction terms .
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Chapter 6

Discussion and Conclusion

This dissertation begins with a broad premise: data-driven algorithms can facilitate traditional

modeling of complex systems in Chemistry and Biology, when used synergistically with it. Three systems

are employed in support of this statement, presented in the order of increasing involvement of Machine

Learning:

(i) Discovering Limits of Entrainment for Circadian Neuronal Networks (Chapter 3): Here, bi-

furcation studies of a high-dimensional computational neuroscience model are performed, by

simply probing integration trajectories. The matrix free approach presented, can be applied to any

black-box integrator model. Diffusion Maps allow the discovery of a latent heterogeneity space,

answering the nontrivial question “How really different are all neurons in a network?”.

(ii) Optimizing Reactors under Dynamic Operation (Chapter 4): Here, a detailed analysis of the

dynamics of periodically forced reactors is performed. Employing suitable algorithms from

numerical methods and nonlinear dynamics we accelerate the location of steady states and

efficiently explore the parameter space thus understanding the added degrees of freedom. Using

Bayesian methods we enable an active learning modality, constructing surrogate models for the

solution and objective function manifolds.

(iii) Learning Chemotactic PDEs with Machine Learning (Chapter 5): Here, macroscale chemotactic

PDEs are identified from a variety of data sets: high-fidelity macroscale data from deterministic

PDE simulations, high-fidelity microscale data from stochastic agent-based simulations and real-

world experimental data. It is demonstrated how we can incorporate a priori Biology/Chemistry
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knowledge to Machine Learning algorithms. This can be done at various levels: knowledge of

relevant operators, knowledge of some PDE terms or knowledge of entire approximate PDEs.

Hopefully, this thesis stands as evidence that this synergy is a “two way street”: It is not only

Machine Learning that assists traditional modeling in Biology/Chemistry, e.g. through universal

approximation, computational efficiency and model versatility. It is also the fundamental knowledge of

Biology/Chemistry that helps construct generalizable, explainable and parsimonious models (acting in

a sense like Occam’s razor (Blumer et al., 1987)).

Future directions are abundant, especially in Biology. Multiscale system identification (see, for

example Fig.1.4) can lead to a better understanding of pathological phenotypes and connect them with

early spatiotemporal predictors (observers) in the single-cell scale (Alber et al., 2019; Ji et al., 2021;

Chabiniok et al., 2016; Peng et al., 2021). Exploring the (possibly reduced (Pozharskiy et al., 2020))

parameter space of complex systems is also of major importance: Discovering the effective degrees of

freedom (Angerer et al., 2015), predicting the system’s response to different inputs (Shipp et al., 2002),

“foracasting” qualitative changes of behavior (bifurcations (Ferrell, 2012)) or rare events (Wan et al.,

2018), and driving it to optimal responses by tuning its degrees of freedom (Villaverde and Banga, 2014;

Radivojević et al., 2020; Mason et al., 2021; Padmanabhan, Meskin, and Haddad, 2017).

In conclusion, there is great value in the synergistic use of Machine Learning with traditional

modeling. Given the assumptions, limitations and benefits of each, this is a promising research direction

for both scientists/engineers with field-specific expertise and Machine Learning practitioners.
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