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Abstract

This dissertation focuses on methods development for "third-generation"

(long-read) sequencing technologies. With an emphasis on nanopore sequenc-

ing, this work discusses strategies and applications for genome assembly of

both non-model organisms and humans. The methods described here make

extensive use of hybrid genome assembly methodologies for generating chro-

mosome level gapless genomes as well as native oxford nanopore sequencing

for investigating epigenetics. We use these approaches to evaluate the follow-

ing non-model organisms: the tobacco hornwom moth (Manduca sexta) and

the ruby-throated hummingbird (Archilochus colubris). Lastly, we apply these

methodologies to the human genome to generate the first gapless telomere

to telomere assembly of a human genome and provide a framework with

which to investigate the most elusive regions of the human genome, granting

insights into epigenetic regulation.
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Chapter 1

Introduction

1.1 The history of genomics

It can be argued that the genomics era began with the resolution of the three-

dimensional structure of DNA in the 1950s (Franklin and Gosling, 1953; Wat-

son and Crick, 1953). This was followed by the first sequencing of nucleic

acids using chromatography based methods in the 1960s (Holley et al., 1965;

Sanger, Brownlee, and Barrell, 1965; Wu, 1972). Chromatographic methods

like these were then optimized (Maxam and Gilbert, 1977; Sanger, Nicklen,

and Coulson, 1977; Smith et al., 1986) throughout the 70s and 80s, resulting

in automated capillary electrophoresis sequencing available by 1990 (Luckey

et al., 1990). This technology development, a coupling of molecular biology

advances to advances in engineering and computational analysis, led in part

to the completion of the first human genome in 2001, an achievement which

cost >3 billion dollars and took 13 years (Lander et al., 2001; Venter et al.,

2001). But technology development has continued, reducing the costs and

improving the speed of sequencing (Schloss et al., 2020). A goal of a 1000
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dollar genome was set and strived for via different methods of technology

development.

Technological advancements led to the introduction of the massively paral-

lel high throughput “Next Generation Sequencing” (NGS). These technologies

(i.e. 454, ion torrent/proton PTM, SOLiD and Illumina) allow for rapid and

cheaper sequencing than the previously used Sanger. Illumina sequencing in

particular, can generate billions of sequencing reads enabling the goal of whole

human genome sequencing for under 1000 dollars (Buermans and Dunnen,

2014; Davies, 2015; Mardis, 2006). The technology involves local clonal ampli-

fication of DNA template molecules and identification of nucleotides through

detection of fluorescent signals. While generating sequencing reads greater

than 99.9% accurate (Q30), Illumina sequencing is subject to cycle dephasing

brought on by increasing read length, inverted repeats and GC rich sequences

which decreases signal to noise and precludes read accuracy (Nakamura et al.,

2011). Due to this technological hurdle, GC rich regions are under-represented

in the sequencing reads and read length is limited. Alternatively, long read

sequencing offers many advantages over NGS. While NGS can generate reads

up to 600bp in length, single molecule sequencing can routinely sequence

reads longer than 10kb. Long reads improve de novo assembly, mappability,

transcript isoform identification, phasing of alleles, and detection of structural

variants. Additionally, third generation sequencing can be performed on na-

tive nucleic acid, both DNA and RNA, therefore reducing PCR amplification

bias and preserving epigenetic information in the form of base modifications.

There are currently two methods of single molecule sequencing, Oxford
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Nanopore Technologies (ONT) and Pacific Biosciences (PacBio). Both rely

on distinct biophysical principles to evaluate the order of nucleotides on

single molecules. PacBio sequencing captures sequence information during

the replication process by detecting fluorophore incorporation at a tethered

polymerase. This process occurs within a zero mode wave-guide (ZMW)

which limits fluorophore detection primarily to the volume around the poly-

merase (Levene et al., 2003). Read length in PacBio sequencing is dependent

on the processivity of the polymerase, the longer the polymerase stays on the

molecule, the longer the sequencing read can be. Because PacBio sequenc-

ing uses a circularized library, there is an opportunity to sequence the same

molecule multiple times (HiFi data), improving the single read accuracy to

greater than 99.9% (Q30) at the cost of sequencing yield or molecular read

length (25 kb) (Nurk et al., 2020). In contrast, CLR sequencing can achieve

read lengths exceeding 50kb, with a decrease in read accuracy to below 85%

(Wei and Zhang, 2018). Nanopore sequencing, however, relies on fluctuations

in electrical current to characterize a biopolymer as it passes through a biolog-

ical nanopore. My thesis work relies heavily on methods development and

utilization of the nanopore platform, therefore this introduction will focus

heavily on nanopore technologies.

1.2 Development of nanopore sequencing

Nanopore sequencing is unique from other sequencing methodologies (i.e.

Sanger, Illumina, PacBio) because it characterizes the molecule directly, rather

than as a result of DNA synthesis. It was first suggested that polymers could

3



be characterized by measuring the altered current as they pass through protein

pores in the late 1990s (Church et al., 1998; Deamer, Akeson, and Branton,

2016). This idea became a reality when Kasianowicz et al. characterized DNA

and RNA in α-hemolysin (α-HL) nanopores using techniques developed in

electrophysiology for ion-channel measurements (Kasianowicz et al., 1996).

As experimentation continued, initial enthusiasm was curbed because of

significant roadblocks in application to actual sequencing, mainly that the

speed of nucleic acid translocation was too fast (1-10µs) to resolve individual

bases. Improving signal to noise required each base to be in the pore for

>100µs. This pointed to the necessity of racheting the strand through the

pore so that each step allowed sufficient time to identify the next base in

the strand’s sequence (Hornblower et al., 2007; Meller, Nivon, and Branton,

2001). It was not until 2012 that the two essential components of a functioning

nanopore sequencer (ie. translocation control at single-nucleotide resolution

and discrimination among bases) were in place by utilizing a mutant MspA

nanopore and phi29 DNA polymerase (Manrao et al., 2012).

With all the pieces in place, commercial development began with the first

release of the R6 MinION nanopore sequencer by Oxford Nanopore Tech-

nologies in 2014. The MinION is a compact and portable device with 2,048

individually addressable protein nanopores of which 512 can sequence simul-

taneously (Cherf et al., 2012; Yeh et al., 2012). Initial testing of the MinION

showed it could yield 50-150Mb with reads up to 15kb long (Mikheyev and

Tin, 2014; Timp et al., 2014). With these early iterations, error rate in the

MinIONs was a significant concern with per read accuracy at 67%. Rapid
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and significant improvements have occurred throughout the past few years

leading to additional iterations of the protein pore, motor protein and mem-

brane. The dominant pore version is currently the R9.4, which is derived

from the Escherichia coli CsgG pore and also has a newer version of the motor

protein (E8) to increase translocation speed (Goyal et al., 2014; Loose, 2017; Lu,

Giordano, and Ning, 2016). Current yield varies between the different flowcell

options from 1Gb for the smallest (flongle) flowcell with 128 sequencing

channels to 10-20Gb for the minION with 512 sequencing channels to 100Gb

for the PromethION with 3000 sequencing channels.

1.3 Library preparation

To sequence DNA on a nanopore instrument, first high quality, long DNA

molecules have to be extracted intact from samples. Once purified, sequencing

adapters with bound motor protein are ligated to double-stranded DNA. The

bound motor protein ensures translocation control and a tether included in

the adaptor places the molecule on the surface (Figure 1.1A). Single strands of

the library molecule are then sequenced from 5’-3’, generating a sequencing

read. However, because this sequencing is not dependent on synthesis, we

can also characterize RNA molecules directly by passing them through a pore,

as the original experiments on nanopore sequencing did (Akeson et al., 1999;

Kasianowicz et al., 1996). By attaching a sequencing adaptor to the 3’ end

of RNA molecules with a bound motor protein compatible with RNA, direct

RNA nanopore sequencing is possible (Figure 1.1B).
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Figure 1.1: Nanopore sequencing A: For DNA nanopore sequencing, adapters (blue)
are ligated to end-prepped and dA-tailed native DNA . Each adapter has a motor
protein (green) for aiding in translocation through the pore from the 5’ end to the 3’
end. B: In nanopore direct RNA libraries an adapter with a 10(dT) (red) overhang
ligates to the polyadenylated tail of transcripts followed by a reverse transcription
step to linearize the RNA template, can also be replaced with a custom adapter so that
any RNA sequence can be targeted with a custom primer. Then, sequencing adapters
with motor proteins (green) are ligated in the last step of library preparation. RNA is
sequenced from the 3’ polyadenylated tail to the 5’ cap. C: DNA electrophoretically
translocates the modified CsgG protein pore. Electric current is measured as a function
of time and nucleic acid bases can be associated with signature electrical fluctuations.

6



1.4 Basecalling

DNA or RNA libraries are then loaded onto the nanopore device, when in

contact with pore the motor protein ratchets single stranded nucleic acid

through the protein nanopore creating deviations in electrical current that

translate into nucleic acid sequence (Figure 1.1C). The first generation of ONT

basecallers relied on Hidden Markov Models (HMMs), these are a class of

probabilistic models that allow prediction of a sequence of unknown variables

(nucleotide bases) from a set of observed variables (ionic current). It was

shown that HMMs could successfully decode trinucleotides in 2012 (Timp,

Comer, and Aksimentiev, 2012). ONT’s first HMM basecaller, Albacore was

released in 2017 and relied on an intermediary stage known as “event detec-

tion”. The later versions of Albacore transitioned to ‘raw basecalling’ with a

transducer-based model which calls bases directly from the signal data skip-

ping the event detection step. This improved basecalling in homopolymeric

regions with single read accuracy of Q9.2 and consensus accuracy of Q21.9

(Wick, Judd, and Holt, 2019). ONT’s next version of the basecaller, Guppy, was

released in late 2017. Early versions of Guppy did not perform much better

than Albacore, however its GPU compatibility made it substantially faster to

run. The most recent version of Guppy contains two basecalling algorithms,

the current baseline algorithm contained in Albacore and the addition of the

“flip-flop” algorithm. Flip-flop uses a neural network implementation that

substantially improves consensus accuracy and calling of long homopolymer

regions. Guppy flip-flop generates reads with consensus accuracy of 99.5%, a

significant improvement over the previous basecallers.
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1.5 Detection of modified bases

Another major advantage of nanopore sequencing is the ability to obtain in-

formation about non-canonical nucleic acid bases from raw signal data. Base

modifications to DNA and RNA play major roles in integral cellular processes

such as aging, gene regulation, imprinting, gene expression, transcript lo-

calization and disease (Field et al., 2018; Gibney and Nolan, 2010; Kumar,

Chinnusamy, and Mohapatra, 2018; Liyanage et al., 2014; Macdonald, 2012;

Sen et al., 2016). Specifically, methylation of the fifth carbon of the cytosine

(5mC) at CpG dinucleotides plays a pivotal role in mammalian development

(Smith and Meissner, 2013). The current ‘gold standard’ method for profiling

5mC in DNA is bisulfite sequencing (Patterson et al., 2011). Sodium bisulfite

treatment converts unmodified cytosines to uracil, while leaving methylated

cytosines unchanged (Clark et al., 1994; Frommer et al., 1992). However,

bisulfite treatment is harsh and damaging to the DNA, resulting in DNA

degradation and significant sample loss (Kint et al., 2018). Additionally, re-

liance on short reads gives rise to short-range patterns and cannot reveal long

range methylation information or allele specific patterns, particularly those

involved in imprinting (Gigante et al., 2019). Conversely, base modifications

from non-canonical nucleotides, such as 5mC, introduce unique deviations

in the signal data making them detectable with native oxford nanopore se-

quencing (Figure 1.2A). Therefore, 5mC information can be obtained on the

single molecule level with long-reads; this improvement in read-length allows

epigenetic profiling of highly repetitive DNA, such as the human centromere
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(Figure 1.2B). Calling base modifications typically involves traditional base-

calling, mapping the raw signal to a genomic reference and then computing

if a base is modified based on evidence from the signal (Gouil and Keniry,

2019). Nanopolish methylation caller is a pretrained package that detects

5-methylcytosine in a CpG context by employing a HMM. The HMM uses a

table of event level distributions characteristic to every k-mer, termed a pore

model, to decipher the methylation state of k-mers (Simpson et al., 2017).

Additionally, exogenous labels can be added to native nucleic acid and

later detected upon sequencing (Figure 1.2C). This methodology has been

utilized to study structure and dynamics of DNA and RNA. Signal level anal-

ysis has been used to capture dynamics of DNA during genome replication

using pulsed in BrdU with either D-NAscent or RepNano (Hennion et al.,

2018; Müller et al., n.d.). These methods detect differences in BrdU incorpo-

ration frequency across individual molecules. This information can be used

to reveal the location of active replication origins, fork direction, termination

sites, and fork pausing/stalling events. Nanopore sequencing can also de-

tect non-endogenous GpC methylation for profiling chromatin accessibility

(Lee et al., 2020; Shipony et al., 2018). The SMAC-seq method treats DNA

with m6A and CpG and GpC 5mC methyltransferases which preferentially

methylate DNA in open regions of chromatin. When the DNA is subsequently

sequenced, highly methylated regions are indicative of open chromatin re-

gions. The MeSMLR-seq and nanoNOMe methods treat DNA with GpC

5mC methyltransferases to profile chromatin accessibility and nucleosome

occupancy (Lee et al., 2020; Wang et al., 2019) (Figure 1.2D). Detection of
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Figure 1.2: Modified Nucleotides A: The electrical signal distributions of modified
(methylated) CpG sites versus unmodified (unmethylated) CpG sites. B: An example
of nanopore reads being used to generate methylation profiles in human centromeres.
C: The electrical signal distributions of modified (methylated) GpC sites versus
unmodified (unmethylated) GpC sites. GpC methylation is added exogenously for
marking open chromatin sites. D: An overview of exogenous chromatin labelling
with GpC methylation and simultaneous CpG and GpC methylation profiling on
single reads.
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methylated DNA has also proven useful in the case of binning metagenomic

contigs, associating mobile genetic elements with their host genomes, and

identifying misassembled metagenomic contigs (Tourancheau et al., 2020).

1.6 Genome assembly with long reads

Long read sequencing has also contributed to massive improvements in de novo

genome assembly, resulting in 30 to 300-fold more contiguous genomes (Rhie

et al., 2020). Genome assembly aims to reconstruct the full genome sequence

of the organism by first organizing the sequencing reads to contigs, which are

then ordered and oriented into larger scaffolds with gaps between the contigs

(Figure 1.3A). Most plant and animal genomes have high levels of repeated

and duplicated sequences that cause ambiguities in the ordering of genome

segments (Simpson and Pop, 2015). A great example of this is the human

genome: after nearly two decades of improvements from its initial completion,

the current human reference genome (GRCh38) is the most accurate and

complete vertebrate genome ever produced. However, gaps represented by

stretches of Ns still persist (Chaisson et al., 2015; Guo et al., 2017). While

the development of NGS has revolutionized the field of genomics by making

whole genome sequencing rapid and affordable, short reads alone result in

fragmented assemblies because most repetitive sequences are longer than

the read length can resolve (Nagarajan and Pop, 2009). Long reads reduce

the number of gaps, but the decrease in accuracy when compared to NGS

adds additional challenges to long read assembly (Figure 1.3B). The most

common method for de novo assembly, the de Bruijn graph, is confounded
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by sequencing errors. The overlap-layout-consensus (OLC) algorithm was

revived for long read assembly because it can handle inconsistencies in read

length and a relatively high number of sequencing errors making it excellent

for assembly from nanopore or PacBio data (Koren et al., 2017). The initial

assembly algorithms can correct many errors simply looking at the consensus

(Kolmogorov et al., 2019), which will eliminate many errors with sufficient

coverage, but systematic errors will persist in the resulting assembly. One

solution to these errors is subsequent polishing algorithms such as nanopolish

or medaka. Nanopolish examines the assembly and assesses the likelihood

of alternative sequences using the raw electrical data to find the most likely

consensus (Loman, Quick, and Simpson, 2015). Nanopolish substantially

increases the per base accuracy of the consensus sequence and also improves

basecalling of homopolymer tracks (Wick, Judd, and Holt, 2019). Medaka

instead uses a trained neural network against the aligned reads, by training on

known sequences, they have established models that perform well to correct

errors using only the basecalled reads. Alternatively accuracy can be increased

by simple rounds of consensus generation using either the original long reads

(Racon) or accurate Illumina short reads (Racon, Pilon, FreeBayes, or POLCA

(Garrison and Marth, 2012; Vaser et al., 2017; Walker et al., 2014; Zimin

and Salzberg, 2019). Unfortunately these short-read consensus polishers are

limited by the mappability of the short reads and cannot polish inside highly

repetitive areas.

Other genome assembly methods involve using both the short and long

reads for assembly in a process known as “hybrid assembly”. These hybrid
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approaches can use long reads to construct the structure of the genome and

fill in the bases with short accurate reads or combine short reads together

into longer “super-reads” and scaffold these “super-reads” into “mega-reads”

using the long read nanopore data (Koren et al., 2012; Zimin et al., 2013).

Lastly, contigs can be scaffolded using a variety of data modalities that capture

long range information (i.e. mate pair, HiC, optical mapping). Nanopore

sequencing has been used to generate chromosome level reference genomes

for a multitude of model and non-model organisms and entire microbial

communities (Hamner et al., 2019; Nicholls et al., 2019).

1.7 Genome Variation

Since the development of high-throughput sequencing methods (Illumina),

our understanding and study of mutations/alterations to the human genome

have exploded. Characterization of small nucleotide variations inform mendelian

diseases, genetic predispositions, and different cancers have allowed us to

form mechanistic insight. However, most of these studies focused on what

is easiest to detect with short-read sequencing, small nucleotide variations.

In contrast, structural variations, defined as genomic alterations larger than

50bp which encompass deletions, duplications, insertions, inversions and

translocations, describe major rearrangements in the genome. Detecting and

visualizing structural variations (SVs) is critical for understanding the relation-

ship between SVs, human traits, and diseases. Deducing SVs from Illumina

paired end data is well established and highly used, however these meth-

ods lack sensitivity (only 10-70% of variants detected), and have very high

13



Figure 1.3: Genome assembly A: Overview of whole genome de novo assembly
from nanopore sequencing reads. The pipeline begins with generation of nanopore
sequencing reads (gray). This data contains errors; single nucleotide variants shown
in blue, red, and green and indels shown in purple. Many whole genome assembly
tools can be used to assemble long read data into consensus contigs (light pink). This
initial assembly maintains errors from nanopore reads, these errors can be corrected
with signal level polishing (Nanopolish) and short read error correction to improve
consensus accuracy and generate a polished consensus (dark pink). B: Example of
aligned long and short reads across a large repetitive array. Short reads struggle to
align uniquely to repeats that are longer than the read length, however long reads
can anchor to the unique flanking regions of the repeat and align across the entire
repeat. C: Example of aligned long and short reads over a deletion. Long reads can
align across the deletion giving precise borders of where the SV occurs. Short reads
cannot align across large deletions.
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false positive rates (up to 89%) (English, Salerno, and Reid, 2014; Huddleston

et al., 2018; Mahmoud et al., 2019; Pang et al., 2010; Sedlazeck et al., 2018).

Conversely, long read sequencing considerably increases correct detection of

SVs because of both higher quality genome assemblies and accurate mapping

of complex regions (Mahmoud et al., 2019; Sedlazeck et al., 2018) (Figure

1.3C). Ultra long nanopore reads have been used to anchor long and complex

variants allowing for accurate analysis of previously unexplored regions of the

human genome such as complex repetitive arrays (ie. centromeres) and nested

SVs (ie. INVDUPs and INVDELs) involved in human cancer (Jain et al., 2018;

Miga et al., 2020; Sedlazeck et al., 2018). By exploiting nanopore long read

data it is possible to reconstruct the diverse architecture of SVs responsible

for normal human genetic variation and those implicated in human disease

(Gong et al., 2018; Miao et al., 2018; Norris et al., 2016; Sakamoto et al., 2019).

Currently nanopore technology is becoming more widely utilized in the medi-

cal community as a routine diagnostic tool for discovery of novel Mendelian

diseases (Mantere, Kersten, and Hoischen, 2019). The developments of soft-

ware pipelines such as Sniffles, FreeBayes, NanoVAR, SVIM, NanoSV, and

Picky increase accuracy in detecting and diagnosing novel SVs involved in

human disease that gene panels and whole exome sequencing have failed to

detect (Cretu Stancu et al., 2017; Garrison and Marth, 2012; Gong et al., 2018;

Heller and Vingron, 2019; Mantere, Kersten, and Hoischen, 2019; Miao et al.,

2018; Tham et al., 2020).

In addition to detecting novel SVs, advances in nanopore targeted sequenc-

ing technologies make it possible to sequence native DNA at specific regions
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at high depth to more deeply probe SVs at known locations (Gießelmann

et al., 2018; Gilpatrick et al., 2020; Kovaka et al., 2020; Payne et al., 2020).

The ‘nanopore Cas9 Targeted-Sequencing’ (nCATS) method utilizes the ability

of Cas9 to make cuts at specific locations then ligates nanopore adapters in

order to enrich for specific loci without any amplification biases or loss of

DNA modifications (Gilpatrick et al., 2020). Targeted long read sequencing

can detect SVs ranging from large chromosomal deletions to SNPs with high

accuracy and sensitivity even in long repetitive loci such as human tumor

suppressor gene BRCA1, which is responsible for the onset of many breast and

ovarian cancers. Additionally, nanopore adaptive sequencing with the ONT

ReadUntil API allows nanopore devices to selectively eject individual reads

from the pore in real-time. This has inspired the development of open source

software UNCALLED and ReadUntil to rapidly match streaming nanopore

current signals to a reference sequence, allowing for enrichment of regions of

interest without any physical manipulation of the input sample (Kovaka et al.,

2020; Payne et al., 2020).

1.8 Nanopore RNA Sequencing

RNA sequencing has emerged as a crucial tool over recent years to investigate

different characteristics of the transcriptome such as differential gene expres-

sion, splicing variation, gene annotations, ribosomal profiling, etc. Illumina is

the current gold standard short-read RNA sequencing platform accounting

for the majority of published RNA-seq data on SRA (Stark, Grzelak, and

Hadfield, 2019). Long-read cDNA sequencing has significantly improved the
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Figure 1.4: RNA sequencing Long read versus short read RNA sequencing for
isoform discovery.

quality of transcriptome-wide analysis by identifying longer transcripts and

capturing splice isoforms (Figure 1.4). These longer reads not only enhance

the detection of splice-junctions but also result in capturing diverse isoforms

(Stark et al., 2019). This has caused the emergence of new computational

tools that integrate these long-read cDNA reads in genome annotation (Cook

et al., 2019; Lagarde et al., 2017). It has also been shown that ONT cDNA

sequencing is capable of generating full-length transcript reads even with low

RNA input (for example, single-cell experiments) (Oikonomopoulos et al.,

2016). This technology then can be used to investigate different characteristics

of RNA such as splicing variation, kinetics, alternative polyadenylation, and

post-translational modifications at the isoform level and their relevance in a

variety of fields in biology and medicine.
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This introduction sets the stage for the next chapters where we begin to

focus on improving whole-genome or whole-transcriptome sequencing with

long reads and how these improved assemblies can be used for resequencing

efforts such as probing epigenetics. In the subsequent chapters I describe

method development and application of hybrid genome assemblies to both

non-model organisms and humans. Overall, my thesis work advances the

study of animal genomics and provides insights into the complex biology of

some of the worlds’ most interesting organisms. Simultaneously, my work has

advanced the study of human genetics by contributing to the first complete,

gapless assembly of a human genome and leading the functional epigenetic

annotation process of a complete human genome.
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2.1 Abstract

The Tobacco hornworm, Manduca sexta, is a lepidopteran insect that is used

extensively as a model system for studying insect biology, development, neuro-

science and immunity. However, current studies rely on the highly fragmented
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reference genome Msex_1.0, which was created using now-outdated technolo-

gies and is hindered by a variety of deficiencies and inaccuracies. We present

a new reference genome for M. sexta, JHU_Msex_v1.0, applying a combination

of modern technologies in a de novo assembly to increase continuity, accuracy,

and completeness. The assembly is 470 Mb and is 20x more continuous than

the original assembly, with scaffold N50 >14 Mb. We annotated the assem-

bly by lifting over existing annotations and supplementing with additional

supporting RNA-based data for a total of 25,256 genes. The new reference

assembly is accessible in annotated form for public use. We demonstrate that

improved continuity of the M. sexta genome improves resequencing studies

and benefits future research on M. sexta as a model organism.

2.2 Introduction

As a large, easily grown insect, the tobacco hornworm (M. sexta, NCBI:txid7130)

is a key model for studying biochemical mechanisms in insect biochemistry,

physiology, neurobiology, development, and immunity (Wieczorek et al., 1999;

Kay et al., 1992; Truman and Reiss, 1995; Mechaber, Capaldo, and Hildebrand,

2002). In particular, M. sexta is a well characterized model system for studying

programmed cell death and metamorphosis (Jones et al., 1995). For example,

the term “autophagic cell death” was introduced while studying metamorphic

degeneration of muscle tissue in silkmoths (Lockshin and Williams, 1965).

Since then, the autophagic pathway has been studied extensively during the

metamorphosis of many other lepidopterans. The size of M. sexta makes it

an optimal system for studying the biochemical pathways associated with
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programmed cell death, but the system is limited by the quality of the ref-

erence genome. M. sexta’s innate immune pathways, many of which share

mammalian homologs, have been characterized in detail and used as a model

system for studying fungal virulence and drug efficacy (Kanost, Jiang, and Yu,

2004). Finally, M. sexta is useful for understanding serine proteases, a reper-

toire of proteins involved in mediating defence responses such as hemolymph

clotting, melanotic encapsulation, food digestion, antimicrobial peptide induc-

tion and cytokine activation (Jiang, Vilcinskas, and Kanost, 2010; Cao et al.,

2015). The serine protease gene family constitutes a large protein family in

insects containing 50-300 genes (Cao et al., 2015). In addition to basic biology,

more study of this insect has practical applications; M. sexta is a prevalent

agricultural pest that feeds on solanaceous plants, e.g. tobacco, and has the

unique ability to tolerate large amounts of solanaceous alkaloids, such as nico-

tine (Boer and Hanson, 1987). Recent advancements in genomic sequencing

have led to chromosome level reference genomes of other lepidopterans such

as the domestic silkworm (Bombyx mori) and the monarch butterfly (Danaus

plexippus) (Kawamoto et al., 2019; Gu et al., 2019). However, despite the im-

portance of M. sexta as a model organism, no improvements to its reference

assembly have been made since its release in 2016.

The current M. sexta genome is relatively fragmented, due to the abun-

dance of repetitive sequences contained in most eukaryotic genomes. This

lessens the value of the reference due to incomplete gene sequences and

unanchored or mispositioned contigs on chromosomes. The first effort to se-

quence and assemble the M. sexta genome resulted in the Msex_1.0 assembly
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(GCA_000262585.1), a 419.4 Mb genome composed of 20,869 scaffolds with

the largest scaffold being just 3.2 Mb (N50 = 664 Kb). The accompanying gene

set comprised 15,451 protein-coding genes, of which 2,498 were manually

curated (Kanost et al., 2016; Lyons et al., 2020). This level of fragmentation in

the assembly can lead to erroneous gene annotations and mis-mapping of rese-

quencing data, therefore slowing progress in Lepidopteran genomics (Denton

et al., 2014). The continuity of the M. sexta reference assembly significantly lags

behind other lepidopteran reference genomes such as the Domestic silkworm

(B. Mori), a 460 Mb genome with a scaffold N50 of 16.8 Mb (Kawamoto et al.,

2019). Because M. sexta is a model species in lepidoptera, its genome assembly

needs to be highly accurate and contiguous to allow for comparative genomics

studies of insect diversity, biochemical studies on homologous mammalian

pathways and agricultural studies regarding the tomato and tobacco crops, a

food source for M. sexta.

Utilizing advancements in sequencing technology we generated a new

chromosome level M. sexta assembly (JHU_Msex_v1.0) that contains 70 Mb

more genomic sequence and is 20-fold more continuous than the previous

one. This allowed refining of gene models, identification and classification

of repetitive DNA and transposable elements, enhancement of alignment

of resequencing data and improved comparative genomics analysis. Our

assembly consists of 470 Mb with a scaffold N50 of 14.2 Mb. We lifted over

the original genome annotation to our new assembly and supplemented

it with new high quality novel gene models including 794 previously un-

annotated genes, including 47 novel serine proteases. constructed using
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publicly available RNA sequencing data. We demonstrate the utility of our

new genome assembly through comparative genomics and gene expression

analysis throughout M. sexta development cementing our assembly as a core

resource for the lepidopteran community.

2.3 Materials and Methods

2.3.1 Sample collection and sequencing

All DNA extraction and sample collection was done on a single male moth

purchased as a pupa from Carolina Biological (Burlington, NC). On the day of

emergence, the moth was sacrificed by placing it at 4°C for 10 minutes. The

moth’s body, legs, head (including antennae and proboscis) and wings were

snap-frozen in liquid nitrogen, then stored at -80°C prior to DNA extraction.

High-quality genomic DNA was extracted from the legs and wings of the

adult male moth using Qiagen G-tips. Briefly, we pulverized 14mg of wing

and leg tissue to a fine powder with a RETSCH CryoMill. DNA was purified

from this powder using the Qiagen Genomic-tip 20/G kit with a modified

lysis buffer consisting of 20mM EDTA, 100mM NaCl, 1% Triton-X, 33mM

Guanidine Thiocyanate and 10mM Tris-HCl. The 50°C lysis step was extended

overnight. The DNA quantity and quality were measured with Qubit 3.0

(Thermo Fisher Scientific, Inc., Carlsbad, CA, USA). We performed a total of

four DNA extractions to generate all the Nanopore and Illumina data. Each

extraction generated 2ug of high-quality DNA which was used for library

preparation and high throughput sequencing with Oxford Nanopore and

Illumina platforms (Table 2.1). Oxford Nanopore sequencing libraries were
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Table 2.1: Sequencing Summary Statistics. A comparison of sequencing data
collection for the JHU_Msex_V1.0 assembly versus the Msex_1.0 assembly.

prepared using the Ligation Sequencing 1D Kit (Oxford Nanopore, Oxford,

UK, SQK-LSK109) according to manufacturer’s instructions and sequenced for

48 hours on three MinION R9.4.1 flow cells. Nanopore reads were base-called

with Albacore Sequencing Pipeline Software (version 2.1.10). Sequencing runs

from leg and wing tissues were run on separate flow cells and the data pooled

for genome assembly purposes. To avoid any microbial contamination in the

assembly, microbial read sequences identified by Centrifuge (v1.0.3-beta) were

removed from Oxford Nanopore data (Kim et al., 2016). This resulted in a total

of 4,404,206 reads yielding 19.5 Gb with a read length N50 of 9,156 bp (Table

2.1, Supplementary Table 2.3 and Supplementary Figure 2.5). For shotgun

Illumina sequencing, a paired-end (PE) library was prepared with the Nextera

DNA Flex Library Prep Kit from Illumina and sequenced on the Illumina

NovaSeq6000 (Illumina, Inc., San Diego, CA, USA) yielding 219M paired-end

150 (PE150) reads. A total of 32.83 Gb of Illumina data were generated and

used for genome survey, correction, and evaluation. All sequencing data have

been deposited at the NCBI SRA database under BioProject PRJNA658700.
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2.3.2 Hi-C

To assemble contigs into chromosome sized scaffolds, we generated Hi-C li-

braries using 200mg of tissue from the head (including proboscis and antenna)

of the same moth. The tissue was ground with a mortar and pestle cooled by

liquid nitrogen. We then followed the Phase Genomics Proximo HiC animal

kit (Phase Genomics, Inc., Seattle, WA, USA) protocol. The quality of the

resulting purified library was evaluated with Qubit 3.0 (Thermo Fisher Sci-

entific, Inc.), and the Agilent 4200 TapeStation System (Agilent Technologies,

Inc., Santa Clara, CA, USA). For a final QC step, we ran the library on a 2x100

cycle sequencing run on an Illumina MiSeq v2 (Illumina, Inc., San Diego, CA,

USA). The qualified library was sequenced using the Illumina NovaSeq6000

(Illumina, Inc., San Diego, CA, USA) again generating 150bp paired-end reads.

A total of 218M reads (32.76 Gb) were generated on the NovaSeq6000 and

used for the subsequent Hi-C analysis (NCBI SRA BioProject PRJNA658700).

2.3.3 Genome Assembly and Polishing

Nanopore sequencing reads were used to construct an initial assembly using

Canu (v2.0) (Koren et al., 2017). This initial assembly contained 5,381 contigs

with a contig N50 of 424,554bp. A contig is a continuous stretch of DNA

sequence and a scaffold is the connection of multiple contigs filled in with gaps.

Longer contigs and scaffolds indicate more continuous genome assemblies.

Next, we polished the Canu assembly by first aligning all nanopore data

to the draft assembly with Minimap2 (2.17-r943-dirty) and running a single

iteration of the nanopolish (v0.11.1) consensus module (Loman, Quick, and
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Simpson, 2015; Li, 2018). Nanopolish uses a hidden Markov model (HMM) to

examine the raw electrical data for possible improvements to the consensus

sequence. The polished nanopore draft assembly was then error-corrected

with 32.38 Gb of shotgun Illumina data using Bowtie2 (v2.4.1) for alignment

and Racon (v1.3.3) for polishing (Langmead and Salzberg, 2012; Vaser et

al., 2017). We iteratively polished the Canu assembly with Racon, and after

each iteration, the polished genome was aligned to the previous genome and

SNPs were called with Mummer4 to evaluate the number of bases changed

(Marçais et al., 2018). To assess the improvements made by polishing we ran

BUSCO, a quantitative assessment of genome assembly and completeness

based on evolutionarily informed expectations of gene content (Simão et

al., 2015). Errors in the assembly cause genes to go undetected by BUSCO,

therefore being labeled as “missing” or “fragmented” BUSCOs. A single

iteration of nanopolish improved BUSCO completeness scores by 4.0% (Figure

2.1B). A single iteration of Racon improved BUSCO completeness scores

by 19.6% (Figure 2.1B) and further iterations had minimal improvements

(Supplementary Figure 2.7).

2.3.4 Chromosome Assembly

To improve alignment of HiC libraries we trimmed 150 bp reads to 75 bp with

TrimGalore (v0.6.0) (–hardtrim5 75) (trim_galore). To connect the polished con-

tigs into chromosome-scale scaffolds, we used the Hi-C data with the 3D-DNA

(v180922) and Juicer (v1.6) pipelines (–mode diploid –editor-repeat-coverage

3) (Dudchenko et al., 2017). 3D-DNA generated 4,057 scaffolds of which 28
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Figure 2.1: Sequencing Summary Statistics. A: (Left) NGx plot for final
JHU_Msex_v1.0 assembly after scaffolding compared to the old Msex_1.0 assem-
bly. Plot represents the largest 30 scaffolds from each assembly. (Right) Repeat
annotation comparisons JHU_Msex_v1.0 compared to MSex_1.0. B: BUSCO results
from insecta odbv10 database. Comparing the raw Canu assembly, Nanopolished
Canu assembly, Racon and Nanopolished Canu assembly, the final scaffolded and
polished assembly (JHU_Msex_v1.0) and the Msex_1.0 assembly.
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Table 2.2: Final assembly statistics A comparison of assembly continuity metrics
between the JHU_Msex_V1.0 assembly and the Msex_1.0 assembly. Contig and
scaffold N50 is a weighted median statistic such that 50% of the entire assembly is
contained in contigs or scaffolds equal to or larger than this value, therefore larger
N50 values indicate more continuous assemblies. We note a contig N50 that is 20-
fold greater, and largest scaffold 7 times larger in the JHU_Msex_V1.0 compared to
Msex_1.0.

contain 86% (404.70 Mb) of the total input sequence length, consistent with the

28 chromosomes seen on previous karyotype analyses (Supplementary Figure

2.6) (Yasukochi et al., 2009). The final chromosome level assembly of M. sexta

is 470 Mb (467 Mb without gaps) with a contig N50 of 402 Kb and a scaffold

N50 of 14.2 Mb, a considerable improvement when compared to Msex_1.0

(Table2.2, Figure 2.1A). We evaluated the final assembly for completeness with

BUSCO insecta_odb10 (Figure 2.1B; Supplementary Table 2.3). We note that

our final scaffolded M. sexta assembly is highly complete and contiguous,

containing 98.1% complete insecta BUSCOs (Figure 2.1B).
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2.3.5 Repetitive elements

With the genome in hand, we next examined the repetitive elements in the M.

sexta genome assembly. We used RepeatModeler2 to generate de novo repeat

libraries (Flynn et al.). Next, we performed homology based repeat masking

using the de novo libraries in combination with the curated Metazoan library

with RepeatMasker. We detected 159 Mb of repetitive sequence representing

33.91% of the genome, which is greater than the 28.84% detected from the

Msex_1.0 assembly (Figure 2.1A, Supplementary Table 2.5). This proportion of

repetitive sequence is considerably smaller than that of the Domestic silkworm

genome (Bombyx mori) ( 46.84% of 460 Mb genome) (Kawamoto et al., 2019),

but notably greater than reported for the monarch butterfly, D. plexippus ( 13%

of 273Mb) (Zhan et al., 2011). Among classified repeats, LINE elements were

the most abundant superfamily found in the M. sexta genome, with the L2

LINE element being the most common (Supplementary Table 2.6). However,

the overwhelming majority of masked regions dispersed throughout the

genome corresponded to complex repetitive sequences yet to be characterized

(11.88%), which is consistent with the Domestic silkworm (11.73%).

2.3.6 RNA-seq data

Sixty-seven RNA-seq data sets from M. sexta were downloaded from the

sequence read archive (SRA) (Cao and Jiang, 2017). All RNA-seq sequences

were first trimmed with TRIMMOMATIC (SLIDINGWINDOW:4:20 LEAD-

ING:10 TRAILING:10 MINLEN:50) prior to alignment to the JHU_Msex_V1.0

assembly with HISAT2 using default parameters (Bolger, Lohse, and Usadel,
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2014; Kim et al., 2019). An average of 96.2% of reads aligned from all libraries.

These bam files were used for both gene annotation and expression analyses.

2.3.7 Gene annotation

Gene annotation was primarily accomplished via a liftover of the Msex_1.0

annotations from the NCBI annotation (GCA_000262585.1) with Liftoff, a

tool that maps annotations between closely related species or, in this case,

two assemblies of the same species (Shumate and Salzberg, 2020). Liftoff

successfully mapped 39,957 of the 41,110 original features to our new M. sexta

assembly. We supplemented these annotations with gene models assembled

from RNA-seq data and ab initio gene predictions made by AUGUSTUS

(Stanke et al., 2006; Cao and Jiang, 2017). Aligned RNA-seq data was input

into the BRAKER pipeline which relies on GenMark-ES/ET and AUGUSTUS

to generate gene predictions (Stanke et al., 2006; Stanke et al., 2008; Li et

al., 2009; Barnett et al., 2011; Gremme, Steinbiss, and Kurtz, 2013; Buchfink,

Xie, and Huson, 2015; Hoff et al., 2016; Hoff et al., 2019). Additionally, we

assembled the full transcriptome from the RNA-seq data with Stringtie2

(Kovaka et al., 2019). Both the de novo transcriptome assembly and ab initio

gene predictions are prone to assembling erroneous transcripts. In order to

only filter for high quality transcripts, we first aligned both the Stringtie2 and

AUGUSTUS gene models to the Liftoff gene models with GFFCompare (Pertea

and Pertea, 2020). To identify unannotated genes, we examined transcripts

supported by evidence from both the Stringtie2 assembly and the AUGUSTUS

prediction, but not contained in the Liftoff annotation. We identified 794 such

39



transcripts to add to the annotation. Overall, we identified 25,256 total genes

compared to the 24,462 contained in the NCBI annotation of Msex_1.0.

2.4 Results

2.4.1 Identification of orthologous genes and phylogenetic
tree construction

To identify candidate coding regions and generate predicted protein sequences,

we ran TransDecoder on our annotation. The generated protein sequences

were used for determining phylogenetic relationships between M. sexta and

other lepidopteran species by measuring pairwise sequence similarity. We

used OrthoFinder (v2.3.12) to identify orthologous gene clusters in M. sexta

and five other related lepidopteran species: Bombyx mori (domestic silkworm,

GCF_000151625.1), Plutella xylostella (diamondback moth, GCF_000330985.1),

Papilio polytes (common Mormon, GCF_000836215.1), Papilio xuthus (Asian

swallowtail, GCF_000836235.1), and Danaus plexippus plexippus (monarch but-

terfly, GCF_009731565.1) (Van Dongen, n.d.; Bertone et al., 1991; Price, Dehal,

and Arkin, 2010; Kelly and Maini, 2013; Katoh and Standley, 2013; Lefort,

Desper, and Gascuel, 2015; Buchfink, Xie, and Huson, 2015; Emms and Kelly,

2015; Emms and Kelly, 2017; Emms and Kelly, 2018; Emms and Kelly, 2019;

Huerta-Cepas, Serra, and Bork, 2016). OrthoFinder groups genes into or-

thogroups, sets of genes descended from a single gene in the species last

common ancestor based on their sequence similarity. OrthoFinder identified

15,428 orthogroups containing 120,091 total genes. Of these, 8,239 (53.4%)

were shared between all six species and 1,783 were shared and single copy
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Figure 2.2: Phylogenetic relationships. A: Upset plot illustrating the number of
shared orthogroups between the six species. Bars with less than 100 orthogroups
were removed. B: Phylogenetic tree generated from orthogroup comparisons. Age
of divergence in Mya (million years ago) was collected from Kawahara et al., 2019
(Kawahara et al., 2019).

(Figure 2.2A; Supplementary Figure 2.8). Furthermore, the Tobacco hornworm

had the most shared orthogroups with the Domestic silkworm (Figure 2.2A).

The phylogenetic tree indicated the Tobacco hornworm is most closely related

to the Domestic silkworm (Figure 2.2B). This closer relationship is expected

due to the fact that both are members of the Lepidopteran superfamily Bom-

bycoidea, however Bombycidae (Domestic silkworm family) and Sphingidae

(Tobacco hornworm family) diverged about 50-60 Mya (Kitching et al., 2018;

Kawahara et al., 2019).

2.4.2 Expression analysis

Using the same publicly available RNA-seq data, we wanted to examine how

our assembly improved results of gene expression analysis. The average

alignment rate from each dataset to JHU_Msex_v1.0 was 96.16% and to the
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Msex_1.0 assembly was 88.23% (Figure 2.3). We noted that paired-end data

sets aligned significantly better to our assembly than to the old assembly with

an increase of 11.92% of reads aligned as compared to single-end libraries

where we only saw an improvement 4.06% of reads aligning. Gene abundance

values were calculated using our annotation with the Stringtie2 gene abun-

dance pipeline and the regularized log transformation (rlog) from DEseq2

(Love, Huber, and Anders, 2014). The rlog transformation takes the read

count data from Stringtie2 and accounts for differences in sequencing depth,

RNA composition, heteroskedasticity, and large dynamic range. To filter out

genes with low expression in all tissues, we only retained genes if they had

an rlog score of greater than three in at least one library. We then calculated

the z-score of the rlog values and computed a euclidean distance matrix to

perform hierarchical clustering which resulted in 18 gene clusters (Figure 2.3).

To annotate the gene clusters we ran Interproscan5 to add GO annotations for

all genes then used TopGO for GO term enrichment calculations within each

gene cluster (Alexa, Rahnenführer, and Lengauer, 2006; Jones et al., 2014). Sig-

nificantly enriched GO terms for biological process (BP), molecular function

(MF) and cellular compartment (CC) were calculated by Fisher’s exact test

and determined significant if the p-value was less than .05. We note that these

RNA-seq datasets were collected from different insects without biological

replicates and throughout multiple RNA-seq studies and while results show

interesting patterns, we cannot make definitive biological conclusions.

As expected, the enriched GO terms were well correlated with the ex-

pression pattern of gene clusters. For example, cluster 10 has the highest
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expression in the ovaries and testes and the most significantly enriched terms

of cluster 10 include microtubule-based process, lncRNA processing and tran-

scription. Sperm generation and meiosis requires continuous cell division and

chromosome segregation, aided by the movement of microtubules. Addition-

ally, the flagellar motor of sperm cells that aids in their motility is made up

of microtubules. Cluster 7 includes genes highly expressed in the antennae

and adult head. Consistent with these tissues being responsible for sensory

perception, GO annotations are enriched for GTPase activity and odorant

binding. Insects have a repertoire of sensory driven behaviors and odorant

receptor (ORs) genes code for an entire family of G protein coupled receptors

(GPCRs), a class of transmembrane proteins that have GTPase activity (Benton,

2006).

We also noted that both clusters 2 and 16 were highly expressed in the

midgut tissue, albeit at different developmental stages. Cluster 2 contains

genes involved in proteolysis, metabolic processes and catalytic activity and

the expression is high in the larval stages of the midgut until larval stage five

(L5), the pre-wandering stage. In the stages after L5, expression of cluster

16 genes increases in the midgut. Cluster 16 contains genes involved in the

negative regulation of metabolic processes and apoptotic processes. Dur-

ing the process of metamorphosis the moth larvae will stop feeding in the

pre-wandering stage, which coincides with the decrease in expression of the

cluster 2 genes and increase in the negative regulation of metabolic processes.

During the pupation process the insects experience massive tissue reorgani-

zation including death of major organs (Zakeri et al., 1996; Dai and Gilbert,
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1997). This process is likely mediated by apoptotic or autophagic genes, eg.

Autophagy-related protein 8 (ATG8), as seen with B. mori (Romanelli et al.,

2016).

2.4.3 Metamorphosis in the midgut

To showcase our new reference genome, we focused on gene expression

changes occurring in the midgut during M. sexta development. We focused

on serine proteases, which are proteins involved in catalytic cleavage of other

proteins, significant in physiological processes like digestion, development,

and defense. We ran Interproscan5 to identify putative serine proteases by

Pfam classification (Finn et al., 2014). We identified 240 proteins with potential

serine protease domains (PF00089), compared to the 193 identified in Msex_1.0

(Kanost et al., 2016). Of the serine proteases we identified 76 that were highly

expressed primarily in the midgut, compared to the 68 gut proteases pre-

viously identified in Msex_1.0 (Kanost et al., 2016)(Figure 2.4A). Upon the

cessation of feeding in the L5 pre-wandering stage, expression of the digestive

proteases declines rapidly as the insects prepare for pupation (Figure 2.4A,B).

With our new highly contiguous genome assembly we were able to annotate

large protease gene arrays on scaffolds 13 (60kb) and 18 (1Mb).

To further investigate the mechanism of midgut tissue reorganization

during metamorphosis we analyzed the gene expression patterns of genes

involved in both apoptosis and autophagy in the M. sexta midgut throughout

development. We generated lists of autophagy and apoptosis related genes

using the GO annotations GO0006914 and GO0006915 from Interproscan5 as
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Figure 2.3: RNA-seq expression matrix. Top panel is the percent aligned from each
RNA-seq library to either our JHU_Msex_v1.0 orMsex_1.0 . Expression matrix is the
Z-score of the rlog expression transformation for all highly expressed genes. Genes
were clustered by Z-score into 18 clusters by euclidean distance clustering.
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those encompassed multiple Pfam domains and gave a more complete list of

genes related to these pathways. We did not note a distinct expression pattern

of apoptotic genes throughout midgut development (Supplementary Figure

2.9). However, we did identify an increase in expression of genes within the

autophagic pathway beginning at the L5 pre-wandering stage (G-L5-preW-S),

which coincides with the decline in digestive protease expression at the L5

wandering stage (G-L5-W-S/G-L5-W) (Figure 2.4B). These results indicate the

potential involvement of the autophagic pathway in M. sexta midgut during

metamorphosis, at the same time in development that autophagy has been

shown to remodel the midgut of other insects such fruit flies (Denton et al.,

2014), silkmoths (Romanelli et al., 2016), and sand flies (Malta et al., 2017).

2.5 Reuse potential

Our results have leveraged short and long read sequencing technology to

assemble a highly contiguous reference genome of M. sexta. We lifted over

the original genome annotations to this improved assembly, maintaining func-

tional annotations and gene IDs for researchers currently studying M. sexta

genes. We believe the improved assembly will aid current and future studies

using M. sexta as a model system for research on fundamental processes in

insect physiology and biochemistry. We note that this assembly is a male (ZZ)

system and does not contain sequence for the female W chromosome. Future

work could assembly the female W chromosome, as well as develop a deeper

understanding of diversity in the species population.
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Figure 2.4: Gene expression in the midgut. A: (Left) Heatmap of Z-scores for
expression of digestive proteases. (Right) Quantification of midgut digestive protease
expression throughout development. Library naming nomenclature was derived from
Cao & Jiang 2017 (Cao and Jiang, 2017). The first part of the library names indicates
that the libraries are made from midgut (G). The second part indicates major stages of
the insect, i.e. embryo (E), 1st to 5th instar larvae (L1-L5), pupae (P), and adults (A).
In the third part, “D” stands for day, “h” for hour, “preW” for pre-wandering, “W”
for wandering. “S” in the last part of library names indicates single-end sequencing;
no “S” in the end indicates paired-end sequencing. The libraries present as follows:
midgut (G) (2nd L; 3rd L; 4th L, 0 h; 4th L, 12 h; 4th L, late; 5th L, 1–3 h; 5th L, 24 h;.
5th L, preW; 5th L, W; P, D1; P, D15–18; A, D3–5) B: Heatmap of expression Z-score
of midgut autophagic genes throughout development. Gene names were assigned
based on the NCBI GCA_000262585.1. Genes not present in this annotation were
functionally annotated with Interproscan5 and assigned gene names. All genes in the
heatmap were annotated as autophagy Gene Ontology Term (GO:0006914).
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2.6 Data availability

The JHU_Msex_v1.0 genome and corresponding annotation is available on

Zenodo (doi:10.5281/zenodo.4005068). This Whole Genome Shotgun project

has been deposited at DDBJ/ENA/GenBank under the accession JACVES000000000.

The version described in this paper is version JACVES010000000. Whole

genome sequencing data are available in the NCBI SRA database under Bio-

Project PRJNA658700. The scripts we used in this article, including the genome

assembly, genome polishing, repeat annotation, and genome assessments, are

available on Github.
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Table 2.4: Sequencing Summary Statistics.

Table 2.5: Repeat annotation.
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Table 2.6: Repeat annotation breakdown.
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2.10.2 Supplementary Figures

Figure 2.5: Read length histogram. Weighted histogram of read length distribution
of nanopore sequencing reads used in the Canu assembly.
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Figure 2.6: Chromosome scaffolding. A: NGx plot of the entire assembly comparing
JHU_Msex_v1.0 to Msex_1.0. B: Hi-C contact map generated by 3D-DNA and visual-
ized in juicebox showing 28 chromosome size scaffolds (blue).
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Figure 2.7: Polishing iterations. Determining number of polishing iterations using
metrics from BUSCO insecta_odb10.
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Figure 2.8: Phylogenetic relationships expanded. A: Upset plot illustrating the num-
ber of shared orthogroups between the six species. B: Number of gene orthogroups
for each species.
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Figure 2.9: Apoptosis gene expression Expression of apoptotic genes in the midgut
throughout developmental time. Genes were functionally annotated based on the
NCBI GCA_000262585.1 gene functions. Genes not present in this annotation were
functionally annotated with Interproscan5. All genes in the heatmap were annotated
as apoptotic process Gene Ontology Term (GO:0006915).
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3.1 Abstract

Hummingbirds are very well adapted to sustain efficient and rapid metabolic

shifts. They oxidize ingested nectar to directly fuel flight when foraging but

have to switch to oxidizing stored lipids derived from ingested sugars dur-

ing the night or long-distance migratory flights. Understanding how this

organism moderates energy turnover is hampered by a lack of information re-

garding how relevant enzymes differ in sequence, expression, and regulation.

To explore these questions, we generated a chromosome level de novo genome

assembly of the ruby-throated hummingbird (A. colubris) using a combina-

tion of long and short read sequencing and scaffolding using other existing

assemblies. We then used hybrid long and short-read RNA-sequencing for

a comprehensive transcriptome assembly and annotation. Our genomic and

transcriptomic data found positive selection of key metabolic genes in nectiv-

orous avian species and a deletion of critical genes (GLUT4, GCK) involved

in glucostasis in other vertebrates. We found expression of fructose-specific

GLUT5 putatively in place of insulin-sensitive GLUT4, with predicted protein

models suggesting affinity for both fructose and glucose. Alternative isoforms

may even act to sequester fructose to preclude limitations from transport in
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metabolism. Finally, we identified differentially expressed genes from fasted

and fed hummingbirds suggesting key pathways for the rapid metabolic

switch hummingbirds undergo.

3.2 Introduction

The ruby-throated hummingbird (Archilochus colubris) is distinguished by fea-

tures of natural and evolutionary history, morphology, and physiology from

mammalian model systems such as mice, rats, and humans. They are among

the smallest vertebrate endotherms (2.5-3.5 g). They employ hovering flight,

displaying the highest wingbeat frequencies of any bird (and highest limb

oscillation frequencies of any vertebrate; 50-60 Hz), and in doing so sustain

the highest metabolic rates among all vertebrates (Suarez, 1992). In addition,

ruby-throated hummingbirds engage in an annual migratory journey from

breeding grounds throughout Eastern North America to wintering grounds as

far south as Central America. If measured in terms of body lengths traveled,

small North American hummingbirds engage in some of the longest distance

aerial migrations of any species (Gass, 1979). In doing so, they demonstrate

a remarkable ability to sustain high rates of metabolism using endogenous

lipids, an ability not shared by mice, rats, or humans (McCue and Pollock,

2013).

To fuel these activities, hummingbirds oxidize fatty acids and carbohy-

drates in their flight muscles at rates faster than any other vertebrates thus far

studied (Welch and Chen, 2014). Remarkably, the dietary source of both fuels,

carbohydrate and fat, is the same: simple sugars (glucose, fructose, sucrose)
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in floral nectar that provide more than 90% of the total calories they ingest

(Baker, Baker, and Hodges 1998). Once ingested, hummingbirds must either

oxidize or convert them into energy dense (and thus easier to carry) lipid de-

pots. Remarkably, hummingbirds can switch between relying exclusively on

oxidation of endogenous lipids to exclusive reliance on newly ingested sugars

to fuel hovering flight over a period as short as 20-30 minutes (Welch and

Suarez, 2007; Welch and Chen, 2014; Welch et al., 2006). In order to keep up

with the high energetic demands of hovering flight, hummingbirds transport,

take up, and oxidize circulating sugars in flight muscles at rates as much as

55× greater than the maximum rates observed in any non-flying mammals

(Welch and Chen, 2014). Once in circulation, the flux of sugar to, and oxidation

in, exercising muscle is thought to be limited principally at each of three key

steps: 1) delivery from capillaries to the extracellular space, 2) transport across

the fiber membrane, and 3) phosphorylation in the muscle fiber (Welch and

Chen, 2014; Wasserman et al., 2011; Rose and Richter, 2005; Bertoldo et al.,

2006). Mechanistic understanding of steps 2 and 3 are poorly understood as

GLUT4, the key glucose transporter in mammals, is absent in birds and while

hummingbird hexokinase activity is higher than other vertebrates, this alone

cannot explain the rate of hummingbird glycolytic flux (Suarez et al., 2009).

The ability of hummingbirds to fuel hovering flight completely with fruc-

tose as a fuel raises interesting fundamental questions about the enzymatic

basis for rapid sugar flux. The same three key steps that regulate glucose

uptake and oxidation by muscles presumably apply to fructose as well (Welch

and Chen, 2014; Wasserman et al., 2011; Rose and Richter, 2005; Bertoldo et al.,
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2006). In hummingbirds, there is ample evidence that at steps 1 and 2 capacity

for fructose uptake into flight muscle fibers is dramatically higher than in

other vertebrates. However, the enzymatic basis for high rates of fructose

phosphorylation (step 3) remains unknown.

While common among migratory birds (Guglielmo, 2010; Jenni and Jenni-

Eiermann, 1998), the ability to fuel flight exclusively or predominantly with

endogenous lipid stores is itself something that distinguishes hummingbirds

from model mammalian species. Many avian species build fat stores to power

long distance migratory flight using the fatty acids that are present in their

diet (Guglielmo, 2010). Some of these switch to or exploit seasonally-available

diets that are rich in specific lipid classes (Pierce et al., 2005). However,

hummingbirds achieve high rates of de novo lipogenesis on a simple sugar diet

and high rates of lipid accumulation to see them through both overnight fasts

and migratory flight.

For these reasons, genomic studies of the ruby-throated hummingbird

are warranted and necessary for further understanding of these fine-tuned

metabolic systems. Here we produce a chromosome level hybrid genome

assembly of the ruby-throated hummingbird. We annotated the genome

using a combination of Illumina and Oxford Nanopore cDNA sequencing

from muscle and liver tissues to identify full coding sequences and multiple

encoded isoforms. Finally, we performed differential expression analysis

and differential alternative splicing analysis on fasted and fed birds in both

muscle and liver tissues to fully characterize the mechanisms underlying

high catalytic rates (high catalytic efficiency and/or high levels of enzyme
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expression) and control over metabolic flux. These results are crucial for

understanding the hummingbirds’ exquisite control over rates of substrate

metabolism and biosynthesis which could give insight into metabolic control

of orthologous pathways in humans.

3.3 Results

3.3.1 Chromosome level genome assembly

We generated a total of 26Gb of Oxford Nanopore data on the PromethION

with a read-length N50 of 40Kb and 240Gb of Illumina Nova-seq data on the

hummingbird brain (Figure 1A and Methods). We performed hybrid de novo

assembly with MaSuRCA (Zimin et al., 2013) which resulted in 1,837 contigs

with a contig N50 of 13.54Mb. The assembly was determined to contain

1.13% heterozygous sequence (Figure S1). Using the scaffolded assembly of a

different hummingbird species, Anna’s Hummingbird (Calypte anna) (Rhie et

al., 2021) (Figure S2), we performed reference based scaffolding with RaGOO

(Alonge et al., 2019). Our final assembly of the ruby-throated hummingbird

had 33 chromosomes that contained 98.1% of the total sequence (Figure 1B,

Table 3.1). The total genome length was 1.1Gb with a scaffold N50 of 46Mb,

a scaffold L50 of 5 chromosomes and the largest scaffold 100Mb (Table 3.1).

We assessed the assembly for completeness using BUSCO for avian genomes

(Marchi, Cirillo, and Mateo, 2017) and determined it to be 96.6% complete

(Table 3.2).
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Table 3.1: Genome assembly and annotation statistics. Assembly continuity metrics
for A. colubris. Contig and scaffold N50 is a weighted median statistic such that 50%
of the entire assembly is contained in contigs or scaffolds equal to or larger than this
value, therefore larger N50 values indicate more continuous assemblies.
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3.3.2 Genome Annotation

Avian genomes are the smallest of the amniotes, with smaller genomic ele-

ments (e.g. introns, exons, intergenic DNA) and fewer transposable elements

compared to mammals (Zhang et al., 2014). With our new genome in hand,

we examined the repetitive elements in the A. Colubris genome assembly. We

used RepeatModeler2 to generate de novo repeat libraries (Flynn et al. 2020)

and used them in combination with the curated Avian library to perform

homology based repeat masking with RepeatMasker. Among vertebrates,

birds exhibit relatively low copy numbers and an overall reduced diversity

of repetitive elements (International Chicken Genome Sequencing Consor-

tium, 2004; Dalloul et al., 2010; Warren et al., 2010; Sotero-Caio et al., 2017),

with the exception of the woodpecker (Picoides pubescens) whose genome is

22.2% TEs, mostly contributed by the LINE/CR1 (Zhang et al., 2014). In A.

Colubris we detected 163 Mb of repetitive sequence representing 14.83% of

the genome, including 116Mb of TEs that make up 10.50% of the genome,

consistent with the repeat content in other avian lineages (Table 3.1, Table

3.3)(Zhang et al., 2014). Among classified repeats, LINE/CR1 elements were

the most abundant superfamily found in the A. Colubris genome, making up

6.95% of the sequence. Next were LTRs (2.57%) and repeats discovered by

our de novo libraries but not classified by RepeatClassifier (Unknown; 2.50%).

Preliminary gene annotation was accomplished via a liftover of the C. anna

annotations from the NCBI annotation (GCF_003957555.1) with LiftOff, a tool

that maps annotations between closely related species (Shumate and Salzberg,

2020). The C. anna annotation LiftOff to A. Colubris consisted of 15,879 genes
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Figure 3.1: A. colubris experimental design. A: Overview of experimental design
and methods for producing a chromosome level genome assembly of A. Colubris.
B: Step plot of scaffold length for the 33 A. Colubris chromosomes. C: Number of
isoforms per gene in the C. anna NBCI LiftOff annotation versus the Stringtie2 hybrid
transcriptome assembly. D: The SLC2A5 gene locus in the C. anna NCBI LiftOff
annotation and the Stringtie2 hybrid transcriptome assembly.

and 31,163 transcripts for an average of two transcripts per locus.

3.3.3 Transcriptome assembly

In order to capture both the complexity of differential splicing and the pre-

cision of splice junctions, transcription start and end sites we used a com-

bination of short-read Illumina NovaSeq and long-read Oxford Nanopore

cDNA sequencing on six hummingbirds across both muscle and liver tissue

(Figure 3.1A). Briefly, we used the hybrid reference based assembly pipeline

from StringTie2 (Shumate et al., 2021) to expand our existing C. anna LiftOff
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annotation to a total of 17,878 genes and 43,348 transcripts. Our transcrip-

tome assembly identified 96.4% (41,807) of genes containing multiple isoforms

with an average of 2.4 isoforms per gene, a large improvement over the C.

anna NCBI LifOff annotation alone (Figure 3.1C). Additionally, our assem-

bly identified 1,999 novel loci of which 1,051 were functionally annotated

by BLASTing to the SwissProt database. Included in these novel genes are

genes critical to metabolism including ALDOA, PFKM, G6PD, PGLS, PC,

PCK2, PFKFB1, PYGM, and PLPPR1. Furthermore, the hybrid transcriptome

assembly increases the number of isoforms variants per gene as exemplified

by the Solute Carrier Family 2 Member 5 (SLC2A5/GLUT5) where the C. anna

NCBI annotation contained two transcripts and our new hybrid annotation

contains five splice isoforms that encode for different protein isoforms (Figure

3.1D). Our expanded annotation provides the opportunity to understand gene

expression changes at the transcriptome level during transitions between fuel

use regimes, thus providing insights into potential mechanisms that make

these organisms such flexible metabolic performers.

3.3.4 Positively selected genes in nectivory

Nectar feeding animals have among the highest recorded metabolic rates, inci-

dentally, flight requires the highest metabolic rates of any form of locomotion

known (Suarez, Herrera M, and Welch, 2011; Suarez, 1992), with metabolic

rates reaching 170 times higher than at rest (Welch and Chen 2014). Using our

new ruby-throated hummingbird genome assembly, we performed phyloge-

netic analyses of nectivorous avian species. We used 20 species, (Chimney
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swift, Anna’s hummingbird, Helmeted guineafowl, Chicken/Red junglefowl,

Wild turkey, Japanese quail, Zebra finch, Bengalese finch, Common canary,

Painted honeyeater, Black sunbird, Cape sugarbird, Emperor penguin, Adelie

penguin, Burrowing owl, Barn owl, African ostrich, Sanda bush warbler,

Hooded crow, ruby-throated hummingbird) of which five are nectivorous

from four separate lineages (Figure S3). We used OrthoFinder (v2.3.12) to

identify orthologous gene clusters between all 20 species (Emms and Kelly,

2019). OrthoFinder groups genes into orthogroups, sets of genes descended

from a single gene in the species, the last common ancestor based on their

sequence similarity. OrthoFinder assigned 98.0% of genes to orthogroups

generating 17,895 orthogroups containing a total of 364,583 genes across all

species. Of these orthogroups, 5,085 (28%) were shared between all 20 species

and 1,207 were shared and present as a single copy (Figure 3.2A).

3.3.5 Hummingbird sugar transport and metabolism

The relative expression of the distinct GLUT transporters across the liver and

muscle tissues provides key insights into hummingbird sugar metabolism.

In the liver tissue the primary GLUT genes are SLC2A2 and SLC2A5 with

a medium level of transcription of SLC2A9, SLC2A10 and SLC2A11 and

comparatively low levels of SLC2A1, SLC2A3, SLC2A6 and SLC2A13 (Fig-

ure 3.3A). The muscle tissue has the highest expression of SLC2A5, medium

expression of SLC2A1 and SLC2A12 and low levels of SLC2A10, SLC2A3,

SLC2A11, SLC2A13 and SLC2A2. SLC2A2, encoding the GLUT2 protein
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Figure 3.2: Positive selection in nectivory. A: Upset plot illustrating the number of
shared orthogroups between the twenty species. Bars with less than 100 orthogroups
were removed. B: Panther gene ontology classification of the positively selected
genes.
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which has a high Km, plays a stronger role in enteric (Karasov, 2017) and hep-

atic (Mueckler and Thorens, 2013) sugar transport, resulting in the expected

higher expression we observe in liver over muscle samples. Interestingly,

chicken SLC2A1 and SLC2A3 share sequence homologies of 80% and 70%

respectively with human GLUTs, but other isoforms such as SLC2A2 and

SLC2A5 only share 65% and 64% sequence homology (Ali et al., 2020). A

comparison of SLC2A2 sequences to 20 bird species reveals the loss of an

N-linked glycosylation site in four of the 20 species (Workman et al., 2018). In

the case of the African ostrich and the barn owl this site is lost due to trun-

cation at the 5’ end of the protein. However, in the hummingbirds (Anna’s

hummingbird and the ruby-throated hummingbird) the Asn-64 is replaced by

Ser-64, therefore eliminating the conserved N-linked glycosylation site present

in the sixteen avian species as well as humans and mice. In mice, the loss of

this glycosylation site is coincident with increased GLUT2 protein endocytosis

and the onset of type 2 diabetes (Ohtsubo et al., 2005).

The absence of SLC2A4 (GLUT4) leaves many unanswered questions about

how glucose enters avian muscle cells. From our study we note particularly

high liver and muscle expression of SLC2A5 (GLUT5), which facilitates fruc-

tose uptake in mammals (Barone et al., 2009). SLC2A5 is not expressed highly

in mammals and in mammalian GLUT5 a single point mutation is enough to

switch the substrate binding preference of GLUT5 from fructose to glucose

(Nomura et al., 2015). The abundance of SLC2A5 transcripts in hummingbird

tissues, especially muscle tissue, is particularly interesting because it suggests

this transporter is principally responsible for glucose/fructose transport into
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hummingbird tissues. There is considerable sequence divergence between

hummingbird GLUT5 and mammalian GLUT5 (65.5% identity to human,

63.7% identity to mouse) and even from hummingbird to chicken (80.5% iden-

tity). We hypothesize that this form of hummingbird GLUT5 has transport

capacity for glucose, but at a lower affinity than its capacity for fructose. In

bacterial GLUT transporters (e.g. XylE) a Trp residue at the floor of the sugar

binding pocket displays two hydrogen bonds with the bound glucose (Sun

et al., 2012). In the same position on rat GLUT5 this residue moves to Ala-

nine (Ala395) (Nomura et al., 2015) and in the hummingbird this residue is

serine (Ser403) (Figure S4). The Trp amino acid is well conserved amongst all

human glucose transporters (GLUT1-4), however it moves to Ser in human

GLUT7 which is also a dual (glucose and fructose) transporter (Figure S4).

With this information we can speculate that hummingbird GLUT5 could be a

dual glucose/fructose transporter.

Using long read cDNA data we quantified the relative abundance of

SLC2A5 transcripts in muscle and liver and identified differential alternative

splicing occurring between muscle and liver tissues (Figure 3.3B). Particu-

larly, the muscle tissue has higher expression of the isoform that skips exon 3.

The dominantly transcribed isoform translates to a protein highly similar in

structure to mammalian GLUT5 (Nomura et al., 2015). However, the muscle

GLUT5 variant skipping exon 3 is missing transmembrane domains TM3, TM4

and the intracellular tip of TM5 (Figure 3.3C). In this isoform, the salt bridges

between the amino and C-terminal TM bundles are absent and therefore the

outward facing state is likely not favored. Our transcriptome sequencing in
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two different tissues across two opposing metabolic states (fed and fasted)

highlighted the complexities of metabolic regulation at the transcriptional

level.

While the high expression of fructose transporter gene SLC2A5 strongly

suggests that fructose uptake capacity may be sufficient to meet fructolytic and

oxidative demand during hovering flight, the enzymatic basis for high rates

of fructose phosphorylation is still unclear. The main sugar kinase expressed

in the liver is ketohexokinase (KHK), which has high affinity for fructose in

mammals. However, in both humans and in the ruby-throated hummingbirds,

the muscle mainly expresses hexokinase 2 (HK2), which is a glucose-specific

kinase in humans (Figure 3.3A). The hummingbird KHK and HK2 genes have

65% and 87% identity to their human orthologs, respectively, therefore their

substrate affinities could be different from their human orthologs.

Previous studies assessed A. Colubris muscle total hexokinase activity and

determined the Vmax to be 50% lower for fructose than glucose phosphoryla-

tion, which would not keep up with the calculated required rates of fructose

oxidation by flight muscle during hovering flight (Myrka and Welch, 2018).

To further understand differences in fructose and glucose metabolism we

used a chronic stable isotope tracer methodology to examine the speed of

glucose and fructose usage for de novo lipogenesis in the ruby-throated hum-

mingbird. We fed ruby-throated hummingbirds sucrose-based diets enriched

with 13C on either the glucose or the fructose portion of the disaccharide.

Isotopic incorporation into fat stores was measured via the breath 13C sig-

nature while fasting (oxidizing fat). We found that the respiratory exchange
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ratio (RER=VCO2/VO2) (RER) and tracer oxidation increased quickly with

feeding (Figure 3.3D, Figure S5A), and with the respiratory exchange ratio

RER exceeding a ratio of 1, suggesting lipid synthesis was occurring along

with tracer oxidation. At the 10 min mark the RER began to fall but remained

above 0.85 for the remainder of the trial. Peak tracer oxidation did not differ

between the enriched sucrose solutions (Figure S5B, p = 0.66). However, the

time to peak oxidation differed, with the fructose-enriched sucrose solution

reaching peak tracer oxidation faster than the glucose-enrich sucrose solution

(Figure 3.3E, p = 0.02). Overall these data support a hypothesis where fructose

is rapidly transported out of the blood and metabolized while glucose remains

in the bloodstream for longer and is used as a fuel source when blood fructose

levels decline.

Another key regulator of blood glucose homeostasis is glucokinase (GCK),

in mammals this enzyme has a high Km and is the glucose sensor not only

for regulation of insulin release by pancreatic β-cells, but also for key organs

that contribute to glucose homeostasis, such as the liver (Matschinsky and

Wilson, 2019; Peter et al., 2011). However, birds do not express GLUT4, the

insulin sensitive glucose transporter, and the ruby-throated hummingbird in

particular maintains the highest blood glucose concentration known amongst

vertebrates (Ali et al., 2020; Beuchat and Chong, 1998). Our transcriptome

assembly did not identify GCK in the assembled hummingbird transcrip-

tome and we did not identify any GCK sequence in any of the ruby-throated

hummingbird RNA-seq reads. When we compared the ruby-throated hum-

mingbird genome to the chicken reference genome we determined that the

78



region of the genome containing the GCK gene is not syntenic to any of the

hummingbird sequence (Figure S6).

3.3.6 Identification of differentially expressed genes that re-
spond to fasting

To identify differentially expressed genes (DEGs) that rapidly respond to

fasting, we profiled the transcriptomes of total mRNA from the muscle and

livers of A. Colubris hummingbirds that were fed sucrose ad libitum (fed)

or fasted for a time period of one hour (fasted) (Figure 3.4A). We analyzed

three biological replicates for each metabolic condition (fasted versus fed)

with Stringtie2 hybrid long and short-read quantification and DESeq2 with

our newly constructed reference and annotation (Love, Huber, and Anders,

2014; Shumate et al., 2021). The fasted versus fed condition produced marked

change in the transcriptomes. We identified 140 differentially expressed genes

(DEGs) with adjusted p-values below 0.1 in the liver (Figure 3.4A) and 191

DEGs in the muscle (Figure 3.4C). Thus, the one hour fasting targets targeted

a relatively small set of genes in the muscle and liver that likely play a role in

the hummingbird’s rapid switch from fed to fasted metabolism. To categorize

these genes according to their gene ontology we used the Genetonic pipeline

and generated functional gene-set enrichments for both the A. Colubris liver

and muscle (Marini et al., 2021) (Figure 3.4B,D). This analysis yielded 200

statistically significant pathways (FDR < .05) in the liver and 106 in the mus-

cle. The response to fasting in the muscle and liver influenced dramatically

different metabolic and regulatory pathways in each tissue.

In the liver, the one-hour fast influenced many metabolic and homeostatic
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Figure 3.3: Hummingbird sugar transporters. A: Gene expression heatmaps for ruby-
throated hummingbird muscle and liver tissue. Variance-stabilizing transformation is
applied for graphical representation. SLC2A6 is only expressed in the liver, therefore
boxes in muscle are filled in as gray. B: (Left) Isoform expression of SLC2A5 in the
liver and (right) muscle. FPKM of each isoform color coded according to the top
scale bar. C: Ribbon representations of the two protein models for GLUT5 isoforms
predicted by Alphafold2 based on the mammalian SLC2A5 ortholog. Left is the X1
isoform, right is the X2 isoform that is missing exon 3. In both atomic models amino-
and C-terminal TM bundles are colored blue and red respectively. Regions of the
X1 isoform that are missing in the X2 isoform are depicted in light blue. Arginine-
glutamate salt bridges at the intracellular tips of TMs are green. ICHs stands for
“intracellular helices”. D: Tracer oxidation rate over twenty minutes when birds were
fed 13C on either the glucose or the fructose portion of the disaccharide. E: Peak
oxidation time of glucose and fructose in minutes (p=.02, pair t-test).
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pathways (Figure 3.4B), including coenzyme biosynthetic processes, cellular

responses to nutrient levels, response to hypoxia, response to carbohydrate,

fatty acid metabolic processes, homeostatic processes and response to gluco-

corticoid stimulus (Figure 3.4B). Genes particularly affected in these processes

are key regulators of metabolic flux including PDK4, G0S2, and ANGPTL4,

which likely contribute to the rapid transition to lipid metabolism in the hum-

mingbird liver during an acute food withdrawal. Induction of these genes

occurs independently of PPAR signaling in the hummingbird liver as all the

PPAR genes do not have any changes in expression between the fasted and

fed state. Therefore, in hummingbirds, the PPAR pathway does not appear to

control the expression of the metabolic switch genes in the liver, at least in an

acute (one hour) fast. Many newly assembled genes were also differentially

expressed including MSTRG.13300 and MSTRG.13844 which we were able to

functionally annotate with SwissProt as HRG1 and AT1B, respectively.

The most statistically significant pathway upregulated in the fasted mus-

cle was mitochondrial ATP synthesis coupled proton transport (GO:0042776,

p=1.90E-06) (Figure 3.4D). Other key genes regulating metabolic flux were

affected such as ENHO, PPARA, G0S2 and SREBF1 (Figure 3.4C). ENHO is

associated with energy storage and metabolism as a precursor to the protein

adropin, and was strikingly downregulated in the fasted birds (Aydin et al.,

2013; Kumar et al., 2008). Interestingly, in humans, adropin is generally as-

sociated with liver and brain expression as opposed to the skeletal muscle

expression we observed in A. Colubris. G0S2 is the only gene that was iden-

tified as differentially expressed in both the liver and muscle tissues. While

81



G0S2 is known to have a significant role in liver lipid transport, a definitive

role for G0S2 within skeletal muscle has yet to be elucidated and it appears

that G0S2 is also present in mitochondria, with the speculation of several

possible functions (Turnbull et al., 2016). These results point to the role of

G0S2 in hummingbird rapid metabolic flux.

3.4 Discussion

The results of our study are critical in understanding the hummingbirds’

exquisite control over rates of substrate metabolism and biosynthesis. Our

positive selection analysis points to a subset of 39 genes critical to the develop-

ment of nectar based life-style. Pathways such as glycolysis, the tricarboxylic

acid cycle, lipogenesis and lipolysis have to function rapidly to allow for the

high energetic demands of flight and reliance on nectar as the only fuel source.

This was evident in the selection of genes involved in these pathways (e.g.

GAPDH, PDHA1, ACADL, HACD3, and BDH2) in nectivorous bird lineages.

In our work, we look deeply into glucose and fructose uptake into the hum-

mingbird tissues. The lack of avian GLUT4 has been previously established,

but we also identified the loss of GCK. It is likely that the low levels of insulin

secretion and high sustained blood glucose in hummingbirds is due in part

to the lack of expression of GCK, a key regulator of insulin secretion and

blood glucose homeostasis. Utilizing our assembly, annotation and expression

data we speculate that hummingbird GLUT5 has transport affinity for both

glucose and fructose with a higher affinity for fructose. Unlike most other

animals, 50% of the hummingbirds’ diet consists of fructose (Baker, Baker,
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Figure 3.4: A. colubris experimental design. A: Volcano plot displaying differentially
expressed genes from A. Colubris liver tissue. B: Summary heatmap of top 12 enriched
GO terms in the liver. C: Volcano plot displaying differentially expressed genes from
A. Colubris muscle tissue. D: Summary heatmap of top 13 enriched GO terms in the
muscle.
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and Hodges 1998), which studies show is much more cytotoxic than glucose

(Horst, Ter Horst, and Serlie, 2017). As a consequence, hummingbirds rapidly

sequester fructose into the muscle tissue, as evidenced by rapid declines of

blood fructose levels upon fasting (Muhammad, 2021). Further, we concluded

that the birds are preferentially clearing fructose from circulation first and

oxidizing it to CO2 as shown by the tracer oxidation study. Our data supports

the hypothesis that both glucose and fructose are transported into the muscle

cells via the GLUT5 transporter, with fructose being favored first when con-

centrations of both are high and glucose is imported later when fructose in

blood is scarce.

Our more complete assembly of the ruby-throated hummingbird genome

and transcriptome allowed for isoform level analysis of gene expression. This

analysis revealed expression of a GLUT5 protein variant in the hummingbird

muscle which is projected to have an internally facing active site, but due to its

loss of exon three, it is unlikely that it maintains the transport activity. Future

biochemical and functional studies will illuminate whether hummingbird

GLUT5 is capable of fructose and glucose transport and how its variants are

different from GLUT5 found in other species. We speculate that a potential

biological function of this GLUT5 protein isoform is in sequestering fructose

inside muscle cells rather than acting as a fructose transporter, as fructose

phosphorylation capacity is low and likely cannot keep up with the rapid

import. Future biochemical studies into the functionality and role of this

GLUT5 protein isoform in hummingbird sugar metabolism are warranted.

We characterized the hummingbird liver and muscle expression profiles
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during the transition to the fasted state. These results gave insights into the

drivers of rapid metabolic flux in hummingbirds. An interesting result was

the upregulation of the PDK4 gene in the fed to fasted transition. This protein

kinase is located in the matrix of the mitochondria and inhibits the pyruvate

dehydrogenase complex (PDH) by phosphorylating one of its subunits. Be-

cause PDH is considered the gatekeeper of the TCA cycle, its inhibition in

the fasted state would shut down complete glucose oxidation and promote

gluconeogenesis and fat oxidation. It is possible that rapid switching from

carbohydrate to fat oxidative catabolism in the fasted state is contributed to, in

part, by the rapid upregulation of hummingbird PDK4. This suggests further

study into PDK4 molecular biology in hummingbirds. Another result calling

for future biochemical and molecular studies is the downregulation of G0S2

in both the liver and muscle tissue. G0S2, the G(0)/G(1) switch gene 2, is

an inhibitor of Adipose triglyceride lipase (ATGL), a rate-limiting enzyme

that catalyzes the first step in triglyceride hydrolysis in adipocytes. Previous

studies of G0S2 on chicken, turkey and quail have revealed avian G0S2 has 50

to 52% homology to mammalian G0S2 and suggest its importance in regula-

tion of ATGL-mediated lipolysis (Oh et al., 2011). Our results suggest G0S2

plays a very important role in the rapid transition of fed to fasted metabolism

across multiple tissues. Lastly, we observed changes in expression of genes

controlling vessel dilation and constriction, likely very important to osmoreg-

ulation (e.g. HRG1 and AT1B). Hummingbird kidneys are not designed to

concentrate urine as when they are feeding they must eliminate large quan-

tities of water; however, when they are not feeding, they are susceptible to

dehydration (Bakken et al., 2004). Therefore these changes in vessel dilation
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are likely necessary for preparing the splanchnic tissues for the osmotic shift

that occurs during fasting.

In conclusion, our results have leveraged cutting-edge long and short-read

sequencing technologies to generate a high quality genome assembly and an-

notation of the ruby-throated hummingbird. With the resources we generated,

ruby-throated hummingbird genes can now be quickly cloned and expressed

for further biochemical experiments, such as measuring their enzymatic prop-

erties, e.g., Kcat or Vmax, to compare to other avian or mammalian analogues.

Expressed proteins may also be used for structural biology studies, applying

either X-ray crystallography or cryoEM to generate structural maps of the

proteins, then examine how the structure compares to other orthologues in

dictating biological functions.

3.5 Acknowledgments

Funding: This study was supported by grants from the Human Frontier

Science Program (RGP0062 to MV, GWW, KCW, and WT) Competing interests:

WT has two patents (8,748,091 and 8,394,584) licensed to Oxford Nanopore

Technologies.

3.6 Methods

3.6.1 animal use and ethics statement

This study was conducted under the authority, and adheres to the require-

ments of, the University of Toronto Laboratory Animal Care Committee (under
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protocol 20011649) as well as the guidelines set by the Canadian Council on

Animal Care. Twelve adult male ruby-throated hummingbirds (Archilochus

colubris) were captured in the early summer at the University of Toronto

Scarborough (UTSC) using modified box traps. The hummingbirds were indi-

vidually housed in Eurocages at the UTSC vivarium on a 12h:12h light:dark

cycle. The hummingbirds in these cages were provided with perches and

were on an ad libitum diet of 18% weight to volume of NEKTON-Nektar-Plus

(Keltern, Germany) for 2-3 months until tissue sampling occurred.

One day prior to experiment day (23 hours) 12 male birds were placed on

a 33% sucrose solution ad libitum diet in place of the NEKTON-Nactar-Plus

diet. Birds were then divided into a fed group (n=6) and a fasted group (n=6).

One hour prior to sampling, birds from both conditions were placed in small

glass jars that had perches. This restricted the birds’ ability to fly and was

done in hopes of reducing energy expenditure variation between individual

birds. Birds in the fed group were then provided with ad libitum 1M sucrose

solution for one-hour up to sampling, which began at 10:00 h. The fasted

group (n=6) was deprived of food one hour prior to sampling. The one-hour

fast was chosen because previous work by Chen and Welch (2014) has shown

via respirometry that this time is sufficient for the fasted hummingbird to shift

from using circulating sugars to using fats for fueling metabolism.

Tissue samples were collected via terminal sampling of the humming-

birds. They were anesthetized via isoflurane inhalation and sacrificed using

decapitation. Flight muscles (the pectoralis and supracoracoideus muscle)

and liver were collected. Tissues were flash frozen in liquid nitrogen and
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subsequently stored at –80°C. In addition, one female hummingbird was also

captured and sampled in the same fashion as above. This sample was used

for DNA isolation for genome assembly purposes and was not subject to any

experimental conditions.

3.6.2 DNA Sequencing

Genomic DNA was extracted from the hummingbird from two 25mg pieces

of brain tissue and two 25mg pieces of pectoralis muscle tissue with the

Nanobind CBB tissue kit alpha Handbook v0.16d (4/2019) from Circulomics

following the protocol for using the dounce homogenizer. DNA quality was

assessed with the Thermo Scientific™ NanoDrop™ 2000/2000c Spectropho-

tometer. We generated a sheared nanopore library and an ultra-long nanopore

library to enrich for both size and depth. For the sheared library DNA was

sheared to 10kb with covaris g-tube. For the ultra-long library DNA was

size-selected with the Short Read Eliminator XS Kit from Circulimics. Oxford

Nanopore sequencing libraries were prepared using the Ligation Sequencing

1D Kit (Oxford Nanopore, Oxford, UK, SQK-LSK109) according to manufac-

turer’s instructions and sequenced for 72 hours on 2 PromethION R9.4.1 flow

cells. Nanopore reads were base-called with Guppy Software (version 3.0.6).

Sequencing runs were pooled for genome assembly purposes. For shotgun

Illumina sequencing, a paired-end (PE) library was prepared with the Nextera

DNA Flex Library Prep Kit from Illumina and sequenced on the Illumina

NovaSeq6000 (Illumina, Inc., San Diego, CA, USA). All sequencing data have

been deposited at the NCBI SRA database under BioProject PRJNA811496.
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3.6.3 Genome assembly

The genome was assembled using both the Illumina and nanopore sequencing

datasets with MaSuRCA (Zimin et al. 2013) with

“FLYE_ASSEMBLY=1”

and all other parameters set as default. The genome was scaffolded with Ra-

GOO using the C. anna assembly (GCA_003957555.2) as a reference (Alonge et

al. 2019). Assembly similarity was first checked by aligning the two assemblies

with nucmer from the mummer package (Marçais et al. 2018) and assemblies

were considered highly similar. Assembly completeness was checked with

BUSCO using the aves lineage (Manni et al. 2021). Assembly heterozygosity

was quantified with the kmer analysis toolkit (KAT) (Mapleson et al. 2017)

GenomeScope (Vurture et al. 2017) and the assembly was determined to have

1.13% heterozygosity (Figure S1). Repeats were annotated by first running

RepeatModeler (v2.0.1) to generate a database of custom repeat annotations.

The assembly was first masked with RepeatMasker (v4.0.9) using the Aves

database and then further masked using the custom generated database. The

genome assembly has been deposited under BioProject PRJNA811496.

3.6.4 RNA extraction

RNA was extracted from approximately 40 to 50 mg of pectoralis tissue and 20

mg of liver using the Qiagen RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,

Germany). RNA quality was assessed using a nanodrop and the presence of

sharp 18S and 28S rRNA on an agarose gel. RNA quality was also assessed
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with the Agilent 2200 TapeStation system RNA high sensitivity kit (Agilent,

Santa Clara, CA) before and after polyA isolation with NEBNext® Poly(A)

mRNA Magnetic Isolation Module.

3.6.5 RNA Sequencing

PolyA mRNA from all samples was supplemented with Spike-In RNA Vari-

ants (SRIV) set 3 from Lexogen. Libraries for Illumina sequencing were

generated with NEBNext® Ultra™ RNA Library Prep Kit for Illumina and

sequenced on the Illumina NovaSeq6000 (Illumina, Inc., San Diego, CA, USA).

Libraries for long-read sequencing were generated with the cDNA PCR se-

quencing kit (SQK-PCS109) from Oxford Nanopore Technologies according to

the manufacturers instructions. Libraries were each sequenced on a Prome-

thION flow cell for 72 hours. All sequencing data have been deposited at the

NCBI SRA database under BioProject PRJNA811496.

3.6.6 Genome annotation and transcriptome assembly

Illumina RNA-seq reads were trimmed with trimmomatic (v0.39) with the

following parameters:

“SLIDINGWINDOW:4:20 LEADING:10 TRAILING:10 MINLEN:50”

Trimmed reads were then aligned to the ruby-throated hummingbird reference

genome with HISAT2 (v2.2.0) (Kim et al. 2019) with the following parameters

–score-min L,0,-0.5 -k 10 to account for the high heterozygosity in the wild hum-

mingbirds and filtered for primary alignments with Samtools (v1.9) (Li et al.,

2009). Nanopore cDNA sequencing reads were aligned with deSALT (v1.5.4)
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and filtered for primary alignments with a mapping quality score greater

than 50. An initial genome annotation was done by lifting over the predicted

annotations from the Calypte anna genome annotation (GCA_003957555.2)

onto our ruby-throated hummingbird assembly with LiftOff (Shumate and

Salzberg, 2020). These lifted over annotations were used as a reference model

for hybrid transcriptome assembly with stringtie2 (Shumate et al., 2021). We

ran Stringtie2 separately for each paired Illumina and nanopore sample (n=12)

with the following command:

“stringtie --mix {short.bam} {long.bam} -G {LiftOff_annotation.gtf} \

--conservative -L -o {out.gtf} -p 10 -B -A {out.abun} -v”

To filter out low evidence assembled transcripts we aligned the 12 stringtie2

gtfs with GffCompare (v0.11.2) (Pertea and Pertea, 2020). The 12 gtf files were

merged with stringtie merge and filtered to retain transcripts that had evidence

from at least two of the 12 gtfs. Gene and transcript abundance measurements

were computed against the final merged and filtered gtf file with the same

command as above and the addition of the -e flag:

“stringtie --mix {short.bam} {long.bam} -G {filtered_merged.gtf} \

--conservative -L -o {out.gtf} -p 10 -B -A -e {out.abun} -v”

To correct for transcripts assigned to the incorrect gene locus during

stringtie’s merge function we ran the R package IsoformSwitchAnalyzeR

(Vitting-Seerup and Sandelin, 2019) with fixStringTieAnnotationProblem =

TRUE. We generated the transcript count matrix files using the prepDE.py3
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script from stringtie2 and the gene count matrix files were generated using the

abundance measurements from the gtf and the gene to transcript associations

from the IsoformSwitchAnalyzeR output. The ruby-throated hummingbird

transcriptome assembly is available on zenodo (DOI:10.5281/zenodo.6363333).

Protein predictions from the transcriptome were done with TransDecoder

(v5.5.0). Genes that were not annotated in the anna’s hummingbird reference

were first confirmed to have functional open reading frames by identifying a

corresponding protein prediction from the TransDecoder output. They were

then functionally annotated by Blast (v2.2.31+) (Camacho et al., 2009) to the

Swiss-Prot database (Boeckmann 2003) and run through the InterProScan5

(v5.44-79.0) pipeline (Jones et al., 2014).

3.6.7 Differential expression

Differential gene expression was done with DESeq2 (Love, Huber, and Anders,

2014) filtering for genes with at least 10X coverage in at least four of the six

samples per tissue. The three fasted samples and three fed samples were

compared separately for the liver and muscle tissue and significantly differ-

entially expressed genes were determined using adjusted p-values beneath

0.1. Isoform level expression was quantified with Ballgown (Frazee et al.,

2015) and isoform level FPKM values were compared across the muscle and

liver tissues. Significantly upregulated pathways were determined with the

GeneTonic R package (Marini et al., 2021) for both liver and muscle.

92

https://github.com/TransDecoder/TransDecoder


3.6.8 Gene loss analysis

We did not identify the GCK gene in our transcriptome annotation or in

the functional annotation of the predicted proteins. As further validation

we used Blast (v2.2.31+) using the chimney swift (Chaetura pelagica) and

chicken (Gallus gallus) GCK gene sequence and protein sequence to both the

ruby-throated hummingbird predicted protein set and genome. The Blast

search did not uncover any hits that we could determine to be open reading

frames. We then aligned the chicken reference genome (GCA_000002315.5) to

the ruby-throated hummingbird genome with minimap2 (Li, 2016) with the

following parameters:

“minimap2 -x asm20 -c --eqx”

We noted that the region with the GCK gene in the chicken genome is non-

syntenic to any of the ruby-throated hummingbird DNA sequence. The

paf output file was processed with rustybam and plotted with SafFire. To

further ensure that there was no expression of the GCK gene in the ruby-

throated hummingbird we mapped all the RNA-seq reads to the chimney swift

GCK gene sequence with Bowtie2 (Langmead and Salzberg, 2012) allowing

for multiple mismatches by using the very-sensitive-local flag. None of the

RNA-seq reads mapped to the chimney swift GCK sequence. Lastly, we also

validated that the GCK gene was not present in the annotation of Anna’s

hummingbird either.

93

https://github.com/mrvollger/rustybam
https://mrvollger.github.io/SafFire/


3.6.9 Positive selection analysis

For molecular evolution analyses, we used a consensus tree topology based on

molecular phylogenies generated by Hacket et al., Oliveros et al., and Prum et

al (Hackett et al., 2008; Oliveros et al., 2019; Prum et al., 2015). Species were

chosen to give outgroups in multiple clades, as well as provide species as a

sister lineage for each nectivorous lineage, where such a species existed in the

publicly available genome databases. Additionally, species were added that

evolved between nectivorous lineages to highlight the convergent nature of

the phenotype. Additionally, adding lineages between nectivorous lineages

allowed us to ensure that the branches we tested for positive selection to the

best of our ability matched the branches where the transition to nectivory

happened in more species rich phylogenies. Proteomes for all species selected

were downloaded from NCBI and clustered with cd-hit (v4.8.1) with a se-

quence identity threshold of 98% to remove redundancy in the datasets (Li

and Godzik, 2006). Orthologous gene groups were generated by running the

clustered proteomes through the OrthoFinder (v2.3.12) pipeline (Emms and

Kelly, 2019). 1-to-1 orthology groups were determined by selecting all single

copy genes that were contained in all species.

For each 1-to-1 orthology group (OG), the branch-site test of positive

selection was performed using codeml in PAML v4.10 to detect genes under

positive selection in nectivorous bird lineages. Using the phylogenetic tree

reported in phylogenies generated by Hacket et al., Oliveros et al., and Prum

et al (Hackett et al., 2008; Oliveros et al., 2019; Prum et al., 2015), the topology

was unrooted using the ete3 toolkit (Huerta-Cepas, Serra, and Bork, 2016),

94

https://github.com/abacus-gene/paml; Yang 2007


and foreground branches were assigned to the following nectivorous lineages:

Grantiella picta, Promerops cafer, Leptocoma aspasia, and the clade of Calypte anna

+ Archilochus colubris. A likelihood ratio test (LRT) was performed for each

OG, with the branch-site model A (specified in Yang 2007) as the alternative

model and model A with a fixed ω = 1 as the null model. LRT statistics were

converted to p-values using pchisq in R v.3.5.0 (R Core Team 2018). To provide

a conservative estimate of genes under positive selection among nectivorous

lineages, each OG with a statistically significant LRT (p 0.05) was also required

to possess at least one site under positive selection with a posterior probability

0.95 (according to the Bayes empirical Bayes analysis of positive selection

included in the codeml branch-site test of positive selection). Intermediate

files from this analysis are available on zenodo (DOI:10.5281/zenodo.6363333).

3.6.10 Protein structure models

Structures for full length GLUT5 (isoform X1) and for the alternative spliced

variant (isoform X2) where modeled with AlphaFold v2.01 using default

settings without templates to avoid model bias (Jumper et al., 2021). A re-

duced version of the BFD database, optimized for speed and lower hardware

requirements, was employed during multi-sequence alignment (MSA). The

overall confidence measure (predicted local-distance difference test, pLDDT)

for the generated models was > 75, which generally indicates good backbone

prediction. Atomic models with highest scores at the overall confidence mea-

sure were selected (86.2 for isoform X1 and 84.5 for isoform X2). pLDDT is a

per-residue confidence metric, and as such, can be used to monitor how the
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model confidence varies along the chain. Very low confidence regions (<50)

included flexible amino- and C-terminal ends that were removed from the

models.

3.6.11 Tracer oxidation study

Four ruby-throated hummingbirds were fasted for 1 hour, following which

they were placed in a 500 ml respirometry container and baseline fasting

breath delta 13C breath stable isotope signature and respiratory exchange

ratio (RER) recording (see (Dick et al., 2020)) for respirometry and breath

stable isotope set up). After 5 min the birds were then fed a 150 ml of a

20% sucrose solution with sucrose enriched with 13C on all six carbons of

the glucose (sucrose (glucose-13C6, 98%), Cambridge Isotope Laboratories,

Tewksbury, MA, USA] or fructose [d-sucrose (fructose-13C6, 98%), Cambridge

Isotope Laboratories] portion of the sucrose molecule. The birds were fed

through a 1 ml syringe in the lid of the respirometry jar which allowed for

continuous breath measurements, and previous training allowed for quick

consumption of the sucrose solutions. The time of feeding was recorded and

used as t=0. The respiratory measurements continued over the next 20 minutes

to measure the rise and start of the fall of RER, representing the switch from

fasted to fed. The birds were then returned to their cages and repeated the

process again 1 week later with the other sucrose solution, with 2 birds starting

with fructose-enriched, and 2 birds starting with the glucose-enriched. RER

was analyzed following (Dick et al., 2020), and tracer oxidation rate analyzed

following (McCue et al., 2010), and were averaged for each minute over the
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course of 20 minutes. The time to and peak tracer oxidation rate was analyzed

using a pair t-test.

3.7 Supplementary Material

3.7.1 Supplementary Tables
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BUSCO Assignment Number Percent
Complete BUSCOs (C) 8051 96.56%
Complete and single-copy BUSCOs (S) 8020 96.19%
Complete and duplicated BUSCOs (D) 31 0.37%
Fragmented BUSCOs (F) 48 0.58%
Missing BUSCOs (M) 239 2.87%
Total BUSCO groups searched 8338

Table 3.2: Results of Benchmarking Universal Single Copy Orhtologs (BUSCO)
analysis.
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Repeat Bases Percent of Genome
ARTEFACT 185 0
DNA_transposon 3,285,973 0.3
LINE/CR1 76,492,266 6.95
LINE/CR1? 18,155 0
LINE/L1 14,933 0
LINE/L2 328,041 0.03
LINE/Penelope 86,995 0.01
LINE/R2 9,048 0
LINE/RTE-BovB 2,698,152 0.25
Low_complexity 4,244,538 0.39
LTR 28,336,220 2.57
RC/Helitron 73,754 0.01
Totoal Interspersed Repeats 115,588,075 10.5

rRNA 49,936 0
Satellite 3,248,334 0.3
scRNA 393 0
Simple_repeat 15,695,607 1.43
SINE 1,029,390 0.09
snRNA 13,325 0
tRNA 39,830 0
Unknown 27,467,605 2.5
Unspecified 25,575 0
Total 278,746,330 14.83

Table 3.3: Results of RepeatMasker analysis.
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3.7.2 Supplementary Figures

Figure 3.5: Genomescope plot. Coverage and kmer frequency plot using the Illumina
gDNA reads and the MaSURcA assembly of the ruby-throated hummingbird.
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Figure 3.6: A. colubris C. anna whole genome alignment. Whole genome alignment
of the unscaffolded ruby-throated hummingbird MaSURcA assembly to the Anna’s
hummingbird assembly (GCA_003957555.2).
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Figure 3.7: Avian phylogeny. Bird phylogeny for positive selection analysis. The
nectivorous branches of interest, known as the foreground branches, are written in
pink, background branches in black.
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Figure 3.8: GLUT protein structures. Ribbon representations of the sugar binding
pocket of atomic structures for: A: bacterial XylE in complex with D-Glucose (pdb
code 4bgz, (Sun et al., 2012)), B: rat GLUT5 (pdb code 4ybq, Nomura et al., 2015),
and C: an atomic model for ruby-throated hummingbird GLUT5 generated with
AlphaFold. Residues involved in hydrogen bonding interactions with the glucose in
XylE are labeled on allthe three structures. The semitransparent overlays in yellow
depict central sections of the volumes for the atomic models and show the changes
at the bottom of the binding pocket where different amino acids are found in GLUT
transporters (residues labeled in red).
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4.1 Abstract

The completion of a telomere-to-telomere human reference genome (T2T-

CHM13) has resolved complex regions of the genome, including repetitive

and homologous regions. Here we present a high-resolution epigenetic study

of previously unresolved sequences, representing entire acrocentric chromo-

some short arms, gene family expansions, and a diverse collection of repeat

classes. This resource precisely maps CpG methylation (32.28 million CpGs),

DNA accessibility, and short-read datasets (166,058 previously unresolved
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ChIP-seq peaks) to provide evidence of activity across previously unidentified

or corrected genes and reveal clinically relevant paralog-specific regulation.

Probing CpG methylation across human centromeres from six diverse indi-

viduals generated an estimate of variability in kinetochore localization. This

analysis provides a framework to investigate the most elusive regions of the

human genome granting insights into epigenetic regulation.

One Sentence Summary: The T2T-CHM13 assembly enabled generation of

a comprehensive epigenetic annotation of the remaining 8% of the human

genome.

4.2 Introduction

The human reference genome has served as the foundation for many large-

scale epigenetic initiatives (Dekker et al., 2017; ENCODE Project Consortium,

2012; Roadmap Epigenomics Consortium et al., 2015) that aimed to catalog

regulatory elements involved in gene activity and cellular function. However,

efforts to construct a complete annotation of functional elements have been

hampered by an incomplete reference genome. With recent technological

advances, we are now able to study genome structure and function com-

prehensively across the finished, telomere-to-telomere (T2T-CHM13) human

genome assembly based on the CHM13 cell line derived from a complete

hydatidiform mole (Nurk et al., 2021a). As a result, we can now broaden the

human epigenome to include 225 million basepairs (Mbp) of sequence, repre-

senting entire acrocentric chromosome short arms, gene family expansions,

and a diverse collection of repeat classes.
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The epigenome is influenced both by the specific genetic sequence and the

sequence context, i.e. the flanking regions and placement of the loci within

the complex structure and organization within the nucleus (Jost and Vaillant,

2018). The same genetic sequence can perform different functions or be regu-

lated differently depending on the location of the sequence and its epigenetic

state. This is especially relevant given possible evolutionary advantages that

may be conferred by gene duplication, such as selectively silencing or acti-

vating different paralogous gene copies. These processes are hypothesized

to diversify gene activity across developmental time and different tissues

(Fedoroff, 2012). Beyond evolutionary questions, epigenetic dysregulation of

repetitive sequences can play a key role in development and human disease.

A diverse set of repeat sequences, difficult to probe in the human reference

genome GRCh38, have been implicated in facioscapulohumeral muscular dys-

trophy (FSHD) (due to deletions in D4Z4) (Gabellini, Green, and Tupler, 2002),

schizophrenia (linked to an expanded repeat in TAF11) (Bruce et al., 2009),

neuroblastoma (linked to somatic hypomethylation of SST1) (Thoraval et al.,

1996), lung cancer (associated with CT47 expression) (Chen et al., 2006), pan-

creatic ductal adenocarcinomas (associated with HSat2 expression) (Ting et al.,

2011) and immunodeficiency, centromeric region instability, facial anomalies

syndrome (ICF) (linked to heterochromatin abnormalities in HSat2,3) (Hassan

et al., 2001).

Within the improved T2T-CHM13 reference, the previously unresolved ar-

eas are highly repetitive, containing only infrequent sites of unique, mappable

regions. This presents a limitation to short-read sequence mapping strategies,
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even with a more accurate reference and unique k-mer anchored alignments

(Logsdon et al., 2021; Miga et al., 2020). Emerging long-read technologies

(Logsdon, Vollger, and Eichler, 2020) offer sequence lengths capable of span-

ning infrequent unique markers and provide a direct measurement of the base

sequence and epigenetic state on single molecules (Lee et al., 2020; Stergachis

et al., 2020).

4.3 Results

4.3.1 Epigenetic profiles from a T2T genome in disease rele-
vant loci

The T2T-CHM13 assembly resolves gaps and corrects misassembled or patched

regions in GRCh38, leading to the introduction of nearly 225 Mbp (Nurk et al.,

2021a). Using existing short-read epigenetic data from the ENCODE project

(ENCODE Project Consortium, 2012) we probed previously unidentified areas

of the genome. To ensure accurate mapping to these regions, we intersected

ENCODE ChIP-seq alignments with unique k-mers of varying size of k (range

k=50 to 100; Supplemental Figure 4.5 and tables S1 and S2) (ENCODE Project

Consortium, 2012). On average 2.35% more reads mapped to T2T-CHM13

than GRCh38 across six different histone marks and CTCF, an important reg-

ulator of chromatin architecture (Supplemental Figure 4.6). Reads filtered

out of GRCh38 due to non-unique mapping were largely confined to the

satellite DNA and segmental duplications (SDs) (Supplemental Figure 4.7).

While the total number of peaks called per sample was variable due to differ-

ences in cell type, all samples had an increase in the number of peaks called
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Table 4.1: Peaks called using ENCODE datasets. Summary of ENCODE peak
analysis showing the mark profiled, summed peak calls per mark across all datasets,
the number of datasets, and the difference in peak number between references.

when comparing T2T-CHM13 to GRCh38 (Figure 4.1A). As expected, we

saw the most dramatic increase in H3K9me3 (19.4%) and H3K27me3 (15.2%)

enrichment compared to GRCh38 (Table 4.1), consistent with the introduced

peri/centromeric satellites (CenSat), SDs, and other repetitive sequences in

T2T-CHM13 (Figure 4.1A) that are associated with constitutive heterochro-

matin (Janssen, Colmenares, and Karpen, 2018). The number of called peaks in

activating marks increased as well; most notably there was a 4.9% increase in

H3K36me3, a mark present across active gene bodies. Previously unresolved

activating histone peaks (H3K27ac, H3K4me1, H3K36me3, and H3K4me3)

and CTCF were primarily enriched in unique genic regions and in SDs (Figure

4.1A).

T2T-CHM13 increased the number of annotated genes by 5.7% (Nurk et

al., 2021c), revealing 2,680 genes exclusive to T2T-CHM13 with no assigned

ortholog in GRCh38. These gene predictions require detailed study for func-

tionality and validation. Here we generate a functional annotation of the

previously unresolved genes using activating peaks (H3K4me3 or H3K27ac)
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from ENCODE cell lines. We annotated activating peaks from at least two EN-

CODE cell lines at the transcriptional start site (TSS) at 57 of these previously

unresolved genes (Supplementary table 4.3). Of these loci, most (20) were

lncRNAs, including LINC01666, known for its associations with gastric cancer

(Chen et al., 2020). Many (19) were pseudogenes, including FSHD region gene

1 (FRG1), which is a poorly understood candidate gene for FSHD (Gabellini

et al., 2006). Three were protein-coding genes, including BOLBA2B, one of the

most common genes associated with autism (Giannuzzi et al., 2019).

Our analysis of previously unresolved ENCODE peaks revealed enrich-

ment of peaks for high copy number gene families (e.g GOLGA, NPIP, ZNF,

and TBC1D3) (Figure 4.1B). Large structural variants resolved in T2T-CHM13

explain the additional ChIP-seq mapping events (Supplemental Figure 4.8).

Epigenetic annotation at these genetic loci may lead to insights of paralog

specific function in evolution (e.g. human specific neural genes) and disease

(Jiang et al., 2007; Maggiolini et al., 2019). For instance, SMN1/2 is associated

with spinal muscular atrophy (SMA) and was historically one of the most

difficult regions to assemble (Schmutz et al., 2004). At the SMN2 gene, we note

peaks of the activating H3K4me3 mark at the promoter in all four ENCODE

cell lines analyzed (Supplemental Figure 4.9), indicating high transcriptional

activity of the gene across tissues. SMA is a leading cause of childhood death

(Prior, 2010) and has the potential to be treated by regulating expression

through histone deacetylase inhibitors (HDACI), but understanding the dis-

ease specific epigenetic differences between paralogs has been challenging

(Hauke et al., 2009).
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Another previously intractable region of the genome, the HLA locus, is

critical for understanding a wide range of biology from immunity to neu-

ropsychiatric disorders (Cruz-Tapias, Castiblanco, and Anaya, 2013; Sekar

et al., 2016). Our results reveal enrichment of ENCODE peaks across a variety

of histone marks at the HLA locus (Figure 4.1C and Supplemental Figure

4.10A). Decreasing expression of HLA genes is associated with soft tissue can-

cers, particularly prostate cancer and can even be indicative of chemotherapy

resistance (Tsukahara et al., 2006). Comparing non-neoplastic adult human

prostate epithelial cells (RWPE-1) and the c-Ki-ras transformed prostate cancer

model cells from the same donor (RWPE-2) (Bello et al., 1997) we observed a

decline in H3K27ac, an activating mark, at HLA gene promoters, concomitant

with an increase in CTCF binding in RWPE-2 (Figure 4.1C and Supplemental

Figure 4.10B). The differences in histone marks in this region indicate epige-

netic dysregulation of the HLA locus in prostate cancer which may warrant

further studies and inform upon potential therapies (Souri et al., 2020).

4.3.2 Long read sequencing to derive complete human methy-
lomes

Methylation profiling has traditionally had special difficulties in mapping

success rates to repetitive regions of the genome; such mapping inefficien-

cies are exaggerated by the bisulfite conversion of unmethylated cytosine

to uracil, sequenced as thymine (Karimzadeh et al., 2018). Methylation pro-

files in T2T-CHM13 using long-read nanopore data demonstrate an increase

in the genome coverage (32.8M compared to 29.17M in GRCh38, omitting

chromosome Y) and surveyed more CpGs (10%, 3.18 M) when compared
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Figure 4.1: Epigenetics in previously unresolved genome regions. A: (Top) Bar
plots of the number of peaks called per ENCODE sample using dynamic k-mer
mapping to GRCh38 (blue) or T2T-CHM13 (salmon). (Bottom) Pie charts indicating
the genomic localization of peaks found only in T2T-CHM13. B: Number of T2T-
CHM13 unique ENCODE peaks across chromosomes 5, 6, 15, 16, 17, and 19 in 50kb
bins (purple). Chromosome ideograms show the density of previously unannotated
genes (red) with the centromere annotated as dark gray. Orange triangles denote
regions of interest with a high density of previously uncalled peaks. C: ENCODE
ChIP-seq read coverage at the HLA-C gene locus on chromosome 6. D: Number
of CpGs with methylation profiled comparing sequencing method and reference
assembly. E: Correlation of HG002 WGBS and Nanopolish methylation calls aligned
to T2T-CHM13.
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to short-read whole genome bisulfite sequencing (WGBS) (Figure 4.1D). We

called nanopore methylation data with Nanopolish (Simpson et al., 2017),

finding a high correlation (R=.937) both to WGBS results in regions mappable

by both data types (Figure 4.1E) and to the alternative nanopore methyla-

tion caller, Megalodon (R=.952) (Supplemental Figure 4.11). Examining the

difference between mapping of WGBS and nanopore methylation data, we

generated short-read mappability scores in 200bp windows with a score of

0 being unmappable and 200 being highly mappable. We found the 165Mbp

of sequence with a score of 0 (highly unmappable) is enriched in SDs and

satellite DNA. Stratifying the nanopore data by read length, we found reads

longer than 50 kilo-basepairs (kb) were capable of accurately determining

methylation in these regions (Supplemental Figures 4.11-4.13).

We sequenced the CHM13 cell line, representing an early developmen-

tal state and HG002, a terminally differentiated lymphoblast cell line. The

sequenced cell line CHM13 and HG002 nanopore datasets surveyed 32.19M

(99.7% of total CpGs) and 32.26M (99.9% of total CpGs) CpGs. As expected

for differentiated cell lines, the majority of the HG002 genome is methylated

(75% median methylation) with a secondary peak of unmethylated CpGs

largely reflecting unmethylated CpG islands (CGIs) (Supplemental Figure

4.14). In contrast, CHM13 is dramatically hypomethylated (36.8% median

methylation) as expected from a trophoblastic cell line (Guo et al., 2014). Com-

paring CHM13’s methylation state to existing DNA reduced representation

bisulfite sequencing (RRBS) data on early human embryos (Supplemental

Figure 4.15 and Supplementary table 4.4) (Guo et al., 2014), we observed that
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CHM13 clusters closely with cleavage and blastocyst-stage embryos as well

as trophectoderm tissue.

To probe chromatin state in repetitive DNA we generated long-read nanoNOMe

data on HG002, a method where we use M.CviPI methyltransferase to deco-

rate accessible chromatin with exogenous GpC methylation (Lee et al., 2020)

and call CpG and GpC methylation with Nanopolish to measure chromatin

accessibility (Supplemental Figure 4.16-4.17). With the combination of long-

read epigenetic data and the complete human reference, we now describe a

complete human epigenome, providing a foundation for further study.

4.3.3 Paralog specific epigenetic regulation

The NBPF family of genes has been implicated in the expansion of the human

prefrontal cortex since our lineage diverged from apes (Suzuki et al., 2018).

One of its copies, NBPF1 has been reported to act as a tumor suppressor in

neuroblastoma where hypomethylation of CGIs has been associated with

astrocytoma formation (Wu et al., 2010). Understanding the regulation of this

gene family, however, has been particularly challenging because the NBPF

genes correspond to large high identity duplications (>98%) that are copy

number polymorphic among humans and map to gaps in the existing reference

sequences (Sudmant et al., 2010). The fully resolved nature of T2T-CHM13

allowed us to remap ENCODE data to discover regulatory elements associated

with this gene family (Figure 4.2A). When comparing the balance between

H3K36me3, a mark of active exons/gene bodies, and H3K27me3, a repressive

mark, in samples including the BE2C cell line (neuroblastoma) and primary
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Figure 4.2: Paralog specific epigenetic regulation of the NBPF gene family. A:
Location of T2T-CHM13 previously uncalled ENCODE peaks across chromosome
1 in 50kb bins (purple). Chromosome ideograms contain the density of previously
unannotated genes (red) and centromere annotations (dark gray). NBPF paralogs
are indicated by black arrows (top) B: Heatmap illustrating number of peaks for
H3K36me3 (orange) and H3K27me3 (purple) per NBPF paralog in ENCODE cell line
BE2C (neuroblastoma) and brain tissue (Primary Brain Microvascular Tissue). Ar-
rows indicate NBPF10 and NBPF26. C: Epigenetic data at the NBPF10 promoter and
first intron (chr1:145,300,425-145,348,763). Short-read mappability score from 0-200
calculated as a 200bp region with a score of 200 being the most mappable and 0 being
the least mappable. Coverage tracks (Illumina WGBS and ONT) and CUT&RUN
tracks display read pileups. Long read methylation tracks show base-level methy-
lation frequency with 0 as unmethylated and 1 as fully methylated. The long read
HG002 accessibility track is a 200bp binned Z-score of nanoNOMe GpC methylation
frequency. Dashed boxes highlight the promoter region which is largely unmap-
pable with short-reads. D: (Top) Younger NBPF12 gene paralog displaying CHM13
and HG002 nanopore methylation, CHM13 H3K4me2 and H3K27me3 CUT&RUN
coverage, and HG002 nanoNOMe. (Bottom) Older NBPF17P gene paralog display-
ing CHM13 and HG003 nanopore methylation, CHM13 H3K4me2 and H3K27me3
CUT&RUN, and HG002 nanoNOMe. Numbers in parenthesis refer to the number of
PacBio Iso-seq transcripts mapped to this paralog.
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brain microvascular tissue (normal brain), we find that BE2C shows a higher

proportion of H3K27me3 peaks (BE2C 38, Brain 8) and a lower proportion of

H3K36me3 peaks (BE2C 36, Brain 89) at NPBF loci (Supplemental Figure 4.18).

Taking advantage of the increased resolution and more accurate NBPF copy

number provided by T2T-CHM13 (Vollger et al., 2021) we assayed paralog

specific epigenetic changes occurring in neuroblastoma (Figure 4.2B). Among

the different NBPF gene copies, the largest shifts in epigenetic regulation

occur at NBPF26 and NBPF10, moving from active marks in primary brain

microvascular tissue to repressive marks in BE2C. These specific NBPF copies

are noteworthy because they associate with human-specific duplicate genes

NOTCH2NLA and NOTCH2NLR, determinants of the size and complexity

of the human neocortex (Fiddes et al., 2018). This association identifies the

functional NBPF copies, emphasizing the importance of studying paralog

specific epigenetics for discovery of potential drug targets.

Regulatory regions are excluded due to low short-read mappability scores

among high identity paralogs as in the NBPF gene family (Figure 4.2C and

Supplemental Figure 4.19). We find that genome-wide methylation, H3K4me2,

a mark of active promoters, and H3K27me3, a repressive mark, correlate with

Iso-Seq coverage (transcription), and, together, can be used to systematically

evaluate the functional activity of this gene family (Supplemental Figure 4.20).

We correlated this activity with the evolutionary age of the paralogs, esti-

mated using NBPF gene paralogs from six non-human primates (NHP) from

local genome assembly of the NBPF gene family from each primate (Vollger

et al., 2021) (Supplemental Figure 4.21). The oldest paralog, NBPF17P, has
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low Iso-Seq coverage correlated with an epigenetic signature consistent with

a repressive state including promoter hypermethylation and inaccessibility,

enrichment of H3K27me3 and decline of H3K4me2 (Figure 4.2D). In contrast,

the younger paralogs, including human specific copies, have higher Iso-Seq

coverage and epigenetic signatures consistent with active genes including

hypomethylated and accessible promoters and enrichment of H3K4me2. Ac-

tivity in the younger paralogs is more variable, with NBPF10 and NBPF20

displaying high functional activity and sharing promoters with NOTCH2NLA

and NOTCH2NLB. Taken together, our results illustrate the role of epigenetics

in the regulation of gene paralogs, silencing evolutionarily older paralogs

while activating newer copies. This provides mechanistic insight into po-

tentially functional genes related to human-specific cortical expansion and

dysregulation in neoplasia.

4.3.4 Array specific epigenetic regulation of tandem repeats

Using k-mer directed ENCODE alignments to the T2T-CHM13 reference, we

report epigenetic features from human centromeric regions, subtelomeres,

and acrocentric short arms, which represent previously unresolved regions of

the genome that are dominated by CenSat DNAs (Supplemental Figure 4.22).

Five different ENCODE lines had an enrichment of H3K9me3 in CenSat DNA,

notably observed in short-read mappable regions of the acrocentric short-arms

(Supplemental Figure 4.23). Interestingly, SJCRH30 (a rhabdomyosarcoma

derived line) had lower H3K9me3 enrichment in CenSat compared to the

rest of the chromosome, suggesting satellite epigenetic dysregulation as a
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clinically relevant pathology in rhabdomyosarcoma (Supplemental Figure

4.23 and Supplemental Figure 4.24A-B). This trend can be observed with

more detail in an HSat3 repeat on the acrocentric arm of chromosome 15,

where H3K9me3 in SJCRH30 is clearly depleted in comparison to HAP-1

(Supplemental Figure 4.24C).

In contrast to these heterochromatic marks, we found significant enrich-

ment of activating marks, including H3K27ac, H3K4me3, and CTCF in the

telomere associated repeat (TAR) region, typically located 2kb upstream from

the canonical telomeric repeat. A CTCF site in the TAR loci drives tran-

scription of the TERRA lncRNA (Deng et al., 2012); a negative regulator of

telomerase-mediated telomere elongation. We observed enrichment of CTCF

in all ENCODE cell lines at the TAR loci (Supplemental Figure 4.25A). But

the subtelomeric regions are rich in SDs resulting in the TAR sequence being

dispersed throughout the genome (Ambrosini et al., 2007). When compar-

ing telomeric TAR sequences to non-telomeric TAR sequences we do not

observe statistically significant differences (Kruskal-Wallis, p-value=0.12) in

sequence divergence (Supplemental Figure 4.25B). While both telomeric and

non-telomeric TAR sequences are enriched for CTCF, the non-telomeric TAR

sequences are more enriched for activating chromatin marks H3K27ac and

H3K4me3, suggesting differences in TERRA activity.

Examining nanopore CpG methylation in tandemly repeated satellite DNA

elements in CHM13 and HG002 revealed hypomethylation in CHM13 com-

pared to HG002 (Figure 4.3) (Li et al., 2018). To assess the chromatin profile of

satellite repeats we called accessibility peaks from the HG002 nanoNOMe data.
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We found that corrected for the size of the region, repeats have lower peak

density than the genome as a whole. The number of nanoNOMe peaks per

megabase of sequence was lower in satellite DNA (1.5), LINEs (8), SINEs (15),

and LTRs (13.4) compared to the whole genome (31.8) (Figure 4.3B and Sup-

plementary table 4.5) (Hoyt et al., 2021). The human satellites (HSat 2,3) and

monomeric alpha satellites (MON) were largely devoid of accessibility peaks.

Repetitive DNA is typically associated with densely packed heterochromatin

(Yunis and Yasmineh, 1971); our findings are consistent with this association

and transcriptional profiles from (Hoyt et al., 2021). However, our data allows

us to investigate accessibility profiles within previously unmappable satellite

repeats.

Contrary to the expectation of compact chromatin and satellite DNA, we

discovered enrichment of accessibility peaks in the SST1 satellite both inside

the CenSat (41.4 peaks/Mbp) and in the chromosome arms (198.1 peaks/Mbp).

Our peak annotations in HG002 were consistent with (Hoyt et al., 2021) which

show higher activity in CHM13 at non-centromeric arrays on chromosomes 4

and 19 in comparison to other SST1 arrays(Supplementary table 4.6). After

the SST1, the satellite repeat with the second highest peak enrichment was

the ACRO_Composite, a 7kb repeat found across 12 chromosomes, includ-

ing as tandemly arrayed sequences across the five acrocentrics with high

sequence identity across composite units (Hoyt et al., 2021). The tandemly

arrayed promoter elements in the ACRO_composite give rise to a periodic

bimodal methylation structure across the array (Figure 4.3C). This epigenetic

pattern has been proposed to be important for both the efficient transcription
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of non-coding RNAs and maintenance of the nearly perfect tandem arrays

(Jiang and Liao, 1999). The array has regions of increased CpG methylation

which were associated with nanoNOMe peaks and transcription (CHM13

PRO-seq) (Figure 4.3C). We quantified nanoNOMe peak densities across the

ACRO_Composite between chromosomes and found chromosome 21 has the

highest (4.5 peaks/100kb) and chromosomes 13 and 15 have the lowest (0

peaks/100kb) (Figure 4.3D). The absence of nanoNOMe peaks in chromo-

somes 13 and 15 is correlated with low transcriptional activity (Supplemental

Figure 4.26). This high-resolution look within the acrocentric repeats suggests

chromosome specific activity of the ACRO_Composite across both CHM13

and HG002, suggesting a persistent functional role for the ACRO non-coding

RNA throughout early and late-stage development.

In contrast, we also observed methylation periodicity in untranscribed

satellite repeats such as the HSat2, these regions were largely inaccessible as

measured by nanoNOMe (Figure 4.3E) (Hoyt et al., 2021). This periodicity in

methylation corresponds to the underlying chromatin structure and echoes the

genetic repeat size, suggesting the presence of functional genomic elements.

Our initial epigenetic assessments of these assembled satellite sequences indi-

cate a complicated regulatory structure stretching beyond the accepted notion

that the repetitive fraction of mammalian genomes is entirely methylated and

repressed by a highly condensed chromatin state (Nishibuchi and Déjardin,

2017).
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Figure 4.3: Context specific epigenetics in high identity tandem repeats. A:
Nanopore methylation frequency of satellite repeat classes in CHM13 and HG002.
B: HG002 NanoNOMe statistically significant peak calls per 1Mb of sequence in all
major repeat classes compared to the whole genome (Top) and within different satel-
lite repeats (Bottom). C: Nanopore CpG Methylation profiles, HG002 NanoNOMe
accessibility peaks and Z-score (negative is inaccessible, positive is accessible), and
non-kmer filtered (multimapping) PRO-Seq coverage at the ACRO_Composite repeat
(chr14:121,193-162,142). Annotation tracks below are the RepeatMasker V2 annotation
from (Hoyt et al., 2021), monomeric annotations of the ACRO_Composites and a GC
density track. D: Ideogram showing the arrayed locations of the ACRO_Composite
across the acrocentric chromosomes (purple) within the acrocentric short arms
(gray shaded). Listed above each chromosome is the nanoNOMe ACRO_composite
peak density in peaks/100kb. E: Nanopore CpG Methylation profiles and HG002
NanoNOMe accessibility Z-score of the HSat2 repeat (chr16:49,163,529-49,239,753).
Annotation bars below represent CpG density and HSat2 repeat units on the bottom.
F: The DXZ4 locus on CHM13 clustered into two haplotypes (low CGI methyla-
tion and high CGI methylation), based solely on promoter methylation state. (Left)
Methylation frequency plot of each haplotype. (Right) Single reads from the gray
highlighted region on the left with boxes highlighting CGI cluster group level epi-
genetic variability and intra-array level epigenetic variable between neighboring
monomeric units.
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4.3.5 Single read level analysis in satellite arrays reveals array
heterogeneity

Long-reads, coupled to a complete reference assembly, confer the ability to

explore methylation patterns of single molecules, each of which represents the

methylation pattern of a single allele from a single cell. The X chromosome

provides a unique opportunity to study these patterns because of the role

of allele specific methylation in X chromosome inactivation (XCI). Female

somatic tissues have a mixture of paternal or maternal X expression because

the same X chromosome is not always repressed, therefore the active (Xa)

and inactive (Xi) cannot be distinguished with heterozygous single nucleotide

polymorphisms alone. Examining methylation state at CGIs, we clustered

reads on the CHM13 X chromosome as hyper or hypomethylated. In order to

explore whether or not the clusters represent the Xa and Xi, we first focused on

genes known to be subject to XCI (XCI genes) or known to escape inactivation

(escape genes) and compared our results to a clonal female lymphoblast cell

line (GM12878) where the Xi is always the paternal allele (Supplemental Figure

4.27A-B) (Cotton et al., 2015). There we found the Xa to have hypomethylated

promoters and hypermethylated gene bodies compared to the Xi (Hellman

and Chess, 2007). However, in CHM13 we discovered not all genes (e.g.

TAF9B, PRKX) were properly regulated, with TAF9B escaping XCI and PRKX

being subject to XCI, contrary to expectation. This is likely due to failure

of X chromosome inactivation in androgenetic CHMs (Supplemental Figure

4.27C-D) (Chen et al., 2021).

Moving this analysis into repetitive regions, we analyzed DXZ4, a satellite
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that acts as a major epigenetic regulator of XCI (Bansal, Kondaveeti, and Pinter,

2019). This 165kb macrosatellite repeat contains 3kb monomeric units, each

with a bidirectional CGI promoter and a CTCF site that is hypomethylated

on the Xi and hypermethylated on the Xa in healthy cells (Chadwick, 2008;

Giacalone, Friedes, and Francke, 1992). Single-read clustering revealed two

distinct clusters of reads, one with higher methylation across the repeat, and

the other with lower methylation across the repeat (Figure 4.3F). This analy-

sis revealed a surprising level of heterogeneity in methylation of monomers

within the array. We hypothesize this variation is a result of the aberrant XCI

state of CHM13, as intra-array variation was not observed in the Xa at DXZ4 in

HG002 (Supplemental Figure 4.28). Observing epigenetic differences between

monomers of satellite repeats could grant insights into human disease, grant-

ing detailed mechanistic understanding of satellite dysregulation. From this

analysis, we demonstrate that we can cluster reads using methylation alone to

identify heterogeneous populations and intra-array epigenetic variation even

in the absence of heterozygous genetic variants.

4.3.6 Methylation Maps of Human Centromeres Reveal Com-
plex Epigenetic Patterns

Human centromeres are composed of alpha satellite DNA, with an AT-rich

171bp repeat unit (or ‘monomer’). The largest arrays of alpha satellites in the

human genome are further organized in chromosome specific, higher-order

repeats (HORs), or larger, multi-monomeric repeat units (Willard and Waye,

1987). Centromeres can contain multiple distinct alpha satellite HOR arrays

which can be classified into active and inactive HORs (Altemose et al., 2021;
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Shepelev et al., 2015). The HORs within active arrays have specialized epige-

netic regulation that are important in establishing and maintaining centromere

identity (Allshire and Karpen, 2008; Altemose et al., 2021). Centromere protein

A (CENP-A), is an H3-variant enriched in centromeric nucleosomes and marks

sites of kinetochore assembly (Van Hooser et al., 2001). In HOR arrays notable

hypomethylation co-localizing with CENP-A enrichment at chromosomes

X and 8 have been described (Logsdon et al., 2021; Miga et al., 2020). We

extended this finding to all CHM13 centromeres––terming this hypomethyla-

tion the centromeric dip region (CDR) (Figure 4.4A and Supplementary table

4.7). We found that CDRs were present only in active HORs (Supplemental

Figure 4.29) and that active HORs were larger in size and had higher mean

methylation frequency than inactive HORs, as exemplified by the chromo-

some 5 centromere (Figure 4.4B). These results underscore the importance of

methylation in proper centromere regulation and kinetochore assembly.

To investigate if CDRs were confined only to early developmental samples,

we examined HG002 nanopore sequencing data to probe centromere methy-

lation in an adult differentiated cell line. However, the high level of HOR

array variability, and the resulting inability to confidently phase and map

reads from diploid chromosomes prevented us from using the T2T-CHM13

HOR reference for HG002 reads, as evidenced by the anomalous coverage we

observe for HG002 alignments in the HOR arrays (Supplemental Figure 4.30)

(Miga, 2019). Instead, we took advantage of the haploid nature of the HG002

X chromosome and used a HG002 specific X centromere reference (Altemose

et al., 2021; Nurk et al., 2021a). Here, in this data, we clearly observe a CDR
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(Figure 4.4C). Furthermore, using nanoNOMe, the CDR was coordinated in

this sample with a highly inaccessible region. When we examined the size of

the inaccessible regions in the HOR versus the surrounding pericentromeric

and centromeric transition (CT) regions, we found the HORs were enriched in

dinucleosomes compared to these other regions (Supplemental Figure 4.31).

Finally, looking at CUT&RUN CENP-A and Centromere protein B (CENP-B)

data, we observe a significant peak of CENP-A and CENP-B binding at the

CDR. This is coordinated with a marked hypomethylation of the CENP-B

motif within CDRs as opposed to outside the CDRs (Supplemental Figure

4.32); methylation is known to reduce CENP-B binding (Tanaka, Kurumizaka,

and Yokoyama, 2004). Taken together, this highlights the potential functional

importance of the CDR for kinetochore formation.

Taking this a step further, using Human Pangenome Reference Consortium

(HPRC) data, we leveraged the assembled X chromosomes of four additional

diverse male samples representing individuals included in the 1000 Genomes

Project (Figure 4.4D) (1000 Genomes Project Consortium et al., 2015; Altemose

et al., 2021). All arrays showed a distinct CDR in the X chromosome, with

positional variability in the CDR location across individuals. Furthermore,

CDR position was shared between individuals with more closely related

centromere-spanning haplotypes (cenhap) assignments.

Cenhaps are long haplotypes which include centromere arrays due to

reduced recombination in CenSat regions (Altemose et al., 2021; Langley et al.,

2019). Three of the samples, CHM13 (European), HG002 (European) and

HG01109 (Puerto Rican) are within cenhap group 2, and all contain a centrally
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positioned CDR within an evolutionarily “younger” region of the HOR, as

defined in (Altemose et al., 2021). Two of the samples, HG01243 (Puerto

Rican) and HG03492 (Pakistani) are within cenhap groups 3 and 1, which

are shown to be phylogenetically related, (ie. sharing a clade with cenhaps

1-4) (Altemose et al., 2021), and have a CDR positioned more towards the

q-arm side of the centromere within the evolutionarily younger region of the

HOR array. Finally, one of the samples, HG03098 (African), from the more

distantly related cenhap group 9, has a CDR positioned towards the p-arm of

the centromere, and notably in an older (more diverged) region of the HOR

array (supporting the previous observation of an epiallele in the region using

available short-read datasets) (Altemose et al., 2021). Thus, we demonstrate

the use of CDRs to identify epigenetic variability within human centromeres,

variations which may influence the centromere function during cell division.

These variations show the critical importance of epigenetic profiling in the

centromere, finding variation between individuals in a discrete, epigenetically

defined region of the centromere.

4.4 Discussion

This work provides a comprehensive view of epigenetic organization of a

complete human genome, uncovering complex epigenetic patterns in the pre-

viously unresolved 8% of the human genome. Functional annotation of these

intractable regions has not been overlooked due to their lack of importance,

but rather due to technological limitations. Our study opens these regions to

explore their epigenome, leaving no region of the genome unreachable. Here,
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Figure 4.4: Epigenetic maps within human centromeres. A: Smoothed methyla-
tion frequency in 10kb bins of the active HOR array for all CHM13 chromosomes.
CENP-A enrichment from CUT&RUN data shown as a heatmap under each plot.
Chromosomes 3 and 4 have a HSat1 repeat (blue highlight) that breaks up the live
HOR array. B: (Left) CHM13 methylation in the centromeric region of chromosome 5.
Smoothed methylation frequency is plotted in 10 kb bins. HOR arrays are annotated
as blue (“active”) and pink (“inactive”). (Right) Scatter plot of average methylation
within each HOR array versus size in Mbp. C: Methylation, nanoNOMe accessibil-
ity, CENP-A and CENP-B CUT&RUN data across the chromosome X centromeric
array on HG002. Smoothed methylation and accessibility are plotted in 15kb bins,
CUT&RUN is plotted as raw read counts with input shaded gray. Bottom bar anno-
tates satellite regions indicating the location of the HOR, MON, GSat, HSat4 and CT
regions. D: Methylation in the active HOR array across diverse individuals. Coriell
cell line sample ID and cenhap group annotated to left. HORs are annotated as red
(younger) and gray (older) computed on the basis of sequence divergence.
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with the combination of a complete genome assembly and the technological

advances in epigenetic profiling presented herein, we make drastic strides in

functional genome assessment, expanding ENCODE (ENCODE Project Con-

sortium, 2012) to include 3-19% more peak calls and increasing the number of

CpG methylation calls by 10%. Long-read epigenetic methods—here focus-

ing on nanopore methylation and chromatin accessibility—can resolve single

molecule epigenetic patterns within these regions, providing a foundational

assessment of these areas. Long-read methylomes of distinctive developmen-

tal time points surveyed more than 99% of CpGs, establishing the CHM13

and HG002 methylomes as the most complete human methylomes to date

(Roadmap Epigenomics Consortium et al., 2015). With these datasets, we

profiled the additional 225Mbp of sequence and 2,680 gene annotations.

Of the previously unresolved genes, we found 57 with evidence of active

promoters, including H3K4me3 or H3K27ac marks, in more than one cell

type. We found 82 genes with a single cell type supporting active promoters,

providing evidence that these previously unresolved gene annotations are

functionally active across tissues; with more data from different tissue types

we may identify even more functional genes. More generally we found that

evolutionarily older gene paralogs were epigenetically repressed—similar

to the epigenetic silencing of transposons—conferring genome stability and

thus influencing genome evolution (Badyaev, 2014; Lippman et al., 2004).

Examining satellite DNA, we integrated short and long-read datasets to inter-

rogate complete satellite arrays, revealing that these regions vary in epigenetic

and transcriptional activity despite high sequence identity, highlighting the
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importance of the local chromosome environment as a modulator of epige-

netics. Repetitive DNA on the acrocentric short arms is known to play a role

in nucleolar formation, however the previous absence of these regions from

the human reference has hampered research (Sluis et al., 2019). Our findings

suggest that rather than acting in unison, the repeat families on these indi-

vidual acrocentric chromosomes all have their own epigenetic identity, likely

contributing to unique functional roles in genome integrity and organization.

One of the features of our single-molecule epigenetic data is our ability to

investigate single-molecule patterns of epigenetics. We use methylation alone

to cluster reads in repetitive areas devoid of heterozygous polymorphisms;

this includes the DXZ4 array where the methylation signature is critical to X

chromosome inactivation (Darrow et al., 2016; Lemmers et al., 2018). With

the increase in resolution, our results show methylation variability between

the clustered populations and intra-array epigenetic variation within adjacent

monomers in the same array. As satellite arrays are known to be hypervariable

in the human population and linked to several human diseases, these results

highlight the importance of long-read single molecule epigenetic studies for

understanding disease pathology.

Finally, the T2T-CHM13 genome assembly has opened exploration of the

human centromere, enabling us to probe the epigenetic elements that de-

fine centromeric chromatin. We extended our original discovery of the CDR

in chromosome 8 and chromosome X to all chromosomes, and found that

CDRs denote the position of centromere associated proteins (CENP-A and

CENP-B, in the HG002 genome) in differentiated cells (HG002, a lymphoblast).
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This provides evidence of CDRs outside of early developmental CHMs and

emphasizes their importance in kinetochore positioning and epigenetic reg-

ulation of chromosome segregation. Expanding our CDR analysis to male

X chromosomes representing diverse haplotypes, we uncovered variability

in the localization of the CDR within the X HOR array. Such variability in

active centromeric arrays has been explored through the presence of epi-alleles

(Aldrup-MacDonald et al., 2016); however, we have been able to demonstrate

the use of CDRs to precisely predict kinetochore site localization within an

active array and report across individuals representing diverse ancestry. When

combined with findings in other organisms, e.g. maize (Koo et al., 2011) and

medaka (Ichikawa et al., 2017), this suggests the CDR is a conserved, func-

tionally important feature of complex centromeres across vertebrate and plant

lineages. Proper kinetochore formation is an essential process for eukaryotic

cell division, a process that occurs in humans 330 billion times per day to

sustain life. Our results lead to two major conclusions about the CDR: 1) CDR

location on a given array is fixed in early development and maintained upon

differentiation and 2) there is a single stable CDR in each centromere. Our ini-

tial profile provides a multitude of avenues for future research, including how

CDR position influences meiotic and mitotic stability, disease, and aneuploidy.

Our results act as a foundational study, expanding studies of the genome

through the use of the complete reference. There remain significant challenges

to further exploring the epigenome in a larger and more diverse sample set to

achieve optimal sequence alignment, especially amongst structurally variable

repetitive regions, e.g. HORs. Efforts by the HPRC (Miga and Wang, 2021) to
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generate fully phased diploid genome assemblies will enable population-scale

exploration of these areas. Limitations of short-read sequencing in unique

regions can be supplemented by developing long-read epigenetic methods

currently under rapid development (Lee et al., 2020; Stergachis et al., 2020).

We are on the precipice of exploration into duplicated and repetitive portions

of the genome; further development of long-read epigenetic profiling across

different populations and disease states will reveal more about regulation

within the genome’s most elusive regions.

4.5 Materials and methods

4.5.1 Methylation Processing

4.5.1.1 CHM13 and HG002 Nanopore

Nanopore reads were obtained from (Miga2020-zt; Logsdon et al., 2021; Shafin

et al., 2020). Ultra-long nanopore reads were aligned to the CHM13 reference

(Nurk et al., 2021b)with Winnowmap-v2.0 (Jain et al., 2020) with a k-mer size

of 15. BAM files were filtered for primary alignments with SAMtools (v1.9),

analysis of centromeric regions was done on reads >50kb. To measure CpG

methylation in nanopore data we used Nanopolish (v0.13.2) (Simpson et al.,

2017). Nanopolish uses a Hidden Markov model on the nanopore current

signal to distinguish 5mC from unmethylated cytosine. The methylation caller

generates a log-likelihood value for the ratio of probability of methylated to

unmethylated CGs at a specific k-mer. We filtered methylation calls using

the nanopore-methylation-utilities, which uses a log-likelihood ratio of 1.5

as a threshold for calling methylation. CpG sites with log-likelihood ratios
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greater than 1.5 (methylated) or less than 1.5 (unmethylated) were considered

high quality and included in the analysis. Reads that did not have any high-

quality CpG sites were excluded from the subsequent methylation analysis.

Nanopore_methylation_utilities integrates methylation information into the

alignment BAM file for viewing in the bisulfite mode of Integrative Genomics

Viewer (IGV) and creates Bismark-style files (Krueger and Andrews, 2011).

Methylation data was plotted by binning the genome with the BSgenome R

package (BSgenome_1.56.0) and taking the average of CG sites within each bin.

Single-read plots were generated with the ggplot2 R package (ggplot2_3.3.3)

using the single-read data in the tabix indexed single-read methylation bed

files generated from nanopore_methylation_utilities, code for generating all

figures is available at available on github.

4.5.1.2 HG002 Bisulfite

Bisulfite FASTQs were collected from the an AWS open data set generated by

ONT described here. Paired-end FASTQs were aligned with Bismark (v0.22.2)

(Krueger and Andrews, 2011) with default parameters to a reference com-

prised of CHM13 autosomes (chromosomes 1-22), HG002 T2T chromosome X

(Nurk et al., 2021) and GRCh38 chromosome Y using the “bismark” command

with the key parameters

“-p --bam --bowtie”

The reference genome was prepared by the Bismark command “bismark_genome_preparation”

with default parameters. Methylation data was extracted using the Bismark

command “bismark_methylation_extractor” with the following parameters:
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“-p --comprehensive --merge_non_CpG --bedGraph --gzip --remove_spaces

--cytosine_report”

CpG methylation frequency for methylation map plot was generated by calcu-

lating the fraction of methylated reads to total coverage from the bismark CpG

coverage bed file within bins in HG002 chromosome X with the BSGenome

Bioconductor package. Multiples of three bins were further smoothed with

the “rollmean” function from the R package Zoo (Zeileis and Grothendieck,

2005).

4.5.1.3 HG002 NanoNOMe

HG002 nanoNOMe reads were aligned with with Winnowmap-v2.0 (Jain et al.,

2020) with a k-mer size of 15 to both the T2T-CHM13+GRCh38 chromosome Y

reference for whole genome analyses and CHM13 chromosomes 1-22+HG002

chromosome X+GRCh38 chromosome Y for HG002 chromosome X analyses.

BAM files were filtered for primary alignments with SAM flag -F 256 and

filtered for read lengths greater than 20kb. To measure CpG and GpC methyla-

tion in nanopore data we used Nanopolish (v0.13.2) on the nanonome branch

(Simpson et al., 2017). We set an LLR threshold of -1/1 for GpC methylation

calls and -1.5/1.5 for CpG methylation calls. Reads that did not have any

high-quality sites were excluded from the subsequent methylation analysis.

Nanopore_methylation_utilities integrates methylation information into the

alignment BAM file for viewing in the bisulfite mode in IGV and also creates

Bismark-style files.

In order to choose the optimal bin size for accessibility analysis, we used
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the intrinsic smoothness test previously explained by (Sobecki et al., 2018).

15kb bins chosen by the intrinsic smoothness test were investigated for possi-

ble bias in CG and GC coverage. To visualize the methylation and accessibility

patterns, the bins were z-normalized across each chromosome. Nucleosome

footprints were determined by counting the number of consecutive unlabeled

GpC sites, or “Inaccessible Runs” (Lee et al., 2020). For analysis of GpC ac-

cessibility we followed all methods outlined in (Lee et al., 2020). Briefly, we

estimated profiles of measurements by fitting locally weighted generalized

linear models across the genome for each sample as implemented by Biocon-

ductor package bsseq v.1.20.0 (Hansen, Langmead, and Irizarry, 2012). For

GpC methylation, the minimum window was reduced to 100 bp and the num-

ber of sites to ten to account for rapid fluctuations in the accessibility profile

due to nucleosome positioning. For visualization, we plotted the z-score of

smoothed GpC methylation.

To find regions of high accessibility, continuous regions having smoothed

accessibility greater than 99th percentile of the data were selected first. The

significance of each accessible region was determined by performing a bino-

mial test of the raw GpC methylation frequency, with overall accessibility

frequency as the null probability. The probabilities were corrected for multi-

ple testing using the Benjamini–Hochberg correction, and accessible regions

with adjusted p values less than 0.01 and widths greater than 50 bps were

determined to be accessibility peaks. Peaks called within 500bp of a GpC site

that had anomalous coverage, i.e. coverage outside of the 5th-95th percentile,

were removed from the repeat analysis. Biological replicates were processed
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individually and peak calls were merged across all three replicates.

4.5.1.4 Reduced representation bisulfite sequencing (RRBS)

RRBS raw sequencing data from early human embryos from (Guo et al., 2014),

was obtained from SRA (GEO accession: GSE49828) with fastq-dump. RRBS

reads were trimmed with TrimGalore using the “–rrbs” and “–paired” param-

eters. The reads were aligned with Bismark (v0.22.2) (Krueger and Andrews,

2011) using the “bismark” command with the key parameters “-p –bam –

bowtie” to the CHM13 reference genome prepared by the Bismark command

“bismark_genome_preparation” with default parameters. Methylation data

was extracted using the Bismark command “bismark_methylation_extractor”

with the following parameters:

“-p --comprehensive --merge_non_CpG --bedGraph --gzip --remove_spaces \

--cytosine_report”

Methylation calls from technical replicates of the same biological replicate

were combined by using the Bismark command “bismark2bedGraph” with the

following parameters: “–buffer_size 20G –remove_spaces”. RRBS and CHM13

methylation data were imported into R using the “read.bismark” command

from the “bsseq” package (v1.24.4) (Hansen, Langmead, and Irizarry, 2012)

using only CHM13 reference CpGs with the following parameters “strand-

Collapse = TRUE, rmZeroCov = FALSE”. CpG loci were retained if they

were covered by at least one read in 90% of the samples analyzed. Percent

methylation was used to compare the samples by Euclidean distance with

the R function “dist” with default parameters. Samples were clustered using
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the R function “hclust” using the “ward.D” method. The dendrogram was

plotted using “ggdendrogram” with default parameters.

4.5.1.5 Methylation clustering

Methylation clustering across the CHM13 X chromosome was performed

on all CpG islands (CGI) that overlap an annotated promoter of a protein-

coding gene. Within the CGI, reads with an average methylation > 0.2 were

considered methylated and reads with an average methylation < 0.2 were

considered unmethylated. Reads were only considered if they spanned the

entirety of the CGI and were longer than 5kb. Clustered reads were then

intersected with known escape and XCI genes from (Bansal, Kondaveeti, and

Pinter, 2019). The same clustering procedure was performed at the DXZ4

locus.

4.5.2 NanoNOMe Library Preparation

4.5.2.1 HG002 Cell Culture

NA24385 cells (HG002) were obtained from the Coriell Institute. Cells were

grown in T-25 flasks in RPMI 1640 media with L-glutamine (Gibco; 11875093)

supplemented with 15% fetal bovine serum (Gibco; 26140079) and 1% penicillin-

streptomycin (Gibco; 15140122). Cells were cultured at 37C with 5% CO2 and

were maintained by passaging 1/3 into fresh media every three days. Cells

tested negative for mycoplasma contamination with the LookOut Mycoplasma

PCR Detection Kit (Sigma; MP0035) and Jumpstart Taq DNA Polymerase

(Sigma; D9307). Cells at passage 11 were used in nanoNOMe sequencing.
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4.5.2.2 NanoNOMe HG002 Sequencing

NanoNOMe library preparation was performed according to the methods

outlined in (Lee et al., 2020). Cells were collected by resuspension, then

nuclei were extracted by incubating in resuspension buffer (100mM Tris-Cl,

pH7.4, 100mM NaCl, 30mM MgCl2) with 0.25% NP-40 for 5min on ice. Intact

nuclei were collected by centrifugation for 5min at 500g at 4C. Nuclei were

subjected to a methylation labeling reaction using a solution of 1x M.CviPI

Reaction Buffer (NEB), 300mM sucrose, 96M S-adenosylmethionine (NEB)

and 200U of M.CviPI (NEB) in 500l volume per 500,000 nuclei. The reaction

mixture was incubated at 37C with shaking on a thermomixer at 1,000RPM

for 15min. The reaction was stopped by the addition of an equal volume of

stop solution (20mM Tris-Cl, pH7.9, 600mM NaCl, 1% SDS, 10mM disodium

EDTA). Samples were treated with Proteinase K (NEB) at 55C for >2h and DNA

was extracted via phenol:chloroform extraction and ethanol precipitation.

After ethanol precipitation we enriched for HMW DNA with Circulomics

Short Read Eliminator Extra Long (SRE-XL; SS-100-111-01).

Purified gDNA was prepared for nanopore sequencing following the pro-

tocol in the genomic sequencing by ligation kit LSK-SQK109 (ONT). Each

nanopore library was prepared with 2 g of input DNA. Fifteen libraries were

generated and run on five PromethION flow cells with reloading (three li-

braries used per flow cell). Flow cells were flushed at 24 hours and 48 hours

with the Oxford Nanopore’s Flow Cell Wash kit (EXP-WSH003) and reloaded

with fresh library. Sequencing runs ran for a total of 72 hours and were si-

multaneously basecalled with Guppy 4.0.11. All nanoNOMe data can be
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accessed at on Sequence Read Archive with BioProject Accession number

PRJNA725525. Data was collected as three distinct biological replicates.

4.5.3 CUT&RUN

4.5.3.1 Library Generation

CUT&RUN was carried out as in (Thakur and Henikoff, 2018), with some

variations. Frozen pellets of 1.6 million HG002 cells or 1.2 million CHM13

cells were thawed on ice and centrifuged at 500xg for 5 minutes at 4C. Cells

were washed with cold PBS twice. For nuclear extraction, each cell pellet was

resuspended in 500 uL of Nuclear Extraction Buffer (NEB, 20 mM HEPES

pH 7.9, 10 mM KCl, 0.5mM Spermidine, 0.1% NP40, 20% glycerol, Roche

Proteinase Inhibitor tablets) by pipetting gently, and incubated on ice for

5 minutes. Cells were centrifuged and washed with Washing Buffer (WB,

20mM HEPES pH 7.5, 150mM NaCl, 0.5mM Spermidine, 0.1% BSA, 0.05%

NP40, Roche Proteinase Inhibitor tablets), blocked in WB containing BSA,

and incubated in primary antibody for 2h at 4C under rotation. Primary

antibodies used were: mouse CENP-A (Abcam, ab13939), rabbit CENP-B

(Abcam, ab25734), rabbit H3K4me2 (Abcam, ab7766), and rabbit H3K27me3

(ThermoFisher, 39155). Cells were washed twice with WB and incubated with

pAG-MNase (Cell Signaling) for 1h at 4C under rotation. For pAG-MNase

digestion, samples were incubated on ice for 10 minutes, then CaCl2 was

added to activate MNase to a final concentration of 2mM. Samples were then

incubated for 30 minutes at 0C. To stop digestion, an equal volume of 2X

STOP solution (200 mM NaCl, 20 mM EDTA, 4 mM EGTA, 0.1% NP40) was
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added. To recover low-salt fragments, samples were incubated for 1h at 4C

under rotation, centrifuged at 500xg for 5 minutes and supernatant collected

and labeled as low-salt fraction. RNase A was added following incubation for

20 minutes at 37C. Samples were treated with Proteinase K for 1h at 65C (or

overnight), and DNA extraction was carried out with MasterPure Complete

DNA Isolation kit (Lucigen) as indicated by the manufacturer. Samples were

analyzed by a Fragment Analyzer.

For library preparation, NEBNext Ultra II End repair/A-tailing and Liga-

tion kits were used as indicated by the manufacturer with 1.5 pg of Spike-in

Yeast DNA was added as a control (obtained from the Henikoff lab). Libraries

were purified using AMPure XP beads and the PCR reaction was carried out

using NEBNext Ultra II Q5 master mix and NEBNext multiplex oligos for

Illumina (12 cycles with annealing/extension for 15 seconds at 65C). Final

libraries were purified using AMPure XP beads. Libraries were sequenced

using NovaSeq 50PE sequencing.

4.5.3.2 Marker-assisted mapping

Marker-assisted mapping of CUT&RUN data (CHM13 CENP-A, CHM13

H3K4me2, CHM13 H3K27me3, HG002 CENP-A, HG002 CENP-B) to the same

genome (CHM13 to T2T-CHM13 or HG002 to CHM13 autosomes (chromo-

somes 1-22), HG002 T2T chromosome X and GRCh38 chromosome Y) was

performed according to the methods outlined in (Altemose et al., 2021). In

brief, 150 bp paired-end CUT&RUN libraries were mapped with bwa-mem

(Li et al., 2009) and filtered with SAMtools (Danecek et al., 2021) for unique
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51-mers as follows:

bwa mem -k 50 -c 1000000

overlapSelect -overlapBases=51

Unique 51-mers were generated with Meryl software (Miller et al., 2008). This

method differs from dynamic k-mer assisted mapping in that there is a set

k-mer size of k=51 and indels are not accounted for. More stringency can be

placed on reads generated from a sample with its own genome (e.g. CHM13)

as is the case with the CUT&RUN data and not with the ENCODE datasets.

4.5.4 ENCODE

4.5.4.1 ENCODE Dynamic k-mer assisted mapping

We selected several ChIP-seq datasets generated as part of the ENCODE

project (ENCODE Project Consortium, 2012) choosing ChIP-seq samples with

at least 100 bp paired-end sequencing data and at least one matching input

control (Methods). These criteria yielded 96 total sequencing libraries. All

ENCODE-generated raw FASTQ files were downloaded from the ENCODE

data portal (Davis et al., 2018). Prior to mapping, reads originating from a sin-

gle library were combined. Reads were mapped with Bowtie2 (v2.4.1) (Lang-

mead and Salzberg, 2012) as paired-end with the arguments “–no-discordant

–no-mixed –very-sensitive –no-unal –omit-sec-seq –xeq –reorder” (fig. S1A).

Alignments were filtered using SAMtools (v1.10) (Danecek et al., 2021) us-

ing the arguments “-F 1804 -f 2 -q 2” to remove unmapped or single end

mapped reads and those with a mapping quality score less than 2. PCR du-

plicates were identified and removed with the Picard tools “mark duplicates”
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command and the arguments “VALIDATION_STRINGENCY=LENIENT AS-

SUME_SORT_ORDER=queryname REMOVE_DUPLICATES = true”.

Alignments were then filtered for the presence of unique k-mers. Specif-

ically, for each alignment, reference sequences aligned with template ends

were compared to a database of k-mers unique in the whole genome. The size

of the k-mers in the k-mer filtering step are dependent on the length of the

mapped reference sequence. We generated k-mer databases for 50-100mers

by multiples of five. If all 100bp of a read map then the 100mer database is

used. However, if the reference sequence is longer or shorter than 100bp then

we use the database that is shorter than the reference length to the nearest

five. For example, when there is a 1bp insertion in the read compared to

reference, the corresponding reference sequence is 99bp, therefore the 95-mer

database is used. When there is a 1bp deletion in the read compared to the

reference, the corresponding reference sequence is 101 bp long so we use the

100-mer database. Mismatches only impact the k-mer size if they occur in

the first or last positions, otherwise reference sequence length is unchanged.

Alignments were discarded if no unique k-mers occurred in either end of the

read. k-mer databases were generated using KMC3 (v3.1.1) (Kokot, Dlugosz,

and Deorowicz, 2017). Alignments from replicates were then pooled. Bigwig

genome tracks were created using deepTools bamCoverage (v3.4.3) (Ramírez

et al., 2016) with a bin size of 1bp and default for all other parameters. Across

all cell lines and marks, initial Bowtie2 alignments only yielded a 0.6% average

increase in aligned reads to CHM13 versus GRCh38p13, however after inter-

secting the alignments with unique variable-length k-mers, the percentage of
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new alignments increased to 2.33% on average.

Mapping differences were broken down into five categories: satellites,

LINEs/SINEs, (SDs), all other repetitive element types, and non-repetitive

sequence. The segmental duplication regions were obtained from (Vollger

and Lo, 2022). The remaining repeat categories were obtained from (Hoyt

et al., 2021). LINE and SINE regions were extracted from the repeat masker

annotation, merged so there were no overlapping elements, and intersected

with the segmental duplication intervals to remove overlaps. The satellite

regions were obtained the same way with the addition of intersecting them

with both the segmental duplication and LINE/SINE intervals. The remaining

repeat intervals were defined as all repeat masker annotations, merged and

intersected with the previous three interval sets. The non-repetitive regions

were defined as all intervals not covered by one of the above four tracks.

Peak calls were made using MACS2 (v2.2.7.1) (Zhang et al., 2008) with

default parameters and estimated genome sizes 3.03x109 and 2.79x109 for

chm13v1 and GRCh38p13, respectively. GRCh38p13 peak calls were lifted

over to chm13v1 using the UCSC liftOver utility, the chain file created by the

T2T consortium, and the parameter “-minMatch=0.2”. Peak intersections were

determined using bedtools (v2.26.0) (Quinlan and Hall, 2010) counting each

liftOver peak only once if any intersection occurred. Peaks unique to CHM13

were generated by taking all non-intersecting peak calls from the chm13v1

peak calls and the GRCh38p13 liftover peak calls using bedtools intersect.
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4.5.5 T2T-CHM13 Genomic Annotations

4.5.5.1 Repeat-Masking

RepeatMasker annotations were generated in (Hoyt et al., 2021), and are avail-

able for both T2T-CHM13 and GRCh38 on the T2T UCSC genome assembly

hub http://t2t.gi.ucsc.edu/chm13/hub/hub.txt.

4.5.5.2 CENP-B motif annotation

CENP-B sites in HG002 chromosome X were identified with fuzznuc software

tool from EMBOSS (Rice, Longden, and Bleasby, 2000) searching for the

CENP-B consensus sequence as follows:

fuzznuc --sequence HG002_chromsomeX.fasta \

--pattern NTTCGNNNNANNCGGGN -complement

4.5.5.3 Centromere annotations

Centromere region repeat annotations are described in (Altemose et al., 2021),

and are available on the T2T UCSC genome assembly hub

http://t2t.gi.ucsc.edu/chm13/hub/hub.txt.

4.5.5.4 CDR Annotations

CDRs in T2T-CHM13 were manually annotated by labeling the entire span

where CpG methylation is irregular, or lower than the flanking active array

(which exhibits high, regular CpG methylation).
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4.5.5.5 Genome Mappability

Minimum unique k-mer (MUK) lengths were calculated for T2T-CHM13.

MUKs represent the minimum distance from a position in the genome needed

to identify a unique sequence, either upstream (right-anchored) or down-

stream (left-anchored). To compute these values, all chromosomes of T2T-

CHM13 were concatenated, followed by their reverse complements. A suffix

array (SA) and longest common prefix (LCP) table were calculated from

this single sequence using the algorithm and implementation adapted from

Sapling (Kirsche, Das, and Schatz, 2021). For each position in the SA, the LCP

value plus one represents the MUK at that position. If the SA value indicated

that the sequence was a reverse complement, the unique sequence was right-

anchored; otherwise, the sequence was left-anchored. Any minimum unique

sequences containing an N or overlapping a chromosome end were removed

and those positions were marked as having no minimum unique sequence.

Mappability for 200 bp fragments was calculated by counting the fraction of

200-mers overlapping a given genomic position that have an MUK less than

or equal to 200 for the first or last base in the fragment.

4.5.6 Gene expression and annotation

4.5.6.1 NBPF Analysis

CHM13 NBPF sequences were first mapped to the non-human primate as-

semblies and sequences less than 12.5Kb were removed to retain exclusively

the VNTR sequence. The initial paralog used for mapping was NBPF25P

(chr1:144,688,831-144,708,527). Next, a sequence alignment with mafftv7.453
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(Katoh and Standley, 2013)( was performed with the following command:

mafft --reorder --maxiterate 1000 --thread 15 \

${T2T_NHP_NBPF.fa} > MSA.fa

For evolutionary timing estimates, extra copies that did not contribute to the

topology of the tree or had obvious issues with alignment were removed.

Lastly, the MSA was trimmed for all bases which had gaps in >=60% of

sequences. The phylogeny was generated by maximum likelihood with the

following command:

iqtree2 -nt AUTO -m MFP -s ${trimmed_MSA-fasta} \

-o “{macaque_seq_outgroup}” \

--prefix “{NBPF_timing_estimate}” --redo-tree -alrt 1000 -b 100

Bayesian estimates with were performed with BEAST2 (Bouckaert et al., 2019)

using the trimmed MSA to estimate mutation rate at NBPF using two priors:

macaque-human divergence of 25MYA +/- 2MYA, and chimp-bonobo diver-

gence of 1.15 MYA +/- 0.3 MYA (Manuel et al., 2016; Marques-Bonet, Ryder,

and Eichler, 2009). Estimates of NBPF expansions were given with the 95%

confidence interval of mutation rate.

4.5.6.2 PacBio Iso-seq

PacBio Iso-Seq on CHM13 (Logsdon et al., 2021)(accessions: SRX9009500,

SRX9009501) was processed according to methods outlined in(Vollger et al.,

2021). In short, data was aligned with minimap2 v2.17 with the following

command: minimap2 -H -ax splice -uf -C5 –secondary=no –eqx And filtered
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for primary alignments with: samtools -F 2308 Iso-Seq coverage at NBPF loci

was quantified with bedtools intersect.

4.5.6.3 HG002 RNA-seq

HG002 RNA-seq (accession: SRR13086640) was aligned with HISAT2 (Kim

et al., 2019) and gene expression was quantified using StringTie2 (Kovaka

et al., 2019) with the following command:

stringtie {input.bam} -G {gtf} --conservative -o {output.gtf} \

-p 60 -B -e -A

4.5.6.4 Previously Unresolved Gene Annotations

Gene annotations were obtained from (Nurk et al., 2021b). Previously unan-

notated genes were extracted using the full T2T-CHM13-v1.1 gene annotation

and extracting all gene IDs labeled with ‘extra_paralog=True’, then filtering

the v1.0 gff file for these genes.

4.5.6.5 PRO-seq Data Analysis

PRO-seq data was generated and analyzed in (Hoyt et al., 2021).

4.6 Supplementary Material
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Figure 4.5: Overview of ENCODE dynamic k-mer mapping pipeline. A: Bioinfor-
matic pipeline for mapping ENCODE data to repetitive regions of the T2T-CHM13
genome. B: Schematic description of the dynamic k-mer assisted mapping pipeline.
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Figure 4.6: ENCODE mapping summary. A: Relative percent increase in k-mer
filtered aligned reads in T2T-CHM13 compared to GRCh38 for all datasets surveyed.
Each point represents an ENCODE sample. Control samples are ChIP-seq matched
input control for each library. B: Fraction of total aligned reads retained during each
mapping step in the pipeline. Control samples are ChIP-seq matched input control for
each library. C: Percent increase in alignments to T2T-CHM13 compared to GRCh38
at each mapping step separated by cell line. Control samples are ChIP-seq matched
input control for each library.
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Figure 4.7: Dynamic k-mer mapping read filtering. Normalized number of mapped
reads filtered out of input control ChIP-seq library (x-axis) versus normalized number
of mapped reads filtered out of input control ChIP-seq library after quality filtering,
deduplication and k-mer filtering (y-axis) for each ENCODE cell line profiled. Differ-
ent genomic regions are denoted by different shape markers, reference genome by
color of marker. Number of reads is normalized to a post alignment read depth of
100M reads per 1Mbp of sequence.
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Figure 4.8: GRCh38 to T2T-CHM13 alignments at ENCODE enriched loci. Align-
ments of GRCh38 (top) to T2T-CHM13 (bottom) illustrate structural variation between
the two assemblies at regions designated with an orange triangle in Figure 1B. Se-
quence gaps are blank space (white), inversions are highlighted in yellow. Colored
arrows are from the dupMasker track and identity plotted below as a line plot.
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Figure 4.9: H3K4me3 peaks at SMN2. ENCODE dynamic k-mer assisted alignments
of ChIP-seq H3K4me3 marks from different cell lines to the SMN2 locus.
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Figure 4.10: ENCODE peaks at HLA genes. A: Total peak calls for all ENCODE
samples at the HLA locus. B: Peak calls for CTCF and H3K27ac in the RWPE1 and
RWPE2 cell lines at the HLA locus.
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Figure 4.11: Nanopolish to Megalodon Comparison. CHM13 CpG methylation
frequency correlation plot between Nanopolish and Megalodon.
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Figure 4.12: Thresholds for long-read nanopore methylation. A-B: Z-score of CpG
coverage as compared against the whole genome. With increasing read length the
percentage of CpGs with coverage Z-scores greater than 3 and less than -3 decreased.
>50kb reads were chosen to decrease coverage bias in centromeric regions, allowing
for robust analysis of methylation calls through centromeric repeats. C: The distri-
bution of all log-likelihood scores for methylation calls in CHM13. Calls with log
likelihood ratios greater than 1.5 and less than -1.5 were considered high quality and
used for all subsequent analysis.
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Figure 4.13: CHM13 CpG methylation quality control. A: Distribution of log-
likelihood ratios for each repeat type from nanopore reads filtered to only primary
alignments >50kb. B: Percentage of high quality ( |log likelihood| > 1.5) CpG
calls within each satellite repeat. C: Distribution of the mean current difference
between methylated and unmethylated k-mers possible in each repeat. For all CpG
containing 6-mers per repeat the absolute value of the mean difference in methylated
vs unmethylated current distribution was calculated. Boxplots are weighted by kmer
frequency. D: (Left) Scatter plot of the percentage of high quality calls versus the mean
current difference of methylated vs unmethylated 6-mers per repeat type weighted
by kmer frequency, (Pearson Correlation, r = 0.36, p = 0.28). (Right) Scatter plot of
the percentage of high quality methylation calls versus CpG coverage per repeat,
(Pearson Correlation, r = 0.42, p = 0.19). E: Called CpG site coverage per read strand
within each repeat type. F: Average CpG methylation frequency per read strand
within each repeat type.
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Figure 4.14: Whole genome methylation of CHM13 and HG002. Distribution
of nanopolish methylation frequency for HG002 and CHM13 on autosomes and
chromosome X.
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Figure 4.15: Comparison of methylation in early human embryo samples and
CHM13. Reduced representation bisulfite sequencing (RRBS) methylation data from
12 stages of human embryo development(H. Guo et al., 2014) compared to CHM13
methylation generated from nanopore data. T2T-CHM13 reference CpGs covered by
at least 1 read in 90% of samples were used. Raw methylation percentages were clus-
tered using Euclidean distance and ward.D clustering then plotted as a dendrogram.
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Figure 4.16: NanoNOMe alignment and GpC methylation calling. A: Histogram of
coverage for CpG sites in 15kb bins. B: Histogram of coverage for GpC sites in 15kb
bins. C: Intrinsic smoothness as a function of bin size. D: Top panel shows percent
CpG methylation for 15kb bins across chromosome X in HG002. Bottom panel shows
percent GpC methylation (accessibility) for 15kb bins across chromosome X in HG002.
E: Top panel shows Z-normalized methylation (CG) for 15kb bins across chromosome
X in HG002. Bottom panel shows Z-normalized accessibility (GC) for 15kb bins across
the chromosome X in HG002. F: NanoNOMe CpG call coverage in the centromeric
region of the HG002 X chromosome. G: Number of GC sites per 15kb bin across the
centromere of HG002 chromosome X.
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Figure 4.17: NanoNOMe Inaccessible Run Lengths. Histograms of the length of
inaccessible runs in the nanoNOMe data. Left histogram is all of chromosome X.
Peaks correspond to mono-, di-, tri- and poly-nucleosomes. Inaccessible runs occur
when nucleosomes or other proteins impede the ability of the GpC methyltransferase
to label the DNA. Right panel shows histogram of runs on mitochondrial DNA that
does not contain nucleosomes.

167



Figure 4.18: ENCODE peaks at NBPF genes. A: All peak calls for all ENCODE
samples in NBPF genes. B: Peak calls for H3K36me3 and H3K27me3 in NBPF genes.
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Figure 4.19: WGBS and nanopore alignments at NBPF10. IGV plot of NBPF10 from
HG002 nanopore and WGBS data. Red are methylated CpGs, blue unmethylated.
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Figure 4.20: Genome wide expression profiling. A: Metaplots of all genes separated
into high, medium, and low expression categories using CHM13 PacBio Iso-Seq
coverage. (Left) CHM13 nanopore aggregated methylation frequency, (Middle) log2
of CHM13 marker-assisted mapping H3K27me3 CUT&RUN coverage, (Right) log2
of CHM13 marker-assisted mapping H3K4me2 CUT&RUN coverage. B: Metaplots
of HG002 methylation (Left) and GpC accessibility (Right) in all genes separated by
FPKM quartile derived from Illumina RNA-seq.
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Figure 4.21: Phylogenetic aging of NBPF. A: Maximum likelihood phylogenetic tree
of the NBPF gene family and 7 non-human primates. The scale is in substitutions
per site and the numbers on the branches are the bootstrap support values. Analysis
available on zenodo (Gershman et al., 2022). B: Heatmap characterizes epigenetics
of human NBPF genes in CHM13 and HG002, including nanopore methylation,
nanoNOMe accessibility, for both, and H3K4me2 CUT&RUN, H3K27me3 CUT&RUN
and PacBio Iso-Seq for CHM13 only.
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Figure 4.22: Enrichment of histone marks and CTCF across ENCODE samples.
Log2 fold enrichment of epigenetic mark versus input control for each satellite repeat
class.
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Figure 4.23: Previously unresolved H3K9me3 peaks in acrocentric chromosomes.
H3K9me3 previously unresolved peaks in T2T-CHM13 across acrocentric chromo-
somes in ENCODE cell lines. Y-axis peak count ranges from 0-5 for all cell lines. Red
boxes denote centromeric regions. GRCh38 synteny shows syntenic regions between
GRCh38 and T2T-CHM13, gaps are non-syntenic. Mappability tracks show the per-
centage of possible 200bp reads overlapping each base position that are uniquely
mappable.
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Figure 4.24: H3K9me3 enrichment in satellite repeats. A: Log2 enrichment of
H3K9me3 ChIP-seq normalized to input control for each satellite repeat. Each dot
represents a satellite repeat class: HSat1, HSat2, HSat3, HSat4, GSat, HOR, DHOR,
BSat, MON, TAR and CT. B: Pie chart illustrating the position of peak calls for
H3K9me3 across the six cell lines, either within (pink) or without (blue) the CenSat
regions. C: UCSC genome browser tracks of H3K9me3 coverage versus input control
for HAP-1 (highest enrichment) and SJCRH30 (lowest enrichment).
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Figure 4.25: Percent divergence of the Telomere Associated Repeat (TAR). A: Enrich-
ment of chromatin marks at Telomeric TAR repeats (within 2kb of the chromosome
end) and non-telomeric TAR repeats (outside 2kb of the chromosome end). A CTCF
site in the TAR loci drives transcription of the TERRA lncRNA (Deng et al., 2012)); a
negative regulator of telomerase-mediated telomere elongation. In T2T-CHM13 we
observed TAR at chromosome ends, as expected, however we also observed TAR
outside of the sub-telomeric regions (Ambrosini et al., 2007). Both were enriched
for CTCF binding, however, the non-telomeric TAR sequences are more enriched
for activating chromatin marks H3K27ac and H3K4me3, suggesting differences in
activity of TERRA between telomeric and non-telomeric TAR repeats. B: Percent
divergence calculated by RepeatMasker from the TAR consensus sequence. There
was no significant sequence divergence between telomeric and non-telomeric TAR (p
= 0.12, Kruskal-Wallis).
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Figure 4.26: ACRO_Composite comparison across chromosomes. Genome browser
tracks of the ACRO_Composite across the acrocentric chromosomes (chr15, chr13,
chr21, chr22). CHM13 and HG002 Methylation, PRO-seq (+ and - strand) and
nanoNOMe z-score and peaks are shown, along with the RepeatMasker Annotation
track. Across the different chromosomes more nanoNOMe peak calls are associated
with higher transcriptional activity (PRO-seq).
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Figure 4.27: Characteristization of XCI in CHM13. A: NanoNOMe CpG methy-
lation data from (Lee2020-pn) of GM12878, a clonal female lymphoblast cell line
representing normal XCI lifted over to T2T-CHM13. Data is shown as ametaplot of
methylation at genes known to be prone to X chromosome inactivation (XCI) and
genes known to escape XCI (escape genes) (Bansal, Kondaveeti, and Pinter, 2019).
B: A metaplot of CHM13 single read clusters at XCI and escape genes. Reads are
clustered using methylation at CpG island promoters for either low (green) or high
(black) methylation. C: TAF9B is subject to XCI across diverse tissues and in GM12878,
but in CHM13 all the reads cluster into the “Low CGI” cluster suggesting it is active
on both alleles. D: PRKX is an escape gene and only has one methylation state (hy-
pomethylated promoter) in GM12878, but in CHM13 30% of reads cluster into the
“High CGI” group, indicating inactivity.
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Figure 4.28: DXZ4 methylation frequency in HG002. A: DXZ4 methylation frequency
in HG002. B: Single read methylation plot of HG002 DXZ4 at the pink highlighted
region from A.

Figure 4.29: Methylation frequency of CHM13 centromeric regions. Panels describ-
ing methylation in the centromeric regions of each chromosome of CHM13. CHM13
methylation frequency is plotted in 10kb bins smoothed with a rolling average over
three bins. Coverage plot represents the number of aligned nanopore reads contain-
ing at least one high quality CpG methylation call. “Active” and “Inactive” HOR
arrays are annotated by salmon and teal track below coverage plot. Bottom thin line
annotates satellite repeats.
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Figure 4.30: Mappability of HOR. The fraction of mappable CpG sites for HG002
nanopore and CHM13 nanopore reads >50kb aligned to T2T-CHM13 at the HOR in
each chromosome. Mappability was calculated by calculating the fraction of CpG
sites that had coverage greater than the 5th percentile and less than the 95th percentile
of total coverage.
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Figure 4.31: Nucleosome Positioning in HG002 cenX. Density plots of length of
inaccessible run lengths within different genomic regions on HG002 chromosome X.
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Figure 4.32: Methylation at CENP-B Boxes. Methylation frequency of the CpG sites
within the CENP-B motif inside and outside the CDR (p < 1e-15, Kruskal-Wallis) on
HG002 chromosome X.
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Mapping Step Target CHM13 Mapped Reads GRCh38 Mapped Reads Percent Increase Difference
mapped Control 1,137,935,667             1,131,245,094              0.59 6,690,573   
filtered Control 1,068,198,264             1,054,596,257              1.29 13,602,007 
dedup Control 907,959,643                895,616,890                 1.38 12,342,753 
kmer Control 895,290,569                875,165,210                 2.30 20,125,359 
mapped CTCF 587,838,526                584,410,563                 0.59 3,427,963   
filtered CTCF 555,593,002                547,091,578                 1.55 8,501,424   
dedup CTCF 440,390,633                433,341,439                 1.63 7,049,194   
kmer CTCF 433,092,673                422,484,201                 2.51 10,608,472 
mapped H3K27ac 1,350,669,439             1,346,415,081              0.32 4,254,358   
filtered H3K27ac 1,296,963,081             1,274,077,808              1.80 22,885,273 
dedup H3K27ac 974,695,517                956,778,872                 1.87 17,916,645 
kmer H3K27ac 969,295,166                946,227,688                 2.44 23,067,478 
mapped H3K27me3 1,004,101,945             999,512,817                 0.46 4,589,128   
filtered H3K27me3 949,748,184                935,278,157                 1.55 14,470,027 
dedup H3K27me3 718,792,234                707,446,412                 1.60 11,345,822 
kmer H3K27me3 713,043,104                696,519,229                 2.37 16,523,875 
mapped H3K36me3 1,145,335,139             1,140,455,957              0.43 4,879,182   
filtered H3K36me3 1,084,031,258             1,068,355,578              1.47 15,675,680 
dedup H3K36me3 875,082,927                861,834,014                 1.54 13,248,913 
kmer H3K36me3 868,733,574                849,235,815                 2.30 19,497,759 
mapped H3K4me1 634,370,589                630,394,227                 0.63 3,976,362   
filtered H3K4me1 603,566,061                595,016,286                 1.44 8,549,775   
dedup H3K4me1 515,834,569                508,198,927                 1.50 7,635,642   
kmer H3K4me1 512,517,911                502,079,996                 2.08 10,437,915 
mapped H3K4me3 659,107,457                657,313,902                 0.27 1,793,555   
filtered H3K4me3 632,278,959                620,994,546                 1.82 11,284,413 
dedup H3K4me3 476,038,277                467,416,275                 1.84 8,622,002   
kmer H3K4me3 473,743,814                462,551,850                 2.42 11,191,964 
mapped H3K9me3 1,025,849,738             1,015,315,453              1.04 10,534,285 
filtered H3K9me3 947,159,548                935,677,696                 1.23 11,481,852 
dedup H3K9me3 741,563,924                731,430,014                 1.39 10,133,910 
kmer H3K9me3 733,373,171                716,161,956                 2.40 17,211,215 

Table 4.2: ENCODE alignments. A summary of dynamic k-mer assisted mapping of
ENCODE data against T2T-CHM13 and GRCh38.
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Gene Name Gene Biotype H3K27Ac cell lines with peaks H3K4me3 cell lines with peaks
AC005632.6 lncRNA 6 0
AC008993.1 TEC 0 2
AC008993.2 TEC 10 4
AC092902.5 transcribed_unprocessed_pseudogene 2 3
AC126544.2 lncRNA 4 3
AC131280.1 TEC 2 0
AC136624.1 lncRNA 2 2
AC142086.3 processed_pseudogene 3 0
AC145124.1 lncRNA 6 4
AC211486.4 processed_pseudogene 2 0
AC233280.1 lncRNA 10 4
AC233280.19 unprocessed_pseudogene 2 0
AC239868.1 lncRNA 0 3
AC245407.2 lncRNA 9 3
ADGRF5P1 transcribed_processed_pseudogene 2 0
AL137802.2 lncRNA 3 0
AL353608.2 lncRNA 2 0
AL353807.2 lncRNA 2 0
AL512625.2 lncRNA 5 3
AL512625.3 lncRNA 4 4
AL591684.1 lncRNA 2 0
AL591926.9 processed_pseudogene 9 4
AL627230.1 protein_coding 8 4
AL645939.3 unprocessed_pseudogene 7 2
AL845472.2 TEC 3 0
AP003900.1 lncRNA 2 0
AP006294.2 transcribed_unprocessed_pseudogene 0 3
BOLA2B protein_coding 2 0
BX664615.1 processed_pseudogene 10 4
CROCCP4 transcribed_unprocessed_pseudogene 6 3
CU104787.1 lncRNA 2 0
DUX4L50 unprocessed_pseudogene 5 0
FAM27B processed_pseudogene 8 4
FP236315.1 lncRNA 10 4

Table 4.3: Functional annotation of previously unannotated genes. H3K27ac and
H3K4me3 peaks at the TSS of previously unannotated genes in T2T-CHM13.
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Tissue Replicates Total Reads Accession
1st-PB1 . 19054814 SRR950976
1st-PB2 . 24346847 SRR950977
1st-PB3 . 19926829 SRR951019
2-cell1 . 18494789 SRR950980
2-cell2 . 28407553 SRR950981
2nd-PB1 . 27612904 SRR950978
2nd-PB2 . 29538440 SRR950979
4-cell1 . 49930006 SRR950982
4-cell2 . 29459042 SRR950983
8-cell1 rep1,rep2 18439985 SRR950984,SRR950985
8-cell2 rep1,rep2 18411115 SRR950986,SRR950987
8-cell3 rep1,rep2 24167297 SRR950988,SRR950989
ICM1 rep1,rep2 44356448 SRR950990,SRR950991
ICM2 . 25390088 SRR950992
ICM3 . 24028269 SRR950993
MII-Oocyte1 . 31324294 SRR950994
MII-Oocyte2 . 36161928 SRR950995
Morula1 rep1,rep2 21366884 SRR950996,SRR950997
Morula2 rep1,rep2 18252235 SRR950998,SRR950999
Morula3 rep1,rep2 18454238 SRR951000,SRR951001
Postimplantation1 rep1,rep2 33538771 SRR951002,SRR951003
Postimplantation2 rep1,rep2 30183523 SRR951004,SRR951005
Postimplantation3 rep1,rep2 27624293 SRR951006,SRR951007
Sperm1 . 10144406 SRR951008
Sperm2 . 20906531 SRR951009
Sperm3 . 23276912 SRR951010
Sperm4 . 29371875 SRR951011
TE1 rep1,rep2 19269727 SRR951012,SRR951013
TE2 rep1,rep2 20779347 SRR951014,SRR951015
TE3 . 25222928 SRR951016
Zygote1 . 45890346 SRR951017
Zygote2 . 29978135 SRR951018

Table 4.4: Early development RRBS data. A summary of the early development
RRBS data including the tissue and accession numbers for the datasets.
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Repeat Number of Peaks Peaks Per Mb
LINE 5040 8.0
LTR 3612 13.4
Satellite 223 1.5
SINE 5822 15.0
ACRO 18 12.3
BSAT 25 3.3
GSAT 3 4.8
HSAT2 2 0.1
HSAT3 9 0.2
MON 5 0.4
array_CEN 17 41.4
array_nonCEN 53 198.1
Whole Genome 97355 31.8

Table 4.5: nanoNOMe peaks in all repeats. Number of nanoNOMe statistically
significant peak calls in repeat classes normalized by genomic size.

185



Array chr Peaks Length Peaks per 10Kb
mon_CEN chr9 3 9232 3.25
array_nonCEN chr19 47 227900 2.06
array_CEN chr9 6 32011 1.87
array_CEN chr20 5 31904 1.57
array_nonCEN chr4 6 39695 1.51
array_CEN chr13 6 125477 0.48
array_CEN chr1 0 2282 0
array_CEN chr12 0 11400 0
array_CEN chr14 0 25703 0
array_CEN chr16 0 7609 0
array_CEN chr17 0 76825 0
array_CEN chr18 0 210 0
array_CEN chr21 0 70737 0
array_CEN chr7 0 26455 0
mon_CEN chr13 0 1781 0
mon_CEN chr14 0 1782 0
mon_CEN chr16 0 1212 0
mon_CEN chr20 0 4064 0
mon_CEN chr21 0 1782 0
mon_CEN chr7 0 384 0

Table 4.6: nanoNOMe peaks in SST1 repeats. Number of nanoNOMe statistically
significant peak calls in SST1 repeat classes normalized by genomic size. SST1 regions
are grouped as arrayed or monomeric and within the centromere or outside the
centromere.
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Chromosome CDR Start CDR End
chr1 122644130 122950856
chr2 94370507 94542616
chr3 92354944 92566165
chr4 52175017 52435231
chr4 50329341 50355824
chr5 48196830 48411132
chr6 58371563 58528485
chr7 60584678 60880179
chr8 45779131 45911564
chr9 45221361 45368268
chr10 39994431 40272778
chr11 52791283 53040683
chr12 35214068 35498492
chr13 16286583 16502368
chr14 10577839 10772893
chr15 17482374 17721220
chr16 36020848 36177808
chr16 36344243 36484654
chr17 25024880 25196546
chr18 19164037 19334016
chr19 26063372 26487231
chr20 27723950 27972863
chr21 11770086 11914648
chr22 13069795 13131890
chr22 13198431 13259962
chrX 59168273 59326539

Table 4.7: CHM13 CDRs. Coordinates of the CHM13 CDRs.
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Chapter 5

Discussion and Conclusion

This thesis summarizes the work I have done in the Timp lab during my

PhD training. This work has sought to explore advances in third generation

sequencing and has focused on leveraging these technologies to achieve more

complete genomes and probe further into the regulatory epigenome.

In summary, throughout my dissertation work I published three first au-

thor peer-reviewed publications. First, in my work assembling the genome

of the Tobacco Hornworm moth (Manduca sexta) we generated a more com-

plete reference genome for this organism using a combination of long-read

nanopore sequencing and short-read Illumina sequencing (Gershman et al.,

2021). The new assembly improved mappability of resequencing reads by

about 12%, allowing the capture of considerably more sequence. We were

able to annotate 794 more genes than in the previous version of the assembly.

Finally, we used our improved assembly to assess the role of cell death in

midgut reorganization during metamorphosis and determined the primary

cell death process to be autophagy. We believe the improved assembly will

aid current and future studies using M. sexta as a model system for research
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on fundamental processes in insect physiology and biochemistry.

Second, I sequenced and assembled the genome and transcriptome of

Archilochus colubris, the ruby-throated hummingbird, utilizing both long-read

nanopore and short-read Illumina methodologies (Gershman et al., n.d.).

We generated a highly complete transcriptome assembly where I collected

long and short-read sequencing data of multiple individuals (n=6) across

two tissues (liver and muscle) and multiple metabolic states (fasted and fed).

Analyzing these datasets uncovered fundamental biological mechanisms of

hummingbird sugar metabolism. We further validated these results with bio-

chemical and physiological assays. These results are crucial for understanding

the hummingbirds’ exquisite control over rates of substrate metabolism and

biosynthesis which could give insight into metabolic control of orthologous

pathways in humans.

Lastly, I worked with the Telomere-to-Telomere consortium on the project

to generate the first complete assembly of a human genome. Working on this

project, I collaborated on four publications highlighting the assembly (Nurk

et al., 2022), segmental duplications (Vollger et al., 2022), repetitive elements

(Hoyt et al., 2022) and centromeres (Altemose et al., 2022). Additionally, I

led the publication on epigenetics, where we generated a comprehensive

annotation and analysis of the human epigenome (Gershman et al., 2022).

Completion of the human epigenome required that we develop approaches

to profile epigenetics in the previously unresolved regions. Utilizing the T2T-

CHM13 reference with existing short-read epigenetic data, we identified 3-19%

more enrichment sites for epigenetic markers. But even with the complete
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reference, these short-read epigenetic methods have difficulty in correctly

resolving regions of the genome of high similarity, including segmental dupli-

cations, gene paralogs, or large repeat arrays. On the other hand, long-read

epigenetic methods can resolve single molecule epigenetic patterns within

these regions by anchoring to flanking or infrequent unique regions, provid-

ing a foundational assessment of these areas. Long-read methylation calls

using the T2T-CHM13 assembly increased the number of probeable CpG sites

by 10% (3.2M), revealing epigenetic patterning of genomic regions that were

previously intractable. We generated long-read methylomes of distinct devel-

opmental time points and surveyed more than 99% of the genome’s CpGs. We

probed highly homologous gene families and observed paralog-specific differ-

ences in regulation between disease and non-disease states. In tandem repeats,

we identified differences in epigenetic regulation between genetically identical

sequences present across different genomic locations, observing locus- and sin-

gle molecule level differences in methylation. Our analysis revealed that these

regions vary in epigenetic and transcriptional activity despite high sequence

identity, highlighting the importance of the local chromosome environment

as a modulator of epigenetics. Finally, the T2T-CHM13 genome assembly has

opened exploration of the human centromere, enabling us to probe the epige-

netic elements that define centromeric chromatin. The centromere is the site

of assembly of the kinetochore complex, an essential complex for eukaryotic

cell division. We generated complete epigenetic maps of human centromeres,

revealing epigenetic markers of centromere activity that denote active hu-

man kinetochores. We predicted kinetochore site localization within active
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centromeres and reported variability of kinetochore localization across individ-

uals representing diverse ancestry. The improvements in epigenetic profiling

using T2T-CHM13 set the foundation for complete assemblies and long-read

epigenetics for major biological advancements. Utilizing technological ad-

vances in genome resequencing and alignment, we present a comprehensive

functional assessment of previously unresolved genomic regions. This study

marks the start of exploration into duplicated and repetitive portions of the

epigenome; pioneering the exploration of epigenetics in a complete human

genome.
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