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Abstract

Observational causal inference (OCI) has shown significant promise in recent years,

both as a tool for improving existing machine learning techniques and as an avenue to

aid decision makers in applied areas, such as health and climate science. OCI relies on

a key notion, identification, which links the counterfactual of interest to the observed

data via a set of assumptions. Historically, OCI has relied on unrealistic assumptions,

such as the ’no latent confounders’ assumption. To address this, Huang and Valtorta

(2006) and Shpitser and Pearl (2006) provided sound and complete algorithms for

identification of causal effects in causal directed acyclic graphs with latent variables.

Nevertheless, these algorithms can only handle relatively simple causal queries.

In this dissertation, I will detail my contributions which generalize identification

theory in key directions. I will describe theory which enables identification of causal

effects when i) data do not satisfy the ’independent and identically distributed’

assumption, as in vaccine or social network data, and ii) the intervention of interest is

a function of other model variables, as in off-line, off-policy learning, iii) when these

two complicated settings intersect. Additionally, I will highlight some novel ways

to conceive of interventions in networks. I will conclude with a discussion of future

directions.

Readers: Ilya Shpitser (advisor), Mark Dredze, David Arbour, Anqi Liu
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Chapter 1

Introduction

1.1 Background: Observational Causal Inference
in Empirical Science

Practitioners in fields ranging from economics to education to healthcare are constantly

searching for better ways to formulate, implement, and measure the impacts of policy.

Dating back at least to the Industrial Revolution1, policy- and decision-making has

increasingly relied on empirical analyses which depend on our ability to reason about

counterfactual scenarios. Decision-makers need to answer questions like, ‘what would

be the effect on voter turnout if this automatic voter registration policy were enacted?’,

or ‘how much would the conditions of patients of different subtypes improve had they

been prescribed the trial drug?’ The field of causal inference is concerned with

developing methods to rigorously evaluate such counterfactual queries.

The gold standard for determining the presence and magnitude of causal relation-

ships is the randomized control trial. In an idealized case, the study population can

be randomly split into ‘treated’ and ‘control’ groups, and then average outcomes in

each group can be compared directly to determine the ‘effect’ of receiving treatment.

Key to this type of analysis is the assumption that the randomization scheme is

sufficient; the different study groups must be reasonably similar so that any observed
1Consider, for instance, the writings and epidemiological work of John Snow (Snow, 1849).
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differences in outcomes can be interpreted as being a result of the treatment alone.

Formalizing the assumptions necessary to ensure sufficient randomization is the domain

of ‘experimental design’, a sub-field of causal inference. By applying methods from

experimental design, practitioners can confidently draw causal conclusions and address

the counterfactual queries that motivate their analyses.

Unfortunately, experimentation is often infeasible due to expense or ethical concerns.

For instance, suppose we randomly select a subset of the population, and instruct these

individuals to smoke cigarettes so that pulmonologists can establish a firm estimate of

the effect of smoking on lung cancer risk before the age of 60. This is clearly unethical

since we already have a strong prior about smoking’s adverse effects and we’d be

consciously harming the smoking-assigned group.

On the other hand, non-randomized, observational data (such as follow-up surveys

given to patients, or electronic medical records) is typically abundant. Following the

smoking example above, we might obtain observational data on a large population

of individuals who either did or did not choose to smoke and likewise did or did not

develop lung cancer. Observational causal inference (OCI) seeks to develop methods

that use these non-randomized data to emulate a target randomized control trial and

obtain a reliable estimate of the causal relationships the idealized trial would have

revealed.

The first step in an observational causal analysis is to identify or collect a data

set from a population similar to the population of interest. The data set will contain

information on the outcome of interest, variable(s) signifying whether the patient

was treated or untreated2, and possibly other variables that help characterize the

study population (e.g., demographics or clinical measurements). A key property of

observational studies, however, is that the analyst will have little or no control over
2I am implicitly describing a study performed with a binary treatment. The causal inference

community has also defined approaches for handling continuous treatments
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the data collection process. He or she may not be able to specify what variables are

observed and, by definition, will not be able to manipulate the data generating process

or control treatment assignments as in an experimental study.

Once a suitable data set has been selected, the analyst will then specify a parameter

of interest, such as the average difference in outcomes between the treated and control

groups, known as the ‘average causal effect’. Because this parameter of interest is

constructed from (inherently unmeasurable) counterfactual quantities, the analyst

must find a way to establish a link between the observed data she has access to and

the counterfactuals. This linking process, known as identification, entails making

assumptions about the observed data generating process. Observational analyses of

this sort have been used to study phenomena in fields as varied as epidemiology (Robins,

Hernan, and Brumback, 2000; Robins et al., 1992), air pollution (Papadogeorgou,

Choirat, and Zigler, 2019), and algorithmic advertising (Nabi et al., 2022).

1.2 Motivation: The Limitations of Observational
Causal Inference Assumptions

The OCI community has developed a number of formalisms for identifying causal effects

and leveraging observational data to estimate those effects3 Over time, these formalisms

have become increasingly general. Wright, 1934 serves as an early example of using

graphical models to analyze causal paths, motivated by questions in animal husbandry.

Assumptions in that era were typically highly restrictive: Wright assumed linear models,

for instance, while his contemporary, Ronald Fisher, studied experimental design using

randomized trial data (Fisher, 1935). Later, Rubin, Pearl, and Robins (Rubin, 1974;

Pearl, 2009; Robins, 1986) developed more comprehensive causal frameworks that rely

on fewer assumptions, deriving, for instance, general theories of non-parametric causal
3I will review the fundamental points in detail in Chapter 2 and direct the reader to Pearl (2009)

for a more complete treatment.
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models. In turn, these frameworks enabled further explorations and insights, such as

general identification theories (e.g., the works of Shpitser (Shpitser and Pearl, 2006;

Shpitser, 2013) and Barenboim (Bareinboim and Pearl, 2016; Pearl and Bareinboim,

2011)) and recent work on automatic derivation of robust and efficient semi-parametric

estimators from causal models (Bhattacharya, Nabi, and Shpitser, 2020; Rotnitzky

and Smucler, 2019).

In this thesis, I will describe my efforts to generalize the observational causal

inference framework in two areas where modeling assumptions remain relatively

restrictive. The first concerns the study of causal dynamics in networked systems,

where there is dependence between study subjects or data samples. The second

concerns the study of policies, such as clinical treatment guidelines and means-tested

welfare programs. Here I will describe the shortcomings of existing approaches with

respect to these two areas. In the main body of this thesis I will present methods and

theory that expands the bounds of what is possible when performing causal analyses

in these more general domains.

1.2.1 Policy Analysis

Much of the causal inference literature focuses on analyses that give insight into

population-level average effects. This is carried out by running, or emulating, a

trial with a finite number of treatment arms and with little dependence between

baseline variables and treatment arm assignment. For instance, we might simply

assign patients to take one of two drugs (Drug A vs. Drug B), which might allow us

to draw conclusions about the relative efficacy of the drugs in the study population

on average.

In practice, however, we know that many treatments affect each patient differently

and so the ‘best’ treatment for a given patient might differ from the ‘best’ treatment

for the population average. It seems reasonable, then, to conclude that to make
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decisions optimally, we should derive methods that enable us to tailor treatments

to individual subjects. In causal inference, this corresponds to finding a mapping

between characteristics of the study subject and an action that optimizes the outcome

of interest. This mapping is known as a ‘treatment rule’, ‘dynamic treatment regime’,

or ‘policy’ and has been studied in both the causal inference literature (Chakraborty

and Moodie, 2013) and the reinforcement learning literature (Bertsekas and Tsitsiklis,

1996). Despite a well-developed literature in these areas, there remains a gap in

characterizing, formally, when the effects of policies can be estimated from observed

data under a variety of assumptions and policy setups. I help fill that gap with work

I will present in this thesis.

1.2.2 Network Analysis

The assumption of independent and identically distributed (iid) samples is ubiquitous

in data analysis. In many research areas, however, this assumption simply does not

hold. For instance, social media data often exhibits dependence due to homophily and

contagion (Shalizi and Thomas, 2011). Similarly, in epidemiology, data exhibiting herd

immunity is likely dependent across units. Likewise, signal processing and sequence

learning often consider data that are spatially (Mnih et al., 2015) or temporally

(Sutskever, Vinyals, and Le, 2014) dependent.

The difficulties of inter-sample dependence also arise in causal inference. For

example, consider the notion of a ‘gifted & talented’ (G/T) program in public education

(Davis and Rimm, 1989; Hodges et al., 2018). G/T programs aim to identify ‘gifted’

children and intervene on their educational trajectory by moving them to an alternate

classroom for part of the school day. A key obstacle to analyzing the effectiveness of

such as program is that fact that each student’s treatment – inclusion or exclusion

from the program – can affect his peers’ educational outcomes: the student being

included could change the learning environment in both the gifted and non-gifted
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classrooms. This phenomenon, where some units’ treatments may causally affect other

units’ outcomes is known as interference in the causal inference literature (Cox, 1958;

Hudgens and Halloran, 2008; Ogburn, VanderWeele, et al., 2014).

Even under the iid assumption, making causal inferences from observed data is

difficult due to the presence of unobserved confounding. This difficulty is worsened

when the data are subject to interference and other inter-sample dependences, as

described in detail in Shalizi and Thomas (2011) and Ogburn, Shpitser, and Lee

(2018). These difficulties prevent identification of causal parameters of interest (i.e.

establishing a link from the observed world to the counterfactual world), and pose

estimation challenges such as reducing effective sample size.

To properly evaluate counterfactual queries, such as ‘what would the average

student’s standardized test scores have been had they been included in the G/T

program?’, it is necessary to develop methods specifically designed to handle the

complexities of data dependence. In this thesis, I will describe some of my own

proposals in that direction.

1.3 Outline and Contributions

This thesis is organized as follows. Chapter 2 provides a thorough review of graphical

causal inference, a research area that strongly influenced the work presented in the

other chapters. The subsequent chapters contain original research (each corresponding

to a previously-published paper on which I was a primary author) that tackles some

of the issues highlighted in the Motivation section above.

In Chapter 2, I will fix the majority of the notation used throughout the thesis and

so this chapter should be viewed as a reference. Additional notation will introduced

in individual chapters as necessary.

In Chapters 3 and 4, I will present novel causal identification algorithms and
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supporting theory that proves their correctness. As detailed in Chapter 2, identification

algorithms enable researchers to understand what is ‘possible’ with regard to causal

effect estimation. They can help determine when an effect of interest is estimable

from observed data or, conversely, when more data or assumptions are necessary.

In Chapter 3, I focus on the question of identification of policies, while ignoring

the complexities of non-iid data. The work I present in Chapter 3 is much more far-

reaching than considering solely policy effects. The work also considers identification

in the context of ‘mediation analysis’, where a researcher might wish to assess the

direct and indirect effects of adopting an action or treatment rule4. While this broader

subject matter is important and challenging, I have focused my framing (e.g., in the

Motivation section above) on policies, specifically, because of how policies play an

integral part in my other work.

As a complement, Chapter 4 focuses on identification theory in the interference

and dependent data setting. I describe how a certain type of graphical model called

a ‘segregated graph’ (Shpitser, 2015) can be used to represent network data. I

illustrate how segregated graphs can be used to construct a general representation for

interference. I then give an algorithm for establishing when causal effects arising from

simulated trials are, or are not, identifiable.

Chapter 5 serves as a synthesis, bridging the gap between Chapters 4 and 3. I

present an identification algorithm for evaluating whether the effects of policies can be

estimated from observed data when there is interference or data dependence present.

Finally, in Chapter 6, I consider a different use-case of the policy analysis framework

presented in earlier chapters. I study how we might estimate the effects of modifying

social network ties (adding or removing connections), rather than modifying the values

of individual variables. This work gives some perspective on both the dependent data
4For instance, an analyst might wish to separately evaluate the chemical effect of a drug (likely

positive effect on the outcome) and the adherence effect (possibly a negative effect if the drug
produces severe side effects).
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and policy analysis problem spaces, and also touches on the philosophy of interventions

which underlies much of the mathematical literature on causality.

I conclude with a reflection on the impact of these works in the research community

and provide a discussion for how this theory-grounded work could be translated into

practical use. As a model, I refer the reader to my appendix chapters, which cover

applied healthcare research I carried out during my PhD studies that does not directly

relate to the work presented in the main body of the dissertation.
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Chapter 2

Causal Inference Foundations

2.1 Background and Notation

In this chapter, I fix notation, describe key assumptions, and review foundational

causal inference results. I will not cover all concepts used throughout the thesis in

this chapter. Instead, I will provide the basic background here and introduce other

concepts as necessary in the ensuing body chapters.

2.1.1 Preliminaries

I will adopt a formalism of causal inference that relies on graphical models, potential

outcomes, and probability theory. This formalism relies heavily on the random

variables and their distributions. Variables and their realizations will be denoted in

upper and lower case, respectively: V and v. Sets will be denoted in boldface: V and

v. The state space of a variable V will be denoted by XV

As described in Chapter 1, the goal of observational causal analyses is to emulate

a hypothetical randomized control trial so that we can evaluate a counterfactual

query. By convention, I will represent the outcome (a random variable) with the

letter Y and the treatment (also a random variable) with the letter A. The expression

Y (A = a), often shortened to Y (a), represents the counterfactual random variable1,
1Typically just ‘counterfactual’ or ‘counterfactual variable’
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‘what would the value of the outcome have been had we, possibly contrary to observed

fact, set the treatment to the value a?’, while p(Y (a)) represents the distribution of

that counterfactual variable.

These notions extend to sets of treatments and outcomes. Let V be the set of

variables in a model. Let Y ⊆ V and A ⊆ V \ Y. Then, we can define Y(a) ≡

{Y}(a) ≡ {Y (a) | Y ∈ Y}. The distribution p(Y(a)) is sometimes written as

p(Y|do(a)) (Pearl, 2009).

2.1.2 Fundamental Assumptions

As hinted in the previous chapter, these counterfactual objects are not generally

observable. Critically, this means that p(Y (A = a)) ̸= p(Y |A = a) in general and

using the latter as an estimate of the former would yield biased results. That said,

if we make assumptions about the data generating process, it is possible to obtain

equality between these two distributions, or otherwise express p(Y (A = a)) as a

function of the observed data distributions, and thus make unbiased estimates. A

counterfactual distribution that is a functional of the observed data distribution is

said to be identified, and the process which establishes whether such a functional

exists is called identification.

There are many combinations of assumptions that can help identify effects and

thus most sets of assumptions that lead to identification are sufficient rather than

necessary. One well-studied approach is to assume positivity, consistency, and ignora-

bility. Positivity states that 0 < p(A = a) < 1 for all a. A violation of this assumption

would mean trying to perform an analysis in which one of the treatments of interest

was never prescribed and making it virtually impossible to draw conclusions about

the impact choosing that treatment would have. Throughout this thesis, I will assume

distributions are positive.

Consistency states that A = a =⇒ Y (a) = Y . That is, if the observed value of
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the treatment A was a then the counterfactual Y (a) is equal to the observed value Y .

Critically, this says nothing about the value of our target Y (a) if the treatment variable

A were equal to a value other than a. Returning to the smoking example from the

Background section of Chapter 1, suppose that A denotes whether the subject smokes

and Y denotes whether the subject has received a lung cancer diagnosis before age

602. For each subject in the study we will observe either Y (smoke) or Y (no smoke).

For the subjects where A = smoke we know the value of Y (smoke) by application of

consistency, but not Y (no smoke).

Ignorability places assumptions on the relationship between the treatment and the

counterfactual outcomes: Y (a) ⊥⊥ A. This assumption is analogous to randomization.

In a randomized control trial, the intervention value a is of primary interest, rather

than the random variable A. When we randomize subjects to a study arm, we are

removing the dependence between the random variable and the counterfactual under

the intervention.

Under these two assumptions, it can be proven that p(Y (a)) = p(Y |A = a). In the

following, the first equality holds by ignorability and the second holds by consistency.

p(Y (a)) = p(Y (a)|A = a) = p(Y |A = a),

In practice, however, the existence of confounding variables means that ignorability

typically does not hold outside of randomized studies. In these situations, it may be

the case that the weaker assumption, conditional ignorability, does hold. Formally,

conditionally ignorability holds if Y (a) ⊥⊥ A|C, where C represents the set of con-

founding variables. In this case, the above derivation is modified in the following way,

with the first equality by chain rule, the second by conditional ignorability, and the
2Let’s also assume that all patients are 60 years or older so that we can ignore issues relating to

censoring for the purposes of this simple example
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Figure 2-1. a) A DAG representing the classic conditionally ignorable model. All
variables are assumed to be observed. b) A DAG similar to that in (a), but with a
mediating variable M such that there is no direct connection between A and Y . c) A
post-intervention graph obtained by intervening on A in the graph in (a). This graph
contains counterfactuals and thus does not represent the observed world.

last (as before) by consistency.

p(Y (a)) =
∑︂
C
p(Y (a)|C)p(C)

=
∑︂
C
p(Y (a)|A = a,C)p(C)

=
∑︂
C
p(Y |A = a,C)p(C)

If (conditional) ignorability and consistency do not hold, identification may not

be possible. Much of the causal inference literature studies identification in settings

where conditional ignorability does not hold. Before discussing that theory in more

detail, I will introduce causal graphical models, which are used heavily in developing

general identification theories

2.2 Graphical Models

Towards constructing a general criteria for determining when a counterfactual is or

is not identifiable, we will turn to graphical models. Graphs consist of nodes and

edges. In a graph representing a statistical model, nodes correspond to variables in a

probability distribution while edges represent the relationships between variables. As

a simple case, consider the class of models known as directed acyclic graphs (DAG).
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In DAGs, all edges have a single arrowhead and the graph as a whole does not have

any cycles (i.e., no V1 → V2 → · · · → V1 structures allowed). For example, Figure 2-1

(a) represents the joint distribution p(Y,A,C) for our conditionally ignorable example

above. The joint distribution p(V) is said to be Markov to a graph G (where V

denotes the set of variables in the distribution) if we can rewrite it as:

p(V) =
∏︂

V ∈V
p(V |paG(V )), (2.1)

where paG(V ) ≡ {W ∈ V | W → V } denote the parents of V in the G.

That is, the joint distribution factorizes as a product of conditional distributions.

One conditional distribution appears in the factorization for each variable in the

graph. In Figure 2-1 (a) the factorization is simply the chain rule of probability:

p(Y,A,C) = p(Y |A,C)p(A|C)p(C).

In addition to parents, we can define a variety of genealogic sets to describe

relationships in a graph. For DAGs, these additional genealogic sets include

children: chG(V ) ≡ {W ∈ V | V → W}

ancestors: anG(V ) ≡ {W ∈ V | W → . . .→ V }

descendants: deG(V ) ≡ {W ∈ V | V → . . .→ W}

non-descendants: ndG(V ) ≡ V \ deG(V ).

These notions generalize disjunctively to sets of variables. For instance, for V′ ⊆

V, we have paG(V′) ≡ ⋃︁
V ∈V′ paG(V ). We also define strict parents: for A ⊆ V,

pas
G(A) ≡ paG(A) \A. Finally, for a variable A ⊆ V and a graph G, GA will denote

the subgraph of G containing only the vertices in A and edges between them. These

represent the basic notions necessary to work with DAG models. I will introduce other

concepts and notation later as I describe more general models.

Through rules known as ‘d-separation’ (Pearl, 1988), we can determine which

variables are (conditionally) independent in any distribution Markov to a DAG. When
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evaluating d-separation between two (possibly singleton) sets A and B of variables,

with a (possibly empty) conditioning set C, we consider all paths between the two sets3.

A path is said to be closed or blocked if it contains one of the following substructures

with the corresponding condition:

• a ‘chain’: X → Y → Z with Y ∈ C

• a ‘fork’: X ← Y → Z with Y ∈ C

• a ‘collider’: X → Y ← Z with Y ̸∈ C and deG(Y ) ∩C = ∅

If all paths from A to B are blocked, then A ⊥⊥ B|C. Using d-separation, we can

see that Y ⊥⊥ A|{C,M} and M ⊥⊥ C|A in Figure 2-1(b).

2.3 Causal Graphical Models

Causal graphical models expand upon these ideas by placing a causal interpretation

on the edges in a graph. Formally, I will assume the ‘structural causal model’ (Pearl,

2009): each variable V in the model is a function fV (paG(V ), ϵV ) of i) that variable’s

parents, and ii) an error term ϵV
4. These functions are sometimes referred to as

structural equations.

To illustrate, consider Figure 2-1(a). C is determined by some function fC(ϵC)

since it has no parents. A is a function fA(C, ϵA) of C and an independent error term

ϵA. Lastly, Y is a function fY (A,C, ϵY ) of C, (random) A, and an independent error

term ϵY .
3We look at all acyclic sequences of nodes and edges with the starting node in A or B and the

ending node in the other
4Keep in mind: these are stochastic models, even though they are not ‘statistical’ in the traditional

sense
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2.3.1 Interventions

Causal models of a DAG G describe sets of distributions defined on counterfactual

random variables of the form V (a), where a are values of paG(V ). That is, V is the set

containing any joint distribution over all potential outcome random variables, where

the sets of variables

{{V (aV ) | aV ∈ XpaG(V )} | V ∈ V}

are mutually independent (Pearl, 2009).

These atomic counterfactuals model the relationship between paG(V ), representing

direct causes of V , and V itself. We can explicitly connect counterfactuals to the

notion of interventions. As defined previously, the counterfactual V (paG(V )) represents

the value of V when paG(V ) is set to aV . In the structural equation model, when

set paG(V )← aV , we use the intervention values aV in all downstream evaluations

of paG(V ). That is, V ’s structural equation is evaluated as fV (paG(V ) = aV , ϵV )

post-intervention (Pearl, 2009) and so we have equality:

V (aV ) = fV (paG(V ) = aV , ϵV )

From the atomic counterfactuals, all other counterfactuals may be defined using

recursive substitution. For any A ⊆ V \ {V },

V (a) ≡ V (apaG(V )∩A, {paG(V ) \A}(a)). (2.2)

I will refer this basic intervention type, where there is a single, constant intervention

value specified for each variable, as the node intervention.

Graphically, node interventions are represented by a procedure known as ‘graph

manipulation’ or ‘graph surgery’. When we intervene on A, setting it to a, we add a new

node (represented with a square) for the intervention value a as in Figure 2-1(c). Since

the value of (random variable) A was not changed, the node for A keeps its incoming
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edges. In turn, since downstream values are affected by the intervention, A’s outgoing

edges are shifted to the new a node. replace the random A with a in the downstream

structural equations and replace those downstream variables by counterfactuals. C’s

node doesn’t change since C is pre-treatment. Y becomes a counterfactual Y (a)

since it is downstream of the intervention. The graph in Figure 2-1(c) is known as a

single-world intervention graph (SWIG) (Richardson and Robins, 2013). By applying

the rules of d-separation to this graph, we observe that Y (a) ⊥⊥ A|C, which matches

the conditional ignorability assumption introduced above.

2.3.2 Identification Theory in Causal DAGs

Recall from above that a causal parameter is said to be identified in a causal model if

it is a function of the observed data distribution p(V) and non-identified otherwise.

In all causal models of a DAG G considered in the literature, all interventional

distributions p({V \A}(a)) are identified by the g-formula (Robins, 1986):

p(V \A) =
∏︂

V ∈V\A
p(V |paG(V ))|A=a (2.3)

This formula describes the counterfactual for the entire distribution; the formula

for a specific variable, like the outcome Y , can be obtained by marginalizing. The

formula also permits intervening on sets of treatment variables, rather than singletons.

The |A=a notation means ‘evaluated at’, encoding the above ideas regarding evaluation

of structural equations that are downstream of the intervention variable.

Not all interventional distributions are identified when there are hidden variables

present in the causal model. I discuss identification theory in hidden variable DAGs

next.
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2.4 Latent Variable Models

Suppose that we are studying a clinical phenomenon and know the true causal DAG

associated with that phenomenon. This DAG might contain some variables which

cannot be measured (e.g., socioeconomic status is rarely fully captured in observational

studies). This non-observability often leads to non-identifiability. As an intuitive

example, suppose C is latent in Figure 2-1(a). We would not be able to determine

whether changes we observe in Y (the patient receiving a lung cancer diagnosis) are

due to the action taken A (the patient smoking) or some latent common cause C (e.g.,

patients with lower socioeconomic status are more likely to smoke (Hiscock et al.,

2012) and separately are more likely to be exposed to cancer-causing pollution (Cohen

and Pope 3rd, 1995)).

In order to handle latent variables, I will introduce a new type of edge: the

bidirected edge ↔. If A↔ B in a graph, this signifies that A and B share a common

cause5. Verma and Pearl (1990) proposed a procedure, known as the latent projection

operation, for converting a DAG in which some variables are latent to a mixed graph

with latent variables replaced by either directed (→) or bidirected edges as described

below.

Formally, given a DAG G(V ∪H), where V are observed and H are latent, define

a latent projection G(V) to be an acyclic directed mixed graph (ADMG) with the

vertex set V and→ and↔ edges. An edge A→ B exists in G(V) if there is a directed

path from A to B in G(V ∪H) with all intermediate vertices in H. Similarly, an edge

A↔ B exists in G(V) if there is a path without consecutive edges → ◦ ← from A to

B with the first edge on the path of the form A← and the last edge on the path of

the form → B, and all intermediate vertices on the path in H.

For instance, the two graphs in 2-2 contain a latent variable U which affects both
5Or that they share multiple common causes
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the treatment and outcome variables A and Y . Performing the latent projection

operation on these graphs yields Figure 2-4, where we’ve removed the latent variable

in each graph and replaced it with a bidirected edge (↔) between the causal children

of the latent variable. This leads to another graphical set definition, the district:

disG(V ) ≡ {W ∈ V|V ↔ · · · ↔ W}

By convention, anG(V ) ∩ deG(V ) ∩ disG(V ) = {V }. Observe that the set of districts

in a graph G partition the graph. This set is denoted by D(G). In a DAG, the set of

districts is trivially the set of all singleton vertices, since ↔ edges are not present.

Observe that multiple DAGs can be mapped to the same ADMG via the latent

projection operation and so ADMGs represent equivalence classes of latent-variable

DAGs. It has been shown (see, for instance, Richardson et al., 2017, though other

proofs exist) that for any two DAGs that yield the same ADMG when the latent

projection operation is applied the identification theory will be the same. This

property is critical for identification theory: it enables developing theories in terms of

latent projections directly rather than needing to reason about the DAGs in a given

equivalence class separately.

A general algorithm for identification of interventional distributions was proposed

and proven sound in Tian and Pearl (2002). The soundness property states that if the

effect of interest is identifiable then the algorithm will output the correct function of

the observed data. Shpitser and Pearl (2006) simplified that original algorithm6 and

proved the completeness property of the identification criterion. The completeness

property states that if the algorithm fails to identify the target effect, then no method

can successfully yield identification for that effect. The Shpitser and Pearl (2006)

algorithm is re-printed in Appendix C for reference, however, I will not provide a
6The original Tian algorithm resembles a complicated computer program, spanning several pages

of a paper. The 2006 Shpitser version leverages the recursiveness of Tian’s algorithm in order to
consolidate it to just 7 lines.
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Figure 2-2. a) a DAG representing the classic conditionally ignorable model but with
a latent variable confounder U rather than having all variables assumed observed. b)
A graph similar to that in (a), but with an intermediate variable M on a causal path
from the treatment A to the outcome Y .

walkthrough7. Instead, I will focus on a more recent reformulation of the ID algorithm

posited in Richardson et al. (2017). This reformulation serves as the basis for much of

the novel identification theory presented in this thesis and so I will now review key

concepts from Richardson et al. (2017).

2.5 Identification in Latent Variable DAGs

Above, I highlighted how identified interventional distributions in a DAG can be

expressed as a truncated factorization via the g-formula (Eq. 2.3). I will now describe

how identifiable interventional distributions can be expressed as a truncated nested

factorization (Richardson et al., 2017) of a latent projection ADMG. The nested

factorization of p(V) with respect to an ADMG G(V) is defined on Markov kernel

objects derived from p(V) and conditional ADMGs derived from G(V). I will first

formally define kernels and conditional ADMGs, and a fixing operation which is used

to derive these objects. These concepts will build up to a formal definition of the

nested factorization.
7A detailed explanation of the mapping from the 2006 algorithm to the 2017 one line algorithm is

given in Section 4 of Shpitser and Sherman (2018)
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2.5.1 Conditional ADMGs and Markov Kernels

A Markov kernel qV(V|W) is a mapping from XW to normalized densities over V.

Conditioning and marginalization are defined in kernels in the usual way:

qV(A|W)≡
∑︂

V\A
qV(V|W); qV(V\A|A∪W)≡ qV(V|W)

qV(A|W) ,

for A ⊆ V. A conditional distribution is one type of kernel, but others are possible.

A

W0 M

W1

Y

(a)

A

W0 M

W1

Y

(b)

W1

MW0

Y

(c)

a

W0 M

(d)

Figure 2-3. (a) A causal model with a treatment A and outcome Y . (b) A latent
projection of the DAG in (a). (c) The graph derived from (b) corresponding to
GY∗ = G{Y,M,W0,W1}. (d) A CADMG corresponding to p(M,W0|do(a)).

A conditional ADMG (CADMG) G(V,W) is a type of ADMG where nodes are

partitioned into two sets. The set W corresponds to fixed constants, and the set V

corresponds to random variables. A CADMG has the property that no edges with

an arrowhead into an element of W may exist. Intuitively, a CADMG represents a

situation where some variables have already been intervened on. Pearl introduced a

similar concept called the ‘mutilated graph’ in Pearl (2009). For example, the graph

in Fig. 2-3 (d) is a CADMG G({W0,M}, {A}) corresponding to the situation where

W0,M are random variables and A is fixed to a constant. Just as a distribution may

be associated with a DAG via factorization, so may a kernel be associated with a

CADMG in a particular way Richardson et al. (2017). The CADMG in Fig. 2-3 (d)

may be associated with p(W0,M |do(a)) = p(M |a,W0)p(W0). Genealogic definitions,

such as paG(.), carry over identically to CADMGs. Districts in a CADMG are defined

as subsets of V.
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A Y

(a)

A M Y

(b)

Figure 2-4. a) an ADMG in which Y (a) is known to be non-identifiable; known as the
‘bow-arc’ graph. b) an ADMG in which, despite A and Y sharing a common cause, is
known to yield an identifiable Y (a); known as the ‘front-door’ graph.

2.5.2 The Fixing Operator

Given a CADMG G(V,W), a variable V ∈ V is fixable if deG(V ) ∩ disG(V ) = ∅. Put

differently, V is fixable if paths V ↔ · · · ↔ B and V → · · · → B do not both exist

in G for any B ∈ V \ V . For example, in Fig. 2-3 (b), M is fixable, while W0 is not.

Intuitively, V is fixable in a CADMG G(V,W) if, in a causal graph representing a

hypothetical situation p(V|do(w)), where variables in W were already intervened on,

p(V \ {V }|do(w, v)) is identified by the application of the g-formula to p(V|do(w)).

Whenever a variable V is fixable, a fixing operator may be applied to both the CADMG

and the kernel to yield a new causal graph and a new kernel representing the situation

where V is also intervened on.

Given V ∈ V fixable in a CADMG G(V,W), the fixing operator ϕV (G) yields a

new CADMG ˜︁G(V \ {V },W ∪ {V }), where all vertices and edges in G(V,W) are

kept, except V is viewed as fixed, and all edges with arrowheads into V are removed.

Given V ∈ V fixable in a CADMG G(V,W), and a kernel qV(V|W) associated with

G, the fixing operator ϕV (qV;G) yields a new kernel

q̃V\{V }(V \ {V }|W ∪ {V }) ≡ qV(V|W)
qV(V |W ∪ ndG(V )) ,

where the denominator is defined as above by marginalization and conditioning within

the kernel qV. If chG(V ) = ∅, division by qV(V | ndG(V )) is equivalent to marginalizing

V from qV. In this way, the fixing operator unifies applications of the g-formula in

lines 6 and 7 of the Shpitser and Pearl (2006) formulation of the ID Algorithm (see
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Appendix C) and marginalization of irrelevant variables in line 2 of the algorithm.

The recursive operation of the ID algorithm can be expressed concisely as repeated

invocations of the operator. This allows us to concisely express functionals returned

by ID algorithm as a one line formula. Many of the novel theoretical contributions in

this thesis are extensions of this one line algorithm: to new intervention types, more

general graphical models, or both.

2.5.3 The Nested Factorization

A set V† ⊆ V is said to be fixable in a latent projection G(V) if there exists a valid

sequence σV† = ⟨V1, V2, . . . , Vk⟩ of variables in V† such that V1 is fixable in G, V2 is

fixable in ϕV1(G), and so on. If V† is fixable, V \ V† is called a reachable set. A

reachable set V is said to be intrinsic if GV has a single district. Define ϕσV† (G) and

ϕσV† (q;G) via function composition to be the operators that fix all elements in V† in

the order dictated by σV† .

The distribution p(V) is said to obey the nested factorization for an ADMG G if

there exists a set of kernels {qC(C | paG(C)) | C is intrinsic in G} such that for every

fixable V†, and any valid sequence σV† ,

ϕσV† (p(V);G) =
∏︂

D∈D(ϕσV† (G))
qD(D| pas

G(D)).

All valid fixing sequences for V† yield the same CADMG G(V \V†,V†), and if

p(V) obeys the nested factorization for G, all valid fixing sequences for V† yield the

same kernel (Richardson et al., 2017). As a result, for any valid sequence σ for V†, we

can redefine the operator ϕσ, for both graphs and kernels, to be ϕV† , meaning “apply

the fixing operator to elements of V† in some valid sequence”. In addition, it can be

shown (Richardson et al., 2017) that the above kernel set is characterized as:

{qC(C | paG(C)) | C is intrinsic in G} = {ϕV\C(p(V);G) | C is intrinsic in G}.
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Thus, we can re-express the above nested factorization as stating that for any fixable

set V†, we have

ϕV†(p(V);G) =
∏︂

D∈D(ϕV† (G))
ϕV\D(p(V);G).

Since fixing is defined on CADMGs and kernels, the definition of nested Markov

models generalizes in a straightforward way to a kernel q(V|W) being in the nested

Markov model for a CADMG G(V,W). This holds if for every V† fixable in G(V,W),

ϕV†(q(V|W);G) =
∏︂

D∈D(ϕS(G))
ϕV\D(q(V|W);G).

An important result in Richardson et al. (2017) states that if p(V ∪H) obeys

the factorization for a DAG G with vertex set V ∪H, then p(V) obeys the nested

factorization for the latent projection ADMG G(V).

2.5.4 The One Line ID Algorithm

This leads to the one line ID algorithm proposed in Richardson et al. (2017) as

a reformulation of the Shpitser and Pearl (2006) ID algorithm. Let A ⊆ V and

Y ⊆ V \A. Define Y⋆ ≡ anGV\A(Y). Then we have the following sound and complete

formula for the identification of p(Y(a)):

p(Y(a)) =
∑︂

Y∗\Y

∏︂
D∈D(GY∗ )

ϕV\D(p(V);G(V))|A=a. (2.4)

Whenever V \ D for every D is fixable, the formula (2.4) yields the correct

expression for p(Y|do(a)) in terms of the observed data8. If some V \D is not fixable,

the algorithm fails, and p(Y|do(a)) is not identified9. See Richardson et al. (2017) for

a detailed proof.

For instance, consider the example graphs in Figures 2-2 and 2-4. Figure 2-4(a)

depicts a ‘bow-arc’ graph, a classic example of a non-identifiable Y (a) (see above for
8This is the soundness property, formally stated. See also: the exposition in §2.4.
9This relates to the completeness property. Formally, Shpitser and Pearl (2006) and Richardson

et al. (2017) showed that if this algorithm fails, then no algorithm can successfully identify the effect.
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an intuitive explanation of why this intervention is not identifiable) (Shpitser and

Pearl, 2006).

In Figure 2-4(b), on the other hand, Y (a) is identifiable even though A and Y

share a common cause. This non-intuitive result was first proven using rules from

probability theory by Pearl and the graph in Figure 2-4(b) is known as the ‘front-door’

graph (Pearl, 2009). The ID algorithm (Eq. 2.4) will verify this results (i.e. that

the intervention is identifiable) and enables derivation of an identifying functional,

the expression exclusively in terms of observed data: p(Y (a)) = ∑︁
M p(M |A =

a)∑︁A′ p(Y |A′,M)p(A′).

As a more complicated example, in Fig. 2-3 (a), the ID algorithm yields the

following identifying formula for p(Y |do(a)):

p(Y (a)) =
∑︂

W0,A,M,W1

p(W1|M,A = a,W0)× (2.5)

p(M |A = a,W0)p(W0)
∑︂

W0,A

p(Y |W1,M,A,W0)p(W0, A).

See Appendix C for a complete derivation.
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Chapter 3

Identification of Personalized
Effects Associated With Causal
Pathways

3.1 Introduction

Establishing causal relationships between actions and outcomes is fundamental to

rational decision-making. As described in Chapter 1, the gold standard for establishing

causal relationships is the randomized controlled trial (RCT), which may be used

to establish average causal effects within a population. While average treatment

effects reported from RCTs (real or emulated via OCI methods) establish whether a

particular action is helpful on average, optimal decision-making must tailor decisions

to specific situations by, for instance, using ideas from the dynamic treatment regime

(Chakraborty and Moodie, 2013) or reinforcement learning (Bertsekas and Tsitsiklis,

1996) literatures.

If an action is known to have a beneficial effect on some outcome, it is often desirable

to understand the causal mechanism behind this effect. A popular type of mechanism

analysis is mediation analysis, which seeks to decompose average treatment effects into

direct and indirect components, or more generally into components associated with

specific causal pathways. These components of the average causal effect are known as
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direct, indirect, and path-specific effects, and are also defined as population averages

(Avin, Shpitser, and Pearl, 2005; Pearl, 2001; Robins and Greenland, 1992).

In this chapter, derived from work originally appearing in Shpitser and Sherman

(2018), I first supplement the review from Chapter 2 with background concepts and

notation specific to this chapter’s developments. I then define counterfactual outcomes

necessary to personalize effects associated with causal pathways, give an algorithm

for non-parametric identification of these outcomes and prove that it is complete

for arbitrary policies. Estimation methods for identified outcomes of this type were

studied contemporaneously in Nabi and Shpitser (2018).

3.1.1 Why Personalize Effects Along Causal Pathways?

It often makes sense to structure decision-making such that the overall effect of an

action on the outcome is maximized for a given unit. However, in some cases it is

appropriate to choose an action such that only a part of the effect of an action on the

outcome is maximized. Consider management of HIV patients’ care. Since HIV is a

chronic disease, care for HIV patients involves designing a long-term treatment plan

to minimize the chance of viral failure (an undesirable outcome). In designing such a

plan, an important choice is when to initiate primary therapy, and when to switch to

a second line therapy. Initiating or switching too early risks unneeded side effects and

”wasting” treatment efficacy, while initiating or switching too late risks viral failure

(Hernan et al., 2006).

In the context of HIV, however, treatment adherence is an important component

of the overall effect of the drug on the outcome. Patients who do not take prescribed

doses compromise the efficacy of the drug, and different drugs may have different levels

of adherence. Thus, for HIV patients, the overall effect of the drug can be viewed

as a combination of the chemical effect and the adherence effect (Miles et al., 2017).

Therefore, choosing an action that maximizes the overall effect of HIV treatment on
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viral failure entangles these two very different causal mechanisms. One approach to

tailoring treatments to patients in a way that disentangles these mechanisms is to

find a policy that optimizes a part of the effect, say the chemical (direct) effect of

the drug, while hypothetically keeping the adherence levels to some reference level.

Finding such a policy yields information on how best to assign drugs to maximize

their chemical efficacy in settings where adherence levels can be controlled to that

of a reference treatment – even if the only data available is one where patients have

differential adherence.

3.2 Preliminaries

I will first give graph theoretic preliminaries. Next, I describe the more general edge

intervention that sets variables to different values for different outgoing edges in a

graph. Edge interventions are used to formulate direct, indirect, and path-specific

effects in mediation analysis. Then, I define counterfactual responses to policies that

set variables not to constant values but to values that potentially depend on other

sets of variables. Extending these notions, I describe counterfactuals that generalize

both responses to edge interventions, and responses to policies, namely responses to

edge-specific policies. I briefly describe identification theory for these counterfactuals

in causal models with no hidden variables, and note this theory is based on variations

of a truncated factorization known as the g-formula (Robins, 1986).

I next consider identification theory for these counterfactuals in hidden variable

causal models. This theory is more complex, and is based on the ID algorithm (Shpitser

and Pearl, 2006; Tian and Pearl, 2002). Using the reformulated ID algorithm described

in Chapter 2 as a base, I describe ways to express any functional corresponding to

a counterfactual distribution identifiable in a hidden variable causal model as a

truncated factorization formula. I posit algorithms for the identification of the above

counterfactual types. Finally, I describe a completeness result for the identification
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algorithm for responses to unrestricted edge-specific policies in hidden variable causal

models.

The primary contribution of this chapter lies in the presentation of counterfactuals

and identification theory for policies, edge-specific interventions, and edge-specific

policies. Nevertheless, given the heavy reliance on prior theory, I will continue to

develop the discussion of past work that I began in Chapter 2 as a means of building

towards the primary results.

3.2.1 Graph Theory

Throughout this chapter, I will rely on causal graphs to build and analyze causal

models. See Chapter 2 for a complete introduction to graphical models including

definitions and notation for variables, genealogic sets, and subgraphs.

3.2.2 Edge Interventions

Recall from Chapter 2, that we can perform node interventions in graphs. A more

general type of intervention in a graphical causal model is the edge intervention

(Shpitser and Tchetgen Tchetgen, 2016), which maps a set of directed edges in G

to values of their source vertices. Edge interventions have a natural interpretation

in cases where a treatment variable has multiple components that a) influence the

outcome in different ways, b) occur or do not occur together in observed data, and

c) may in principle be intervened on separately. For instance, smoking leads to poor

health outcomes due to two components: smoke inhalation and exposure to nicotine.

A smoker would be exposed to both of these components, while a non-smoker to

neither. However, one might imagine exposing someone selectively only to nicotine

but not smoke inhalation (via a nicotine patch), or only smoke inhalation but not

nicotine (via smoking plant matter not derived from tobacco leaves). These types of

hypothetical experiments correspond precisely to edge interventions, and have been
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used to conceptualize direct and indirect effects (Pearl, 2001; Robins and Greenland,

1992), often on the mean difference scale.

Formally, I will write the mapping of a set of edges to values of their source vertices

using the following shorthand: (a1W1)→, (a2W2)→, . . . , (akWk)→ to mean that edge

(A1W1)→ is assigned to value a1, (A2W2)→ is assigned to value a2, and so on until

(AkWk)→ is assigned to value ak. Alternatively, I will write aα to mean edges in α are

mapped to values in the multiset a (since multiple edges may share the same source

vertex, and be assigned to different values). For a subset β ⊆ α, and an assignment

aα denote aβ to be a restriction of aα to edges in β.

I will write counterfactual responses to edge interventions as Y (aα) or, for simple

cases, as: Y ((aY )→, (a′M)→) meaning the response to Y where A is set to value a for

the purposes of the edge (AY )→ and to a′ for the purposes of the edge (AM)→. An

edge intervention that sets a set of edges α to values in the multiset a is defined via

the following generalization of recursive substitution (Eq. 2.2):

Y (aα) ≡ Y (a{(ZY )→∈α}, {paᾱ
G(Y )}(aα)), (3.1)

where paᾱ
G(Y ) ≡ {W | (WY )→ ̸∈ α}. For example, in the DAG in Fig. 3-1 (a),

Y ((a′Y )→, (aM)→) is defined as Y (a′,M(a,W ),W ).

For simplicity of presentation, I will restrict attention to edge interventions with

the property that if (AW )→ ∈ α, then for any V ∈ chG(A), (AV )→ ∈ α. These

types of edge interventions set values for all causal pathways for a set of treatment

variables. This is the convention in the majority of existing mediation literature

as these interventions are most relevant in practical mediation analysis problems.

Specifically, in the HIV example, we are interested in the effect of a drug along all

pathways that start with a particular edge, while the effect of the drug via pathways

that begin with other edges is kept to a reference level. This assumption may be

relaxed, at the price of complicating the theory (Shpitser and Tchetgen Tchetgen,
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2016).

Edge interventions are used to define direct and indirect effects. For example,

in the model given by the DAG in Fig 3-1 (a), the direct effect of A on Y is de-

fined as E[Y ((aY )→, (aM)→)] − E[Y ((a′Y )→, (aM)→)] which is equal to E[Y (a)] −

E[Y (a′,M(a))]. The indirect effect may be defined similarly as E[Y ((a′Y )→, (aM)→)]−

E[Y ((a′Y )→, (a′M)→)], which is equal to E[Y (a′,M(a))]− E[Y (a′)]. The direct and

indirect effects add up to the ACE.

Note that while direct, indirect, and path-specific effects may be defined directly

as nested counterfactuals (Pearl, 2001; Shpitser, 2013), this notation quickly becomes

unreadable for complicated interventions applied at multiple time points. The edge

intervention notation may be viewed as a generalization of the do(.) operator notation

of Pearl to mediation problems, which avoids having to specify the entire nested

counterfactual, and instead directly ties interventions and sets of causal pathways

to which these interventions apply (as represented by the first edge shared by all

pathways in the set).

Identification of edge interventions in graphical causal models without hidden

variables corresponds quite closely with identification of regular (node) interventions,

as follows. Let Aα ≡ {A | (AB)→ ∈ α}. Consider an edge intervention given by the

mapping aα. Then, under the functional model of a DAG G, the joint distribution of

counterfactual responses p({V \Aα}(aα)) is identified via the following generalization

of (2.3) called the edge g-formula:

∏︂
V ∈V\Aα

p(V |a{(ZV )→∈α}, paᾱ
G(V )). (3.2)

For example, in Fig 3-1 (a), p(Y ((aY )→, (a′M)→)) = ∑︁
W,M p(Y |a,M,W )p(M |a′,W )p(W ),

which is obtained by marginalizing W,M from the edge g-formula.

Edge interventions represent a special case of the more general notion of a path

intervention (Shpitser and Tchetgen Tchetgen, 2016). Responses to both of these
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interventions are used to define path-specific effects (Pearl, 2001), however responses to

edge interventions are precisely those that are always identified under the functional

model of a DAG, via (3.1). Responses to path interventions that cannot be rephrased

as responses to edge interventions are not identified even in a DAG model, including

the functional model, due to the presence of recanting witnesses (Avin, Shpitser,

and Pearl, 2005). For this reason, in this chapter I restrict attention only to edge

interventions and responses to edge-specific policies.

3.2.3 Responses To Treatment Policies

In personalized medicine settings, counterfactual responses to conditional interventions

that set treatment values in response to other variables via a known function are of

interest. As an example, assume the graph in Fig. 3-1 (b) represents an observational

study of cancer patients where W0 represents baseline patient metrics, A1 is the

primary therapy, W1 is the measured intermediate response to the primary therapy,

A2 is a decision to either continue primary therapy or switch to a secondary therapy

in the event of a poor response to A1, and W2 is the outcome of interest. In this

setting, we might be interested in evaluating policies in the set {fA1 : XW0 ↦→

XA1 , fA2 : X{W0,W1} ↦→ XA2} that map patient characteristics to decisions about

therapies A1 and A2. We evaluate the efficacy of these policies via the counterfactual

variable W2(fA1 , fA2), representing patient outcomes had treatment decisions been

made according to those policies.

These types of variables are defined via a generalization of (2.2), where instead

of setting values of parents in A1, A2 to values fixed by the intervention, values of

parents in A are instead set according to fA1 and fA2 . In particular, W2(fA1 , fA2) is

defined as

W2[fA2(W1[fA1(W0),W0],W0),W1[fA1(W0),W0], fA1(W0),W0]. (3.3)
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Figure 3-1. (a) A simple causal DAG, with a treatment A, an outcome Y , a vector
W of baseline variables, and a mediator M . (b) A more complex causal DAG with
two treatments A1, A2, an intermediate outcome W1, and the final outcome W2. H
is a hidden common cause of the W variables. (c) A graph where p(Y (a,M(a′))) is
identified, but p(Y (fA(W ),M(a))) is not.

The distribution of this variable is identified under the functional model via the

natural generalization of (2.3) as

∑︂
W0,W1

p(W2|W0, fA1(W0),W1, fA2(W0,W1))×

p(W1|W0, fA1(W0))p(W0). (3.4)

More generally, given a DAG G, a topological ordering ≺, and a set A ⊆ V,

for each A ∈ A, define WA to be some subset of predecessors of A according to ≺.

Then, given a set of functions fA of the form fA : XWA
↦→ XA, define Y (fA), the

counterfactual response Y ∈ V to A being intervened on via fA ≡ {fA | A ∈ A}, as

Y ({fA(WA(fA))|A ∈ paG(Y ) ∩A}, {paG(Y ) \A}(fA)). (3.5)

In a functional model of a DAG G, the effect of fA on the set of variables not being

intervened upon, V \A, represented by the distribution p({V \A)}(fA)), is identified

by the following modification of (2.3) Tian (2008):

∏︂
V ∈V\A

p(V |{fA(WA)|A∈A∩paG(V )}, paG(V )\A). (3.6)
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3.3 Edge-Specific Policies

I now give a general definition of counterfactual responses to edge-specific policies that

generalize both responses to edge interventions (where a variable is set to different

constants for different outgoing edges) and responses to policies, where a variable is

set according to a single known function for all causal pathways at once.

As an example, we can view Fig. 3-1 (a) as representing a cross-sectional study

of HIV patients of the kind described in Miles et al. (2017), where W is a set of

baseline characteristics, A is one of a set of possible antiretroviral treatments, M is

adherence to treatment, and Y is a binary outcome variable signifying viral failure. In

this type of study, we may wish to find fA(W ) that maximizes the expected outcome

Y had A been set according to fA(W ) for the purposes of the direct effect of A on

Y , and A were set to some reference level a for the purposes of the effect of A on M .

In other words, we may wish to find fA(W ) to maximize the counterfactual mean

E[Y (fA(W ),M(a,W ),W )]. This would correspond to finding a treatment policy that

maximizes the direct (chemical) effect, if it were possible to keep adherence to a level

M(a) as if a reference (easy to adhere to) treatment a were given.

I now give a general definition for responses to such edge-specific policies. Fix a

set of directed edges α, and define Aα ≡ {A | (AB)→ ∈ α}. As before, I assume if

(AW )→ ∈ α, then for all V ∈ chG(A), (AV )→ ∈ α. Define fα ≡ {f (AW )→
A : XWA

↦→

XA | (AW )→ ∈ α} as the set of policies associated with edges in α. Note that fα may

contain multiple policies for a given treatment variable A.

Define Y (fα), the counterfactual response of Y to the set of edge-specific policies

fα, as the following generalization of (3.1) and (3.5):

Y ({f (AY )→
A (WA(fα))|(AY )→ ∈ α}, {paᾱ

G(Y )}(fα)). (3.7)

In my earlier example, if f{(AY )→,(AM)→} ≡ {f (AY )→
A (W ), f̃ (AM)→

A }, where f̃A assigns A

to a constant value a, then Y (f{(AY )→,(AM)→}) ≡ Y (fA(W ),M(a,W ),W ).
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The joint counterfactual distribution for responses to edge-specific policies, p({V (fα)|V ∈

V \Aα}), is identified under the functional model, and generalizes (3.2) and (3.4) as

follows:

∏︂
V ∈V\Aα

p(V |{f (AV )→
A (WA)|(AV )→∈α}, paᾱ

G(V )). (3.8)

This is a consequence of the fact that (3.2) holds regardless of how edge interventions

are set. In Fig. 3-1 (a), for example,

p(Y (fA(W ),M(a,W ),W )) =
∑︂

W,M

p(Y |fA(W ),M,W )p(M |a,W )p(W )

3.4 Identification in Hidden Variable DAG Models

As highlighted in Chapter 2, in a causal model of a DAG where some variables are

hidden, not every causal parameter is a function of the observed data distribution. In

that chapter’s review, I highlighted the background necessary to develop a general

identification algorithm for node interventions in hidden variable DAGs (Tian and

Pearl, 2002; Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Richardson et al.,

2017). In this section, I will extend the ideas introduced in Chapter 2 to edge, policy,

and edge-specific policy interventions. Important concepts from Chapter 2 include

latent projections and bidirected edges, Markov kernels, ADMGs and Conditional

ADMGs, the fixing operator ϕ, and the one line ID algorithm (Eq. 2.4).

3.4.1 Reformulations of Generalized ID Algorithms

In the previous chapter, I described a reformulation of the ID algorithm, proposed

in Richardson et al. (2017), as a one line formula. This formula can be viewed as a

modified g-formula or truncated factorization. In this subsection I will describe how

existing identification theory for edge and policy effects can similarly be reformulated

as one line algorithms.
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Figure 3-2. (a) A causal model with a treatment A and outcome Y . (b) A latent
projection of the DAG in (a). (c) The graph derived from (b) corresponding to
GY∗ = G{Y,M,W0,W1}. (d) A CADMG corresponding to p(M,W0|do(a)).

Edge Interventions Identification of path-specific effects where each path is asso-

ciated with one of two possible value sets a, a′ was given a general characterization in

Shpitser (2013) via the recanting district criterion. Here, I reformulate this result in

terms of the fixing operator in a way that generalizes (2.4), and applies to the response

of any edge intervention, including those that set edges to multiple values rather than

two. This result can also be viewed as a generalization of node consistency of edge

interventions in DAG models, found in Shpitser and Tchetgen Tchetgen (2016).

Given Aα ≡ {A | (AB)→ ∈ α}, and an edge intervention given by the mapping

aα, define Y∗ ≡ anGV\Aα
(Y). The joint distribution of the counterfactual response

p({V \Aα}(aα)) is identified if p({V \Aα}(a)) is identified via (2.4), and for every

D ∈ D(GY∗), for every A ∈ Aα, aα has the same value assignment for every directed

edge out of A into D. Under these assumptions, we have the following result.

Theorem 1 p(Y(aα)) is identified and equal to∑︂
Y∗\Y

∏︂
D∈D(GY∗ )

ϕV\D(p(V);G)
⃓⃓⃓
a{(AD)→∈α|D∈D,A∈Aα}

(3.9)

Proof: This follows directly from results in Shpitser (2013) and Richardson et al. (2017).

Identifying edge interventions entails identifying ∏︁D∈D(GY∗ ) p(D|do(aD)), where aD is

an assignment for pas
G(D), and aD possibly assigns different values to elements of A
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with respect to different districts. The fact that this identification algorithm can be

rephrased as (3.9) follows directly by Theorem 60 in Richardson et al. (2017). 2

Consider the example in Fig. 3-2 (a)1. Assume we set A = a for the edge (AM)→

and A = a′ for the edge (AW1)→. The identifying functional for p(Y ((aW1)→, (a′M)→))

has a form nearly identical to that in Eq. 2.5, which was the identifying functional

for p(Y (a)) in this graph. In this functional, however, some terms are evaluated at

A = a, and some at A = a′:

∑︂
W0,A,M,W1

[︃
p(W1|M,A = a,W0) (3.10)

× p(M |A = a′,W0)p(W0)

×
[︂ ∑︂

W0,A

p(Y |W0, A,M,W1)p(W0, A)
]︂]︃

Policy Interventions (Dynamic Treatment Regimes)

A general algorithm for identification of responses to a set of policies fA was given in

Tian (2008). I now reformulate that algorithm in terms of the fixing operator. Define

a graph GfA to be a graph obtained from G by removing all edges into A, and adding

for any A ∈ A, directed edges from WA to A. By definition of WA, GfA is guaranteed

to be acyclic. Define Y∗ ≡ anGfA
(Y) \A. Assume p(Y∗(a)) is identified in G. Then,

under the above assumptions, we have the following result.

Theorem 2 p(Y(fA)) is identified in G. Moreover, the identification formula is

∑︂
(Y∗∪A)\Y

∏︂
D∈D(GY∗ )

ϕV\D(p(V);G)
⃓⃓⃓
ãpas

G(D)∩A
(3.11)

where ãpas
G(D)∩A is defined as⎧⎨⎩{A = fA(WA) | A ∈ paG(D) ∩A} paG(D) ∩A ̸= ∅

∅ otherwise

1This graph is identical to that in Figure 2-3. It is re-printed here for the reader’s convenience.
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Proof: This follows from the fact that identification of p(Y(fA)) can be rephrased as

identification of p(Y∗(a)), with values a set according to {WA|A ∈ A}, where all WA

in the set are subsets of Y∗. Identification of p(Y∗(a)) may be rephrased as (3.11)

follows by Theorem 60 in Richardson et al. (2017). 2

The outer sum over A in (3.11) is vacuous if fA is a set of deterministic policies.

To illustrate (3.11), in the example in Fig. 3-2 (b), p(Y (A = fA(W0))) is identified as

∑︂
W0,A,M,W1

[︃[︂
p(W1|M,A=f(W0),W0)

]︂
(3.12)

×
[︂
p(M |A=f(W0),W0)p(W0)

]︂
×
[︂ ∑︂

W0,A

p(Y |W1,M,A,W0)p(W0,A)
]︂]︃
.

3.4.2 Identification Of Edge-Specific Policies

Having reformulated existing identification results on responses to policies (3.11) and

responses to edge interventions arising in mediation analysis (3.9) in terms of the

fixing operator, I generalize these results for identification of responses to edge-specific

policies.

Given Aα ≡ {A|(AB)→ ∈ α}, and a set of edge-specific policies given by the set of

mappings fα, define the graph Gfα to be one where all edges with arrowheads into Aα

are removed, and directed edges from any vertex in WA to A ∈ Aα added. Fix a set

Y of outcomes of interest, and define Y∗ equal anGfα
(Y) \Aα. We have the following

result.

Theorem 3 p(Y(fα)) is identified if p(Y∗(a)) is identified, and for every D ∈

D((Gfα)Y∗), fα yields the same policy assignment for every edge from A ∈ Aα to

D. Moreover, the identifying formula is

∑︂
(Y∗∪Aα)\Y

∏︂
D∈D(GY∗ )

ϕV\D(p(V);G)|ãpas
G(D)∩Aα

(3.13)
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where ãpas
G(D)∩Aα is defined to be {A = fA(WA) ∈ fα | A ∈ paG(D) ∩ Aα}, if

paG(D) ∩Aα ̸= ∅, and is defined to be the ∅ otherwise.

Proof: This is a straightforward generalization of the proofs of Theorems 1 and 2. 2

Responses to edge-specific policies are identified in strictly fewer cases compared to

responses to edge interventions. This is because Y∗ is a larger set in the former case.

As an example, consider the graph in Fig. 3-1 (c), where we are interested either in the

counterfactual p(Y (a,M(a′))), used to define pure direct effects, or the counterfactual

p(Y (fA(W ),M(a′))).

For the former counterfactual, we have Y∗ = {Y,M}, and p(Y (a,M(a′))) equal to

∑︂
m

(︄∑︁
w p(Y,m|a, w)p(w)∑︁
w p(m | a, w)p(w)

)︄∑︂
w

p(m | a′, w)p(w)

Observe that for the latter counterfactual, the set Y∗ = {Y,M,W} forms a single

district in GY∗ , and the edge-specific policy set f{(AM)→,(AY )→} sets edges from A to

this district to different policies. As a result, Theorem 3 is insufficient to conclude

identification.

Generalizations of the example in Fig. 3-1 (b) are the most relevant in practice,

as their causal structure corresponds to longitudinal observational studies, of the

kind considered in Robins (1986), and many other papers. However, I illustrate

complications that may arise in identifiability of responses to edge-specific policies

with our running example in Fig. 3-2 (b), where we are interested in the response of

Y to edge-specific policies f{(AM)→,(AW1)→} = {f (AM)→
A (W0), f (AW1)→

A (W0)}. Theorem

3 yields the following identifying formula:

∑︂
W0,A,M,W1

[︃[︂
p(W1|M,A = f

(AM)→
A (W0),W0)

]︂
(3.14)

×
[︂
p(M |A = f

(AW1)→
A (W0),W0)p(W0)

]︂
×
[︂ ∑︂

W0,A

p(Y |W1,M,A,W0)p(W0, A)
]︂]︃
.
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Note that (3.14) generalizes both (3.10), which sets A to different constants in different

terms, and (3.12), which sets A to the output of a function that depends on W0. I

give a detailed derivation of this functional in the appendix (Appendix C).

3.5 On Completeness

An identification algorithm for a class of parameters is said to be complete relative

to a class of causal models if, whenever the algorithm fails to identify a parameter

within a model class, the parameter is in fact not identified within that class.

The ID algorithm is known to be complete for the class of interventional distribu-

tions in the class of functional models (Huang and Valtorta, 2006; Shpitser and Pearl,

2006). I restate this result here, and give a sequence of increasingly general complete-

ness results for the identification algorithms described so far. Completeness results

on policies and edge-specific policies are new. For completeness results pertaining

to policies, I assume a completely unrestricted class of policies. If the set of policies

of interest, fA or fα is restricted, or alternatively if the causal model has parametric

restrictions, completeness results presented here may no longer hold.

Theorem 4 Given disjoint subsets Y,A of V in an ADMG G, define Y∗ ≡ anGV\A(Y).

Then p(Y(a)) is not identified if there exists D ∈ D(GY∗) that is not a reachable set

in G.

Corollary 1 The algorithm for identification of p(Y(a)), as phrased in (2.4), is

complete.

Theorem 5 Given Aα ≡ {A | (AB)→ ∈ α}, and an edge intervention given by the

mapping aα, define Y∗ ≡ anGV\Aα
(Y). The joint distribution of the counterfactual

response p({V \Aα}(aα)) is not identified if p({V \Aα}(a)) is not identified, or there

exists D ∈ D(GY∗) and A ∈ Aα, such that aα has the different value assignments for

a pair of directed edges out of A into D.
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Corollary 2 The algorithm for identification of p(Y(aα)), as phrased in (3.9), is

complete.

Theorem 6 Define GfA to be a graph obtained from G by removing all edges into A,

and adding for any A ∈ A, directed edges from WA to A. Define Y∗ ≡ anGfA
(Y) \A.

Then if p(Y∗(a)) is not identified in G, p(Y(fA)) is not identified in G if fA is the

unrestricted class of policies.

Corollary 3 The algorithm for identification of p(Y(fA)), as phrased in (3.11), is

complete for unrestricted policies.

Theorem 7 Define the graph Gfα to be one where all edges with arrowheads into Aα

are removed, and directed edges from any vertex in WA to A ∈ Aα added. Fix a

set Y of outcomes of interest, and define Y∗ equal anGfα
(Y) \Aα. Then if p(Y∗(a))

is not identified, or there exists D ∈ D((Gfα)Y∗), such that fα yields different policy

assignments for two edges from A ∈ Aα to D, p(Y(fα)) is not identified.

Corollary 4 The algorithm for identification of p(Y(fα)), as phrased in (3.13), is

complete for unrestricted policies.

Detailed proofs of these results are in Appendix C. Corollaries are immediate conse-

quences of the preceding Theorems.

3.6 Conclusion

In this chapter, I defined counterfactual responses to policies that set treatment values

in such a way that they affect outcomes with respect to certain causal pathways

only. Such counterfactuals arise when we wish to personalize only some portion of the

causal effect of a treatment, while keeping other portions set to some reference values.
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An example might be optimizing the chemical effect of a drug, while keeping drug

adherence to a reference value.

I gave a general algorithm for identifying these responses from data, which general-

izes similar algorithms due to Tian (2008) and Shpitser (2013) for dynamic treatment

regimes, and edge-specific effects, respectively. Further, I showed that given an unre-

stricted class of policies the algorithm is complete. As a corollary, this established that

the identification algorithm for dynamic treatment regimes in Tian (2008) is complete

for unrestricted policies.

Given a fixed set of policies associated with a set of causal pathways, and assuming

(3.13) yields a functional containing only conditional densities, as is the case in the

functional (3.14), the counterfactual mean under those policies E[Y (fα)] may be

estimated using the maximum likelihood plug-in estimator. Such an estimator can be

viewed as a generalization of the parametric g-formula (Robins, 1986) to edge-specific

policies. More general estimation strategies, and approaches to learning the optimal

set of policies are the subject of the contemporaneous paper Nabi and Shpitser (2018)

published as a companion to Shpitser and Sherman (2018).
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Chapter 4

Identification of the Effects of Node
Interventions in Segregated Graph
Models

4.1 Introduction

As discussed in the introductory Chapter 1, the iid assumption is ubiquitous in

statistics and causal inference, but nevertheless does not hold in a variety of situations.

In Chapters 2 and 3, I highlighted the fact that even when the iid assumption holds,

obtaining valid causal estimates from observational data is challenging due to latent

confounding. When we move to the non-iid world, as in social networking and

infectious disease settings, identification becomes more challenging. As a tangible

example, interference (Cox, 1958; Hudgens and Halloran, 2008; Ogburn, VanderWeele,

et al., 2014) can induce additional complexities by opening confounding paths that

would not be present if we assumed inter-subject independence. If we do not properly

account for this network-induced confounding (i.e., by pretending it isn’t there), we

can obtain arbitrarily biased estimates of causal effects.

Towards accounting for network dependence when performing causal analyses, it

is useful to think about how network dynamics impact our ability to perform the

identification process, linking target counterfactuals to available data. As described
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in previous chapters, an extensive literature on identification of causal parameters

(under the iid assumption) has been developed. To briefly re-summarize, the g-formula

(Robins, 1986) identifies any interventional distribution in directed acyclic graph-based

(DAG) causal models without latent variables, while a complete identification theory

in hidden variable DAG models was developed in Tian and Pearl (2002), Shpitser and

Pearl (2006), and Huang and Valtorta (2006).

Beyond identification theory, an extensive theory of estimation of identified causal

parameters has also been developed. Some approaches are described in Robins (1986)

and Robins, Hernan, and Brumback (2000), although this is far from an exhaustive list.

While work on identification and estimation of causal parameters under interference

exists (Hudgens and Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012;

Ogburn, VanderWeele, et al., 2014; Peña, 2018; Peña, 2016; Maier, Marazopoulou,

and Jensen, 2013; Arbour, Garant, and Jensen, 2016), no general theory that unifies

identification and estimation has been developed up to now. In this chapter, derived

from novel work originally published in Sherman and Shpitser (2018), I will describe

an identification result that extends the above identification theory to a more general

type of graphical model, the latent-variable chain graph Lauritzen, 1996; Lauritzen

and Richardson, 2002, which permits a more parsimonious representation of network

data. I will also provide a method that answers the question of how to estimate causal

effects when both latent variables are present and the iid assumption does not hold.

4.2 A Motivating Example

To motivate subsequent developments, I introduce the following example application.

Consider a large group of internet users, belonging to a set of online communities,

perhaps based on shared hobbies or political views. For each user i, their time spent

online Ai is influenced by their observed vector of baseline factors Ci, and unobserved

factors Ui. In addition, each user maintains a set of friendship ties with other users via
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Figure 4-1. (a) A causal model representing the effect of community membership
on article sharing, mediated by social network structure. (b) A causal model on
dyads which is a variation of causal models of interference considered in Ogburn,
VanderWeele, et al. (2014). (c) A latent projection of the CG in (a) onto observed
variables. (d) The graph representing GY∗ for the intervention operation do(a1) applied
to (c). (e) The ADMG obtained by fixing M1,M2 in (c).
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an online social network. The user’s activity level in the network, Mi, is potentially

dependent on the user’s friends’ activities, meaning that for users j and k, Mj and

Mk are potentially dependent. The dependence between M variables is modeled as a

stable symmetric relationship that has reached an equilibrium state. Furthermore,

activity level Mi for user i is influenced by observed factors Ci, time spent online Ai,

and the time spent online Aj of any unit j who is a friend of i. Finally, denote user

i’s sharing behavior by Yi. This behavior is influenced by the social network activity

of the unit, and possibly the unit friends’ time spent online.

A crucial assumption in this example is that for each user i, purchasing behavior

Yi is causally influenced by baseline characteristics Ci, social network activity Mi, and

unobserved characteristics Ui, but time spent online Ai does not directly influence

sharing Yi, except as mediated by social network activity of the users. While this

might seem like a rather strong assumption, it is more reasonable than standard

“front-door” assumptions (Pearl, 2009) in the literature, since we allow the entire social

network structure to mediate the influence Ai on Yi for every user.

We are interested in predicting how a counterfactual change in a set of users’ time

spent online influences their purchasing behavior. Note that solving this problem

from observed data on users as we described is made challenging both by the fact

that unobserved variables causally affect both community membership and sharing,

creating spurious correlations, and because social network membership introduces

dependence among users. In particular, for realistic social networks, every user’s

activity potentially depends on every other user’s activity (even if indirectly). This

implies that a part of the data for this problem may effectively consist of a single

dependent sample (Tchetgen, Fulcher, and Shpitser, 2017).

In the remainder of the chapter, I formally describe how causal inference may

be performed in examples like above, where both unobserved confounding and data

dependence are present. In section 4.3 I review relevant terminology and notation
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that was not described in previous chapters. I also introduce the dependent data

setting I will consider. In section 4.4 I describe more general nested factorizations

(Richardson et al., 2017) applicable to marginals obtained from hidden variable DAG

models, and describe identification theory in causal models with hidden variables in

terms of a modified nested factorization. In section 4.5, I introduce causal chain graph

models (Lauritzen and Richardson, 2002) as a way of modeling causal problems with

interference and data dependence, and pose the identification problem for interventional

distributions in such models. In section 4.6 I give a sound and complete identification

algorithm for interventional distributions in a large class of causal chain graph models

with hidden variables, which includes the above example, but also many others. I

describe experiments, which illustrate how identified functionals given by our algorithm

may be estimated in practice, even in full interference settings where all units are

mutually dependent, in section 4.7. Concluding remarks are found in section 4.8.

4.3 Background on Causal Inference And Interfer-
ence Problems

4.3.1 Graph Theory

As before, I will consider causal models represented by mixed graphs. In addition

to directed (→) and bidirected (↔) edges, in this chapter I introduce a new type

of edge: the undirected (−) edge. Please see Chapter 2 for a thorough review of

graphical model concepts. Beyond that review, this chapter requires introduction of

the following notation and concepts.

For a mixed graph G of the above type, the standard graphical sets (e.g., parents)

for a variable V ∈ V are as previously defined, with the following additions:

siblings: sibG(V ) ≡ {W ∈ V|W ↔ V }

neighbors: nbG(V ) ≡ {W ∈ V|W − V }
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Define the anterior of V , or antG(V ), to be the set of all vertices with a partially

directed path (a path containing only → and − edges such that no − edge can be

oriented to induce a directed cycle) into V . As with the other relations, these new

relations generalize disjunctively to sets.

Consider a mixed graph G. Analogous to districts, defined in Chapter 2, define a

block B to be a maximal set of vertices, where every vertex pair in GB is connected

by an undirected path (a path containing only − edges). Any block of size at least

2 is called a non-trivial block. Define a maximal clique as a maximal set of vertices

pairwise connected by undirected edges. The set of districts in G is denoted by D(G),

the set of blocks is denoted by B(G), the set non-trivial blocks is denoted by Bnt(G),

and the set of cliques is denoted by C(G). The district of V is denoted by disG(V ).

By convention, for any V , disG(V ) ∩ deG(V ) ∩ anG(V ) ∩ antG(V ) = {V }.

A mixed graph is called segregated (SG) if it contains no partially directed cycles,

and no vertex has both neighbors and siblings, Fig. 4-1 (c) is an example. In a SG G,

D(G) and Bnt(G) partition V. A SG without bidirected edges is called a chain graph

(CG) (Lauritzen, 1996). A SG without undirected edges is called an acyclic directed

mixed graph (ADMG) (Richardson, 2003). A CG without undirected edges or an

ADMG without bidirected edges is a directed acyclic graph (DAG) (Pearl, 1988). A

CG without directed edges is called an undirected graph (UG). Given a CG G, the

augmented graph Ga is the UG where any adjacent vertices in G or any elements in

paG(B) for any B ∈ B(G) are connected by an undirected edge.

4.3.2 Graphical Models

Recall from prior chapters that a DAG model is a set of distributions associated with

a DAG G that can be written in terms of a DAG factorization (Lauritzen, 1996):

p(V) =
∏︂

V ∈V
p(V | paG(V )).
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Here I also introduce the notion of an undirected graph (UG) model, or a Markov

random field (MRF). A UG is a set of distributions associated with a UG G that can

be written in terms of a UG factorization:

p(V) = Z−1 ∏︂
C∈C(G)

ψC(C),

where Z is a normalizing constant. A CG model is a set of distributions associated

with a CG G that can be written in terms of the following two level factorization:

p(V) =
∏︂

B∈B(G)
p(B| paG(B)),

where for each B ∈ B(G),

p(B| paG(B)) = Z(paG(B))−1 ∏︂
C∈C((GB∪paG(B))a);C ̸⊆paG(B)

ψC(C).

In words, the above product can be read as follows. Consider the induced subgraph

on B and the parents of B in G. Then augment (or ‘moralize’) that graph (Lauritzen,

1996). Then consider all the cliques in the graph which are not subsets of the parents

of B. There should be a clique potential for each such clique appearing in the product.

Please see Chapter 2 for a description of how to place a causal interpretation

on DAG models and for formal definitions of related terms such as counterfactual,

identifiability, and the g-formula. An analogous description of how to place a causal

interpretation on a chain graph model is provided below.

4.3.3 Modeling Dependent Data

So far, the causal and statistical models I have introduced assumed data generating

process that produce independent samples. To capture examples of the sort I intro-

duced in section 4.2, I must generalize these models. Suppose we analyze data with

M blocks with N units each. It is not necessary to assume that blocks are equally

sized for the kinds of problems we consider, but we make this assumption to simplify
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our notation. Denote the variable Y for the i’th unit in block j as Y j
i . For each

block j, let Yj ≡ (Y j
1 , . . . , Y

j
N ), and let Y ≡ (Y1, . . . ,YM ). In some cases units’ block

memberships will not be a primary concern. In these cases I will omit the superscript

and the subscript will index the unit with respect to all units in the network.

We are interested in counterfactual responses to interventions on A, treatments

on all units in all blocks. For any a ∈ XA, define Y j
i (a) to be the potential response

of unit i in block j to a hypothetical treatment assignment of a to A. Define Yj(a)

and Y(a) in the natural way as vectors of responses, given a hypothetical treatment

assignment to a, either for units in block j or for all units, respectively. Let a(j) be

a vector of values of A, where values assigned to units in block j are free variables,

and other values are bound variables. Furthermore, for any ãj ∈ XAj , let a(j)[ãj] be a

vector of values which agrees on all bound values with a(j), but which assigns ãj to all

units in block j (e.g. which binds free variables in a(j) to ãj).

A common assumption is interblock non-interference, also known as partial inter-

ference in Sobel (2006) and Tchetgen Tchetgen and VanderWeele (2012), where for any

block j, treatments assigned to units in a block other than j do not affect the responses

of any unit in block j. Formally, this is stated as (∀j,a(j),a′(j), ãj),Yj(a(j)[ãj]) =

Yj(a′(j)[ãj]). Counterfactuals under this assumption are written in a way that empha-

sizes they only depend on treatments assigned within that block. That is, for any a(j),

Yj(a(j)[ãj]) ≡ Yj(ãj).

In this chapter and the ensuing chapters, I will largely follow the convention of

Ogburn, VanderWeele, et al. (2014), where variables corresponding to distinct units

within a block are shown as distinct vertices in a graph. As an example, Fig. 4-1

(b) represents a causal model with observed data on multiple realizations of dyads or

blocks of two dependent units (Kenny, Kashy, and Cook, 2020). Note that the arrow

from A2 to Y1 in this model indicates that the treatment of unit 2 in a block influences

the outcome of unit 1, and similarly for treatment of unit 1 and outcome of unit 2. In
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this model, a variation of models considered in Ogburn, VanderWeele, et al. (2014),

the interventional distributions p(Y2|do(a1)) = p(Y2|a1) and p(Y1|do(a2)) = p(Y1|a2)

even if U1, U2 are unobserved.

4.4 Causal Inference with Hidden Variables

If a causal model contains hidden variables, only data on the observed marginal

distribution is available. As discussed in previous chapters, when hidden variables are

present, not every interventional distribution is identified, and identification theory

becomes more complex. In the original version of this section (appearing in Sherman

and Shpitser (2018)), we reviewed hidden variable DAG identification theory. That

review has been largely removed here to avoid a redundant presentation. I again refer

the reader to Chapter 2 for a full review.

4.4.1 Latent Projection ADMGs

Recall that we can perform a latent projection operation on a latent variable DAG

G(V ∪H) to obtain an ADMG on the observed margin G(V). I will prove later that

an analogous operation can be performed on latent variable chain graphs to obtain a

latent projection on the chain graph’s observed margin. As an example, the graph

in Fig. 4-1 (c) is the latent projection of Fig. 4-1 (a). Note that a variable pair in a

latent projection G(V) may be connected by both a directed and a bidirected edge,

and that multiple distinct hidden variable DAGs or chain graphs G1(V ∪H1) and

G2(V ∪H2) may share the same latent projection acyclic mixed graph.
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4.5 Chain Graphs For Causal Inference With De-
pendent Data

I will now generalize causal models to represent settings with data dependence,

specifically to cases where variables may exhibit stable but symmetric relationships.

These may correspond to friendship ties in a social network, physical proximity, or

rules of infectious disease spread. These stand in contrast to causal relationships

which are also stable, but asymmetric. I represent settings with both of these kinds

of relationships using causal CG models under the Lauritzen-Wermuth-Freydenburg

(LWF) interpretation. Though there are alternative conceptions of chain graphs

(Drton, 2009), we concentrate on LWF CGs here. This is because LWF CGs yield

observed data distributions with smooth parameterizations. In addition, LWF CGs

yield Markov properties where each unit’s friends (and direct causes) screen the unit

from other units in the network. This sort of independence is intuitively appealing

in many network settings. Extensions of our results to other CG models are likely

possible, but we leave them to future work.

LWF CGs were given a causal interpretation in Lauritzen and Richardson (2002).

In a causal CG, the distribution p(B| paG(B)) for each block B is determined via a

computer program that implements a Gibbs sampler on variables B ∈ B, where the

conditional distribution p(B|B \ {B}, paG(B)) is determined via a structural equation

of the form fB(B \ {B}, paG(B), ϵB). This interpretation of p(B| paG(B)) allows the

implementation of a simple intervention operation do(b). The operation sets B to b by

replacing the line of the Gibbs sampler program that assigns B to the value returned

by fB(B \ {B}, paG(B), ϵB) (given a new realization of ϵB), with an assignment of

B to the value b. It was shown (Lauritzen and Richardson, 2002) that in a causal

CG model, for any disjoint Y,A, p(Y|do(a)) is identified by the CG version of the

g-formula (2.3): p(Y|do(a)) = ∏︁
B∈B(G) p(B \A| pa(B),B ∩A)|A=a.
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In the example above, stable symmetric relationships inducing data dependence,

represented by undirected edges, coexist with hidden variables. To represent causal

inference in this setting, I generalize earlier developments for hidden variable causal

DAG models to hidden variable causal CG models. Specifically, I first define a

latent projection analogue called the segregated projection for a large class of hidden

variable CGs using segregated graphs (SGs). I then define a factorization for SGs

that generalizes the nested factorization and the CG factorization, and show that

if a distribution p(V ∪H) factorizes given a CG G(V ∪H) in the class, then p(V)

factorizes according to the segregated projection G(V). Finally, I derive identification

theory for hidden variable CGs as a generalization of (2.4) that can be viewed as a

truncated SG factorization.

4.5.1 Segregated Projections Of Latent Variable Chain Graphs

Fix a chain graph CG G and a vertex set H such that for all H ∈ H, H does not lie

in B ∪ paG(B), for any B ∈ Bnt(G). We call such a set H block-safe.

Definition 1 Given a CG G(V ∪ H) and a block-safe set H, define a segregated

projection graph G(V) with a vertex set V. Moreover, for any collider-free path from

any two elements V1, V2 in V, where all intermediate vertices are in H, G(V) contains

an edge with end points matching the path. That is, we have V1Gets ◦ . . . ◦ → V2 leads

to the edge V1 ↔ V2, V1 → ◦ . . . ◦ → V2 leads to the edge V1 → V2, and in G(V).

As an example, the SG in Fig. 4-1 (c) is a segregated projection of the hidden variable

CG in Fig. 4-1 (a). While segregated graphs preserve conditional independence

structure on the observed marginal of a CG for any H (Shpitser, 2015), we chose to

further restrict the set H in order to ensure that the directed edges in the segregated

projection retain an intuitive causal interpretation of edges in a latent projection

(Verma and Pearl, 1990). That is, whenever A → B in a segregated projection, A
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is a causal ancestor of B in the underlying causal CG. SGs represent latent variable

CGs, meaning that they allow causal systems that model feedback that leads to

network structures, of the sort considered in Lauritzen and Richardson (2002), but

simultaneously allow certain forms of unobserved confounding in such causal systems.

4.5.2 Segregated Factorization

The segregated factorization of an SG can be defined as a product of two kernels which

themselves factorize, one in terms of a CADMG (a conditional graph with only directed

and bidirected arrows), and another in terms of a conditional chain graph (CCG)

G(V,W), a CG with the property that the only type of edge adjacent to any element

W of W is a directed edge out of W . A kernel q(V|W) is said to be Markov relative to

the CCG G(V,W) if q(V|W) = Z(W)−1∏︁
B∈B(G) q(B| paG(B)), and q(B| paG(B)) =

Z(paG(B))−1∏︁
C∈C((GB∪paG(B))a);C̸⊆paG(B) ψC(C), for each B ∈ B(G).

I now show, given p(V) and an SG G(V), how to construct the appropriate CADMG

and CCG, and the two corresponding kernels. Given a SG G, let district variables

D∗ be defined as ⋃︁D∈D(G) D, and let block variables B∗ be defined as ⋃︁B∈Bnt(G) B.

Since D(G) and Bnt(G) partition V in a SG, B∗ and D∗ partition V as well. Let

the induced CADMG Gd of a SG G be the graph containing the vertex sets D∗ as V

and pas
G(D∗) as W, and which inherits all edges in G between D∗, and all directed

edges from pas
G(D∗) to D∗ in G. Similarly, let the induced CCG Gb of G be the graph

containing the vertex set B∗ as V and pas
G(B∗) as W, and which inherits all edges in

G between B∗, and all directed edges from paG(B∗) to B∗. We say that p(V) obeys the

factorization of a SG G(V) if p(V) = q(D∗| pas
G(D∗))q(B∗| paG(B∗)), q(B∗| paG(B∗))

is Markov relative to the CCG Gb, and q(D∗| pas
G(D∗)) is in the nested Markov model

of the CADMG Gd.

The following theorem gives the relationship between a joint distribution that

factorizes given a hidden variable CG G, its marginal distribution, and the correspond-
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ing segregated factorization. This theorem is a generalization of the result proven in

Richardson et al. (2017) relating hidden variable DAGs and latent projection ADMGs.

The proof is deferred to Appendix D

Theorem 8 If p(V ∪H) obeys the CG factorization relative to G(V ∪H), and H

is block-safe then p(V) obeys the segregated factorization relative to the segregated

projection G(V).

4.6 A Complete Identification Algorithm for Latent
Variable Chain Graphs

With Theorem 8 in hand, we are ready to characterize general non-parametric identifi-

cation of interventional distributions in hidden variable causal chain graph models,

where hidden variables form a block-safe set. This result can be viewed on the one

hand as a generalization of the CG g-formula derived in Lauritzen and Richardson

(2002), and on the other hand as a generalization of the ID algorithm (2.4).

Theorem 9 Assume G(V ∪H) is a causal CG, where H is block-safe. Fix disjoint

subsets Y,A of V. Let Y∗ = antG(V)V\A Y. Then p(Y|do(a)) is identified from p(V)

if and only if every element in D( ˜︁Gd) is reachable in Gd, where ˜︁Gd is the induced

CADMG of G(V)Y∗.

Moreover, if p(Y|do(a)) is identified, it is equal to

∑︂
Y∗\Y

⎡⎢⎣ ∏︂
D∈D(˜︁Gd)

ϕD∗\D(q(D∗| paG(V)(D∗));Gd)

⎤⎥⎦
×

⎡⎢⎣ ∏︂
B∈B(˜︁Gb)

p(B \A| paG(V)Y∗ (B),B ∩A)

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓
A=a

where

q(D∗| paG(V)(D∗)) = p(V)
(∏︁B∈Bnt(G(V)) p(B| paG(V)(B)) ,

and ˜︁Gb is the induced CCG of G(V)Y∗.
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To illustrate the application of this theorem, consider the SG G in Fig. 4-1 (c), where

we are interested in p(Y2|do(a1, a2)). It is easy to see that Y∗ = {C1, C2,M1,M2, Y2}

(see GY∗ in Fig. 4-1 (d)) with B(GY∗) = {{M1,M2}} andD(GY∗) = {{C1}, {C2}, {Y2}}.

The chain graph factor of the factorization in Theorem 9 is p(M1,M2|A1 = a1, A2, C1, C2).

Note that this expression further factorizes according to the (second level) undirected

factorization of blocks in a CCG. For the three district factors {C1}, {C2}, {Y2}

in Fig. 4-1 (d), we must fix variables in three different sets {C2, A1, A2, Y1, Y2},

{C1, A1, A2, Y1, Y2}, {C1, C2, A1, Y1, A2} in Gd, shown in Fig. 4-1 (e). We defer the

full derivation involving the fixing operator to the supplementary material (Appendix

D). The resulting identifying functional for p(Y2|do(a1, a2)) is:∑︂
{C1,C2,M1,M2}

p(M1,M2|a1, a2, C1, C2)
∑︂
A2

p(Y2|a1, A2,M2, C2)p(A2|C2)p(C1)p(C2)

(4.1)

4.7 Experiments

I now illustrate how identified functionals given by Theorem 9 may be estimated from

data. Specifically I consider network average effects (N.E.), the network analogue of

the average causal effect (ACE), as defined in Hudgens and Halloran (2008):

NEi(a−i) = 1
N

∑︂
i

E[Yi(Ai = 1,A−1 = 1)]− E[Yi(Ai = 0,A−i = 0)]

in the article sharing example described in section 4.2, and shown in simplified form

(for two units) in Fig. 4-1 (a). The experiments and results I present here generalize

easily to other network effects such as direct and spillover effects (Hudgens and

Halloran, 2008), although I do not consider this here. For purposes of illustration I

consider a simple setting where the social network is a 3-regular graph, with networks

of size N = [400, 800, 1000, 2000]. Under the hidden variable CG model I described

in section 4.2, the above effect is identified by a functional which generalizes (4.1)

from a network of size 2 to a larger network. Importantly, since I assume a single
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connected network of M variables, we are in the full interference setting where only

a single sample from p(M1, . . .MN |A1, . . . , AN , C1, . . . , CN) is available. This means

that while the standard maximum likelihood plug-in estimation strategy is possible for

models for Yi and Ai in (4.1), the strategy does not work for the model for M . Instead,

I adapt the auto-g-computation approach based on the pseudo-likelihood and coding

estimators proposed in Tchetgen, Fulcher, and Shpitser (2017), which is appropriate

for full interference settings with a Markov property given by a CG, as part of our

estimation procedure. Note that the approach in Tchetgen, Fulcher, and Shpitser

(2017) was applied for a special case of the set of causal models considered here, in

particular those with no unmeasured confounding. Here I use the same approach for

estimating general functionals in models that may include unobserved confounders

between treatments and outcomes. In fact, our example model is analogous to the

model in Tchetgen, Fulcher, and Shpitser (2017), in the same way that the front-door

criterion is to the backdoor criterion in causal inference under the assumption of iid

data (Pearl, 2009).

The detailed estimation strategy, along with a more detailed description of our

results, is described in Appendix D. I performed 1000 bootstrap samples of the 4

different networks. Since calculating the true causal effects is intractable even if true

model parameters are known, I calculate the approximate ‘ground truth’ for each

intervention by sampling from our data generating process under the intervention 5

times and averaging the relevant effect. I calculated the (approximation of) the bias

of each effect by subtracting the estimate from the ‘ground truth.’ The ‘ground truth’

network average effects range from −.453 to −.456. As shown in Tables 4-I and 4-II,

both estimators recover the ground truth effect with relatively small bias. Estimators

for effects which used the pseudo-likelihood estimator for M generally have lower

variance than those that used the coding estimator for M , which is expected due to

the greater efficiency of the former. This behavior was also observed in Tchetgen,
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Fulcher, and Shpitser (2017). In both estimators, bias decreases with network size.

This is also expected intuitively, although detailed asymptotic theory for statistical

inference in networks is currently an open problem, due to dependence of samples.

95% Confidence Intervals of Bias of Network Average Effects
N 400 800 1000 2000

Estimator Coding (-.157,
.103)

(-.129,
.106)

(-.100,
.065)

(-.086,
.051)

Pseudo (-.133,
.080)

(-.099,
.089)

(-.116,
.074)

(-.070,
.041)

Table 4-I. 95% confidence intervals for the bias of each estimating method for the
network average effects. All intervals cover the approximated ground truth since they
include 0

Bias of Network Average Effects
N 400 800 1000 2000

Estimator Coding -.000
(.060)

-.020
(.051)

-.024
(.052)

-.022
(.034)

Pseudo .006
(.052)

-.023
(.042)

-.023
(.042)

-.021
(.026)

Table 4-II. The biases of each estimating method for the network average effects.
Standard deviation of the bias of each estimate is given in parentheses.

4.8 Conclusion

In this chapter, I generalized existing non-parametric identification theory for hidden

variable causal DAG models to hidden variable causal chain graph models, which can

represent both causal relationships, and stable symmetric relationships that induce

data dependence. Specifically, I gave a representation of all identified interventional

distributions in such models as a truncated factorization associated with segregated

graphs, mixed graphs containing directed, undirected, and bidirected edges which

represent marginals of chain graphs.
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I also demonstrated how statistical inference may be performed on identifiable

causal parameters, by adapting a combination of maximum likelihood plug in estima-

tion, and methods based on coding and pseudo-likelihood estimators that were adapted

for full interference problems in Tchetgen, Fulcher, and Shpitser (2017). I illustrated

my approach with an example of calculating the effect of community membership on

article sharing if the effect of the former on the latter is mediated by a complex social

network of units inducing full dependence.
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Chapter 5

General Identification of Dynamic
Treatment Regimes Under
Interference

5.1 Introduction

To this point, I have highlighted the challenges that arise when attempting to make

valid causal inferences from observational data. Chief among the obstacles is latent

confounding, which can lead to biased estimates of effects. As discussed, prior work

has given positive results towards overcoming the latent confounding issue; not by

circumventing confounding, but rather by making it possible to clearly delineate when

confounding is or is not problematic enough to render inference impossible.

Chapters 3 and 4 extended the prior work on identification theory in two key ways.

The former enables the analysis of a broader class of interventions in the form of

several sound and complete algorithms for the identification of the effects of policies,

path-specific effects, and path-specific policies. The latter established a principled

approach to handling network dependence when attempting to make causal inferences

from non-iid data.

The present chapter serves as a synthesis between these two lines of inquiry. Derived

from novel research originally published in Sherman, Arbour, and Shpitser (2020), I
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describe theory for the identification of policy effects in dependent data settings. Before

diving into the motivation for this direction below, I wish to point out the existence

of two other works that were developed by other authors in parallel. First, Ogburn,

Shpitser, and Lee (2018) provided substantial commentary on the efficacy of using chain

graphs to represent network dynamics when performing causal inference. The second,

Viviano (2019) similarly considers policies under interference. The work covered in this

chapter differs substantially: Viviano focuses on welfare maximization and assumes

units are identically distributed. The characterization of policy interventions studied

here generalizes welfare maximization and, as in Ogburn, Shpitser, and Lee (2018)

and prior chapters of this thesis, the present network representation is non-parametric.

Motivating Policies in Networks. In this chapter, we consider identification

of DTRs in the interference setting. As motivation, consider the following example

from psephology (the study of elections) (Blackwell, 2013): candidates running for

public office target voters by purchasing television advertisements; each candidate

must decide how many ads to buy and whether they should be positive (“my record is

stellar”) or negative (“my opponent is scandalous”).
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Figure 5-1. Graphical representations of competitive dynamics in an election campaign,
where (a) H’s represent latent confounders, (b) is a latent projection with H’s replaced
by bi-directed edges, and (c) is an alternative model where A’s exhibit best-response
dynamics.

These dynamics can be represented via the causal graphs in Fig. 5-1. For
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each candidate, C denotes observed pre-decision covariates, such as prior polling

performance, previous advertising, and cash on hand, A represents the candidate’s

advertising decision, Y represents polling performance in the current decision time

frame, and H represents unobserved confounders that affect the candidate’s pre-

decision covariates and decision but don’t directly affect the outcome. l and r index

the variables for a left- and right-leaning candidate respectively. Directed edges denote

a direct causal relationship, while undirected edges denote non-causal dependence (e.g.

Al − Ar could be interpreted as candidates acting based on beliefs about what each

other will do). While we use this two-candidate example as motivation throughout

this manuscript, our contributions apply to networks of arbitrary size and topology.

The remainder of this chapter is organized as follows: I fix notation and discuss

relevant background work in Secs. 5.2 and 5.3. We characterize the variety of possible

policy interventions in Sec. 5.4. We then give a novel identification result for effects of

policy interventions in Lauritzen-Wermuth-Freydenburg (LWF) latent-variable chain

graphs (Lauritzen, 1996; Lauritzen and Richardson, 2002) in Sec. 5.5. We demonstrate

estimation of these effects via a simulation study in Sec. 5.6 and conclude with a

discussion of ongoing work.

5.2 Notation

As in Chapter 4, I will employ segregated graphs (SGs) (Shpitser, 2015) to represent

causal network dynamics. I will not review all the background notation for this chapter

as we did in our original paper Sherman, Arbour, and Shpitser (2020). Instead, as in

past chapters, I will only introduce concepts and notation that are new in this chapter

and refer to reader to Chapters 2-4 for the full background.

Recall from Chapter 4 that the anterior antG(V ) is the set of nodes with a partially

directed path – a path containing only → and − edges such that no set of undirected
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edges can be oriented to form a directed cycle – into V . Here, we also define the

exterior extG(V ) is the set of nodes with a partially directed path out of V . In turn,

the strict exterior extG(V ) ⊆ extG(V ) omits V and the set {W ∈ V : W −· · ·−V }. By

convention, extG(V ) ∩ antG(V ) ∩ disG(V ) = {V }. As with other genealogical notions,

the exterior and strict exterior can be extended to sets. When the relevant graph is

clear from context, we drop the G subscript.

Also recall from Chapter 3 that for graphs with a partial ordering ≺ on V, let

V≺A denote A’s predecessors in the ordering. Additionally, for a set S ⊆ V in G, let

GS refers to the subgraph of G containing only S and edges connecting nodes in S.

5.2.1 Causal Graphical Models

As before, this chapter will assume Pearl’s functional model. As a reminder, in DAGs

counterfactuals V (a) are determined by structural equations fV (a, ϵV ), which remain

invariant under an intervention a; ϵV denotes an exogenous random variable for fV . By

recursive substitution, we can define all other variables in the model: for A ⊆ V \ {V }

and a in the state space of A, p(V (a)) (sometimes written as p(V|do(a) (Pearl, 2009))

is defined as V (apa(V ), {W (a) : W ∈ pa(V ) \A}).

In this chapter we will focus primarily on causal chain graphs (CGs), which follow

similar semantics. Each variable B in a block B is determined by a structural equation

fB(B \ {B}, pa(B), ϵB), a function of other variables in B, the parents of B, and an

exogenous variable. Each B’s joint distribution B is obtained by Gibbs sampling over

the structural equations for B until equilibrium (trivial blocks equilibrate instantly).

Assuming an ordering on blocks in G, but not on variables in each block, and iid

realizations of ϵBi
, the data generating process for CGs is given by Procedure 1

(Lauritzen and Richardson, 2002).
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Procedure 1 CG Data Generating Process
1: procedure CG-DGP(G, {fB : B ∈ V})
2: for each block Bi ∈ B(G) do
3: repeat
4: for each variable Bj ∈ Bi do
5: Bj ← fBj

(Bi \Bj, paG(Bi), ϵBj
)

6: end for
7: until equilibrium
8: end forreturn V
9: end procedure

Graph Type Latents Intervention Type Y⋆ Modified Factorization
DAG No Node – a N/A ∏︁

V ∈V\A p(V | pa(V ))|A=a
CG No Node – a N/A ∏︁

B∈B(G) p(B \A| pa(B),B ∩A)|A=a
ADMG Yes Node – a anGV\A(Y) ∏︁

D∈D(GY⋆ ) ϕV\D(p(V);G)|A=a

SG Yes Node – a antGV\A(Y) ∏︁
D∈D(G̃d) ϕD⋆\D(q(D⋆| pas

G(D⋆));Gd) ×∏︁
B∈B(G̃b) p(B \A| paGY⋆ (B),B ∩A)|A=a

ADMG Yes Policy – fA anGfA
(Y) ∏︁

D∈D(GY⋆ ) ϕV\D(p(V);G)|A=ã

Table 5-I. Summary of existing identification approaches. The first two rows use
standard g-formulas, the third row is the ID algorithm, and the final two extend
ID. The present work generalizes the last two rows. In the fifth row, ã = {A =
fA(WA)|A ∈ paG(D) ∩A} if paG(D) ∩A ̸= ∅ and ã = ∅ otherwise.

5.3 Identification in Latent-Variable Causal Graph-
ical Models

In this section, I briefly review identification theory in latent variable causal models.

See Chapters 3-4 for complete details. The current chapter bridges these literatures: I

posit a sound and complete algorithm for the identification of responses to policies in

latent variable (LV) causal CGs.

5.3.1 Re-expressing the ID Algorithm

Richardson et al. (2017) makes clear the connections between the ID algorithm, which

is a modified nested factorization of acyclic directed mixed graphs (ADMGs), and the

g-formula (Table 5-I, first row), which is a modified DAG factorization.
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As described in prior chapters, the sequence of identification papers from Tian

and Pearl (2002) to Richardson et al. (2017) provided an increasingly comprehensive

and general framework for developing identification theory for a variety of graph

and intervention types. In particular, their shared formalism enables straightforward

generalizations to other identification settings. For these reasons, the SG policy

identification results described in this chapter are based on this framework. The

framework’s base concepts (such as kernels, fixing, and the nested model) are covered

in detail elsewhere. For reference, each existing ID approach is summarized in Table

5-I.

Latent Projections. The details of latent projection ADMGs can be found else-

where. I will, however, remind the reader that segregated graphs are the chain graph

analogue of ADMGs, where SGs represent an equivalence class of LV-CGs. For a

latent variable CG G(V ∪H), H is block-safe (Sherman and Shpitser, 2018) if no

V ∈ V has a latent parent and no latent H ∈ H has an incident undirected edge.

By applying the same latent projection operation mentioned above to a LV-CG with

block-safe H, one obtains the corresponding SG.

Again, without rehashing too many details, I will provide a brief example of how

the ID algorithm can be used in the elections example from above (Fig. 5-1(c)).

Suppose we assume each candidate’s decision is independent of other decisions given

covariates (i.e., no Al − Ar edge). We can use the ID algorithm (Eq. 2.4) formula to

consider the effect on a candidate’s polling of advertising positively and negatively in

fixed proportion (say, equally, a = .5).

As another example, consider the subgraph on C1, A1,M1, Y1 in Fig. 5-2(a);

p(Y1|do(a1)) is not identified (Shpitser and Pearl, 2006). In the C2, A2,M2, Y2 subgraph,
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however, p(Y2|do(a2)) is identified by the front-door formula:

∑︂
M2,C2

p(M2|a2, C2)p(C2)
∑︂
A′

2

p(Y2|M2, C2, A
′
2)p(A′

2|C2)

5.3.2 Identification in Segregated Graphs

The Segregated Factorization. Again, recall from Chapter 4 that we can extend-

ing the factorizations for ADMGs and CGs, Sherman and Shpitser (2018) to define

the segregated factorization for SGs.

An SG G is partitioned by variables that lie in non-trivial blocks, denoted B⋆ =

∪B∈Bnt(G)B, and those that don’t, denoted D⋆ = ∪D∈D(G)D. An SG satisfying the

segregated factorization can be expressed as the product of kernels for these two sets.

The first kernel, q(B⋆| pas
G(B⋆)) = ∏︁

B∈Bnt(G) p(B| paG(B)), factorizes with respect

to a conditional chain graph (CCG) G(V,W), which we denote by Gb with V cor-

responding to B⋆ and W to pas(B⋆). Gb contains edges between nodes in B⋆ and

between nodes in pas
G(B⋆) that exist in G.

The second kernel, q(D⋆| pas
G(D⋆)) = p(V)

q(B⋆| pas
G(B⋆)) , nested factorizes with respect

to a CADMG denoted Gd, with random nodes D⋆ and fixed nodes pas(D⋆). Like

Gb, Gd contains edges between nodes in D⋆ and between nodes in pas
G(D⋆) that are

present in G.

For example, in the graph in Fig. 5-2(a), we have

q(D⋆| pas
G(D⋆)) = p(Y2, Y3, A2|C2,M2,M3)

× p(Y1, A1, C1|M1)p(A3|C3)

q(B⋆| pas
G(B⋆)) = p(M1,M2,M3|A1, A2, A3)p(C2, C3)

which correspond to Fig. 5-2(b) and (c) respectively.
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Figure 5-2. (a) An SG G where bi-directed edges signify the presence of latent
confounders. (b) and (c) The conditional chain graph Gb and conditional ADMG
Gd obtained from G. (d) The post-intervention graph GfA induced by the policy
intervention fA as described in Sec. 5.4. Nodes with changed structural equations have
dashed incoming edges. (e) The corresponding GY⋆ for GfA in 5-2(b) with outcome
Y = {Y2, Y3}.

The Segregated Graph ID Algorithm. The above leads to a segregated graph

ID algorithm. See 4.6. Returning to this chapter’s running elections example, Fig.

5-1(b), the SG ID formula is applicable when considering the effect of the left-leaning

candidate taking a fixed action al, with the right-leaning candidate’s action still having

an impact on the left’s poll standing. p(Yl(al)) is identified by:

∑︂
Cl,Cr,Ar,Yr

p(Yl, Yr|Cl, Cr, Ar, al)p(A2|Cl, Cr)p(Cl)p(Cr)
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5.3.3 Policy Interventions in ADMGs

Again, recall from Chapter 3 that policy interventions represent an extension of

classical node interventions.. For an ADMG G(V) with topological ordering ≺ on V

and an intervention set A ⊆ V, let fA be the set of policies {fA : A ∈ A}. Each fA

is a stochastic function of some WA ⊆ V≺A, where fA(WA) maps the state space of

WA to the state space of A. Intervening with fA corresponds to removing edges into

A in G and adding edges from WA to A, yielding a new graph GfA . A policy-analogue

of the ID algorithm follows was proved sound and complete in Shpitser and Sherman

(2018) and presented in Chapter 3. As with other ID results, this result can be viewed

as a novel modified factorization, as shown in row five of Table 5-I.

In our elections example, assume candidates’ decisions and outcomes are indepen-

dent of each other. This formula (Eq. 3.11) can be used to consider the effect on a

candidate’s polling of advertising based on the relevant covariates, e.g., if the election

is less than 2 months away, advertise negatively, and buy positive ads until then.

5.4 Varieties of Policy Interventions

We now describe extensions of policy interventions to network data representable by

SGs. These interventions correspond to replacing structural equations in Procedure 1

with new equations, under conditions we describe below such that the resulting data

generating process yields a new SG. As we discuss, these policy interventions induce a

variety of edge changes in SGs.

5.4.1 Inducing Direct Causation

As in the latent-variable DAG case (Shpitser and Sherman, 2018), we can intervene by

inducing a parent-child relationship between the treatment node and other variables in

the graph or modify the nature of existing relationship. In our elections example from
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Sec. 5.1, this might correspond to intervening on the left candidate’s decision Al such

that she adopts a new strategy for responding to her competitor’s characteristics Cr

relative to her (observed) status quo strategy. For illustrative purposes, this type of

intervention is demonstrated by the addition of the C2 → A1 edge and the modification

to the C1 → A1 edge between Fig. 5-2(a) and 5-2(d).

5.4.2 Inducing or Modifying Undirected Dependence

We can also consider changing the block structure of the SG. There are two types of

such interventions:

1. Modifying the functional form encoded by an existing undirected edge. In Fig. 5-1

(b), we can think of the undirected edge Al − Ar as representing each candidates’

beliefs about the other candidate’s actions. In the observed data, candidates will

best-respond to each other according to these beliefs. We can imagine changing the

way one (or both) of the candidates reasons about their opponent’s possible actions,

such as making one candidate hyper-responsive to their opponent’s anticipated action.

Mechanically, we intervene on Al (analogously Ar) with a function fAl
that takes

Ar as an argument. We needn’t intervene on the other candidate to maintain the

undirected edge between the A’s. This type of intervention is demonstrated by the

change to the M2 −M3 edge from Fig. 5-2(a) to 5-2(d).

2. Inducing co-dependence by adding a new undirected edge between two nodes. This

might correspond to having a third candidate c join the race and intervening such that

Ac−Al and Ac−Ar. In this case, it is necessary to intervene on both endpoint nodes

for the new undirected edge in order; we modify the respective structural equations

to take the other endpoint as an argument. We further restrict these interventions

by requiring that they do not induce a partially directed cycle, which would violate

the segregation property of the graph. We formalize this requirement below. We note
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that this type of intervention can be thought of as a chain graph generalization of

connection interventions, proposed in Sherman and Shpitser (2019) (See also Chapter

6). As an example, consider the addition of the A2 − A3 edge in Fig. 5-2(d) relative

to 5-2(a).

5.4.3 Removing Dependence

Finally, we can consider removing undirected dependence between nodes. Once again

there are two types:

1. Partial removal. We intervene on a single node to make its structural equation

no longer a function of the other end point of the undirected edge. In our elections

example (Fig. 5-1(c)), this corresponds to a ‘first mover’ scenario where Al is made

to not depend on Ar and thus candidate l makes her decision before candidate r.

Graphically, we change the undirected edge Al − Ar to a directed edge Al → Ar since

Ar is still determined by candidate l’s decision; see, for instance, the M1 −M2 and

M1 ←M2 edges in Fig. 5-2(a) and 5-2(d).

2. Complete removal. We remove both dependences by intervening on both endpoints

of an undirected edge so that the structural equations are no longer functions of each

other. This corresponds to a candidate dropping out of the race in our elections

example. Like dependence-inducing interventions above, this intervention type can be

viewed as an SG analogue of severance interventions (Sherman and Shpitser, 2019)

(again, see Chapter 6).

5.5 Identification of Policies in Segregated Graphs

In this section we formalize policy interventions and provide a procedure for obtaining

the post-intervention graph from G. We then give a criterion for the identification

of policy interventions in SGs (Shpitser, 2015) and demonstrate application of this
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Procedure 2 Obtaining GfA from G
1: procedure InterveneGraph(G, fA(ZA))
2: Initialize GfA ← G
3: for each A ∈ A do
4: Replace all V − A with A→ V in GfA

5: Remove all · → A, · ↔ A from GfA

6: Add edges ZA → A in GfA

7: end for
8: for each Vi, Vj ∈ V do
9: if Vi → Vj and Vj → Vi in GfA then

10: Remove Vi → Vj and Vj → Vi from GfA

11: Add Vi − Vj in GfA

12: end if
13: end forreturn GfA

14: end procedure

criterion to Fig. 5-2 and to our electoral example, Fig. 5-1. We defer proofs and

derivations to Appendix E.

5.5.1 Formalizing Policy Interventions in Segregated Graphs

Before providing identification conditions, we first formally define policy interventions

in SGs. Recall that in ADMGs a policy fA(WA) ∈ fA was required to be a function

of variables WA preceding A in a topological ordering on the nodes in G. In SGs we

loosen this restriction such that fA operates as a structural equation that can also be

a stochastic function of variables in the same block as A. For an intervention inducing

a block or modifying the structural equations in a block, we use Procedure 1 to obtain

a new block distribution.

For fA(ZA) to be a valid policy in an SG G(V), we require ZA ⊆ V \ ext(A).

In turn, for fA to be valid, all constituent policies must be valid and they may

not collectively violate the CG property by inducing a partially directed cycle. We

formalize this notion as follows: let Ai△Aj denote that variable Ai is made (either

directly or indirectly) a function of Aj for Ai, Aj ∈ A. To prevent partially directed

cycles, we stipulate that if Ai△Aj and Aj△Ai then we require Ai ∈ ZAj
and vice
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versa. This motivates the following definition.

Definition 2 A policy intervention fA(ZA) is ‘segregation preserving’ if (a) for each

A ∈ A, ZA ⊆ V \ ext(A), and (b) for any Ai, Aj ∈ A if Ai△Aj and Aj△Ai, we have

that Ai ∈ ZAj
and Aj ∈ ZAi

.

For a given intervention set fA, we can construct a post-intervention graph GfA

according to Procedure 2, which follows from the analogous procedure for policy

identification in LV-DAGs. In Lemma 1, we show that GfA is an SG when fA is

segregation-preserving. As an example of this procedure’s application, consider Fig.

5-2(a). Suppose we wish to perform an intervention fA(ZA) as in Table 5-II. Then

GfA is given by Fig. 5-2.

A ∈ A A1 A2 A3 M2
ZA C2 C2, C3, A3 A2, C3 A2, C2,M3

Table 5-II. Intervention variables A ∈ A and induced dependences ZA for the inter-
vention in Fig. 5-2

5.5.2 Identification Results

First, we show that the post-intervention GfA is an SG.

Lemma 1 Given an SG G(V) and a segregation-preserving intervention fA(ZA), the

post-intervention graph GfA obtained via Procedure 2 is an SG.

We now present the main result of this paper. This theorem provides sufficient

conditions for the identification of the effects of policy interventions in SGs.

Theorem 10 Let G(V ∪H) be a causal LV-CG with H block-safe, and a topological

order ≺. Fix disjoint Y,A ⊆ V. Let fA(ZA) be a segregation preserving policy set.

Let Y⋆ ≡ antGfA
(Y) \A. Let Gd, G̃

d be the induced CADMGs on GfA and GY⋆, and
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G̃
b the induced CCG on GY⋆. Let q(D⋆| pas

GfA
(D⋆)) = ∏︁

D∈GfA
q(D| pas

GfA
(D)), where

q(D| pas
GfA

(D)) = ∏︁
D∈D p(D|V≺D) if D ∩ A = ∅ and q = fA(ZA) if D ∩ A ̸= ∅.

p(Y(fA(ZA))) is identified in G if and only if p(Y⋆(a)) is identified in G for the

unrestricted class of policies. If identified, p(Y(fA(ZA))) =

∑︂
{Y⋆∪A}\Y

[︄ ∏︂
B∈B(G̃b)

p⋆(B| paGfA
(B))

]︄

×
[︄ ∏︂

D∈D(G̃d)

ϕD⋆\D(q(D⋆| pas
GfA

(D⋆));Gd)
]︄⃓⃓⃓⃓
⃓
A=ã

(5.1)

where (a) ã = {A = fA(ZA) : A ∈ paGfA
(D) ∩ A} if paGfA

(D) ∩ A ̸= ∅ and

ãD = ∅ otherwise, and (b) p⋆ is obtained by running Procedure 1 over functions

gBi
(B−i, paGfA

(Bi), ϵBi
) where gBi

∈ fA if Bi ∈ A and gBi
is given by the observed

distribution if Bi ̸∈ A1.

The outer sum over A is extraneous if fA corresponds to a set of deterministic

policies.

5.5.3 Estimands and Optimal Policy Selection

We now demonstrate how to obtain identified functionals via Eq. 5.1. We describe

identification of the effect on {Y2, Y3} in Fig. 5-2(a) of the intervention in Table 5-II,

and then give the functional for our elections example, Fig. 5-1(b), which we estimate

in the next section.

From Fig. 5-2(a), we obtain GfA in Fig. 5-2(d) by applying the intervention

detailed in Table 5-II. In turn, from this post-intervention graph we observe that

Y⋆ = antGfA
(Y) \A = {C2, C3,M3, Y2, Y3} and obtain the induced subgraph GY⋆ in

Fig. 5-2(e).
1This distribution is identified from univariate terms but it cannot be obtained in closed-form.
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GY⋆ factorizes into kernels relating to district nodes and block nodes:

qD(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3)

and

qB(M2,M3, A2, A3, C2, C3|∅).

The block nodes factorize as a product of blocks, as in the first term of Eq. 5.1.

Separately, we must fix sets for each GY⋆ district {{M3}, {Y2, Y3}} in qD. This yields

the functional (full derivation in Appendix E) for p({Y2, Y3}(fA)):

∑︂
{A1,A2,A3,M2,M3,C2,C3}

p⋆(A2, A3|C2, C3)p⋆(M2,M3|A2, A3, C2)

×p(Y2,Y3|Y1, A1,M1,M3, C1, C2)p⋆(C2, C3)

Similarly, we consider the effect on Yl of intervening with a policy fAl
(Cl) in our

electoral example, Fig. 5-1 (b). fAl
(Cl) corresponds to a myopic strategy in which the

candidate makes decisions based only on their own covariates. Applying Eq. 5.1,

p(Yl(fAl
(Cl, Cr))) =

∑︂
Cl,Cr,Ar,Yr

p(Ar|Cl, Cr)p(Cl)p(Cr)

× p(Yl, Yr|Cl, Cr, Ar, fAl
(Cl, Cr))

(5.2)

To choose an optimal action for the left candidate, we select fAl
(Cl) from a set of

candidate policies FAl
(Cl):

fAl
(Cl, Cr) = arg max

f̃Al
(Cl,Cr)∈FAl

(Cl,Cr)
p(Yl(f̃Al

(Cl, Cr))) (5.3)

5.6 Estimation

We now demonstrate how functionals identified by Eq. 5.1 can be estimated from

observed data. Specifically, we seek optimal fA(C)’s for versions of the functional in

Eq. 5.2. To do so, we fit nuisance models and utilize the plug-in principle to perform

indirect Q-learning for policy optimization. This approach yields consistent estimates
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Figure 5-3. Bias of estimates obtained using single-unit modeling, ignoring interference.
The presence of bias suggests ignoring interference is highly problematic.

of the optimized outcome under regularity conditions, assuming correctly specified

nuisance models (Chakraborty and Moodie, 2013).

For our experiments we first generate 10-node network graphs using three popular

network generators: Erdős and Rényi (1960), Watts and Strogatz (1998), and Albert

and Barabási (2002). In-unit and cross-unit structures are identical to the 2-node

graph in Fig. 5-1(b). We then generate data for each C, A, and Y using the following
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densities (note that Ci is a 3-dimensional vector):

Ci,j ∼ Beta(αj, βj)

p(Ai = 1|Ci, C−i) = expit(
3∑︂

j=1
γjCi,j + τAC

|Ni|
∑︂

k∈Ni

3∑︂
j=1

Ck,j)

p(Yi = 1|Ai, A−i, Ci, C−i, Y−i) = expit
(︄
ηAi +

3∑︂
j=1

δjCi,j

+ 1
|Ni|

∑︂
k∈Ni

(︃
τY AAk + τY Y Yk +

3∑︂
j=1

τY CCk,j

)︃)︄

where Ni denote unit i’s neighbors in GfA .

We use Gibbs sampling to approximate undirected edges between Y ’s (Tchetgen,

Fulcher, and Shpitser, 2017). We assume partial interference: we generate 1000

samples of each network topology and use these to fit nuisance models. We run the

following experiments by obtaining 1, 000 bootstrap replications of the generated data

and calculating a 95% confidence interval of the relevant effect:

1. Bias from incorrectly assuming iid. As a demonstration of the importance of

using interference-aware modeling, we consider performing node interventions on each

Ai obtained from our Erdős-Rényi samples, setting Ai to 1 and 0. We estimate the

average causal effect (ACE) of these node interventions (E[Yi(1)−Yi(0)]) using models

implied by ID (Table 5-I, row three), which provides sound functionals when data are

iid, as well as models implied by the SG ID algorithm (Table 5-I, row four) which

respect the dependent nature of the data. We treat the latter models as ‘ground truth’

and calculate the bias of the ACE induced by inappropriately assuming data are iid.

These results are given in Fig. 5-3. Observing that bias is universally bounded away

from 0 in these results, it’s clear that it’s imperative to respect network dependence

in causal modeling.

2. Benefit of optimizing interventions. Here we demonstrate the efficacy of policy

interventions for picking tailored interventions that optimize a subject’s outcome,

by estimating the 10-unit version of the identified functional in Eq. 5.2. From our
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generated samples, we fit logistic regression models for E[Y−i|A,C] and E[Yi|A,C, Y−i],

where i denotes the unit we wish to optimize for. Because the true model for Y is

an expit model, logistic regression qualifies as a correctly specified model and thus

using this procedure is sufficient to ensure consistency of the Q-learning procedure

(Chakraborty and Moodie, 2013; Murphy and Russell, 2002). Models for p(A,C) are

estimated using the empirical distribution.

For each sample we estimate the effect of intervening with a policy fAi
(Ci) ∈

FAi
(Ci) = {|Ci|−1∑︁

j∈[|Ci|] kjCij : kj ∈ R} (i.e. FAi
is the set of means of linear

combinations of Ci’s components). For this experimental setup, the optimization in

5.3 can be viewed as simply picking the value of the free parameter k2. We initialized

k to random values in [0, 1]3. We also enforced constraints on Yi and Ai such that

the chosen (for A) and predicted (for Y ) values remain in the state space of those

variables: the range [0, 1]. Optimization was performed using the LBFGS solver.

We report the difference between the optimized and observed (‘status quo’) Yi’s.

The results for the Erdős-Rényi generator can be found in Figs. 5-3 and 5-4. Results

for the other generators can be found in the supplementary material, Appendix E.

Since Y is binary, an expected difference of .05 corresponds to a 5.0% increase in

Y over the status quo. Fig. 5-4 demonstrates that the proposed approach virtually

guarantees an improved outcome over the status quo.

5.7 Conclusion

In this chapter I discussed identification of policy intervention effects in the interference

setting. I characterized interpretations of possible interventions and gave criteria

for identifying their effects in latent-variable causal chain graph models. Further, I

demonstrated estimation via a simulation study. Future directions include exploring

the intersection of policies, interference, and game theory, and developing robust
2k is 3-dimensional since Ci is 3-dimensional.
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estimation strategies for this setting.
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Figure 5-4. Difference in expected outcomes between an optimized strategy and the
status quo. We analyze several network densities to demonstrate the generality of this
approach.
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Chapter 6

Intervening on Network Ties

6.1 Introduction

As described in preceding chapters, interventions play a foundational role in the obser-

vational causal framework. As we have seen, in the classical intervention approaches

(e.g., node interventions), researchers select one or more ‘treatment’ variables and

outcomes of interest. The value of the outcome of interest is estimated under the

hypothetical scenario in which the value of the treatment variable is changed to a

specific, researcher-chosen value.

In this chapter I will, once again, focus on domains pertaining to networks of

interacting study subjects such as infectious disease spread and social networks. As

previously discussed, several recent papers have proposed methods for obtaining

inferences from dependent data (Tchetgen, Fulcher, and Shpitser, 2017; Sherman and

Shpitser, 2018; Ogburn, VanderWeele, et al., 2014; Ogburn et al., 2017). As in the iid

setting, these papers emulate RCTs by intervening on variables and estimating the

effects on downstream outcomes.

Unfortunately, existing methods for network inference, including both those cited

above and those presented earlier in this thesis, are ill-suited to consider more general

changes to the network. For instance, in urban development economics authors have

proposed housing vouchers as a ‘treatment’ to incent families to move to neighborhoods
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with greater opportunity for upward social mobility (Chetty, Hendren, and Katz,

2016). Evaluating the effect of extracting a family from one neighborhood and placing

them in a new neighborhood with new social connections isn’t possible by considering

changes to values of variables alone: the network itself changes.

In this chapter, which is derived from original research first published in Sherman

and Shpitser (2019), I extend the classical causal inference framework to consider

changes to social network structure. First, I review different network representations

in the causal inference literature as well as notions of interventions that have departed

from conventional variable interventions. Next, I give a motivating example based

on the global political economy. Extending Malinsky (2018), I propose network

interventions; interventions on the structure of a network where ties between units are

formed or broken. I define the individual participant and average bystander effects

of these interventions, analogous to the network effects described in Hudgens and

Halloran (2008) and discuss identification. I then demonstrate that post-severance

distributions satisfy independence constraints for the severed units while remaining

minimally KL-divergent from the pre-intervention distributions. Finally, I demonstrate

estimation of network intervention effects from observational data via a simulation

study.

6.2 Review

Causal Networks

Since networks are of interest to a variety of fields, there are numerous representations,

each with their own advantages and limitations. These representations were developed

as a means of studying interference – the phenomenon that arises when neighbors’

treatments causally affect each other’s outcomes. While the present work doesn’t

focus explicitly on interference, we discuss it here since our work is complementary to
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that literature.

A widely used approach, characterized in Ogburn, VanderWeele, et al. (2014),

represents networks with directed acyclic graphs (DAGs), where network connections

appear as directed edges from one individual’s variables to another’s. This approach

lends a natural causal interpretation that follows from a rich literature on causal

DAGs. Importantly, the relationships between individuals are encoded in the functional

relationships represented by edges connecting different units; when two individuals

are not friends, edges will be absent.

Recent work (Tchetgen, Fulcher, and Shpitser, 2017; Sherman and Shpitser, 2018;

Ogburn, Shpitser, and Lee, 2018) advocates representing networks with Lauritzen-

Wermuth-Freydenburg (LWF) chain graphs (CGs), which were given a causal interpre-

tation in Lauritzen and Richardson (2002) (see also Chapters 4-5). CGs extend DAGs

by permitting representation of symmetric relationships (i.e. stable-state equilibria)

via undirected edges. Ogburn, Shpitser, and Lee (2018) argued that CGs under the

LWF interpretation can approximate feedback processes when those processes are

slow. While CGs provide a more general representation, their interpretation in the

context of the present work is somewhat complicated.

Beyond these notions, there is a substantial literature on probabilistic relational

models (Koller et al., 2007; Friedman et al., 1999). These models generalize con-

ventional graphical models by employing first-order logic to describe the nature of

relationships between entities. These models have been extended to causal inference

in network settings (Arbour, Garant, and Jensen, 2016), however, similar to chain

graphs, their use in public health contexts like those considered here is not yet well

established. For these reasons, we will restrict attention to graphical models.

Aside from graphical representations, a large subset of the interference literature

formalizes inter-unit relationships algebraically as in Hudgens and Halloran (2008).

Many of these formulations could be reformulated using graphical models.
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Structural Interventions

The majority of the causal inference literature has focused on hypothetical experiments

wherein interventions are made upon variables (e.g. smoking status) and the effects of

interventions are considered with respect to some outcome (e.g. lung cancer). The two

dominating frameworks, the Neyman-Rubin potential outcomes framework (Neyman,

1923; Rubin, 1974) and Pearl’s graph-based framework (Pearl, 2009) differ primarily

in their philosophical approach, and recently researchers have begun to use their

terminology and mechanics interchangeably. See, for example Richardson and Robins

(2013). The causal interpretation of variable interventions under these (and other)

frameworks is the subject of literature at the intersection of applied fields and the

philosophy of science. These discussions are broad and have a lengthy history. For an

incomplete survey, we encourage the interested reader to consult the works of Halpern,

Tian, and Pearl (Tian and Pearl, 2001; Halpern and Pearl, 2005), and Woodward

(Woodward, 2001).

In the past two decades, there has been a movement towards defining more

general notions of intervention. Korb proposed several generalizations, including

interventions that are stochastic with respect to the treatment variable (Korb et al.,

2004). Eberhardt and Scheines discussed similar ideas, contrasting ‘hard’ and ‘soft’

interventions, corresponding to changing causal structure (e.g. removing edges) and

parametric form respectively (Eberhardt and Scheines, 2007). They proposed using

this continuum of interventions to aid in causal discovery efforts (see also Tian and

Pearl (2001)). Malinsky proposed a framework for considering the effects of changes

to the structure of a causal model on a ‘macro level’ (Malinsky, 2018). In this

framework, one modifies structural equations or manipulates parameters in order to

evaluate counterfactuals pertaining to the world in which macro level features are

different. Finally, unrelated to philosophy, Ogburn et al. (2017) proposes a type of

edge intervention in social networks as a means of understanding changes in network
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ties. In addition, interventions on paths and edges were considered in the context of

mediation analysis in Shpitser and Tchetgen Tchetgen (2016). In the current work,

we build on these ideas to evaluate general interventions on network ties, enabling us

to envision the counterfactual world in which two units are severed or connected.

6.3 Motivating Example: The Political Economy

In this section we give a motivating example: a model of trade relations between coun-

tries, in which network interventions provide a means of understanding counterfactual

changes to network structure.

In global economics, policies made by one country, such as treaties, trade deals,

and tariffs, have a direct impact on the nations geographically and diplomatically

connected to the policymaker. In light of current events, we refer to the interventions

represented in Fig. 6-1 as the ‘Brexit’ scenario (for severing two or more countries)

and the ‘Turkey joins the EU’ scenario (for connecting two or more countries). These

types of temporal DAG models, also known as dynamic Bayes nets (Murphy and

Russell, 2002), correspond to time series cross sectional data from the political economy

literature Beck and Katz (2011). Each country i is represented by temporally sequential

observations Yi,1, Yi,2, . . . Yi,T where each Y is a vector of economic variables (GDP,

unemployment rate, open-market funds rate, etc.).

As a generalization of Fig. 6-1, we can imagine the network having several countries,

each with multiple neighbors. We can then consider the hypothetical effect of a ‘clean

break’ at time t between one country and some or all of its neighbors (introducing

non-stationarity (Robinson and Hartemink, 2009)). This is represented by moving

from Fig. 6-1 (a) to Fig. 6-1 (b) by severing the connection between countries 2

and 3 at t = 3. We can also consider the reverse intervention, where two previously

unconnected countries are connected, corresponding to the signing of a trade agreement.
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Y1,2Y1,1 Y1,3 . . . Y1,T

Y2,2Y2,1 Y2,3 . . . Y2,T

Y3,2Y3,1 Y3,3 . . . Y3,T

(a)

Y1,2Y1,1 Y1,3 . . . Y1,T

Y2,2Y2,1 Y2,3 . . . Y2,T

Y3,2Y3,1 Y3,3 . . . Y3,T

(b)

Figure 6-1. (a) A DAG representing time series cross sectional data on three countries
where country 2 has a trade agreement with countries 1 and 3; (b) the DAG in (a)
after an intervention is performed, severing the alliance between countries 2 and 3 at
t = 3.
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Graphically, this corresponds to moving from Fig. 6-1 (b) to (a). Using the framework

we propose in this paper, a decision-maker could evaluate these hypothetical policies

prior to implementation and ensure that they have the intended effect.

6.4 Representing Networks with Causal DAGs

Throughout this chapter, I will consider performing causal inference in social networks

represented by DAGs. In this section I formalize the notation needed to define network

interventions and their associated effects. As in previous chapters, I will not fully

review all of the relevant concepts and notations. Instead, I will highlight new concepts

and notation needed for this work and re-emphasize previously discussed concepts

where appropriate.

Causal DAG Prerequisites

Recall from previous chapters that a parameter in a model is said to be identified if it

is expressible as a function of the observed data. In causal DAGs with no unobserved

variables, all counterfactual distributions p(V(a)) are identified by the g-formula

(Robins, 1986). For notational convenience, in the original version of this work, we

expressed the g-formula slightly differently. It nevertheless has an identical meaning

and use:

p({W (a) : W ∈ V \A}) =
∏︂

W ∈V\A
p(W | paG(W ))|A=a

As an example of this formula’s application, consider a single-unit version of Fig. 6-2.

If we are interested in the effect of setting A = a, the interventional distribution

p(V(a)) is given by p(Y |A = a, C)p(C).
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Edge Interventions

As we saw in Chapter 3, while classical interventions set a variable to a value, there

are often cases where we are interested in how an intervention affects an outcome

along multiple pathways, such as the separate effects of smoking, smoke inhalation

and nicotine, on a patient’s risk of lung cancer. In these cases, it is natural to think

of interventions in which we intervene on the treatment node with different values for

each edge out of the node. For instance, we might consider setting smoking status to

0 for the sake of the smoke inhalation edge and to a reference value for the nicotine

exposure edge, corresponding to having the patient smoke e-cigarettes.

Here, I review some of the formalities of edge interventions since they serve as

an important basis for the novel work that follows. For a complete treatment, see

Chapter 3.

Formally, for a set of treatment variables A the set of edges out of A is denoted

by α. Interventions are performed with a multiset aα which maps edges to constant

values for A or to the natural value of A for each A ∈ A. As with node interventions,

for Aα = {A|(AB)→ ∈ α}, where (AB)→ ∈ α signifies that an edge A → B is in

α, edge interventions given by p({W (aα) : W ∈ V \Aα}) are identified by the edge

g-formula (Shpitser and Tchetgen Tchetgen, 2016) with paᾱ
G(V ) = {W |(WV )→ ̸∈ α}:

∏︂
W ∈V\Aα

p(W |a(ZW )→∈α, paᾱ
G(W )). (6.1)

If we again consider a single-unit version of Fig. 6-2, when we intervene with

aα = {(CA)→ = c, (CY )→ = c′}, the distribution p({W (aα) : W ∈ V \Aα}) is given

by p(Y |A,C = c′)p(A|C = c).

Stochastic Interventions

Echoing Chapters 3 and 5, as an alternative generalization to classical interventions, we

might be interested in customizing treatments according to unit-specific characteristics.
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For instance, we might want to choose a cancer patient’s chemotherapy regimen

according to the specific characteristics of their tumor. Rather than setting treatments

to fixed values, we set them to analyst-specified functions of pre-treatment covariates.

This type of policy intervention is the subject of the dynamic treatment regime (DTR)

literature (Tian, 2008; Shpitser and Sherman, 2018).

Formally, for a set of treatment variables A, the set of pre-treatment covariates

we wish to use to set each A ∈ A is denoted CA. Policy interventions entail setting

A to the set of functions fA, where fA ∈ fA maps XCA
→ XA. Responses to policy

interventions, p({W (fA) : W ∈ V\A}), are identified by the policy g-formula (Shpitser

and Sherman, 2018):

∏︂
W ∈V\A

p(W |{fA(CA) : A ∈ A ∩ paG(W )}, paG(W ) \A) (6.2)

Continuing with our single-unit example for Fig. 6-2, suppose we are interesting

in setting A to a policy that is a function of C: fA(C). Then the counterfactual

distribution p(V(fA(C))) is given by p(Y |A = fA(C), C)p(C).

DAG Representation of Network Data

In this chapter, I will represent networks of interacting agents with DAGs following

Ogburn, VanderWeele, et al. (2014). I will assume each network G is associated with

a probability distribution p(V) and that G has a causal interpretation as described

in Chapters 2-3. Denote the set of agents (‘units’ or ‘subjects’) in G by A. G can

be partitioned into sub-graphs Gi with variables Vi ⊂ V for each agent i ∈ A. The

marginal distribution for agent i is therefore denoted p(Vi). The notation −i will

refer to A\ i. Analogously, G−i denotes the subgraph of G where Vi and its associated

edges have been removed.

We define the notion of unit homogeneity. This assumption has two parts: a) if

there exists a unit i ∈ A with variable Vi ∈ Vi, then there is a corresponding Vk ∈ Vk

87



for all k ∈ A with an analogous interpretation; and b) if there exists a unit i ∈ A with

variables Vi, Ui ∈ Vi such that Vi ∈ paGi
(Ui), then Vk ∈ paGk

(Uk) for all k ∈ A. The

first part ensures that units are all of the same ‘type’ (e.g. all agents have the same

demographic variables, and the same outcome variable). The second part ensures

that the existence of a relationship between one unit’s variables implies the same

relationship exists for all other units.

For an example of these definitions, consider Fig. 6-2. Each unit has a variable of

each ‘type’ (e.g. C,A, Y ) and the connections between variables are the same for each

unit (e.g. Ci → Ai in all units).

A1

C1

Y1

A2

C2

Y2

A3

C3

Y3

Figure 6-2. A simple social network represented by a DAG. The network exhibits unit
homogeneity, symmetric connections, and homogeneous connections.

On the network level, we define the notions of connectedness, symmetry of con-

nections, and homogeneity of connections. Two units i, j ∈ A, with i ̸= j, are said to

be connected if for some Vi ∈ Vi and some Uj ∈ Vj it is the case that Vi ∈ paG(Uj).

The connection between i and j is said to be symmetric if the vice-versa relationship

holds. That is, if i and j are connected and the connection is symmetric then for all

Vi ∈ paG(Uj), we have Vj ∈ paG(Ui), where Vi is analogous to Vj and Ui is analogous

to Uj. The set of units connected to unit i in G, also referred to as i’s neighbors, will

be denoted NG(i). Finally, we define homogeneity of connections, which ensures that

the relationships across the network are similar. If i and j are connected and there

is an edge between some Vi ∈ Vi and some Vj ∈ Vj then network connections are

homogeneous if for all connected units k, l in the network, an edge is present between
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the analogous Vk ∈ Vk and Vl ∈ Vl.

We further define homogeneity of functional form which strengthens the notion of

homogeneity for connections by imposing that, for any pair of connected nodes, the

marginal distribution with respect to those two nodes is the same as the marginal

distribution for any other pair of connected nodes (e.g. p(Vi,Vj) = p(Vk,Vl) for

all i ̸= j and k ̸= l)). Under this assumption, pairwise relationships between units

are the same, regardless of the type of unit. This assumption is reasonable in certain

applied contexts, such as infectious disease spread, which is governed by a process

that operates in the same way for any unit in the population.

For an example of these definitions, once again consider Fig. 6-2. Connections

are symmetric (e.g. C1 → A2 and C2 → A1) and homogeneous (e.g. C1 → A2 and

likewise C3 → A2).

6.5 Network Interventions

In this section we introduce the notion of network interventions where we intervene

on the structure of a network by adding or removing edges, changing relationships

between units. We define effects of these interventions and give identification criteria

in §6.6, describe appealing properties of certain network interventions with respect to

KL-divergence in §6.7, and discuss estimation in §6.8.

Severance Interventions

We will call interventions in which we sever two individuals in a network ‘severance

interventions’. For a graph G with pre-intervention distribution p(V), where V is

partitioned by {Vi|i ∈ A}, we denote the intervention severing units i and j by i ▷◁ j.

Graphically, this corresponds to removing all edges between Vi and Vj, yielding

the graph Gi▷◁j. We will define responses to severances with respect to individual
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units (e.g. p(Vi(i ▷◁ j)). The joint response is simply the joint distribution over these

counterfactuals.

We propose two different types of severance intervention. Each formulation has a

corresponding causal interpretation and one could use either formulation depending

on the application.

The first formulation, which we will call ‘value-based’ severance and is closely tied

to classical mediation analysis, generalizes edge interventions (Shpitser and Tchetgen

Tchetgen, 2016) to networks. We intervene on variables in an edge-specific manner,

replacing cross-unit edges into a unit, say i, with synthetic edges into i that represent

fixed relationships no longer dependent on variables in the previously connected unit.

For Vi ⊂ V, let AVi
= paGj

(Vi), the parents of Vi in Vj. We consider setting

AVi
to aVi

for the sake of edges from AVi
to Vi. All other edges out of AVi

maintain

the observed values of their source node so that for all Vj ∈ V \Vi, Vj’s pre- and

post-intervention distributions are the same. Since the intervention values are constant,

i and j are no longer connected. Returning to our diplomacy example, one might

choose aVi
to be a reference value in the network, such as network averages of economic

variables. Formally, p(Vi(i ▷◁ j; aVi
)) =

p
(︂
Vi(AVi

= aVi
, {Vj(aVi

) : Vj ∈ paG−j
(Vi)})

)︂

The second formulation, which we call ‘stochastic’ severance, entails marginalizing out

the parents from the severed unit. We phrase these as policy interventions.

Consider Vi ∈ Vi and let A = {A ∈ Vi| paGj
(A) ̸= ∅} (i.e. A is the set of unit-i

variables with parents in unit j). The counterfactual p(Vi(i ▷◁fA j)) corresponds to

selecting a set of stochastic policies fA where each fA is unit-structure preserving (see

below). The counterfactual is given by the recursive formula:

p(Vi(i ▷◁fA j)) = fVi
({C(fA) : C ∈ paG(A) \ paGj

(A)})
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For a policy fVi
to be unit-structure preserving, p(Vi| paG−j

(Vi)) must be the same in

the pre- and post-intervention distributions. This ensures that unit i’s causal structure

is maintained. Formally, fVi
({W : W ∈ paG−j

(Vi)}) =∫︂
paj(Vi)

p(Vi| paG(Vi))d(paj(Vi)),

where paj(Vi) = paG(Vi) ∩Vj.

We will argue in §6.7 that post-severance distributions are minimally KL-divergent

from p(V) among the class of distributions corresponding to the DAG with reduced

edge set. Specifically, this holds for value-based severances if, instead of fixing values,

we allow the source nodes of edge interventions to vary and average over those nodes.

Likewise, for stochastic severances, the KL result holds if we pick fVi
such that Vi and

it’s remaining parents paGi▷◁j
(Vi) have a particular relationship.

Connection Interventions

We will call interventions in which we adjoin two previously unconnected individuals

in a network connection interventions. We will denote the intervention where units

i and j are joined by i ⋄ j. Graphically, this corresponds to inserting one or more

edges from Gi to Gj or vice-versa, yielding Gi⋄j. As before, we will define responses to

connection interventions with respect to individual units (e.g. p(Vi(i ⋄ j)). The joint

response p(V(i ⋄ j)) is simply the joint distribution over these counterfactual vari-

ables. We describe three separate and increasingly general formulations of connection

interventions.

Interventions Under Functional Form Homogeneity

If we assume that the functional forms of network ties are homogeneous, and further

assume that each structural equation in the network aggregates arbitrarily many inputs,

then the new structural equation for each variable is determined by the equations for

the analogous variables in the network.
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We might be interested in counterfactual situations that are not present in the

observed data, such as the case when connecting two units results in one unit having

more neighbors than any unit in the observed data. Because we assume homogeneity

of functional form, we can only allow for classes of policies that can flexibly handle an

arbitrary number of neighbor nodes.

For the intervention to be well-defined, we must have fV ∈ F , where F is a class

of aggregator functions of the form f(hU(U1, U2, . . . ), hW (W1,W2, . . . ), . . . ). Each hZ

maps Z → R where Z is an arbitrary-sized multiset of Z-type variables. In turn, f

maps H → R where H is the arbitrary-sized multiset of outputs from the h functions.

For instance, if Vi has parents of types U,W ⊂ V, we might select hU to output the

mean of the U ’s, hW to output the median of the W ’s, and f to output the sum of

those two values.

Suppose i and m, and i and k are connected in G. Then under functional form

homogeneity, the relationships between Vi ∈ Vi and Um ∈ paGm
(Vi) and Vi and the

analogous Uk ∈ paGk
(Vi) are governed by a function fV . In the post-intervention

distribution, p(Vi(i⋄fV
j)), where units i and j are connected, the relationship between

Vi and Uj is also governed by fV . The associated counterfactual is given by:

p(Vi(i ⋄fV
j)) = p(Vi = fV ({V (i ⋄ j) : V ∈ paGi⋄j

(Vi)}))

Intervening With Known Policies

We can relax the assumption of homogeneous network ties by intervening with a

known functional form. As with the previous formulation, the analyst is interested in

understanding the effect of inducing a specific relationship. Continuing our diplomacy

example from §6.3, consider Turkey as a candidate for EU membership. Since

Turkey has a large, robust economy, it may be able to negotiate a more favorable

entrance with specific parameters, similar to Switzerland’s non-member bilateral

treaties. This formulation represents the inverse operation of function form-based
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severance interventions.

We wish to evaluate the effect of connecting units i and j with a known in-

duced relationship. In the pre-intervention distribution, Vi ∈ Vi is determined by

fVi
(paG(Vi), ϵVi

) ∈ FVi
. For the intervention to be valid, the analyst must specify

f ′
Vi
∈ F ′

Vi
where F ′

Vi
is a family of unit-structure preserving functions. The counterfac-

tual is defined as:

p(Vi(i ⋄f ′
Vi
j)) = p(Vi = f ′

Vi
({V (i ⋄ j) : V ∈ paGi⋄j

(Vi)}))

In this context, the notion of a unit-structure preserving policy is the same as before,

however for notational clarity we define S = paGi⋄j
(Vi) \ paG(Vi), Vi’s new parents in

the post-intervention graph, and rephrase the definition as:

p(Vi| paG(Vi)) =
∫︂

S
f ′

Vi
(paGi⋄j

(Vi))p(S)dS (6.3)

Intervening with Unknown Policies

In the most general formulation, we do not assume the analyst knows the interventional

policy in advance. Instead, we formalize a procedure for picking an optimal policy to

govern the relationship between connected units subject to some known constraints.

In the example where we consider Turkey joining the EU, this corresponds to the

EU and Turkey negotiating a treaty that jointly optimizes their outcomes (e.g. mean

per-capita GDP).

Building on the preceding subsection, we can simply express this type of intervention

as an optimization on some jointly defined criterion, such as utility, within a class of

policies. Let F ′
Vi

and F ′
Vj

be families of unit-structure preserving candidate policies

for Vi and Vj. Let C be a known set of constraints that the solution must satisfy (e.g.

Turkey cannot trade away more natural resources than it has). Let g((Vi, Vj)(fVi
, fVj

))

be a known function that captures the joint outcome for units i and j under a given
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pair of f ’s. Then the optimal f ’s are given by:

arg max
fVi

∈F ′
Vi

,fVj
∈F ′

Vj

E[g(Vi, Vj)(fVi
, fVj

)] subject to C

Solving this optimization corresponds to evaluating p(V(i ⋄ j)(fVi
, fVj

)) for each pair

of candidate f ’s that satisfy C and picking the best pair.

6.6 Effects and Identification of Network Interven-
tions

Hudgens and Halloran (2008) defined the direct, spillover, and network average effects

for interference settings. Respectively, these correspond to the effect on unit i’s

outcome when i’s treatment is modified, the effect on i’s outcome when i’s neighbor’s

treatment is modified, and the average effect on all units’ when someone’s treatment

is modified (i.e. the sum of the direct and spillover effects). Since these effects are

defined for a particular type of node intervention, it is necessary to define analogous

effects for network interventions.

We define two new effects: the individual participant effect (IPE), and the average

bystander effect (ABE). The IPE is defined for units i and j when they are the

subjects of a network intervention. IPEi is the contrast between i’s observed and

interventional outcomes. For severances (with connections defined analogously), this

contrast is given by IPEi(i ▷◁ j) = Yi − E[Yi(i ▷◁ j)]. We can also define the average

participant effect (APE) as the mean of IPEi and IPEj.

The ABE captures the contrast for units not directly involved in a network

intervention. By the Markov property of DAGs, for a network intervention on i and j,

the ABE is non-trivial for i and j’s pre-intervention neighbors NG(i) ∪NG(j) \ {i, j}

(e.g. the other countries i and j have treaties with). For severances, ABE(i ▷◁ j) =

1
|(Ni ∪Nj) \ {i, j}|

∑︂
k∈(Ni∪Nj)\{i,j}

Yk − E[Yk(i ▷◁ j)]
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Connections are defined analogously. Following Hudgens and Halloran (2008), the

average effect on the network (e.g. the effect on the ‘global’ economy) is the sum of

APE and ABE.

Identification

For a given intervention type, if the IPE is identified then the ABE is also identified

and vice versa. We therefore focus on the criteria for identification of each type of

intervention we’ve discussed.

Under our setup, value-based severance interventions are the network analogue

of edge interventions in mediation settings. For a severance of units i and j, let α

be the set of edges out of paG(Vi) ∩ Vj. If aα specifies a constant value for each

edge Vj → Vi and that the source nodes for all other edges in α are random, then

p(Vi(i ▷◁ j; aα)) is identified by the edge g-formula (Eq. 6.1).

For instance, in Fig. 6-2, if we are interested in the effect on Y2 of severing units 2

and 3 by setting AV2 = aV2 = {C3 = c3, A3 = a3} for the sake of the edges (C3Y2)→

and (A3Y2)→, then:

p(V2(2 ▷◁ 3); aV3) =

p(Y2|A1, A2, C1, C2, A3 = a3, C3 = c3)

×p(A1|C1, C2)p(A2|C1, C2, C3 = c3)p(C1)p(C2)

The other interventions we define entail a change in the functional form of the variables

of interest. Suppose we wish to join units i and j with A = {V ∈ Vi| paGi⋄j
(V ) ∩

Vj ̸= ∅} and CA = {V ∈ Vj|A ∈ chGi⋄j
(V )}. Then, if fA are all functions that

either satisfying the aggregator properties for the homogeneous case, or are unit-

structure preserving for the non-homogeneous case, the counterfactual p(Vi(i ⋄fA j))

is identified by the policy g-formula (Eq. 6.2). Stochastic severances (e.g. of units

i and j) are also identified under our setup, with A = {A ∈ Vi| paGj
(A) ̸= ∅} and
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CA = paG(A) \ paGj
(A) for each A ∈ A and fA satisfying unit-structure preservation

for each fA. For homogeneous connections, we must also estimate the parameters of

each aggregator function (hV , hW , etc.) from observed data. These are identified by

maximum likelihood from G

As an example, if we are interested in performing a stochastic severance on units 2

and 3 in Fig. 6-2, suppose we set fVi
(paG2▷◁3(Vi)) = p(Vi| paG(Vi) \ paG3(Vi)) for each

Vi ∈ Vi. Then the identifying functional for the effect on V2 is given by:

p(V2(2 ▷◁f ′
Vi

3)) = p(Y2|A1, A2, C1, C2)

×p(A1|C1, C2)p(A2|C1, C2)p(C1)p(C2)

Latent-Variable Network Interventions

Throughout this chapter, I have assumed that data is representable by a DAG where all

variables are observed. We can relax this assumption to allow for models in which some

variables are latent. In these cases, the interpretation of the proposed interventions

remains the same, however, identification conditions will be modified slightly.

Consider a latent-variable DAG G(V∪H) with V observed and H hidden. From G,

we can obtain a acyclic directed mixed graph (ADMG) G ′(V) via a latent projection

operation (Richardson et al., 2017). G ′ represents an equivalence class of graphs that

share the same observed variables and set of independence constraints (Richardson

et al., 2017).

Identification of network interventions in an ADMG G ′ relies on the assumptions

described in the previous section, existing non-parametric identification theory for

ADMGs, and the requirement that the network intervention operates only on edges

that are present in both G and G ′. As pointed out previously, value-based severances

in DAGs can be identified by the edge g-formula. Under the relaxation allowing for

latent variables, value-based severances are instead identifiable according to a version
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of the ID algorithm adapted to edge interventions, proven sound and complete in

Shpitser and Sherman (2018). Likewise, for stochastic severances and for connection

interventions, if the identification conditions described in the previous sub-section

hold, then the respective interventions are identifiable according to a version of the

ID algorithm adapted to policy interventions, proven sound and complete in Shpitser

and Sherman (2018)).

6.7 Optimal Choice of Post-Severance Distribution

In this section we prove a series of results regarding the KL-divergence from a

distribution p(V), corresponding to a known DAG G, to another distribution p̃(V),

corresponding to a DAG in which edges have been removed. The results demonstrate

that the KL-divergence from p to p̃ is minimized when p̃ takes on a form similar to

the g-formula (Robins, 1986). These probabilistic results help justify the g-formula

and edge g-formula as intuitive tools for analyzing causal queries in DAGs. Moreover,

these results motivate the manner in which we perform severances.

The first result demonstrates that when removing edges between a node A and its

parents, a simple modification to the factorization of G, removing A’s parents from the

term for A yields the KL-minimal distribution satisfying the independence constraints

implied by the severance.

Theorem 11 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V. Let P(V) be the set of probability distributions that factorize according

to G. Then

p(A)
∏︂

V ∈V\A

p(V | paG(V )) = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ paG(A)

The second result generalizes the first by allowing for edge removal between A and a

subset of its parents.
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Theorem 12 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V and B ⊆ V such that B ⊆ paG(A). Let P(V) be the set of probability

distributions that factorize according to G. Then

p(A| paG(A) \B)
∏︂

V ∈V\A

p(V | paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃) s.t. A ⊥⊥ B| paG(A) \B

The following result generalizes the previous theorem to allow for removal of any set

of edges in G. This result corresponds to directly to severance interventions. If we

remove the dependence of each variable on the parents for which we remove edges, and

otherwise keep the variable functionally consistent with its original structural equation,

the result is the minimally KL-divergent distribution from the original distribution

that reflects the severance.

Theorem 13 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V and for each A ∈ A define In(A) ⊆ paG(A), the set of parents of A

whose edges into A we wish to remove. Let P(V) be the set of probability distributions

that factorize according to G. Then

∏︂
A∈A

p(A| paG(A) \ In(A))
∏︂

V ∈V\A
p(V | paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃) s.t. A ⊥⊥ In(A)| paG(A) \ In(A) ∀A ∈ A

The final two results are corollaries of Thm. 13 and are closely related to classical

causal inference. The first corresponds to variable interventions where we fix some

A ⊆ V to a value a. The KL-closest distribution to p(V) is given by the g-formula,

where terms for each A ∈ A are removed and variables with parents in A are evaluated

with those parents set to a.

Theorem 14 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ⊆ V and assume that for some a we have p(A = a) > 0. Let P(V) be the
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95% Confidence Intervals of Bias
Intervention Erdős-Rényi Barabasi-Albert Watts-Strogatz

Homogeneous Connection (-.0049, .0020) (-.0021, .0006) (-.0024, .0010)
Known Connection (-.0014, .0010) (-.0004, .0016) (-.0018, .0020)

Unknown Connection (-.0035, .0025) (-.0134, .0124) (-.0280, .0093)
Stochastic Severance (-.0015, .0043) (-.0096, .0066) (-.0032, .0020)

Value Severance (-.0088, .0112) (-.0010, .0020) (-.0048, .0016)

Table 6-I. 95% confidence intervals for the bias of estimates of each type of network
intervention.

set of probability distributions that factorize according to G. Then

∏︂
V ∈V\A

p(V | paG(V ))|A=a

= arg min
p̃∈P(V)

DKL(p||p̃) s.t.

p̃(Ai| ndG(Ai)) = I(Ai = ai) for i = {1, . . . , |A|}

The final result, which can be found in Appendix F, generalizes the above theorem

to edge interventions (Shpitser and Tchetgen Tchetgen, 2016). This result corresponds

to the value-based formulation of severances. When we fix a set of edges to constant

values, the resulting distribution is given by the edge g-formula and is the KL-closest

distribution to the pre-intervention distribution that reflects the fact that those edges

have been fixed.

6.8 Experiments

I now describe a set of simulation studies which demonstrate the feasibility of obtaining

unbiased estimates of the effects of network interventions. In these experiments we

assume partial interference: we observe M samples of a network, each with N units.

While we do not consider full interference scenarios, in which the analyst has access to

only a single sample of the network, similar results could be obtained in that setting

using the auto-g-computation algorithm (Tchetgen, Fulcher, and Shpitser, 2017). We
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also assume that all pre-intervention networks satisfy symmetry of connections, and

homogeneity of units, connections, and functional form.

We consider a social network graph resembling Fig. 6-2 where all variables C,A,

and Y are binary. In four separate experiments we demonstrate estimation across

varying social network generators, varied attachment probabilities for the Erdős-

Rényi generator, varied network sizes, and varied sample sizes. For the latter three

experiments we restrict attention to the stochastic severance intervention. For each

unit i we generate values for Vi according to log-linear models with parameters

τC , τA, τY . For the detailed setup, please see Appendix F.

For each experiment we estimate the average IPE by separately applying the

intervention to each unit in the network. For severances we remove the connection

between the unit of interest and it’s highest degree neighbor while for connections we

connect the unit to it’s highest degree non-neighbor.

Estimation and Evaluations

For each experiment we first fit models for each variable type given it’s parents via

MLE where features for neighbor variables are sums of those variables. We estimate

values of endogenous nodes using Monte Carlo sampling using these fit models and

exogenous nodes via the empirical distribution. We estimate values in the pre- and

post-intervention worlds and report the mean difference between these estimates across

all units and all samples of the network. For specific details on the mechanics of each

intervention type, please see Appendix F.

To evaluate the performance of this estimation technique, we generate ‘ground

truth’ graphs corresponding to the result of each intervention and generate values for

the Yi’s of interest. For each simulated network we generated 1000 bootstrap samples.

We compare the intervention effects to the ground truth effects and obtain the bias of

our approach. As presented in Tables 6-I, and F-II - F-IV, the 95% confidence interval
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for each experiment covers the ground truth bias and thus shows that the effects of

network interventions can be consistently estimated.

6.9 Discussion

In this chapter, I proposed a framework for intervening on the structure of a social

network graph by severing or creating connections between subjects. I defined effects

that extend the network effects defined in Hudgens and Halloran (2008). I then proved

that for severances, and causal interventions generally, the g-formula and edge g-

formula obtain distributions that are minimally KL-divergent from the pre-intervention

distribution subject to the independence constraint imposed by the intervention.

Finally, I demonstrated that these effects can be estimated from observational data

via a simulation study.

In the future, this framework could be generalized to chain graph models to allow

for more flexibility of network representation.
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Chapter 7

Conclusion

This thesis has pushed forward the field of observational causal inference in several

key areas. In this final chapter, I will summarize the specific contributions I’ve made

and talk about their broader impacts and potential impacts. I will conclude with a

discussion of future research directions that follow from this work.

7.1 Summary

While each chapter in this work was derived from distinct research projects, each of

which has previously been the subject of a publication, there are several themes that

span most, if not all of these works. I’ve proposed novel approaches to representing

causal models, posited and proven theoretical results describing when queries are or

are not estimable from observed data (i.e., identifiable), and expanded the notion

of an intervention. Each of these stands as an important contribution to the area

academically, and, hopefully, will soon pay practical dividends as well.

7.1.1 Identification Theory

The chief contribution of this thesis are the identification theory results. In Chapters 3-

5, I presented a series of identification results that generalize the seminal ID algorithm

(Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Richardson
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et al., 2017) to a broader class of settings. The results in Chapter 3 are perhaps the

most consequential, as they relate directly to reinforcement learning and sequential

decision making problems, which have attracted great attention in recent years. In

light of the recent popularity of algorithmic advertising, the results on identification

in non-iid and network settings in Chapters 4 and 5 are also of significant interest in

the broader community (Nabi et al., 2022)

7.1.2 Representation of Causal Models and Counterfactual
Queries

The fundamental framework I relied upon to carry out this work was primarily

formulated elsewhere. Nevertheless, my work added to this framework. In Chapter

4, I expounded on a novel use of chain graph models (including latent variable chain

graphs) to represent social networking dynamics and other non-iid settings. This

representation is more parsimonious for situations where there are symmetric or

equilibrium relationships in the observed data in addition to causal relationships which

are symmetric. As highlighted in Chapter 5, this modeling paradigm is also useful

in situations where simultaneous decisions are being made, such as in multi-agent

reinforcement learning. Since publication, this modeling approach has also been

studied in Ogburn, Shpitser, and Lee (2018).

7.1.3 Varieties of Interventions

Closely related to the issues of how we represent causal models and what is estimable

from those models is the question ‘what can we ask of our causal model?’ In multiple

chapters in this thesis, I sought to answer that question. In Chapters 3 and 5, I

gave novel algorithms for the identification of causal effects associated with stochastic

and policy interventions. Policy interventions in the way I’ve conceived permit the

analysis of a more general class of hypothetical experiments than those represented by

103



classical interventions which set variables to constant values. In practice, this form

of intervention could allow applied researchers to perform more realistic analyses of

the effects, or efficacy, of policies they are considering adopting. This thesis (nor the

papers it is derived from) is not the first to posit this type of intervention (Eberhardt

and Scheines, 2007; Tian, 2008). Nevertheless, this work expands the utility of that

line of research by characterizing when and how responses to such interventions can

be estimated.

In addition to stochastic interventions, the structural interventions considered in

Chapter 6 are relatively novel. This work is stands much closer to the philosophy

of causation than the other works presented in this thesis. As such the chapter has

a different flavor: rather than characterizing, formally, what is possible, I sought to

both pose and answer a ‘what if?’ question. Ultimately, the answer I provided only

scratched the surface, as that work has since inspired several further inquiries into the

particulars of structural interventions in the presence of non-iid data (Subbaswamy,

Chen, and Saria, 2019; Witty et al., 2019; Galhotra et al., 2022).

7.1.4 Other Contributions

While the body chapters of this thesis cover a coherent and sequential (though the

publication order of the original papers does not match the ordering of the chapters)

story of causal modeling in the dependent data setting, I’d like to momentarily

highlight the other contributions I made during my PhD studies. These are the subject

of the appendix chapters which follow.

The first appendix chapter is derived from an applied paper on the topic of mental

health surveillance from social media data. In recent years, social media-derived

surveillance tools have come into relatively widespread use. In this chapter I sought to

answer the question of whether demographic characteristics (specifically gender) can

confound predictions of mental health status (i.e., depression). This is inherently a
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causal question and so it closely relates to the work from the main body of the thesis.

Unfortunately, as in most real world settings, this question was not truly answerable

from observed data because of the presence of too many latent confounders. I did,

however, use predictive importance of social media terms different users used in their

posts as a proxy and found that the answer is ‘yes’. In particular, the performance

of models designed to evaluate whether an individual is or is not depressed differs

depending on gender. This finding can be used to help tailor models to users based

on demographics so as to provide better population-level mental health care.

The second appendix, derived from a paper originally published in the Annals

of Thoracic Surgery, concerns the development of a tool for predicting the risk of

readmission to the hospital following cardiac surgery. The model, fit from electronic

medical record data and a curated data source, dramatically outperformed the state

of the art for the task. This work’s contribution, however, was more in the vein of

communication: we sought to demonstrate to a clinical audience the feasibility and

importance of using modern machine learning techniques to develop risk prediction

models. From a (pseudo-) causal perspective, we were able to derive some useful clinical

insight: we analyzed the Shapley values of our top-performing model to identify that

several post-discharge variables are highly important for predicting readmission. This

finding has since spurred discussions (internal to our collaboration team) about the

possibility of running an in-clinic follow-up study to evaluate the real-world importance

of the post-discharge phase as it relates to readmission.

7.2 Discussion

7.2.1 Limitations

As I close, it seems appropriate to also discuss some of the limitations of this work.

As in any theory-grounded research area, translating theory into real world use is
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very challenging. The work presented in this thesis relies on a number of assumptions

that will not hold in many real world studies. It will therefore often lack generality,

despite being explicitly crafted as a generalized version of existing theory. Beyond

this issue, communication regarding the potential efficacy of these contributions to

applied audiences is an important factor in their broader adoption.

On Assumptions and Practical Considerations

The identification results I presented, including those in Chapter 2 that predate

this work, generally make a variety of formal assumptions. Take, for instance, the

assumption that the causal graph used as an input to the identification algorithm

is correctly specified (i.e. latent variables in the right spots). This assumption is

often unrealistic. In practice, graphs are typically specified in consultation with a

subject-matter expert who may be prone to biases that lead to misspecification.

Violations of these assumptions can often be addressed by other areas of the causal

inference literature. For instance, the causal discovery literature (Spirtes et al., 2000)

proposes to learn graphs algorithmically from observational data. This approach is not

without problems, of course. Those methods rely on their own assumptions and are

often reliant on parametric methods1 that are prone to misspecification. Nevertheless,

causal discovery serves as a nice example of an approach to help ensure the assumptions

necessary to use identification theory are satisfied.

Satisfying assumptions for using the algorithm may not be enough, however. For

a variety of reasons, graphical models remain relatively under-utilized in fields like

epidemiology and economics2. There, identification generally relies on much more

restrictive assumptions, such as ignorability (see Chapter 2) or specific parametric
1Such as parametric statistical independence testing or parametric scoring functions.
2For instance, in the current editions (as of this writing) of the popular epidemiology journals,

Epidemiology and The American Journal of Epidemiology, about 5% of papers mention causal graphs.
About 1 in 50 describes their use of graphs in reproducible way. None considers a graphical model
more complex than a fully-observed DAG
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models. It will therefore be necessary for the causal graphical model community to

convince applied researchers of the value of graphs before more general concepts, like

identification theory, can receive widespread attention.

As an example of interaction between the theoretical and applied communities,

consider the fact that in many real world observational studies, there is simply too

much latent confounding3 to obtain point identification. A cynic might then say

“Yes, you can use the ID algorithm, but in the real world it is not useful since it

will always fail to give me a functional to estimate.” Clearly, such a comment is not

entirely without merit: the ID algorithm formally embodies a conservative, if not

pessimistic, view of what is knowable (Greenland and Finkle, 1995; Greenland, 1996).

This comment may nevertheless be overly critical. Communicating the potential uses

(some of which I delineate below) of the identification algorithms is an important and

under-explored element of the research community’s ongoing work.

7.2.2 Future Work

As discussed previously, applied researchers and real-world decision makers tend to

make strong assumptions and then reason about the potential implications to violations

of those assumptions. This stands in contrast to the a more conservative approach

implied by identification theory: start with a model known to be unworkable (e.g. a

model that is fully agnostic about confounder relationships and will therefore always

lead to non-identifiability) and then incrementally add assumptions (e.g. remove

edges, parametrize part or all of the model, assume the existence of proxies, etc.)

until the model yields non-trivial results. Towards bridging the gap between these

opposing approaches, it would be productive to think about ways that the identification

framework presented in this thesis can be adapted and explained in a way that makes
3In most cases, when presented with a graph, an analyst will not be able to definitively (or

comfortably) rule out the existence of enough causal relationships between latent variables and
observed variables to make the effect of interest identifiable
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it appealing to applied researchers.

One potential solution I’ve envisioned is to use ID-style algorithms as interactive

tools in empirical science. The following points, at a high level, towards a framework

similar to that described exclusively for DAGs in Haber et al. (2022). When a

counterfactual query is non-identifiable, there are four potential paths forward:

1. Choose a more restrictive model

2. Choose a more general parameter space

3. Collect more data

4. Pick a different parameter

The first option might entail dropping causal edges or making parametric assump-

tions. The standard approach in applied work generally falls into this first category.

This option also captures classes of methods like instrumental variables (Angrist,

Imbens, and Rubin, 1996) and the broader proximal inference literature (Shpitser,

Wood-Doughty, and Tchetgen, 2021). The second option includes evaluating partial

identifiability (Manski, 2003; Duarte et al., 2021), which yields a range of effect sizes

rather than a point estimate. The third option is often the most intuitive: most latent

confounding arises due to a (naive or deliberate) lack of measurement, rather than an

inability to measure. Therefore, in many cases non-identification can be addressed by

modifying collection protocols to include more variables. Finally, it may be the case

that ‘giving up’ on the target parameter is preferable and a similar, but identifiable,

parameter should be estimated instead. As an example, the mediation literature has

taken this approach to handling confounding. In some settings, the natural direct and

indirect effects (Robins and Greenland, 1992) are not identifiable due to confounding

between the mediator and outcome that is downstream of the intervention variable

(the recanting witness criterion, see Avin, Shpitser, and Pearl, 2005 and Chapter 3).
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VanderWeele, Vansteelandt, and Robins (2014) proposed addressing this by deriving

alternative notions of direct and indirect effects which are identifiable in different

settings from those defined in (Robins and Greenland, 1992).

Each of these options is viable in some scenarios and impractical in others. The

ID algorithm cannot explicitly tell us which option is best for a given scenario, since

that insight is grounded in a practical, scenario-specific understanding of the model.

Nevertheless, a hypothetical synthesis between ID-style algorithms and the standard

applied causal workflow would involve using the identification theory to help narrow

down which option may be best.

As an example, suppose a researcher has posited a causal model with multiple

latent variables, observed confounders, mediators, and a treatment and an outcome.

Moreover, suppose that only some of the latent variables confound the treatment

and outcome. In such a setting, the ID algorithm would help illuminate which latent

variables are problematic. The researcher would be able to consider these variables

critically and make a decision among the 4 options described above. For instance, if

the offending latent variable is a basic demographic variable, the researcher might

conclude that the easiest path is not to make parametric assumptions, but rather that

collecting the variable is easy enough to be the best path forward.

The above example could make up part of a larger iterative process of using

ID-style algorithms to evaluate effects. The researcher might choose one option (e.g.

dropping edges) and find that the effect of interest is still not identifiable. She might

then find that a different option is more reasonable, based on the variables that lead to

non-identification in the subsequent application of the identification algorithm. Such

a process would help make transparent the impact assumptions have on modeling.

Moreover, it could be used to characterize the uncertainty of the overall modeling

process, similar to sensitivity analysis, by observing how effect estimates change when

different options are used to move from a non-identifiable effect to an identifiable
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effect.

This potential partnership between identification theory and applied science has

many open areas for future research.

On the theory and methods end, this process could be viewed as a new angle on

the sub-field of experimental design. For instance, the process of collecting additional

variables in order to move a query from ‘non-identifiable’ to ‘identifiable’ is not trivial.

Extending the model space by adding a variable could lead to positivity violations in

finite sample settings and the community would need to find ways to test when this

issue arises and propose solutions to handle it.

On the applied side of the issue, this line of inquiry opens many possibilities

for improving scientists’ process for deriving new insights. For instance, consider

the readmission work covered in Appendix B. In that work we studied the Shapley

values of our machine learning models4. That analysis led to hypotheses about which

variables causally affect readmission. Moreover, while the use of Shapley values in

clinical research is relatively new, analyzing the parameters of an associative model is

commonplace. Unfortunately, neither Shapley values nor the parameters of a trained

predictive model can provide clear insight into the causal relationships at play. In

the Appendix B example, a more comprehensive analysis is required in order to draw

conclusions about these candidate causes of readmission.

The iterative process I laid out above could be adopted to address the shortcomings

of these associational methods. For instance, using the predictive models we trained as

a basis, we could formally evaluate the identifiability of the effect of various observed

variables on readmission and, based on the results, either collect more data or think

critically about the viability of making stronger modeling assumptions.

4Shapley values are pseudo-causal. They are calculated by perturbing the values of test features
and evaluating how those perturbations affect model predictions. Essentially, they provide a measure
of the causal impact of the variables on predictions rather than on the true value of the outcome
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Appendix A

Towards Understanding the Role of
Gender in Deploying Social
Media-Based Mental Health
Surveillance Models

A.1 Introduction

The United States Centers for Disease Control and Prevention estimates that 8%

of American adults suffer from major depression at a given time (Brody, Pratt,

and Hughes, 2018). This represents a critical public health threat, as depression is

associated with downstream physical health complications (Rush, 2007; Alboni et al.,

2008) and an increased risk of suicide (Richards and O’Hara, 2014). Among the

many efforts to address this crisis is a line of research at the intersection of language

modeling, social media analysis, and mental health. The seminal papers De Choudhury

et al. (2013) and Coppersmith, Dredze, and Harman (2014) demonstrated the general

feasibility of predicting mental health status from social media data.

A major obstacle to the practical use of mental health surveillance models is

differential performance for different subgroups of the population. This behavior

can arise either because the training data is not sufficiently representative of the

population, or because some groups are simply harder to predict given the same data.
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The former case is well-studied in the machine learning literature and can be addressed

by careful data collection and training regimes. The latter case, however, is often

more subtle and harder to address. Not identifying and addressing these differences

in performance degrades the utility of the models. In particular, if the performance is

worse for historically marginalized populations it can reinforce existing inequities such

as under-diagnosis of depression (Elazar and Goldberg, 2018).

In this work we aim to assess the scope of the differential performance problem by

studying the relationship between gender and predictions of depression. The most

useful insight we could gain would be determining whether or not gender is a confounder

for depression predictions; that is, whether gender both causally affects the way in

which users post on Reddit and causally affects our predictions of the user’s depression

status. Unfortunately, testing whether this causal dynamic is true is very difficult with

the purely observational data available to us. Towards testing this phenomena, we

will instead test the slightly weaker hypotheses i) that depression predictions exhibit

gender bias (i.e., there are differences in performance across genders) and ii) that these

differences are due, at least in part, to differing uses of language between men and

women in talking about their mental state. Together these hypotheses serve as a sort

of associational version of the causal phenomenon we’d like to study. They can tell us

whether depression predictions are correlated with gender and whether certain terms

are likely to have different meanings based on the gender of the author.

We test hypothesis (i) quantitatively by fitting depression prediction models to

a novel data set collected from Reddit with ground truth genders, derived from self-

disclosures, and comparing the performances across genders. We test hypothesis

(ii) qualitatively by looking at features strongly predictive of depression for each

gender. We identify themes that are concordant across genders and consistent with

the literature (De Choudhury et al., 2016) as well as themes that are discordant across

genders and support our hypothesis that men and women use many terms differently
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to talk about (non-) depression. We follow these analyses with a discussion of open

questions that follow from this work. In particular, we discuss the use of causal

methodologies to assess our stronger hypothesis that gender confounds depression

prediction. We highlight the types of methods that could be used and the data that is

necessary to test the causal hypothesis. We conclude with a discussion of limitations

and the ethical implications of this work.

A.2 Related Work

Several existing papers have considered the role of demographics in mental health

prediction. Elazar and Goldberg (2018) demonstrated that demographics are implicitly

encoded in text data. Wood-Doughty et al. (2017) and Loveys et al. (2018) both

studied differing language use across cultures. The former used a Twitter data set

with inferred demographic labels, while the latter used a carefully-curated proprietary

data set from 7 Cups of Tea. Amir, Dredze, and Ayers (2019) explored the role of

cohort selection in assessing mental health disorder prevalence. Aguirre, Harrigian,

and Dredze (2021) is the closest to the present work. The authors characterized the

biases present in depression prediction models by showing there are differences in

performance for different demographic subgroups. This work studied biases that arise

due to the specific data set used for training,focusing on the popular, publicly available

data sets CLPsych (Coppersmith et al., 2015) and MULTITASK (Benton, Mitchell,

and Hovy, 2017).

The present work differs from those cited in that we seek to quantify demographic

bias in depression prediction using self-disclosures in a publicly available data set.

This approach improves scalability and reproducibility compared to hand-labeled

and proprietary data sets. Additionally, while self-disclosures are not perfect, they

are not subject to the same degree of noise and error that is induced when using

genders inferred by using a pre-trained model, trained on an auxiliary data source.
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Our estimates of the depression prediction performance across genders are therefore

likely to be of a higher quality. Moreover, our analyses of features that are predictive

of depression for each gender are also likely to be less noisy than they would be if we

were also inferring genders from those same features.

A.3 Data Collection

To obtain a dataset with ground truth gender, we mined all posts and comments from

the r/AskMen and r/AskWomen subreddits between January 1, 2019 and December

31, 2019 using the Pushshift API (Baumgartner et al., 2020). In total, we collected

251,487 original submissions and 4,481,354 comments.

For each post, we consider the flair – an optional tag users can apply to their posts

to reveal information about themselves or the content of their post – to determine

the ground truth gender of the post author. We considered the author of a post

to be true-male if they used one of ‘Male’, ‘male’, ‘Dude’, or � for their flair, and

true-female if they used one of ‘Female’, ‘female’, �, or �♡. Of the mined posts,

1,002,079 had some sort of flair, while 660,684 had one of the male or female indicator

flairs. This process yielded a data set of 15,140 unique male and 11,241 unique female

users, as well as 59 users whose gender-related flair use was inconsistent (i.e. at least

one post each with a male- and female-indicating flair). While people who identify

as non-binary are known to have higher rates of depression (Budge, Adelson, and

Howard, 2013; Wolohan et al., 2018) and thus could benefit from the studies like this

one, we did not have a reliable method for identifying non-binary users beyond the

list of inconsistent users and the sub-population in our cohort was too small to yield

meaningful analysis. For the remainder of the paper we restrict attention to binary

genders under the folk conception of gender (Larson, 2017).

For each of the 26,381 gender-binary users, we collected the user’s entire Reddit
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posting and commenting history from January 1, 2019 to December 31, 2019, totaling

1,035,782 original submissions and 19,029,981 comments across 64,162 subreddits. Fol-

lowing the literature on social media-driven mental health surveillance (De Choudhury

et al., 2013; Yates, Cohan, and Goharian, 2017), we defined a user as true-depressed

if they authored an original submission or comment in r/depression during the study

period and true-control otherwise. The breakdown of gender and depression classes is

721 and 713 depressed males and females respectively, and 14,416 and 10,526 control

males and females respectively.

A.4 Methods

We fit user-level models to predict depression status from our harvested Reddit data.

To enable analysis of the impact of gender as a confounder, we fit separate models

on two separate data sets: a random sample of the true-men users in our data

set, and a random sample of the true-women users. To reduce noise induced by

‘throwaway’ or ‘lurker’ accounts, we excluded users who made fewer than 5 posts

(submissions + comments) during the study period. This decision could reduce our

results’ generalizability since throwaway accounts may be owned by users with separate

primary accounts and post with the throwaway differently (e.g. posting more personal

information).

Because depression is a rare outcome in our data, our initial train and test sets

had very few depressed individuals (109 train, 26 test). This proved too few to draw

meaningful conclusions about the role of gender in depression prediction. We therefore

report the performance of our models trained on data sets constructed by performing

balanced sampling from the full data. The resulting class breakdowns are: 721 and 613

depressed males and females respectively, and 820 and 712 control males and females

respectively.
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Figure A-1. Performance of each model, trained to predict depression on either male
users or female users only, when evaluated on each test set

We split each of these sampled data sets 80-20 into train and test sets, stratifying

by user. We then constructed a Bag-of-Words (BoW) vocabulary from the submissions

and comments for each user in the training sets. We included 1-, 2-, and 3-grams, as well

as LIWC (Pennebaker, Booth, and Francis, 2007) and TF-IDF (Jones, 1972) features.

We imposed that features must be used by a minimum of 25 users to be included in

the vocabulary. We also removed posts from the r/depression subreddit from each

user’s BoW vector and filtered out terms and subreddits commonly associated with

self-disclosure of mental health disorders using the SMHD dataset (Cohan et al., 2018).

To model depression, we used the scikit-learn implementation of regularized logistic

regression (Pedregosa et al., 2011). At the end of training, we discarded all but the

top 100,000 features using the pairwise mutual information criterion as an additional

regularization step.
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Figure A-2. Features in common between the male- and female- trained models with
the 50 highest scoring features in each quadrant labeled

A.5 Results

A.5.1 Model Performance

The performance of each model on each test set is shown in Figure A-1. The most

striking result is that the performance of both models is considerably higher on the

men-only test set than on the women-only test set (.770 vs. .702 and .758 vs. .707

respectively). This difference indicates that predicting depression among men is easier

than among women. Looking at the distribution graphs, it appears that women are

over diagnosed as depressed. Mechanically, this difference in predictions likely arises

due to the existence of a few key features that indicate depression for one gender but

not the other. We identify candidate features in the analysis below.
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A.5.2 Feature Analysis

We extracted the regression coefficients from each of our models and generated a

scatter plot in Figure A-2 of the 50,967 features the two models had in common.

Towards identifying strongly predictive features, we scored each feature using the sum

of the absolute value of the coefficient from each model for that feature. In the figure,

we labeled the 50 highest-scoring features in each plot quadrant.

Concordant Depression Features (top right) Even though we filtered out

self-disclosure tokens (e.g. ’depression’ and ’depressed’), we see that many of the

most predictive features are consistent with themes discussed in the mental health

surveillance literature (De Choudhury et al., 2016): emotion (’feel’, LIWC affect,

LIWC negemo), physical symptoms of depression (’sleep’), and indicators of social

isolation (’alone’, ’porn’, and personal pronouns ’me’, ’my’, and ’I’). One notable

feature is the token ’jews’. This feature could indicate that many depressed Jewish

people of both genders frequently discuss their religious identity on Reddit, possibly

in the context of their peoples’ historically marginalized status (McCullough and

Larson, 1999). Also plausible is that the token is indicative of anti-semitic tendencies

which are correlated with depression (e.g. blaming one’s personal struggles on a

scapegoat minority group). This phenomenon has been documented in the largely-

male ‘incel’ community (Hoffman, Ware, and Shapiro, 2020) but we could not find a

clear connection between anti-semitism and depression among women in the psychology

or sociology literature.

Concordant Control Features (lower left) These feature themes are also consis-

tent with findings in the literature. Features indicative of social interactions are quite

common (’church’, ’wedding’, ’couple’) as well as features that suggest positive affect

regarding life activities (’fun’, ’cool’, LIWC leisure).
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Discordant Features (top left, lower right) These features are of primary

interest for identifying potential gender-based confounding. Here we find features that

are predictive of depression in women but control in men or vice-versa. We observe

that there are several terms that likely have different meanings for men and women

users. Many of these pertain to social interactions.

For instance, ‘gay’, ‘gay men’ and ‘my husband’ are all strongly predictive of

control for men. This suggests that men who are comfortable discussing non-straight

sexualities online are also in a relatively healthy mental state. In contrast, these terms

(along with ’my wife’) indicate increased mental health struggles for (possibly gay)

women. We suspect ’my husband’ is neutral for women because there are roughly

equal numbers of users praising and condemning their husbands.

Beyond sexuality, we see that some familial terms have differing predictive inter-

pretations across genders. ’my mum’ is predictive of depression for men and control

for women, while the reverse is true for ’my son’. This suggests a substantial difference

in parent-child relationships depending on the gender of each: each gender appears to

have an affinity for family members of the same gender.

We also highlight a few features with broader societal interpretations. ’trump’ is

strongly predictive of depression among women but neutral for men. This is consistent

with the well-known ‘gender gap’ phenomenon and could also indicate that mental

health is in part a function of political climate. The LIWC category ’money’ is slightly

depression predictive for women and control-predictive for men. Similar to the above,

this could be an artifact of the wage gap: money topics may be more stressful for

women because they tend to earn less money for the same amount or more work.
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A.6 Discussion

In this paper we showed that depression predictions do indeed exhibit gender bias.

This was evidenced by a substantially better performance when predicting depression

among males than when predicting among females. We also identified terms that are

used differently between men and women, providing insight into the manifestations of

depression beyond modeling dynamics.

A.6.1 Open Questions and Future Work

As hinted in the introduction, the key open question is does gender confound de-

pression predictions? In other words, does gender both affect depression predictions

and the features we use to predict it? There are numerous plausible explanations for

why both of these causal relationships may hold or not hold, but without a rigorous

causal analysis, it is not possible to rule any one explanation out in favor of another.

To properly evaluate whether a associational relationship is in fact causal, the

causal framework requires ‘intervening’ on an independent variable while holding other

variables in the system constant to see whether there are changes in the dependent

variable. Here, that means intervening on gender, which is infeasible to carry out

directly.

There may however, be some viable proxy approaches for simulating the intervention

on gender. One such approach would entail fitting a model to predict the ground

truth gender and then using a clustering algorithm to find male and female centroids

based on the most predictive features in the gender prediction model. The analyst

could then simulate an intervention on gender for the purposes of analyzing changes to

depression prediction by replacing the user’s feature vector in the depression inference

model with each gender centroid vector. This approach will not permit a true causal

interpretation but it could provide insights into the relationship between gender and
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depression prediction beyond those gained from the simple models studied in this

work. Unfortunately this approach cannot be applied to analyzing the relationship

between gender and the text features since it entails changing those text features.

Outside of the explicit question of confounding, we can ask how do we correct

for the performance differentials across demographic groups when pre-

dicting depression?. As hinted earlier, an obvious approach with support in the

literature (Amir, Dredze, and Ayers, 2019) is to simply collect ‘better’ data. This

is an unsatisfying answer, however, since good data is often hard to come by or

expensive to collect. Instead, we can again turn to causal inference ideas to try to

address data quality issues. We can potentially use methods from the causal fairness

literature to impose constraints on depression models to ensure negligible differences in

prediction performance. For instance, following Nabi, Malinsky, and Shpitser (2019),

we could impose a constraint that requires that the total effect of gender on depression

predictions is zero, or, plainly, that there is no difference in model performance when

we do or don’t condition on gender.

A.6.2 Limitations

Aside from the limitations described above, i) all users in our cohort posted in

r/AskMen or r/AskWomen (which we used to derive ground truth) and ii) we re-

balanced our data sets due to insufficient numbers of depressed users in the ‘represen-

tative’ population. These decisions could reduce the generalizability of our results.

One way to address this would be to collect data on more users by expanding the

study period and by consulting other subreddits with gender self-disclosure such as

r/relationships (Wang and Jurgens, 2018).

Additionally, while our use of self-disclosed genders increases scalability, this could

induce bias in two ways. Users could be dishonest in their disclosure and, even if

they aren’t, users who choose to self-disclose could be fundamentally different from
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the general population. It’s likely that the only solution is to collect data external to

Reddit about Reddit users’ genders as a more reliable supplement to our data.

Finally, our depression labels were not obtained via self-disclosures. Rather, they

were defined based on whether the user posted in the r/depression subreddit. While

this approach is consistent with data collection approaches from the literature (De

Choudhury et al., 2013), it is likely to induce some noise. For instance, a user could

post in the subreddit to seek support for a friend or relative, rather than for themself

and would therefore be incorrectly labeled as depressed. One way to address this would

be to take a more nuanced approach to labeling. For instance, we could use regular

expressions matched on the text of r/depression posts to develop a more exclusive

labeling policy that filters out users who are not seeking personal support.

A.6.3 Ethics

As in any applied setting it is necessary to weigh the potential advantages and harms

of carrying out our research agenda. This work has the potential to cause harm in a

couple key ways.

First, as previously mentioned, we restrict attention to users satisfying a narrow

and dated ‘folk’ definition of gender in line with much of the existing research in

the space of computational psychology. This is done at the cost of excluding non-

binary individuals, who potentially stand to benefit the most from this work due

to the increased prevalence of depression in gender non-conforming populations.

Furthermore, excluding any marginalized population from a study of this type has

the potential to reinforce existing biases. For instance, if our model had demonstrated

improved prediction performance for the binary genders, that could lead to an incorrect

assumption that the model will perform well on the general population, which includes

non-binary genders. This could lead to worse performance for the unstudied groups.

Second, while we infer depression status from Reddit users with the goal of
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alleviating harms, these approaches could be harnessed with malice to identify and

target already vulnerable individuals whose screen names and posting behavior are

public.

On the other hand, there is great potential in this study and the work that

will follow it. Identifying obstacles to model deployment for a restricted population

will likely aid in correcting those obstacles for the entire population. This would

substantially improve the performance and, more importantly, the clinical utility of

mental health surveillance models. Given the potential benefits of this study we feel

it is better to proceed, with care and transparency, rather than sit idle for lack of

perfect answers to address the issues the work poses.
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Appendix B

Leveraging Machine Learning to
Predict 30-Day Hospital
Readmission after Cardiac Surgery

B.1 Introduction

Hospital readmission is a key outcome in clinical medicine and health policy. Constitut-

ing approximately 13.9% of hospital stays in the U.S. (Bailey et al., 2019), readmissions

result in billions of dollars of additional direct healthcare expenditures each year (Com-

mission, 2007) and numerous indirect costs. These issues are particularly relevant in

cardiac surgery, where two of the highest volume procedures, coronary artery bypass

graft (CABG) surgery and heart valve surgery, also have high readmission rates (18.5%

and 15.1% of admissions, 14th and 20th highest respectively) (Weiss, Elixhauser, and

Steiner, 2006). Towards limiting readmissions, the Patient Protection and Affordable

Care Act mandated the creation of the Hospital Readmissions Reduction Program,

which penalizes hospitals for exceeding hospital-specific all-cause readmission rates for

several conditions and procedures, including CABG.

Predicting 30-day readmission after cardiac surgery, however, is notoriously chal-

lenging. Existing approaches generally rely on less-flexible methods or expensive

prospective data collection (Kilic et al., 2017). Moreover, even the best approaches in
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the literature have impractically poor performance, suggesting a reliable approach to

predict readmissions following cardiac surgery does not yet exist. A reliable prediction

tool would enable clinicians to adopt better treatment plans for high-risk patients and

reduce downstream costs.

Machine learning (ML) is a promising avenue for developing reliable clinical pre-

diction models. The field of machine learning seeks to develop algorithms capable

of making decisions that improve as they encounter more data. Recent years have

seen dramatic advances in ML performance with applications in clinical settings such

as sepsis prediction (Henry et al., 2015), mental-health surveillance (Sherman et al.,

2021), healthcare-associated infection prediction (Wiens, Horvitz, and Guttag, 2012),

and medical imaging (Lundervold and Lundervold, 2019). These performance improve-

ments can be attributed in part to the fact that ML algorithms are designed to flexibly

model data; they are characterized by their ability to handle high dimensional data

(hundreds or thousands of variables, rather than dozens) and they have mechanisms

for automatic feature selection. Considering these algorithms’ potential, we sought to

develop a model to predict 30-day all-cause readmission following cardiac surgery.

B.2 Patients and Methods

B.2.1 Study Population and Variable Details

We analyzed a cohort of all adult patients who underwent a procedure performed by

a cardiac surgeon at the Johns Hopkins Hospital between January 1, 2011, and June

30, 2016. From this initial cohort, we excluded patients who died in hospital during

the index admission and patients whose records contained no lab test results (see also

Figure B-1). This study was approved by the Johns Hopkins University Institutional

Review Board, study number IRB00128973.

We leveraged patient data extracted from the electronic medical record (EMR)
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Figure B-1. Diagram detailing the process we took in applying our exclusion criteria
and splitting our data to obtain analysis and evaluation data.
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Variable Name Categories Missing Overall
n 5643
Patient Age, mean (SD) 0 61.1 (14.4)
Gender, n Female 0 1843 (32.7%)
Length of Stay (hr),
median [Q1, Q3] 0 214.4 [152.8, 342.5]

LatinX (’Ethnicity’), n Yes 61 73 (1.3%)
Caucasian, n Yes 47 4157 (74.3%)
Black, n Yes 47 916 (16.4%)
Pre-op Dialysis, n Yes 8 155 (2.8%)
Pre-op Hypertension, n Yes 13 3845 (68.3%)
Pre-op Diabetes, n Yes 9 1608 (28.5%)
ICU Readmission, n Yes 2 209 (3.7%)
Post-op Renal Failure, n Yes 3 134 (2.4%)
Post-op Sepsis, n Yes 1888 26 (0.7%)
Weight Delta (kg), mean (SD) 55 -3.1 (21.5)

Discharge Loc., n
Ext./Transitional
Care or Rehab 54 880 (15.7%)

Home 4643 (83.1%)

Table B-I. Summary Statistics for Select Variables (pre-exclusion).

and linked these to patient records from versions 2.61-2.81 of the Society of Thoracic

Surgeons Adult Cardiac Surgery Database (STS). From the STS data, we extracted

static variables collected during the pre-, intra-, and post-operative periods, making

sure to only select variables whose definitions were stable across the three versions.

From the EMR we derived several time series variables using patients’ lab test

results and weight, including the minimum and maximum values of each of these

measurements throughout the admission and a variable describing the trend from

admission to discharge. Summary statistics for a selection of the variables are provided

in Table B-I.

We applied three standard transformations to the collected variables: 1) we handled

missing values by adding a ‘missing’ category for categorical variables and mean-filling

continuous variables, 2) we converted categorical variables to binary variables to

avoid having our algorithms incorrectly interpret categories as ordinal, a process
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known as ‘one-hot encoding’ (Garavaglia and Sharma, 1998), and 3) we normalized

continuous variables to lie in the unit interval. In addition to this “full data” cohort,

which includes a large variety of procedures, we fit models on two restricted cohorts:

cases during which the patient was placed on cardiopulmonary bypass, and cases

that constitute the 7 major procedures for which the STS has published risk scores

(isolated CABG, isolated aortic valve replacement, aortic valve replacement + CABG,

mitral valve replacement, mitral valve repair, mitral valve replacement + CABG, and

mitral valve repair + CABG). We refer to these cohorts as “On-Pump” and “7-Majors”

respectively.

B.2.2 Machine Learning Algorithms

We fit (‘trained’) and evaluated three different machine learning algorithms: a Random

Forest (RF) model (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and a

Support Vector Classifier (SVC) (Boser, Guyon, and Vapnik, 1992). An overview of

these models is provided below. As benchmarks representative of existing approaches,

we also fit a standard logistic regression model on the full variable set and an RF

model on a restricted STS-only variable set. Analysis was performed using standard

Python libraries.

Random Forests and XGBoost are tree-based algorithms. Trees consist of a

hierarchy of nodes which are used to sort data points (e.g., patients) into groups

(e.g., high/low readmission risk) based on the values of the variables for each data

point. The RF and XGBoost algorithms automatically choose which variables to

use and employ automated feature selection through a random model search process.

Support vector classifiers are a binary classifier that constructs a linear decision rule

to separate positive from negative examples, like the logistic regression classifier.

Unlike logistic regression, however, SVC maps features to a high dimensional space,

prior to constructing the decision rule. This allows more flexible decision rules to
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be constructed. All three models have several ‘hyperparameters’ set by the analyst.

These parameters control fitting behavior, such as the restrictiveness of automatic

feature selection procedures.

B.2.3 Machine Learning Pipeline

Though the training algorithm for each model is different, all follow the same general

process, referred to as a ‘pipeline’ in the ML literature. After pre-processing the data,

we randomly split the data into two sets: a ‘training’ set, constituting 75% of the

data, and a ‘test’ set, containing the other 25% of the data. Critically, we hold out

the test set until the very end of the pipeline so that we can apply the trained model

to it and obtain a realistic assessment of how the model would perform if applied to

unseen data as in a clinical deployment.

After we split the data into training and testing sets, we further randomly split

the training data into five equal-sized sets. We use these ‘validation’ sets to perform

cross-validation to choose the model’s hyperparameters. We hold out one validation

set and fit the model on the other four. We calculate the area under the receiver

operating curve (AUC) for each hyperparameter setting of the model. We repeat this

process such that each validation set is held out once. We then refit the model on

all the entire training set using the hyperparameters that had the highest average

validation AUC, yielding our final model.

We apply this final model to the held-out test set, calculating both an AUC score

and a Brier score for the test set. To construct 95% confidence intervals, we perform

bootstrap sampling. We construct 1,000 test sets by sampling the original test set

with replacement and apply the model to each sampled test set to obtain an AUC

and Brier score for each. We calculate the 2.5th and 97.5th percentile scores among of

the bootstraps to construct the confidence interval.
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B.2.4 Univariate Analysis

Beyond calculating our models’ performance using the AUC and Brier score on a

held-out test set, we also analyzed the parameters of our best-performing model

to determine which features were most important for predicting readmission. For

RFs (the best-performing model; see Results section), we analyzed the models’ Gini

importance (Breiman, 2001) and Shapley values (Lundberg and Lee, 2017). Gini

importance, like weights in a logistic regression, describes the relative importance of

a variable in a tree-based regression model. Unlike logistic regression weights, Gini

importance values cannot characterize whether the correlations between variables are

positive or negative. In contrast, Shapley values can provide such characterizations

(i.e., “higher patient age has a positive association with readmission”). Both metrics

add interpretability to the non-parametric RFs model.

B.3 Results

B.3.1 Data Details

6,803 adult cardiac surgery encounters were extracted from the EMR. Excluding

non-index surgeries and readmissions, which did not appear in the STS database (905),

cases where the patient died in the hospital (255), and cases which were missing one

or more EMR lab/weight variables (719) resulted in an analysis cohort of 4,924 cases

(see Figure B-1). 723 (14.7%) were readmitted to our institution within 30 days of

discharge. Since readmission definitions are inconsistent across versions of the STS

database, we defined readmission using admission and discharge dates in the EMR.

Many of the cases excluded due to missing lab/weight measurements were missing

those values because they represented minor procedures (e.g., lead extractions, sternal

wire removals). Our data collection and processing steps yielded a set of 165 variables

for each case to use for model development. The On-Pump and 7-Majors cohorts had
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Model Full Data On-Pump 7-Majors
Random Forest .76 (.72, .79) .76 (.72, .80) .80 (.75, .86)
XGBoost .75 (.71, .78) .76 (.73, .80) .80 (.75, .85)
Support Vector Classification .75 (.72, .78) .75 (.71, .79) .79 (.73, .85)
Logistic Regression .75 (.71, .79) .74 (.70, .78) .76 (.70, .82)

Table B-II. Held-Out AUCs (95% Confidence Interval) for Readmission Prediction
Trained Using Various Data Sets

4,516 (625 readmissions; 13.8%) and 2,951 (361 readmission; 12.2%) respectively.

B.3.2 Model Performance

The AUC and Brier score of each model is in Tables B-II and B-III. AUC confidence

intervals for the ML models overlapped, indicating the performances were quite close.

The best performing model, according to AUC point estimates, was a Random Forest.

On the held-out test set, the model achieved an AUC of .76 (95% CI: (.72, .79)) with

Brier .16 (.15, .17). The RF model trained and evaluated solely on STS data achieved

an AUC of .64 (95% CI: (.60, .68)), which is comparable to models from the literature.

The SVM had the best Brier .12 (.11, .14) suggesting it might perform better than

the RF under certain conditions. We treat RF as the “best” model for the purposes

of further analysis since AUC is a more appropriate score given the intended use case

(Hernández-Orallo, Flach, and Ferri Ramı́rez, 2012) and because comparison models

from the literature generally only report AUC. Performance differences between the

full and On-Pump cohorts were negligible while “7-Majors” models tended to have

higher performance (e.g., full cohort Random Forest AUC .76 (.72, .79) vs. .80 (.75,

.86) for the 7-Majors Random Forest).

B.3.3 Feature Importance

The average Gini importance across all 165 variables in the top performing Random

Forest model for the full data cohort was .006. The five most important variables were
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Model Full Data On-Pump 7-Majors
Random Forest .16 (.15, .17) .16 (.15, .16) .14 (.13, .15)
XGBoost .20 (.19, .21) .20 (.19, .21) .19 (.18, .19)
Support Vector Classification .12 (.11, .14) .11 (.10, .12) .09 (.07, .10)
Logistic Regression .20 (.19, .21) .21 (.19, .22) .19 (.18, .20)

Table B-III. Held-Out Brier Score (95% Confidence Interval) for Readmission Prediction
Trained on Various Data Sets

length of stay (Gini importance .076, 12.5x more important than the average variable,

positively predictive), discharge location: rehab (.068, 11.2x, positively predictive)

discharge location: home (.047, 7.7x, negatively predictive), ICU length of stay (.042,

7.0x, positively predictive), and the lowest hemoglobin measurement throughout the

admission (.035, 5.8x, negatively predictive). Two of our time series EMR-derived

variables, measuring the delta in serum creatinine and patient weight, had relatively

high Gini importance values of .024 and .022, ranking 9th and 22nd among all variables,

respectively.

Figure B-2 exhibits the Shapley values of the 20 most important variables. Each

row corresponds to a variable. Red and blue dots in a row denote high and low values

of that variable, while the x-axis represents the predictive value of the variable. For

instance, the first feature, “discharge location (rehab)”, is binary and thus can only take

on the values 1 (red) and 0 (blue). In the figure, we see that red values (discharged to

rehab) tend to fall on the positive side of the x-axis and vice-versa for blue values (not

discharged to rehab); thus, “discharge location (rehab)” is positively correlated with

30-day readmission. Similarly, “discharge location (home)” is negatively correlated

with 30-day readmission.

B.4 Comment

Predicting readmissions following cardiac surgery is notoriously challenging. In this

study, we leveraged data collected during standard care, augmenting traditional STS

132



Figure B-2. Shapley values for high-importance variables in RF model on full data.
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Paper Model Variables Train Perf. Test Perf.
Kilic et al., 2017 STS Variables .64 (N/A) N/A
Fanari et al., 2017 Curated risk factors .74 (.65, .75) .60 (N/A)

Brown et al., 2018 Curated risk factors,
prospectively-collected biomarkers .74 (.68, .79) .48 (.42, .54)

Benuzillo et al., 2018 Curated risk factors .63 (N/A) N/A
Tam et al., 2018 Curated risk factors .63 (N/A) N/A

Table B-IV. Representative Summary of Readmission Prediction Performance in the
Literature (AUC, 95% Confidence Intervals)

variables with EMR-derived variables, to train machine learning models for readmission

prediction. Our models outperformed the state of the art (see below). These results

are promising and suggest machine learning techniques for readmission prediction

should be further explored. Nevertheless, the fact that even state-of-the-art methods

do not yet perform well enough to be deployed in practice supports criticisms of the

use of readmissions to evaluate quality of care and determine hospital reimbursements.

B.4.1 Comparison to Existing Approaches

We provide a representative summary of recent efforts to develop a prediction model for

post-cardiac surgery readmission in Table B-IV. Kilic et al. (2017), Fanari et al. (2017),

Benuzillo et al. (2018), and Tam et al. (2018) all have a similar approach: hand-select a

small set of risk factors, perform variable selection, and fit a logistic or Cox regression.

Brown et al. (2018) is unique in that it included six prospectively-collected biomarkers.

Except for Fanari et al. (2017) and Brown et al. (2018), the AUCs reported in these

papers describe model performance on the training data. As described in the Methods

section, reporting training performance is not informative: any sufficiently powerful

regression method can achieve 100% training accuracy with no guarantee the model

will generalize to unseen data (Liu et al., 2019). Training performance cannot provide

insight into how the model might perform when applied prospectively to new patients,

the ultimate intended use case. That distinction aside, our best-performing model
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yielded better test performance than the reported performance of all published models

we identified. Since Fanari et al. (2017) and Brown et al. (2018) did report held-out

test performance, we can make direct comparisons. Fanari et al. (2017) had a held-out

AUC of .595 while Brown et al. (2018) had a held-out AUC of .48 (95% CI (.42, .54)).

Both perform substantially worse on held out data. For context, AUC < .50 suggests

a model performs worse than a “model” that makes predictions by simply tossing

a coin. Clearly, the performance gap, a difference of test AUCs of .16, between the

literature and our models is stark. We also note that several comparison papers did

not include confidence intervals for their performance estimates, making it difficult to

properly assess the efficacy of those approaches.

B.4.2 Choice of Cohort

The higher performance of the 7-Majors-trained models relative to the full- and

On-Pump-trained models suggests that it is easier to predict readmission risk for

these procedures. We argue that this supports our use of the full cohort for our

other analyses: it is necessary to study and develop models that can make accurate

predictions for the full spectrum of patients a clinician might see. It is possible that

developing separate models for the 7-Majors and non-7-Majors would yield better

performance on each task. We leave this question for a future study. Note that some

of the comparison models from the literature (Tam et al., 2018; Brown et al., 2018)

were trained using 7-Majors data, suggesting the outperformance of our models may

be even more stark than what was highlighted above: a difference in AUC of as much

as .32.

B.4.3 Insights from Univariate Analysis

It is not surprising that overall and ICU length of stay are important for predicting

readmissions. Discharge location being highly predictive, on the other hand, is notable.
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Murphy et al. (2008) suggests that a related variable, living alone, is predictive of

readmission. Our models are associational rather than causal and so they cannot

identify the causes of readmission, but this finding and Murphy et al. (2008) suggest

that some key factors leading to readmission may not be directly related to in-patient

care. Future research should be devoted to understanding how post-discharge care

affects readmission risk. On a different note, the relative importance of our creatinine

and patient weight trend variables suggests that time series variables can be beneficial

for readmission prediction. Removing the time series variables from the Random

Forest model decreased AUC by .12. Other areas of clinical prediction modeling,

outside of readmissions and cardiac surgery, would likely see similar performance

increases by adding time series and EMR variables that are not always available in

curated data sources like the STS database.

Turning attention to the Shapley values, most of the results are consistent with

existing clinical knowledge. We highlight, however, that being black is highly correlated

with readmission. This suggests readmission studies merit the same critical look at

disparities that has been applied elsewhere in medicine in recent years (Mazzeffi et al.,

2020).

B.4.4 Limitations

As mentioned in the Methods section, the STS database has inconsistent readmission

definitions across versions, so we defined readmissions according to the EMR. Unfortu-

nately, this approach is imperfect. Our data likely contains instances where a patient

was readmitted to another hospital system, which was not captured by our EMR

system during the study period. In such a case, we would incorrectly label the patient

as ‘not readmitted’. A more accurate labeling scheme would likely improve reported

prediction performance relative to our results, since better labeling would reduce noise.

Recently, the Maryland Cardiac Surgery Quality Initiative began reporting data on
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these inter-system readmissions (Mazzeffi et al., 2020). Unfortunately, the Initiative’s

data are too recent to inform the present study since they do not overlap temporally

with our data. Better readmission labels obtained in this way would likely improve

our study’s external validity.

Our ability to model readmissions is also limited by the nature of EMR data.

Medical data are often described in the ML community ‘messy’ because they have

heterogeneous variables, missing values, and measurement error. For instance, we had

to exclude a large portion of our the available data due to variable missingness and

limit our variables to those which had stable definitions over time. We also were not

able to include several meaningful factors, such as medications, compliance, health

literacy, and measures of the familial support. We strongly suspect that including

these variables would improve our models.

B.4.5 Broader Implications and Future Work

We envision models like those studied will be incorporated into clinical practice in

a manner that maximizes the decision-support to clinician-effort ratio. While we

used STS variables (often harvested post-discharge) in this study, the information

contained in those variables can be collected prospectively from an institution’s EMR.

A well-validated model could be integrated into EMR software to automatically display

readmission risk estimates, making use of the tool effectively costless to clinicians.

Similar tools already exist for other adverse events (Henry et al., 2015). This would

help clinicians identify patients who require attentive post-discharge care or enrollment

in readmission reduction programs. Those resources could translate to reducing

readmissions and cost savings.

Our RF model’s performance of AUC .76 is a two-sided coin. We used modern ML

algorithms and easily outperformed the all previously published approaches for the

task, demonstrating that ML approaches are worthy of further study. Moreover, ML
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methodologies could be applied to a broad variety of diagnoses to predict readmission

risk, yielding further cost savings and reducing adverse outcomes. On the other

hand, an AUC of .76 may not be accurate enough for clinician adoption. The

fact that our relatively sophisticated approach requires further development and

validation lends support to existing criticisms (Wadhera et al., 2018) of the use of

readmissions to evaluate quality-of-care, especially since existing care quality metrics

(such as the Hospital Readmissions Reduction Program model) are based on simple

regressions characterized by lower performance. This study presents a possible avenue

for improving quality-of-care metrics which could further reduce costs and adverse

outcome risk.

Finally, we meditate on more specific future directions. Recent work (Healy et al.,

2020) suggests mobility is highly predictive of readmission: the proposed regression

model, based on prospectively-collected ambulation profiles, achieved test set AUC

of .93 (95% CI (.84, 1.0)). While Healy et al. (2020) had a small study population

(n=100) and mobility was not available in our EMR, it is a strong candidate for

inclusion in an improved version of our models. We also believe that it is necessary to

study allocation of post-discharge resources. The literature has paid little attention

to post-discharge factors like discharge location and yet our study showed it is a

key predictor. It would also be valuable to determine which of the relationships we

observed are causal or merely associational. A causality-minded study could help

focus model improvements and further developments toward reducing readmissions.
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Appendix C

Supplementary Material for
Chapter 3

C.1 The ID Algorithm

function ID(y, x, P, G):
INPUT: x,y value assignments, P a probability distribution, G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1) if x = ∅, return ∑︁v\y P (v).

2) if V \ An(Y)G ̸= ∅,
return ID(y,x ∩ An(Y)G,

∑︁
v\An(Y)G

P,An(Y)G).

3) let W = (V \X) \ An(Y)Gx .
if W ̸= ∅, return ID(y,x ∪w, P,G).

4) if C(G \X) = {S1, ..., Sk},
return ∑︁v\(y∪x)

∏︁
i ID(si,v \ si, P,G).

if C(G \X) = {S}:

5) if C(G) = {G}, throw FAIL(G,G ∩ S).
6) if S ∈ C(G),

return ∑︁s\y
∏︁

{i|Vi∈S} P (vi|v(i−1)
G ).

7) if (∃S ′)S ⊂ S ′ ∈ C(G),
return ID(y,x ∩ S ′,∏︁

{i|Vi∈S′} P (Vi|V (i−1)
G ∩ S ′, v

(i−1)
G \ S ′), S ′).

Figure C-1. ID Algorithm as it appears in Shpitser and Pearl, 2006.
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C.2 Example Derivation For A Response To An
Edge-Specific Policy

We seek to identify the distribution p(Y (f (AM)→
A (W0), f (AW1)→

A (W0))) in Fig. 3-2 (b).

Y∗ = {Y,W1,M1,W0}, and D(GY∗) = {{Y }, {W0,M1}, {W1}} (the graph GY∗ is

shown in Fig. 3-2 (c)). Thus, we have three terms, a term ϕ{W0,M1,A,W1}(p;G) for Y , a

term ϕ{W0,A,M1,Y }(p;G) for W1, and a term ϕ{A,W1,Y }(p;G) for {W0,M1}. We have

ϕ{W0,A,M1,Y }(p;G) = ϕ{W0,A,M1}

(︄∑︂
Y

p;G(a)
)︄

= ϕ{W0,A}

(︄
p(W0, A,M1,W1)
p(M1 | A,W0)

;G(b)
)︄

= ϕ{W0}

(︄
p(W0, A,M1,W1)
p(M1, A | W0)

;G(c)
)︄

= p(W1 |M1, A,W0),

where G(a),G(b),G(c) are CADMGs in Figs. C-2 (a), (b), and (c), respectively. Similarly,

ϕ{W0,M1,A,W1}(p;G) is equal to

ϕ{W0,M1,A}

(︄
p(W0, A,M1,W1, Y )
p(W1 |M1, A,W0)

;G(d)
)︄

= ϕ{W0,A}

(︄
p(W0, A,M1,W1, Y )
p(W1,M1 | A,W0)

;G(e)
)︄

= ϕ{W0}

(︄∑︂
A

p(W0, A,M1,W1, Y )
p(W1,M1 | A,W0)

;G(f)
)︄

=
∑︂

W0,A

p(W2 | W1,M1, A,W0)p(A,W0),

where G(d),G(e),G(f) are CADMGs in Figs. C-2 (d), (e), and (f), respectively. Finally,

ϕ{A,W1,Y }(p;G) = ϕ{A,W1}

(︄∑︂
Y

p;G(a)
)︄

= ϕ{A}

⎛⎝∑︂
Y,W1

p;G(g)

⎞⎠
= p(W0, A,M1)

p(A | W0)
= p(M1 | A,W0)p(W0),

where G(a),G(g) are CADMGs in Figs. C-2 (a), and (g), respectively. Note that

whenever the fixing operation for a kernel qV(V|W) that fixes V ∈ V is such
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that V \ {V } ⊆ ndG(V,W)(V ), the resulting kernel can be viewed as q̃V\{V }(V \

{V }|W∪ {V }) = ∑︁
V qV(V|W). We now combine these terms, evaluating A to either

f
(AW1)→
A (W0) or f (AM)→

A (W0), as appropriate, yielding the functional in (3.14) for

p(Y (f (AW1)→
A (W0), f (AM)→

A (W0))), namely:

∑︂
W0,A,M,W1

[︃[︂
p(W1|M,A = f

(AM)→
A (W0),W0)

]︂
×
[︂
p(M |A = f

(AW1)→
A (W0),W0)p(W0)

]︂
×
[︂ ∑︂

W0,A

p(Y |W1,M,A,W0)p(W0, A)
]︂]︃
.

A

W0 M1

W1

y

(a)
A

W0 m1

W1

y

(b)
a

W0 m1

W1

y

(c)

A

W0 M1

w1

Y

(d)

A

W0 m1

w1

Y

(e)

a

W0 m1

w1

Y

(f)

A

W0 M1

w1

y

(g)

Figure C-2. CADMGs obtained from fixing in G shown in Fig. 3-2 (b): (a) ϕ{Y }(G),
(b) ϕ{Y,M1}(G), (c) ϕ{Y,M1,A}(G), (d) ϕ{W1}(G), (e) ϕ{W1,M1}(G), (f) ϕ{W1,M1,A}(G), (g)
ϕ{Y,W1}(G).

C.3 Proofs

Before giving proofs of our main results, we state the following utility lemma which

will be useful throughout subsequent developments.
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Lemma 2 Let G be a DAG with vertex set V. Fix A,B ∈ V such that B ̸∈ deG(A) \

chG(A) and A ̸∈ deG(B) \ chG(B). Let GA×B be a directed graph containing vertices

(V \ {A,B}) ∪ Z, and the following set of edges. First, all edges between vertices in

V \ {A,B} in G also are in GA×B. Second, for every C ̸= A,B, for every edge of the

form C → A or C → B in G, there is an edge C → Z in GA×B, and for every edge of

the form A→ C or B → C in G, there is an edge Z → C in GA×B. Then

(a) GA×B is a DAG.

(b) Any element in the causal model for G is an element of the causal model for

GA×B, if we interpret the Cartesian product of variables A and B in this element

as the variable Z.

Proof: If GA×B is not a DAG, there is a directed cycle involving Z, e.g. W → . . .→

◦ → Z → ◦ → . . .→ W . Since G is a DAG, this implies either G has a pair of paths

W → . . . → ◦ → A and B → ◦ → . . . → W , or a pair of paths W → . . . → ◦ → B

and A→ ◦ → . . .→ W . This violates our assumption on the genealogical relationship

between A and B.

We construct the element in the causal model for GA×B as follows. Given the struc-

tural equation fA(paG(A), ϵA) for A, and the structural equation fB(paG(B), ϵB) for B

in some element of a causal model in G, define the structural equation fZ(paGA×B
(Z), ϵZ)

to be the function that sets the component of Z corresponding to A via fA(paG(A), ϵA),

the component of Z corresponding to B via fB(paG(B), ϵB), and where ϵZ = ϵA × ϵB.

The structural equations and independent error terms for variables other than

Z are inherited from the element of the causal model for G. By construction, all

error terms are independent. By definition of the structural equation model with

independent errors, this gives an element in the causal model of GA×B. 2

Corollary 5 Fix G, A,B with the properties in Lemma 2. Fix any causal parameter
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β that is not identified in G. If A,B is reintepreted to refer to Z = A×B, then β is

also not identified in GA×B.

Proof: If β is not identified, there exist two elements in the causal model for G which

agree on the observed data distribution, but disagree on β. The construction in the

proof of Lemma 2 allows us to reinterpret those elements as elements of the causal

model for GA×B, and β as a parameter in the causal model for GA×B. This immediately

yields two elements in the model for GA×B which disagree on β, but agree on the

observed data distribution. 2

We now give the proofs of the main results. The proof of the following result is

already known. We give a version of it here to show the close relationship between

proofs of other the results in this paper, and the method for proving this result.

Theorem 4 Given disjoint subsets Y,A of V in an ADMG G, define Y∗ ≡ anGV\A(Y).

Then p(Y(a)) is not identified if there exists D ∈ D(GY∗) that is not a reachable set

in G.

Proof: Assume there exists D ∈ D(GY∗) that is not a reachable set in G. Let

R = {D ∈ D| chG(D) ∩D = ∅}, and A∗ = A ∩ paG(D). Then there exists a hedge

consisting of D and a superset of D for p(R|do(a∗)), and p(R|do(a∗)) is not identified

via a construction based on hedges in Shpitser and Pearl (2006).

Let Y′ be the minimal subset of Y such that R ⊆ anGV\A(Y′). Consider an edge

subgraph G† of G consisting of all edges in G in the hedge above, and a subset of edges

on directed paths in GV\A from R to Y′ that form a forest. Note that if p(Y′|do(a∗))

is not identified in G†, p(Y|do(a)) is also not identified in G, since by construction,

p(Y′|do(a∗)) = p(Y′|do(a)), and if the marginal p(Y′|do(a)) is not identified, the joint

p(Y|do(a)) is also not identified. Since G† is an edge subgraph of G, p(Y|do(a)) is

also not identified in G.

We now show that p(Y′|do(a∗)) is not identified in G†. If R ⊆ Y′, our conclusion
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is trivial.

If not, pick a vertex ˜︁Y in G† such that paG†( ˜︁Y ) ⊆ R, and paG†( ˜︁Y ) \Y′ ̸= ∅. Such

a vertex is guaranteed to exist, since G† is acyclic and R \Y′ ≠ ∅. We want to show

the following subclaim: if p(R|do(a∗)) is not identifiable, then p(R \ (paG†( ˜︁Y ) \Y′) ∪
˜︁Y |do(a∗)) is also not identified. Note that in the model given by G†,

p(R \ (paG†( ˜︁Y ) \Y′) ∪ ˜︁Y |do(a∗)) =∑︂
paG† (˜︁Y )\Y′

p(R|do(a∗))p( ˜︁Y | paG†( ˜︁Y ))

Since p(R|do(a∗)) is not identified in the model corresponding to the subgraph of

G† pertaining to the hedge for p(R|do(a∗)), there exist two elements in this model

that agree on the observed data distribution, but disagree on p1(R|do(a∗)) and

p2(R|do(a∗)). In fact, the two elements constructed in Shpitser and Pearl (2006) used

discrete state space variables.

Note that the right hand side expression above can be viewed, for discrete state

space variables, as a linear mapping from vectors representing probabilities p(R|do(a∗))

to vectors representing probabilities p(R \ (paG†( ˜︁Y ) \Y′), ˜︁Y |do(a∗)). To prove the

subclaim, it suffices to extend the above two elements with the same distribution

p( ˜︁Y | paG†( ˜︁Y )) in such a way that this linear mapping is one to one. This will

ensure the two elements still agree on the observed data distribution but disagree on

p1(R \ (paG†( ˜︁Y ) \Y′), ˜︁Y |do(a∗)) and p2(R \ (paG†( ˜︁Y ) \Y′), ˜︁Y |do(a∗)). Many such

choices for p( ˜︁Y | paG†( ˜︁Y )) are possible. For example, any appropriate stochastic matrix

of full column rank will suffice.

We now redefine R ≡ R \ (paG†( ˜︁Y ) \ Y′) ∪ ˜︁Y , and apply the above subclaim

inductively until R ⊆ Y′. Note that if ˜︁Y = Y ∈ Y′, we may first apply the induction

to ˜︁Y as an artificial “copy” of Y , and then redefine Y as a Cartesian product of Y

and ˜︁Y , with the conclusion following by Corollary 5.

This proves the claim. 2
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To illustrate the operation of the proof, consider the graph in Fig. C-3 (a), where

we want to show p(Y2|do(a)) is not identified. First, note that Y∗ = {Y2,M, Y1},

with {Y1, Y2} not reachable. This entails the hedge structure composed of two ”C-

forests” shown in Fig. C-3 (b) and (c), see Shpitser and Pearl (2006) for further

details on how hedges are defined. The presence of the hedge structure immediately

implies p(Y1, Y2|do(a)) is not identified. The inductive argument in the proof proceeds

as follows. First a distribution p(M |Y1) is constructed such that p(Y2,M |do(a)) =∑︁
Y1 p(M |Y1)p(Y1, Y2|do(a)) is not identified in Fig. C-3 (d). Next, a distribution

p( ˜︁Y2|M) is constructed such that p( ˜︁Y2, Y2|do(a)) = ∑︁
M p( ˜︁Y2|M)p(Y2,M |do(a)) is not

identified in Fig. C-3 (e). Finally, we use Corollary 5 to conclude non-identifiability of

p(Y2|do(a)) in Fig. C-3 (a) by redefining Y2 in Fig. C-3 (a) to be a Cartesian product

of Y2 and ˜︁Y2 in Fig. C-3 (e). This construction corresponds to Fig. C-3 (f). Note that

Fig. C-3 (a) and Fig. C-3 (f) are identical up to vertex relabeling.

We next prove an analogous theorem for edge interventions. A similar proof for a

closely related claim (not involving edge interventions) appeared in Shpitser (2013).

Theorem 5 Given Aα ≡ {A | (AB)→ ∈ α}, and an edge intervention given by the

mapping aα, define Y∗ ≡ anGV\Aα
(Y). The joint distribution of the counterfactual

response p({V \Aα}(aα)) is not identified if p({V \Aα}(a)) is not identified, or there

exists D ∈ D(GY∗) and A ∈ Aα, such that aα has the different value assignments for

a pair of directed edges out of A into D.

Proof: Assume there exists D ∈ D(GY∗) that is not a reachable set in G, or aα

has different value assignments for a pair of directed edges out of A into D. Let

R = {D ∈ D| chG(D)∩D = ∅}, and A∗ = A∩paG(D). Then we have one of two cases.

Either there exists a hedge consisting of D and a superset of D for p(R|do(a∗)), and

p(R|do(a∗)) is not identified via a construction based on hedges in Shpitser and Pearl

(2006). Or p(R(a{(AD)→|A∈A,D∈D})) is not identified by counterexamples in Shpitser

(2013).
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Figure C-3. (a) A graph in which we are interested in the effect of A on Y2, p(Y2|do(a));
(b) and (c) Two forests that form a hedge with the root set {Y1, Y2}, p(Y1, Y2|do(a)) is
not identified; (d) A subgraph illustrating the injectivity argument: p(M,Y2|do(a)) is
not identified; (e) Adding an artificial variable Y2̃, p(Y2, Y2̃|do(a)) is not identified; (f)
Joining Y2 and Y2̃ via the Cartesian product, p(Y2 × ˜︁Y2|do(a)) is not identified.

Note that p(R|do(a∗)) is equal to p(R(a†
{(AD)→|A∈A,D∈D})), where a† assigns all

edges from A to D to a consistent value. As a result, in the discussions below we will

unify the above two cases by assuming non-identifiability of p(R(a{(AD)→|A∈A,D∈D})),

for some a.

We now proceed as before. Let Y′ be the minimal subset of Y such that R ⊆

anGV\A(Y′). Consider an edge subgraph G† of G consisting of all edges in G in

the recanting district or hedge above, and a subset of edges on directed paths in

GV\A from R to Y′ that form a forest. Note that if p(Y′(a{(AD)→|A∈A,D∈D})) is

not identified in G†, p(Y(aα)) is also not identified in G, since by construction,

p(Y′(a{(AD)→|A∈A,D∈D})) = p(Y′(aα)), and if the marginal p(Y′(aα)) is not identified,

the joint p(Y(aα)) is also not identified. Since G† is an edge subgraph of G, p(Y(aα))
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is also not identified in G.

We now show that p(Y′(a{(AD)→|A∈A,D∈D})) is not identified in G†. If R ⊆ Y′, our

conclusion is trivial.

If not, pick a vertex ˜︁Y in G† such that paG†( ˜︁Y ) ⊆ R, and paG†( ˜︁Y ) \ Y′ ̸= ∅.

Such a vertex is guaranteed to exist, since G† is acyclic and R \Y′ ̸= ∅. We want

to show the following subclaim: if p(R(a{(AD)→|A∈A,D∈D})) is not identifiable, then

p({R \ (paG†( ˜︁Y ) \Y′) ∪ ˜︁Y (a{(AD)→|A∈A,D∈D})) is also not identified. Note that in the

model given by G†,

p({R \ (paG†( ˜︁Y ) \Y′) ∪ ˜︁Y }(a{(AD)→|A∈A,D∈D})) =∑︂
paG† (˜︁Y )\Y′

p(R(a{(AD)→|A∈A,D∈D}))p( ˜︁Y | paG†( ˜︁Y ))

Since p(R(a{(AD)→|A∈A,D∈D})) is not identified in the model corresponding to the

appropriate subgraph of G† pertainining to p(R(a{(AD)→|A∈A,D∈D})), there exist two

elements in this model that agree on the observed data distribution, but disagree

on p1(R(a{(AD)→|A∈A,D∈D})) and p2(R(a{(AD)→|A∈A,D∈D})). In fact, the two elements

constructed in Shpitser (2013) and Shpitser and Pearl (2006) used discrete state space

variables.

Note that the right hand side expression above can be viewed, for discrete

state space variables, as a linear mapping from vectors representing probabilities

p(R(a{(AD)→|A∈A,D∈D})) to vectors representing probabilities p({R\(paG†( ˜︁Y )\Y′), ˜︁Y }(a{(AD)→|A∈A,D∈D})).

To prove the subclaim, it suffices to extend the above two elements with the same

distribution p( ˜︁Y | paG†( ˜︁Y )) in such a way that this linear mapping is one to one.

This will ensure, the two elements still agree on the observed data distribution, but

disagree on p1({R \ (paG†( ˜︁Y ) \Y′), ˜︁Y }(a{(AD)→|A∈A,D∈D})) and p2({R \ (paG†( ˜︁Y ) \

Y′), ˜︁Y }(a{(AD)→|A∈A,D∈D})). Many such choices for p( ˜︁Y | paG†( ˜︁Y )) are possible. For

example, any appropriate stochastic matrix of full column rank will suffice.

We now redefine R ≡ R \ (paG†( ˜︁Y ) \ Y′) ∪ ˜︁Y , and apply the above subclaim
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inductively until R ⊆ Y′. As before, whenever ˜︁Y = Y ∈ Y′, we redefine Y as a

Cartesian product of ˜︁Y and Y , with the conclusion following by Corollary 5.

This proves the claim. 2

We illustrate the two problematic structures that create non-identifiability of

p(Y ((aY )→, (a′M)→)) = p(Y (a,M(a′))) in Fig. C-4 (a) and (b). In (a), the recanting

district criterion does not hold, however, p(Y |do(a)) is not identified. In (b), p(Y |do(a))

is identified, but the recanting district criterion fails, since Y and M form a district,

but the edge intervention assigns A to different values for different edges from A into

the district. The inductive part of the argument in Theorem 5 is identical to that in

Theorem 4.

M

A

Y

(a)

M

A

Y

(b)

Figure C-4. An example of the two problematic structures that prevent identification
of p(Y ((aY )→, (a′M)→)). (a) There is a hedge structure preventing identification of
p(Y |do(a)). (b) The recanting district criterion holds.

Next, we give a completeness results for responses to arbitrary, possibly stochastic

policies. This result is new and shows the algorithm in Tian (2008) is complete for

unrestricted policies.

Theorem 6 Define GfA to be a graph obtained from G by removing all edges into A,

and adding for any A ∈ A, directed edges from WA to A. Define Y∗ ≡ anGfA
(Y) \A.

Then if p(Y∗(a)) is not identified in G, p(Y(fA)) is not identified in G if fA is the

unrestricted class of policies.

Proof: Assume there exists D ∈ D(GY∗) that is not a reachable set in G. Let

R = {D ∈ D| chG(D) ∩D = ∅}, and A∗ = A ∩ paG(D). Then there exists a hedge

consisting of D and a superset of D for p(R|do(a∗)), and p(R|do(a∗)) is not identified
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via a construction based on hedges in Shpitser and Pearl (2006).

Because GV\A is an edge subgraph of GfA , there is some element D′ ∈ D(GanGV\A
(Y))

that is a subset of D. If D = D′, it suffices to consider policies that set A∗ to constants,

and our proof is immediate by the argument in Theorem 4.

Otherwise, we proceed as follows. Let Y′ be the minimal subset of Y such that

R ⊆ anGfA
(Y′). Consider an edge subgraph G† of GfA consisting of all edges in G in

the hedge above, and a subset of edges on directed paths in GfA from R to Y′ that

form a forest. Note that unlike previous proofs, these directed paths may intersect A

due to the addition of edges to GfA from WA to A ∈ A. Let A† be the set A∗ and all

elements in A in G†.

For every A† ∈ A†, we restrict attention to policies that map from W†
A† to A†,

where W†
A† is WA† intersected with vertices in G†.

Note that if p(Y′({A† = fA†(W†
A†)|A† ∈ A†})) is not identified in G†, p(Y(fA)) is

also not identified in G, since by construction, p(Y′({A† = fA†(W†
A†)|A† ∈ A†})) =

p(Y′(fA)) in G†, and if the marginal p(Y′(fA)) is not identified, the joint p(Y(fA)) is

also not identified. Since G† is an edge subgraph of G, p(Y(fA)) is also not identified

in G.

We now show that p(Y′({A† = fA†(W†
A†)|A† ∈ A†})) is not identified in G†.

If R ⊆ Y′, it immediately implies the case above where D = D′, and we are done

by Theorem 4. If not, we proceed inductively, as before. Pick a vertex ˜︁Y in G† such

that paG†( ˜︁Y ) ⊆ R, and paG†( ˜︁Y ) \Y′ ̸= ∅. Such a vertex is guaranteed to exist, since

G† is acyclic and R \Y′ ̸= ∅. We now have two cases, ˜︁Y ̸∈ A∗ or ˜︁Y ∈ A∗. In the

former case, we use the inductive argument from Theorem 4.

Note, in particular, that if ˜︁Y ∈ A† \A∗, we simply treat ˜︁Y as an ordinary variable,

and it’s policy as an ordinary conditional distribution. A special argument isn’t

necessary here since ˜︁Y does not intersect the original hedge structure for D.
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Now consider the latter case, where ˜︁Y ∈ A∗. This case we simply create copies

of variables on the path ˜︁Y → W1 → . . .→ Wk → ˜︁Y ′ ∈ Y′ in G†, yielding a graph ˜︁G†.

We extend the previous inductive argument by considering an “extended” observed

data joint distribution where conditional distributions of {W1, . . . ,Wk, ˜︁Y } ∩A∗ given

their parents are specified by appropriate policies in fA. For the unrestricted policy

class, the inductive argument again implies that

p({R \ (paG†( ˜︁Y ) \Y′), ˜︁Y ′}(a∗
A∗\{˜︁Y })) =∑︂

(a∗˜︁Y ∪paG†∪{W1,...Wk}(˜︁Y ))\Y′

p(R|do(a∗))p( ˜︁Y ′|Wk)p(W1| ˜︁Y )

k∏︂
i=2

p(Wi|Wi−1)p̃( ˜︁Y = a∗˜︁Y | paG†( ˜︁Y ))

is not identified in ˜︁G† if p(R|do(a∗)) is not identified in ˜︁G†.

We now inductively apply Lemma 2 to construct elements in G† where p({R \

(paG†( ˜︁Y ) \Y′), Y ′}(a∗
A∗\{˜︁Y }

)) is not identified by Corollary 5.

We now redefine R ≡ R\(paG†( ˜︁Y )), and A∗ ≡ A∗\{ ˜︁Y }. The induction terminates

when A∗ = ∅ and R ⊆ Y′, yielding our conclusion.

2

A1

M1W1

Y1

A2

M2 W2

Y2

(a)

fA1

Y1

A2

W2

Y2

(b)

Figure C-5. (a) A graph in which we’re interested in the distribution p({Y1, Y2}(A1 =
fA1(W2), A2 = fA2(W1))). (b) A subgraph of GY∗ for the given counterfactual which
shows the hedge structure, and the form of the inductive argument which yields
non-identification.

We illustrate the novel ideas in this proof via Fig. C-5 (a) and (b), where we
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are interested in identification of p({Y1, Y2}(A1 = fA1(W2), A2 = fA2(W1))). First,

note that the fact that A1 is determined by W2 via fA1 and A2 is determined by

W1 via fA2 implies the set Y∗ = {Y1, Y2, A1, A2,W1,W2} is larger than it would have

been had we been interested in p(Y1, Y2|do(a1, a2)), in which case Y∗ would be equal

to {Y1, Y2}. Second, note that p(Y1, Y2|do(a1, a2)) is identified in this graph, while

p({Y1, Y2}(A1 = fA1(W2), A2 = fA2(W1))) is not. Specifically, the subgraph shown

in Fig. C-5 (b) contains the hedge structure for p(Y2,W2|do(a2)), along with a path

W2 → fA1 → Y1 which yields the inductive argument showing non-identification.

For this example, it sufficed to consider a trivial policy for A2 which always sets

A2 to a constant. However, the policy fA1 needed to dependent on W2 in order to

allow the inductive argument to go through showing that if p(Y2,W2|do(a2)) is not

identified, p({Y2, Y1}(a2, A1 = fA1(W2))) is also not identified.

Finally, we give an argument for completeness, for unrestricted policies, of the

identification algorithm for responses to edge-specific policies. The following proof

can be viewed as a generalization of the arguments in Theorems 5 and 6. This result

is also new.

Theorem 7 Define the graph Gfα to be one where all edges with arrowheads into

Aα are removed, and directed edges from any vertex in WA to A ∈ Aα added. Fix a

set Y of outcomes of interest, and define Y∗ equal anGfα
(Y) \Aα. Then if p(Y∗(a))

is not identified, or there exists D ∈ D((Gfα)Y∗), such that fα yields different policy

assignments for two edges from A ∈ Aα to D, p(Y(fα)) is not identified.

Proof: Assume there exists D ∈ D(GY∗) that is not a reachable set in G, or fα has

the different policy assignments for a pair of directed edges out of A into D. Let

R = {D ∈ D| chG(D)∩D = ∅}, and A∗ = A∩paG(D). Then we have one of two cases.

Either there exists a hedge consisting of D and a superset of D for p(R|do(a∗)), and

p(R|do(a∗)) is not identified via a construction based on hedges in Shpitser and Pearl

(2006); or p(R(f{(AD)→|A∈A,D∈D})) is not identified by counterexamples in Shpitser
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(2013) (i.e., the ”recanting district criterion”).

Because GV\A is an edge subgraph of GfA , there is some element D′ ∈ D(GanGV\A (Y))

that is a subset of D. If D = D′, it suffices to consider interventions that set the

all edges out of A∗ to the same policy and our proof follows from the argument in

Theorem 6.

Additionally, note that p(R|do(a∗)) is equal to p(R(f†{(AD→|A∈A,D∈D}))), where

f† assigns all edges from A to D to a consistent value. As a result, we can unify

the two cases above (hedge and recanting district) by assuming non-identifiability of

p(R(f{(AD→|A∈A,D∈D}))) for some policy set f.

We now proceed as before. Let Y′ be the minimal subset of Y such that R ⊆

anGfα
(Y′). Consider an edge subgraph G† of Gfα consisting of all edges in Gfα in the

hedge above, and a subset of edges on directed paths in Gfα from R to Y′ that form a

forest. As in Theorem 6, these directed paths may intersect A due to the addition of

edges in Gfα from WA to A ∈ A. Let A† be the union of the set A∗ and all elements

that are in A in G†. For every A† ∈ A† we restrict attention to policies that map

values of W†
A† to A†, where W†

A† is WA† intersected with the vertices in G†.

Note that if p(Y′({A† = f{(AD)→|A∈A,D∈D}(W†
A†)|A† ∈ A†})) is not identified in

G†, p(Y(fα)) is also not identified in G. This is because, by construction, p(Y′({A† =

f{(AD)→|A∈A,D∈D}(W†
A†)|A† ∈ A†})) = p(Y′(fα)) in G†, and if the marginal p(Y′(fα))

is not identified the joint p(Y(fα)) is also not identified in G†. Because G† is an edge

subgraph of G, p(Y(fα)) is also not identifiable in G.

We now show that

p(Y′({A† = f{(AD)→|A∈A,D∈D}(W†
A†)|A† ∈ A†}))

is not identified in G†. Note that if R ⊆ Y′, we are done since this implies D = D′

which implies we can simply apply Theorem 6 as described above.

If R ̸⊆ Y′, pick a vertex Ỹ in G† such that paG†(Ỹ ) ⊆ R and paG†(Ỹ ) \Y′ ̸= ∅.
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Such a vertex is guaranteed to exist since G† is acyclic and R \Y′ ̸= ∅. We now have

two cases, ˜︁Y ̸∈ A∗ or ˜︁Y ∈ A∗. In the former case, we use the inductive argument from

Theorem 5. In particular, if ˜︁Y ∈ A† \A∗, we treat ˜︁Y as an ordinary variable, and the

element of f pertaining to ˜︁Y and its outgoing edge in G† as an ordinary distribution

with the properties that yield an injective map. This element of f is then used to

obtain non-identification in the inductive step corresponding to ˜︁Y . A special argument

isn’t necessary here since ˜︁Y does not intersect the original hedge structure for D.

Now consider the latter case, where ˜︁Y ∈ A∗. We apply the same argument as in

Theorem 6. We create copies of variables on the path ˜︁Y → W1 → . . .→ Wk → ˜︁Y ′ ∈ Y′

in G†, yielding a graph ˜︁G†. We extend the previous inductive argument by considering

an “extended” observed data joint distribution where conditional distributions of

{W1, . . . ,Wk, ˜︁Y } ∩A∗ given their parents are specified by appropriate policies in fA.

For the unrestricted policy class, the inductive argument again implies that

p({R \ (paG†( ˜︁Y ) \Y′), ˜︁Y ′}(a∗
A∗\{˜︁Y })) =∑︂

(a∗˜︁Y ∪paG†∪{W1,...Wk}(˜︁Y ))\Y′

p(R|do(a∗))p( ˜︁Y ′|Wk)p(W1| ˜︁Y )

k∏︂
i=2

p(Wi|Wi−1)p̃( ˜︁Y = a∗˜︁Y | paG†( ˜︁Y ))

is not identified in ˜︁G† if p(R|do(a∗)) is not identified in ˜︁G† by Corollary 5.

Note that this construction yields a composite variable Z corresponding to ˜︁Y and

its copy, where the original version of the variable has a policy that unconditionally

assigns outgoing edges to different values, while the copied version of the variable has

a policy that conditionally assigns a value based on paG†( ˜︁Y ) that is consistent across

all outgoing edges in G†. This somewhat unnatural policy is nevertheless within the

unrestricted class of edge-specific policies.

We redefine R ≡ R \ (paG†( ˜︁Y )), and A∗ ≡ A∗ \ { ˜︁Y }. The induction terminates

when A∗ = ∅ and R ⊆ Y′, yielding our conclusion. 2
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We illustrate the novel ideas in this proof via the example in Fig. C-6 (a), where we

are interested in p(Y (f{(AY )→,(AM)→})), where f sets A according to f (AY )→(W ) for the

purposes of (AY )→, and to f (AM)→(W ) for the purposes of (AM)→. In this example,

it suffices to construct a subgraph, shown in Fig. C-6 (b), containing a recanting

district along with a path from W to ˜︁Y , a copy of Y . Note that in this subgraph

there are three versions of the A variable. Two versions represent conflicting value

settings corresponding to different edges from A into a district {W,M, Y }. This is

necessary to demonstrate the existence of the recanting district structure. The third

version of A is set according to the mapping from W , and it’s necessary in order to run

the inductive argument which says if p(Y,M,W ((aY )→, (aM)→)) is not identified in

Fig. C-6 (b), neither is p(Y,M, ˜︁Y ((aY )→, (aM)→)). Merging the appropriate variables

yields Fig. C-6 (c), which demonstrates the edge-specific policy for A that is not

identified. Finally, the observed data version of the graph in Fig. C-6 (c) is Fig. C-6

(d), which is identical to Fig. C-6 (a) up to vertex relabeling.
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A

W

Y M

(a)

a a′

W

Y M

˜︁A
˜︁Y

(b)

a× ˜︁a a′ × ˜︁a
W

Y × ˜︁Y M

(c)

A× ˜︁A
W

Y × ˜︁Y M

(d)

Figure C-6. (a) A graph in which we are interested in p(Y (f{(AY )→,(AM)→})), where
f sets A according to f (AY )→(W ) for the purposes of (AY )→, and to f (AM)→(W ) for
the purposes of (AM)→. (b) The graph demonstrating the problematic recanting
district structure {Y,M,W} where A is set to different values unconditionally for
different edges into the district, along with a path from W to ˜︁Y , yielding an inductive
argument of non-identification. (c) A version of the graph in (b) where variables are
merged, and the effect of the A edge-specific policy on Y is still not identified. (d)
The graph isomorphic to (a) up to vertex relabeling which shows non-identification of
p(Y (f{(AY )→,(AM)→})).
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Appendix D

Supplementary Material for
Chapter 4

D.1 Proofs

Theorem 8 If p(V ∪H) obeys the CG factorization relative to G(V ∪H), and H

is block-safe then p(V) obeys the segregated factorization relative to the segregated

projection G(V).

Proof: Assume the premise of the theorem. Then, p(O ∪H) = ∏︁
B∈B(G) p(B| paG(B)).

For every D ∈ D(G(V)), let HD ≡ H ∩ anGD∪H(D). Then p(V) is equal to
∑︂
H

⎛⎝ ∏︂
B∈Bnt(G)

p(B| paG(B))
⎞⎠⎛⎝ ∏︂

{B}̸∈Bnt(G)
p(B| paG(B))

⎞⎠
=
⎛⎝ ∏︂

B∈Bnt(G)
p(B| paG(B))

⎞⎠ ∏︂
D∈D(G(V))

∑︂
HD

(︄ ∏︂
B∈D

p(B| paG(B))
)︄

=
⎛⎝ ∏︂

B∈Bnt(G)
p(B| paG(B))

⎞⎠ ∏︂
D∈D(G(V))

q(D| pas
G(V)(D))

= q(B∗| paG(V)(B∗))q(D∗| pas
G(V)(D∗)).

The fact that q(B∗| paG(V)(B∗)) factorizes according to the CCG Gb follows by con-

struction.

Let ˜︁B ≡ {B ∈ V ∪H | {B} ̸∈ Bnt(G)}. Then

q( ˜︁B| pas
G( ˜︁B)) =

∏︂
B:{B}̸∈Bnt(G)

p(B| paG(B))
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factorizes according to the CADMG (in fact a conditional DAG) G( ˜︁B, pas
G( ˜︁B)) obtained

from G(V ∪H) by making all elements in pas
G( ˜︁B) fixed, and all elements ˜︁B random,

keeping all edges among ˜︁B in G, and all outgoing directed edges from pas
G( ˜︁B) to ˜︁B

in G. The fact that q(D∗| paG(V)(D∗)) factorizes according Gd, the latent projection

CADMG obtained from G( ˜︁B, pas
G( ˜︁B)) by treating H as hidden variables now follows

by the inductive application of Lemmas 46 and 49 in Richardson et al. (2017) to

q( ˜︁B| pas
G( ˜︁B)) and G( ˜︁B, pas

G( ˜︁B)). 2

Theorem 9 Assume G(V ∪H) is a causal CG, where H is block-safe. Fix disjoint

subsets Y,A of V. Let Y∗ = antG(V)V\A Y. Then p(Y|do(a)) is identified from p(V)

if and only if every element in D( ˜︁Gd) is reachable in Gd, where ˜︁Gd is the induced

CADMG of G(V)Y∗.

Moreover, if p(Y|do(a)) is identified, it is equal to

∑︂
Y∗\Y

⎡⎢⎣ ∏︂
D∈D(˜︁Gd)

ϕD∗\D(q(D∗| paG(V)(D∗));Gd)

⎤⎥⎦ (D.1)

×

⎡⎢⎣ ∏︂
B∈B(˜︁Gb)

p(B \A| paG(V)Y∗ (B),B ∩A)

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓
A=a

(D.2)

where

q(D∗| paG(V)(D∗)) = p(V)
(∏︁B∈Bnt(G(V)) p(B| paG(V)(B)) ,

and ˜︁Gd is the induced CCG of G(V)Y∗.

Proof: We proceed by proving a series of subclaims.

Claim 1: If p(O) obeys the segregated factorization relative to G(O), then p(A)

obeys the segregated factorization relative to G(O)A for any subset A ⊆ O anterial in

G(O). A set A is anterial if, whenever X ∈ A, antG(X) ⊆ A.

We show this by induction. Assume p(O) obeys the segregated factorization relative

to G(O), and A consists of all elements in O other than those in B ∈ Bnt(G(O)).

Then by writing p(A) = ∑︁
B p(O) as a segregated factorization for p(O), we note that
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the nested factorization remains unchanged by the marginalization, and the block

factorization remains unchanged, except the factor corresponding to B is removed.

Similarly, assume p(O) obeys the segregated factorization relative to G(O), and A

consists of all elements in O other than some element B not in any B ∈ Bnt(G(O))

such that chG(B) is empty. Then by writing p(A) = ∑︁
B p(O) as a segregated

factorization for p(O), we note that the block factorization remains unchanged by the

marginalization, and the kernel

q(B∗ \ {B} | pas
G(O)(B∗)) =

∑︂
B

p(V)∏︁
B∈Bnt(G(V)) p(B| paG(V)(B))

is nested Markov relative to the CADMG G̃(O)⌈ obtained from G(O)d by removing B

and all edges adjacent to B. To see this, note that reachable sets in G̃(O)⌈ are a strict

subset of reachable sets in G(O)d, since B is fixable in G(O)d, and moreover all kernels

corresponding to reachable sets in G̃(O)⌈ may be obtained from q(B∗ | pas
G(O)(B∗))

by marginalizing B first, and applying the fixing operator to remaining variables in

B∗ \ {B}. As a result, the nested global Markov property for the former graph is

implied by the nested global Markov property of the latter graph, proving our claim.

Claim 2: The algorithm specified by the equation (D.2) is sound for identification

of p(Y|do(a)).

Per claim 1, without loss of generality assume Y has no children in G(O). Consider

the chain graph g-formula:

p(Y(a)) =
∏︂

B∈B(G(O∪H))
p(B \A| paG(B),B ∩A)|A=a.

We can decompose this into factors relating to the non-trivial blocks and districts in

the graph:

p(Y(a)) =
∏︂

B∈Bnt(G(O∪H))
p(B \A| paG(B),B ∩A)|A=a

×
∏︂

D∈D(G(O∪H))
p(D \A| paG(D),D ∩A)|A=a.
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Since H is block-safe, the factors in the first term – those that correspond to non-trivial

blocks – are the same in the segregated graph as in the original chain graph and thus

we can re-write the above as:

p(Y(a)) =
∏︂

B∈Bnt(GY∗ )
p(B \A| paG(B),B ∩A)|A=a

×
∏︂

D∈D(G(O∪H))
p(D \A| paG(D),D ∩A)|A=a.

Meanwhile the factors in the second term describe a kernel q(D∗| paG(O∪H)
(D∗)) associ-

ated with a CADG G(O∪H,B∗) which we can manipulate to obtain the desired result

by following the argument in the proof of Theorem 60 in Richardson et al. (2017).

Let A∗ = O \ Y∗ ⊇ A. By the global Markov property of conditional DAGs

(CDAGs) proven in Richardson et al. (2017), p(Y∗|doG(O∪H,B∗)(a)) = p(Y∗|doG(O∪H,B∗)(a∗)).

Let G∗((O \A∗) ∪H,B∗ ∪A∗) = ϕA∗(G(O ∪H,B∗)). Let σH denote the latent

projection operation such that σH(G(O ∪H) = G(O). Then, by commutativity of σH

and the fixing operator (Corollary 53 in Richardson et al. (2017)), σH(ϕA∗(G(O ∪

H,B∗))) = ϕA∗(σH(G(O ∪ H,B∗))) = G∗(Y∗,B∗ ∪ A∗). By definition of induced

subgraphs, G(O,B∗)Y∗ = (ϕA∗(G(O,B∗)))Y∗ . By these two equalities, we have

G(O,B∗)Y∗ = G∗(O,B∗ ∪A∗)Y∗ and thus D(G(O,B∗)Y∗) = D(G∗(Y∗,B∗ ∪A∗)).

For each D ∈ D(G∗(Y∗,B∗ ∪A∗)), let HD ≡ H ∩ anG(O∪H,B∗)D∪H(D) and H∗ ≡⋃︁
D∈D(G∗(Y∗,B∗∪A∗)) HD. Then, by construction, if D,D′ ∈ D(G∗(Y∗,B∗ ∪ A∗) and

D ̸= D′ then HD ∩HD′ = ∅. Additionally, for all D ∈ D(G∗(Y∗,B∗ ∪A∗), it is the

case that paG(O∪H,B∗)(D∪HD)∩H∗ = HD. And Y∗∪H∗ is ancestral in G(O∪H,B∗)

which implies that if v ∈ Y∗ ∪H∗, then paG(O∪H,B∗(v) ∩H ⊆ H∗.
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By the DAG g-formula and the above features of the construction,

p(Y∗|doG(O∪H,B∗)(a∗))

=
∑︂
H

∏︂
v∈(H∪Y∗)

p(v| paG(O∪H,B∗)(v))

=
∑︂
H∗

∏︂
v∈(H∗∪Y∗)

p(v| paG(O∪H,B∗)(v)) ·
∑︂

H\H∗

∏︂
v∈(H\H∗)

p(v| paG(O∪H,B∗)(v))

=
∑︂
H∗

∏︂
D∈D(G∗(Y∗,A∗∪B∗))

∏︂
v∈(D∪HD)

p(v| paG(O∪H,B∗)(v))

=
∏︂

D∈D(G∗(Y∗,A∗∪B∗))

(︄∑︂
HD

∏︂
v∈(D∪HD)

p(v| paG(O∪H,B∗)(v))
)︄
.

(D.3)

For any district D ∈ D(G∗(Y∗,B∗ ∪A∗)),∑︂
HD

∏︂
v∈D∪HD

p(v| paG(O∪H,B∗)(v))

=
∑︂
HD

∏︂
v∈(D∪HD)

p(v| paG(O∪H,B∗)(v)) ·
∑︂

H\HD

∏︂
v∈(H\HD)

p(v| paG(O∪H,B∗)(v))

=
∑︂
H

∏︂
v∈D∪HD

p(v| paG(O∪H,B∗)(v))

=
∑︂
H
ϕD∗\D(q(D∗| paG(O∪H,B∗)(D∗)));G(O ∪H,B∗))

(D.4)

Once again, these equalities are a result of the above constructions of H and H∗. By

commutativity (Lemma 55 in Richardson et al. (2017)), we can remove references to

H:

p(Y∗|doG(O∪H,B∗)(A∗))

=
∏︂

D∈D(G(Y∗,B∗∪A∗))
ϕD∗\Dq(D∗| paG(O,B∗)(D∗));G(O,B∗))

=
∏︂

D∈D(G(Y∗,B∗∪A∗))
ϕD∗\Dq(D∗| paG(D∗));Gd)

=
∏︂

D∈D(GY∗ )
ϕD∗\Dq(D∗| paG(D∗));Gd)

The second equality is true because paG(D∗) ⊆ paG(O,B∗)(D∗) and by the assumption

of a block-safe chain graph. The final equality is true by block-safeness and the

definition of induced subgraphs.

Finally by the fact that p(Y|doG(O∪H,B∗)(A)) = ∑︁
Y∗\Y p(Y∗|doG(O∪H,B∗)(A∗)), we
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can re-write the above as:

p(Y|doG(O∪H,B∗)(A)) =
∑︂

Y∗\Y

∏︂
D∈D(GY∗ )

ϕD∗\Dq(D∗| paG(D∗));Gd)

We combine this with the block portioned derived above via chain-graph g-formula to

obtain the result of the sub-claim

Claim 3: If there is a district in D(G(O)Y∗) that is not reachable in Gd, then

p(Y|do(a)) is not identifiable.

Let D ∈ D(G(O)Y∗) be unreachable. Let R = {D ∈ D| chG(D) ∩D = ∅}. Let

A∗ = A ∩ paG(D). Then there exists a superset of D, D′, such that D and D′ form

a hedge for p(R|do(a∗)) and thus p(R|do(a∗)) is not identified (Shpitser and Pearl,

2006).

Let Y′ be the minimal subset of Y such that R ⊆ antG(O)O\A(Y′). Consider an

edge subgraph G† of G consisting of all edges in G in the hedge formed by D,D′ and

edges on partially directed paths in G(O)O\A from every element in R to some element

in Y′, such that the edge subgraph does not contain any cycles (directed or otherwise).

We proceed as follows. We first define an ADMG G̃† from G† as follows. The

vertices and edges making up the hedge structure (Shpitser and Pearl, 2006) in G† are

also present in G̃†. For every partially directed path σ from an element in R to an

element in Y′, we construct a directed path from R in G̃† containing vertex copies of

vertices on the undirected path σ, and which orients all undirected edges in σ away

from R and towards the element copy in G̃† of the appropriate element of Y′ in G†.

We then prove non-identifiability of p(Ỹ′|do(a∗)) in G̃†, where Ỹ′ is the set of all

vertex copies in G̃† of vertices in Y′ in G†, using standard techniques for ADMGs.

In particular, we follow the proof of Theorem 4 in the supplement of Shpitser and

Sherman (2018).

We next show that p(Y′ | do(a∗)) is not identified in G†. For the two counterex-

amples in the causal model given by G̃† witnessing non-identifiability of p(Ỹ′ | do(a∗))
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in the above proof, we will construct two counterexamples in the causal model given

by G† witnessing non-identifiability of p(Y′ | do(a∗)).

To do so, we define new variables along all partially directed paths from R to Y′ in

G† as Cartesian products of variable copies in counterexamples constructed. Note that

any such variable containing only a single element in R in its anterior in G† will only

have a single copy, while a variable containing two elements in R in its anterior in G†

will contain two copies, and so on. It’s clear that the two resulting elements contain

vertices in G†, agree on the observed data distribution, and disagree on p(Y′ | do(a∗)).

What remains to show is that the distributions so constructed obey one of CG

Markov properties associated with a CG G†. Fix a (possibly trivial) block B in G†.

We must show for each B ∈ B that p(B | B \B, paG†(B)) = p(B | nbG† , paG(B)).

For any B ∈ B in G†, there exists a set B1, . . . , Bk of variables in G̃† such that B is

defined as B1 × . . .×Bk. Moreover, any variable A ∈ nbG†(B) ∪ paG†(B) corresponds

to a Cartesian product A1 × Am of variables where Ai is a child or a parent of some

variables Bj . The result then follows by d-separation in G̃†, and the fact that the part

of G̃† outside of the hedge structure does not contain any colliders by construction. 2

D.2 Derivations

Consider Figure 4-1 (c). We are interested in identifying p(Y2(a1, a2)). We set Y∗

to the anterior of Y in GV\A: Y∗ ≡ {C1, C2,M1,M2, Y2} (see GY∗ shown in Fig.

4-1 (d)) with B(GY∗) = {{M1,M2}} and D(GY∗ = {{C1}, {C2}, {Y2}}. We can now

proceed with the version of the ID algorithm for SGs. The CCG portion of the

algorithm simply yields p(M1,M2|A1 = a1, A2, C1, C2). Note that this expression

further factorizes according to the factorization of blocks in a chain graph. For

the ADMG portion of the algorithm, we must fix variables in three different sets

{C2, A1, A2, Y1, Y2}, {C1, A1, A2, Y1, Y2}, {C1, C2, A1, A2, Y1} in Gd, shown in Fig. 4-1
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(e), corresponding to three districts in Fig. 4-1 (d). We have:

ϕ{C2,A1,A2,Y1,Y2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= ϕ{C2,A1,A2,Y1}(p(Y1|A1, A2,M1,M2, C1, C2, Y2)p(A1, A2, C1, C2))

= ϕ{C2,A1,A2}(p(A1, A2, C1, C2))

= ϕ{C2,A2}(p(A2, C1, C2))

= ϕ{C2}(p(C1, C2))

= p(C1)

(D.5)

ϕ{C1,A1,A2,Y1,Y2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= ϕ{C1,A1,A2,Y1}(p(Y1|A1, A2,M1,M2, C1, C1, Y2)p(A1, A2, C1, C2))

= ϕ{C1,A1,A2}(p(A1, A2, C1, C2))

= ϕ{C1,A2}(p(A2, C1, C2))

= ϕ{C1}(p(C1, C2))

= p(C2)

(D.6)

ϕ{C1,C2,A1,A2,Y1}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= ϕ{A1,Y1,A2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2|C1, C2))

= ϕ{A1,A2}(p(Y2|A1, A2,M1,M2, C1, C2)p(A1, A2|C1, C2))

=
∑︂
A2

p(Y2|A1, A2,M1,M2, C1, C2)p(A2|C2)

=
∑︂
A2

p(Y2|A1, A2,M2, C2)p(A2|C2)

(D.7)

with the last term evaluated at A1 = a1. Thus, the identifying functional is:

p(Y2(a1, a2)) =
∑︂

{C1,C2,M1,M2}

[︄
p(M1,M2|a1, a2, C1, C2)

×
[︃∑︂

A2

p(Y2|a1, A2,M2, C2)p(A2|C2)p(C1)p(C2)
]︃]︄ (D.8)
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D.3 Simulation Study

D.3.1 The Auto-G-Computation Algorithm

To estimate identifying functionals corresponding to causal effects given dependent

data, we generally use maximum likelihood plug in estimation. The exception is the

factor p(M | paG(M)), which may not be estimated if Mi variables for all units i are

dependent, as is the case in our simulation study. In this case, the above density

must be estimated from a single sample. Thus, standard statistical methods such

as maximum likelihood estimation fail to work. We adapt the auto-g-computation

algorithm method in Tchetgen, Fulcher, and Shpitser (2017), which exploits Markov

assumptions embedded in our CG model, as well as the pseudo-likelihood or coding

estimation methods introduced in Besag (1975). We briefly describe the approach

here.

The auto-g-computation algorithm is a generalization of the Monte Carlo sam-

pling version of the standard g-computation algorithm for classical causal models

(represented by DAGs) (Westreich et al., 2012) to causal models represented by CGs.

Auto-g-computation proceeds by generating samples from a block using Gibbs sam-

pling. The parameters for Gibbs factors used in the sampler (which, by the global

Markov property for CGs, take the form of p(Xi | paG(Xi)∪ nbG(Xi))) are learned via

parameter sharing and coding or pseudo-likelihood based estimators. For any block

B, the Gibbs sampler draws samples from p(X | paG(X)), given a fixed set of samples

drawn from all blocks with elements in paG(X), or specific values of paG(X) we are

interested in, as follows.
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Gibbs Sampler for X:

for t = 0, let x(0) denote initial values ;

for t = 1, ..., T

draw value of X(t)
1 from p(X1|x(t−1)

paG(X1)∪nbG(X1)));

draw value of X(t)
2 from p(X2|x(t−1)

paG(X2)∪nbG(X2)));
...

draw value of X(t)
m from p(Xm|x(t−1)

paG(Xm)∪nbG(Xm)));

Since we are interested in estimating a functional similar to (D.8), we use observed

values of C, and intervened on values ai, aj as the values of paG(M) in the Gibbs

sampler.

The coding-likelihood and pseudo-likelihood estimators we use are described in

more detail in Tchetgen, Fulcher, and Shpitser (2017). Both estimators rely on

parameter sharing for densities p(Mi | paG(Mi) ∪ nbG(Mi)) across different units i,

and for the network to be sufficiently sparse such that each Mi depends on only a few

other variables in the model, relative to the total number of units.

The coding estimator uses a subset of the data that corresponds to units that form

independent sets in the network adjacency graph (where units are adjacent of they

are friends in the network, and not adjacent otherwise). A set of units is a maximal

independent set in the network adjacency graph if a) no two vertices in the set are

adjacent, and b) it is impossible to add another unit to the set without violating

the adjacency constraint. A maximum independent set is a maximal independent set

such that there does not exist a larger maximal independent set in the same graph.

Finding maximum independent sets is a classic NP-complete problem; in practice

we find several maximal independent sets and pick the one with largest cardinality

as a heuristic. See Table D-I below for the size of Smax for each network size in our

experiments. The coding likelihood estimator was proven consistent and asymptotically
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N 400 800 1000 2000
|Smax| 159 309 384 763

Table D-I. The size of Smax used for the coding-likelihood estimator in each network

normal in Tchetgen, Fulcher, and Shpitser (2017) whereas pseudo-likelihood estimation

is, under mild assumptions, consistent but not asymptotically normal. On the other

hand, pseudo-likelihood estimation is more efficient than coding likelihood estimation

since it makes use of all of the data.

D.3.2 Simulation Specifics

For data generation we use the following densities for Ai,Mi, Yi, parameterized

by τA = {γ0, γC1 , . . . , γCp , γU1 , . . . , γUq}, τM = {β0, βA, βC1 , . . . , βCpβAnb
, βMnb

}, τY =

{α0, αC1 , . . . , αCp , αU1 , . . . , αUq , αAnb
, αM}:

p(Ai = 1|Ci,Ui; τA) = expit(γ0 +
(︂ p∑︂

l=1
γCl

Cil

)︂
+
(︂ q∑︂

l=1
γUl
Uil

)︂
)

p(Mi = 1|Ai,Ci, {Aj,Mj|j ∈ Ni}; τM)

= expit(β0 + βAAi +
(︂ p∑︂

l=1
βCl

Cil

)︂
+
(︂ ∑︂

j∈Ni

(βAnb
Aj + βMnb

Mj)
)︂
)

p(Yi = 1|Ci,Ui,Mi, {Aj|j ∈ Nj}; τY )

= expit(α0 +
(︂ p∑︂

l=1
αCl

Cil

)︂
+
(︂ q∑︂

l=1
αUl

Uil

)︂
+
(︂ ∑︂

j=Ni

αAnb
Aj

)︂
+ αMMi).

The values of the parameters for the beta distributions we use to generate Ci,Ui

can be found in Table D-IIa while the values of τA, τM , τY can be found in Table D-IIb.

D.3.3 Extended Results

In the main paper we gave confidence intervals and the mean and standard deviation

of the bias of our estimators. All results were calculated by averaging over 1000

simulated networks.

As discussed in the main body of the paper, the estimators we use are able to
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Variable a b
C1 1.5 3
C2 6 2
C3 0.8 0.8
U1 2.3 1.1
U2 0.9 1.1
U3 2 2

(a) Parameters for C and U

Parameter Value
τA (-1, 0.5, 0.2, 0.25, 0.3, -0.2, 0.25)
τM (-1, -0.3, 0.4, 0.1, 1, -0.5, -1.5)
τY (-0.3, -0.2, 0.2, -0.05, 0.1, -0.2, 0.25, -1, 3)

(b) Parameters for τA, τM , τY

Table D-II. The parameters for each generating distribution

Ground Truth Network Average Effects
N 400 800 1000 2000
Ground
Truth -.455 -.453 -.455 -.456

Table D-III. The ground truth effects for each network, calculated by averaging
over 5 samples of the data generating process for each network under the relevant
interventions

recover the effects of interest reasonably well. The approximate ground truth values

for these effects can be found in Table D-III. The fact that the coding estimator

restricts the network to a small fraction of its total units means it is considerably less

efficient than the pseudo-likelihood estimator.

Though the pseudo-likelihood estimator is not in general asymptotically normal,

it does not perform substantially worse than the provably asymptotically normal

coding-likelihood estimator. In both cases, the true effect is covered by the 95%

confidence interval of the estimator.
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Appendix E

Supplementary Material for
Chapter 5

E.1 Proofs

Lemma 1 Given a segregated graph G(V) and a segregation-preserving policy interven-

tion fA(ZA), the post-intervention graph GfA obtained via Procedure 2 is a segregated

graph.

Proof: In order for GfA to be a segregated graph, it must not have a node with both

an incident bi-directed and undirected edge (the ‘segregation’ property) and it must

not have any partially directed cycles (the ‘chain’ property).

We first show that GfA satisfies the segregation property. First we consider edges

that appear in both G and GfA (potentially with a modified functional form). Since

we do not add any ↔ edges when constructing GfA , and since we assumed G is a

segregated graph, these edges are all incident to nodes that do not also have incident

directed edges.

We can therefore restrict attention to undirected edges that were newly created

when constructing GfA . These edges correspond to connecting two previously uncon-

nected nodes. This requires intervening on both end points, which entails removing

all incident ↔ edges, as described in Procedure 2. This accounts for all possible
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undirected edges. In particular, we cannot convert a directed edge X → Y to an

undirected edge X − Y : this would require intervening on X with fX(ZX) where

Y ∈ ZX which violates our construction that Z ⊆ V \ extG(X).

Since no undirected edge is incident to a node that also has an incident bi-directed

edge, GfA satisfies the segregation property.

We now show that GfA satisfies the chain property. We argue by contradiction:

suppose GfA does have a newly induced (relative to G) partially directed cycle. Then,

without loss of generality, one of the following sub-structures appears in GfA but not

in G: (1) W → X → Y → W , (2) W → X − Y → W , or (3) W → X − Y −W .

Sub-structure (1) contradicts our assumption that fA is segregation-preserving.

Specifically, we have that W△X directly and X△W through Y , however W ̸∈ ZY .

In sub-structure (2), consider scenarios where two edges were present in G and we

seek to add the third edge. When adding either the W → X or Y → W edge, we

have that W△X and X△W (analogously for W,Y ) but X ̸∈ ZW (W ̸∈ ZY ) which is

a contradiction. Meanwhile, adding the X − Y edge requires that Y ∈ ZX , however

Y ∈ extG(X) which yields a contradiction. A similar argument involving △ applies

when only one of the three edges was present in G and we seek to add the other two.

In sub-structure (3) a similar argument applies. Suppose we seek to add the

W → X edge with the two undirected edges present. X△W in the post-intervention

graph but it is not the case that W△X, yielding a contradiction. Adding the Y −X

edge yields a contradiction since X ∈ extG(Y ). Similarly, adding the Y −W edge

yields a contradiction since Y ∈ extG(W ). Again, we can make a similar argument for

adding two of the three edges.

The above argument generalizes trivially to larger sub-structures in the graph (e.g.,

4-cycles) and so GfA will not have any partially directed cycles. Since GfA satisfies

both the chain property and the segregation property, it is a segregated graph. 2
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Theorem 10 Let G(V ∪H) be a causal LV-CG with H block-safe, and a topological

order ≺. Fix disjoint Y,A ⊆ V. Let fA(ZA) be a segregation preserving policy set.

Let Y⋆ ≡ antGfA
(Y) \A. Let Gd, G̃

d be the induced CADMGs on GfA and GY⋆, and

G̃
b the induced CCG on GY⋆. Let q(D⋆| pas

GfA
(D⋆)) = ∏︁

D∈GfA
q(D| pas

GfA
(D)), where

q(D| pas
GfA

(D)) = ∏︁
D∈D p(D|V≺D) if D ∩ A = ∅ and q = fA(ZA) if D ∩ A ̸= ∅.

p(Y(fA(ZA))) is identified in G if and only if p(Y⋆(a)) is identified in G for the

unrestricted class of policies. If identified, p(Y(fA(ZA))) =

∑︂
{Y⋆∪A}\Y

[︄ ∏︂
B∈B(G̃b)

p⋆(B| paGfA
(B))

]︄

×
[︄ ∏︂

D∈D(G̃d)

ϕD⋆\D(q(D⋆| pas
GfA

(D⋆));Gd)
]︄⃓⃓⃓⃓
⃓
A=ã

(E.1)

where (a) ã = {A = fA(ZA) : A ∈ paGfA
(D) ∩ A} if paGfA

(D) ∩ A ̸= ∅ and

ãD = ∅ otherwise, and (b) p⋆ is obtained by running Procedure 1 over functions

gBi
(B−i, paGfA

(Bi), ϵBi
) where gBi

∈ fA if Bi ∈ A and gBi
is given by the observed

distribution if Bi ̸∈ A1.

Proof: We prove two subclaims.

Claim 1: The segregated graph policy ID formula, equation E.1, is sound

We first note that each variable in V∪H is defined by a structural equation model.

Since fA is assumed to be segregation preserving, lemma 1 implies that all variables

in H have an unchanged structural equation in fA. Among V there exist two types of

variables: those that have a symmetric functional dependence with another variable

(i.e., for Vi, Vj ∈ V the structural equations fVi
, fVj

are functions of each other), and

those without symmetric dependence.

We impose an ordering on the variables in GfA in order of their dependence on

other variables in the graph: we first evaluate variables V ∈ (V ∪H) with structural

equations that don’t depend on other variables (V ∼ fV (ϵV )) and then variables
1This distribution is identified from univariate terms but it cannot be obtained in closed-form.
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that are functions of those variables and so on. Following Lauritzen and Richardson,

2002, groups of variables that have symmetrically dependent structural equations are

chain components corresponding to Bnt(GfA). Variables that do not exhibit symmetric

dependence are trivial chain components. Our ordering therefore implies a DAG on

chain components (it is acyclic aside from in-component cycles by lemma 1).

It’s clear that for trivial chain components the functions fV immediately reach

an equilibrium. We can normalize these functions, and write the margin over their

corresponding variables as:

∏︂
V ∈D:D∈D(GfA (V∪H))

p(V | paGfA (V∪H)(V ))|A=fA

Now, for each non-trivial chain component B, the structural equations for each

constituent variable treats inputs that are not in the component as known (this can

be done since those variables are evaluated earlier in the ordering on the DAG of

components) and evaluates each variable in the component via a Gibbs sampling

process. The values obtained upon convergence can then be passed to components

later in the ordering. This follows by application of proposition 6 in Lauritzen and

Richardson, 2002, and so we can express the DAG factorization over chain components

as:

p(V ∪H(fA)) =
∏︂

D∈D(GfA (V∪H))
p(D| paGfA (V∪H)(D))|A=fA

×
∏︂

B∈Bnt(GfA (V∪H))
p⋆(B| paGfA (V∪H)(B))

GfA is a proper latent-variable chain graph.

We derive the remainder of the proof via the argument in the proof of theorem 2

in Sherman and Shpitser, 2018. We assume without loss of generality that Y has no

children in G(V).

Consider the chain graph factorization of GfA derived above. Because H is block-safe
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in G, the non-trivial blocks term can be re-written as follows:

∏︂
B∈Bnt(GfA (V∪H))

p⋆(B| paGfA (V∪H)(B)) =
∏︂

B∈Bnt(GfA (V))
p(B| paGfA (V)(B))

=
∏︂

B∈Bnt(G̃b)

p⋆(B| paGfA (V)(B))|A=ãB

We are now left with the following factorization for the overall graph:

p({V ∪H}(fA)) =
∏︂

B∈Bnt(G̃b)

p⋆(B| paGfA (V)(B))

×
∏︂

D∈(V∪H)\
(︂⋃︁

B∈Bnt(GfA
) B
)︂ ∏︂

V ∈D\A
p(V | paGfA (V∪H)(V ))

∏︂
V ∈D∩A

fV (ZV )|A=fA

The factors in the second term are singleton nodes by construction and so they are

defined by either observed p(V | paGfA (V∪H)(V )) if V ̸∈ A and fV ∈ fA(ZV ) if V ∈ A.

If we marginalize H from this second set of terms, using standard procedures

Tian and Pearl, 2002, then the resulting expression is the kernel described in the

statement of the theorem: q(D⋆| pas
G(V)(D⋆)) = ∏︁

D∈D(GfA ) q(D| pas
GfA (V)(D)), where

q(D| pas
GfA (V)(D)) = ∏︁

D∈D p(D|V≺D) if D ∩A = ∅ and q(D| pas
GfA (V)(D)) = fA(ZA)

if D ∩A ̸= ∅.

Since ZA are all observed by assumption, we can manipulate this kernel as in the

proof of soundness for theorem 2 in Sherman and Shpitser, 2018. Whereas in Sherman

and Shpitser, 2018 the authors fixed A to constants, here we can express setting A to

stochastic values according to fA. The claim is then immediate.

Claim 2: The segregated graph policy ID formula is complete

We adapt the proof techniques in Shpitser and Sherman, 2018; Sherman and

Shpitser, 2018. At a high level, we will use the fact that p(Y⋆(a)) is not identified

to demonstrate that there is a hedge in G. We will then extend the hedge down the

graph to reach Y via extGY⋆ (hedge) and antGY⋆ (Y) to show non-identification. We do

this by arguing along the partially directed paths from the hedge to Y, which requires

considering subgraphs of GY⋆ . We show non-identifiability in each of an increasingly
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restricted submodel of GY⋆ and then show that non-identification in the submodels

yields non-identification in GY⋆ . More concretely, there are two complications that

must be dealt with for showing completeness of policy interventions: the hedge might

intersect Y and we must extend the hedge down to Y via partially directed paths.

We construct a subgraph for demonstrating the latter case and then a subgraph of

that for the former case. We now proceed with the proof.

Suppose p(Y⋆(a)) is not identified in G. Then there is a district D ∈ D(GY⋆) that

is not reachable in G. Let R = {D ∈ D| chG(D) ∩D = ∅}. Let A⋆ = A ∩ paG(D).

Then there exists D′ ⊃ D, such that D and D′ form a hedge for p(R|do(a⋆)) and thus

p(R|do(a⋆)) is not identified by Shpitser and Pearl, 2006.

Let Y′ be the minimal subset of Y such that R ⊆ antGfA
(Y′). Consider a subgraph

G† of GfA , with vertices V′ ⊆ V, consisting of all edges in G in the hedge on D,D′

described above, and edges that lie in partially directed paths in GfA from R to

Y′. We restrict attention, without loss of generality, to at most one child per node

in each partially directed path such that our paths form a forest from R to Y′.

By Lemma 1, G† does not contain any directed, nor partially directed cycles. Let

A† = {A⋆ ∪ A|A ∈ A in G†}. For each A† ∈ A†, we restrict attention to policies that

map from Z†
A† to A†, where Z†

A† = ZA† ∩V′.

Now, following the proof of theorem 2 in the supplement of Sherman and Shpitser,

2018, we define an ADMG G̃† which has the same vertices and edges as the D,D′

hedge in G†, and has a copy of each vertex in each partially directed path from R

to Y′ in G† but replaces all the undirected edges on those partially directed paths

with directed edges oriented away from R towards Y′. We denote the variable copies

in G̃† corresponding to Y′ in G† by Ỹ′. This orientation is possible because each

undirected edge either corresponds to a (known) policy in the intervention set, or to

an observed structural equation. In either case, the observed distribution continues

to argree between the two counterexamples witnessing non-identifiability. For A† in
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G̃†, we further restrict attention to policies inducing directed edges from R to Ỹ′

(i.e. ignoring policies going the opposite direction that induce undirected edges). We

denote these nodes by Ã†.

We now show that p(Ỹ′({Ã† = f
Ã

†|Ã† ∈ Ã†})) is not identified in G̃† following the

argument in the proof of theorem 6 in the supplement of Shpitser and Sherman, 2018.

Observe that for R ⊆ Ỹ′, the subclaim is immediate by the recursive argument in

the proof of theorem 4 in Shpitser and Sherman, 2018. Otherwise, pick a node Ỹ ′ in

G̃† such that paG̃†(Ỹ ′) ⊆ R and paG̃†(Ỹ ′) \ Ỹ′ ≠ ∅ (as in Shpitser and Sherman, 2018,

such a vertex must exist since G̃† is acyclic and R \ Ỹ′ ̸= ∅). If this Ỹ ′ ∈ Ã† \A⋆, the

subclaim is immediate since Ỹ ′ does not intersect our hedge and we can extend down

the graph using the argument in theorem 4 of Shpitser and Sherman, 2018.

If Ỹ ′ ∈ A⋆ then we can create a graph Ḡ by copying the variables on the path

Ỹ
′ → V1 → · · · → Ȳ ∈ Ỹ′ in G̃†. We then apply the argument in theorem 4 of Shpitser

and Sherman, 2018 to show that p(Ȳ (a⋆)) is not identified along this path when we

set a⋆ according to the policies specified by fA⋆ . This follows since, by assumption,

fA⋆ ⊆ fA lies in an unrestricted policy class. Now, as p(Ȳ (a⋆)) is not identified in

Ḡ, we can use the two counterexamples witnessing non-identifiability in Ḡ to obtain

non-identifiability for p(Ỹ′(fÃ†)). To do so, we define new variables in G̃† that are the

Cartesian product of variable copies created in Ḡ and their corresponding variables in

G̃†. Non-identifiability follows via the standard argument in lemma 1 of Shpitser and

Sherman, 2018.

Now that we have shown that p(Ỹ′({Ã† = f
Ã

†|Ã† ∈ Ã†})), we have two coun-

terexamples witnessing non-identifiability in G̃† which agree on the observed data

distribution but disagree on the counterfactual distribution. We use these counterex-

amples to demonstrate non-identifiability of p(Y′({A = fA|A ∈ A⋆})) in G†. To do

so, we define variables along the partially directed paths from R to Y′ in G†. These

variables are created by taking the Cartesian product of variable copies in G̃† and
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the corresponding variables in G†. As before, the counterexamples continue to agree

on the observed data distribution and disagree on the counterfactual distribution.

Thus p(Y′({A = fA|A ∈ A⋆})) is not identified in G†. Since Y′ ⊆ Y⋆, the result is

immediate, subject to the remaining argument on the chain graph properties of G†

and G̃† below.

Following Sherman and Shpitser, 2018, fix a block B in G†. For any B ∈ B, there

exists a set of variables B1, . . . , Bk in G̃† such that B is defined as the Cartesian product

of B1, . . . , Bk. Any variable A ∈ nbG† ∪ paG†(B) is similarly a Cartesian product of A

variables. Then it follows that B ⊥⊥ ((paG†(B)∪B)\ (nbG†(B)∪paG†(B)))|(nbG†(B)∪

paG†(B)) by d-separation rules in the ADMG G̃† and that there are no colliders in G̃†.

These both follow from our vertex copy argument which separates out B from the

rest of the block and eliminates the possibility of colliders by making every path from

R to Y′ a partially directed chain. This demonstrates that G† and G̃† (and trivially

Ḡ) satisfy the independence constraints implied by the CG Markov property, thus

proving the claim. 2

E.2 Derivation of the Figure 5-2 Functional

From Fig. 5-2(a), we obtain GfA in Fig. 5-2(b) by applying the intervention detailed

in Table 5-II. In turn, from this post-intervention graph we observe that Y⋆ =

antGfA
(Y) \ A = {C2, C3,M3, Y2, Y3} and obtain the induced subgraph GY⋆ in Fig.

5-2(c).

GY⋆ factorizes into kernels relating to district nodes and block nodes:

qD(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3)

and

qB(M2,M3, A2, A3, C2, C3|∅).
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The block nodes factorize as a product of blocks, as in the first term of Eq. E.1:

qB(B⋆| paGfA
(B⋆)) =

∏︂
B∈B(G̃b)

p⋆(B| paGfA
(B))

= p⋆(M2,M3|A2, A3, C2)p⋆(A2, A3|C2, C3)p⋆(C2, C3)

Note that p⋆(C2, C3) = p(C2, C3) since the C2 − C3 block is unchanged relative to the

observed data.

Separately, we must fix sets for each GY⋆ district {{M3}, {Y2, Y3}} in qD(G). The

derivations of these pieces is as follows:

ϕD⋆\{M3}(q(C1,A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd) =

ϕD⋆(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)

This follows since M3 is already fixed in this kernel and subgraph. Since we must fix

all variables in the kernel and all variables in the kernel are fixable, this term simplifies

to p(∅) = 1.

For the second kernel, we have: ϕD⋆\{Y2,Y3}(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)

= ϕC1,A1,M1,Y1(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)

= ϕA1,M1,Y1(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3)
p(C1)

;ϕC(Gd))

= ϕA1,M1,Y1(q(A1,M1, Y1, Y2, Y3|C2,M2,M3, C1);ϕC1(Gd))

= ϕM1,Y1(q(A1,M1, Y1, Y2, Y3|C2,M2,M3, C1)
p(A1|C1)

;ϕC1,A1(Gd))

= ϕM1,Y1(q(M1, Y1, Y2, Y3|C2,M2,M3, C1, A1);ϕC1,A1(Gd))

= ϕY1(q(M1, Y1, Y2, Y3|C2,M2,M3, C1, A1)
p(M1|A1)

;ϕC1,A1,M1(Gd))

= ϕY1(q(Y1, Y2, Y3|C2,M2,M3, C1, A1,M1);ϕC1,A1,M1(Gd))

= q(Y1, Y2, Y3|C2,M2,M3, C1, A1,M1)
p(Y1|A1,M1)

;ϕC1,A1,M1,Y1(Gd))

= p(Y2, Y3|C1, C2,M1,M2,M3, A1, Y1)
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This yields the functional for p({Y2, Y3}(fA)):

∑︂
{A1,A2,A3,M2,M3,C2,C3}

(︃
p⋆(M2,M3|A2, A3, C2)p⋆(A2, A3|C2, C3)p⋆(C2, C3)

× p(Y2, Y3|C1, C2,M1,M2,M3, A1, Y1)
)︃

E.3 Experimental Details and Extended Results

The parameters for the Beta distribution for C for both types of experiments (policy

and bias) are given by:

α β
1.5 3
6 2
.8 .8

Table E-I. Parameters for generating Ci

The parameters for Ai and Yi differ between the bias and policy experiments. For

A we have:

Parameter Bias Policy
γ1 1 .5
γ2 0 .2
γ3 0 .25
τAC 0 .15

Table E-II. Parameters for generating Ai

And for Y we have:

Finally, for the policy experiment we have results (Figure E-1b) similar to those

in the main draft, which demonstrate the efficacy of policy interventions in selection

actions that yield a more optimal outcome.
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Parameter Bias Policy
η -3 .6
δ1 1 -.3
δ2 0 .4
δ3 0 .1
τY A 3 .2
τY Y .1 .3
τY C 0 -.2

Table E-III. Parameters for generating Yi
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Figure E-1. Difference in expected outcomes between adopting an optimal strategy
and using the status quo strategy in the Barabási-Albert model E-1a and the Watts-
Strogatz small world model E-1b. We perform these analyses at several network
densities to demonstrate the general efficacy of this approach.

178



Appendix F

Supplementary Material for
Chapter 6

F.1 Additional Network Intervention Examples

Housing Vouchers

In urban development economics, housing vouchers have been proposed as a means of

inducing families to move from areas with less opportunity for upward socioeconomic

mobility to areas of with greater opportunity (Chetty, Hendren, and Katz, 2016).

As pointed out in Hudgens and Halloran (2008), oftentimes these proposals ignore

the social network-related implications of such a policy (e.g. decision is impacted by

talking to neighbors). In Fig. F-1 we consider the specific impacts of transplanting a

family from one neighborhood to the other.

Each unit i in Fig. F-1 has a variable Ci representing the unit’s demographic

information, and an outcome Yi which represents the socioeconomic outcome targeted

by the housing voucher, such as annual income. In Fig F-1 (a) we see the pre-

intervention network, where unit 3 is neighbors with unit 2, while after the intervention

(Fig. F-1 (b)) unit 3 has been moved to a new neighborhood and is now neighbors

with unit 4 instead. This example represents both a severance and a connection

intervention.
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(b)

Figure F-1. (a) A DAG representing hypothetical connections between family units
in two separate neighborhoods; (b) the DAG resulting from moving unit 3 from the
first neighborhood to the second neighborhood via both a severance and connection
intervention.

Influencer Networks

Understanding social influence in networks is of interest to a wide variety of fields.

Researchers who study infectious diseases and intravenous drug abuse often attempt to

identify major influencers that impact many people. More recently, determining and

leveraging knowledge of influence has become the focus of the algorithmic marketing

community. If one can identify the strongest influencer in a network (not necessarily

the individual with the most connections), then understanding the effects of removing

that individual from the network (e.g. by arresting a drug-kingpin) might be useful

for policymakers.

In Fig. F-2, we represent this phenomenon via an undirected graph where each

unit, represented by Yi, is internally a DAG and the undirected edges between units

encode symmetric directed relationships similar to those in our other examples. Fig.

F-2 (b) depicts the result of a hypothetical intervention on Fig. F-2 (a) in which unit

3 is effectively removed from the network by severing all connections with it’s friends.

As a side-effect unit 4 is also effectively removed from the network.

F.2 Proofs

We first prove two utility results on factorizations of joint densities following Chen

(2007). The first is a simple lemma which is needed to prove the corollary that follows.
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Figure F-2. (a) An undirected graph representing connections in an influence network
between 6 agents; (b) the undirected graph resulting from intervening on the network
in (a) such that unit 3 is removed from the network.

We will use Corollary 6 in each of the results that follow.

Let a be a set of fixed values. Then for a two-variable conditional density f(Y1, Y2 |

a), we have:

f(Y1 | Y 0
2 , a)OR(Y1, Y2 | a)f(Y2 | Y 0

1 , a)∑︁
Y1,Y2 f(Y1 | Y 0

2 , a)OR(Y1, Y2 | a)f(Y2 | Y 0
1 , a) ,

where the odds ratio is given by

OR(Y1, Y2 | a) = f(Y1 | Y2, a)f(Y 0
1 | Y 0

2 , a)
f(Y1 | Y 0

2 , a)f(Y 0
1 | Y2, a)

= f(Y1, Y2 | a)f(Y 0
1 , Y

0
2 | a)

f(Y1, Y 0
2 | a)f(Y 0

1 , Y2 | a) .

and Y 0
1 and Y 0

2 signify reference values of Y1 and Y2.

Lemma 3

f(Y | Z,X)
f(Y0 | Z,X) = f(Y | X)OR(Z, Y | X)

f(Y0 | X)E[OR(Z, Y | X) | Y0, X]
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Proof:

f(Y | Z,X)
f(Y0 | Z,X) =1 f(Y | X)f(Z | Y,X)/f(Z | X)

f(Y0 | X)f(Z | Y0, X)/f(Z | X)

=2 f(Y | X)f(Z | Y,X)
f(Y0 | X)f(Z | Y0, X)

=3
f(Y | X) f(Z|Y0,X)OR(Z,Y |X)∑︁

Z
f(Z|Y0,X)OR(Z,Y |X)

f(Y0 | X)f(Z | Y0, X)

=4 f(Y | X)OR(Z, Y | X)
f(Y0 | X)E[OR(Z, Y | X) | Y0, X] ,

where equality 1 is by Bayes rule, 2 by cancellation, 3 by the Chen factorization of a

conditional density, and 4 by definition. 2

Corollary 6 f(Y1, Y2 | a) = X∑︁
Y1,Y2

X where X =

f(Y1 | a) OR(Y1, Y2 | a)OR(Y 0
1 , Y2|a)OR(Y1, Y

0
2 |a) f(Y2 | a)

E[OR(Y1, Y 0
2 | a) | Y 0

1 , a]E[OR(Y 0
1 , Y2 | a) | Y 0

2 , a]

Proof: We have the following for f(Y1, Y2 | a) (from Chen (2007)):

f(Y1 | Y 0
2 , a)OR(Y1, Y2 | a)f(Y2 | Y 0

1 , a)∑︁
Y1,Y2 f(Y1 | Y 0

2 , a)OR(Y1, Y2 | a)f(Y2 | Y 0
1 , a)

=1
f(Y1|Y 0

2 ,a)
f(Y 0

1 |Y 0
2 ,a)OR(Y1, Y2 | a) f(Y2|Y 0

1 ,a)
f(Y 0

2 |Y 0
1 ,a)∑︁

Y1,Y2
f(Y1|Y 0

2 ,a)
f(Y 0

1 |Y 0
2 ,a)OR(Y1, Y2 | a) f(Y2|Y 0

1 ,a)
f(Y 0

2 |Y 0
1 ,a)

=2
[︄
f(Y1 | a)
f(Y 0

1 | a)
OR(Y1, Y

0
2 | a)

E[OR(Y1, Y 0
2 | a) | Y 0

1 , a]
×OR(Y1, Y2 | a)×

OR(Y 0
1 , Y2 | a)

E[OR(Y 0
1 , Y2 | a) | Y 0

2 , a]
f(Y2 | a)
f(Y 0

2 | a)

]︄

×

⎡⎣ ∑︂
Y1,Y2

[︄
f(Y1 | a)
f(Y 0

1 | a)
OR(Y1, Y

0
2 | a)

E[OR(Y1, Y 0
2 | a) | Y 0

1 , a]
×OR(Y1, Y2 | a)×

OR(Y 0
1 , Y2 | a)

E[OR(Y 0
1 , Y2 | a) | Y 0

2 , a]
f(Y2 | a)
f(Y 0

2 | a)

]︄⎤⎦−1

=3 X∑︁
Y1,Y2 X

.
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Equality 1 holds by probability rules since Y 0
1 and Y 0

2 are fixed. Equality 2 holds by

application of Lemma 1. Equality 3 holds by reverse application of the identity for Y 0
1

and Y 0
2 . 2

We now prove the main results of the paper. Each applies Corollary 6 to show

increasingly general results pertaining to the KL-divergence of a distribution p̃ with

additional independence constraints relative to an observational distribution p.

Theorem 11 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V. Let P(V) be the set of probability distributions that factorize according

to G. Then

p(A)
∏︂

V ∈V\A

p(V | paG(V )) = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ paG(A)

Proof: Applying Corollary 6, we can express the KL-divergence of p̃(A, paG(A)) from

p(A, paG) as proportional to:

logp(A, paG(A))
p̃(A, paG(A))

= log

[︃
p(A) ORnum

ORden
p(paG(A))∑︁

A,paG(A) p(A) ORnum
ORden

p(paG(A))

]︃
[︃ p̃(A)˜︂ORnum˜︂ORden

p̃(paG(A))∑︁
A,paG(A) p̃(A)˜︂ORnum˜︂ORden

p̃(paG(A))

]︃

= log p(A)
p̃(A) + log p(paG(A))

p̃(paG(A))

log ORnum

ORden

− log
˜︃ORnum˜︃ORden

+ log
∑︂

A,paG(A)
p̃(A)

˜︃ORnum˜︃ORden

p̃(paG(A))

− log
∑︂

A,paG(A)
p(A)ORnum

ORden

p(paG(A))
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where we apply the Chen factorization for p(A, paG(A)) and p̃(A, paG(A)) and

ORnum = OR(A, paG(A))OR(A, paG(A)0)OR(A0, paG(A))

ORden = E[OR(A, paG(A)0)|A0]×

E[OR(A0, paG(A))| paG(A)0]

and analogously for the ˜︃OR’s.

Suppose we pick p̃(A, paG(A)) = p(A)p(paG(A)). Then A ⊥⊥ paG(A) in p̃ and so˜︂ORnum/ ˜︂ORden∑︁
A,paG(A) p̃(A)˜︂ORnum˜︂ORden

p̃(paG(A))
= 1. Thus, the previous expression simplifies to:

log ORnum

ORden

− log
∑︂

A,paG(A)
p(A)ORnum

ORden

p(paG(A)) (F.1)

Suppose we instead picked some other p̃(A, paG(A)) = p̃(A)p̃(paG(A)) (i.e. one

in which A ⊥⊥ paG(A)). Then the above expression would have additional non-zero

terms log p(A)
p̃(A) + log p(paG(A))

p̃(paG(A)) . For this alternative p̃ to yield a lower KL divergence

than that given by Eq. F.1, one of the terms, log p(A)
p̃(A) or log p(paG(A))

p̃(paG(A)) , must be less

than 0 (since the other terms in Eq. F.1 remain the same under the independence of

A and paG(A)). However, if log p(A)
p̃(A) < 0 then the KL-divergence of p̃(A) from p(A)

is negative, which violates Gibbs’ inequality. The same holds for the distributions

over paG(A). We therefore can conclude that p̃(A, paG(A)) = p(A)p(paG(A)) is the

KL-closest distribution to p(A, paG(A)) such that A ⊥⊥ paG(A).

Now, as a subclaim, we prove: if p̃ is KL-closest to p, then any conditional obtained

from p̃ (by dividing by some (potentially conditional) distribution p∗ over a variable

V ∈ B), is KL-closest to the corresponding conditional obtained from p.

This is a simple consequence of the formula for KL-divergence:

DKL( p
p∗ ||

p̃

p∗ ) ∝ log
p
p∗

p̃
p∗

= log p
p̃

The KL-divergence between the two distributions does not change by conditioning.
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By the above two subclaims, the KL-closest distribution p̃(A| paG(A)) to p(A| paG(A))

is p(A). By the local Markov property of DAGs, the claim holds, with p̃(V \ A) =

p(V \ A). 2

Theorem 12 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V and B ⊆ V such that B ⊆ paG(A). Let P(V) be the set of probability

distributions that factorize according to G. Then

p(A| paG(A) \B)
∏︂

V ∈V\A

p(V | paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃) s.t. A ⊥⊥ B| paG(A) \B

Proof: We adapt the argument from Thm. 11. We can express the KL-divergence of

p̃(A, paG(A)) from p(A, paG) as proportional to:

logp(A,B| paG(A) \B)p(paG(A) \B)
p̃(A,B| paG(A) \B)p̃(paG(A) \B)

= log

[︃
p(A| paG(A)\B) ORnum

ORden
p(B| paG(A)\B)∑︁

A,B p(A| paG(A)\B) ORnum
ORden

p(B| paG(A)\B)

]︃
[︃ p̃(A| paG(A)\B)˜︂ORnum˜︂ORden

p̃(B| paG(A)\B)∑︁
A,B p̃(A| paG(A)\B)˜︂ORnum˜︂ORden

p̃(B| paG(A)\B)

]︃

+ log p(paG(A) \B)
p̃(paG(A) \B)

= log p(A| paG(A) \B)
p̃(A| paG(A) \B) + log p(B| paG(A) \B)

p̃(B| paG(A) \B)

+ log ORnum

ORden

− log
˜︃ORnum˜︃ORden

+ log
∑︂
A,B

p̃(A| paG(A) \B)
˜︃ORnum˜︃ORden

p̃(B| paG(A) \B)

− log
∑︂
A,B

p(A| paG(A) \B)ORnum

ORden

p(B| paG(A) \B)

+ log p(paG(A) \B)
p̃(paG(A) \B)

185



where we apply the Chen factorization for p(A, paG(A)) and p̃(A, paG(A)) and

ORnum = OR(A,B| paG(A) \B)

×OR(A0,B| paG(A) \B)

×OR(A,B0| paG(A) \B)

ORden = E[OR(A,B0| paG(A) \B)|A0, paG(A) \B]

× E[OR(A0,B| paG(A) \B)|B0, paG(A) \B]

and analogously for the ˜︃OR’s.

Suppose we pick p̃(A, paG(A)) = p(A| paG(A) \B)p(B| paG(A) \B)p(paG(A) \B).

Then A ⊥⊥ B| paG(A) \B in p̃ and so ˜︂ORnum/ ˜︂ORden∑︁
A,B p̃(A| paG(A)\B)˜︂ORnum˜︂ORden

p̃(B| paG(A)\B)
= 1. Thus,

the previous expression simplifies to:

logORnum

ORden

− log
∑︂
A,B

p(A| paG(A) \B)ORnum

ORden

p(B| paG(A) \B)
(F.2)

Suppose we instead picked some other p̃(A, paG(A)) = p̃(A)p̃(paG(A)) (i.e. one

in which A ⊥⊥ B| paG(A) \ B). Then the above expression would have additional

non-zero terms log p(A| paG(A)\B)
p̃(A| paG(A)\B) +log p(B| paG(A)\B)

p̃(B| paG(A)\B) +log p(paG(A)\B)
p̃(paG(A)\B) . For this alternative

p̃ to yield a lower KL divergence than that given by Eq. F.2, one of the terms in the

above sum must be less than 0 (since the other terms in Eq. F.2 remain the same

under the conditional independence of A and B). However, if log p(A| paG(A)\B)
p̃(A| paG(A)\B) < 0

then the KL-divergence of p̃(A| paG(A) \B) from p(A| paG(A) \B) is negative, which

violates Gibbs’ inequality. The same holds for the distributions over paG(A) \ B

and B| paG(A) \ B. We therefore can conclude that p̃(A, paG(A)) = p(A| paG(A) \

B)p(B| paG(A) \B)p(paG(A) \B) is the KL-closest distribution to p(A, paG(A)) such

that A ⊥⊥ B| paG(A) \B.

By the above argument and application of the conditioning argument in Thm.

11, the KL-closest distribution p̃(A| paG(A)) to p(A| paG(A)) satisfying the necessary
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independence constraint is p(A| paG(A) \B). By the local Markov property, the result

is immediate since if chose p̃ = p for variables V \ {A, paG(A)}.

2

Theorem 13 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ∈ V and for each A ∈ A define In(A) ⊆ paG(A), the set of parents of A

whose edges into A we wish to remove. Let P(V) be the set of probability distributions

that factorize according to G. Then

∏︂
A∈A

p(A| paG(A) \ In(A))
∏︂

V ∈V\A
p(V | paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ In(A)| paG(A) \ In(A) ∀A ∈ A

Proof: We prove the claim inductively. When |A| = 1, the claim holds trivially by

application of Thm 12.

Suppose |A| > 1. Impose a reverse topological ordering ≺ on V (e.g. variables

have higher indexes in the ordering than their parents). This ordering assumption is

not necessary to prove the claim, however it helps simplify the argument.

Suppose that for some A′ ⊂ A, where every A ∈ A′ precedes every A∗ ∈ A \A′ in

≺, we know
p̃(V) =

∏︂
A∈A′

p(A| paG(A) \ In(A))

×
∏︂

V ∈V\A′

p(V | paG(V ))
(F.3)

is the KL-closest distribution to p(V) which satisfies A ⊥⊥ In(A)| paG(A) \ In(A) for

all A ∈ A′. Then it suffices to show for some A∗ ∈ A \A′ that

p̃(V) =
∏︂

A∈(A′∪A∗)
p(A| paG(A) \ In(A))

×
∏︂

V ∈V\(A′∪A∗)
p(V | paG(V ))

is the KL-closest distribution to p(V) that satisfies A ⊥⊥ In(A)| paG(A) \ In(A) for all

A ∈ A′ ∪ A∗.
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We can factorize p (and analogously p̃) by chain rule:

p(V) = p(A∗, In(A∗)| paG(A∗) \ In(A∗))

× p(paG(A∗) \ In(A∗))

× p(V \ (A∗ ∪ paG(A∗)))

By application of Cor. 6, we can re-write the first term as Xp

Yp
, where:

Xp =p(A∗| paG(A∗) \ In(A∗))

× ORnum

ORden

× p(In(A∗)| paG(A∗) \ In(A∗))

and Yp = ∑︁
A∗,In(A∗) Xp, and analogously for Xp̃ and Yp̃. Similar to previous arguments,

for notational simplicity, we use the shorthands ORnum =

OR(A⋆, In(A⋆)| paG(A⋆ \ In(A⋆),V \ (A⋆ ∪ paG(A⋆)))

×OR(A⋆0, In(A⋆)| paG(A⋆ \ In(A⋆),V \ (A⋆ ∪ paG(A⋆)))

×OR(A⋆, In(A⋆)0| paG(A⋆ \ In(A⋆),V \ (A⋆ ∪ paG(A⋆)))

and ORden =

E
[︃
OR(A⋆, In(A⋆)0)|A⋆0,

paG(A⋆ \ In(A⋆),V \ (A⋆ ∪ paG(A⋆))
]︃

×E
[︃
OR(A⋆0, In(A⋆))| In(A⋆)0,

paG(A⋆ \ In(A⋆),V \ (A⋆ ∪ paG(A⋆))
]︃

(analogously ˜︃ORnum and ˜︃ORden).
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As before, we can express the KL-divergence from p to p̃ as proportional to:

log p(A
∗, paG(A∗))p(V \ (A∗ ∪ paG(A∗)))

p̃(A∗, paG(A∗))p̃(V \ (A∗ ∪ paG(A∗)))

=
[︄

log p(A
∗| paG(A∗) \ In(A∗))

p̃(A∗| paG(A∗) \ In(A∗))

+ log p(In(A∗)| paG(A∗) \ In(A∗))
p̃(In(A∗)| paG(A∗) \ In(A∗))

+ log ORnum

ORden

− log
∑︂

A∗,In(A∗)

[︃
p(A∗| paG(A∗) \ In(A∗))

× ORnum

ORden

p(In(A∗)| paG(A∗) \ In(A∗))
]︃

−
˜︃ORnum˜︃ORden

+ log
∑︂

A∗,In(A∗)

[︃
p̃(A∗| paG(A∗) \ In(A∗))

×
˜︃ORnum˜︃ORden

p̃(In(A∗)| paG(A∗) \ In(A∗))
]︃

+ log p(paG(A∗) \ In(A∗))
p̃(paG(A∗) \ In(A∗))

+ log p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

]︄

Suppose we let p̃(A∗| paG(A∗)) = p(A∗| paG(A∗) \ In(A∗)) and p̃(In(A∗)| paG(A∗ \

In(A∗))) = p(In(A∗)| paG(A∗ \ In(A∗))). Then, similar to the previous theorems, we

induce conditional independence between A⋆ and In(A⋆) given A⋆’s other parents

paG(A⋆) \ In(A⋆). In turn, the above expression simplifies to the following:

= log ORnum

ORden

− log
∑︂

A∗,In(A∗)

[︃
p(A∗| paG(A∗) \ In(A∗))

× ORnum

ORden

p(In(A∗)| paG(A∗) \ In(A∗))
]︃

+ log p(paG(A⋆) \ In(A⋆)
p̃(paG(A⋆) \ In(A⋆)

+ log p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

Under the assumption of a topological ordering ≺, choosing this choice of p̃ does

not affect whether the constraint A ⊥⊥ In(A)| paG(A) for A ∈ A′ ∪ A∗ holds. This is
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because of the assumption made in Eq. F.3. As a consequence, the ratio of terms

with respect to paG(A∗) \ In(A∗) cancels in equality 1 above, leaving us with:

= log ORnum

ORden

− log
∑︂

A∗,In(A∗)

[︃
p(A∗| paG(A∗) \ In(A∗))

× ORnum

ORden

p(In(A∗)| paG(A∗) \ In(A∗))
]︃

+ log p(V \ (A∗ ∪ paG(A∗)))
p̃(V \ (A∗ ∪ paG(A∗)))

Now suppose we wish find a p∗ that yields a lower KL-divergence, corresponding

to decrease the quantity in the above expression by changing p̃ for one or more of

the terms. By application of the argument in Thm. 12, changing p̃(A∗| paG(A∗)) to a

function other than p(A∗| paG(A∗) \ In(A)) would necessarily violate Gibbs’ inequality.

So, we must consider changing p̃(V | paG(V )) for some V ∈ V \ (A∗ ∪ paG(A∗)).

If V ∈ ndG(A∗) then, by the local Markov property of DAGs, A∗ ⊥⊥ V | paG(A∗) \

In(A∗) and so choosing p̃(V | paG(V )) = p(V | paG(V )) will maintain the necessary

independence constraints and ensure that the term for V has 0 contribution to the

KL quantity above. That is log p(V | paG(V )) − log p̃(V | paG(V )) = 0. Changing

p̃(V | paG(V )) will therefore not move p̃ closer to p.

If, on the other hand, V ∈ deG(A∗), then In(V ) is either empty or non-empty. If

In(V ) = ∅ then by the same argument as for V ∈ ndG(A∗), choosing p̃(V | paG(V )) =

p(V | paG(V )) will ensure that the necessary constraints hold and that V ’s contribution

the KL-divergence expression will be 0. If In(V ) ̸= ∅, then p̃(V | paG(V )) was already

set to be p(V | paG(V ) \ In(V )) by the assumption in Eq. F.3. By the argument in

Thm. 12, changing this setting of p̃ would violate Gibbs’ inequality.

By the above argument, as well as the argument given in Thm. 11 that states that

applying conditioning to two distributions doesn’t affect their KL-divergence, we have

shown that
∏︂

A∈(A′∪A∗)
p(A| paG(A) \ In(A))

∏︂
V ∈V\(A′∪A∗)

p(V | paG(V ))
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is the KL-closest distribution to p which satisfies A ⊥⊥ In(A)| paG(A) \ In(A) for all

A ∈ A′ ∪ A∗. By induction, the claim of the theorem for A follows immediately. 2

Theorem 14 Let V be a set of random variables with p(V) corresponding to a DAG

G. Let A ⊆ V and assume that for some a we have p(A = a) > 0. Let P(V) be the

set of probability distributions that factorize according to G. Then

∏︂
V ∈V\A

p(V | paG(V ))|A=a = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. p̃(Ai| ndG(Ai)) = I(Ai = ai)∀i ∈ [|A|]

where [|A|] = {1, . . . , |A|}.

Proof: This is a simple consequence of Thm. 13. For each A ∈ A, if we let In(A) = paG ,

then by the local Markov property, we have

∏︂
A∈A

p(A)
∏︂

V ∈V\A
p(V | paG(V ))

is the KL-closest distribution to p(V) that satisfies A ⊥⊥ ndG(A) for all A ∈ A.

Now, by previous arguments, replacing each p(A) with I(Ai = ai) maintains the

KL-closeness of p̃ since p̃(V \A) = p(V \A) and now the required constraint holds.

Since we are replacing each p(A) with an indicator, this is equivalent to just evaluating

p(V \A) with A = a:

∏︂
V ∈V\A

p(V | paG(V ))|A=a

2

We extend the above result to the case of edge interventions. To simplify our

argument, we formulate this theorem in terms of extended graphs which are inspired

by Robins, Richardson, and Spirtes (2009) and requires the following additional

background notation (Malinsky, Shpitser, and Richardson, 2019):

For a set of variables A and a set of edges α out of A, define for each Ai ∈ A, the

synthetic nodes Ach
i = {Aj

i |Vj ∈ chG(Ai)}. That is, for each Vj ∈ chG(Ai), we create a

synthetic node Aj
i . Let Ach = ⋃︁

Ai∈A.
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Define the extended graph of G(V), denoted Ge(V ∪Ach), as the graph obtained

by adding the synthetic Aj
i ’s to G with edges Ai → Aj

i → Vj if and only if Ai → Vj

appears in G. The relationship for each edge of type Ai → Aj
i as assumed to be

deterministic. Following Malinsky, Shpitser, and Richardson (2019), Ge(V ∪Ach) is a

valid DAG under the structural equation model assumption.

Theorem 15 Let V be a set of random variables with p(V) corresponding to a DAG G.

Let α be a set of edges in G and let Aα = {A|(AB)→ ∈ α} ⊆ V. For the corresponding

Ach and Ge(V ∪ Ach), if we let Pe(V) be the set of probability distributions that

factorize according to Ge and assume for some ach, p(Ach = ach) > 0 then,

∏︂
V ∈V

pe(V | paGe(V )) = arg min
p̃e∈Pe(V)

DKL(pe||p̃e) s.t.

p̃e(Ai| ndGe(Ai)) = I(Ai = ai) for i = {1, . . . , |Ach|}

Proof: This result follows directly from Thm. 14. By re-expressing G as Ge, the

intervention is no longer in terms of a set of edges α but rather a set of nodes Ach.

We can simply apply the result of Thm. 14 where Ach corresponds to the set of nodes

A for which we are inducing independence with their non-descendants. 2

F.3 Experimental Setup

The models for C,A, and Y are parametrized by τC , τA = [τA0 , τAC
, τACN

], and

τY = [τY0 , τYA
, τYC

, τYAN
, τYCN

], specified in Table F-I. C is a 3-dimensional vector,

with each component C l drawn from a Bernoulli distribution with probability τCl ; A
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and Y are generated using the following parametric models:

p(Ai = 1|Ci, {Cj|j ∈ Ni}; τA)

= expit
(︃
τA0 + τAC

· Ci +
∑︂

j∈Ni

τACN
· Cj

)︃
p(Yi = 1|Ci, Ai, {Cj, Aj|j ∈ Ni}; τY )

= expit
(︃
τY0 + τYA

Ai + τYC
· Ci

+
∑︂

j∈Ni

(︂
τYCN

· Cj + τYAN
· Aj

)︂)︃

Parameter Value
τC [.7, .3, .5]
τA [1, 3, .15, .2, .1, .15, .15]
τY [2.5, 1.2, -1, 1.2, .2, -.13, -1, -.2, -.3]

Table F-I. Parameters for data generation in simulation studies

For the first experiment, we use the Erdős-Rényi (with attachment probability

p = .05), Barabasi-Albert (with a preferential attachment edge count of 4), and Watts-

Strogatz (with nearest neighbor attachment of 4 and an edge re-wiring probability of

.25) network generators.

Estimation Details

For homogeneous connections, estimating the post-intervention value of Yi is done by

simply adding the connecting unit to Ni for the sake of forming covariate vectors on

which we perform inference.

For known policy interventions, we consider adding a weight to the terms associated

with the added neighbor. This corresponds, for instance, to joining one unit gaining

an addition connection on a social media service and also algorithmically promoting

the content of new neighbor unit. To estimate Yi here, we simply multiply the
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new neighbor’s variables by the known weight and form covariate vectors as in the

homogeneous case. In our simulations we use a weight of 1.2.

Finally, for unknown policy interventions, we repeat the process for known policies

where a weight is added to the adjoined neighbors. Here, however, we choose the weight

by maximizing a function g(Yi, Yj) = min(Yi+Yj

2 , .3). This corresponds to ensuring we

satisfy a ‘worst-case’ scenario for the outcomes of the newly joined neighbors. We

chose .3 as the floor for this function since the mean Y in our data-generating process

was .395 and we wanted to simulate not making one unit better off at the expense of

making the other substantially worse off. We chose optimal parameters using standard

optimization software (Jones, Oliphant, and Peterson, 2014).

Stochastic severance interventions are estimated analogously to homogeneous

connections. We remove the terms relating to the severed connection from the feature

vector for predicting Ai and Yi and perform inference using our logistic regression

models. Severance interventions performed with interventional values for the severed

neighbor’s C and A values are estimated by simply replacing the variables in the

Monte Carlo sampling procedure with the interventional values according to the

g-formula (Robins, 1986). For our simulations we chose the cross-unit interventional

values for Cj and Aj to be 0 and 1 respectively. In either case, when a unit has no

pre-intervention neighbors, the estimate of their outcome is the same in both the pre-

and post-intervention worlds.

Extended Results
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Network Size Bias CI
4 (-.0082, .0051)
8 (-.0088, .0011)
16 (-.0057, .0006)
32 (-.0009, .0040)
64 (-.0009, .0016)

Table F-II. 95% confidence intervals for the bias of estimates of stochastic severance
task with varied network sizes.

Attachment Prob. Bias CI
.01 (-.0008, .0017)
.05 (-.0018, .0026)
.10 (-.0043, .0003)
.15 (-.0014, .0016)
.20 (-.0011, .0004)

Table F-III. 95% confidence intervals for the bias of estimates of stochastic severance
task with varied Erdős-Rényi attachment probabilities.

Sample Size Bias CI
10 (-.0278, .0178)
100 (-.0075, .0057)

1,000 (-.0007, .0028)
10,000 (-.0001, .0006)

Table F-IV. 95% confidence intervals for the bias of estimates of stochastic severance
task with varied sample sizes.
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