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ABSTRACT
Advances in state-of-the-art architectural robotics and artificially intelligent design algorithms have 
the potential not only to transform how we design and build architecture, but to fundamentally 
change our relationship to the built environment. This system is situated within a larger body of 
research related to embedding autonomous agency directly into the built environment through 
the linkage of AI, computation, and robotics. It challenges the traditional separation between 
digital design and physical construction through the development of an autonomous architecture 
with an adaptive lifecycle. Integrated Reconfigurable Autonomous Architecture System (IRAAS) 
is composed of three components: 1) an interactive platform for user and environmental data 
input, 2) an agent-based generative space planning algorithm with deep reinforcement learning 
for continuous spatial adaptation, 3) a distributed robotic material system with bi-directional 
cyber-physical control protocols for simultaneous state alignment. The generative algorithm is 
a multi-agent system trained using deep reinforcement learning to learn adaptive policies for 
adjusting the scales, shapes, and relational organization of spatial volumes by processing changes 
in the environment and user requirements. The robotic material system was designed with a 
symbiotic relationship between active and passive modular components. Distributed robots slide 
their bodies on tracks built into passive blocks that enable their locomotion while utilizing a locking 
and unlocking system to reconfigure the assemblages they move across. The three subsystems 
have been developed in relation to each other to consider both the constraints of the AI-driven 
design algorithm and the robotic material system, enabling intelligent spatial adaptation with a 
continuous feedback chain.
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INTRODUCTION
The system we present is situated within a larger body of work 
related to embedding agency and autonomy directly into the 
built environment through the linkage of AI, computation, and 
robotics. The underpinnings of this research are rooted in the 
transdisciplinary field of cybernetics, largely pioneered in the 
1960s and 1970s through the work of Gordon Pask, Cedric 
Price, Nicholas Negroponte, Christopher Alexander, John Frazer, 
and Archigram (Steenson 2010). Pask stated, “The role of the 
architect here, I think, is not so much to design a building or city 
as to catalyze them; to act that they may evolve (Frazer 1995). 
Pask challenged the paradigm that architecture is a static 
material artifact produced through a linear series of processes 
from design to fabrication to construction and reconsidered it 
as a composition of interrelated active systems regulated and 
controlled through feedback within a constantly shifting environ-
ment (Pask 1969).

Today, the climate crisis, housing crisis, and covid pandemic are 
radically transforming the way we live and work, while automa-
tion, consumer platforms, and AI are changing how we interact 
with and personalize our world. As Sean Hanna states, “for the 
first time our environment is no longer seen as fixed, or shaped 
by forces beyond our control, but as in constant and noticeable 
change, and that our relationship with it is one of mutual inter-
action (Hanna 2020).” Computational design and construction 
robotics research focus primarily on automation, customization, 
and optimization within linear, separated processes of design 
and construction rather than fundamentally changing the inter-
relationship between them to enable open-ended and physically 
adaptive architecture. Robotic buildings must consider not only 
design to production, but design-to-production-to-operation 
chains from a lifecycle perspective relating to the socio-eco-
nomic and ecological impacts (Bier and Mostafavi 2018; Bier et 
al. 2018). 

Our research challenges the separation between digital design 
and physical construction processes through the development 
of an integrated cyber-physical architectural system with a 
feedback-based adaptive lifecycle. IRAAS is a semi-autonomous 
reconfigurable architecture integrating three main components: 
1) an interactive platform for user and environmental data input 
2) an agent-based space generation algorithm with deep rein-
forcement learning for continuous spatial adaptation and 3) a 
distributed robotic material system with a bi-directional control 
protocol for simultaneous state alignment. The three subsys-
tems have been developed in relation to each other to consider 
both the constraints of the AI-driven design algorithm and the 
robotic material system, enabling intelligent spatial adaptation 
with a continuous feedback chain.

BACKGROUND

Historically cybernetics, defined as the study of communica-
tion and control within systems (Wiener 1948), and artificial 
intelligence (McCarthy 1955), defined as the study of machines 
that exhibit and simulate intelligent behavior (Oxford English 
Dictionary reference), are closely interrelated. They have led 
to two primary threads of architecture research: 1) intelligent 
computational processes for design and 2) physically adap-
tive and responsive environments. Nicholas Negroponte was 
interested in developing a symbiotic relationship between 
designers and “architectural machines,” introducing the notion 
of an intelligent agent in the design process (Negroponte 
1970), while Cedric Price developed systems where “the act of 
engaging and interacting with the architecture would change 
the user (Steenson 2010).” Both Pask and Price were interested 
in managing “indeterminacy”, considering architecture’s ability 
to adapt to, be adapted by, and impact its inhabitants (Pask 
1965; Landau 1968; Steenson 2010). Development of embodied 
adaptive architecture requires reappraisal of linear building 
lifecycles. Rather than automate known, predefined patterns of 
construction, our overriding aim is to develop an autonomous 
architecture that continuously adjusts itself to actively maintain 
a symbiotic relationship between people, the natural environ-
ment, and the architectural environment. 

State of the art research in autonomous robotic systems for 
architecture has investigated two primary strategies, 1) small, 
distributed robots manipulating building assemblies and 2) 
large, monolithic embodied robotic spaces and buildings. 
Monolithic systems enlarge the robot to the size of spaces 
or whole buildings (Oosterhuis 2012; Kilian 2018; Maierhofer 
2019; Hosmer 2019). Adaptive spatial behaviors are triggered 
through the sequencing of actuators integrated into larger 
bodies. Alternatively, strategies have been developed using 
distributed robots to collaboratively manipulate building 
assemblies. Principles of swarm intelligence have been applied 
through embodied swarm construction (Rubenstein et al. 2012; 
K. Petersen and Nagpal 2017; Petersen et al. 2011). Full scale 
collaborative robotic assembly of timber structures is demon-
strated using industrial robotic arms hung in a mobile gantry 
system (Adel et al. 2018). BILL-E robotic platform demonstrates 
a type of “relative robot in a structured environment”, enabling 
robots to climb on the same structure they assemble and 
reconfigure (Jenett and Cheung 2017). A similarly symbiotic 
dependency between distributed robots and static elements 
demonstrates self-assembly of timber structures (Leder et 
al. 2019). Monolithic embodiments offer opportunities for 
controlled adaptation through constraints with less radical 
shifts in topology while distributed robotic strategies offer more 
flexibility enabling radical changes in topology at the cost of 
organizational complexity requiring additional spatial design 
inputs to be effective.
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Generative space planning research focuses on a range of 
strategies for semi-autonomously computing spatial organi-
zation. We divide relevant strategies into procedural geometry, 
rule-based, and data-based algorithms. Liggett gives a histor-
ical overview of automated space planning methods (Liggett 
2000). Procedural geometry is used for automating desk layouts 
(Anderson 2018) while procedural geometry with a multi-ob-
jective genetic algorithm was developed for 2D office space 
planning (Nagy 2017). Rule-driven models have been explored 
such as shape grammars (Hua 2017), cellular automata (Dinçer 
et al. 2014), semi-autonomous constraint satisfaction (Hosmer 
et al. 2020), and various multi-agent systems achieving 2D or 3D 
space planning by coupling design goals with geometric or topo-
logical constraints (Veloso 2019; Meyboom and Reeves 2013). 
Multi-agent approaches can be divided into three main groups: 
(1) agents as moving spatial units, (2) agents that occupy a 
space, and (3) agents that partition a space (Veloso 2019). One 
multi-agent method learns space planning behaviors in 2D with 
reinforcement learning (Veloso and Ramesh 2020). Data-based 
models have been developed using Generative Adversarial 
Networks (GANs) (Goodfellow et al. 2014). To learn significant 
features and their relationships across image-based datasets 
(Isola et al. 2017) and have demonstrated 2D space planning 
strategies (Zheng and Huang 2018; Chaillou 2019; Chaillou 
2020). 

Most research in semi-autonomous robotics places emphasis 
on methods of construction or adaptability through the lens 
of the robotic constraints without apt consideration for how 
spaces would be designed, organized, and adjusted. Results 
of purely bottom-up robotic methods tend to be limited to 
behaviors for assembling abstract structures. Generative space 
planning strategies tend to overemphasize methods for spatial 
organization resulting in digital models without ample align-
ment with the constraints of the robotic material system nor an 
appropriate communication protocol between the digital design 
processes and physical assembly processes leaving gaps that 
prevent a continuous chain. 

Autonomy requires a system with an ability to self-manage 
through a degree of self-awareness. It can be defined as having 
an effective interdependency between properties of facilitated 
variation, situated and embodied agency, and intelligence 
(Hosmer 2019). This research embeds principals of autono-
mous architecture by developing an interdependency between 
the intelligent agency of the space planning algorithm and situ-
ated and embodied agency in the design of the robotic material 
system as a structured environment. Facilitated variation is 
achieved through the design of effective constraints in the 
robotic material system to reconfigure elements that simulta-
neously enable locomotion patterns. The development of the 
control system protocols enables simultaneous state alignment 

2 Continuous lifecycle and system 
composition.

3 The environmental data, types and 
examples.

4 The user interface, data structure 
and example.
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between the virtual simulator and physical world in a continuous 
feedback cycle.

METHODS
System Composition and Lifecycle
IRAAS is a semi-autonomous architecture that operates in a 
continuously adaptive lifecycle through an “Observe, Generate, 
Assemble” feedback loop. IRAAS is implemented through a 
combination of three closely related components: 1) interactive 
platform, 2) agent-based space generation algorithm, and 3) 
robotic material system. At a discrete moment (Ti), environment 
data and user goals are collected by the interactive platform 
and sent to the space generation algorithm. It observes its 
current state (Si) in relation to processed inputs to generate an 
adaptation as a virtual space design (Di), guiding the adjustment 
or reconfiguration of the actual construction (Ci) through the 
robotic control system. Changes in the environment and user 
goals provide constant feedback (Ri) in a closed loop (Figure 1). 

Interactive Platform
The interactive platform serves as a data collection port that trig-
gers adjustments in the system from 1) environmental data and 
2) multi-user space planning goals collected through the inter-
face. Environmental data such as sunlight exposure is collected 
through digital simulations and processed as 3D bitmaps. Fixed 
elements in the environment such as exterior facades are also 
processed through bitmaps. Bitmaps are translated into 3D data 
matrices establishing global constraints and environmental 
factors that influence the space planning algorithm (Figure 2).

The user interface is responsible for collecting user character-
istics and space planning goals, processed as inputs that drive 
the behaviors of the space generation algorithm. Each user is 
translated into a “user code” and “user hue.” User hue reflects 
the user's characteristics in relation to other users. The user 
code captures their spatial goals and willingness for negotiating 
their spaces with others (Figure 3).

Agent-Based Spatial Planner with Self-Play Reinforcement 
Learning
The spatial planner component is responsible for generating 3D 
volumetric space boundaries within a virtual environment. The 
computational model is trained using reinforcement learning 
to learn adaptive policies for adjusting the scales, shapes, 
and relational organization of spatial volumes by processing 
changes in the environment and user requirements in near 
real-time (Figure 4). It is designed as a multi-agent system with 
programmable agents, each representing an independent space 
within the environment. We extend principals of the Stigmergic 
Space Adjacency Software for multi-agent space planning with 
stigmergic communication in a 3D environment (Meyboom and 
Reeves 2013). Our algorithm generates spatial organization 
through intelligent negotiation behaviors of agents driven by 
user and environment data, outputting structured environments 
readable by the robotic material control system. 

The environment is a 3D grid of voxel arrays. Each node 
contains metadata, including its position, size, geometry type 
(cubic, tetrahedral, etc.), color, and layers of site/environmental 
information imported from the platform. The size and geometry 

5 The basic logic of the Agent-Based Spatial Planner.
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type have a consistent relationship with the parts and degrees 
of freedom in the robotic material system. Color represents a 

“pheromone”, distinguishing an association of agents occupying 
the node with an initial value of [0,0,0] for unoccupied nodes 
(Figure 5).

Each spatial agent contains a collection of nodes which form 
a volume. Its basic parameters include position, color, capacity, 
diffusion rate, and cohesion rate. Position is the agent’s center 
of mass. Color represents agent type as a degree of association 
to other agents. Capacity is the maximum territory the agent will 
contain. Diffusion rate is the speed the agent passes its phero-
mone through the environment. Cohesion rate is the speed of 
balancing force of the agent boundary toward its center of mass. 
The agent expands the three-dimensional territory it occupies 
from its starting location by adding or releasing adjacent nodes 
until reaching its capacity in a state of dynamic equilibrium with 
its neighbors, thereby gradually forming an internally closed 
volume (Figure 6). 

Behaviors defining how the agent moves and adapts its territory 
are dictated by adjustments to internal parameters in rela-
tion to neighboring agents and its environment. To achieve a 
mapping from user space planning goals to the agents’ space 
planning behavior, we introduce three “Schema” as collections 
of properties of the agent that influence changes in its behavior 
in response to design objectives: Relational Schema, Space 

Schema, and Negotiation Schema.

Relational schema defines an agent’s degree of relationality or 
association to other agents through an RGB value. The degree 
of similarity of each agent’s color to other agents forms a closer 
or more distant association. 

Space schema contains parameters that influence the agent’s 
behavior related to the local space it generates and adjusts. 
These include "Volume", "Proportion", and "Form", which respec-
tively determine the size of the space volume, the aspect ratio of 
the space bounding box, and the space morphology type (Figure 
7).

Negotiation Schema parameters influence its behavior related to 
negotiating space with its neighbors and environment, including 
three parameters described as “tendencies.” Interaction 
Tendency represents the degree of resistance or attraction 
along the boundary with a neighbor. For each adjacent agent, it 
is expressed as a weight KI-A in the range of [-2,2], applied as a 
repulsive or attractive force according to the value of KI-A. Cluster 
Tendency defines the relationship between the agent and spatial 
clusters together with the Relational Schema. The weight KC 
in [-1,1] dominates the agent's tendency to groups with similar 
colors. Environment Tendency quantifies the agent's demand 
in relation to environmental resources such as natural light. 
The set KE aggregates the agent's reaction to site information, 
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making agents exhibit specific behaviors such as phototaxis or 
light avoidance (Figure 8).  

The spatial planner is designed to autonomously negotiate 
multiple users’ goals and environmental factors. To manage the 
high dimensionality of this problem, we leverage Reinforcement 
Learning with Self-Play to train a neural network to learn adap-
tive decision-making strategies for the agents (Sutton and Barto 
2018). Each agent learns a behavioral policy to continuously 
maintain a close mapping between its space schema goal 
parameters and the generated volume while negotiating its terri-
tory with other agents through the negotiation schema. Training 
begins with 600 groups of {V, P, F} random combinations within 
a limited range as the initial dataset. Adjustments in stigmergic 
parameters control the agent's three-dimensional growth direc-
tion and intensity based on the centroid position and a policy 
{x, y, z} (Figure 9). Observations include the space schema 
parameters, the agent's current position, the last occupied node, 
and its stigmergic parameters. A real-time reward is given when 
each captured point is inside the target shape, and a penalty is 
added when it is outside. A staged reward is set to double the 
real-time reward when the proportion of qualified points (defined 
as “space fitness”) increases beyond a threshold (30%, 60%). 
When the ratio reaches 90%, the task is considered complete, 
and a set of global rewards from additional analysis such as 

“structural stability” and “space availability” are given. After 6*106 
episodes, the training curve typically reaches a state of relative 

stability (Figure 10). 

Semi-autonomous Robotic Material System
To enable semi-autonomous reconfiguration of building parts in 
direct relation, a novel voxel-based robotic material system was 
developed with a structured environment operating in the same 
voxel grid as the spatial planner. Rather than using a gantry 
system for locomotion, the robots are designed symbiotically 
with passive blocks to slide over the dynamically changing 
host structure while reconfiguring it through a system of tracks, 
dynamic knobs acting as gates and switches, and locking and 
unlocking mechanisms. This enables simple collaborative 
robots with low numbers of degrees of freedom to efficiently 
adapt to the spatial assembly. 

Modular passive parts are cubic with a side length of 0.3m. 
Each passive part is divided into passive actuation, structural, 
and panel components. Passive actuation components enable 
relative sliding and locking, equipped with female cross slots 
on one side of each axis and male flat knobs on the opposite. 
Structural components form a frame with tracks for gears in the 
knobs. Panel components provide the architectural infill for the 
assemblies (Figure 11).

Modular robots are the same size as passive parts with similar 
fabrication details, but robotic structural components are filleted 
to avoid collisions during movement (Figure 12). Physical 

6 The discrete planning environment 
and the metadata in each node.

7 The space planning process.

8 Space Schema, principle and 
example.

9 Negotiation Schema, principle and 
example.

10 The principle of reinforcement 
learning and the training model.

11 Reinforcement learning results, 
left: comparison of behaviors, right: 
graphs (pink one success) with the 
cumulative reward and the episode 
length.

7TOPIC (ACADIA team will fill in) Hybrids & Haecceities

10

11



prototypes are manufactured with 3D printing at a scale of 1:1 
(Figure 14). Two servomotors are installed behind each knob 
for driving and steering. The body of one robot consists of three 
linked cubic parts forming an L-shaped combination with an 
action mode for sliding its cubic parts along tracks in its body 
or sliding itself along tracks in static parts. Robots can slide, 
change direction, push and pull, and lock and unlock through 
mutual collaboration for various reconfiguration tasks. In Figure 
13, for example, the robot on the top can connect to a passive 
part, drive the motor and slide it down along the tracks provided 
by the adjacent passive parts, pushing the object one side 
length into place.

The robotic control system is setup with the principle of simulta-
neous state alignment. Simple “relative” robots cooperate with 
a relative localization strategy synchronized through bidirec-
tional communication between the simulation environment and 
physical environment. The simulation environment is built with 
Unity3D, a game engine with a comprehensive multi-physics 
module and high extendibility (reference to Unity). Assemblies 
of robots and passive blocks are designed as a digital twin with 
encoded actions computed through multi-physics constraints 
and inverse kinematics directly related to the actions of the 
physical system. The actions developed in the simulator 
include: 1) sliding on static parts 2) changing direction 3) sliding 
segments of their body 4) locking/unlocking passive blocks 5) 
pushing/pulling, and 6) carrying passive blocks (Figure 15 and 
16).

Communication is established wirelessly with a local network 
through a UDP protocol between our robotic simulator loaded 
on a PC and Raspberry Pi microcomputers mounted to the 
physical robots. Each Raspberry Pi is loaded with custom-built 
control software developed in Python. Custom commands are 
streamed back and forth as packets through a wireless port, 
converted to python functions on the Raspberry Pi and C# func-
tions in the PC simulator. Dynamixel AX-12A servo motors were 
installed on the robotic knobs with high precision angle control 
with data feedback including angle position, load, and speed, 
enabling semi-realtime cyber-physical state alignment. The 
simulator hosts the server and connects the physical modules 
as clients. Robotic actions in the simulator are calculated with 
inverse kinematic functions, mapped to precise motor speeds 
and rotations, and sent wirelessly as instruction sequences to 
the Raspberry Pi to drive the servos on the physical robots. Each 
motor takes 0.196s to rotate 60° in 10V voltage. When the robot 
slides one unit length (300mm), the bearing set rotates 3.18 
circles in 3.75s. Sensors in the servos then collect physical state 
data (torque, load, speed, and temperature) and send it back to 
the simulator as observations from the physical environment.  

Assembly constraints are introduced through the rotating 

12 Static parts and the construction 
details.

13 Distributed robots and the 
construction details.

14 Joint details for lock and unlock. 15 Robot actions.
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male-female connections in the passive parts while constraints 
of locomotion and actuation are introduced through the robots 
three-part body and male-female knob and groove system. 
While pathfinding algorithms such as A* (Hart 1968) and 
Dijkstra's algorithm (Dijkstra 1959) have proven to be efficient 
for solving simple path planning problems through weighted 
graph traversal, we introduced deep reinforcement learning 
in our simulator to formulate adaptive strategies involving 
collaboration between multiple robots coordinating the biased 
and constrained behaviors in dynamically changing structured 
environments. The simulator was setup with L-shaped robots 
composed of three independent embodied agents taking obser-
vations of the current state of each of the six faces of each part. 
A curriculum learning strategy was developed as three stages of 
increasing difficulty:

Stage 1 is carried out in an environment over a 2D plane with a 
range of 8m*8m. The goal is to transport the static parts from 
an initial position to a target position. Observations include 
the robot sensors and positions of the agent, starting point, 
and target point. If the robots or the static parts fall out of the 
boundaries of the environment, the agents receive a penalty of 
-1. The reward is set to be inversely proportional to the distance 
from the target, and 10 extra points are added when the target 
position is reached (Figure 17).

Stage 2 is performed in a Z-shaped 3D environment composed 
of 22*6 static parts to train the agents to reach a designated 
position while avoiding obstacles. The position of the obstacle 
is added to the observations. When agents collide with an 
obstacle, they receive a penalty of -1, and the other rewards 

16 The component list and physical prototypes.

17 The robotic actions: 1) sliding on static parts and changing direction 2) sliding segments of their three-part body 3) pushing/pulling passive blocks, and 4) carrying 
passive blocks reinforcement learning with self-play for collaborative robotic behavior
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remain the same (Figure 18).

Stage 3 aims to train two robotic agents to collaborate in 
assembling passive parts into 3D design goals. The training 
uses four spatial forms (bookshelf, stairs, seat, and door 
opening) as target goals. Observations are the robot positions, 
sensor activation, and all static parts' current and target posi-
tions. In addition to the rewards and penalties mentioned above, 
the energy consumption of the robots and the accuracy of the 
result in relation to the target goal are included as rewards 
(Figure 19).

RESULTS AND REFLECTION
Implementation of this methodology was tested through a 
case study project for a community called TESSERACT, which 
proposes a new paradigm of distributed living and working by 
providing spaces that continuously adapt and reconfigure in 
near real-time according to the changing requirements of the 

shared community of users. Within the context of the global 
Covid-19 pandemic, this enables people to enjoy a variety of 
activities in a tiny scope of life. 

The interactive platform was developed with interfaces for the 
user to input their preferences. A “user hue” is extracted from 
three aspects, including personal characteristics, lifestyle, 
and interpersonal relationships. A “user code” is generated by 
entering the personal schedules, interaction needs, and spatial 
and environmental preferences. These are processed as inputs 
for each agent’s relational, spatial, and negotiation schema. 

The algorithm was tested through a series of experiments. 
Individual agents were successfully trained through curriculum 
learning with to achieve policies first for space schema goals for 
volume, proportion, and shape only (Figure 10, Figure 20), and 
next to achieve space schema goals while adapting through 
relational and negotiation parameters with multiple agents. 

18 The training environment and training results of Stage1, Stage2, and Stage3.

Paper Title Author last names, separated by commas10 2022ACADIA

18



The proportion of overlap between the resulting territory and 
the target territory was able to reach more than 85% typically 
after 6*106 episodes. In further experiments, we input dynam-
ically changing user requirements and the algorithm proved 
successful in autonomously adjusting its behavioural patterns 
accurately (Figure 21). 

The trained model was tested in a 30m*18m*18m site volume. 
Environmental data and constraints including fixed structure, 
daylight intensity, and view analysis were loaded as maps that 
agents responded to. User codes were auto-generated as virtual 
user demand parameters to initialize various types of agents, 
forming a community social network. We modelled a 50% occu-
pancy rate resulting in the agents easily achieving spatial goals 
at over 90% accuracy with lots of open space and little negoti-
ation behaviours. Next, we tested a 100% occupancy rate with 
much more negotiation behaviours required which achieved 

approximately 70% spatial accuracy (Figure 22).

Finally, the robotic material system was iteratively developed 
through a series of prototype configurations directly controlled 
by the virtual simulator which successfully demonstrated 
simple reconfiguration sequences combining sliding, locking/
unlocking, and pushing/pulling behaviours (Figure 14,15,16). 
The system has been successfully tested to convert agent 
boundaries as voxels directly linked with the agent simulator 
sending instruction sequences to multiple robots while receiving 
sensor data back wirelessly. Self-play reinforcement learning 
was tested with two simulated robots to coordinate reconfigura-
tion of a wall into a series of goals, successfully improving from 
random outcomes to efficient sequences closely matching the 
goals (Figure 19). 

CONCLUSION
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IRAAS shows enormous potential for negotiating the changing 
spatial requirements of multiple users in a dynamic environment 
by learning to adapt itself in near real time. Rather than simply 
automating known construction patterns, this system begins 
to leverage the potential for intelligent robotic architecture. 
Through the agile development of the three components of our 
system and interrelational communication protocols between 
them, we have successfully demonstrated version one of a 
semi-autonomous adaptive system. 

While our physical prototypes successfully demonstrate simple 
reconfiguration behaviours, scaling up the system for building 
construction poses the next challenge requiring a more robust 
material and locking system along with stronger mecha-
tronics. In future work, we intend to add sensing technology 
to the robotic system to increase its degree of self-awareness. 
Additionally, we are developing more sophisticated spatial 
adaptation behaviours with reinforcement learning with a 
focus on multi-agent collaboration, user feedback as a fitness 
criteria, and integration of structural stability prediction analysis. 
This model has the potential to disrupt and reorganizes the 
connection between architecture, humans, and the environment, 
defining a new paradigm for a self-regulating living environment 
that continuously adapts itself in a dialogue with its users. 
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