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A B S T R A C T 

The information content of the minimum spanning tree (MST), used to capture higher order statistics and information from the 
cosmic web, is compared to that of the power spectrum for a ν� CDM model. The measurements are made in redshift space using 

haloes from the Quijote simulation of mass ≥ 3 . 2 × 10 

13 h 

−1 M � in a box of length L box = 1 h 

−1 Gpc . The power spectrum 

multipoles (monopole and quadrupole) are computed for Fourier modes in the range 0 . 006 h Mpc −1 < k < 0 . 5 h Mpc −1 . For 
comparison the MST is measured with a minimum length-scale of l min � 13 h 

−1 Mpc . Combining the MST and power spectrum 

allows for many of the individual degeneracies to be broken; on its own the MST provides tighter constraints on the sum of 
neutrino masses M ν and cosmological parameters h , n s , and �b but the power spectrum alone provides tighter constraints on �m 

and σ 8 . Combined we find constraints that are a factor of two (or greater) on all parameters with respect to the power spectrum 

(for M ν there is a factor of four impro v ement). These impro v ements appear to be driv en by the MST’s sensitivity to small scale 
clustering, where the effect of neutrino free-streaming becomes rele v ant, and high-order statistical information in the cosmic 
web. The MST is shown to be a powerful tool for cosmology and neutrino mass studies, and therefore could play a pivotal role 
in ongoing and future galaxy redshift surv e ys (such as DES, DESI, Euclid , and Rubin-LSST). 

Key words: neutrinos – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he Lambda cold dark matter ( � CDM) paradigm has remained at
he forefront of cosmology for o v er 20 years, cementing it as the
tandard cosmological model. Observations and simulations o v er
hat time have largely strengthened the case for � CDM despite
he model consisting o v erwhelmingly of things we still do not
nderstand – principally the nature of dark matter and dark energy.
hile understanding the former will most likely need significant

ontributions from particle physics experiments, understanding the
atter is a key goal for future experiments in cosmology. The next
eneration of galaxy redshift surv e ys (such as the Dark Energy
pectroscopic Instrument (DESI), 1 Euclid , 2 the Nancy Grace Roman
pace Telescope, 3 the Prime Focus Spectrograph, 4 the Rubin Obser-
atory Le gac y Surv e y of Space and Time, 5 and the 4-m Multi-Object
pectroscopic Telescope 6 ) will map the positions of hundreds of
illions of galaxies. Determining the nature of dark energy is a major

cientific mission for these surv e ys. In � CDM dark energy is simply
instein’s cosmological constant (resulting from a scalar field), but
 E-mail: krishna.naidoo.11@ucl.ac.uk 
 http:// desi.lbl.gov/ 
 http:// www.euclid-ec.org/ 
 https://roman.gsfc.nasa.gov 
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 ht tps://www.lsst .org/
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etter data may reveal that dark energy is actually changing with time
dynamical dark energy) or that the requirement for dark energy is
ctually a symptom that General Relativity, on which these models
re based, is incomplete and requires modification (the premise of
odified Gravity theories). 
The disco v ery of neutrino oscillation (Fukuda et al. 1998 ; Ahmad

t al. 2001 ) provided evidence that neutrinos are not massless (as
ad been predicted by the standard model of particle physics). This
isco v ery makes neutrinos of keen interest to particle physicists,
s the origins of their mass and hierarchy could provide hints to
ew ph ysics. Particle ph ysics experiments currently place a lower
ound on the sum of neutrino masses (denoted in this work by
 ν) of M ν � 0 . 06 eV . Ho we ver, it is cosmological experiments

hat provide the tightest upper bound: currently M ν � 0 . 11 eV
95 per cent confidence level, CL; Planck Collaboration VI 2020 ;
BOSS Collaboration 2021 ); by contrast the upper bound from
article physics experiment KATRIN is currently M ν ≤ 1 . 1 eV
90 per cent CL; Aker et al. 2019 ; although unlike cosmological
easurements this is model independent). The sensitivity to neutrino
ass in cosmology comes from the role neutrinos play in the growth

f large-scale structure (LSS). The neutrino’s characteristic free-
treaming length, a quantity dependent on its mass, will wash out
mall-scale structure. This effect can be quantified as a suppression of
mall-scale modes in the power spectrum. Over the next 5 yr, surveys
uch as DESI expect to be sensitive to M ν � 0 . 06 eV (95 per cent CL;
ont-Ribera et al. 2014 ) and therefore anticipate a first cosmological
etection of a non-zero mass for neutrinos. 
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Cosmological surv e ys hav e largely focused on two-point statistics,
hether in real or Fourier space. While these methods are tried-and- 

ested, they fail to fully explore and capture all the information 
ontent of galaxy surv e ys. This is particularly rele v ant at low
edshifts where the highly non-linear structure of the cosmic web 
s very pronounced; here the distribution of matter cannot be fully
haracterized by two-point statistics and further statistical methods 
re required if we are to fully extract all the information present.
uch analyses are particularly timely as future data sets will probe 

he Universe with tracers (galaxies, quasars, etc.) at higher number 
ensities providing a greater sensitivity to the cosmic web. Rele v ant
tatistical methods include the three-point correlation function (the 
ispectrum in Fourier space; e.g. Gil-Mar ́ın et al. 2017 ; Gualdi
t al. 2019 ), Minkowski functionals (e.g. Petri et al. 2013 ), the 1D
robability distribution function (Uhlemann et al. 2020 ), marked 
ower spectra (Massara et al. 2021 ), machine learning (ML; e.g. 
luri et al. 2018 ), and the minimum spanning tree (MST; Naidoo
t al. 2020 ) – the focus of this paper. 

The MST was first introduced to astronomy by Barrow, Bhavsar & 

onoda ( 1985 ) and has successfully been used as a filament finder
or cosmic web studies (Bhavsar & Ling 1988 ; van de Weygaert,
ones & Mart ́ınez 1992 ; Bhavsar & Splinter 1996 ; Krzewina &
aslaw 1996 ; Ueda & Itoh 1997 ; Coles et al. 1998 ; Adami &
azure 1999 ; Colberg 2007 ; Alpaslan et al. 2014 ; Beuret et al.

017 ; Libeskind et al. 2018 ). The MST is the minimum weighted
raph that connects a set of points without forming loops. More
ecently, Naidoo et al. ( 2020 ) investigated how the MST could be
sed to incorporate the cosmic web when constraining cosmological 
arameters. Ho we ver, unlike the conventional two-point analysis as 
erformed by most galaxy redshift surv e ys, reference MST values 
annot be calculated analytically and instead need to be calculated 
rom simulations. Fortunately, this problem is not unique to the 

ST – conventional statistics such as the power spectrum and 
ispectrum cannot be computed analytically in the non-linear regime 
for Fourier modes k � 0 . 3 h Mpc −1 ) and hence require simulations,
s do artificial intelligence (AI) and ML algorithms (as well as other
lgorithms used to measure non-linear features in the cosmic web). 
his has created a growing demand for large suites of cosmological 
imulations and the development of accurate emulators as cosmol- 
gists push to extract more information from the distribution of 
alaxies. 

The Quijote simulations (Villaescusa-Navarro et al. 2020 ) were 
esigned precisely for this use (i.e. to test new summary statistics
uch as the MST and AI/ML and to push conventional statistics
o smaller scales). In this paper, we will use these simulations to
easure the information content of the MST. The simulations have 

reviously been used to conduct Fisher matrix analysis for the power 
pectrum (Villaescusa-Navarro et al. 2020 ), bispectrum (Hahn et al. 
020 ), 1D probability distribution function (Uhlemann et al. 2020 ), 
nd marked power spectrum (Massara et al. 2021 ). In this paper,
e extend this analysis to the MST; in Naidoo et al. ( 2020 ) the
ST was tested against measurements of the power spectrum and 

ispectrum for a few parameters (matter density �m 

, amplitude 
f scalar fluctuations A s , and neutrino mass M ν) to test whether
he MST adds new information. Fisher matrix analysis is useful in 
osmology as it places a lower bound (the Cramer–Rao bound; Rao 
945 ; Cramer 1946 ) on the uncertainty of cosmological parameters 
nferred from a given statistic. If the posterior distribution is Gaussian 
hen the Fisher matrix constraints will be realized; otherwise the 
onstraints on any given parameter will be weaker. This analysis 
s explored for parameters of the ν� CDM model (i.e. the standard
odel of cosmology � CDM + massive neutrinos M ν). This will help
etermine the role that the MST can play in constraining parameters
rom the current and next generation of galaxy surveys. 

The paper is organized as follows. In Section 2 , we discuss the
ethodology and data used. In Section 3 , we present the constraints

rom components of the MST and demonstrate how including the 
ST together with measurements of the power spectrum impro v es

arameter constraints in a ν� CDM model. Finally, in Section 4 we
iscuss the main results and their implications for cosmology and 
uture surv e ys. 

 M E T H O D  

n this section, we explain the Fisher matrix formalism used to
easure the information content of several summary statistics, we 

xplain how we measure the power spectrum multipoles and the MST
tatistics in redshift space, and we describe properties of the Quijote
imulations used in this analysis. 

.1 Fisher formalism 

he Fisher matrix (Tegmark, Taylor & Heavens 1997 ) F is defined
o have elements 

 ij = 

∑ 

α,β

∂S α

∂θi 

C 

−1 
αβ

∂S β

∂θj 

, (1) 

here S α and S β are the elements α and β of the data vector S , C is
he sample covariance matrix defined to have elements 

 αβ = 

〈
( S α − 〈 S α〉 ) 

(
S β − 〈 S β〉 )〉 , (2) 

nd θ i and θ j are parameters i and j of the model. We multiply
he inverse of the covariance matrix by the Kaufman–Hartlap factor 
Kaufman 1967 ; Hartlap, Simon & Schneider 2007 ) ( N sim 

− 2 −
 S )/( N sim 

− 1), where N S is the length of the data vector S and N sim 

s the number of simulations used to estimate the covariance matrix;
his compensates for the error in the sample covariance estimation. 
n implicit assumption of this formalism is that the covariance matrix
as no parameter dependence and can be accurately defined by one
ducial point in parameter space. 
When reference summary statistics are available analytically, 

he partial deri v ati ves in the Fisher matrix are straightforward to
stimate. Ho we ver, for some summary statistics (such as the MST)
here reference values must be obtained via simulations, the partial 
eri v ati ves must be estimated numerically; typically we use 

∂ S 
∂θ

� 

S ( θ + dθ ) − S ( θ − dθ ) 

2 dθ
+ O 

(
dθ2 

)
, (3) 

here d θ is a small deviation from a fiducial θ . We cannot use
his when estimating the partial deri v ati ve with respect to neutrino

ass when this mass is zero, as this would require simulations with
e gativ e neutrino mass; instead here we use one of the estimators [

∂ S 
∂M ν

]
1 

� 

S ( dM ν) − S ( M ν = 0) 

dM ν

+ O( dM ν) , (4) [
∂ S 

∂M ν

]
2 

� 

−S (2 dM ν) + 4 S ( dM ν) − 3 S ( M ν = 0) 

2 dM ν

+ O( dM 

2 
ν ) , 

(5) [
∂ S 

∂M ν

]
3 

� 

S (4 dM ν) − 12 S (2 dM ν) + 32 S ( dM ν) − 21 S ( M ν = 0) 

12 dM ν

+ O( dM 

3 
ν ) . (6)

hese non-symmetric estimators are designed to use simulations with 
 ν = 0.1, 0.2, or 0 . 4 eV (in addition to M ν = 0). In this case, the
MNRAS 513, 3596–3609 (2022) 
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M

Table 1. A summary of the Quijote simulations used in this study, high- 
lighting the deviations from the fiducial cosmological parameters, the type of 
initial conditions (IC; either first-order perturbation theory – ZA (Zel’dovich 
approximation) or second-order perturbation theory – 2LPT) and the number 
of realizations. 

Name Deviation from fiducial IC Realizations 

Fiducial n/a 2LPT 15 000 
Fiducial ZA n/a ZA 500 
�+ 

m 

��m 

= + 0.01 2LPT 500 
�−

m 

��m 

= −0.01 2LPT 500 
�++ 

b ��b = + 0.002 2LPT 500 
�−−

b ��b = −0.002 2LPT 500 
h + � h = + 0.02 2LPT 500 
h − � h = −0.02 2LPT 500 
n + s � n s = + 0.02 2LPT 500 
n −s � n s = −0.02 2LPT 500 
σ+ 

8 �σ 8 = + 0.015 2LPT 500 
σ−

8 �σ 8 = −0.015 2LPT 500 
M 

+ 
ν �M ν = + 0 . 1 eV ZA 500 

M 

++ 
ν �M ν = + 0 . 2 eV ZA 500 

M 

+++ 
ν �M ν = + 0 . 4 eV ZA 500 
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ncrement dM ν can in equation ( 4 ) be any of these three values, in
quation ( 5 ) can be M ν = 0.1 or 0 . 2 eV , and in equation ( 6 ) must be
 ν = 0 . 1 eV . 
The likelihood is assumed to follow a multi v ariate Gaussian (e.g.

eavens 2009 , i.e. with Gaussian errors for each parameter) defined
y 

 ( θθθ ) = 

√ 

det F 

(2 π ) M 

exp 

(
−1 

2 
( θθθ − θθθFid ) 

� · F · ( θθθ − θθθFid ) 

)
, (7) 

here θθθ (of length M ) are the parameters of a ν� CDM model and
Fid are fiducial parameters. 

.2 Summary statistics in redshift space 

n redshift space, redshift space distortions (RSD; Kaiser 1987 )
aused by peculiar velocities alter the observed redshifts of galaxies.
his causes a line-of-sight (LOS) shift given by 

 

 

 RSD = x x x + 

1 + z 

H ( z) 
( v v v · e e e ) , (8) 

here x x x is the real space coordinate, x x x RSD is the redshift space
oordinate, v v v is the peculiar velocity, z is the redshift, H ( z) is
he Hubble expansion rate at redshift z, and e e e is the unit vector
efining the LOS. In this paper, the LOS is taken to be the z -axis
 e e e = (0 , 0 , 1)); while the accuracy and convergence for the partial
eri v ati ves estimates is improved by additionally using both the x -
xis ( e e e = (1 , 0 , 0)), and y -axis ( e e e = (0 , 1 , 0)) as the LOS (Hahn et al.
020 ). 

.2.1 Power spectrum multipoles 

he density field is reexpressed in Fourier space; let k k k = ( k x , k y , k z )
e a Fourier mode vector. We bin the density field by k = | k k k | and
= k z / k (the cosine of the angle between k k k and the LOS e e e ). 
The power spectrum multipoles are 

 
 ( k) = (2 
 + 1) 
∫ 1 

0 
P ( k, μ) L 
 ( μ) dμ, (9) 

here L 
 is a Legendre polynomial. The monopole and quadrupole
re P 0 and P 2 , respectively. 
NRAS 513, 3596–3609 (2022) 
.2.2 Masking small scales by grouping 

nlike the power spectrum, small-scale information cannot be
emo v ed by simply cutting the distribution of edge lengths in
he MST statistics, instead these scales need to be remo v ed from
he input catalogues. To do this, small scales are masked by
rouping together points with small separations. This is carried
ut by grouping two haloes if their separation is less than l min =
 π/k max = 4 π h 

−1 Mpc � 13 h 

−1 Mpc (equi v alent to the maximum
ourier mode k max = 0 . 5 h Mpc −1 measured for the power spectrum).
he grouping is transitive (if A and B are close, and B and C are
lose, then all three are grouped together regardless of the distance
etween A and C ); as a result, l min needs to be set well below the
ean separation of points (to a v oid the entire catalogue collapsing to

ne point). A group of haloes is given coordinates equal to the mean
oordinates of its constituent haloes. This process yields a catalogue
f nodes (a collection of grouped and ungrouped haloes); on average
his node catalogue is about one quarter the size of the original halo
atalogue. See Appendix A for evidence that this masking technique
s ef fecti ve. 

.2.3 Minimum spanning tree statistics 

he MST is constructed, in 3D comoving coordinates in redshift
pace, from the node catalogue. The distribution function N ( x ) of the

ST statistics is measured, where x is the degree d , edge length l ,
ranch length b , or branch shape s (Naidoo et al. 2020 ). An edge is a
ine in the MST graph, the degree is the number of edges attached to
ach node, and a branch is a chain of edges connected continuously
y nodes of degree d = 2. For the branches we measure their length b
i.e. the sum of the lengths of member edges) and their shape s (i.e. the
quare root of one minus the ratio between the straight line distance
etween branch ends and the branch length – with this definition,
traighter branches have s � 0 while larger values indicate more
urved branches). Furthermore, to ensure N ( x ) can be described by a
aussian distribution we remo v e the tails of the distribution function.
e measure the mean of the cumulative distribution function (CDF)

f N ( x ) for the fiducial simulations and then measure the MST N ( x )
nly in the region where 0.05 < CDF < 0.95 (with the exception of d
here we include N ( d ) in the range 1 ≤ d ≤ 4). The publicly available

YTHON package MISTREE (Naidoo 2019 ) was used to construct and
easure the statistics of the MST. 

.3 Quijote simulations 

he Quijote simulations (Villaescusa-Navarro et al. 2020 ) are a large
et of N -body simulations designed for quantifying the information
ontent of cosmological observables and for training ML algorithms.
he simulations are constructed in boxes of length L box = 1 h 

−1 Gpc ,
sing 512 3 dark matter particles and 512 3 neutrino particles (for
imulations with massive neutrinos). A detailed table of the pa-
ameters used for the Quijote simulations can be found in table
 of Villaescusa-Navarro et al. ( 2020 ). The simulations are based
n a fiducial � CDM cosmology (based on Planck Collaboration
I 2020 ) with matter density �m 

= 0.3175, baryon density �b =
.049, Hubble constant h = 0.6711, primordial spectral tilt n s =
.9624, the root mean square of the linear power spectrum at
pheres of radius 8 h 

−1 Mpc σ 8 = 0.834, sum of neutrino masses
 ν = 0 eV , and dark energy equation of state w = −1. The power

pectrum multipoles and MST are computed on haloes with masses
arger than 3 . 2 × 10 13 h 

−1 M �. For each parameter, we determine
he dependence with respect to that parameter using 500 simulations
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and negligible correlations between other MST statistics (i.e. between l and d and between l and s ). The power spectrum multipoles and components of the MST 

statistic are divided by a dashed grey lines on the right. The correlation matrix for the power spectrum multipoles is shown to be strongest diagonally, with the 
most striking feature being the positive correlations between multipoles. Correlations between the power spectrum multipoles and the MST are negligible with 
only a small inverse correlation seen. This is consistent with expectations since smaller edge lengths should correspond to larger Fourier modes. 
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n which only that parameter deviates from its fiducial value (while 
aintaining zero curvature, i.e. a shift in �m 

⇒ �� 

= 1 − �m 

). To
onstruct the covariance matrix we use 15 000 fiducial simulations 
onstructed with the fiducial cosmology. See Table 1 for a summary. 
imulations with massive neutrinos ( M 

+ 

ν , M 

++ 

ν , and M 

+++ 

ν ) are
roduced from simulations with initial conditions following first- 
rder perturbation theory (i.e. the Zel’dovich approximation – ZA) 
nstead of second-order Lagrangian perturbation theory (2LPT) 
ince the 2LPT approach is not implemented for massive neutrino 
osmologies (for further details, see Villaescusa-Navarro et al. 2020 ). 
herefore, to remo v e an y potential systematic bias this discrepancy
ay present we will be using the Fiducial ZA simulations for

he neutrino partial deri v ati ve estimates, rather than the Fiducial
imulations, since these simulations are also produced with ZA initial 
onditions. 

 RESULTS  

his section discusses the following results: (1) the covariance matrix 
or the MST statistics and the internal correlations and correlations 
ith the power spectrum, (2) the partial derivatives of the power spec-

rum and MST statistics, and (3) parameter constraints for a ν� CDM
odel obtained from individual and combined measurements of the 
ST and power spectrum. 

.1 Co v ariance matrix 

he covariance matrix is constructed from equation ( 2 ) using data
ectors measured from 15 000 fiducial simulations. Fig. 1 shows the 
orrelation matrix for the MST on the left and the correlation matrix
or the combined data vector of the power spectrum multipoles 
nd MST statistics on the right. Unlike the correlation matrix for
he power spectrum, the correlation matrix for the MST contains 
everal non-diagonal features. One of the most striking features 
s the correlation between the edge length l and branch length b
hich show ‘waves’ of positive correlations between short edges and 

hort branches followed by ne gativ e correlations and then positive
orrelation for longer edges and branches. These positive correlations 
tem from the correlations between branches formed from two edges, 
hree edges, and so on. For branches formed from more edges, these
orrelations become weaker as branches formed from more than 
hree edges are rare. Other correlations in the MST statistics appear
o stem from branches, which by definition have intermediate nodes 
ith degree d = 2. As a result we see strong correlations between the
egree and branch length. The correlation between branch length and 
hape is weak but indicates that longer branches are more curved than
hort ones. The correlations between the power spectrum multipoles 
nd MST are weak so adding the MST to P ( k ) is beneficial. This is
learest for the monopole and edge lengths which show an inverse
orrelation between edges and Fourier modes; this is completely 
onsistent with the inverse relation between Fourier space and real 
pace. Furthermore the large-scale modes of the monopole (the first 
alf of the data vector) show positive correlations with longer edges.
his indicates that most of the large-scale clustering information is 
tored in the large edges of the MST. 

.2 Fisher matrix and partial deri v ati v es 

he Fisher matrix is calculated from equation ( 1 ) from the data vector
S . In this section, the data vectors are either the power spectrum

onopole and quadrupole P 
 = 0, 2 ( k ) or combinations of the MST
tatistics: degree d , edge length l , branch length b , and branch
hape s . To calculate the Fisher matrix, we require measurements
f the deri v ati ves ∂ S /∂θ ; these are estimated using simulations
MNRAS 513, 3596–3609 (2022) 
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ummarized in Table 1 . For each set of simulations (consisting of
00 individual simulations and 15 000 simulations for the fiducial
et) the mean and standard deviation of the summary statistics
re obtained. The deri v ati ves for the parameters are then obtained
sing equation ( 3 ), with the exception of neutrino mass where three
stimators are used (equations 4 , 5 , and 6 ). In real data we would
ot be able to place a clean cut on the galaxy masses; instead,
hese limits would be imposed by surv e y designs and magnitude
imits. To account for this in our analysis, we follow Hahn et al.
 2020 ) by adding the nuisance parameter M min which characterizes
he dependence on the minimum halo mass which is calculated by
unning the statistics on the fiducial suite with M min = 3.1 and M min =
.3 ×10 13 h 

−1 M �. Ho we ver, unlike in the study by Hahn et al. ( 2020 )
e do not include a linear bias nuisance parameter (as it is not clear
ow a linear bias would affect the MST statistics and including
t solely in the power spectrum measurements would weaken the
onstraints in the power spectrum but leave the MST unaffected, in
NRAS 513, 3596–3609 (2022) 
ffect biasing our results in fa v our of the MST). To a v oid this, we
se only the minimum halo mass as a nuisance parameter in this
tudy. 

The more accurate estimators for the partial deri v ati ves are those
or which the errors are given to higher orders of d θ . For most param-
ters, the deri v ati ve ∂ S /∂θ is determined by the symmetric deri v ati ve
stimator equation ( 3 ) which has errors of order O( dθ2 ), while the
ost accurate estimator for ∂ S /∂M ν is given by equation ( 6 ) which

as errors of order O( dθ3 ). Ho we ver, in order for the estimators
o be consistent for all parameters the appropriate estimator to use
or M ν is equation ( 5 ) which has errors of order O( dθ2 ). Previous
tudies (Hahn et al. 2020 ; Uhlemann et al. 2020 ; Villaescusa-Navarro
t al. 2020 ) have used equation ( 6 ) (while Massara et al. 2021 use
quation 5 ), so to facilitate comparisons to these studies the results
btained using this estimator are additionally provided in Table C2 .
o we ver, throughout this paper we will refer to results obtained using

quation ( 5 ) with dM ν = 0 . 2 eV . The partial deri v ati ves for the data
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Figure 3. Fisher matrix constraints on ν� CDM parameters from the power spectrum and MST separately and combined in redshift space at z = 0.5. The 
constraints from the power spectrum multipoles P 
 = 0, 2 ( k ) are shown with blue dashed lines, from the four MST statistics MST( d , l , b , s ) with red dotted lines, 
and from the combination of the power spectrum multipoles and MST P 
 = 0, 2 ( k ) + MST( d , l , b , s ) with purple lines and contours. Constraints for σ 8 and �m 

are dominated by the power spectrum multipoles while h , n s , �b , and M ν are dominated by the MST. Significant degeneracies are broken when combined, 
leading to much tighter constraints (in comparison to the individual constraints from the power spectrum multipoles) on h , n s , �m 

, and �b (which impro v e by a 
factor of ∼2); σ 8 (which impro v es by a factor of ∼3.89) and M ν (which impro v es by a factor of ∼4.35). 
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ectors (as a function of the ν� CDM parameters �m 

, �b , h , n s , σ 8 ,
nd M ν) are shown in Appendix B . 

We test for convergence of the partial deri v ati ves by estimating the
isher matrix from a fraction of the total simulations available. For

he power spectrum, we find that partial derivatives are converged 
or all M ν deri v ati ve estimates and for all parameters while for the

ST we find that equation ( 5 ) with dM ν = 0 . 2 eV provides the most
eliable converged estimates at all redshifts (see Fig. B5 ) and quote
esults from this estimator unless stated otherwise. 

.3 MST bin size dependence 

e test the sensitivity of the MST distribution functions to the bin
ize. In real data, the size of bins would be dictated by numerical
onstraints, i.e. the number of mocks used to obtain the covariance 
atrices and the sample size. Since the suite used to estimate the

ovariance matrix is large, we do not need to keep the data vector
hort and therefore can test the sensitivity to the MST distribution
unction’s bin size. To this end, we use three binning strategies for
he distribution functions of l , b , and s , with N bins = 200, 100, and
0 bins. The constraints from the different binning strategies are 
escribed and discussed in the following sections (in particular, see 
ig. 4 ). 

.4 Sensitivity to neutrinos and � CDM 

n this section, the forecast constraints (derived from Fisher matrices) 
or parameters of a ν� CDM universe are obtained and discussed. 

.4.1 Constraints from the minimum spanning tree 

n Fig. 2 , the individual and combined constraints from the edge
ength l , branch length b , branch shape s , and degree d distributions
re shown using l , b , and s with N bins = 200. The edge and branch
MNRAS 513, 3596–3609 (2022) 
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ength distrib utions ha v e constraints that are competitiv e with each
ther, with branch length providing but that in combination are
ignificantly tighter. In augmenting the constraints first with the
ranch shape and then with the degree, we see that much of the
onstraining power for the MST is contained in the edge and
ranch length distribution; the addition of the branch shape adds
 modest impro v ement to the o v erall constraints ( ∼ 25 per cent
or cosmological parameters at z = 0.5) but the addition of the
egree appears to provide a negligible improvement ( ∼ 1 per cent
or cosmological parameters at z = 0.5). 

.4.2 Combined constraints from the minimum spanning tree and 
ower spectrum 

he separate and combined constraints from the MST (using l , b , and
 with N bins = 200) and power spectrum measured at redshift z =
.5 are shown in Fig. 3 (for the constraints obtained from different
edshifts refer to Table C2 ). The constraints obtained for �b , h , n s ,
nd neutrino mass M ν are significantly tighter for the MST, while the
ower spectrum yields better constraints on �m 

and σ 8 . When the two
re combined, significant degeneracies are broken leading to much
ighter constraints than those obtained using either statistic alone.
or neutrino mass M ν , the combination provides a 1 σ constraint that

s 4.35 × tighter, for �m 

that is 1.77 × tighter, for �b that is 2.06 ×
ighter, for h that 2.12 × tighter, for n s that is 2.09 × tighter, and for

8 that is 3.82 × tighter. 
The impact of the MST binning is explored in Fig. 4 , where

e display the marginalized constraints for the MST statistics
individually and for different combinations) at redshift z = 0.5
NRAS 513, 3596–3609 (2022) 
n comparison to the power spectrum multipoles with different levels
f binning. Larger bins are associated with poorer constraints but in
ach case combining with the power spectrum still leads to significant
mpro v ements in the constraints of all parameters. This highlights the
mportance of including the MST in future galaxy redshift surv e ys
o test and constrain � CDM parameters and to determine the sum of
eutrino mass M ν – a key scientific goal of many future surveys. 

.4.3 Sensitivity to the neutrino partial derivative estimator 

he partial deri v ati ve of the summary statistics as a function of
eutrino mass can be estimated using equations ( 4 ), ( 5 ), and ( 6 ).
ig. 5 compares the neutrino mass constraints �M ν = 

√ 

F 

−1 
νν using

he different estimators for the power spectrum and MST measured
t redshift z = 0.5 (see Table C1 for a full summary of the
ifferent estimators for different components and combinations of
he MST statistics at different redshifts). The intrinsic accuracy of the
stimators appear to show that less accurate estimators are associated
ith poorer constraints. The most accurate estimators, i.e. estimator
 and 3 with M ν = 0 . 1 eV , are shown to be fairly consistent, with
stimator 3 generally providing tighter constraints. Without prior
nowledge of the true partial derivative it is difficult to know which
stimator better captures the true behaviour. F or consistenc y, we
ocus on the results from estimator 2 (with M ν = 0 . 2 eV ) which has
he same absolute errors as the estimator used on the other parameters
equations 3 ) and has been found to have the best convergence
roperties at all redshifts (see Appendix B ). Nevertheless as is shown
n Fig. 5 the relative strengths of the constraints from the power
pectrum and MST individually and combined remains, meaning our
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 v erall conclusions are insensitive to the neutrino deri v ati ve estimator
sed. 
In all cases, the MST constraints on M ν are stronger than ones

btained from the power spectrum. If more bins are used for the
ST then the combined constraints with the power spectrum are 

ignificantly impro v ed in comparison to the power spectrum alone. 

 C O N C L U S I O N  

sing haloes from the Quijote simulations, we calculate the in- 
ormation content (from the Fisher matrix) of the MST statistics 
n a ν� CDM model. The Quijote simulations are a large suite
f N -body simulations designed to test the information content of
ummary statistics and to test AI/ML algorithms. In this paper, 
e use a subset of the full suite of simulations (summarized 

n Table 1 ), measuring the power spectrum multipoles and MST
tatistics in redshift space on haloes with mass ≥ 3 . 1 × 10 13 h 

−1 M �.
he analysis presented in this paper is based on the Fisher matrix

ormalism which considers only second deri v ati ves of the data vector,
ather than a full exploration of the parameter space via for e.g.

CMC. Fisher matrices are limited in the sense that they place 
nly lower bounds (the Cramer–Rao bound) on the uncertainties of 
osmological parameters and assume the covariance matrix has no 
osmological parameter dependence; as such analysis on real data is 
ikely to depart significantly due to non-Gaussianities (see Hawken 
t al. 2012 ; Foroozan, Krolewski & Percival 2021 ). 

From the MST, we measure the distribution of degree d , edge
ength l , branch length b , and branch shape s . In Naidoo et al.
 2020 ), it was shown that l is the most constraining MST statistic.
o we ver, this pre vious analysis was based on COLA simulations
f length L box = 250 h 

−1 Mpc and limited to the most massive
000 haloes. Due to the size of the sample, the study saw only
odest impro v ements of 17 per cent on the 1 σ constraints on �m 

nd 12 per cent on the 1 σ constraints on A s . By using the Quijote
imulations, we are able to expand this analysis to a wider set of
osmological parameters ( �m 

, �b , h , n s , σ 8 , and M ν compared to
nly A s , �m 

, and M ν), o v er a larger volume ( L box = 1 h 

−1 Gpc ),
nd using a larger catalogue of haloes (of the order of 10 5 ). In
ig. 2 , the constraints from the MST are shown to be dominated by

he distribution of edge and branch lengths, with the degree adding
ery little information and the branch shape providing a moderate 
mpro v ement o v erall. 

In Fig. 3 and Table C2 , the MST and power spectrum constraints
re compared and combined. The power spectrum multipoles provide 
uch stronger constraints on �m 

and σ 8 . On the other hand, the MST
ominates the constraints on M ν : at z = 0.5 the power spectrum
ultipoles gives �M ν = 1 eV (1 σ ), the MST gives �M ν = 0 . 25 eV

1 σ ), and the power spectrum multipoles and the MST combined
ive �M ν = 0 . 23 eV – an improvement of a factor of ∼4.35. For
he other parameters we find that combining the two sets of statistics
reaks several degeneracies and thereby improves constraints on h , 
 s , �m 

, and �b by a factor of ∼2 and σ 8 by a factor of ∼3.82
n comparison to the individual power spectrum constraints. We 
easure the dependence on the number of bins N bins , showing that

ewer bins will decrease the constraining power but that the inclusion
f the MST will, irrespective of the bin number, significantly impro v e
onstraints on all parameters. 

In this paper, we show that adding the MST to the power spectrum
reatly impro v es constraints for parameters of the ν� CDM model.
n particular, constraints on M ν are dominated by the MST since
t is significantly more sensitive to the effects of neutrinos on the
istribution of haloes. This appears to come from the sensitivity 
f the MST to extra information contained in the higher order
tatistics of the cosmic web. Bonnaire et al. ( 2021 ) have shown that
laments in the cosmic web are the most sensitive environment to
eutrino mass. Given the MST propensity for filament detection, we 
elieve the sensitivity to the neutrino mass is related to the detection
f filamentary structures by the MST. Ho we ver, only future work
omparing both cosmic web environments from the density field and 
ST structures from haloes will be able to determine this for certain.
Future galaxy surv e ys such as DESI, Euclid , and LSST are

rojected to bring the upper limit on neutrino mass below or close
o 0 . 06 eV (Font-Ribera et al. 2014 ), the lower limit from neutrino
scillations (assuming normal hierarchy). As we have illustrated 
sing halo simulations, the MST can impro v e by a factor of four the
onstraints on neutrino mass with respect to just the power spectrum.
herefore, we can expect the MST to provide greater constraints from
urrent and future surv e ys, possibly enabling this interesting regime
o be probed sooner. These constraints could be further impro v ed by
ombining the MST and the power spectrum with other probes such
s the CMB. This demonstrates the importance of measuring more 
han just the power spectrum (or two-point statistics) and provides a
owerful argument for making measurements of the MST on current 
nd future galaxy surv e ys such as BOSS, eBOSS, and DESI. In
uture work, we will look to develop techniques for addressing the
hallenges associated with real galaxy surv e y data; these challenges
nclude the impact of the surv e y’s selection function across the sky
completeness and depth) and as a function of redshift, the incorpora-
ion of galaxy weights, the mitigation of small-scale effects including 
he effect of fibre collisions in spectroscopic surv e ys, the modelling
MNRAS 513, 3596–3609 (2022) 
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f galaxy bias and halo occupation distribution parameters, and the
evelopment of MST emulators or likelihood free techniques for
omputing the posterior probability for real data. 
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PPENDI X  A :  MASKI NG  SMALL  SCALES  

SI NG  G RO U P S  

osmological simulations tend to suffer from inaccuracies at small
cales due to limitations in resolution and complex baryonic effects
hich require e xpensiv e hydrodynamics simulations. F or these

easons, it is important to be able to remo v e these troublesome scales
rom our analysis. For traditional N -point statistics this is relatively
traightforward as this simply requires placing scale cuts on the data
ector. Ho we ver, the MST is different as there is no way to mask
mall scales once the MST has been constructed; instead, the input
ata vector needs to be prepared such that scales are not present when
he MST is constructed. To remo v e these scales from our analysis,
e implement a grouping scheme where points separated by less

han l min are combined. 
In this section, we investigate the ef fecti veness of masking small

cales by grouping using two Levy–Flight simulations as a proxy
or N -body simulations with accurate and inaccurate small scale
ffects (such as baryonic effects). These simulations were chosen
s their clustering properties are relatively simple to control and are
ast to generate. We generate 50 realizations of two Levy–Flight
imulation models: (1) the standard Levy Flight (LF) and (2) the
djusted Levy Flight (ALF; see Naidoo et al. 2020 , for more details).
he simulations are generated using MISTREE (Naidoo 2019 ). For
ach simulation 50 000 points are generated in a box of length 75
ith parameters t 0 = 0.24 and α = 1.6 for the LF simulations and
arameters t 0 = 0.325, t s = 0.015, α = 1.5, β = 0.45, and γ = 1.3
or the ALF. 

The two-point correlation function (2PCF) and MST statistics
re measured for both simulations and compared in Fig. A1 .
he simulations are designed to exhibit very different small-scale
roperties but identical large-scale correlation functions. 
All points in the simulations with separations less than 0.4 are

rouped and replaced by a single point with the average position of
he group members. A new catalogue of points is now constructed
ith these grouped points and any remaining ungrouped points. For
oth simulations this results in a catalogue of roughly ∼13 000 points.
o ensure differences between the statistics are not due to slight
ifferences in density, we sample at random 12 000 points from each
atalogue and measure the 2PCF and MST statistics. In Fig. A1 , the
tatistics before and after grouping are shown. Prior to grouping the
imulations exhibit different small-scale clustering properties, which
s seen by differences in the 2PCF and MST statistics, while after
rouping all the statistics are consistent with each other. This shows
hat grouping ef fecti vely masks the small-scale differences between
he simulations. 
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Figure A1. The effect of grouping Levy Flight simulations are shown for the two-point correlation function (2PCF) and MST statistics. Two sets of Levy 
Flight simulations are used: the standard Levy Flight (LF) simulations are shown in blue and the adjusted Levy Flight (ALF) simulations are shown in red. 
The y e xhibit almost identical large scale 2PCF ξ ( r ) by design but hav e v ery different small-scale correlation properties. The differences between the ungrouped 
simulations are shown in the top subpanels. On the left is the 2PCF and on the right are the four MST statistics degree ( d ), edge length ( l ), branch shape ( s ), and 
branch length ( b ). The differences between the grouped simulations are shown in the bottom subpanels. On the left is the 2PCF and on the right are the four 
MST statistics d , l , s , and b . These plots show that grouping provides an ef fecti ve solution for masking small scales as the small-scale differences between the 
simulations do not appear once grouping has been performed. 
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PPEN D IX  B:  MINIMUM  SPANNING  TREE  

A RTIAL  D ERIVATIVES  

he partial deri v ati ve estimates for the MST statistics are shown for
he distribution of degree d in Fig. B1 , for the distribution of edges l
n Fig. B2 , for the distribution of branches b in Fig. B3 , and for the
istribution of branch shapes s in Fig. B4 . The deri v ati ves for neutrino
ass are shown for estimator 2 (equation 5 ) with M ν = 0 . 2 eV . 
For a fixed MST statistic, the partial deri v ati ves of that statistic

with respect to the various cosmological parameters) all have similar 
hapes. The similarity can be explained if we think about the 
onstruction of the MST as an optimization problem: differences 
n parameters will lead to trees with longer (poorly optimized) or
horter edges (highly optimized). Depending on the outcome, the 

ST statistics will to first order be pulled to smaller or larger
alues but since there are roughly the same number of points this
hange has to be counter balanced with a reduction in the opposite
irection. Although the profiles are similar in their general shape 
f we instead look to the relative peaks and troughs with respect to
ero we can see that each parameter behaves slightly differently; 
ake for example the partial deri v ati ves for edge length with respect
o �m 

and M min where the troughs for M min is much deeper. The
imilarities suggest that the MST statistics data vectors could be 
ompressed into a few values (this possibility will be investigated in
uture work). In any case, the similarities are not a cause for concern
s the interdependencies of these parameters are taken into account 
n the Fisher matrix calculation and would appear as covariances. 

To test whether the partial deri v ati v es hav e conv erged we compute
he Fisher matrix from a subset of the total simulations available. 
n Fig. B5 , we show the convergence of the MST partial derivatices
y showing whether the individual components of the Fisher matrix 
re converging to their final values. Convergence is loosely defined 
o be Fisher matrix components which have settled to within 
 per cent of their final value when N deriv. (the number of data vectors
sed to compute partial deri v ati ves) is greater than 1300. We find
hat estimator 2 (equation 5 ) with M ν = 0 . 2 eV provides the best
onvergence properties at all redshifts. Estimator 2 (equation 5 ) with
 ν = 0 . 1 eV and Estimator 3 (equation 6 ) while being more accurate

stimators tend to show poorer convergence at redshift z = 0 where
he constraining power for M ν is generally worse. This is likely the
ombination of two factors: (1) at low redshifts the halo catalogues
re larger meaning more groupings take place resulting in some loss
f information due to percolation and (2) gravity infall scrambles 
MNRAS 513, 3596–3609 (2022) 
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he effect of neutrinos free-streaming making their effect harder to
etect. We believe the former is the more important feature but this
ill need to be investigated in later work to understand how to limit
NRAS 513, 3596–3609 (2022) 
he effects of percolation on the MST, especially for dealing with
cenarios where l min is larger than the mean separation between
aloes. 
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Figur e B5. Conver gence of the MST Fisher matrix elements as a function of 
the number of data vectors used for the deri v ati ve estimates. The x -axis sho ws 
the number of data vectors used to compute the partial deri v ati ves ( N deriv. ) of 
the MST statistics at redshift z = 0.5 (similar results are obtained for z = 0 
and z = 1). On the y -axis the components of the Fisher matrix are shown. 
The grey bands show 10 per cent (light) and 5 per cent (dark) convergence 
from the Fisher matrix values after all 1500 deri v ati ve estimates are used. The 
full lines show the convergence for MST statistics with N bins = 200, dashed 
lines with N bins = 100, and dash–dotted lines with N bins = 40. For most of 
these statistics convergence is reached relatively quickly with the exception 
of �b and M ν whose effects are generally more subtle. In both cases, we 
show convergence within 5 per cent is achieved for N deriv. > 1300. 
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PPENDI X  C :  FISHER  MATRI X  C O N S T R A I N T S  

RO M  T H E  MST  

dditional constraints from the MST and power spectrum multipoles
re presented in this section. In addition to the measurements made in
he paper at redshift z = 0.5, we also make measurements at redshift
 = 0 and z = 1, and finally combine the analysis o v er the three
edshifts. 

In Table C1 , we compare the constraints of the MST and power
pectrum multipoles for the different neutrino mass deri v ati ve esti-
ates presented in this paper. 
In Table C2 , we compare the constraints of the MST and power

pectrum multipoles for the six ν� CDM parameters and the nuisance
inimum halo mass parameter M min . 
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Table C1. Constraints on M ν using different estimators for ∂ S /∂M ν at z = 0: estimator 1 (equation 4 ) using M ν = 0.1, 0.2, 
and 0 . 4 eV , estimator 2 (equation 5 ) using M ν = 0.1 and 0 . 2 eV , and estimator 3 (equation 6 ) using M ν = 0 . 1 eV . Typically 
estimator 3 has been used in previous studies but in this paper we use estimator 2 with M ν = 0 . 2 eV since the accuracy of 
this estimator is consistent with equation ( 4 ) used for the other parameters. All the estimators in redshift space show tighter 
constraints for the MST than the power spectrum. Furthermore, when they are combined the constraints appear to be dominated 
by the MST. 

Statistics Redshift Est. 1 (equation 4 ) Est. 2 (equation 5 ) Est. 3 (equation 6 ) 
0 . 1 eV 0 . 2 eV 0 . 4 eV 0 . 1 eV 0 . 2 eV 0 . 1 eV 

MST( l ) 0.5 0.5 1.0 1.8 0.29 0.6 0.22 
MST( b ) 0.5 0.45 0.7 1.4 0.26 0.38 0.2 
MST( l , b ) 0.5 0.33 0.56 1.1 0.19 0.31 0.15 
MST( l , b , s ) 0.5 0.23 0.46 0.79 0.13 0.25 0.099 
MST( d , l , b , s ) 0.5 0.23 0.45 0.76 0.13 0.25 0.099 
P 
 = 0, 2 ( k ) 0.5 0.82 1.6 1.4 0.44 1.0 0.33 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0.5 0.21 0.38 0.44 0.12 0.23 0.093 

Table C2. Separate and combined constraints for parameters from the ν� CDM model determined from measurements of the power spectrum 

(multipoles in redshift space) and MST at redshift z = 0, 0.5, and 1. The constraints are obtained using equation ( 3 ) for all of the parameters except 
M ν which are obtained using equation ( 5 ) with M ν = 0 . 2 eV . For the standard � CDM parameters we obtain competitive constraints from the MST 

at all redshifts, with the exception of �m 

and σ 8 where the power spectrum dominates; ho we ver, for M ν the MST dominates. When measurements 
from the different redshifts are combined we find the MST is competitive for all parameters, including �m 

and σ 8 , but still dominates constraints 
on M ν . 

Statistics Redshift N bins ��m 

��b � h � n s �σ 8 � M ν [eV] � M min 

MST( l ) 0 1 0 .076 0 .018 0 .13 0 .12 0 .14 0 .53 1 .2 
MST( b ) 0 1 0 .062 0 .015 0 .14 0 .14 0 .098 0 .45 1 .4 
MST( l , b ) 0 1 0 .048 0 .011 0 .089 0 .091 0 .079 0 .33 0 .75 
MST( l , b , s ) 0 1 0 .036 0 .0083 0 .073 0 .067 0 .067 0 .24 0 .59 
MST( d , l , b , s ) 0 1 0 .036 0 .0083 0 .073 0 .065 0 .067 0 .23 0 .55 
P 
 = 0, 2 ( k ) 0 0 .029 0 .013 0 .13 0 .079 0 .061 1 .1 0 .22 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0 1 0 .015 0 .0059 0 .054 0 .036 0 .016 0 .22 0 .14 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0 2 0 .016 0 .0074 0 .069 0 .041 0 .019 0 .29 0 .14 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0 5 0 .017 0 .0099 0 .093 0 .046 0 .023 0 .37 0 .15 
MST( l ) 0.5 1 0 .062 0 .024 0 .19 0 .15 0 .14 0 .6 1 .2 
MST( b ) 0.5 1 0 .065 0 .016 0 .15 0 .12 0 .099 0 .38 1 .2 
MST( l , b ) 0.5 1 0 .042 0 .013 0 .11 0 .091 0 .079 0 .31 0 .73 
MST( l , b , s ) 0.5 1 0 .035 0 .0092 0 .089 0 .068 0 .062 0 .25 0 .59 
MST( d , l , b , s ) 0.5 1 0 .035 0 .0092 0 .088 0 .067 0 .061 0 .25 0 .58 
P 
 = 0, 2 ( k ) 0.5 0 .023 0 .014 0 .14 0 .09 0 .065 1 .0 0 .2 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0.5 1 0 .013 0 .0068 0 .066 0 .043 0 .017 0 .23 0 .13 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0.5 2 0 .014 0 .0086 0 .084 0 .051 0 .022 0 .33 0 .14 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 0.5 5 0 .016 0 .01 0 .1 0 .058 0 .03 0 .46 0 .14 
MST( l ) 1 1 0 .055 0 .018 0 .17 0 .12 0 .097 0 .52 1 .2 
MST( b ) 1 1 0 .066 0 .016 0 .16 0 .11 0 .089 0 .38 1 .1 
MST( l , b ) 1 1 0 .04 0 .011 0 .11 0 .079 0 .063 0 .3 0 .77 
MST( l , b , s ) 1 1 0 .034 0 .0088 0 .086 0 .064 0 .051 0 .24 0 .62 
MST( d , l , b , s ) 1 1 0 .034 0 .0087 0 .08 0 .063 0 .051 0 .24 0 .58 
P 
 = 0, 2 ( k ) 1 0 .024 0 .016 0 .18 0 .14 0 .065 0 .88 0 .25 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 1 1 0 .014 0 .0063 0 .057 0 .046 0 .02 0 .23 0 .12 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 1 2 0 .016 0 .0078 0 .073 0 .054 0 .025 0 .32 0 .13 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) 1 5 0 .017 0 .01 0 .098 0 .069 0 .033 0 .43 0 .14 
MST( l ) All 1 0 .034 0 .01 0 .083 0 .064 0 .035 0 .29 0 .46 
MST( b ) All 1 0 .031 0 .0083 0 .075 0 .061 0 .033 0 .21 0 .45 
MST( l , b ) All 1 0 .023 0 .0065 0 .055 0 .045 0 .022 0 .17 0 .32 
MST( l , b , s ) All 1 0 .019 0 .0049 0 .043 0 .035 0 .019 0 .14 0 .26 
MST( d , l , b , s ) All 1 0 .019 0 .0049 0 .043 0 .035 0 .019 0 .14 0 .26 
P 
 = 0, 2 ( k ) All 0 .014 0 .0083 0 .07 0 .048 0 .026 0 .37 0 .15 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) All 1 0 .0081 0 .0039 0 .033 0 .025 0 .01 0 .13 0 .071 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) All 2 0 .0091 0 .0049 0 .041 0 .029 0 .013 0 .17 0 .073 
P 
 = 0, 2 ( k ) + MST( d , l , b , s ) All 5 0 .01 0 .0062 0 .052 0 .033 0 .015 0 .21 0 .075 
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