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ABSTRACT

The information content of the minimum spanning tree (MST), used to capture higher order statistics and information from the
cosmic web, is compared to that of the power spectrum for a v ACDM model. The measurements are made in redshift space using
haloes from the Quijote simulation of mass > 3.2 x 1032~ Mg, in a box of length Ly, = 127! Gpc. The power spectrum
multipoles (monopole and quadrupole) are computed for Fourier modes in the range 0.006 "Mpc~! < k < 0.5 hMpc~!. For
comparison the MST is measured with a minimum length-scale of /i, ~ 13 A~! Mpc. Combining the MST and power spectrum
allows for many of the individual degeneracies to be broken; on its own the MST provides tighter constraints on the sum of
neutrino masses M, and cosmological parameters h, ng, and €2}, but the power spectrum alone provides tighter constraints on 2y,
and og. Combined we find constraints that are a factor of two (or greater) on all parameters with respect to the power spectrum
(for M, there is a factor of four improvement). These improvements appear to be driven by the MST’s sensitivity to small scale
clustering, where the effect of neutrino free-streaming becomes relevant, and high-order statistical information in the cosmic
web. The MST is shown to be a powerful tool for cosmology and neutrino mass studies, and therefore could play a pivotal role

in ongoing and future galaxy redshift surveys (such as DES, DESI, Euclid, and Rubin-LSST).
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1 INTRODUCTION

The Lambda cold dark matter (ACDM) paradigm has remained at
the forefront of cosmology for over 20 years, cementing it as the
standard cosmological model. Observations and simulations over
that time have largely strengthened the case for ACDM despite
the model consisting overwhelmingly of things we still do not
understand — principally the nature of dark matter and dark energy.
While understanding the former will most likely need significant
contributions from particle physics experiments, understanding the
latter is a key goal for future experiments in cosmology. The next
generation of galaxy redshift surveys (such as the Dark Energy
Spectroscopic Instrument (DESI)," Euclid,? the Nancy Grace Roman
Space Telescope,® the Prime Focus Spectrograph,* the Rubin Obser-
vatory Legacy Survey of Space and Time, and the 4-m Multi-Object
Spectroscopic Telescope®) will map the positions of hundreds of
millions of galaxies. Determining the nature of dark energy is a major
scientific mission for these surveys. In ACDM dark energy is simply
Einstein’s cosmological constant (resulting from a scalar field), but
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better data may reveal that dark energy is actually changing with time
(dynamical dark energy) or that the requirement for dark energy is
actually a symptom that General Relativity, on which these models
are based, is incomplete and requires modification (the premise of
Modified Gravity theories).

The discovery of neutrino oscillation (Fukuda et al. 1998; Ahmad
et al. 2001) provided evidence that neutrinos are not massless (as
had been predicted by the standard model of particle physics). This
discovery makes neutrinos of keen interest to particle physicists,
as the origins of their mass and hierarchy could provide hints to
new physics. Particle physics experiments currently place a lower
bound on the sum of neutrino masses (denoted in this work by
M,) of M, 2 0.06eV. However, it is cosmological experiments
that provide the tightest upper bound: currently M, < 0.11eV
(95 percent confidence level, CL; Planck Collaboration VI 2020;
eBOSS Collaboration 2021); by contrast the upper bound from
particle physics experiment KATRIN is currently M, < 1.1eV
(90 percent CL; Aker et al. 2019; although unlike cosmological
measurements this is model independent). The sensitivity to neutrino
mass in cosmology comes from the role neutrinos play in the growth
of large-scale structure (LSS). The neutrino’s characteristic free-
streaming length, a quantity dependent on its mass, will wash out
small-scale structure. This effect can be quantified as a suppression of
small-scale modes in the power spectrum. Over the next 5 yr, surveys
such as DESI expect to be sensitive to M, < 0.06eV (95 per cent CL;
Font-Ribera et al. 2014) and therefore anticipate a first cosmological
detection of a non-zero mass for neutrinos.
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Cosmological surveys have largely focused on two-point statistics,
whether in real or Fourier space. While these methods are tried-and-
tested, they fail to fully explore and capture all the information
content of galaxy surveys. This is particularly relevant at low
redshifts where the highly non-linear structure of the cosmic web
is very pronounced; here the distribution of matter cannot be fully
characterized by two-point statistics and further statistical methods
are required if we are to fully extract all the information present.
Such analyses are particularly timely as future data sets will probe
the Universe with tracers (galaxies, quasars, etc.) at higher number
densities providing a greater sensitivity to the cosmic web. Relevant
statistical methods include the three-point correlation function (the
Bispectrum in Fourier space; e.g. Gil-Marin et al. 2017; Gualdi
et al. 2019), Minkowski functionals (e.g. Petri et al. 2013), the 1D
probability distribution function (Uhlemann et al. 2020), marked
power spectra (Massara et al. 2021), machine learning (ML; e.g.
Fluri et al. 2018), and the minimum spanning tree (MST; Naidoo
et al. 2020) — the focus of this paper.

The MST was first introduced to astronomy by Barrow, Bhavsar &
Sonoda (1985) and has successfully been used as a filament finder
for cosmic web studies (Bhavsar & Ling 1988; van de Weygaert,
Jones & Martinez 1992; Bhavsar & Splinter 1996; Krzewina &
Saslaw 1996; Ueda & Itoh 1997; Coles et al. 1998; Adami &
Mazure 1999; Colberg 2007; Alpaslan et al. 2014; Beuret et al.
2017; Libeskind et al. 2018). The MST is the minimum weighted
graph that connects a set of points without forming loops. More
recently, Naidoo et al. (2020) investigated how the MST could be
used to incorporate the cosmic web when constraining cosmological
parameters. However, unlike the conventional two-point analysis as
performed by most galaxy redshift surveys, reference MST values
cannot be calculated analytically and instead need to be calculated
from simulations. Fortunately, this problem is not unique to the
MST - conventional statistics such as the power spectrum and
bispectrum cannot be computed analytically in the non-linear regime
(for Fourier modes k > 0.3 hMpc ') and hence require simulations,
as do artificial intelligence (Al) and ML algorithms (as well as other
algorithms used to measure non-linear features in the cosmic web).
This has created a growing demand for large suites of cosmological
simulations and the development of accurate emulators as cosmol-
ogists push to extract more information from the distribution of
galaxies.

The Quijote simulations (Villaescusa-Navarro et al. 2020) were
designed precisely for this use (i.e. to test new summary statistics
such as the MST and AI/ML and to push conventional statistics
to smaller scales). In this paper, we will use these simulations to
measure the information content of the MST. The simulations have
previously been used to conduct Fisher matrix analysis for the power
spectrum (Villaescusa-Navarro et al. 2020), bispectrum (Hahn et al.
2020), 1D probability distribution function (Uhlemann et al. 2020),
and marked power spectrum (Massara et al. 2021). In this paper,
we extend this analysis to the MST; in Naidoo et al. (2020) the
MST was tested against measurements of the power spectrum and
bispectrum for a few parameters (matter density 2., amplitude
of scalar fluctuations A, and neutrino mass M,) to test whether
the MST adds new information. Fisher matrix analysis is useful in
cosmology as it places a lower bound (the Cramer—Rao bound; Rao
1945; Cramer 1946) on the uncertainty of cosmological parameters
inferred from a given statistic. If the posterior distribution is Gaussian
then the Fisher matrix constraints will be realized; otherwise the
constraints on any given parameter will be weaker. This analysis
is explored for parameters of the vACDM model (i.e. the standard
model of cosmology ACDM + massive neutrinos M, ). This will help
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determine the role that the MST can play in constraining parameters
from the current and next generation of galaxy surveys.

The paper is organized as follows. In Section 2, we discuss the
methodology and data used. In Section 3, we present the constraints
from components of the MST and demonstrate how including the
MST together with measurements of the power spectrum improves
parameter constraints in a vACDM model. Finally, in Section 4 we
discuss the main results and their implications for cosmology and
future surveys.

2 METHOD

In this section, we explain the Fisher matrix formalism used to
measure the information content of several summary statistics, we
explain how we measure the power spectrum multipoles and the MST
statistics in redshift space, and we describe properties of the Quijote
simulations used in this analysis.

2.1 Fisher formalism

The Fisher matrix (Tegmark, Taylor & Heavens 1997) F is defined
to have elements

3Sy, ., 05p
Fy=) o Cat 35, €]
a,p !

where S, and Sg are the elements « and § of the data vector S, C is
the sample covariance matrix defined to have elements

Cap = ((Sa — (Sa)) (S5 — (Sp))) » 2

and 6; and 6; are parameters i and j of the model. We multiply
the inverse of the covariance matrix by the Kaufman—Hartlap factor
(Kaufman 1967; Hartlap, Simon & Schneider 2007) (Ngm — 2 —
Ns)/(Ngm — 1), where Ng is the length of the data vector S and Ny,
is the number of simulations used to estimate the covariance matrix;
this compensates for the error in the sample covariance estimation.
Animplicit assumption of this formalism is that the covariance matrix
has no parameter dependence and can be accurately defined by one
fiducial point in parameter space.

When reference summary statistics are available analytically,
the partial derivatives in the Fisher matrix are straightforward to
estimate. However, for some summary statistics (such as the MST)
where reference values must be obtained via simulations, the partial
derivatives must be estimated numerically; typically we use

S _ S(0+do)— SO —do)
90 2d6

where df is a small deviation from a fiducial . We cannot use
this when estimating the partial derivative with respect to neutrino

mass when this mass is zero, as this would require simulations with
negative neutrino mass; instead here we use one of the estimators

+ 0 (d6?), ©)

[9S ] S(dM,) — S(M, = 0)
~ @ de 5 4
o, ), M, + O@dM,) “
[0S ] —SQ2dM,) +4SdM,) —3S(M, =0
~ = )+48dM,) ( )+(’)(de),
LOM, |, 2d M,
(%)
[0S ] _ S@4dM,)—1282dM,) + 328(dM,) — 215(M, = 0)
LOM, |5 12d M,
+0O@M?). (©6)

These non-symmetric estimators are designed to use simulations with
M, = 0.1, 0.2, or 0.4¢eV (in addition to M, = 0). In this case, the
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Table 1. A summary of the Quijote simulations used in this study, high-
lighting the deviations from the fiducial cosmological parameters, the type of
initial conditions (IC; either first-order perturbation theory — ZA (Zel’dovich
approximation) or second-order perturbation theory — 2LPT) and the number
of realizations.

Name Deviation from fiducial 1C Realizations
Fiducial n/a 2LPT 15000
Fiducial ZA n/a 7ZA 500
Qf AQy =+40.01 2LPT 500
Qn AQm = —0.01 2LPT 500
ot AQy = +0.002 2LPT 500
Q- AQ, = —0.002 2LPT 500
ht Ah = +0.02 2LPT 500
h~ Ah=—-0.02 2LPT 500
nt Ang = +0.02 2LPT 500
ng Ang = —0.02 2LPT 500
o Acg = +0.015 2LPT 500
og Aog = —0.015 2LPT 500
M AM, = +0.1eV ZA 500
M AM, = +0.2eV ZA 500
Mt AM, = +0.4eV ZA 500

increment dM,, can in equation (4) be any of these three values, in
equation (5) can be M, = 0.1 or 0.2 eV, and in equation (6) must be
M, =0.1eV.

The likelihood is assumed to follow a multivariate Gaussian (e.g.
Heavens 2009, i.e. with Gaussian errors for each parameter) defined
by

[ det F 1 T
LO) = W exp <_5(0 —0Ora) -F-(6 _OFid)) s @)

where 6 (of length M) are the parameters of a vACDM model and
Oy are fiducial parameters.

2.2 Summary statistics in redshift space

In redshift space, redshift space distortions (RSD; Kaiser 1987)
caused by peculiar velocities alter the observed redshifts of galaxies.
This causes a line-of-sight (LOS) shift given by

14z
H(z)

where x is the real space coordinate, xgsp is the redshift space
coordinate, v is the peculiar velocity, z is the redshift, H(z) is
the Hubble expansion rate at redshift z, and e is the unit vector
defining the LOS. In this paper, the LOS is taken to be the z-axis
(e = (0,0, 1)); while the accuracy and convergence for the partial
derivatives estimates is improved by additionally using both the x-
axis (e = (1, 0, 0)), and y-axis (e = (0, 1, 0)) as the LOS (Hahn et al.
2020).

(v-e), ®)

XRsD = X +

2.2.1 Power spectrum multipoles

The density field is reexpressed in Fourier space; let k = (ky, ky, k;)
be a Fourier mode vector. We bin the density field by & = |k| and
1 = k,/k (the cosine of the angle between k and the LOS e).

The power spectrum multipoles are

1
Py(k) = (2€ + 1)/ Pk, ) Le()d ©))
0

where £, is a Legendre polynomial. The monopole and quadrupole
are Py and P,, respectively.
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2.2.2 Masking small scales by grouping

Unlike the power spectrum, small-scale information cannot be
removed by simply cutting the distribution of edge lengths in
the MST statistics, instead these scales need to be removed from
the input catalogues. To do this, small scales are masked by
grouping together points with small separations. This is carried
out by grouping two haloes if their separation is less than /i, =
27 [kmax = 47 h~" Mpc ~ 13 ! Mpc (equivalent to the maximum
Fourier mode k. = 0.5 hMpc‘l measured for the power spectrum).
The grouping is transitive (if A and B are close, and B and C are
close, then all three are grouped together regardless of the distance
between A and C); as a result, /,,;, needs to be set well below the
mean separation of points (to avoid the entire catalogue collapsing to
one point). A group of haloes is given coordinates equal to the mean
coordinates of its constituent haloes. This process yields a catalogue
of nodes (a collection of grouped and ungrouped haloes); on average
this node catalogue is about one quarter the size of the original halo
catalogue. See Appendix A for evidence that this masking technique
is effective.

2.2.3 Minimum spanning tree statistics

The MST is constructed, in 3D comoving coordinates in redshift
space, from the node catalogue. The distribution function N(x) of the
MST statistics is measured, where x is the degree d, edge length /,
branch length b, or branch shape s (Naidoo et al. 2020). An edge is a
line in the MST graph, the degree is the number of edges attached to
each node, and a branch is a chain of edges connected continuously
by nodes of degree d = 2. For the branches we measure their length b
(i.e. the sum of the lengths of member edges) and their shape s (i.e. the
square root of one minus the ratio between the straight line distance
between branch ends and the branch length — with this definition,
straighter branches have s ~ 0 while larger values indicate more
curved branches). Furthermore, to ensure N(x) can be described by a
Gaussian distribution we remove the tails of the distribution function.
‘We measure the mean of the cumulative distribution function (CDF)
of N(x) for the fiducial simulations and then measure the MST N(x)
only in the region where 0.05 < CDF < 0.95 (with the exception of d
where we include N(d) in the range 1 < d < 4). The publicly available
PYTHON package MISTREE (Naidoo 2019) was used to construct and
measure the statistics of the MST.

2.3 Quijote simulations

The Quijote simulations (Villaescusa-Navarro et al. 2020) are a large
set of N-body simulations designed for quantifying the information
content of cosmological observables and for training ML algorithms.
The simulations are constructed in boxes of length Ly, = 117! Gpc,
using 5123 dark matter particles and 512° neutrino particles (for
simulations with massive neutrinos). A detailed table of the pa-
rameters used for the Quijote simulations can be found in table
1 of Villaescusa-Navarro et al. (2020). The simulations are based
on a fiducial ACDM cosmology (based on Planck Collaboration
VI 2020) with matter density 2, = 0.3175, baryon density 2, =
0.049, Hubble constant &7 = 0.6711, primordial spectral tilt n, =
0.9624, the root mean square of the linear power spectrum at
spheres of radius 8 2~! Mpc og = 0.834, sum of neutrino masses
M, = 0eV, and dark energy equation of state w = —1. The power
spectrum multipoles and MST are computed on haloes with masses
larger than 3.2 x 10" h~! My. For each parameter, we determine
the dependence with respect to that parameter using 500 simulations
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Figure 1. Correlation matrices (left) of the MST statistics and (right) and power spectrum multipoles. The components of the MST statistics (the degree d, edge
length /, branch length b, and branch shape s) are labelled and divided by dashed grey lines on the left. The matrix has significant non-diagonal features. The
most striking is the correlation between the edge length / and branch length b where there are several fading lines of positive correlation. These originate from
correlations between branches formed from two edges, three edges and so on, becoming fainter for branches formed from more edges. For the degree d and [
there is virtually no correlation while there are correlations between d and the two branch statistics length b and shape s. These correlations appear to be strongly
tied to d = 2 presumably due to the definition for branches requiring intermediate nodes with degree d = 2. Lastly there is a weak correlation between b and s
and negligible correlations between other MST statistics (i.e. between [ and d and between / and s). The power spectrum multipoles and components of the MST
statistic are divided by a dashed grey lines on the right. The correlation matrix for the power spectrum multipoles is shown to be strongest diagonally, with the
most striking feature being the positive correlations between multipoles. Correlations between the power spectrum multipoles and the MST are negligible with
only a small inverse correlation seen. This is consistent with expectations since smaller edge lengths should correspond to larger Fourier modes.

in which only that parameter deviates from its fiducial value (while
maintaining zero curvature, i.e. a shiftin Q,, = Q, =1 — Q). To
construct the covariance matrix we use 15000 fiducial simulations
constructed with the fiducial cosmology. See Table 1 for a summary.
Simulations with massive neutrinos (M7, M ", and M*") are
produced from simulations with initial conditions following first-
order perturbation theory (i.e. the Zel’dovich approximation — ZA)
instead of second-order Lagrangian perturbation theory (2LPT)
since the 2LPT approach is not implemented for massive neutrino
cosmologies (for further details, see Villaescusa-Navarro et al. 2020).
Therefore, to remove any potential systematic bias this discrepancy
may present we will be using the Fiducial ZA simulations for
the neutrino partial derivative estimates, rather than the Fiducial
simulations, since these simulations are also produced with ZA initial
conditions.

3 RESULTS

This section discusses the following results: (1) the covariance matrix
for the MST statistics and the internal correlations and correlations
with the power spectrum, (2) the partial derivatives of the power spec-
trum and MST statistics, and (3) parameter constraints fora v ACDM
model obtained from individual and combined measurements of the
MST and power spectrum.

3.1 Covariance matrix

The covariance matrix is constructed from equation (2) using data
vectors measured from 15 000 fiducial simulations. Fig. 1 shows the
correlation matrix for the MST on the left and the correlation matrix
for the combined data vector of the power spectrum multipoles
and MST statistics on the right. Unlike the correlation matrix for

the power spectrum, the correlation matrix for the MST contains
several non-diagonal features. One of the most striking features
is the correlation between the edge length / and branch length b
which show ‘waves’ of positive correlations between short edges and
short branches followed by negative correlations and then positive
correlation for longer edges and branches. These positive correlations
stem from the correlations between branches formed from two edges,
three edges, and so on. For branches formed from more edges, these
correlations become weaker as branches formed from more than
three edges are rare. Other correlations in the MST statistics appear
to stem from branches, which by definition have intermediate nodes
with degree d = 2. As aresult we see strong correlations between the
degree and branch length. The correlation between branch length and
shape is weak but indicates that longer branches are more curved than
short ones. The correlations between the power spectrum multipoles
and MST are weak so adding the MST to P(k) is beneficial. This is
clearest for the monopole and edge lengths which show an inverse
correlation between edges and Fourier modes; this is completely
consistent with the inverse relation between Fourier space and real
space. Furthermore the large-scale modes of the monopole (the first
half of the data vector) show positive correlations with longer edges.
This indicates that most of the large-scale clustering information is
stored in the large edges of the MST.

3.2 Fisher matrix and partial derivatives

The Fisher matrix is calculated from equation (1) from the data vector
S. In this section, the data vectors are either the power spectrum
monopole and quadrupole P, _ ¢ (k) or combinations of the MST
statistics: degree d, edge length [, branch length b, and branch
shape s. To calculate the Fisher matrix, we require measurements
of the derivatives 9.5/d6; these are estimated using simulations

MNRAS 513, 3596-3609 (2022)

€202 YdJel\ 10 uo Jesn uopuo] abs8jj09 Alisiaaiun Agq 8205 /59/96SE/S/E | S/8101e/SeIuW /W02 dno olwapede//:sdiy Woll papeojumMo(]


art/stac1138_f1.eps

3600

K. Naidoo, E. Massara, and O. Lahav

M, [eV]
o .0
NN oo B

Mmin
[Z2R- Y

Figure 2. Fisher matrix constraints for vACDM parameters from the MST edge and branch length distributions in combination with the distribution of degree
and branch shape in redshift space at z = 0.5. The individual constraints from the edge MST(/) and branch length distributions MST(b) are shown in blue and
purple, respectively. The combined constraint from the edge and branch lengths MST(/, b) is shown with black dashed lines, from the edge, branch length and
degree distributions MST(/, b, s) with green lines, and from the edge, branch length, degree and branch shape distribution MST(d, [, b, s) with red lines and
contours. The contours show that adding the degree does very little to improve the constraints from the edge and branch length distribution while the branch

shape tightens constraints overall.

summarized in Table 1. For each set of simulations (consisting of
500 individual simulations and 15000 simulations for the fiducial
set) the mean and standard deviation of the summary statistics
are obtained. The derivatives for the parameters are then obtained
using equation (3), with the exception of neutrino mass where three
estimators are used (equations 4, 5, and 6). In real data we would
not be able to place a clean cut on the galaxy masses; instead,
these limits would be imposed by survey designs and magnitude
limits. To account for this in our analysis, we follow Hahn et al.
(2020) by adding the nuisance parameter M,,;, which characterizes
the dependence on the minimum halo mass which is calculated by
running the statistics on the fiducial suite with My, = 3.1 and My, =
3.3 x10"® h~! M. However, unlike in the study by Hahn et al. (2020)
we do not include a linear bias nuisance parameter (as it is not clear
how a linear bias would affect the MST statistics and including
it solely in the power spectrum measurements would weaken the
constraints in the power spectrum but leave the MST unaffected, in

MNRAS 513, 3596-3609 (2022)

effect biasing our results in favour of the MST). To avoid this, we
use only the minimum halo mass as a nuisance parameter in this
study.

The more accurate estimators for the partial derivatives are those
for which the errors are given to higher orders of d6. For most param-
eters, the derivative 9.5/00 is determined by the symmetric derivative
estimator equation (3) which has errors of order O(d6?), while the
most accurate estimator for .S/dM, is given by equation (6) which
has errors of order O(d6?). However, in order for the estimators
to be consistent for all parameters the appropriate estimator to use
for M, is equation (5) which has errors of order O(d6?). Previous
studies (Hahn et al. 2020; Uhlemann et al. 2020; Villaescusa-Navarro
et al. 2020) have used equation (6) (while Massara et al. 2021 use
equation 5), so to facilitate comparisons to these studies the results
obtained using this estimator are additionally provided in Table C2.
However, throughout this paper we will refer to results obtained using
equation (5) with d M, = 0.2eV. The partial derivatives for the data
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Figure 3. Fisher matrix constraints on vACDM parameters from the power spectrum and MST separately and combined in redshift space at z = 0.5. The
constraints from the power spectrum multipoles Py — ¢, 2(k) are shown with blue dashed lines, from the four MST statistics MST(d, [, b, s) with red dotted lines,
and from the combination of the power spectrum multipoles and MST Py — ¢, 2(k) + MST(d, [, b, s) with purple lines and contours. Constraints for og and Qy,
are dominated by the power spectrum multipoles while 4, ng, Qp, and M,, are dominated by the MST. Significant degeneracies are broken when combined,
leading to much tighter constraints (in comparison to the individual constraints from the power spectrum multipoles) on £, ng, Qp,, and 2y (which improve by a
factor of ~2); o'g (which improves by a factor of ~3.89) and M,, (which improves by a factor of ~4.35).

vectors (as a function of the vACDM parameters 2y, 2, &, ng, 03,
and M, ) are shown in Appendix B.

We test for convergence of the partial derivatives by estimating the
Fisher matrix from a fraction of the total simulations available. For
the power spectrum, we find that partial derivatives are converged
for all M, derivative estimates and for all parameters while for the
MST we find that equation (5) with d M,, = 0.2 eV provides the most
reliable converged estimates at all redshifts (see Fig. BS) and quote
results from this estimator unless stated otherwise.

3.3 MST bin size dependence

We test the sensitivity of the MST distribution functions to the bin
size. In real data, the size of bins would be dictated by numerical
constraints, i.e. the number of mocks used to obtain the covariance
matrices and the sample size. Since the suite used to estimate the
covariance matrix is large, we do not need to keep the data vector

short and therefore can test the sensitivity to the MST distribution
function’s bin size. To this end, we use three binning strategies for
the distribution functions of [, b, and s, with Ny;,; = 200, 100, and
40 bins. The constraints from the different binning strategies are
described and discussed in the following sections (in particular, see
Fig. 4).

3.4 Sensitivity to neutrinos and ACDM

In this section, the forecast constraints (derived from Fisher matrices)
for parameters of a v ACDM universe are obtained and discussed.

3.4.1 Constraints from the minimum spanning tree

In Fig. 2, the individual and combined constraints from the edge
length [, branch length b, branch shape s, and degree d distributions
are shown using /, b, and s with Ny;,s = 200. The edge and branch
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Figure 4. The 1D parameter constraints from the MST statistics individually and in combination with the power spectrum multipoles (measured at redshift z =
0.5). From left to right, we show the constraints on the cosmological parameters of the vACDM model: Qn,, 2, A, ng, 03, and M,,. From top to bottom, we
show the constraints for the individual MST statistics: edge length MST(/) and branch length MST(b), then constraints from the combined MST statistics: edge
and branch length MST(/, b), with the addition of branch shape MST(/, b, s) and with the addition of the degree MST(d, [, b, s), and finally in combination with
the power spectrum: first showing the power spectrum multipoles alone Py — ¢, 2(k) (these are marked with blue envelopes for comparison to the other statistics)
and in combination Py — o, 2(k) + MST(d, [, b, s). These are further subdivided for constraints involving the MST with different binning schemes Nyins: 200 bins
are shown with a dark coloured error bar at the top, 100 bins are shown with slightly paler coloured error bars in the middle, and 40 bins are shown with the
palest coloured error bars at the bottom. These results indicate the significance that binning will have on the individual MST constraints; they also show that,
regardless of binning, combining MST statistics with the power spectrum significantly improves constraints on all parameters.

length distributions have constraints that are competitive with each
other, with branch length providing but that in combination are
significantly tighter. In augmenting the constraints first with the
branch shape and then with the degree, we see that much of the
constraining power for the MST is contained in the edge and
branch length distribution; the addition of the branch shape adds
a modest improvement to the overall constraints (~ 25 per cent
for cosmological parameters at z = 0.5) but the addition of the
degree appears to provide a negligible improvement (~ 1 per cent
for cosmological parameters at z = 0.5).

3.4.2 Combined constraints from the minimum spanning tree and
power spectrum

The separate and combined constraints from the MST (using /, b, and
s with Npips = 200) and power spectrum measured at redshift z =
0.5 are shown in Fig. 3 (for the constraints obtained from different
redshifts refer to Table C2). The constraints obtained for 2y, A, n,
and neutrino mass M, are significantly tighter for the MST, while the
power spectrum yields better constraints on 2, and o'g. When the two
are combined, significant degeneracies are broken leading to much
tighter constraints than those obtained using either statistic alone.
For neutrino mass M,,, the combination provides a 1o constraint that
is 4.35x tighter, for €2, that is 1.77x tighter, for €2}, that is 2.06x
tighter, for & that 2.12x tighter, for ng that is 2.09x tighter, and for
o that is 3.82x tighter.

The impact of the MST binning is explored in Fig. 4, where
we display the marginalized constraints for the MST statistics
(individually and for different combinations) at redshift z = 0.5
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in comparison to the power spectrum multipoles with different levels
of binning. Larger bins are associated with poorer constraints but in
each case combining with the power spectrum still leads to significant
improvements in the constraints of all parameters. This highlights the
importance of including the MST in future galaxy redshift surveys
to test and constrain ACDM parameters and to determine the sum of
neutrino mass M, — a key scientific goal of many future surveys.

3.4.3 Sensitivity to the neutrino partial derivative estimator

The partial derivative of the summary statistics as a function of
neutrino mass can be estimated using equations (4), (5), and (6).
Fig. 5 compares the neutrino mass constraints AM, = \/F,;! using
the different estimators for the power spectrum and MST measured
at redshift z = 0.5 (see Table Cl1 for a full summary of the
different estimators for different components and combinations of
the MST statistics at different redshifts). The intrinsic accuracy of the
estimators appear to show that less accurate estimators are associated
with poorer constraints. The most accurate estimators, i.e. estimator
2 and 3 with M, = 0.1eV, are shown to be fairly consistent, with
estimator 3 generally providing tighter constraints. Without prior
knowledge of the true partial derivative it is difficult to know which
estimator better captures the true behaviour. For consistency, we
focus on the results from estimator 2 (with M, = 0.2 eV) which has
the same absolute errors as the estimator used on the other parameters
(equations 3) and has been found to have the best convergence
properties at all redshifts (see Appendix B). Nevertheless as is shown
in Fig. 5 the relative strengths of the constraints from the power
spectrum and MST individually and combined remains, meaning our
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Figure 5. The constraints on neutrino mass from different partial derivative
estimates for the MST and power spectrum measured at redshift z = 0.5
(individually and in combination). The MST statistics are shown with three
binning schemes (Npins = 200, 100, and 40). The constraints are given as a
function of the order of the absolute error on dS/dM,. Estimator 1 is given
by equation (4), Estimator 2 by equation (5), and Estimator 3 by equation (6).
The estimators are indicated by shaded grey lines with the value of M,
used for each estimator labelled. With the exception of the 40 bins data, the
MST consistently outperforms the power spectrum constraints. However,
irrespective of the bin size, significant improvements in the constraints
of neutrino mass are obtained when combining the MST with the power
spectrum.

overall conclusions are insensitive to the neutrino derivative estimator
used.

In all cases, the MST constraints on M, are stronger than ones
obtained from the power spectrum. If more bins are used for the
MST then the combined constraints with the power spectrum are
significantly improved in comparison to the power spectrum alone.

4 CONCLUSION

Using haloes from the Quijote simulations, we calculate the in-
formation content (from the Fisher matrix) of the MST statistics
in a VACDM model. The Quijote simulations are a large suite
of N-body simulations designed to test the information content of
summary statistics and to test AI/ML algorithms. In this paper,
we use a subset of the full suite of simulations (summarized
in Table 1), measuring the power spectrum multipoles and MST
statistics in redshift space on haloes with mass > 3.1 x 10'3 2~ M.
The analysis presented in this paper is based on the Fisher matrix
formalism which considers only second derivatives of the data vector,
rather than a full exploration of the parameter space via for e.g.
MCMC. Fisher matrices are limited in the sense that they place
only lower bounds (the Cramer—Rao bound) on the uncertainties of
cosmological parameters and assume the covariance matrix has no
cosmological parameter dependence; as such analysis on real data is
likely to depart significantly due to non-Gaussianities (see Hawken
et al. 2012; Foroozan, Krolewski & Percival 2021).

From the MST, we measure the distribution of degree d, edge
length [, branch length b, and branch shape s. In Naidoo et al.
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(2020), it was shown that / is the most constraining MST statistic.
However, this previous analysis was based on COLA simulations
of length Ly =250k~ Mpc and limited to the most massive
5000 haloes. Due to the size of the sample, the study saw only
modest improvements of 17 percent on the 1o constraints on €2,
and 12 percent on the 1o constraints on A. By using the Quijote
simulations, we are able to expand this analysis to a wider set of
cosmological parameters (2m, b, h, 15, 0g, and M, compared to
only Ag, Qu, and M,), over a larger volume (Lyox = 1 27" Gpc),
and using a larger catalogue of haloes (of the order of 10°). In
Fig. 2, the constraints from the MST are shown to be dominated by
the distribution of edge and branch lengths, with the degree adding
very little information and the branch shape providing a moderate
improvement overall.

In Fig. 3 and Table C2, the MST and power spectrum constraints
are compared and combined. The power spectrum multipoles provide
much stronger constraints on 2,,, and o'g. On the other hand, the MST
dominates the constraints on M,: at z = 0.5 the power spectrum
multipoles gives AM, = 1eV (1o), the MST gives AM, = 0.25eV
(1o), and the power spectrum multipoles and the MST combined
give AM, = 0.23eV — an improvement of a factor of ~4.35. For
the other parameters we find that combining the two sets of statistics
breaks several degeneracies and thereby improves constraints on #,
ns, Q2n, and 2, by a factor of ~2 and og by a factor of ~3.82
in comparison to the individual power spectrum constraints. We
measure the dependence on the number of bins Ny, showing that
fewer bins will decrease the constraining power but that the inclusion
of the MST will, irrespective of the bin number, significantly improve
constraints on all parameters.

In this paper, we show that adding the MST to the power spectrum
greatly improves constraints for parameters of the v ACDM model.
In particular, constraints on M, are dominated by the MST since
it is significantly more sensitive to the effects of neutrinos on the
distribution of haloes. This appears to come from the sensitivity
of the MST to extra information contained in the higher order
statistics of the cosmic web. Bonnaire et al. (2021) have shown that
filaments in the cosmic web are the most sensitive environment to
neutrino mass. Given the MST propensity for filament detection, we
believe the sensitivity to the neutrino mass is related to the detection
of filamentary structures by the MST. However, only future work
comparing both cosmic web environments from the density field and
MST structures from haloes will be able to determine this for certain.

Future galaxy surveys such as DESI, Euclid, and LSST are
projected to bring the upper limit on neutrino mass below or close
to 0.06 eV (Font-Ribera et al. 2014), the lower limit from neutrino
oscillations (assuming normal hierarchy). As we have illustrated
using halo simulations, the MST can improve by a factor of four the
constraints on neutrino mass with respect to just the power spectrum.
Therefore, we can expect the MST to provide greater constraints from
current and future surveys, possibly enabling this interesting regime
to be probed sooner. These constraints could be further improved by
combining the MST and the power spectrum with other probes such
as the CMB. This demonstrates the importance of measuring more
than just the power spectrum (or two-point statistics) and provides a
powerful argument for making measurements of the MST on current
and future galaxy surveys such as BOSS, eBOSS, and DESI. In
future work, we will look to develop techniques for addressing the
challenges associated with real galaxy survey data; these challenges
include the impact of the survey’s selection function across the sky
(completeness and depth) and as a function of redshift, the incorpora-
tion of galaxy weights, the mitigation of small-scale effects including
the effect of fibre collisions in spectroscopic surveys, the modelling
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of galaxy bias and halo occupation distribution parameters, and the
development of MST emulators or likelihood free techniques for
computing the posterior probability for real data.
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APPENDIX A: MASKING SMALL SCALES
USING GROUPS

Cosmological simulations tend to suffer from inaccuracies at small
scales due to limitations in resolution and complex baryonic effects
which require expensive hydrodynamics simulations. For these
reasons, it is important to be able to remove these troublesome scales
from our analysis. For traditional N-point statistics this is relatively
straightforward as this simply requires placing scale cuts on the data
vector. However, the MST is different as there is no way to mask
small scales once the MST has been constructed; instead, the input
data vector needs to be prepared such that scales are not present when
the MST is constructed. To remove these scales from our analysis,
we implement a grouping scheme where points separated by less
than /,,;, are combined.

In this section, we investigate the effectiveness of masking small
scales by grouping using two Levy—Flight simulations as a proxy
for N-body simulations with accurate and inaccurate small scale
effects (such as baryonic effects). These simulations were chosen
as their clustering properties are relatively simple to control and are
fast to generate. We generate 50 realizations of two Levy—Flight
simulation models: (1) the standard Levy Flight (LF) and (2) the
Adjusted Levy Flight (ALF; see Naidoo et al. 2020, for more details).
The simulations are generated using MISTREE (Naidoo 2019). For
each simulation 50000 points are generated in a box of length 75
with parameters 7y = 0.24 and o = 1.6 for the LF simulations and
parameters #p = 0.325, 7, = 0.015, 0 =15, =045, and y = 1.3
for the ALF.

The two-point correlation function (2PCF) and MST statistics
are measured for both simulations and compared in Fig. Al.
The simulations are designed to exhibit very different small-scale
properties but identical large-scale correlation functions.

All points in the simulations with separations less than 0.4 are
grouped and replaced by a single point with the average position of
the group members. A new catalogue of points is now constructed
with these grouped points and any remaining ungrouped points. For
both simulations this results in a catalogue of roughly ~13 000 points.
To ensure differences between the statistics are not due to slight
differences in density, we sample at random 12 000 points from each
catalogue and measure the 2PCF and MST statistics. In Fig. A1, the
statistics before and after grouping are shown. Prior to grouping the
simulations exhibit different small-scale clustering properties, which
is seen by differences in the 2PCF and MST statistics, while after
grouping all the statistics are consistent with each other. This shows
that grouping effectively masks the small-scale differences between
the simulations.
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Figure Al. The effect of grouping Levy Flight simulations are shown for the two-point correlation function (2PCF) and MST statistics. Two sets of Levy
Flight simulations are used: the standard Levy Flight (LF) simulations are shown in blue and the adjusted Levy Flight (ALF) simulations are shown in red.
They exhibit almost identical large scale 2PCF &(r) by design but have very different small-scale correlation properties. The differences between the ungrouped
simulations are shown in the top subpanels. On the left is the 2PCF and on the right are the four MST statistics degree (d), edge length (/), branch shape (s), and
branch length (b). The differences between the grouped simulations are shown in the bottom subpanels. On the left is the 2PCF and on the right are the four
MST statistics d, I, s, and b. These plots show that grouping provides an effective solution for masking small scales as the small-scale differences between the

simulations do not appear once grouping has been performed.

APPENDIX B: MINIMUM SPANNING TREE
PARTIAL DERIVATIVES

The partial derivative estimates for the MST statistics are shown for
the distribution of degree d in Fig. B1, for the distribution of edges /
in Fig. B2, for the distribution of branches b in Fig. B3, and for the
distribution of branch shapes s in Fig. B4. The derivatives for neutrino
mass are shown for estimator 2 (equation 5) with M, = 0.2eV.
For a fixed MST statistic, the partial derivatives of that statistic
(with respect to the various cosmological parameters) all have similar
shapes. The similarity can be explained if we think about the
construction of the MST as an optimization problem: differences
in parameters will lead to trees with longer (poorly optimized) or
shorter edges (highly optimized). Depending on the outcome, the
MST statistics will to first order be pulled to smaller or larger
values but since there are roughly the same number of points this
change has to be counter balanced with a reduction in the opposite
direction. Although the profiles are similar in their general shape
if we instead look to the relative peaks and troughs with respect to
zero we can see that each parameter behaves slightly differently;
take for example the partial derivatives for edge length with respect
to @, and My, where the troughs for M, is much deeper. The

similarities suggest that the MST statistics data vectors could be
compressed into a few values (this possibility will be investigated in
future work). In any case, the similarities are not a cause for concern
as the interdependencies of these parameters are taken into account
in the Fisher matrix calculation and would appear as covariances.
To test whether the partial derivatives have converged we compute
the Fisher matrix from a subset of the total simulations available.
In Fig. BS, we show the convergence of the MST partial derivatices
by showing whether the individual components of the Fisher matrix
are converging to their final values. Convergence is loosely defined
to be Fisher matrix components which have settled to within
5 per cent of their final value when Ngeiy, (the number of data vectors
used to compute partial derivatives) is greater than 1300. We find
that estimator 2 (equation 5) with M, = 0.2eV provides the best
convergence properties at all redshifts. Estimator 2 (equation 5) with
M, = 0.1eV and Estimator 3 (equation 6) while being more accurate
estimators tend to show poorer convergence at redshift z = 0 where
the constraining power for M, is generally worse. This is likely the
combination of two factors: (1) at low redshifts the halo catalogues
are larger meaning more groupings take place resulting in some loss
of information due to percolation and (2) gravity infall scrambles
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Figure B1. Derivatives for the MST degree d are shown for the six v ACDM parameters (4, ng, Qp, 2m, 08, and M) in redshift space and an additional nuisance
parameter M, . The sensitivity to each parameter can be assessed by the significance of deviations away from dN(d)/96 = 0 (dotted black line).
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Figure B2. Derivatives for the MST edge length / are shown for the six vACDM parameters (4, ng, Qp, 2m, 08, and M,) in redshift space and an additional
nuisance parameter M, . The sensitivity to each parameter can be assessed by the significance of deviations away from dN(/)/960 = 0 (dotted black line). The
derivatives are shown for three binning schemes (Npins): 200 (blue), 100 (orange), and 40 (green).

the effect of neutrinos free-streaming making their effect harder to
detect. We believe the former is the more important feature but this
will need to be investigated in later work to understand how to limit
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the effects of percolation on the MST, especially for dealing with
scenarios where /n,;, is larger than the mean separation between
haloes.
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Figure B3. Derivatives for the MST branch length b are shown for the six vACDM parameters (4, ng, Qp, 2m, 03, and M) in redshift space and an additional

nuisance parameter M, . The sensitivity to each parameter can be assessed by the significance of deviations away from dN(b)/36 = 0 (dotted black line). The
derivatives are shown for three binning schemes (Npins): 200 (blue), 100 (orange), and 40 (green).
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Figure B4. Derivatives for the MST branch shape s are shown for the six vACDM parameters (4, ns, Qb, Qm, 03, and M,) in redshift space and an additional
nuisance parameter My . The sensitivity to each parameter can be assessed by the significance of deviations away from dN(s)/d6 = 0 (dotted black line). The

derivatives are shown for three binning schemes (Npins): 200 (blue), 100 (orange), and 40 (green).
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Figure BS. Convergence of the MST Fisher matrix elements as a function of
the number of data vectors used for the derivative estimates. The x-axis shows
the number of data vectors used to compute the partial derivatives (Ngeriy,) of
the MST statistics at redshift z = 0.5 (similar results are obtained for z = 0
and z = 1). On the y-axis the components of the Fisher matrix are shown.
The grey bands show 10 per cent (light) and 5 per cent (dark) convergence
from the Fisher matrix values after all 1500 derivative estimates are used. The
full lines show the convergence for MST statistics with Npipns = 200, dashed
lines with Npins = 100, and dash—dotted lines with Npi,s = 40. For most of
these statistics convergence is reached relatively quickly with the exception
of ©p, and M, whose effects are generally more subtle. In both cases, we
show convergence within 5 per cent is achieved for Ngeriy, > 1300.
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APPENDIX C: FISHER MATRIX CONSTRAINTS
FROM THE MST

Additional constraints from the MST and power spectrum multipoles
are presented in this section. In addition to the measurements made in
the paper at redshift z = 0.5, we also make measurements at redshift
z = 0 and z = 1, and finally combine the analysis over the three
redshifts.

In Table C1, we compare the constraints of the MST and power
spectrum multipoles for the different neutrino mass derivative esti-
mates presented in this paper.

In Table C2, we compare the constraints of the MST and power
spectrum multipoles for the six v ACDM parameters and the nuisance
minimum halo mass parameter My .
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Table C1. Constraints on M, using different estimators for d.5/90 M, at z = 0: estimator 1 (equation 4) using M, = 0.1, 0.2,
and 0.4 eV, estimator 2 (equation 5) using M, = 0.1 and 0.2 eV, and estimator 3 (equation 6) using M, = 0.1eV. Typically
estimator 3 has been used in previous studies but in this paper we use estimator 2 with M, = 0.2¢eV since the accuracy of
this estimator is consistent with equation (4) used for the other parameters. All the estimators in redshift space show tighter
constraints for the MST than the power spectrum. Furthermore, when they are combined the constraints appear to be dominated

by the MST.

Statistics Redshift Est. 1 (equation 4) Est. 2 (equation 5) Est. 3 (equation 6)
0.1eV 0.2eV 0.4eV 0.1eV 0.2eV 0.1eV

MST() 0.5 0.5 1.0 1.8 0.29 0.6 0.22

MST(b) 0.5 0.45 0.7 1.4 0.26 0.38 0.2

MST(l, b) 0.5 0.33 0.56 1.1 0.19 0.31 0.15

MST(, b, s) 0.5 0.23 0.46 0.79 0.13 0.25 0.099

MST(d, [, b, s) 0.5 0.23 0.45 0.76 0.13 0.25 0.099

Py —o,2(k) 0.5 0.82 1.6 1.4 0.44 1.0 0.33

Py—0,2(k) + MST(d, [, b, 5) 0.5 0.21 0.38 0.44 0.12 0.23 0.093

Table C2. Separate and combined constraints for parameters from the vACDM model determined from measurements of the power spectrum
(multipoles in redshift space) and MST at redshift z = 0, 0.5, and 1. The constraints are obtained using equation (3) for all of the parameters except
M, which are obtained using equation (5) with M, = 0.2eV. For the standard ACDM parameters we obtain competitive constraints from the MST
at all redshifts, with the exception of 2, and o'g where the power spectrum dominates; however, for M,, the MST dominates. When measurements
from the different redshifts are combined we find the MST is competitive for all parameters, including €2, and o3, but still dominates constraints

onM,.

Statistics Redshift  Npins AQm AQy Ah Ang Aog AM, [eV] AMpin
MST() 0 1 0.076 0.018 0.13 0.12 0.14 0.53 1.2
MST(b) 0 1 0.062 0.015 0.14 0.14 0.098 0.45 1.4
MST(, b) 0 1 0.048 0.011 0.089 0.091 0.079 0.33 0.75
MST(, b, s) 0 1 0.036 0.0083 0.073 0.067 0.067 0.24 0.59
MST(, , b, 5) 0 1 0.036 0.0083 0.073 0.065 0.067 0.23 0.55
Py —o,2(k) 0 0.029 0.013 0.13 0.079 0.061 1.1 0.22
Py —o,2(k) + MST(d, [, b, s5) 0 1 0.015 0.0059 0.054 0.036 0.016 0.22 0.14
Py —o,2(k) +MST(d, L, b, 5) 0 2 0.016 0.0074 0.069 0.041 0.019 0.29 0.14
Py —o,2(k) + MST(d, [, b, s) 0 5 0.017 0.0099 0.093 0.046 0.023 0.37 0.15
MST(l) 0.5 1 0.062 0.024 0.19 0.15 0.14 0.6 1.2
MST(b) 0.5 1 0.065 0.016 0.15 0.12 0.099 0.38 1.2
MST(l, b) 0.5 1 0.042 0.013 0.11 0.091 0.079 0.31 0.73
MST(, b, s) 0.5 1 0.035 0.0092 0.089 0.068 0.062 0.25 0.59
MST(, L, b, s) 0.5 1 0.035 0.0092 0.088 0.067 0.061 0.25 0.58
Py —9,2(k) 0.5 0.023 0.014 0.14 0.09 0.065 1.0 0.2
Py —o,2(k) +MST(d, L, b, 5) 0.5 1 0.013 0.0068 0.066 0.043 0.017 0.23 0.13
Py —o,2(k) + MST(d, [, b, s) 0.5 2 0.014 0.0086 0.084 0.051 0.022 0.33 0.14
Py —o,2(k) +MST(d, L, b, 5) 0.5 5 0.016 0.01 0.1 0.058 0.03 0.46 0.14
MST() 1 1 0.055 0.018 0.17 0.12 0.097 0.52 1.2
MST(b) 1 1 0.066 0.016 0.16 0.11 0.089 0.38 1.1
MST(, b) 1 1 0.04 0.011 0.11 0.079 0.063 0.3 0.77
MST(, b, s) 1 1 0.034 0.0088 0.086 0.064 0.051 0.24 0.62
MST, L, b, s) 1 1 0.034 0.0087 0.08 0.063 0.051 0.24 0.58
Py, 2k) 1 0.024 0.016 0.18 0.14 0.065 0.88 0.25
Py —o,2(k) + MST(d, L, b, s5) 1 1 0.014 0.0063 0.057 0.046 0.02 0.23 0.12
Py —o,2(k) +MST(d, L, b, 5) 1 2 0.016 0.0078 0.073 0.054 0.025 0.32 0.13
Py —o,2(k) + MST(d, L, b, s5) 1 5 0.017 0.01 0.098 0.069 0.033 0.43 0.14
MST(l) All 1 0.034 0.01 0.083 0.064 0.035 0.29 0.46
MST(b) All 1 0.031 0.0083 0.075 0.061 0.033 0.21 0.45
MST(l, b) All 1 0.023 0.0065 0.055 0.045 0.022 0.17 0.32
MST(, b, s) All 1 0.019 0.0049 0.043 0.035 0.019 0.14 0.26
MST(, L, b, s) All 1 0.019 0.0049 0.043 0.035 0.019 0.14 0.26
Py —o,2(k) All 0.014 0.0083 0.07 0.048 0.026 0.37 0.15
Py o, 2(k) +MST(d, L, b, 5) All 1 0.0081 0.0039 0.033 0.025 0.01 0.13 0.071
Py —o,2(k) + MST(d, L, b, s5) All 2 0.0091 0.0049 0.041 0.029 0.013 0.17 0.073
Py o, 2(k) +MST(d, L, b, 5) All 5 0.01 0.0062 0.052 0.033 0.015 0.21 0.075

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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