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ABSTRACT  

This study examines the instrument selection strategies currently employed 

throughout the type-2 diabetes and HbA1c MR literature. We then argue for a more 

integrated and thorough approach, providing a framework to do this in the context of 

HbA1c and diabetes. We conducted a literature search for Mendelian randomisation 

studies that have instrumented diabetes and/or HbA1c. We also used data from the 

UK Biobank (N=349,326) to calculate instrument strength metrics that are key in MR 

studies (the F-statistic for average strength and R2 for total strength) with two 

different methods (‘Individual-level data regression’ and Cragg-Donald formula). We 

used a 157-SNP instrument for diabetes and a 51-SNP instrument (as well as 

partitioned into glycaemic and erythrocytic) for HbA1c. Our literature search yielded 

48 studies for diabetes and 22 for HbA1c. Our UKB empirical examples showed that 

irrespective of, the method used to calculate metrics of strength and whether the 

instrument was the main one or was partitioned by function, the HbA1c genetic 

instrument is strong in terms of both average and total strength. For diabetes, a 157-

SNP instrument was shown to have good average and total strength, but these were 

both substantially smaller than those of the HbA1c instrument. We provide a careful 

set of five recommendations to researchers who wish to genetically instrument type-

2 diabetes and/or HbA1c. MR studies of glycaemia should take a more integrated 

approach when selecting genetic instruments and we give specific guidance on how 

to do this.  

 

Keywords: Mendelian randomisation, diabetes, genetic variants, instrument strength, 

UK Biobank, HbA1c.  
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RESEARCH IN CONTEXT 

What is already known about this subject? 

• Mendelian randomisation studies of glycaemia have become particularly 

popular in recent years. 

• Genetic instrument selection strategies are often suboptimal and poorly 

reported in studies seeking to understand causality of HbA1c/diabetes and 

important outcomes. 

What is the key question? 

• What strategies are currently employed in glycaemic MR studies when it 

comes to genetic instrument selection? 

What are the new findings? 

• Far more MR studies instrument diabetes, as opposed to HbA1c, as revealed 

by our literature search. 

• However, our empirical examples in the UK Biobank showed that an HbA1c 

genetic instrument is likely superior to a diabetes one in terms of total and 

average strength, even when partitioned by biological function.  

• Importantly, though, the diabetes genetic instrument performed well and we 

are aware that in certain scenarios researchers prefer to instrument a binary 

exposure, such as diabetes.  

How might this impact on clinical practice in the foreseeable future? 

• MR studies to date may have had discrepant findings, due to a suboptimal 

instrument selection approach and our careful set of guidelines provided here 

will help prevent this in future studies. 
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INTRODUCTION  

Mendelian randomisation (MR) has markedly enhanced our ability to determine true 

causal nature of associations between states of diabetes (1–45) /hyperglycaemia 

(46–59) and presumed consequences. MR uses genetic variants as unconfounded 

instruments for the exposure (60). As MR has come of age in recent years alongside 

the advent of large-scale genome-wide association studies (GWAS), numerous 

genetic instruments for glycaemic traits have become available (61–65). Choosing 

the most appropriate instrument is one of the most important decisions when 

designing an MR study(66) as an ill-informed choice may lead to misleading or 

conflicting findings. 

 

Broadly, criteria for instrument selection (which are intrinsically linked to the core 

assumptions underlying MR - Fig. 1) include: i) ensuring that there is no sample 

overlap between the samples used in the discovery genome-wide association study 

(GWAS) and the data under analysis, as this helps minimise bias arising from 

“winner’s curse” and the use of weak instruments - (67); ii) selecting independent 

variants from the latest and largest GWAS for the exposure (at a threshold of 

p<5*10-8); iii) choosing variants based on the amount of variance explained in the 

exposure (R2); iv) selecting variants on the basis of biology and function; and v) 

deciding whether variants for a continuous, or  a binary exposure are more 

appropriate. However, often prioritised in glycaemic MR studies are i), ii) and 

perhaps iii), but the remainder are not always taken into consideration. In relation to 

ii, we argue that bigger is not always better, as the greater the number of genetic 

variants, the more we increase our chances of including pleiotropic variants. This 

directly violates a core MR assumption (no horizontal pleiotropy: that variants for the 
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exposure should not be associated with common confounders or directly with the 

outcome under study but should only associate with the outcome via the exposure 

being instrumented)(60). A balance is needed between including sufficient genetic 

variants to enable well-powered analyses, but not so many that pleiotropy is 

inevitable. 

 

Currently few, if any journals, demand a clear explanation for choice of genetic 

instrument. While some determinants of choice, such as overlap with genetic 

instrument derivation GWAS, variant function and whether the trait is continuous or 

binary, may be gleaned from the manuscript without being explicit, key statistical 

characteristics, specifically R2 and F, which may make a major contribution to the 

power of an MR analysis, are not. Here the R2 is the amount of variance in the 

exposure that is accounted for by the selected genetic variants and generally when it 

comes to the R2, the larger the better, as this will directly contribute to the power of 

an MR analysis. The F-statistic provides information about the average strength of a 

genetic variant for the exposure of interest. An F of >10 indicates that substantial 

weak instrument bias is unlikely (1/F of the bias from the observational estimate) 

(68). Weak instrument bias is of concern in MR studies, as weak instruments can 

bias MR estimates towards the confounded observational estimate (68) and thus, 

results are not as robust as with a strong instrument.  

 

Therefore, our overall objectives were to understand instrument selection 

approaches currently used in MR studies of diabetes and HbA1c, to present why we 

need integrated approaches (described below) for this and provide a framework for 

how this can be done in practical terms. Our specific aims were: 
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1. Conduct a literature search for MR studies that have instrumented type-2 

diabetes and/or HbA1c to understand which exposure is instrumented more 

frequently and whether they report metrics of instrument strength.  

2. Argue for the use of integrated approaches for the selection of HbA1c and 

type-2 diabetes genetic instruments, with recent examples from the MR 

literature. 

3. Use empirical examples to compare the total and average strength of an 

HbA1c genetic instrument (including partitioned by function) with a type-2 

diabetes instrument to show that an HbA1c instrument may be superior.  

4. Provide an overall framework for how to best select instruments for HbA1c and 

type-2 diabetes in an MR setting, considering 1 and 2.   

 

MAKING THE CASE FOR INTEGRATED APPROACHES WHEN SELECTING 

HbA1c AND TYPE-2 DIABETES INSTRUMENTS FOR USE IN MR STUDIES  

Here we highlight recent examples from the MR literature which have used HbA1c 

and/or diabetes genetic variants in MR studies, in what we are naming “an integrated 

approach”. An integrated approach to genetic instrument selection is one that 

considers factors which are sometimes overlooked in MR studies of glycaemic traits. 

These include: the use of novel approaches, such as for example that of Burgess 

and colleagues(57) described here; more careful consideration of which exposure 

GWAS is used; where possible prioritising instrumentation of a continuous rather 

than a binary exposure; and finally, ensuring that both the variance explained (R2) 

and measures of instrument strength (F-statistic) are always calculated and 

presented.  
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Example A. Published MR study of glycaemia and coronary heart disease using an 

integrated approach to HbA1c genetic instrument selection  

A recent MR study by Burgess and colleagues (57) used HbA1c genetic variants to 

investigate associations between genetically-instrumented glycaemic status and 

incident coronary heart disease. The authors used a novel approach to genetic 

instrument selection: they took 40 independent HbA1c SNPs based on their 

associations with diabetes at genome-wide significance from a recent GWAS (64) 

and their association with HbA1c in the 2017 MAGIC GWAS by Wheeler et al.(61). 

They then calculated a weighted allele score for each individual in their data (UK 

Biobank) whereby they multiplied each diabetes risk-increasing allele dosage by the 

SNP’s HbA1c beta coefficient from the MAGIC GWAS. By doing so, the authors 

ensured that their allele score reflected average blood glucose levels, as opposed to 

only HbA1c or risk of diabetes. This also relates to our earlier point about selecting 

instruments based on biological function. Corresponding metrics for their instrument 

were F=144.5 and R2=0.018, indicating that although they had fewer variants, this 

was a strong instrument, both in terms of total (R2) and average strength (F-statistic) 

and thus, carried a low risk of weak instrument bias.  

 

Example B. Published MR study of glycaemia and cognitive/brain health:  

As mentioned earlier, an assumption that is often made when approaching genetic 

instrument selection in MR studies is that ‘bigger is better’. Therefore, researchers 

are likely to take as many SNPs (genome-wide significant and independent) as 

possible from the largest and latest GWAS. However, our own recently published 

MR study shows that this is not necessarily the case(69). We instrumented diabetes 

using both a 157- and 77-SNP genetic instrument, as we needed to try to mitigate 
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issues of sample overlap between the GWAS for the exposure and the data under 

study (both UKB). Therefore, we took the 157 diabetes SNPs included in our 

instrument and looked them up in an older diabetes GWAS from 2014 (70). We 

found 77 of the diabetes SNPs (reduced number could be due to differences in 

coverage of imputation panels, for example) and observed that although this was an 

older GWAS in a different and smaller sample, the log(betas) for each SNP were 

comparable, even though most of the variants did not reach conventional genome-

wide significance (p<5*10-8). When we calculated the average strength (F-statistic) of 

our 77-SNP instrument and compared this with the 157-SNP F-statistic they were 31 

and 27, respectively. This indicates that an instrument with more genetic variants is 

not necessarily better in terms of average strength and the greater the number of 

variants, the greater the likelihood of including pleiotropic variants.    

 

That a greater number of SNPs is not always better is also supported by recent MR 

studies that have instrumented body mass index (BMI)(71). The authors used an 

‘older’ instrument containing 96 BMI SNPs performs well and therefore, it is perhaps 

unnecessary to always use an instrument with hundreds of SNPs. Larsson and 

colleagues showed that this BMI instrument explained 1.6% of the variance in BMI 

and had an F-statistic of 61 (71), while another recent MR study that instrumented 

BMI to understand its association with chronic kidney disease (CKD) used a 773-

SNP instrument, which explained ~6% of the variance in BMI but only had an F-

statistic of 23.6 (72). It is important to note that when selecting a genetic instrument 

for an MR study we need to balance these metrics against one another. This is 

because an instrument with more genetic variants has a larger R2 (total strength) 

and more power but is also more likely to include pleiotropic variants which could 
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lead to violation of a core MR assumption. An instrument with a larger R2 usually has 

a lower F-statistic (average strength) which, if <10 will carry a greater risk of weak 

instrument bias.  

 

METHODS  
 

Literature search for Mendelian randomisation studies that instrument type-2 

diabetes and/or HbA1c 

We were interested in how many studies have instrumented HbA1c and type-2 

diabetes to date, whether there is a preference for one over the other and whether 

they report metrics of instrument strength. Thus, we conducted a literature review in 

PubMed up until March 2021 (for details of our search terms and strategy see 

Supplemental Material S1) of MR studies that instrumented these exposures. We 

excluded anything that was not a research article, i.e., conference abstracts, letters, 

editorials, reviews, opinion pieces and commentaries. Studies that evidently did not 

instrument HbA1c or type-2 diabetes were not included. Supplementary Material 

Tables 1 and 2 list all the studies for diabetes and HbA1c, respectively, that were 

included.  

 

Empirical examples in UK Biobank (UKB): Calculation of total (R2) and average 

strength (F-statistic) metrics for HbA1c and type-2 diabetes instruments 

The aim of these empirical examples was to show the reader that, a) calculating (R2 

and) F-statistic metrics as part of an MR study is important to understand both the 

total and average strength of the instrument of choice and b) irrespective of whether 

individual- or summary-level data are used for an MR study, options for obtaining 

these metrics are available. We chose two approaches as there has not been any 
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quantitative comparison of how they perform for glycaemic instruments when 

considering both the R2 and F-statistic. These methods are: ‘Individual-level data 

regression’ and Cragg-Donald F-statistic.  

 

Sample 
 
The UKB is a cohort of ~500,000 adults recruited across the UK general population, 

aged 40-69 years at baseline (2006-2010) for which more details are published 

elsewhere (73). For the empirical examples in the ‘Individual-level data regression’ 

and the Cragg-Donald method we used individual-level data from 349,326 UKB 

participants of white European ancestry, who had complete genotype (quality-

controlled) and phenotype data (type-2 diabetes and HbA1c). Details of the genotype 

QC can be found in our previous MR paper (69). The UKB received ethical approval 

from the North West Multicentre Research Ethics Committee and obtained informed 

consent from participants. 

 

Statistical analyses 

Selection of type-2 diabetes and HbA1c genetic instruments 

For both phenotypes, we used previously-described genetic instruments (69). Briefly, 

for type-2 diabetes the genetic instrument comprised 157 single nucleotide 

polymorphisms (SNPs) from a 2018 GWAS  of European ancestry (74), while the 51-

SNP HbA1c instrument came from a 2017 trans-ethnic GWAS (61). We filtered SNPs 

on minor allele frequency (>0.01), used LD clumping in PLINK and p<5*10-8 (69). For 

HbA1c we also partitioned the instrument into 16 glycaemic SNPs and 19 erythrocytic 

SNPs (the remainder are unclassified, as per the 2017 GWAS) separately with the 

aim of testing whether the HbA1c instrument is strong in terms of both average 
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(measured by the F-statistic) and total strength (measured by the R2) when using all 

the SNPs, as well as when we partition it by biological function. Similarly to our 

previously published MR study of glycaemia and brain health/cognition/dementia 

outcomes, we suggest that it is worth doing three things when using an HbA1c 

genetic instrument: i) perform MR using all of the HbA1c SNPs, ii) perform MR using 

only the glycaemic SNPs, iii) perform MR using only the erythrocytic SNPs.  

 

Calculation of the F-statistic as a measure of average instrument strength and the R2 

as a measure of total strength  

‘Individual-level data regression approach’: this approach involves fitting a 

multivariable linear regression between SNPs and the exposure (treated as an 

outcome y here), where the relationship between the j-th SNP and the outcome y is 

evaluated while holding all the other SNPs constant. In the regression equation 

below 𝛽0 represents the constant and 𝜀 the residual or error term. As with any 

multivariable regression the output includes the F-statistic and R2, which 

conventionally indicate the model fit and, in this case, we are likely to not be 

concerned with the interpretation of the coefficients of each SNP on the exposure. 

Linear regression can also be used when the exposure is binary (e.g., in this case, 

we used it for genetic liability to diabetes), whereby the coefficients and statistics 

represent associations on an absolute scale rather than a relative risk or odds ratio 

scale. Therefore, here we calculated R2 and the F-statistic for liability to diabetes 

using linear regression. 

The formula is thus:  

𝑦 = ∑ 𝑥𝑗𝛽𝑗

𝐽

𝑗=1

+  𝛽0 + 𝜀  
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Cragg-Donald F-statistic formula: this method uses the Cragg-Donald F-statistic 

formula provided in the paper by Burgess and colleagues (68) which requires a value 

for R2 (previously calculated R2 values were 0.028 and 0.030 for HbA1c, and 0.015 

for diabetes), k (number of SNPs= 51, 275 and 157) and n (349,326). For 

consistency and comparability, we kept the R2, k and n the same as in the 

‘Individual-level data regression’ approach above. Above, we were able to calculate 

the R2, but it is sometimes the case that GWAS authors provide the R2 for the top 

SNPs which could then be used in this formula.  

The Cragg-Donald formula, as outlined in Burgess 2011(68) is: 

𝐹 = (
n − k − 1

k
) (

𝑅2

1 − 𝑅2
) 

 

RESULTS  

Literature search results 

Our searches yielded a total of 657 studies for diabetes, of which 609 did not 

instrument this phenotype and thus 48 remained. For HbA1c, we found a total of 77 

articles, of which 55 did not instrument HbA1c and were excluded, leaving 22 articles. 

From this literature search it was clear that many more studies currently choose to 

instrument type-2 diabetes over HbA1c.  

 

Results of F-statistic (average instrument strength) and R2 (total instrument strength)  

HbA1c 51- and 275- SNP instrument and partitioned glycaemic/erythrocytic 

instruments 

As per Table 1 below, using 51 and 275 HbA1c SNPs in UKB, the ‘Individual-level 

data regression’ and Cragg-Donald formulae gave similar F-statistics (using the 

same R2 values of 2.8% and 3%). The two methods yielded somewhat different F-



 14 

statistics for the 16-SNP glycaemic instrument, but both were substantially larger 

than 10, indicating no cause for concern (Table 1). For the 19-SNP erythrocytic 

instrument the F-statistics obtained using both methods were comparable (Table 1).  

 

Type-2 diabetes 157-SNP instrument in UKB 

Table 1 presents F-statistics and R2 metrics using both methods. Results were 

comparable irrespective of which formula was used (with the same R2 of 1.5%). 

 

Which approach should I use in my study? 

The ‘Individual-level data regression’ approach naturally requires individual-level 

data for the exposure of interest, which are not always available to researchers. The 

Cragg-Donald formula, however, relies on having information about the R2 which 

could come from the published GWAS for the exposure, yet this is not always 

included in GWAS papers. The ‘t-statistic’ approach can be used to calculate the F-

statistic when the R2 is not known if betas or log(betas) and standard errors are 

provided in the summary-level GWAS exposure dataset. Thus, if individual-level data 

are available then the ‘Individual-level data regression’ may be recommended, but if 

this is not the case then the Cragg-Donald formula can be used.  

 

DISCUSSION 

Consideration of total and average instrument strength for HbA1c and type-2 diabetes  

Across our empirical examples in the UK Biobank, the HbA1c instrument 

outperformed that for type 2 diabetes, in terms of total strength (R2) and average 

strength (F-statistic) even though it contained markedly fewer SNPs. Specifically, the 

16-SNP glycaemic instrument had the highest average strength and explained 1% of 
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the variance in HbA1c, which is lower than the 2.8% variance explained for the 51-

SNP instrument, but certainly still appropriate for use in MR. The type-2 diabetes 

157-SNP instrument had a much smaller F-statistic (F<30) in UKB overall and 

explained around 1.5% of the variance in diabetes in UKB. On the other hand, the 

HbA1c erythrocytic instrument also demonstrated that it is more than adequate for 

use in MR studies, with a similar R2 to the glycaemic variants and an F value of just 

under 200. Therefore, whether it is partitioned into glycaemic and erythrocytic or not 

the HbA1c genetic instrument with 51 SNPs is overall, a strong instrument for use in 

MR studies, as indicated by both R2 and F-statistic metrics, even in comparison to 

the newer 275-SNP HbA1c instrument. However, the type-2 diabetes instrument 

appears to be somewhat weaker both in terms of total and average strength, when 

compared to the HbA1c genetic instrument(s).  

 

Potential recommendations for MR studies instrumenting diabetes and/or HbA1c 

First, as demonstrated in our empirical examples and argued above, ‘bigger is not 

always better’ when it comes to selection of instruments for glycaemic MR studies. 

Above we show that in some cases glycaemic instruments with fewer SNPs may be 

stronger and thus, more robust for use in MR when it comes to trying to minimise the 

important issue of ‘weak instrument bias’. This is the case for both HbA1c and 

diabetes, with the HbA1c instrument being superior. We therefore recommend that 

researchers do not assume that the latest and largest GWAS will always yield the 

best genetic instrument for these exposures and that careful consideration should be 

given to which GWAS is selected for the exposure. Genetic variants identified in 

older GWA studies may of course also be pleiotropic. Thus, researchers might 

choose to empirically test this in their MR study by for example, performing a 
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Phenome-Wide Association Study (PheWAS). However, it is important to note that 

instrument selection will likely have to balance choosing an instrument with a larger 

number of genetic variants (greater R2=total strength), but potentially with smaller 

average strength (lower F-statistic). When prioritising the former, it is more likely that 

the instrument will include pleiotropic variants, which violates a core MR assumption. 

If the latter is prioritised it is possible that the total instrument strength may be 

weakened, as fewer variants often yield a larger F-statistic, but with lower variance 

explained in the exposure (R2). However, it is also important to note that more 

variants provide opportunities to run more robust methods, including common 

sensitivity analyses such as the MR-Egger test. For the HbA1c instrument 

exemplified above in the UKB cohort, however, when we partitioned by glycaemic vs. 

erythrocytic variants the R2 remained at 1% for a small number of SNPs. Therefore, 

this example is a demonstration of an integrated approach that considers the total 

and average strength of the instrument, alongside biological function of the variants. 

In addition, another way to avoid pleiotropy is to use an approach such as that of Luo 

and colleagues (75), who adjusted for erythrocytic properties to control for unknown 

sources of pleiotropy. 

 

Second, to reiterate the recommendation made by Boef and colleagues in 2015, and 

the more recent STROBE-MR guidelines (66), authors of MR studies should 

calculate and report the F-statistic for the association between their genetic 

instrument and the exposure of interest in their study. As demonstrated earlier, this 

can be calculated using one of three approaches, depending on whether researchers 

have access to individual-level data or not. If individual-level data are available for 

the exposure of interest, then researchers should likely prioritise calculating the F-
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statistic using the ‘Individual-level data regression’ approach. If individual-level data 

are not accessible, but the exposure GWAS paper provides the R2 for the (exact) 

instrument that is being used, then we recommend using the Cragg-Donald F-

statistic method. An additional method exists, namely the ‘t-statistic’ method, which 

we did not implement here. This is because the ‘t-statistic’ method (F= 𝛽2/SE2) can 

be used when the R2 is not known (i.e., not provided in the paper for the GWAS for 

the exposure). In this equation, 𝛽 represents the coefficient for each SNP’s 

association with the exposure and SE its standard error. Using the ‘t-statistic’ method 

the obtained F-statistic will be more of an approximation because it uses the 

discovery GWAS (usually for the exposure) sample size, rather than that of the 

outcome dataset.  

 

Third, and related to our earlier point, there are some complex issues surrounding 

genetic instrumentation of binary disease exposures such as diabetes (76,77). When 

instrumenting these types of disease exposures, it is important to note that we are 

modelling an underlying continuous measure where liability thresholds are used to 

separate individuals into different categories (76,78) and we should thus, interpret 

MR using binary exposures in terms of genetic liability (78). If MR instrumental 

variable assumptions are met for the underlying continuous exposure which is used 

to categorise individuals, then we assume that we can infer causality using the 

binary exposure (76). However, there may be circumstances in which researchers 

feel the need to genetically instrument diabetes itself as it may prove to be clinically 

informative. We would still recommend that researchers interested in how 

hyperglycaemia might causally impact a range of important health outcomes, take 

advantage of what is evidently a strong HbA1c instrument. This instrument is 
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currently underused, as we found only 22 studies that used it as an exposure in MR 

studies and thus, we recommend that researchers exploit this instrument to a much 

greater extent. Also, the MAGIC Consortium GWA studies do not include UKB 

making this instrument very attractive for use in two-sample MR studies of HbA1c and 

important health outcomes. In terms of instrument metrics, our applied example in 

UKB data clearly showed that the HbA1c instrument completely outperformed the 

diabetes instrument. The HbA1c instrument can also be split by biological function, 

into erythrocytic and glycaemic SNPs, as shown above in our examples. Genetic 

instrumentation of a continuous exposure such as HbA1c also enables the application 

of non-linear MR methods (79), which are also somewhat underused in MR. Using 

non-linear MR methods can help define levels of risk and may also aid in 

understanding that it is both low and high levels of HbA1c that are associated with 

risk. While understanding the causal impact of disease status (e.g., diabetes) on a 

range of outcomes is both interesting and important, it is well established that 

continuous measures are superior and should be used where possible.   

 

Fourth, we recommend that where plausible, researchers may adopt an instrument 

selection approach such as that of Burgess et al(57) which we described earlier 

(Example A) with the aim of illustrating a novel line of thinking to integrate both 

diabetes and HbA1c into an MR study. This study used a method which exploited 

properties of each of these exposures and this yielded an instrument with good 

average strength (F=144) and total strength (2.8% variance explained). An 

alternative form of biological integration is illustrated in the work of Yeung and 

colleagues (80), and Yuan et al (81) who integrated expression of relevant genes 

and HbA1c in their instrument selection process.  
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Fifth, another example of an integrated approach to instrument selection is provided 

in Example B above, in which we sought to bypass the issue of sample overlap in 

our previous MR study. To try to mitigate this we took as many of the newer diabetes 

variants as possible (from a more recent GWAS, but that contained overlap with our 

data under study) and used the effect estimates from the earlier GWAS. The most 

popular approach to instrument selection is to naturally take the most recent, largest 

GWAS (which often includes UKB), due to assumptions that the benefits (e.g., large 

number of genetic variants) outweigh the risks (e.g., sample overlap). However, we 

show that a diabetes instrument with 77 SNPs had a larger F-statistic (average 

strength) indicating that if anything, this instrument carried a lower risk of weak 

instrument bias compared to our original 157-SNP instrument.  

 

While our paper focuses on genetic instrument selection for MR studies of HbA1c 

and/or liability to diabetes, we acknowledge that as a method, MR has limitations 

and is not a panacea for causality. As such, triangulation of findings is crucial 

whereby different study designs are employed to be enable robust causal 

statements. Key limitations of MR include confounding by ancestry, confounding by 

linkage disequilibrium (LD), confounding by horizontal pleiotropy and canalisation 

(82). Confounding by ancestry, or population stratification, refers to the fact that 

allele frequencies of common genetic variants, as well as disease frequencies, may 

differ by population. However, it is now common to adjust for genetic principal 

components in MR studies to correct for residual confounding by population 

structure. Confounding by LD refers to when the selected genetic variant(s) is/are in 

LD (i.e., correlated with) another genetic variant associated with the outcome under 
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study, which may produce a confounded causal estimate. Confounding by horizontal 

pleiotropy is when a single genetic variant influences the outcome under study 

directly, rather than via the exposure being instrumented. However, numerous 

methods have been developed to detect and correct for horizontal pleiotropy (83). 

Canalisation is when an individual develops a compensatory mechanism for 

disruptive genetic or environmental influences, as a response to higher or lower 

levels of a risk factor (e.g., higher, or lower body mass index).   

 

Conclusions 

In summary, we recommend that MR studies of glycaemia take a more integrated 

approach when it comes to selection of genetic instruments. Therefore, careful 

consideration should be given to the following: i) whether novel approaches such as 

those described here from the literature might be used; ii) which GWAS is used to 

select the instrument for the exposure; iii) whether a continuous, as opposed to a 

binary exposure can be instrumented; iv) inclusion of both variance explained 

(R2=total strength of the instrument) and the F-statistic (average strength).  
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Trait Variance explained 

(R2) 

F-statistic Method 

Diabetes (157 SNPs) 0.015 (1.5%)          

0.015 (1.5%) 

27.43                 

27.9 

ILDR                  

CD 

HbA1c main instrument (51-

SNPs).                                            

HbA1c main instrument 

(275 SNPs) 

0.028 (2.8%)           

0.028 (2.8%)           

0.030 (3%)             

0.030 (3%) 

164.6               

164.8              

33.24.              

38.08 

ILDR                  

CD                   

ILDR                   

CD 

HbA1c 16-SNP glycaemic 

instrument 

0.011 (1.1%)           

0.011 (1.1%) 

201.1               

182.3 

ILDR                  

CD 

HbA1c 19-SNP erythrocytic 

instrument 

0.012 (1.2%)             

0.012 (1.2%) 

187.5                

184.3 

ILDR                  

CD 

Note. ILDR=’individual-level data regression’, CD=Cragg-Donald.                         

 

Table 1. Instrument strength metrics in UKB (N=349,326) 
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Fig 1. Graphical summary of key points 
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Fig. 2 Summary of genetic instrument selection criteria in MR studies 

 


