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Abstract
Purpose Minimally invasive treatments for renal carcinoma offer a low rate of complications and quick recovery. One
drawback of the use of computed tomography (CT) for needle guidance is the use of iodinated contrast agents, which require
an increased X-ray dose and can potentially cause adverse reactions. The purpose of this work is to generalise the problem of
synthetic contrast enhancement to allow the generation of multiple phases on non-contrast CT data from a real-world, clinical
dataset without training multiple convolutional neural networks.
Methods A framework for switching between contrast phases by conditioning the network on the phase information is
proposed and comparedwith separately trained networks.We then examine how the degree of supervision affects the generated
contrast by evaluating three established architectures: U-Net (fully supervised), Pix2Pix (adversarial with supervision), and
CycleGAN (fully adversarial).
Results We demonstrate that there is no performance loss when testing the proposed method against separately trained net-
works. Of the training paradigms investigated, the fully adversarial CycleGAN performs the worst, while the fully supervised
U-Net generates more realistic voxel intensities and performed better than Pix2Pix in generating contrast images for use in
a downstream segmentation task. Lastly, two models are shown to generalise to intra-procedural data not seen during the
training process, also enhancing features such as needles and ice balls relevant to interventional radiological procedures.
Conclusion The proposed contrast switching framework is a feasible option for generating multiple contrast phases without
the overhead of training multiple neural networks, while also being robust towards unseen data and enhancing contrast in
features relevant to clinical practice.

Keywords Computed tomography · Contrast enhancement · Convolutional neural network · Interventional radiology ·
Deep learning

Introduction

Minimally invasive, image-guided treatment options for
renal cell carcinoma, such as cryoablation, offer a lower
complication rate and a faster recovery period than radical or
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partial nephrectomy [1] by using needles to cause tumour cell
death via extreme cold [2]. Interventional computed tomog-
raphy (iCT) offers excellent 3-dimensional visualisation of
the relevant anatomy [3], but requires intravenous iodinated
radiocontrast agents (RCAs) to improve soft tissue contrast.
RCAs washout quickly requiring repeat administration and
an increase inX-raydose to the patient [4], can trigger allergic
reactions and cause renal toxicity [5]. Adequacy of contrast
enhancement also varies significantly between patients, with
some image volumes exhibiting inadequate contrast even
with the use of automatic bolus tracking [6].

To reduce usage of RCAs, it is necessary to develop com-
putational techniques that can correctly alter the contrast of
the clinically relevant regions of interest (ROIs). Histogram-
based methods [7] modify the overall image contrast but
cannot preferentially enhance specific regions. Blood vessels
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can be enhanced using level set techniques [8] and banks of
oriented filters [9], but these do not generalise well to other
ROIs. Convolutional neural networks (CNNs) are ubiquitous
in medical imaging and are now being used for reduction of
gadoliniumdosage in neuroimaging [10–12], improving liver
tumour contrast [13], converting contrast-enhanced (CE) CT
to non-contrast-enhanced CT (NCE) [14–16] and improving
magnetic resonance flow imaging contrast [17].

Creating synthetic contrast-enhanced (sCE) CT images
without RCAs has been proposed [18,19], using both a
coarse-to-fine generative adversarial network (GAN) train-
ing strategy [20] and using CycleGANs on unpaired data
[21,22]. While these studies have shown sCE to be feasible,
they focus on the early arterial phase, and use data with a
simple mapping from NCE to CE (acquired close together in
time) whereas the ability to generalise to iCT images (where
the mapping from input images to ground truth is more
complex) is unknown. In our institution, the pre-procedural
imaging in a typical cryoablation procedure involves a NCE
series, followed by two CE series at 35 and 80s after injec-
tion of RCA. These correspond to corticomedullary (CME)
and nephrogenic enhancement (NGE) phases, afterwhich the
enhancement fades as RCA is eliminated by renal filtration
[23]. It would be advantageous to generate multiple contrast
phases—for instance, NGE images offer high sensitivity for
the detection of renal tumours, while lower false-positive
rates are possible with CME images [24]. While this could
be accomplished using a CNN trained for each phase, a net-
work conditioned on phase information could perform the
same task on multiple time points in the procedure without
training additional networks.

To enforce quantitatively realistic intensities for per-
forming clinically relevant downstream tasks, for instance,
augmenting scarce data, enhancing images prior to seg-
mentation, RCA dose reduction or identifying tumours in
interventional procedures, the distribution of the sCE images
should be as close to the actual CE data distribution as pos-
sible. An evaluation framework needs to take into account
not only image quality and predicted intensities, but also the
bias of a given technique compared to the ground truth.

Adversarial training has become increasingly popular in
the super-resolution and style transfer literature, as super-
vised learning techniques using the L1- or L2-norm can lead
to excessive blurring. Pix2Pix [25] was developed for image-
to-image translation, where the L1-norm between the source
(NCE) and target (CE) images acts as a supervisory signal
constraining the generator’s output to be close to the real
target.As this requires paireddata,CycleGAN[26]was intro-
duced as an unpaired alternative, using two generators and
two discriminators, one pair of which maps images from the
source domain to the target domain, while the other pair per-
forms the reverse operation. This process is regularised by
the cycle-consistency term, which enforces a consistent for-

ward and backward mapping between the two domains but
does not prevent the generator from removing (or adding)
features that may (or may not) be present in the target image
[27]. In medical imaging applications, this is highly undesir-
able; inaccurate predictions may lead to incorrect diagnoses
or inaccuracies in image-guided procedures. The additional
advantage of supervision for contrast transfer between NCE
and CE medical images is that the training process can the-
oretically benefit from the ground truth intensities of the
contrast-enhancing ROIs.

The aim of this work is twofold. First, as a step towards
accurate, clinically useful, multi-phase sCE we propose a
framework for contrast phase switching and test it against
separately trained networks as a baseline. Second, we com-
prehensively evaluate the quantitative performance of the
aforementioned training paradigms (ranging from unpaired
adversarial to fully supervised training) on contrast transfer
between NCE and CE images.

To the best of our knowledge, this is the first study per-
forming sCE on interventional CT data that pose challenges
such as organ displacement and needle insertion. While iCT
data are scarce, we show significance on a real-world dataset
that is the largest we have found so far in the literature. In
addition, we believe it is the first attempt to generate syn-
thetic contrast conditioned on phase information, allowing
the user to readily switch between phases during inference.
As sCE is a new interventional application, we focus on val-
idation and reporting first quantitative results using multiple
established neural network architectures in the style transfer
domain, leaving the development of new models specific to
sCE to future work. The research questions posed are:

1. Does the proposed multi-contrast sCE framework match
the performance of individually trained CNNs?

2. Does a supervisory signal improve performance in sCE
compared to unsupervised adversarial training?

3. Are the generated intensities quantitatively realistic and
of adequate quality to allow their use in clinically relevant
tasks?

To answer the above questions, we have made the fol-
lowing contributions: (1) We use deep learning to perform
multi-phase sCE on pre-procedural iCT images; (2)We com-
pare three training paradigms on this task, exploring whether
supervision improves model accuracy; (3). We use Bland–
Altman analysis to quantitatively measure the bias of the
proposed methods, showing that they generate more consis-
tent enhancement than real CE, and that a network’s bias
can affect its performance on downstream tasks; (4). We
examine whether these contributions aid a U-Net [28] in seg-
menting tumours in sCE images; (5). Lastly, we assess the
two most promising models on out-of-distribution intra- and
post-procedural data and show that they maintain their per-
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formancewhile improving visualisation of previously unseen
high-contrast features such as needles. This shows promise
for improving visualisation of features encountered in inter-
ventional radiology procedures, for instance, needles as well
as the ice ball formed during the cryotherapy process.

Methods

Contrast switching

The proposed method for allowing contrast phase switch-
ing in generated images can be applied to any CNN and is
achieved by tiling a scalar quantity representing the required
phase (1 for CME, 2 for NGE), which is then concatenated to
the feature maps in a layer. A standard CNN fθ ,t trained for
a particular phase t maps a source image x to the appropriate
target ŷt :

ŷt = fθ ,t (x)

The phase switching network fθ instead takes the phase
information as an input:

ŷt = fθ (x, t)

Three classes of machine learning methods are described
as follows to implement this phase-conditioned contrast pre-
diction task, chosen for being well-validated methods in the
style transfer literature that encompass the full range of super-
vision, from fully supervised to fully adversarial. As these
architectures are well established in the literature, we omit
the details for brevity and refer the reader to the specific
papers, focusing instead on the modifications to achieve the
aims set out above.

Fully supervised

The baseline technique (UNet-Baseline) comprises two 3D
U-Nets [29], trained separately on CME and NGE images,
while the phase switching network (UNet-Phase) incorpo-
rates the phase information as described in each layer of
the decoder except the output layer. Each down-sampling
block in the encoder uses one convolutional layer, while up-
sampling decoder blocks employ a transpose convolution and
then a standard convolution after concatenation with the skip
layer. Both implementations employ instance normalisation,
commonly used in style transfer applications [30]. The fully
supervised lossLROI is the mean absolute error. To improve
convergence, we split the objective into foreground LF and
background LB losses, weighted by a hyper-parameter μ,
where the foreground consists of arterial, kidney and tumour

ROIs extracted by a mask (represented by the indicator func-
tion 1 for foreground 1F and background 1B):

LF = ‖1F [ yt − fθ (x, t)]‖1
LB = ‖1B [ yt − fθ (x, t)]‖1
LROI = μLF + (1 − μ)LB

Adversarial with supervision

The network used for adversarial training with supervision
is based on the Pix2Pix architecture [25]. The generator fθ
is a U-Net identical to that described above, while the dis-
criminator gφ is a 3D version of the one described in the
Pix2Pix paper, and noise z is added to the generator using
50% dropout in the first three layers of the decoder both dur-
ing training and at inference. Phase information was added to
both the generator decoder (identically to UNet-Phase) and
discriminator as in Fig. 1.

The Pix2Pix training objective uses the adversarial binary
cross-entropy loss for discriminator and generator (LD and
LG) below and reuses the fully supervised loss LROI as the
supervising term for the generator, weighted by a hyper-
parameter λ. The expectations are taken over the target
images y and the source images with noise x, z.

LD = −E y{ln [gφ( yt , t)]} − Ex,z{ln [1 − gφ( fθ (x, z, t), t)]}
LG = −Ex,z{ln [gφ( fθ (x, z, t), t)]} + λLROI

Unpaired adversarial

The unsupervisedmethod for comparison is CycleGAN [26].
Unlike the original CycleGAN implementation for unpaired
images, we retain the U-Net-style Pix2Pix generator above
(as in Xie et al. [22]) as the skip connections can propagate
high-frequency information between paired source and target
images.This allowsus to isolate the effect of different degrees
of supervision on the same generator architecture.

The loss comprises two least square adversarial terms
for the forward mapping networks fθ , gφ with parameters
θ and φ (shown below) and two for the backward net-
works f −1

θ ′ , g−1
φ′ with parameters θ ′ and φ′, along with the

cycle-consistency loss Lcyc. An additional identity loss LI

constrains the overall image intensities to be similar between
source and target.

LD = −E y[(gφ( yt , t) − 1)2] − Ex,z[(gφ( fθ (x, z, t), t)2]
LG = −Ex,z[(gφ( fθ (x, z, t), t) − 1)2] + λLcyc + λ

2
LI
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Fig. 1 Training pipeline for Pix2Pix generator

where

Lcyc = ‖x − f −1
θ ′ ( fθ (x, z, t))‖1 + ‖ yt − fθ ( f

−1
θ ′ ( yt , z, t))‖1

LI = ‖x − f −1
θ ′ (x, z, t)‖1 + ‖ yt − fθ ( yt , z, t)‖1

Statistical analysis

When testing hypotheses in normally distributed data, the
two-tailed t-test was used, while the Kruskal–Wallis H-test
and Mann–Whitney U-test (also two-tailed) were employed
for non-normal distributions. Confidence intervals for non-
normal datawere generatedwith the nonparametric bootstrap
using 100,000 runs.

To assess the bias between the proposed techniques and
the ground truth ROI intensities, Bland–Altman analysis [31]
is used. This quantifies the bias between a measurement
technique and a gold standard reference. The mean I of
the predicted and ground truth intensities for each subject
are plotted against the difference between the predicted val-
ues and ground truth �I . The relationship between I and
�I describes the bias, while the 95% limits of agreement
(LoA) are 1.96 standard deviations around this bias. Linear
regression distinguishes between constant bias (significant
intercept with non-significant slope on t-test) and bias that
changes proportionally with I (significant slope).

To compare biases between the techniques, the general lin-
earmodel is usedwithANCOVAand interaction terms. After
testing interaction term significance to ensure no difference
between bias slopes, ANCOVA tests for significantly differ-
ent mean biases between techniques, controlling for intensity
as a covariate, which may otherwise affect the mean bias in
models that vary proportionallywith intensity. This can allow
comparison of models trained, for instance, in different insti-
tutions with different datasets. Pairwise statistical contrast
analysis [32] is then performed to determine which mod-
els are significantly different from one another. All p-values
from statistical tests underwent the Bonferroni correction for

multiple comparisons as needed to maintain a family-wise
error rate (α) of 0.05.

Experiments

Data and pre-processing

The retrospective data were fully anonymised after approval
from the local clinical governance committee and comprised
images from renal cryoablation procedures performed by
the interventional oncology service at University College
London Hospital. The target labels were CME and NGE
phase scans, while the source data were NCE scans, down-
sampled to a resolution of 256 × 256 with variable depth.
Image intensity values were windowed to [−500, 2500] to
remove noise and outliers before normalisation to [0, 1].
For the foreground mask, aorta and major tributaries, kid-
neys and tumour were segmented from the CE volumes in
3D Slicer [33]. The training set consisted of 35 procedures
(34 subjects), of which 5 subjects were randomly selected
for use in hyper-parameter tuning, while the test dataset
comprised 15 subjects. Patch-based techniques have become
common-place in the super-resolution literature, and have
been proposed to preserve geometrical structure in style
transfer applications [34]—we therefore train all networks
on 64 × 64 × 64 patches. The full-sized images are gener-
ated by running the model over the input image with stride
16 and averaging the output from overlapping patches.

Network training

The networks were trained using Tensorflow 2.3 on a Nvidia
P5000 16Gb graphics card with minibatch size 1, Adam
optimiser (β1 = 0.5, β2 = 0.999) and He initialisation.
The CycleGAN discriminators were trained using a buffer
of 50 previous generated images as in the original paper,
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while a differentiable data augmentation strategy [35] using
random translation, cut-out and intensity/contrast alteration
was applied to both real images and generated images seen
by the discriminator in Pix2Pix and CycleGAN. The fully
supervised U-Nets employed a standard data augmentation
routine using rotation, flipping, scaling, shearing and trans-
lation.

Evaluation

All predicted images were converted back to Hounsfield
Units (HU) before evaluation with visual examination, mean
squared error (MSE), peak signal-to-noise ratio (pSNR) and
structural similarity index measure (SSIM). For quantitative
comparisons, five equally spaced slices of aorta (Ao), renal
cortex (Co), medulla (Md) were segmented, as well as the
entire tumour (Tu) except in one subject where the tumour
could not be confidently identified. The ROIs are referred
to by their abbreviations with the phase as a subscript, e.g.
CoCME for cortex CME phase and AoNGE for aorta NGE
phase.

To determine whether the sCE images could be used
for segmentation, U-Nets [28] were trained to segment 2D
64 × 64 patches from each of the evaluated methods using
a minibatch of size 64 and learning rate 10−3. The training
dataset comprised slices from eachmodel’s predicted images
for 10 of the 14 test subjects with an identifiable tumour (247
total) as well as the ground truth CE images (241 total). For
testing, slices from the 4 remaining test subjects were used,
totalling 91 for the model output and 95 for ground truth.

Hyperparameter tuning

The hyperparameters tuned were the learning rates, number
of layers, number of channels, λ and μ. All discriminators
used 16 first layer channels and 3 layers, while the generators
had 32 channels and 5 layers. The U-Net strategy used a
learning rate of 1.0×10−4 andμ of 0.2, while the CycleGAN
strategy used learning rates of 2.0×10−4 and kept the default
cycle consistency weight of 10 and identity loss of 5. The
Pix2Pix had discriminator and generator learning weights of
2.0 × 10−5 and 3.5 × 10−4, with λ of 720 and μ of 0.1.

Results and discussion

Table 1 shows image quality metrics with confidence inter-
vals generated via bootstrap. Figures2 and 3 show the
intensities generated by each network for each ROI, along
with the ground truth intensities. Table 2 shows the mean and
proportional bias between predicted intensities and ground
truth for each of the models, as derived from the ANCOVA
intercept term and slope, respectively, while Figs. 4 and 5
show examples from each network for both phases (Table 3).

Separately trained networks versus phase
conditioning

Thefirst hypothesis to be testedwaswhether training one net-
work to switch between two contrast phases (UNet-Phase)
was feasible compared to training one network for each
phase (UNet-Baseline). There was no significant difference
on H-test between any of the techniques in terms of image
quality metrics (Table 1), and no discernible differences in

Table 1 Image quality Model NCE → CME NCE → NGE

MSE

UNet-Baseline 7958 [6978, 9263] 7813 [7046, 9796]

UNet-Phase 8401 [7657, 11458] 8484 [7921, 10862]

Pix2Pix 8374 [7190, 9713] 8011 [6390, 10172]

CycleGAN 9612 [8102, 12031] 9218 [8194, 11655]

pSNR

UNet-Baseline 57.32 [55.85, 57.83] 57.40 [5.46, 57.81]

UNet-Phase 57.09 [55.12, 57.45] 57.04 [55.62, 57.35]

Pix2Pix 57.10 [56.58, 57.67] 57.29 [55.93, 58.09]

CycleGAN 56.50 [55.24, 57.14] 56.68 [55.37, 57.14]

SSIM

UNet-Baseline 0.9946 [0.9933, 0.9957] 0.9949 [0.9926, 0.9961]

UNet-Phase 0.9943 [0.9920, 0.9958] 0.9936 [0.9904, 0.9941]

Pix2Pix 0.9937 [0.9924, 0.9953] 0.9941 [0.9921, 0.9958]

CycleGAN 0.9940 [0.9928, 0.9965] 0.9940 [0.9918, 0.9957]

Data format: median [95% CI]
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Fig. 2 ROI intensities for generated CME images

Fig. 3 ROI intensities for generated NGE images
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Table 2 ROI biases and slopes

Model CME Bias (HU) NGE Bias (HU)

Aorta

UNet-Baseline −48 [±105] (−1.39) −15 [±29] (−0.98)

UNet-Phase −47 [±74] (−1.45) 1 [±27] (−1.19)

Pix2Pix 14 [±119] (−1.16) 30 [±25] (−0.57)

CycleGAN −178 [±67] (−1.95) −24 [±38] (0.05)
Cortex

UNet-Baseline −50 [±39] (−1.86) −39 [±36] (−1.59)

UNet-Phase −15 [±39] (−1.84) −6 [±38] (−1.50)

Pix2Pix 15 [±52] (−1.51) 21 [±46] (−1.08)

CycleGAN −62 [±51] (−1.78) −55 [±45] (−0.93)

Medulla

UNet-Baseline −25 [±23] (−1.79) −21 [±26] (−1.60)

UNet-Phase 7 [±18] (−1.83) 9 [±19] (−1.59)

Pix2Pix 31 [±33] (−1.48) 33 [±31] (−1.10)

CycleGAN −22 [±56] (−1.66) −27 [±51] (−0.62)

Tumour

UNet-Baseline 1 [±43] (−1.40) 13 [±41] (−1.32)

UNet-Phase 29 [±44] (−1.23) 37 [±45] (−0.87)

Pix2Pix 61 [±45] (−1.05) 66 [±47] (−0.55)

CycleGAN 5 [±61] (−0.85) 3 [±51] (−0.40)

Data format: mean bias [95% LoA] (slope coefficient)
Bold indicates a significant proportional or constant bias for slope coef-
ficient and mean bias, respectively

Table 3 Dice scores

Model CME NGE

Ground truth 0.44 [0.27, 0.62] 0.65 [0.59, 0.81]

UNet-Baseline 0.43 [0.36, 0.49] 0.43 [0.34, 0.50]

UNet-Phase 0.50 [0.43, 0.59]∗ 0.44 [0.36, 0.60]

Pix2Pix 0.37 [0.28, 0.46]∗† 0.29 [0.06, 0.38]

CycleGAN 0.49 [0.41, 0.54]† 0.50 [0.44, 0.57]

Data format: median [95% CI]
∗ and † indicate significant difference (p < 0.01)

image quality between UNet-Baseline and UNet-Phase on
visual inspection (Figs. 4 and 5). UNet-Baseline significantly
(p < 0.001) under-enhanced both cortical and medullary
ROIs for both phases (Table 2), while UNet-Phase over-
enhanced tumour (p < 0.001) for both phases as well as
under-enhancing AoCME . The visual difference in corti-
cal/medullary enhancement is visible in Fig. 4 (red arrows).

This demonstrates that it is possible to achieve phase-
switching in most ROIs (with superior performance in
kidney), opening up the possibility of generating multiple
contrast phases later in the procedure when a lesion can be
more conspicuous [23].

Effect of supervision

The second hypothesis concerned the most suitable training
paradigm for contrast enhancement, specifically that a super-
visory signal would constrain the network to output realistic
intensities.

The poorest performance was from CycleGAN (entirely
unsupervised) in terms of visual appearance, despite no
statistical significance in terms of image quality metrics
(Table 1). CycleGAN under-enhanced aortic and cortical
ROIs in both phases (p < 0.001, Table 2)—correspondingly,
there is little discernible enhancement in Figs. 4 and 5. Cycle-
GAN’s poor performance could be attributed to the lack of a
supervisory term containing ground truth contrast informa-
tion. In addition, the identity termLI in the loss constrains the
generator to leave unchanged any regions of the source image
that are of a similar intensity to the target. While this is ben-
eficial in medical applications (removing this term in earlier
experiments caused inappropriate modifications to the back-
ground), it may suppress the network’s efforts to enhance the
foreground ROIs. Further work is needed to isolate the effect
of the identity loss on contrast enhancement and to find a
suitable replacement if necessary.

UNet-Phase and Pix2Pix both over-enhanced tumour in
both phases (Pix2Pix was significantly more biased on pair-
wise ANCOVA intercept comparison). Pix2Pix also over-
enhanced medulla in both phases (p < 0.001, Table 2)
and generated the brightest ROI intensities of all networks
(p < 0.001, Figs. 2 and 3). Visually, Pix2Pix generates
greater enhancement (most apparent in the kidney—see red
arrows in Fig. 4) than the other techniques, in line with its
tendency towards over-enhancement, while U-Net provides
more realistic intensities, particularly in the kidneys. The
impact of “over-enhancing” certain regions is not necessar-
ily problematic depending on the use case, for instance, in
identifying vasculature and relevant anatomy.

Task-based evaluation

There was no significant difference in Dice scores (Table 3)
on H-test when the segmentation networks were trained on
either NGE ground truth or the predicted NGE images. The
CME phase did reach significance; on pairwise testing, there
was no difference in performance between any generated
images and CME ground truth, but UNet-Phase and Cycle-
GAN did outperform Pix2Pix (p < 0.01). Both enhanced
the tumour significantly less than Pix2Pix as well as having
no bias in the medulla, indicating that quantitatively realistic
ROI intensities are an important factor for downstream tasks
of this nature.
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Fig. 4 Example predictions for
corticomedullary contrast (top
block) and nephrogenic contrast
(bottom block). Red arrows:
cortical enhancement, white
arrows: poor tumour contrast

Proportional bias

Themost obvious finding in Fig. 2 is that the ranges of ground
truth intensities are wider than that of the more consistent
proposed methods. The data demonstrate a statistically sig-
nificant proportional bias for all models in aorta, cortex and
medulla for CME predictions, i.e. their bias changes with
intensity in these brightly enhancing regions. None of these
proportional biases were significantly different on pairwise
regression slope comparison.

The effect of the proportional bias in the highly enhancing
CMEROIs is unclear; the generated intensities are physically

and visually realistic, and it is likely that this is due to the
larger inter-subject variation in ground truth intensity com-
pared to the more consistent enhancement by the proposed
methods, but itwouldbenefit from further scrutiny in a human
readability study. As well as showing us that each network
and ROI has a different bias and must therefore be calibrated
individually, an additional benefit of Bland–Altman analysis
is that this information can be used to perform calibration in
a future automated pipeline by removing any constant bias
from a given ROI’s predicted intensities.
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Fig. 5 Example predictions for
corticomedullary contrast (top
block) and nephrogenic contrast
(bottom block). White arrows:
poor tumour contrast

Peri-procedural contrast enhancement

Lastly, we examine the use of UNet-Phase and Pix2Pix with
images taken during the procedure (i.e. with needles and
hydro-dissection contrast in view) that were not present in
the training dataset. Two examples are shown in Figs. 6 and
7 for the pre-procedural NCE image, two intra-procedural
images and lastly one post-procedural image. Figure6 con-
firms the networks’ ability to enhance aorta and kidney ROIs
(CME phase) in images containing features they have not
encountered before (needle in columns 2 and 3, and hydro-
dissection in columns 3 and 4).

Figure 7 shows a case where UNet-Phase struggles
to enhance the aorta correctly, and Pix2Pix erroneously
enhances the vena cava (potentially due to the proximity of
previously unseen features). However, we see that in the post-
procedural images, the tumour is higher contrast with lower
intensity values, making it more visible for both networks
(white arrow) than in the un-enhanced image.

Interestingly, Pix2Pix in-paints the photon starvation arte-
fact from the needle (Fig. 6, green arrow, also seen in Fig. 7),
while both networks (UNet-Phase to a lesser extent) also
reduce the streaking around the needle. It is unclear why
needle artefact removal and improved tumour visualisation
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Fig. 6 Images from before, during and after procedure. Green arrows: in-painting of photon starvation artefact

occurred—it is possible that the networks are generalising
sCE to other high contrast regions—but this suggests a poten-
tially useful future research direction for combining sCE and
image quality enhancement for interventional procedures.

Limitations

Contrast agents are used to identify clinically relevant fea-
tures by enhancing the feature (e.g. a tumour) more or less
than the surrounding tissue. However, all networks enhanced
the tumour and surrounding tissue to a similar degree (white
arrows, Figs. 4 and 5), limiting the amount of contrast that
can be used to identify the tumour. The contrast enhancement
patterns are generated by patient-specific characteristics that
may not be apparent in a dataset of this size, or may exist
below the scanner resolution—a more detailed study with
additional data would be needed to address this. Despite
this limitation, performance when segmenting the tumours
from these predicted images appeared unaffected (aside from
Pix2Pix for CME as stated above).

Conclusion

In this paper, we proposed a framework for multi-phase
synthetic contrast enhancement, as well as investigating the
effect of a supervisory signal on model performance. The
results show that our framework matches the performance
of separately trained CNNs in all ROIs and exceeds it in
the kidneys. In addition, the CycleGAN lacking any form
of input from the ground truth intensities performed worst,
while the Pix2Pix (adversarial with supervision) generated
the most intense ROIs and the fully supervised U-Net was
most quantitatively accurate. The proposed techniques gen-
erate more consistent enhancement than seen in the ground
truth images, while assessing the bias by region and phase
can inform usage of models with different characteristics for
different tasks—UNet-Phase, with its smaller bias, outper-
forms Pix2Pix for segmentation, while Pix2Pix generates
more vivid vasculature and renal medulla. Lastly, we have
shown that UNet-Phase and Pix2Pix can generalise to unseen
intra-procedural data, amore challenging task given the addi-
tion of needles, hydro-dissection contrast and the movement
of organs over time. Crucially, the models also improve nee-
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Fig. 7 Images from before, during and after procedure, white arrows: improved visualisation of tumour, red arrows: improved visualisation of
needles

dle artefacts and tumour visualisation, indicating potential
for multi-task sCE and image quality applications.
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