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ABSTRACT
Introduction: Demand in clinical services within the field of ophthalmology is predicted to rise over the 
future years. Artificial intelligence, in particular, machine learning-based systems, have demonstrated 
significant potential in optimizing medical diagnostics, predictive analysis, and management of clinical 
conditions. Ophthalmology has been at the forefront of this digital revolution, setting precedents for 
integration of these systems into clinical workflows.
Areas covered: This review discusses integration of machine learning tools within ophthalmology 
clinical practices. We discuss key issues around ethical consideration, regulation, and clinical govern
ance. We also highlight challenges associated with clinical adoption, sustainability, and discuss the 
importance of interoperability.
Expert opinion: Clinical integration is considered one of the most challenging stages within the 
implementation process. Successful integration necessitates a collaborative approach from multiple 
stakeholders around a structured governance framework, with emphasis on standardization across 
healthcare providers and equipment and software developers.
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1. Introduction

Ophthalmology is one of the busiest outpatient specialties in 
the UK and forms a major component of healthcare world
wide. The National Healthcare System (NHS) is one of the 
largest healthcare providers in the world and noted to have 
over 7.9 million ophthalmology clinic attendances per year [1]. 
Demand in healthcare workforce and clinical services is pre
dicted to rise by a further 30–40% over the next 20 years [2]. 
Contributing factors include aging population, increased pre
valence of complex, chronic conditions, and added pressure 
on timely detection and diagnosis. Capacity pressures have 
significantly worsened since the COVID-19 pandemic [3], 
further emphasizing the clinical need for a more efficient 
system. Artificial intelligence (AI) has the potential to help 
address these challenges, by augmenting or automating var
ious processes across the healthcare ecosystem. Integration of 
AI platforms and systems into clinical workflows provides 
opportunities to increase clinical efficiency and productivity, 
enabling the consistent delivery of higher quality care despite 
growing demand.

Artificial intelligence uses the support of technology to 
simulate elements of human intelligence, cognitive processes 
and functional decision-making [4]. The term was first coined 
by McCarthy in 1956 and since then has emerged as an 
important research field with numerous potential benefits to 
healthcare. AI continues to have varied definitions, but is 
commonly described as a machine-based system that has 

the potential to produce certain desired outputs, predictions, 
and decisions [5]. Within healthcare, it can still be taken to 
include computerized decision support tools, which automate 
the delivery rules directly dictated by human experts, in rule- 
based decision trees[6]. Machine learning is a subset of AI 
where systems formulate associations based on previous 
data, with potential for simultaneous performance optimiza
tion. It is machine learning-enabled clinical tools that have 
sparked the ongoing surge in government, academic, and 
industry interest and that will form the focus of this review.

There are many machine learning algorithms used in 
healthcare such as linear regression, logistic regression, deci
sion trees, and random forests. None of these examples repre
sent deep learning, which is a subset of machine learning that 
uses multiple layers of nodes connected in a neural network. 
These neural networks are able to process multiple data items, 
whilst preserving spatial distribution [7]. The incorporation of 
hidden layers aids the exploration of more complex non-linear 
data patterns [8]. Convolutional Neural Networks (CNN) are a 
subtype of neural networks used commonly in image recogni
tion. By using multiple convolutional layers, they are able to 
process both simple and complex features (edges, lines, colors, 
shapes, etc.). Current examples of CNNs include AlexNet, 
GoogleNet, and ResNet[9]. Much of the successes in deep 
learning have been driven by CNNs.

Before delving into the implementation process of these 
machine learning-enabled tools, it is helpful to have an 
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understanding of common learning methods used within 
machine learning. The three main types include supervised, 
unsupervised, and reinforcement learning. In supervised learn
ing, a model is trained using already labeled data; with input 
weights used to formulate model predictions and outputs. 
Unsupervised learning involves training a model with unla
beled data, allowing associations to be made between data
points purely based on pattern recognition [9]. From previous 
literature, most of the models that are used in clinical deci
sion-making settings are supervised machine learning models 
[10]. In particular, there have been recent drive toward self- 
supervised learning. The first stage of this involves training on 
unlabeled data, in the form of a preparation task, ‘pretext 
task’[11]. The subsequent stage involves training on a labeled 
dataset with the aim of applying the knowledge learnt to 
specific medical tasks. Reinforcement learning is the third 
main type of deep learning and is based on the concept of 
intelligent agents taking actions in order to maximize cumu
lative reward. Reinforcement learning has demonstrated 
impressive applications in gaming. Its application in health
care, though limited at present, is a promising area of intense 
academic activity[10].

Substantial progress of deep learning tools has been noted 
in a number of medical disciplines including radiology [12–14], 
respiratory medicine [15], cardiology [16], and dermatology 
[17]. Use cases range from the identification of pneumonia 
on chest x rays [18] to the classification of malignant skin 
lesions [17,19] with the use of CNNs. Ophthalmology has 
been at the forefront of this digital revolution with significant 
contributions made within the field of image recognition [20]. 
This is unsurprising given the abundance of imaging data that 
is generated on a daily basis to inform patient management 
[21]. Appropriate integration of machine learning into the 
ophthalmology workflow has the potential to aid clinical diag
nostics, disease grading, management regimens and improve 
patient monitoring. A further benefit of deep learning is the 
optimization of screening programs, e.g. in retinopathy of 

prematurity and diabetic retinopathy screening [22]. 
Additionally, AI is used to deliver more personalized health
care by optimizing patient-specific treatment, catering to the 
natural heterogeneity present within the general population 
[23]. Despite all of these pre-clinical advances, incorporating 
machine learning-enabled tools into real-world ophthalmol
ogy workflows is a challenging prospect.

This review will delve into the interdependent factors that 
will shape AI integration in ophthalmology while discussing 
the key concepts of ethics and regulation, clinical governance 
and potential barriers to clinical adoption.

2. AI in ophthalmology

Within the field of ophthalmology, AI research has been 
applied to many conditions including but not limited to dia
betic retinopathy [24,25], age-related macular degeneration 
(AMD) [25–28], glaucoma [29] and cataracts [9,30]. As of 
November 2022, there were over 1000 studies of ophthalmic 
applications of AI listed in PubMed [31,32]. A more compre
hensive discussion of individual studies is beyond the scope of 
this review and has been recently addressed elsewhere [22]. 
Despite the substantial volume of AI research in ophthalmol
ogy, there are very few studies that report the implementation 
of machine learning-enabled tools in real-world settings. We 
wish to highlight this gap and discuss some key examples 
within current literature and clinical practice.

The UK-based National Institute of Health Research (NIHR) 
HERMES study (teleophthalmology-enabled and artificial intel
ligence-ready referral pathway for community optometry 
referrals of retinal disease) is a multicentered implementation 
study based on the interaction between tele-medicine and AI 
decision support tool in referral pathways. The diagnostic 
accuracy, cost-effectiveness, and performance of the machine 
learning-enabled clinical decision support (CDS) will be 
assessed prospectively [33]. This is one of the first large-scale 
implementation studies within the field. At the time of writing, 
only one qualitative study of a machine learning-enabled 
ophthalmic workflow has been published and three other 
qualitative studies have been conducted focusing on patient 
and clinician perspectives of hypothetical machine learning- 
enabled ophthalmic workflows [34–37]. Most of these publica
tions are concerned specifically with machine learning- 
enabled diabetic retinopathy screening, but cover diverse set
tings across New Zealand, Thailand, Germany, and the USA. 
Across these studies it is apparent that at a high level there is 
a strong value proposition for clinical AI in ophthalmology and 
wide acceptance. However, closer examinations of specific use 
cases surface complex interdependent factors that influence 
implementation outcomes. It is only by further developing this 
small qualitative literature that the wealth of efficacy-focused 
quantitative research in ophthalmic AI can be efficiently imple
mented into real-world workflows [38].

In the USA, there are a number of United States Food and 
Drug Administration (FDA)-approved AI systems currently in 
practice. IDx-DR was one of the first fully autonomous AI- 
based diabetic retinopathy diagnosis systems to be approved 
by the FDA and integrated into primary care. The results of the 
original study demonstrated a sensitivity of 87.2% and a 

Article highlights

● Clinical AI has sparked ongoing academic, industry, and government 
interest. Applications to healthcare, have the potential to optimize 
clinical diagnostics and predictive analytics.

● Ophthalmology is a leading specialty in the integration of AI in 
clinical workflows, due to the abundance of clinical imaging data 
and the value of machine learning-enabled tools for their 
interpretation.

● Incorporating machine learning-enabled tools into real-world 
ophthalmology workflows is challenging. Input from a variety of 
stakeholders (clinicians, developers, research groups and overseeing 
government and regulatory bodies) is vital to maximize adoption.

● CONSORT AI, STARD-AI, TRIPOD-AI and DECIDE-AI are standards that 
should guide reporting and evaluation of clinical AI, promoting 
transparency.

● Limited explainability and interoperability with established health 
information systems are key barriers in the integration process.

● Integration of AI into clinical workflows should be conducted in 
concordance with appropriate ethical and legal standards. 
Accountability for machine learning systems is challenging, but a 
pathway should be created for clinical incident investigation and in 
cases of medical malpractice.
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specificity of 90.7% for identifying mild diabetic retinopathy 
and/or diabetic macular edema equivalent in the Early 
Treatment Diabetic Retinopathy Study (ETDRS) scale [39]. The 
system had a 97.6% sensitivity for identifying individuals 
requiring urgent assessment according to American 
Academy of Ophthalmology Preferred Practice Pattern (PPP) 
[39]. Since its approval, IDx-DR has been used at John Hopkins, 
Stanford and Mayo Clinic for diabetic retinopathy screening 
[40]. EyeArt (Eyeuk) is another autonomous, cloud-based, FDA 
approved system used in the US for identifying and grading 
diabetic retinopathy [40]. Collaborative work between Google 
Health and Optos has resulted in the availability of machine 
learning-enabled tools for ultra-widefield imaging. This has 
potential to aid rapid screening and identification of diabetic 
retinopathy and macular edema [41]. Other clinical decision 
support tools available for OCT systems include RetInSight, 
used for monitoring of patients with neovascular age-related 
macular degeneration [42,43]. RetinAI also provides an AI 
model enabling further quantification of retinal diseases, 
with wider contributions to optimizing the overall healthcare 
ecosystem [44]. Both these tools have met the ‘Medical Device 
Directive’ regulatory requirements as part of the European 
Union (EU) legislative framework [42,44]. RetinAI has also 
recently received clearance from the FDA for their medical 
imaging ophthalmology platform[44].

3. Integration of AI systems in ophthalmic 
workflows

The machine learning pipeline involves collecting and pre- 
processing data, training the model, validating and ultimately 
deploying an AI system into a clinical pathway. Despite there 
being significant advances in AI systems, on a smaller indivi
dual level, there is still a significant gap between development 
and implementation into clinical practice. This bridge, com
monly known as the ‘AI Chasm’ is a rate-limiting step to 
widespread integration [45]. Despite the widely perceived 
potential of AI to improve patient outcomes and streamline 
clinical workflows, care must be taken to ensure that the 
implementation process is carried out with satisfactory 

regulatory compliance. It is also pertinent that any large- 
scale integration adheres to a fixed AI governance structure 
thereby ensuring consistency across clinical institutions.

Implementation is a multifaceted concept, with clinical 
integration often considered as the hardest stage[10,46]. 
Optimizing this requires input from multiple stakeholders 
with continual transparency throughout the process. The sta
keholder ecosystem includes clinicians, developers, research 
groups, and overseeing government and regulatory 
bodies [47].

3.1. Translational pathway

The following section provides a brief summary on the trans
lational pathway, with a particular emphasis on how integra
tion fits into the overall process (Figure 1).

The first stage in the AI system lifecycle involves designing 
and developing a deep learning AI-based system or tool, 
either in-house or via an external developing company. 
Sources of funding include university, industry, or govern
ment, to name a few. Careful consideration should be given 
to select a clinically meaningful use case that helps to over
come gaps within the current health systems. Although this 
seems to be rudimentary, it is important to be able to distin
guish use cases that would benefit from machine learning- 
enabled tools rather than clinical pathway redesign or other 
digital health solutions. At this initial stage, there is also the 
need for development of large representative datasets, on 
which subsequent training and validation can take place. 
Publicly available ophthalmology imaging datasets (e.g. 
Messidor, Kaggle etc.) can be useful resources during the 
initial designing stages [48].

The next stage involves formal evaluation and validation. 
Analysis of performance metrics such as accuracy and reliabil
ity helps to assess the scientific robustness of the AI product 
and determine its statistical validity. It is also important to 
review the clinical and economic utility before proceeding 
with implementation. Validation on external datasets helps 
to assess these features, with potential for fine-tuning of the 
tool. In addition to reaching the required technical 

Figure 1. Diagram summarizing how integration relates to other components of the implementation process. 
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performance measures, the ease of product–user interaction 
should be evaluated, with an additional focus on safety, liabi
lity, safeguarding, and ethical integrity—topics that will be 
covered in this review.

Clinical integration is a challenging step within the imple
mentation pipeline, as sustainable incorporation of the AI 
product into existing clinical workflows does not come with
out its difficulties. Previous studies have identified two modes 
that are commonly used in AI governance frameworks: ‘sha
dow’ and ‘canary’ clinical deployment. In ‘shadow’ mode, there 
is real-time deployment of the AI model without any clinical 
implications. The AI system acts in the background (in parallel) 
to the current existing clinical workflows. Iterations are made 
subsequent to its performance in pre-selected metrics. The 
‘canary’ mode involves a graded introduction of the model 
into clinical settings with active regulation and feedback 
mechanisms in place [49,50].

Ongoing surveillance and regulation will be required post- 
deployment to ensure optimal effectiveness, safety and to 
prevent prediction drift [51]. A prerequisite for this is the 
building of suitable infrastructure that can cope with main
taining, regulating, and storing the data flow. Comparison of 
the AI-guided diagnosis to the clinician’s recommendations 
can be used to assess the accuracy of the product. Studies 
have identified the positive role of MLOps (machine learning 
operations) in monitoring post-deployment, in non-health
care-based use cases [49,52]. Similar applications could be 
considered within healthcare, particularly within 
ophthalmology.

4. How could AI be implemented into 
ophthalmology workflow

Table 1 summarizes the different components of an ophthal
mology workflow and how AI can be integrated into this. In 

terms of workflow, there is often an opportunity to implement 
tools to assist with or automate clinical decisions. This often 
has significant implications for the value an AI tool can offer in 
terms of healthcare cost, quality, and efficiency. It is also, rarely 
the case that such a clear dichotomy between automation and 
assistance exists in practice as AI outputs intended to assist 
end-users can often be rejected out of hand or accepted 
without critique, depending on various adopters, use case 
and contextual factors [53,54].

5. Challenges

As discussed thus far, we have shown how artificial intelli
gence has transformative potential for clinical ophthalmology. 
However, implementation of these clinical tools in real-world 
settings will require us to overcome some major challenges, all 
of which contribute to the ‘AI Chasm.” These barriers can be 
represented within three categories of clinical, technical, and 
operational although some issues may span more than one of 
these groups. A distinguishing feature of clinical AI among 
other digital health technologies is that it requires a great 
depth and breadth to address these challenges. From a clinical 
perspective, technology intrudes much deeper into the clinical 
decision-making process, requiring close guidance and evalua
tion from clinicians. This is similarly reflected from a technical 
perspective, where not only the development of models but 
also the anticipation and mitigation of drifts in performance 
across time or sites demand the attention of skilled data 
scientists and engineers. Finally, from an operational point of 
view, the challenges posed by a rapidly evolving regulatory 
landscape alongside the uncertainties associated with this 
novel technology are also highly demanding. We examine 
these in challenges using the above framework to provide a 
structured approach to addressing these issues.

Table 1. Highlighting different ways AI could be used within ophthalmology workflows.

Output Clinical use

Diagnosis This can be considered in two ways: 

● Assistive: AI system supports the clinician by indicating abnormalities with the scan
● Autonomous: AI system evaluates the scan, stating the presence or absence of the disease without the involvement of a clinician.

Use case: Presence of glaucomatous changes to the optic disc based on fundus and/or OCT images. Other examples include diabetic retinopathy 
grading, ROP severity grading or presence of plus, pre-plus disease. 

Screening Analyze image or tabular data to highlight individuals that are at rick of developing a disease [59]. 
This can be considered in two ways: 

● Assistive: AI system flags up potential high-risk individuals, to make the clinician aware prior to clinical assessment. This can help direct the 
consultation appropriately.

● Autonomous: AI system is incorporated into the screening process, only referring high-risk patients for further clinical assessment.

Use case: Hydroxychloroquine toxicity (based on OCT image), diabetic retinopathy screenings. 

Monitoring This could be considered in two ways: 

● Assistive: AI system supports the clinician in surveillance of clinical conditions.
● Autonomous: AI system outputs the severity and correlates with the need for retreatment, without clinician input.

Use case: Guidance regarding anti-VEGF retreatment [59]. 

Predication Predictive modelling can also be used on electronic patient records to predict the natural progression of the disease [59]. 
Use case: AI used to predict and individual’s conversion to late or severe disease. This could guide decisions regarding follow-up intervals and 

treatment options.

AI – Artificial Intelligence, ROP – retinopathy of prematurity, OCT – optical coherence tomography, anti-VEG-F – anti-vascular endothelial growth factor 
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5.1. Clinical challenges

5.1.1. Clinical validation 
Before integration of clinical tools in real-life workflows, robust 
evaluation is required with particular emphasis on clinical 
performance and safety. There are several valuable guidelines 
that are available globally for evaluating and reporting the 
results of an AI model. Consolidation Standards of Reporting 
Trials (CONSORT-AI) is an extension of CONSORT 2010 report
ing guidelines and is used to evaluate clinical trials involving 
AI. This international initiative is aimed at promoting transpar
ency, enabling a rigorous review of design, checking the 
quality of input data, data handling, and evaluation of perfor
mance errors [55,56]. Standards for Reporting of Diagnostic 
Accuracy Studies (STARD-AI) and Transparent Reporting of a 
Multivariable Prediction Model of Individual Prognosis or 
Diagnosis (TRIPOD-AI) can be used for evaluation of diagnostic 
accuracy or prognostic model studies [57]. These reporting 
guidelines provide a clear and rigorously constructed defini
tion of what transparent reporting of different stages of clin
ical AI research involves. New reporting guidelines, 
Developmental and Exploratory Clinical Investigation of 
Decision-support systems driven by Artificial Intelligence 
(DECIDE-AI) have been designed to help bridge the develop
ment to implementation gap [58]. It aims to provide reporting 
guidance on early clinical evaluation of decision support sys
tems [59]. Although all the guidelines mentioned above pro
vide excellent reporting advice, they largely target the 
academic and regulatory community and may not be so 
accessible to end-users and local staff responsible for the 
procurement of clinical AI. Clear, succinct communication 
about the machine learning model should be made available, 
to aid successful integration into clinical workflows. This need 
has also begun to be addressed through complementary 
documents with wider accessibility [60]. Algorithmic impact 
assessments are another such method designed to promote 
accountability for the designing and integration of AI systems. 
This involves assessment of societal impacts and long-term 
consequences prior to widespread integration and can be 
used in conjunction with other accountability measures [61].

5.1.2. Need for explainability & interpretability 
Interpretability is the ”extent to which an observer under
stands the cause of a decision” [62]. This is based on the 
design of the model and is not representative of the accuracy 
of the outputs. Explainability delves into this further by 
attempting to understand the reasons for the association by 
focusing on the internal mechanics of the machine learning 
system [63]. At present, there is often a trade-off between 
performance and explainability. Research has shown that in 
certain use cases, models (e.g. deep learning) with greater 
performance are often least explainable. On the contrary, 
those with poorer performance (e.g. decision trees & linear 
regression) often provide more explainability. Therefore, it is 
more appropriate to consider them on a spectrum and analyze 
models based on the degree to which they fit these concepts 
[64]. This helps us to decide which class of machine learning 
algorithms are most appropriate to employ for specific use 

cases and be mindful of the compromises regarding explain
ability (Figure 2).

Reluctance in implementation of AI into clinical workflows 
is partly governed by the issue of limited model explainability. 
At present, deep learning models are considered as ”black 
boxes.” This principle in computer science refers to a concept 
of being unable to directly view or understand the connec
tions formed between the input and output [65]. As neural 
networks consist of multiple hidden layers, their complex 
connections and pattern recognition may lack robust explain
ability. From the medical perspective, understanding how a 
deep learning model reaches the output value can help to 
promote trust, confidence, and transparency in the algorithm. 
Explainable AI may help facilitate faster clinician acceptance 
[66]. In cases of disagreement, explainability can also help 
clinicians to make informed decisions about whether to 
adhere with the system’s recommendations, something 
referred to as ‘AI interrogation practices’ by Lebovitz et al 
[53,67]. From a patient perspective, providing explainable 
diagnostics makes them feel more informed and empowered, 
ultimately supporting shared decision-making [67]. In addition 
to the clinical barriers discussed, explainable AI may also help 
to mitigate potential ethical, legal, and regulatory concerns 
[67]. Hence, as a research community, we need to explore this 
concept further, as it may help to produce effective models 
and promote an environment of trustworthy artificial intelli
gence, which is particularly prudent in healthcare settings.

5.1.3. Human-computer interaction and issues of clinician 
adoption 
Human-computer interaction (HCI) is defined as ‘designing, 
evaluating, and using information & communication technol
ogies’ to ‘improve user experience, task performance, and 
overall quality of life’[68]. This is being taken into considera
tion when developing AI systems as design and usability will 
affect the success of a system through its influence on user 
adoption. Clinician adoption is another related factor that has 
a great influence over AI implementation. Despite the exis
tence of clinically validated AI models with corresponding 
supportive business strategies, difficulties may still arise in 
gaining user acceptance [69]. This adds another level of com
plexity in implementation of CDS platforms and tools in the 
real-world setting. Collaborative research and engagement 
from a wider range of stakeholders is essential to maximize 
usability [70].

Singer et al. have identified four phases in the development 
and implementation process – which incorporate input from a 
variety of stakeholders [71]. This can be described as below:

● Phase 1 – Iterative co-identification: This involves 
identification of the initial user needs and development 
of the initial machine learning tool, e.g. designing a risk 
stratification tool for individuals and embedding this 
into EHR.

● Phase 2 – Iterative co-engagement: This involves col
laboration and engagement with multiple stakeholders 
including users, developers, and external experts. This 
results in adjustment of the machine learning tool.

EXPERT REVIEW OF OPHTHALMOLOGY 5



● Phase 3 – Iterative co-application: During this, users 
identify discrepancies in the data, with the developer 
aiming to reconcile data across various groups.

● Phase 4 – Iterative co-refinement: This involves further 
analysis and assessment of inaccuracies, enabling further 
adjustment of the machine learning tool.

The importance of input from multiple stakeholders [71] is 
demonstrated by the model. This provides opportunities for 
context-specific, interdisciplinary co-operation as user prefer
ences can be integrated throughout the design process.

Furthermore, recruitment of individuals to the pathway 
adds a degree of human communication and interaction to 
the output of the machine learning model [72]. It also has a 
potential to minimize the education gap across the wider 
workforce. An example can be taken from the integration of 
machine learning sepsis early warning system into an emer
gency medicine clinical workflow [73]. Here, input from rapid 
response team, operating on the recommendation of the 
machine learning algorithm, provided an intermediate step 
in the AI implementation pipeline [73]. Similarly in a primary 
care screening tool for peripheral arterial disease, a dedicated 
secondary care multi-disciplinary team handled all of the AI 
outputs and communicated decisions through conventional 
channels to primary care end-users [74]. Consideration of 

human-computer interaction can help to address some of 
the barriers to clinicians adopting AI in clinical workflow [75].

Resistance to clinical adoption can be further addressed by 
the launch of virtuous adoption cycles where the AI tool 
directly benefits the adopter or rewards them. This could be 
achieved by making the associated administration processes 
easier for users [76]. Such an understanding of what adopters 
value and how to deliver that value directly or indirectly 
through implementation of an AI-enabled tool can only be 
achieved through meaningful multi-stakeholder engagement.

5.2. Technical challenges

5.2.1. Integration with electronic health records 
Further to the integration effort, sufficient infrastructure is 
required to manage and process large data, often held within 
electronic health records (EHR). These contain multi-modal 
data that add a degree of complexity to the integration pro
cess. Current EHR systems are inflexible, not user-friendly and 
are often incongruous with other clinical platforms. 
Furthermore, there is no common data model available for 
EHR data within ophthalmology. Application of the ‘Fast 
Healthcare Interoperability Resource’ (FHIR) to ophthalmic 
healthcare has the potential to optimize health data interoper
ability [77,78]. This includes publishing an implementation 

Figure 2. Diagram highlighting the spectrum of interpretability & explainability. 
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guide that provides international guidance regarding standar
dized clinical terminologies.

Unfortunately, there are limited incentives for EHR provi
ders to address these issues and it lends a market advantage 
to AI tools, which they develop, and embeds within their EHR 
products, which risk adoption for convenience rather than 
performance [79]. AI could be an additional incentive to 
make these more streamlined, patient-centered and adapta
ble. In particular, it can encourage policymakers and providers 
to demand greater interoperability of EHR and equipment 
vendors

Machine learning models can be applied to data from EHR 
in an autonomous manner or as clinical decision support 
(CDS). Despite the regulatory and ethical considerations, auto
mated processes demonstrate increased efficiency. Machine 
learning enabled CDS work in conjunction with clinicians, 
improving the overall delivery of care by providing diagnostic 
assistance, thereby supporting their existing evidence-based 
practice. Currently, there is no gold standard for CDS model 
structure; however, the two common frameworks recognized 
in current literature include centralized and decentralized 
workflows [52]. In a centralized workflow, the user of the 
CDS is not in direct contact with the patient and hence all 
principal decisions are made by an overseeing command cen
ter. On the contrary, decentralized workflows involve direct 
interaction between the CDS and the user/patient interface. 
These models are easier to implement and may not require 
complete or widely scaled integration into an EHR [10,52,80].

Furthermore, considerations should be given regarding 
local versus cloud deployment of models. Local deployment 
is dependent on healthcare institutions having appropriate IT 
infrastructure, with independent privacy and security regula
tions. Disadvantages of ‘on-premise’ software include pro
blems maintaining complex programs and models [81]. 
Cloud software models demonstrate superior scalability as 
evaluation of imaging data is performed and stored in a 
remote cloud-based platform [82]. Many current AI systems 
such as RetinAI and RetinSight are cloud-based. Rigorous data 
protection policies and regulations are hence required in such 
deployment. Questions also arise regarding the feasibility of 
integration in busy, high-volume ophthalmology clinics, given 
the possible time delay to obtain an output, as these systems 
are dependent on variable factors such as internet connection.

5.2.2. The need for interoperability with use of DICOM 
standards 
Data relevant to clinical decision-making in ophthalmology are 
often fragmented across different platforms and systems 
creating interoperability challenges for AI-enabled tools. Data 
interoperability is fundamental for successful AI integration as 
it provides shared and equal access to data resources. Multiple 
imaging modalities (optical coherence tomography – OCT, 
widefield fundus imaging, etc.) are involved in ophthalmic 
clinical practice. This prioritizes the need for common stan
dards to facilitate the research and application of ophthalmic 
AI-enabled tools [83]. Variations that exist between imaging 
equipment, software, and data storage formats hinder data 
interoperability, limiting the ease with which multi-modal data 

can be assimilated and analyzed. Digital Imaging and 
Communications in Medicine (DICOM) is the international 
standard for medical imaging used to view, store, retrieve, 
and share images [84]. It was created with the intention of 
maintaining standards and consistency across the varying 
imaging modalities.

Radiology was one of the first fields to embrace the chal
lenge and incorporate the DICOM guidelines due to the speci
alty’s dependence on multi-modal imaging data. In 
ophthalmology, compliance to these guidelines remains vari
able globally with smaller individual research groups develop
ing their own image acquisition and analysis protocols, 
dictated by the restrictions posed by their local equipment 
and software [85]. These approaches may not be scalable and 
pose difficulties in replicability [66]. In 2021, the American 
Academy of Ophthalmology (AAO) published a report 
encouraging manufacturers to comply with the DICOM stan
dards. The Royal College of Ophthalmology, Asia-Pacific 
Academy of Ophthalmology, and Royal and Australian and 
New Zealand College of Ophthalmology all supported this 
initiative [86,87]. DICOM compatibility is an important goal; 
however at times, data may be only ‘partially’ DICOM-compa
tible and still pose interoperability challenges [88]. Global 
consensus among vendors and providers will be required to 
maximize interoperability, ultimately enabling AI to provide 
efficient clinical and diagnostic support to system users.

5.2.3. Surveillance and monitoring 
The next and arguably most crucial barrier to sustainable and 
successful implementation is ensuring that there is ongoing 
performance monitoring of the machine learning-enabled 
tool. This is essential from a safety point of view due to the 
challenging nature of errors in AI-based systems, which make 
them hard to identify. There are numerous reasons why 
machine learning-enabled tools may not perform optimally 
ranging from poor data quality to external factors such as 
adversarial attacks, which can compromise the algorithmic 
outcome [51]. Although effort to minimize these factors 
should be made throughout the AI pipeline, it is important 
to acknowledge that at times, they may only emerge after 
integration. Furthermore, despite the adaptive nature of an AI 
system, risk of ‘data drift’ can contribute to poor clinical per
formance of a tool [89]. This is particularly relevant with the 
emergence of a new disease (e.g. COVID) or change in diag
nostic classification for a clinical condition. Continuous mon
itoring of accuracy and performance is essential to monitor for 
data drift and provides developers with scope to retrain the 
model, should this be required.

Providing a uniform framework to aid monitoring can 
help to identify and pro-actively solve problems and miti
gate errors as they appear throughout the implementation 
process. This can be further facilitated with a comprehen
sive risk assessment process similar to that conducted by 
manufacturers when deploying medical devices into real- 
world settings. Regardless of which monitoring framework 
is adopted, appropriate infrastructure is also required to 
store the data, maintain data flow, and provide automated 
regulation [90].
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The ‘medical algorithmic audit’ exemplifies such a frame
work, aiming to monitor the ongoing performance of an AI- 
based tool and investigate and pre-empt potential sources of 
error that may be generated throughout the implementation 
process [51]. Liu et al. have adapted this framework for use in 
medical AI-enabled tools such that developers have the 
opportunity to modify the artificial intelligence system, 
addressing the issues identified by the audit process before 
and after real-world integration [51]. This algorithmic audit has 
been applied to evaluate a hip fracture machine learning- 
enabled tool [51].

The International Organization for Standardization (ISO) 
also provides standards on risk management, performance 
evaluation, and statutory requirements of medical devices 
and their associated software. Specific guidance is now avail
able (ISO 34791) on evaluating medical technology that uses 
machine learning and artificial intelligence [91]. This includes 
consideration of potential hazards, technical and security- 
based features of the tool, and evaluation of the user–-inter
face relationship.

5.3. Operational challenges

5.3.1. Ethical issues for widespread implementation of AI 
Understanding and respecting ethical principles is a founda
tional aspect of clinical practice [92]. The Belmont Report 
(1979) defines the pillars of biomedical ethics, highlighting 
key standards that should be adopted for human research 
[93]. Elements of this need to be taken into consideration 
throughout the whole AI pipeline process from project design 
and validation to implementation of the deep learning system. 
Principles include autonomy, non-maleficence, and equity/jus
tice. Autonomy is based on the understanding that individuals 
are entitled to make their own healthcare decisions. Non- 
maleficence – ‘do no harm’ – ensures that there is no detri
mental impact toward patients and their overall clinical out
comes. Equity focuses on fairness with the absence of bias, on 
a population level [94]. In the context of AI, this ensures that 
yjr AI system does not accentuate existing health disparities 
and contribute to inappropriate bias across gender, income, 
ethnicity, and race. Inappropriate bias can have an expansive 
impact across the AI pipeline. Representative training datasets 
should be used during both training and validation in order to 
ensure inclusivity and minimize pre-existing health bias. The 
principle of equity is also applicable when discussing accessi
bility to the deep learning models. Despite a model having 
high sensitivity, its positive impact is limited to those indivi
duals who have access to the technology, predominately 
available at large research and healthcare institutes. This in 
itself further exacerbates inequality and bias based on wealth, 
location, and accessibility to technology and software [94]. 
Unintentional bias can also be derived from the value that 
certain stakeholders seek to gain through AI implementation, 
which is another benefit of engaging a breadth of stake
holders across the implementation process.

Ethical consideration surrounding the adopting clinician is 
also important. Dependence on automated machine learning 
algorithms poses the risk of introducing automation bias 

along with reducing doctors’ skills and confidence in diagnosis 
and management. Furthermore, concerns regarding the break
down of the doctor–patient relationship threaten successful 
implementation. However, it could be argued that AI will 
maximize clinicians’ time to build a rapport with their patients, 
thus ensuring that their best interests remain at the center of 
all decision-making [95].

5.3.2. Medicolegal issues & governance 
It is crucial that implementation of AI into clinical workflows is 
done in concordance with appropriate ethical and legal stan
dards. Issues that need addressing include safety, liability, data 
protection, and privacy concerns [96]. When implementing AI- 
based systems into ophthalmology workflows, it is important 
to optimize a pathway for accountability in cases of medical 
malpractice. For example, if a clinician follows an AI-assisted 
system in diagnostics and management, but this results in 
harm to the patient, the question of liability and litigation 
must be addressed. This needs to be mapped out clearly 
during the implementation process with uniformity across 
different hospitals and trusts [96]. The general consensus is 
that responsibility should still remain with the overseeing 
clinician, as CDSs are used as a tool to provide additional 
support and guidance to clinicians. In order to accept that 
liability, however, clinicians are likely to demand means to 
confidently evaluate tools and clear guidance to demonstrate 
their adherence to approved terms of use to demonstrate 
responsible action on their part. Further complexities and 
challenges in accountability arise during the implementation 
of autonomous AI systems. Studies have emphasized the role 
and responsibility of the manufacturer in determining the 
quality and safety of the product prior to implementation 
and hence the need for them to share accountability.

Introduction of AI liability insurance is a potential way of 
overcoming these issues. This will also help to drive the 
advances in digital health and encourage integration of 
high-quality AI by providing companies with ongoing security 
and support [97]. Other potential solutions to the accountabil
ity concern are through the creation of built-in accountability 
mechanisms into the machine learning algorithm itself, 
enabling auditing tools with limited explainability [47]. 
Finally, having consistent standards and an overseeing regu
latory body can also help to promote transparency and 
accountability [98].

Privacy and data protection issues are not unique to AI- 
enabled tools, and relevant policy and regulatory frameworks 
are well-established. Patient health data warrant robust adher
ence to such laws due to the nature of the data. In Europe, The 
General Data Protection Regulation (GDPR) is responsible for 
the data protection laws that are enforced. This applies to the 
rights of processing ‘personal data’ – which are defined as 
‘information related to an identified or identifiable person’ 
[96]. Although the conceptual framework of the GDPR is not 
explicitly designed for AI implementation, there are many 
components that are relevant and currently used in practice. 
Particularly within the medical context, ‘data concerning 
health’ are distinctly defined as relatiedto the ‘physical and 
mental health of a natural person.’ Under the GDPR regulation, 
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health data, genetic data, and biometrics are all included in a 
special category of sensitive information. Processing of such 
data is only permissible provided that there is explicit patient 
consent or where it is required for public or scientific interest 
and research [99].

AI governance can be established on a national, regional, 
organizational, or departmental level depending on the rele
vant governance structures and feasibility. With the emer
gence of multiple independent research teams and the 
expansion of commercially available platforms and algorithms, 
it is essential that regulation is applied consistently. 
Collaboration between AI governance bodies, research institu
tions, and other industry companies is required in order to 
deploy successful implementation. The formal process 
involves assessing clinical safety and complexity of implemen
tation and the financial and business assessment of the overall 
outcome. There is also integration of a feedback process on 
the selected algorithm, with importance given to the overall 
clinician experience and accessibility [49]. Governing bodies 
involved in the process should aim to include individuals from 
a variety of clinical and non-clinical disciplines including clin
ical champions, electronic health record managers, data scien
tists, patients, and legal representatives. This provides 
collaboration and inclusivity ultimately enabling robust 
implementation.

6. Conclusion

Artificial intelligence has the potential to revolutionize medical 
diagnostics, predictive analysis, and management of clinical 
conditions. Ophthalmology is setting precedents for integra
tion of deep learning into clinical workflows through the value 
it can add via the image analysis tasks that are so prevalent in 
ophthalmic clinical practice. Successful translation necessitates 
a collaborative approach from multiple stakeholders around a 
structured governance framework, with emphasis on standar
dization across healthcare providers and equipment and soft
ware developers. Safeguards should be put in place to prevent 
the exacerbation of existing systemic and population biases in 
healthcare provision. As clinicians have a professional duty 
toward their patients, concordance with ethical and legal 
regulations is vital throughout the AI implementation process. 
We acknowledge that integration of sustainable AI into clinical 
workflows is a challenging endeavor; however, ophthalmology 
has the potential to embrace this digital revolution, empower
ing patients and supporting clinicians in optimizing decision- 
making.

7. Expert opinion

Artificial intelligence, in particular, machine learning-enabled 
tools, promises to revolutionize healthcare and diagnostics. As 
highlighted in the review, successful implementation could 
have tremendous real-world implications within ophthalmol
ogy with regard to imaging diagnosis, treatment guidelines, 
screening, and predictive analytics. Integration of machine 
learning-enabled tools into clinical workflow is a challenging 
process and bridging the current ‘AI Chasm’ will require a 

collaborative effort to address issues of transparency, clinical 
site adaptability, and accountability.

As outcomes of integration will have a direct impact on 
patient care and well-being, concern regarding clinical adop
tion is common. These concerns range from systemic technical 
limitations such as lack of sustainable infrastructure within 
hospital environments to the personal inherent fear of losing 
autonomy and clinical expertise. Effective approaches to inte
gration must anticipate and address these issues. Given that a 
large proportion of health data is embedded within electronic 
health records, creation of a uniform integration strategy will 
create a level-playing field. Providing end users with sufficient 
information about the AI machine learning tool, and knowl
edge on the data used to generate decisions, will be essential. 
Other important considerations surround adequate safety and 
monitoring regulations, which can be applied across different 
medical hospitals and practices. Without a general agreement 
on these protective measures, enforcing sustainable wide
spread changes will be difficult.

Future research should seek to define these barriers further 
along with effective mitigations to support wide and effective 
implementation of machine learning-enabled tools into rou
tine patient care. Among other insights, this research will need 
to support effective collaborations between key stakeholders, 
explore regulatory needs further, and establish how to ensure 
these tools are safe. There is also opportunity to improve 
education processes to enable clinicians, providers, and reg
ulatory bodies to embrace the use of machine learning- 
enabled tools.

Other promising directions of research include local re- 
training of machine learning models, with data obtained 
from local clinical sites. This utilizes the inherent flexibility of 
these models with the aim of augmenting accuracy and pre
venting the perpetuation of health and social inequalities [45]. 
This can help to improve clinician and systemic adoption, 
ultimately supporting the integration process. Furthermore, 
availability of ”open-source” AI, with data protection policies 
implemented can also contribute to the scalability of smaller 
local models [45,100].

There are many lessons that can be learned from the imple
mentation of new technologies outside healthcare. Although 
much of the focus in recent years has been the personal com
puter and internet revolutions of the last few decades, perhaps 
the most instructive example for AI-enabled healthcare may be 
from the invention and implementation of electric light in the 
19th Century. The ‘dawning of the electrical age’ is commonly 
said to have occurred in 1882, when Thomas Edison was able to 
demonstrate electrical lighting for the entire Pearl Street District 
of Lower Manhattan in New York. The electric lightbulb had, in 
fact, been invented by many other people and in many different 
forms in the preceding 25 years [101]. However, the genius of 
Edison was to develop a network of innovations. Aside from the 
electric lightbulb itself, these included generators to serve as a 
source of electricity, a distribution system (‘the grid’), a connec
tion system to allow linkage with individual lightbulbs, and a 
monitoring system (‘electricity meters’) to allow measurement of 
consumption. It seems likely that AI-enabled healthcare will likely 
require similar networks of innovation to achieve its transforma
tive potential in the coming decade.
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In summary, this review has provided an overview on the 
factors that will influence the integration of machine learning- 
enabled tools into routine ophthalmology clinical workflows. 
Anticipating and managing these factors will support success
ful integration with the ultimate aim of streamlining the 
healthcare eco-system and improving clinical outcomes for 
individuals and populations.
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