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Large-scale physically accurate modelling of
real proton exchange membrane fuel cell
with deep learning

Ying Da Wang 1,7, Quentin Meyer2,7,8 , Kunning Tang1, James E. McClure 3,
Robin T. White4, Stephen T. Kelly 4, Matthew M. Crawford5,
Francesco Iacoviello 6, Dan J. L. Brett 6, Paul R. Shearing 6,
Peyman Mostaghimi1,8, Chuan Zhao 2,8 & Ryan T. Armstrong 1,8

Proton exchange membrane fuel cells, consuming hydrogen and oxygen to
generate clean electricity and water, suffer acute liquid water challenges.
Accurate liquidwatermodelling is inherently challengingdue to themulti-phase,
multi-component, reactive dynamics within multi-scale, multi-layered porous
media. In addition, currently inadequate imaging andmodelling capabilities are
limiting simulations to small areas (<1mm2) or simplified architectures. Herein,
an advancement in water modelling is achieved using X-ray micro-computed
tomography, deep learned super-resolution, multi-label segmentation, and
direct multi-phase simulation. The resulting image is the most resolved domain
(16mm2 with 700nm voxel resolution) and the largest direct multi-phase flow
simulation of a fuel cell. This generalisable approach unveils multi-scale water
clustering and transportmechanisms over large dry and flooded areas in the gas
diffusion layer and flow fields, paving the way for next generation proton
exchange membrane fuel cells with optimised structures and wettabilities.

Climate change has shifted the focus from fossil fuels towards clean
and renewable energy sources, with the hydrogen economy emerging
as a worldwide solution. Hydrogen fuel cells, and proton exchange
membrane fuel cells (PEMFCs) in particular, are key to this green
revolution due to their high energy conversion efficiency and zero-
emission operations1. PEMFCs, consuming hydrogen and oxygen to
generate electricity and water, offer the advantages of a low operating
temperature (<80 oC), high-energy density and quick refuelling2. They
electrochemically convert hydrogen into protons and electrons at the
anode, which react with oxygen at the cathode to generate electricity
with water as the only by-product. PEMFCs are a multi-scale porous
media comprising of a solid electrolyte membrane sandwiched

between nanoporous electrocatalyst on both sides, covered by a
microporous layer (MPL), amicroporous gasdiffusion layer (GDL), and
topped by millimetre-scale flow channels (Fig. 1). This multilayered
architecture both maximises gas diffusion to the active catalytic sites
and minimizes water accumulation in the catalyst layers3. The perfor-
mance of PEMFCs is highly dependent on the diffusion and utilisation
of the fuel and oxidant gases at the anode and cathode, and on the
efficient management of the water generated at the cathode4,5. At high
loads, the generatedwatermaysaturate themoisture carrying capacity
of the oxygen (air) and condense into droplets in the porousmedia2. If
not sufficiently removed, liquidwaterwill eventually accumulate in the
GDL andMPL, challenging gas diffusion to the active sites and thereby
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flooding the PEMFC. Thus, a trade-off between flooding and dehy-
dration is crucial for high-performing PEMFCs6–8.

Water management in PEMFCs has been improved by modifying
the MPL and GDL properties2,9. Most notably, large perforations and
cracks in the MPL and GDL, initially regarded as manufacturing
defects, significantly ease water diffusion from the catalyst layer10,11.
These features create stable and interconnected water channels inside
the electrode, reducingMPL andGDLwater content and improving the
gas and water balance. This “dual-porosity” flow between MPL/GDL
pores and perforations and cracks is well-known for multiphase flow
through heterogeneous and fractured porous media such as rocks12,13,
and is critical to optimise PEMFCs multi-phase flow dynamics. Obser-
ving PEMFC water transport and diffusion with high levels of detail
is essential to studying these spatial variations in porous structure
and improving PEMFC designs. Several operando water visualisation
methods have emerged in PEMFCs such as optical imaging (requiring
an opened flow field or transport window), neutron imaging with low
spatial and temporal resolution, X-ray radiography (low spatial reso-
lution), and X-ray micro-computed tomography (micro-CT)14–19.

Of these techniques, X-ray micro-computed tomography (micro-
CT) offers the highest spatial resolution (0.5–3μm), and field of view
(1– 6mm based on a 20002 pixel detector)20. In synchrotron facilities,
operando imaging of PEMFCs can be captured in less than 20 s using
micro-CT to capture the liquid water through the MPL and/or GDL
pores2,17,18,21–23. However, the current resolution and field of view of
micro-CT is not able to fully resolve a PEMFC porous structure3. Spe-
cifically, micro-CT cannot capture theMPL nanopores, while its field of
view is restricted to 2–3 gas channels at best24–26. Moreover, the GDL
fibres (<10μm in diameter) are poorly resolved by a few voxels causing
high aliasing. This trade-off between field of view and resolution limits
the capture and analysis of low density features (e.g. water droplets,
defects and cracks)9,15,16,18,27 while maintaining high-resolution, thereby
forming an upper hardware limit28–39 (see Supplementary Table 1a).
Beyond-hardware X-ray micro-CT image enhancement was recently
introduced using the so-called “super-resolution”40–43 to circumvent
such limitations and improve the resolution of rock samples. In this
approach, the resolution of a low-resolution image is enhanced, or
super-resolved, to the resolution of a high-resolution small field-of-

view image using convolutional neural networks (CNN)40. Although a
voxel-wise match is not necessary between the high-resolution and
low-resolution images42, the quality of the super-resolved image is
typically higher if the high-resolution image iswithin the low-resolution
one20. Such image enhancement using super-resolution convolutional
neural networks (SRCNNs) have not been applied to PEMFCs yet.

Numerical modelling of an operating PEMFC or the flow of fluids
in its pores and gas channels can be performed in conjunction with
operando experiments2,17,18. Aside from the need for wide field of view
and high-resolution, multi-label segmentation of a PEMFC volume is
a crucial step for accurate flow modelling over its membrane,
catalyst layer, MPL, and GDL. While grey-scale intensities of micro-CT
images typically correlate well to the density of the material (X-ray
attenuation)44, the MPL, GDL, and membrane are more challenging to
segment due to their similar densities. Machine learning can efficiently
capture the contextual information of the spatial correlations and
the geometric features, and accurately segment images far beyond
traditional segmentation methods20,42,43,45–47. Deep learning methods
arewell-suited andwidely used formulti-label segmentation, withwell-
establisheduse in themicro-CT imaging of porous structures20,48. Once
the 3D domain is successfully generated, the Navier-Stokes equation
can be directly solved on this meshed domain using either the Finite
Volume Method with the Volume of Fluid49,50, or with the Lattice
Boltzmann Method (LBM)51,52, using suitable boundary conditions
to mimic the generation and flux of water and gas. Furthermore,
electrochemical models may be incorporated into flow modelling at
various length scales using direct and agglomeration approaches
with co-simulation53–55. These approaches allow more efficient, lower
spatial-fidelity modelling to be conducted, which can mimic PEMFC
operando multi-physics dynamics2,17,18,56.

Such large simulation domains require considerable computa-
tional intensity, with even higher requirements for multiphase flow
modelling of water and gas transport52 or even electrochemical mod-
elling of multi-component reactive transport simulations55. As such,
due to these limits, two paradigms have emerged inmodelling PEMFC
operating dynamics; (i) reduced physics simulations of single or
immiscible two-phase flow directly on small subsamples of GDL and
MPL porous structures for water management modelling39,57,58, and (ii)

Fig. 1 | The generated PEMFC domain in this study. a 2D and b 3D rendering of the segmented membrane electrode assembly with artificially overlayed flow channels.
The gas channel and land contacting the GDL are labelled.
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electrochemical simulations with co-simulation to model the opera-
tion of a PEMFC with agglomeration techniques to efficiently char-
acterise the multi-layered, multi-scale porous structure53–55. In the
former case of water management modelling, the highly intensive
direct simulation on the voxels of segmented micro-CT images
involves a number of simplifying assumptions, for example, since
liquid water is generated at the cathode and thus primarily flows from
the cathode catalyst layer to the cathode gas channels through the
MPL and GDL, a simplifying assumption can be made to limit multi-
phase flow modelling to the cathode side only59. In essence, water
removal dynamics in PEMFCs do not require every individual sub-
process to be modelled. This is because (i) PEMFC efficiency can be
limitedby the timescale to removewater; and (ii) the timescaleofwater
removal is dominated by the capillary number (true at length scales of
μm to mm), viscosity and density ratio. This limiting behaviour has
been observed experimentally using neutron imaging, revealing a
direct correlation between liquid water accumulation and voltage
losses over a short timescale60. The computational resources required
to capturewater generation and transport dynamics at the cathode are
several orders of magnitude higher than single-phase simulations at
the anode, which would reach steady state conditions quickly61. While
1003 to 5003 domains canbemodelledwith a spectrumofworkstation-
class resources, domains exceeding 10003 require super-computing
resources62, with over 10,000 CPU cores and 100 GPU devices. As a
result, direct multi-phase flow simulations of PEMFCs are usually per-
formed on domains in the order of 2003 using workstation-class
resources39,57,58,63–66, and focus exclusively on the GDL or MPL. LBM
studies on larger PEMFCs derived from micro-CT imaging56,67 treat
water as a solid phase and gas as single-phase flow. More advanced
multi-component studies suffer from small fields of view (1.5mm2) or
poor voxel resolution (5 μm) issues68,69 (see Supplementary Table 1b).
Similarly, memory scaling limitations in 3D super-resolution (4 times
super-resolution results in 64 times memory increase) have restricted
its applications to the generation of small super-resolved cubes for
analysis and upscaling20,70. Therefore, although large-scale high-reso-
lution imaging andmulti-label simulations of PEMFCs are necessary to
drive the next technological innovation, the domain size is currently
restricted by limitations in both experimental imaging and computa-
tional modelling resources.

Herein, both the micro-CT imaging resolution and multi-phase
flow modelling capabilities of PEMFCs are significantly advanced by
generating an exceptionally large domain of 16mm2 surpassing cur-
rent hardware limitations (beyond-hardware), and utilising large-scale
computing resources (>20,000 CPU cores and 1000 GPU cores) for
simulations. A low-resolution, low-quality image of 275 × 1000 × 2000
voxels at 2.8μm is super-resolved in 3D by an innovative CNN archi-
tecture to 1100 × 4000 × 8000 voxels at 700 nm, combining the upper
limits of both resolution and field of view. The membrane, catalyst
layer,MPL, GDL, pore space, and gas channels are then segmented by a
CNN. The resulting image is used to model water and gas transport
using single and multi-phase LBM on supercomputing clusters. This
improvement represents several orders ofmagnitude of advancement
in the imaging and modelling capabilities of PEMFCs (see Supple-
mentary Table 1a and 1b). Furthermore, such a large and high-
resolution domain allows one to investigate the heterogeneous dis-
tribution of micro-features over several millimetres such as cracks and
defects in the MPL, holes in the carbon paper weave, and alignment
and misalignment of gas channels over the GDL71. Finally, this study
cements that the significant structural and wettability factors across
these length scales must be studied by such large PEMFC samples.

Results
Super-resolution
The super-resolution algorithm (DualEDSR), developed specifically
for this study to handle large 3D images efficiently, is trained on the

high- and low-resolution registered images. This involves firstly ima-
ging the whole domain at a low-resolution, and then imaging a small
sub-domain at high-resolution with a region of interest scan72. The
corresponding sub-domain within the low-resolution image is used
with the high-resolution image to train DualEDSR to generate super-
resolved images from other unseen low-resolution images. DualEDSR
is outlined in full detail in “Methods: Super-resolution”, and comprises
a pair of 2D EDSR networks73 trained in tandem to efficiently super-
resolve the X-Y and Z directions, facilitating the practical super-
resolution of large-scale images. The overall validation accuracy as
measured by the Peak Signal to Noise Ratio on a unseen section of this
sub-domain is 31 dB which is <0.1% mean squared error. This
improvement in image resolution and quality to the high-resolution
domain with reduced noise greatly improves the accuracy of the seg-
mentation in later steps. A visual comparison of the low-, high- and
super-resolution images from the validation set can be found in Sup-
plementary Fig. 1 alongside detailed performance comparisonwith 3D-
EDSR73. Briefly, DualEDSR trains five times faster than 3D-EDSR while
achieving a similar accuracy. When super-resolving a 150× 150× 225
block, 3D-EDSR consumes over 700 GB of memory in the final 3D
convolutional layers and needs CPU resources with pagefiling, taking
over 2 h. On the other hand, DualEDSR consumes <1GB, and success-
fully generates the super-resolved 600 × 600 ×900 block in under
1min, making DualEDSR a superior approach for large 3D domains.

The low-resolution image of the physical PEMFC sample acquired
by micro-CT (details in the “Methods: X-ray micro-computed tomo-
graphy of proton exchangemembrane fuel cell” section) measures with
275 × 1000×2000 voxels and 2.8μm voxel resolution (Fig. 2a, b) and
represents the hardware field of view limit of the Zeiss Xradia Versa
620 X-ray Microscope used in this study, and this image is super-
resolved using DualEDSR. The resulting super-resolved image has
1100×4000×8000 voxels with 700nm voxel resolution (Fig. 2c) and
3D render in Supplementary Fig. 2. This represents the upper hardware
limit of voxel resolution (700nm) for the particular detector used in this
study and is effectively combined with the wide field of view. The
resolution of the carbon fibres is particularly enhanced, with individual
fibres easily distinguishable in the super-resolved image. Furthermore,
significant improvements in the MPL/GDL and catalyst layer/MPL
interfaces are achieved. Finally, the catalyst layer and electrolyte mem-
brane are far easier to distinguish from surroundingmaterials, while the
background noise has been significantly reduced as well. A close-up can
be found in Supplementary Fig. 5. Only minor inaccuracies are sparsely
observed, caused by artifacts in the low-resolution image (random
contrast and noise variation) (Supplementary Fig. 3). In terms of time
efficiency, training DualEDSR took under 12 h to reach a plateau on a
single RTX Titan GPU (see Supplementary Fig. 1), and generation of the
super-resolved 1100×4000×8000 voxels @ 700nm voxel resolution
image took under 1 h of GPU time. In comparison, if onewere to attempt
to generate this high-resolution, wide field-of-view image by zoom-in
and stitching regions of interest, the single small high-resolution train-
ing block (Fig. 6) took ~11 h to acquire, for an field of view of
600×600×900 voxels @ 700nm resolution. To collect high-
resolution data across the entire sample would require approximately
and at minimum (assuming no overlap of the data sets) 108 such high-
resolution blocks, totalling 1188h of data collection (7.5 months at 8 h a
day, 5 days a week), not including data set stitching or allowing for
needed overlaps to ensure proper alignment of the data sets. This is an
image acquisition time reduction of at least 1 order of magnitude in the
most ideal case. Furthermore, once DualEDSR is trained on a specific
type of material and imaging condition, the procedure can be repeated.
Training a new DualEDSR for other samples and imaging conditions is
similarly straight-forward by generating new low-resolution and high-
resolution images as described in the “Methods: X-ray micro-computed
tomography of proton exchange membrane fuel cell” section. Overall,
this significant resolution improvement allows one to overcome the
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hardware-based trade-off between resolution and field of view,
which will be invaluable to improve the quality of the multi-label seg-
mentation and following multi-phase flow model, and represents the
initial major advancement of this work.

Multi-label segmentation
Full feature PEMFC segmentation was performed using the workflow
and methodology described in the “Methods: Full feature segmen-
tation” section involving the generation of ground truth using
machine learning and the training of a CNN to segment the entire
domain, which is an established and generalisable segmentation
methodology46,47. During training and testing, the training accuracy
and testing accuracy reached 97.3% and 96.2% after 100 epochs.

Training epochs were monitored to identify when the testing loss
remained unchanged after several decreases in the learning rate
while training loss continued to decrease (Supplementary Fig. 4a).
The confusion matrix (Supplementary Fig. 4b) of the labelling accu-
racy indicates a high segmentation accuracy (>93%) for the void,
fibre,MPLs, and catalyst layers phases, and an accuracy of 86% for the
membrane. A representative slice of this segmentation is shown in
Fig. 2d with a full 3D render in Fig. 2e. For the subsequent hetero-
geneity analysis and flow simulation, the perpendicular fibre and
parallel fiber phases are merged into a single fiber phase. A close-up
view can be found in Supplementary Fig. 5 and the visualised renders
of individual PEMFC layers of the full feature segmentation can be
found in Supplementary Fig. 7.

Fig. 2 | Micro-CT imaging, deep learned super-resolution and multi-label seg-
mentation. a Photograph andmicro-CT image of the PEMFCphysical sample.b 2D
cross section of the low-resolution (275 × 1000 × 2000 at 2.8μm) for comparison

with c 2D cross section of the super-resolution (1100 × 4000× 8000 at 700nm),
and d the multi-label segmentation with e a 3D render of the segmented super-
resolved domain.
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Furthermore, to emphasise the importance of the deep learned
super-resolution andmulti-label segmentation, attemptsweremade to
segment the low-resolution image using manual segmentation (Avizo
software, without deep learning) and with multi-label CNN segmenta-
tion of the low-resolution dataset. In the case of manual segmentation
on the low-resolution image, the MPL was indistinguishable from the
GDL and the layer failed to be segmented. In both cases, the thick-
nesses of the catalyst layer and GDL fibres was oversegmented by
a factor of 3 or more due to image blur and lack of spatial features,
resulting in excessive contact area between GDL fibres and over-
estimation of catalyst deposition thickness. A visual comparison
between the segmentationof the low-resolution imageusing (i)manual
segmentation with Avizo software (Fisher Scientific) and (ii)multi-label
CNN segmentation as outlined above is given with a further compar-
ison with (iii) the super-resolved multi-label CNN segmentation
and can be found in Supplementary Fig. 6. These excessive physical
inaccuracies in the pore structure preclude the possibility of accurate
flow simulations on the low-resolution domain, with or without deep
learned segmentation.

Heterogeneity analysis
Following the deposition of theMPL slurry onto thewovenGDL, cracks
appear in MPL regions with weaker woven support74. As the catalyst
layer is coated on theMPL, it may penetrate these cracks as well. These
cracks, or defects, have a significant role in the cell performance and
flow dynamics, creating easier pathways for gas andwater (rendered in
Supplementary Fig. 9). These defects are isolated here by generating a
heatmap and semi-variogram of the thickness of the catalyst layer and
MPL from the full-size super-resolved andmulti-label segmented image
obtained prior and depicted in Fig. 2d–e. The flattened projections of
the catalyst layer and the GDL as well as the autocorrelation of these
projections can be seen in Fig. 3, with flattened projections shown as
relative to the averageheight of each layer. Two sills in the catalyst layer
semi-variogram are detected, which correspond to micrometre scale

variations along the membrane surface (100–300μm), and millimetre
scale variations in the MPL fracture network (1.5mm). Similarly, the
MPL intrusion map shows a sill-range value exceeding 0.25mm, with
variation up to 2mm, caused by pinched and intruded regions. Overall,
this analysis demonstrates that such wide fields of view are necessary
to capture these defects as smaller domains do not provide an
accurate representation75. This study’s domain measures equivalently
36003 with gas channels imposed, which is orders of magnitude
higher than the typical imaged and synthetic domains for flow mod-
elling studies (1003 63,64, at the exception of a single-phase study on a
6503 domain56).

Permeability and velocity field heterogeneity
Single-phase analysis is performed in order to (i) probe the required
computational resources for such a simulation on this large 3D dataset
of a super-resolved, multi-label segmented PEMFC image, (ii) identify
regions of higher flowwithin and around theGDL, and (iii) determine if
super-resolutionprovides a sufficient resolution forflowsimulations in
this PEMFC. The permeability and flow field of the entire PEMFC is
determinedusing single-phase LBMasoutlined in the “Methods: Direct
flow simulation” section. This represents the flow of gas through both
sides of the PEMFC. As the MPL is unresolved, it is treated as a solid,
withflow through theGDL and the larger gaps andopenings in theGDL
weave. As the imagedoes not inherently contain a gas channel, and this
single-phase simulation does not include a water phase, the domain is
closed-off by flat walls.

This domain was simulated with 20,736 CPU cores (Gadi Super-
computing Cluster), took 66,000 timesteps to converge (8 h of wall-
time), and required 13 TB of RAM. While such a computing
requirement may represent a bottleneck in the direct simulation
modelling of large-scale PEMFC, these are anticipated to alleviate over
time, since LBM scales well with parallelisation. A normalised render of
the velocity field in Fig. 4a reveals that the flow is four orders of
magnitude higher in and around the GDL weave, which is consistent

Fig. 3 | Spatial analysis of the super-resolved, multi-label segmented image.
a 2D projections of the catalyst layer intrusions into the MPL fractures and b semi-
variogram with typical length between intrusions of up to 1.5mm. c 2D projections

of the MPL pinching by GDL and intrusion into GDL weave holes and d semi-
variogram with an autocorrelation range of 0.25–2mm.
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with the geometry of the material itself. Therefore, any water exiting
the MPL will preferentially be wicked away along the holes and inter-
weave bundle channels of the GDL.

Since this PEMFC contains multi-scale features, a flow simulation
of the domain and the permeability value reported as the bulk average
of the domain do not represent a single porous feature of the PEMFC.
Thus, the velocity field distribution identifies the flow contributions
within the porous internal structure of the GDL and around the GDL.
This gives an indication of the predominance of the advection domi-
nated flow in the open space and the inter-weave holes transitions and
of the mixed advection-diffusion flow in the GDL pore space. The dif-
ference in flow within and around the GDL is unveiled using velocity

Probability Density Functions (Fig. 4b, calculated by ∣�v∣
∣ 1V
R

V
�vdV ∣

). The

regions inside and surrounding the GDL were isolated using a

morphological closing operation with a spherical radius of 14 voxels.
While cross-sections and coarsening analysis of the flow pathways
could be performed, these require a sensitivity analysis of the different
domains and flow conditions to generate results with physical
meaning.

Direct flow simulation requires a well-resolved pore space to
accurately model flow in the domain, which is only achievable here
using the super-resolved domains76. In the final paragraph of the
“Results: Multi-label segmentation” section, attempts to segment the
low-resolution domain already showed highly inaccurate pore struc-
tures for flow simulation. The influence of the image resolution on
single-phase flow in porous media is further revealed by down-
sampling the segmented super-resolved image. While these smaller
domains are more efficiently modelled, the pore space increasingly
closes off near pore space constrictions and fiber contact points,
causing inaccurate no-flow regions in what would otherwise be open

flow paths. Figure 4c shows the computed permeability over the
downsampling factors, with zoomed-in areas of the pore-space detail
for each down-sampling level. While the super-resolved PEMFC retains
a reasonable level of detail when downsampled by a factor of 2 (1.4μm
resolution), further downsampling reduces the permeability from
5.9 × 10−8 m2 to 1.45 × 10−11m2, with a percolation threshold between 1.4
and 2.1μm. Additional visual representations of the velocity can be
found in Supplementary Figs. 10 and 11.

The simulation demonstrates the analysis capabilities over several
length-scales on a single domain using wide field of view and high-
resolution imaging. Furthermore, this technological advancement
allows one to elucidate the water transport and gas diffusion in
PEMFCs in steady-state and flooded conditions.

Water transport and gas diffusion modelling
The generation and transport of water in the large-scale PEMFC is
modelled using direct multi-phase flow simulation. The super-
resolution of the PEMFC image provides a representation of the pore
space of the GDL while the wide field of view allows to simulate water
transport and removal through theMPL fractures andGDL inter-weave
holes as outlined in the “Methods: Direct flow simulation” section. The
“Results: Multi-label segmentation” and “Results: Permeability and
velocity field heterogeneity” sections show that segmenting the low-
resolution domain or downsampling the super-resolved domain will
result in geometries unsuitable for flow simulation. As such, the full
super-resolved, multi-label segmented domain is used. Individual
contact angles and other material specific properties may be assigned
to each layer following the multi-label segmentation. As the water is
generated at the cathode, thismodel solely considers the upper half of
the cell. This assumed that limited back diffusion occurs when using a
weaved gas diffusion layer and relatively uniform MPLs59. While some

Fig. 4 | Velocityfielddistributionswithin thePEMFC. a Fully resolvedvelocitymagnitudefieldof the PEMFC image at 700nmvoxel resolution.bVelocity PDFs ∣�v∣
∣ 1V
R

V
�vdV ∣

of
flow within and around the GDL. c Analysis of permeability vs image resolution of the PEMFC.
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water will be present at the anode, it is secondary to the cathode in
terms of management of its removal, which is where it is rate-limited.
Parallel gas channels of 0.2 mm width and depth are overlayed over
30% of the segmented GDL thickness to emulate a reasonably com-
pressed PEMFC77,78 (Fig. 1).

For this simulation, the contact angles for all layers was set to 120
degrees to model hydrophobic carbon material79 as this sample
does not contain PTFE, which would result in more complex mixed
wetting surface distributions. The inlet flow rate Reynolds number
heavily influences the two-phase flow simulations. The Reynolds (Re)
number is calculated as Re= ρairvinletH

μair
where H is the thickness of the

PEMFC. The simulation is performed with the injection of air (vapour)
through the PEMFC gas channels with a Reynolds number of 1. An air to
liquid water volumetric ratio of 9:1 was set on the surface of theMPL as
described in the “Results: Direct flow simulation” section tomimic non-
flooded Buckley-Leverett80 displacement of condensed water within
the MPL. To emulate the convective force of a minor temperature
difference between theMPL andgas channel, an upwards body force of
10−6 (lattice units) was applied—similar to previous water management
studies that impose pressure or velocity conditions in lieu of explicitly
modelling temperature fields64,65. This assumes that the effect of

temperature gradient and any other upwards diving forces generated
by density differences are relatively homogeneous, and in this case,
results in a capillary number of 10−5 in the upwards directionwith in the
GDL. This flow regimewas simulated until thewater saturation reached
a steady plateau at 22%, after water droplets were transported over one
length of the sample. Water flooding of the PEMFCwas then simulated
by halting the gas flow (Re of 0) until the water content reached 75% 81.
The PEMFC was then purged by setting the flow rate to its previous
value, with the PEMFC the water content returning to 22%. This model
required 30,000,000 timesteps on the Summit supercomputer. A 3D
rendering of flow, and flood modes is shown in Fig. 5a–e. These reveal
that water predominantly accumulates near weave holes and under
the lands (see animated video with flow-flood-purge cycle in Supple-
mentary Video 1). This simulation domain and routine overcomes
the size limitations of previous large-scale studies by two orders of
magnitude56, and successfully models multi-phase flow dynamics.

Water droplets are removed efficiently when the GDL holes are
well-alignedwith the gas channels,while they remain trappedwhen the
holes are facing the lands. Furthermore, water does not diffuse into
the hydrophobic weave fibres as the transport resistance through the
holes is lower. This is particularly visible in close-up of the GDL and gas

Fig. 5 | Water-air flow simulations in the PEMFC. Flow patterns for simulated
a flow, and b flood regimes. c–e Flow patterns showing droplets snapping out of
and back into GDL weave holes in gas channel underflow. f–g Water occupancy

obtained by averaging over timesteps, showing water flow interactions between
GDL and gas channels. f Includes gas channels, and g shows only up to the bottom
of the gas channels.
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channel regions (Fig. 5c–e), with water droplets initially trapped under
the lands, wicked away from a GDL hole into the channels, and finally
re-attached to larger droplets trapped under GDL holes—causing par-
tial flooding. Heat maps of the water flow (generated by summing and
normalising the water distribution over the simulation frames) in flow
mode (Fig. 5f, g) reveal (f) localised flooding and underflow between
GDL weave holes and gas channels, and (g) regions with higher water
retention in the holes within the GDL weaves that lead to the land
region of the flow field. These findings greatly improve the under-
standing of the water transport and diffusion across lands and chan-
nels, demonstrating complex interactions. Furthermore, these
findings suggest that GDL and flow fields should be designed simul-
taneously, as even a slight misalignment of the weave holes and land
such as the one observed here creates localised water flooding with
extensive water retention in steady-state conditions. These complex
design considerations betweenwatermanagement and PEMFCporous
structure can also be probed with low-resolution operando experi-
ments such as 2D neutron imaging and X-ray radiography34,35,82. These
would supplement the numerical modelling of the super resolved
images and could be used to tune and validate water management
modelling for sensitivity studies.

Overall, the hydrophobic and porous GDL creates two inde-
pendent flow regimes, with (i)water flowing upwards through higher
porosity pathways through the GDL, then from the GDL weave holes
into the gas channels, and (ii) gas diffusing through intra-fiber regions
of the GDL into the MPL and catalyst layers. Although not investi-
gated in-depth here, the MPL fractures should create preferential
liquid water pathways, while the homogeneous regions facilitate the
mass transfer of gases. While these simulations considered here
uniformly hydrophobic MPL and GDL, local heterogeneities may
significantly influence the gas and water pathway and could be
investigated further using a similar approach. Finally, the multi-
phase flow model could be further enriched using electrochemical
modelling considering heterogeneous current densities and heat
generation53–55.

Discussion
This study greatly advances the understanding of liquid water
transport in PEMFC cathodes, unveiling water droplets clustering
and accumulating over channels and lands with a 700 nm voxel
resolution over a 16mm2 area. This is achieved by modelling on a
high-fidelity image of the PEMFC, generated by deep-learned super-
resolution and multi-label segmentation. This approach provides an
in-depth analysis of gas and water transport over the MPL, GDL,
and gas channels simultaneously at maximum spatial fidelity and
extent without volume averaged up-scaling. This beyond-hardware
approach reveals water clustering from small features (<100 μm) and
growth (>1mm) and overcomes the typical imaging field of view and
resolution trade-off conventionally restricting the analysis of such
volumes. As water transport and management in PEMFCs is strongly
impacted by the architecture of this complex microporous media,
improving the digital characterisation of these structures provides
the necessary level of spatial resolution to study significant structural
and wettability-based design considerations. Such multi-scale and
wide-area considerations are evidenced in this primary study, sug-
gesting the potential benefits of aligning the catalyst intrusions, MPL
fractures, GDL weave holes, and gas channel to enhance water
management. As such, through sensitivity analysis of large-scale
PEMFCdomains, an improved understanding of the porous structure
influences on gas-water flow in PEMFCs will lead to more effective
designs. These beyond-hardware imaging and modelling findings
extend past the fuel cell field to achieve higher resolution imaging of
larger fields of view than previously practical. Applications span from
enhanced sample inspection for quantitative analysis to direct

modelling and operando experiments where high spatial detail is
essential.

Methods
X-ray micro-computed tomography of proton exchange
membrane fuel cell
A commercially prepared 25 cm2 membrane electrode assembly
composed of two woven carbon fiber cloth GDLs with hydrophobic
MPLs (410 μm thick, W1S1011, CeTech), and catalyst layers (0.5 mgPt
cm−2, 60% Pt/C on Vulcan) sandwiching a perfluorosulfonic acid
proton exchange membrane (50.8μm thick, Nafion NR-212, Dupont)
was used for this work (FuelCellStore, US). A sample (6mm× 7mm)
of the membrane electrode assembly was probed with a razor blade
and mounted on a graphite rod for X-ray computed tomography
imaging. A laboratory X-ray CT system (ZEISS Xradia 620 Versa X-ray
microscope, ZEISS Innovation Center California, US) was used for 3D
imaging of the membrane electrode assembly. A source voltage of
60 kV and source power of 6.5W were used with a low energy filter
(LE2) for all samples. All samples were acquired using the Scout-and-
Scan Instrument Control System software (ZEISS). The full field of
view measuring 6mm× 3mm×0.8mm (Fig. 2a) of the sample was
imaged on the 0.4X objective, using 1601 projections and a 2 s
exposure time using vertical stitching. By positioning the source
1.25 cm from the sample, and the detector 19.43 cm from the sample,
a voxel size of 4.2 μmwas achieved, binned to a voxel size of 2.8 μm.
The domain was cropped to 5.6mm× 2.8mm×0.8mm to remove
edge irregularities from the razor cutting to generate the large field
of view low-resolution sample. An internal scan of the sample
(0.42mm×0.42mm×0.63mm) was carried out on the 4× objective
using 3201 projections and 12 s exposure time. By positioning
the source 1.25 cm from the sample, and the detector 10.5 cm
from the sample, a voxel size of 700nm was reached, which con-
stitutes the upper hardware resolution of the particular detector used
in this study. All radiographs were reconstructed into 3D volumes
using a cone-beam filtered back projection (FDK) algorithm using the
Reconstructor software (ZEISS), as seen in Fig. 6a and c. The low-
resolution imaging collection took 2 h to collect both sections of the
2-section vertical stitch covering a field of view of 4.2mm×7mm,
covering the entirety of the 3mm×6mm sample. The high-resolution
image collection took ~11 h to complete for a field of view of
0.7mm×0.7mm. The protocol for obtaining a low-resolution, wide
field-of-view image as well as a registered high-resolution subsample in
this study requires Region of Interest (ROI), or zoom-in scanning
capabilities, which are found in recent micro-CT systems designed to
perform multi-scale analysis83. The image acquisition and processing
steps are not restricted to the system in this study, and is widely
applicable to any under-resolved porous structures for subsequent
super resolution and multi-label segmentation.

Super-resolution
Super-resolution of the low-resolution image in Fig. 6 was achieved
using CNNs tomatch the quality of the high-resolution image obtained
experimentally by μ-CT while maintaining the wide field of view. This
methodology uses a 3D SRCNN20 structure with a coupled pair of
efficient 2D networks based on the Enhanced Deep Super-Resolution
(EDSR)73 to achieve 3D super-resolved images of large domains with
minimal computational cost. Using a pair of 2D CNNs (rather than
a single 3D CNN) will (i) improve training and deployment time,
(ii) reduce edge effects and overlapped subdomains, and (iii) rapidly
and efficiently preview and sample the SRCNN on subdomains and 2D
slices. These key improvements in performance unlock the ability for
large-scale super resolution of images as obtained from 3D image
acquisition methods rather than being limited to small 3D domains
due to GPU memory limits and CPU speed limits20.
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This structure (DualEDSR) is a unique network developed speci-
fically for this study, and consists of an XY super resolver SRxy, and Z
super resolver SRz. During training, an input image ILR, with shape
[Nx,Ny,Nz] is treated as a 2D batch of consecutive images, with the
image ILR permuted to ILRp such that shape(ILRp) = [Nz,Nx,Ny, 1] ≡
[b,Nx,Ny, c], where b is the batch size, and c is the number of channels.
The ground truth used to train this batch is a registered image IHR
with shape [Nz × S,Nx × S,Ny × S, 1], where S is the scale factor for
super-resolution. In this study, this value is 4. This allows the
image ILRp to directly be passed into SRxy, to generate a 2D super-
resolved image batch ISRxy

as ISRxy
=SRxyðILRpÞ, where the shape of ISRxy

is [b,Nx × S,Ny × S, c]. The generated image ISRxy
is compared with a

downsampled image IHRd
, with its first dimension downsampled by a

bicubic filter to a shape of [Nz,Nx × S,Ny × S, 1]. The loss function Lxy
computes the mean absolute error MAExy between these 2 images as
MAExy = LxyðISRxy

,IHRd
Þ. The XY super-resolved image ISRxy

is permuted
to ISRxyp

with shape [Nx × S,Ny × S, b, c], and passed to SRz to generate a
full 3D super-resolved image ISRxyz

as ISRxyz
=SRzðISRxyp

Þ. The resulting
image ISRxyz

has a shapeof [Nx × S,Ny × S, b × S, c], where c = 1, andb =Nz.
The input high-resolution image IHR is suitably permuted to
[Nx × S,Ny × S,Nz × S, 1] as IHRp. The loss function here Lxyz computes the
mean absolute error MAExyz between these two images as
MAExyz = LxyzðISRxyz

,IHRpÞ. During training, both loss functions are
optimised together in each iteration. The architecture is shown
in Fig. 7.

DualEDSR was developed in Tensorflow 2, and training and
testing were performed on an Nvidia RTX Titan GPU, and CPU testing
of 3D-EDSR was performed with a 32 core AMD Ryzen Threadripper
2990WX with 128GB of RAM. The high-resolution and low-resolution
images for training are split 80:20 in the z axis for training and vali-
dation. The full low-resolution image has no full size high-resolution
equivalent, so it acts as an external sample. DualEDSR is trained for
500,000 iterations at a learning rate of 10−4, decaying exponentially
with a half-life of 50,000 iterations. Plateau is reached well before
500,000 iterations—the extended training schedule is for investiga-
tive purposes.

3D-EDSR is also used as a comparison with DualEDSR, with the
same training schedule, and its architecture is identical to theX-Y stage
of DualEDSR, but with 3D layers. Differences in the performance
between DualEDSR and 3D-EDSR are discussed in Supplementary
Fig. 1. For comparative purposes, the same batch size of 323→ 1283 is
used forDualEDSR and 3D-EDSR. Both networks use a basefilter sizeof
64 and residual block length of 1640.While unpaired CycleGANs (Cyclic
Generative Adversarial Networks) could be used to train the SRCNNs
without matching low and high-resolution domains42 to train the
SRCNN, such networks are more stochastic, have lower accuracy,
require more computing resources and take longer to train20. As such,
while this was not within the scope of this study, it could be potentially
explored for PEMFC imaging and modelling without matching areas.
Similarly, as the ultimate objective is the efficient super resolution of a
large 3D image for subsequent segmentation, aspects relating to tex-
ture generation and perceptual quality with generative adversarial
networks and perceptual loss functions41 add unrequired complexity
and extra computational overhead.

Full feature segmentation
To perform multi-label segmentation on the super-resolved PEMFC
dataset, a Trainable WEKA segmentation (TWS)84 method is coupled
with a CNN. This involves selecting a 2D grayscale slice from the super-
resolved PEMFCand thenmanually clustering pixels into thefive labels
(pore/void, GDL, MPL, catalyst layer, membrane) as training data for
Weka segmentation. The Weka segmentation generates a 2D multi-
label segmented slice based on the manually clustered pixels—which
are manually inspected for accuracy47. This then serves as a ground
truth for CNN segmentation. Once the CNN is trained, the full 3D
super-resolved PEMFC is segmented.

The CNN architecture used herein is U-ResNet85,86 (Fig. 7). The
training pairs include the grayscale micro-CT slice and its corre-
sponding ground truth from Weka segmentation. It was cropped into
patches with a size of 120 × 120 pixels. Overall, 770 patches were
obtained, and split 80/20 for training and testing. The CNNmodel was
trained for 100 epochs with an initial learning rate of 10−5 and batch

Fig. 6 | PEMFC images as obtained by μ-CT. a Full field of view low-resolution (2.8μm) PEMFC image, and b registered low-resolution and c high-resolution (700 nm)
subdomains used for training.
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size of 16 using the Adam solver87. The learning rate was reduced by a
factor of 0.5 each time the loss reaches a plateau for 5 epochs. The
training and testing was implemented in PyTorch, using anNvidia RTX
3090 GPU and a 16 core CPU (AMD 5950X) with 128 GB of RAM. The
approximate training time per epochwas 4 s, themodel was trained in
7min for 100 epochs. After training, the other 4599 full-size
(8400 × 1280) 2D slices were fed to the U-ResNet one-by-one for
multi-label segmentation.

Lastly, an analogue to a membrane electrode assembly sand-
wiched between parallel flow fields is artificially generated by over-
laying corrugated flow field plates with gas channels on both GDLs.
Flow channels of 0.2mmwidth and height separated by 0.2mm lands
are used as these are one of the most promising flow field configura-
tions as well as approximately matching the half-wavelength of the
GDL weave88,89. The gas and water interactions at the cathode are

investigated using two-phaseflow simulations on the upper half of this
domain (Fig. 1).

Analysis of heterogeneity
Once super-resolved and multi-label segmented, the individual layers
of a PEMFC still contain heterogeneity yet to be identified and isolated.
Geometric features of interest include the spatial distribution of
intrusions of the catalyst layer into theMPL fractures and intrusions of
the MPL into the GDL weave. As these intrusions are not segmented
from the remaining materials, isolating them is non-trivial. While
advanced machine learning methods such as Weka84 can be applied, a
simpler approach is proposed here by considering the material layer-
by-layer hierarchy. Since the intrusions occur predominantly into the
PEMFC thickness, they can be quickly isolated and quantified through
projected height-maps and a semi-variogram90.

Fig. 7 | CNN architectures for super-resolution and multi-label segmentation.
a Network architecture of DualEDSR—composed of 2 EDSR networks in series with
appropriate upsampling layers. b Architecture of the U-ResNet, containing

downsampling as image feature extraction and upsampling layer for useful feature
decoding. Two fibres orientations together with the void form the GDL.
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As the PEMFC image is already oriented parallel to the width and
breadth planes, no extra image rotation is required. However, if such
rotation is needed, it should be performed before the segmentation
step, either on the low-resolution image, or on the super-resolved
image. Once segmented as per the previous section, the catalyst layer
and the MPL can be masked out of the image. Once this is done, the
projection of the thickness of these layers can be generated as a 2D
map of the height values. This allows a basic understanding of the
spatial heterogeneity in the plane of the PEMFC layers. With these 2D
height maps, a variogram analysis can be performed, which calculates
the semi-variance γ(h) of all height values in an annular envelope ½h2 , 3h2 �
for values of h (in voxels) up to the length of the sample. The range h
where γ(h) reaches plateau (the sill of the semi-variogram) represents
the length scale h where the variation in height values becomes con-
stant, representing a minimum required field of view to capture a
representative sample of the underlying heterogeneity.

Direct flow simulation
In the resolved void space of the PEMFC image, the flow of gas and
water is simulated by LBMusing aMulti-Relaxation Time (MRT) scheme
in D3Q19 quadrature scheme for momentum transport and multi-
component D3Q7 scheme for mass transport. This has been shown to
be sufficient in cases of low Mach number flows for accurately repre-
senting momentum transport anisotropy for the viscous stress
tensor91–93. The implemented multi-phase LBM has been used exten-
sively to model flow through a complex geological materials with dif-
ferent flow configurations and wettabilities94–98, demonstrating the
ability to capture expected experimentally observed trends with wett-
ability in complex geometries99. The microstructure of the GDL and/or
MPL lends itself well to such LBM formulations for water management
modelling39,57,58,63–66. LBM reformulates the continuummechanics of the
Navier-Stokes Equations (NSE) from underlying kinetic theory. A bulk
collection of particles within a control volumehas its kinetics estimated
with a 19-vector velocity space ξq and velocity distributions fq. For each
of the 19 entries in ξq, the velocity in the specified direction is fq. Thus,
an equation detailing the development of fluid transport can be con-
structed. The momentum transport equation at location x!i over a
timestep δt takes the form in Eq. (1) that relies on a collision operation J
which is model specific and outlined in detail in ref. 51:

f qð x!i + ξq
!

δt, t + δtÞ= f qð x!i, tÞ+ Jð x!i, tÞ ð1Þ

The PEMFC image has its single-phase flow simulated within the
pore space of the segmented image. The GDL and the open void space
above it are the key regions examined. In the generation andmodelling
of flow in porousmedia, the flowpathsmust be adequately resolved to
capture flow fields correctly. Onemetric used for determination of the
critical image resolution is the permeability K by Eq. (2):

K =
μ v!L
ΔPx

ð2Þ

where μ is the kinematic viscosity, v! is the mean velocity within
the bulk domain, L is the length of the sample in the direction of
flow, and ΔP is the pressure difference between the inlet and
outlet. The single phase flow simulations were performed on the
Gadi Supercomputer (National Computational Infrastructure,
Australia). This implementation does not include the effects of
flow in the microporous region of the MPL, which would require a
Stokes-Darcy-Brinkman approach49. This is a target of future
development and testing of an LBM implementation incorporat-
ing Darcy collision equations in the microporous region—though
this is not in the scope of this study.

Multi-phase flow is solved within the pore space using Colour
Gradient LBM, of which the specific implementation is detailed in

refs. 51,52. The high-resolution of the PEMFC image permits an accurate
presentation of the pore space of theGDL, thewide field of view allows
the simulation of water transport and removal via the MPL fractures
andGDL inter-weave holes. Themulti-label segmentation allowsone to
assign contact angles and other material-specific properties to each
layer independently. The two-phase flow simulations were performed
on the Summit (Oak Ridge Leadership Computing Facility, USA) and
Gadi (National Computing Infrastructure, Australia) supercomputers.
While the use of particularly powerful computational resources
enables direct modelling on the super resolved domain, cloud-based
systems routinely support systems with 8-16 GPU, sufficient to model
the full thickness of the cell at the resolution considered in this study,
though at a narrower planar field of view. A realistic domain size for
such cloud-based simulation using a GPU based multi-phase LBM sol-
ver would be in the approximate range of 800× 800× 600 to 10003. It
is conceivable that smaller scales could still provide meaningful cal-
culations, though larger scale simulations provide the basis to assess
what system size is needed to make an adequate representation of the
physical operation of the cell as well as capture any wide-scale het-
erogeneities that are singular or non-existent at smaller scales (such as
fractures in the MPL). GPUs as a cloud computing service is expected
to grow at 40% yoy100 to 2030, which by then would reach the same
order of magnitude as the relatively uncommon resources used in
this study.

Themulti-phase LBM in this study is implemented on a two-phase
immiscible system. Flow in the gas channel and GDL ismodelled, while
the MPL is modelled as a hydrophobic surface that generates both
water and gas at a constant, uniformly distributed gas-liquid satura-
tion. A simple gas channel of parallel square channels of length 0.2mm
is imposed over the PEMFC image and overlapped by 30% into theGDL
to emulate a compressed PEMFC. A volume render of this domain is
shown in Fig. 1. This treatment thus assumes that (i) the generation of
water in the catalyst layer is homogeneous, and will flow homo-
geneously to the surfaceof theMPL, thus assuming theMPL (excluding
resolved fractures) is a homogeneous porous media that follows
Buckley-Leverett80 two-phase flow, and (ii) the water generated
emerges fully condensed along the surface of the MPL and the gas
phase contains no information regarding the moisture content. The
MPL surface saturation value can be set tomimic operating conditions
whereby the amount of condensed liquid water within the MPL is
relatively small compared to the flow of vapour i.e. it is not being
flooded, or mimic the water-air dynamics of an MPL with a different
relative permeability or operating condition, such as near flooding
conditions approaching a 1:1 ratio or higher. Effectively, this treatment
considers water removal as the rate-limiting factor in the operation of
the PEMFC. In this situation, excess water within the fuel cell creates
congestion at the MPL, and strategies to efficiently remove water can
enhance the overall performance of the cell60. This simulation thus
does not directly simulate reactions in the catalyst layer, flow through
the MPL, or moisture content in the gas. Furthermore, flow due to
temperature gradients are captured by the imposition of a pressure
gradient in lieu of a temperature gradient64,65. The pressure is equal to
one third the trace of the stress tensor, and in situations where mul-
tiple driving forces are present (e.g. gradients in temperature, chemi-
cal potential or electrical potential), they contribute to the
hydrodynamic pressure gradient as the driving force that governs
momentum transport (with anisotropic stress tensor terms). Tem-
perature can matter for other reasons, such as the local equation-of-
state. Due to thermal capacity heterogeneity and phase change over
the mass transport field, the thermal gradients over the compressible
gas phasewouldbemore heterogeneously distributedover the PEMFC
compared to a body force. This could effect the liquid-gas interfacial
tension and even influence the local wetting state. However, these
effects are likely to be second order compared to the dominant
behaviours, which are due to the capillary number effect. The applied
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body force rather, facilitates investigation of influence of the porous
structure of the PEMFConwatermanagement, which is the case in this
study. Possible ways to incorporate these thermal-electro-chemical
effects into a multi-phase LBM routine respectively are; coupling with
Phreeqc101, coupling a Poisson pressure solver and advection of
saturation in the MPL to the open-pore flow in the GDL, addition of
equations of state into multi-phase and multi-component LBM55,102.
The multi-phase simulations in this study efficiently model water
transport, diffusion and removal, as well as an initial starting point for
future LBM modelling specific of PEMFCs.

Data availability
The super-resolved and multi-label segmented PEMFC data generated
in this study as well as the training data have been deposited in the
Zenodo database under https://doi.org/10.5281/zenodo.7470938.
Configuration files for the flow simulation are also available here.

Code availability
Deep Learning code and configuration files for super resolution is
available at https://github.com/yingDaWang-UNSW/Dual-EDSR and
flow simulation code is available at https://github.com/OPM/LBPM.
The code is also available upon request.
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