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ABSTRACT With the majority of mobile robot path planning methods being focused on obstacle avoidance,
this paper, studies the problem of Navigation Among Movable Obstacles (NAMO) in an unknown environ-
ment, with static (i.e., that cannot be moved by a robot) and movable (i.e., that can be moved by a robot)
objects. In particular, we focus on a specific instance of the NAMO problem in which the obstacles have to
be moved to predefined storage zones. To tackle this problem, we propose an online planning algorithm that
allows the robot to reach the desired goal position while detecting movable objects with the objective to push
them towards storage zones to shorten the planned path. Moreover, we tackle the challenging problem where
an obstacle might block the movability of another one, and thus, a combined displacement plan needs to be
applied. To demonstrate the new algorithm’s correctness and efficiency, we report experimental results on
various challenging path planning scenarios. The presentedmethod has significantly better time performance
than the baseline, while also introducing multiple novel functionalities for the NAMO problem.

INDEX TERMS Motion and path planning, navigation among movable obstacles, mobile robots.

I. INTRODUCTION
With the rise of the fourth industrial revolution, mobile robots
become robust and capable enough to complete autonomous
tasks in real-world [1], [2], [3], [4], [5]. While the focus
is mainly on designing methods that allow mobile robots
avoiding heavy interactions with the environment, in this
paper, we show that such interactions are useful. Most of
the research in mobile robot path planning is focused on
the problem of obstacle collision avoidance [6]. However,
specific environmental conditions can be encountered that
entice some form of interaction with the robot. Imagine the
simple scenario of a person that needs to navigate in a kitchen;
how many times do they need to push a chair towards a
table, so that they can pass a narrow passage? One could also
imagine more industrial cases, as visualized in Fig. 1, where a
robot needs to clear and free a path to carry on with inspection
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tasks. Mike Stilman, dedicated a big part of his research life
to solve this challenging, but important, problem, often called
Navigation Among Movable Obstacles (NAMO) [7].

In [8], Stilman and Kuffner introduced a detailed formu-
lation of the NAMO problem. In this work, we show that
the robot’s capability of manipulatingmovable obstacles (i.e.,
objects whose position in the space can be altered by the
robot) can modify the structure of the robot’s free Config-
uration Space (C-Space), notated as CfreeR . We assume that the
set of movable obstacles produces a segmentation of the robot
C-Space into d disjoint subsets CfreeR = {C1,C2, . . . ,Cd }.
In this specific NAMO scenario, in which each obstacle is
moved only once to connect two adjacent subsets Ci and Cj
without interfering with the connection of any other two CfreeR
subsets, becomes a k objects Monotonous Linear Problem
(LPk ,M ). It has been shown in [9] that even if we restrict the
problem to (LP1,M ) with a polygonal convex representation
for the obstacles and the robot, solving the NAMO problem
is NP-hard.

3174 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-0980-3227
https://orcid.org/0000-0002-3684-1472


K. Ellis et al.: Navigation Among Movable Obstacles via Multi-Object Pushing Into Storage Zones

FIGURE 1. The case where a mobile robot following an inspection path
(inside the green lines), unexpectedly detects an obstacle that needs to
be pushed towards a storage space to clear and free the path.

Rearrangement Planning (RP) is another example where
movable obstacles can be manipulated by a robot. RP dif-
fers from the NAMO problem as the goal positions for the
moving obstacles are predefined and, usually, a final goal
for the robot is not provided. Renowned examples of this
problem are the Sokoban game [10], in which a character
has to push a set of crates to predefined positions, and the
Assembly Planning [11], where the robot-obstacles interac-
tion is not considered and only the objects movements are
planned.

In this paper, we aim to tackle a special NAMO definition
that takes some elements from the RP formulation. In the
proposed NAMO instance, both the robot and the obstacles
have predefined goal positions. This problem can occur in
many application scenarios, e.g., a robot navigating in a
warehouse towards the desired goal while several boxes with
known storage zones are misplaced and prevent the robot
to reach its destination. In this case, we need to simulta-
neously plan for both removing all the possible robot path
occlusions, while manipulating the obstacles to their aimed
positions through a sequence of manipulation actions. If we
exclude the trivial scenarios in which manipulating an object
for connecting CfreeR subsets results in directly moving the
obstacle to the desired goal position, it is easy to see that this
particular NAMO instance is intrinsically Non-Monotonous
(LPk ,NM ), i.e., the obstacles need to be manipulated more
than once. Moreover, in this work, we consider the case
in which the robot can only push the obstacles, a common
situation that arises when a wheeled mobile robot without
a manipulator is investigated. This choice inevitably reduces
the search space making the problem harder.

The paper is organized as follows: in Sec. II, we review
the NAMO-related work. Paper contributions are stated in
section III. Then, in Sec. IV, we describe the proposed
method, and, in Sec. VI, we discuss the performance advan-
tages and limits of the proposed method. Finally, in Sec. VII,
we conclude with future problem directions.

II. RELATED WORK
The NAMO path planning problem was explored via a series
of papers, by Stilman, that resulted in his Ph.D. thesis [7].
In [12], Stilman et al. introduced an algorithm for NAMO,
applied to humanoid robots, where the obstacles could be
grasped, picked, and placed to free paths. The proposed plan-
ner created a graph with the objective of connecting differ-
ent robot C-Space subsets that are separated by obstacles.
To preserve the linearity of the problem, the obstacles can
only move in certain directions that do not interfere with the
connection of other robot C-space subsets. This allowed the
decomposition of the main navigation problem into different
sub-problems.

In [13], Stilman and Kuffner extended the proposed algo-
rithm for (LPk ,M ) problems by using artificial constraints
and reverse planning to limit the action space and improve
the algorithm efficiency. In Okada et al. [14], proposed
another algorithm for humanoid navigation with movable
obstacles. Their planner resulted from the compositions
of different specialized sub-planners, each of them deal-
ing with different problems, such as manipulation, naviga-
tion, and motion planning for manipulation. Nieuwenhuisen
et al. [15], proposed a tree-based planner method for com-
puting both the robot motion and the manipulation actions
for the obstacles. A Rapidly-exploring Random Tree (RRT)
approach [16] was used to find the final position of themanip-
ulandum. Therefore the proposed planner displays probabilis-
tic completeness and produces non-smooth paths for movable
obstacles.

In [17] the authors introduced an algorithm that is capable
to solve both linear and non-linear NAMO tasks, indepen-
dently of the problem’s monotonicity. The method is based
on a recursive approach that decomposes the original problem
into sub-problems that can be solved by moving only one
obstacle. While the proposed method is capable of dealing
with a large class of NAMO instances it is affected by an ele-
vated computational complexity that hampers the method’s
performance.

The aforementionedmethods introduce offline procedures,
while the methods that we propose in this paper is an online
sensor-based procedure that is capable to find NAMO solu-
tions with even partial knowledge of the operational environ-
ment.

The online NAMO problem has been the focus of several
papers in the literature. The work in [18] is one of the first
that attempts to address the problem of online NAMO. It is
assumed that the robot operates on a two-dimensional grid,
and only pushing is allowed for moving obstacles. To reduce
the computational burden, each time new information is
gathered by the robot, a new plan is computed only if the
optimality of the current plan cannot be ensured. In [19]
and [20], Levihn et al. introduced a novel online planner
for uncertain discrete state space and action. The proposed
planner is based on a hierarchical reinforcement learning
strategy that is combined with a Monte Carlo Tree Search
method for sub-task planning.
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One of the main limitations of the online planners intro-
duced so far, is that they have been designed to deal only with
(LP1) problems. Instead, our proposed method aims to deal
with (LP2,NM ).
More recently, the NAMO problem has been extended to

novel application contexts and utilized for different robotic
platforms. While extending the method introduced in [18],
the methods proposed in [21] and [22] introduced the concept
of social awareness, while planning for NAMO. In these
works, the authors defined new criteria that extend the origi-
nal NAMO formulation, such as social movability evaluation,
social placement choice, and social action planning. All those
measures aimed at maximizing the safety and human accep-
tance of the choice made by the robot. In another work [23],
the NAMO problem has been applied in the context of an
emergency evacuation. It was shown that it is possible to
reduce the evacuation time by creating new pathways for the
humans that are leaving a dangerous environment. In [24]
the role of computer vision is explored in order to facilitate
the solution of NAMO problems. In particular, the problem
of how affordances detection can be used to create open
loop NAMO plans. In Raghavan et al. [25], proposed a sim-
ple pushed-based strategy for freeing paths using a wheeled
quadruped robot.

All of these methods differ from our proposed algorithm
which focuses on the problem of NAMO with storage areas
that presents peculiar challenges.

III. CONTRIBUTIONS
Motivated by the work presented recently in [21] and
[22], we further extend the framework in multiple direc-
tions to tackle the problem of NAMO with storage zones.
In this paper, we extend the NAMO state-of-the-art in three
directions:

1) we allow objects to be moved to storage spaces;
2) we tackle (LP2,NM ) problems, where up to 2 objects

may be moved several times to connect free state space
components with respect to the robot and obstacles’
final positions, which naturally arise in the context of
NAMO problem with predefined storage zones; and

3) we optimize the online path planning time-efficiency.

This work, focuses on the path planning problem, with
the implemented algorithms applied to simulated wheeled
robot navigation tasks (in Gazebo and NVIDIA Isaac Sim),
including obstacle detection and localization.

IV. ALGORITHM
In this work, we study the navigation problem of a
holonomic/omnidirectional mobile robot moving in a 2D
workspace thatmight include both static andmovable objects.
The robot is placed at a starting position Rs and needs to plan
and follow a path to a goal position Rg. The initial world
map W , includes just the positions of the static objects (e.g.,
walls) in the environment, while the knowledge about newly
detected obstacles (pose, size, movability) is updated when

FIGURE 2. Obstacle manipulation points are found on each side of the
obstacle. If no valid path is found from the robot’s current pose to a
manipulation point, the cost associated with reaching this point is
considered infinite. Otherwise, the estimated cost is the sum of the cost
from the robot to the manipulation point, and from the manipulation
point to the goal.

the sensory system (RGB-D cameras) of the robot allows it.
During interaction with obstacles, the robot’s action space
is limited to pushing forward. Following the related work,
we represent the robot and the obstacles as rectangles in a
discretized grid space. The map is updated when obstacles
are detected and localized, while the type of the obstacles
(static or movable) is determined via the pushing interaction.
We further consider the case where an obstacle might need to
be moved first in order to free space for a second obstacle to
be moved and free a path. Lastly, we consider storage zones,
that can be specified for each obstacle, and pushing actions
can be performed only to move them in those spaces. Below,
we explain the complete algorithm in detail.

A. THE BASELINE
In this section, we describe the state-of-the-art baseline
method [21], which we extend in this paper. The path plan
uses a search-based approach in a loop: the robot is sensing
the environment, plans the optimal path using a search-based
path planner (e.g., A* or similar) [6], and executes a single
robot movement step. Then, these steps are repeated until the
goal is reached or no solution exists. The overall algorithm is
summarized in Alg. 1 and explained below:

1) WORLD SENSING
Given the original environment world map W , we generate
an occupancy grid and add any new obstacles that are iden-
tified within the robot’s Field-of-View (FoV). Those could
be potentially movable. During pushing actions, we evaluate
the actual ability of the robot to manipulate the obstacle, and
if it cannot be pushed, it is marked as static. The generated
world state W is stored during the sensing process. Further
details about the particular implementation chosen for this are
included in Sec. V.

2) PATH PLANNING
After sensing the environment, an initial plan Popt is gener-
ated, using a search-based path planner, e.g., A* [6]. If Popt
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Algorithm 1: NAMO Algorithm
Require:Starting World State (W ), Starting Robot
Position (Rs), Goal Robot Position (Rg);
W = SenseWorld() ;
M = GenerateOccupancyMap(W);
Popt = GetPlanTo(Rg,M);
isSuccess = True;
while True do

if Goal is reached then
return 1 F Outcome: Success!

end
W = SenseWorld();
Popt = Think(Popt, isSuccess, W);
if Popt is invalid then

return 0 F Outcome: Unreachable!
end
isSuccess = Act(Popt);

end

is invalid, i.e., paths are of infinite cost or go through static
obstacles, then new path plans are generated considering
alternative paths, both with and without obstacle manipula-
tion (in this work, by manipulation we consider only pushing
actions). For each obstacle, we consider four action points
in the center of each of the obstacle’s vertical faces. Plans are
generated for each reachable action point (i.e., see Fig. 2) with
an associated cost based on the search-based path distance
from the manipulation point Roi of object o to the goal Rg.
If no valid path is found from the robot’s current pose to
a manipulation point, the cost associated with reaching this
point is considered infinite. The obstacle (and its action point)
with the lowest estimated cost is selected.

Simulated execution of each possible pushing action is
performed, until a free path is found, generating simulated
plans Psim. The action plan cost is calculated as a three-part
segment path summing up the path to the action point (C1),
action path (C2), and path from the free opening1 to the goal
(C3), as follows (a visual example is shown in Fig. 3):

CRs→Roi→Rg = C1 + C2 + C3 (1)

The optimal plan Popt is then updated to the simulated plan
with the lowest cost. The algorithm for this step is shown in
Alg. 2.

3) EXECUTE PLAN
The next desired pose in the Popt plan is returned by the path
planning step above. A transformation is generated from the
current robot pose to the desired pose. The action step is
considered successful if the desired pose is reached. If the
push is unsuccessful, e.g., pushes it out of the planned way,
the robot will first attempt to complete the plan. In the next
iteration of theNAMOalgorithm, the agent updates theWorld

1In this paper, an opening refers to the space gap that is freed when an
obstacle is pushed.

Algorithm 2: Path Planning

Require:Plan Popt , Flag isSuccess, WorldW ;
if not isSuccess then

Mark last obstacle as static
end
if Plan Popt is valid then

return Popt ;
end
else

M = GenerateOccupancyMap(W);
Popt = GetPlanTo(Gs,M);
Plans = ∅;
foreach obstacle in M do

Plans = Plans ∪ PlanActions();
end
Choose obstacle with lowest cost plan
foreach Action on Obstacle do

Psim = SimulateActionPlan(M)
if Psim is better than Popt then

Popt ← Psim
end

end
return Popt ;

end

FIGURE 3. An example plan proposal (abstraction). The algorithm
considers a path with a pushing action. The path cost is composed of the
three path segments’ costs. The green area depicts the sensors’ FoV
range, orange blocks represent the seen and unseen obstacles. The robot
selects the path with the lower estimated cost.

state, which would also account for the failed push and the
new obstacle location. Thus, the agent will re-attempt tomove
the obstacle. The algorithm for this step is shown in Alg. 3.

B. BASELINE PERFORMANCE ENHANCEMENTS
In this work, we propose updates that improve the perfor-
mance of the state-of-the-art baseline method. In particular,
we aim at decreasing the time taken to find solutions to
NAMO problems, in the following ways.

1) ONE-STEP, UNTIL OPENING
The original algorithm was simulating pushing action steps
until a collision was detected. Instead, we plan a step until
an opening is detected. In particular, once an obstacle has
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FIGURE 4. Route graph algorithm applied to obstacle pushing – optimal paths are found via wavefront grid distance calculation that
alternates x- and y-axis movements. The optimal path with the fewest directional changes is chosen; and the robot plans pushing
movements around the planned obstacle manipulation path.

Algorithm 3: Execute Plan

Require:Plan Popt ;
Posenext = next(Popt);
Posecurrent = GetCurrentPose();
isSuccess = Move(Posenext, Posecurrent);
return isSuccess;

been detected, re-planning is executed. If a plan is found that
includes manipulation of an obstacle, then this section of the
path, C2, is generated by simulating push steps. For each step
that is simulated, a check is made to find if a path to the
goal is now available. In the baselinemethod implementation,
the step simulation was continued until the obstacle collided
with a static part of the environment. This meant that the
simulation step could take a long time. In our method, the
steps are only simulated until a path to the goal is found, then
this part of the routine exits.

2) SAVE THE PLAN FOR NEXT BEST OBSTACLE, WITHOUT
RE-PLANNING
In the baseline method implementation, if two obstacles had
been detected, plans would be made for each obstacle and the
plan with the lowest cost would be selected. If the robot went
on to execute this plan and found that the obstacle was in fact
non-movable/static, the planning stage starts and plans are
generated for the second obstacle, again. Thus, the algorithm
repeats for work that has already been done. While for two
obstacles this might not be an issue, the computation required
grows with the number of obstacles.

By storing the previously calculated plans associated with
each obstacle, the computation required to re-plan is min-
imized – the robot only needs to recalculate the first path
of the plan (from the current robot position to the obstacle
action point) as its starting location will have changed, while
keeping the remainder.

FIGURE 5. With vs without storage zones: the robot prefers to put the
obstacle into its designated area when possible.

3) PREFERENCE AROUND OBSTACLES
In the baseline method implementation, when planning for
an obstacle, a plan around the object is generated, as well as
plans where the obstacle is moved, rather than just selecting
the alternative path - around the obstacle. In our implementa-
tion, if a path is available around the detected obstacle, it is
preferred and selected.

C. BASELINE FUNCTIONAL ENHANCEMENTS
Apart from making the state-of-the-art baseline method
faster, we also propose a set of new features described in this
section.

1) STORAGE ZONES
The baseline method considers designated zones in which
manipulated obstacles are not allowed (i.e., taboo zones). For
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example, a zone could be added in front of a doorway to
prevent door obstruction. We extend this by considering the
opposite case, where an area could be designated as an area
where obstacles should be stored (i.e., storage zones). In this
way, when an obstacle blocking a path needs to be moved
away, the obstacle is not left in some unknown state, but at
a place of storage. See an abstract example in Fig. 5 and a
simulated run in Fig. 7.
The storage zones are firstly pre-defined and represented as

polygon shapes. When the world map W is generated, each
potentially movable obstacle is assigned to the closest storage
zone. A path is planned from the starting Rs to the goal Rg
robot position. If a new obstacle is detected, the plan with the
lowest cost is searched for, with A*. If the plan includes the
push action for an obstacle, a plan to move the obstacle to the
storage zone is made. The storage zone linked to the obstacle
is checked to find a space for it. Then, the space with the
minimum number of direction changes for the robot is picked.
Simulation steps are carried out to see if after each step the
obstacle is within the storage zone. If this cannot be achieved,
other options are explored, such as planning for another
obstacle.With the current implementation, if an object cannot
be put into storage and there are no further options for the
robot (alternative paths or moving other movable obstacles),
the goal is considered unreachable. In the opposite case, when
a storage zone can be reached, the planned trajectory points
are sent to the robot. The obstacle is added to the storage zone
and the available space in the storage zone is updated. The
robot should complete the plan, pushing the box to the storage
zone, backing away from the obstacle to avoid collisions with
it, and continuing on its path to the goal.

2) ALTERNATING PUSH DIRECTIONS
In the baseline algorithm, obstacle movement is limited to
pushing in a straight line along either the x or y axis of the
world map W . To consider more complex movements, such
as moving an obstacle to a storage zone, we need to integrate
alternative actions in the planner. One option would be to be
able to physically stick an obstacle to the real robot, which is
difficult to do or use a manipulator to pick up the obstacles.
Instead, we added a new feature in the NAMO framework.
With our new path planning enhancement, if an obstacle’s
closest storage zone cannot be accessed by a simple motion
along a single world axis, a plan is generated by including
an alternating sequence of pushes along the x- and y-axes.
This pushing method is based on the route graph algorithm
described in [26] and enables a path to be generated for the
manipulation phase of the planning, which is not restricted to
single axis motions.

The obstacle pushing algorithm is only used to plan pushes
to storage zones. Firstly, a wavefront grid of the world is
generated along with a node tree representation. Each grid
cell is evaluated to find the minimum distance to the goal.
A path needs to be found with the minimum number of direc-
tion changes. Starting from the first grid square, we select a
neighboring square in either the x or y direction. We continue

FIGURE 6. Multi-object displacement with storage zones: the robot
cannot reach its goal without manipulating both obstacles. Removing
object 2 reveals a manipulation point on object 1. The robot plans how to
push both into designated storage zones while clearing out a path to the
goal.

moving in a straight line in the grid, and once the cost of the
grid square stops decreasing, we add this grid location as a
node in the node tree.We then change direction and repeat the
process until the goal cell is reached. We select the path from
the start to the goal with the least number of nodes, retrace
this path, and add all grid cells to the plan.

This algorithm provides the path that the obstacle needs
to follow (not the robot itself). Thus, the robot path needs
to be generated too. In the simple case that the obstacle
movement is in a straight line, the robot’s path is the same as
the obstacle’s planned path, with an offset. When a direction
change is needed, the robot retreats from the obstacle to
avoid a collision and moves around the edge of the obstacle
to approach the next manipulation point. For each section
of the obstacle push plan, the robot plan is made up of
straight lines with offsets to trail the robot behind the obstacle
and ‘re-positioning’ sections to move the robot to the next
manipulation point in order to push the obstacle along the
perpendicular direction. If the obstacle plan starts with a
motion towards the robot’s current position, an A* path to
the manipulation point on the opposite face of the obstacle is
added to the robot plan. The grid-based path is converted to
real-robot motions and the complete plan is sent to the robot
as a sequence of trajectory points. An example of how the
path is found and implemented is visualized in Fig. 4.

3) THE TWO-OBSTACLES PROBLEM (LP2)
Anytime a manipulation is simulated as a sequence of steps
in a straight line, a check is made on each step to see if
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FIGURE 7. Example of using allocated storage areas during NAMO objective taken from a simulated run: (1)
the robot plans how to push the object into the storage space; (2) executes that plan; (3) discovers a new
obstacle and plans how to deal with it; and (4) finally reaches the goal.

either (i) a new path can be found to the goal or (ii) any
manipulation points on the rest of the detected obstacles that
are blocking the current path would become accessible. If a
manipulation point would become accessible, we check if
moving it would open up a path to the goal. If a plan cannot
be found, another obstacle is selected. This process can be
performed in a recursive fashion to be extended to any number
of additional obstacles. An abstraction of this behavior is
shown in Fig. 6 showcasing a scenario that could not be
solved by the baseline implementation. Simulation results are
shown in the experimental section.

V. EVALUATION
In this section, we demonstrate the behavior resulting from
our method and highlight the significant change in perfor-
mance for solving NAMO tasks.

A. SETUP
1) ENVIRONMENT
We set up a simulation environment in Gazebo and NVIDIA
Isaac Sim consisting of a walled roomwith awinding corridor
leading to an open area. The environment presents opportu-
nities for various obstacle arrangements blocking the robot’s
paths. The simulators were chosen as they would make the
transfer to the real robot and also testing more complex
scenarios that require photo- and physic-realism easier in
future work. As obstacles, we use standard cardboard boxes
of variable sizes, placed in ways that block the path to the
navigation goal and make it impossible to reach without
manipulating them - we do not consider paths that can be
solved without manipulation, as they can easily be solved
without NAMO. For all simulations, we use the Robotnik
Summit XLS robot - an omnidirectional wheeled mobile

platform. The action space consists of movement direction
and velocity. The observation space is defined by the robot’s
exteroceptive sensors which have a limited Field-of-View
(FoV) – LiDARs and RGB-D cameras (LiDAR is used for
SLAM, while RGB-D for obstacle detection). Success in this
environment is defined as the robot reaching the specified
goal location.

2) OBSTACLE DETECTION
Given the original environment world mapW , the 2D LiDAR
sensors generate an occupancy grid representation to map
new static parts of the environment while the robot is moving
and simultaneously localize the robot in it. In this work, this
is achieved with OctoMap [27] and GMapping [28]. We use
DOPE [29] trained on finding cardboard boxes to identify
objects in the sensor’s FoV, that are potentially movable.

B. SIMULATED RESULTS
Following the evaluation of Wu et al. [18], we showcase
simple examples of our method’s behavior and compare the
time performance with the baseline.

1) BEHAVIOURAL SIMULATION
To showcase the use of Storage Zones and the alternating axis
pushing, we set up obstacles along the path to the robot’s goal
and designated storage zones that require pushes in more than
one direction. One such run is shown in Fig. 7, where the
robot successfully navigates to the goal, storing all pushed
obstacles along the way. Similarly, we set up scenarios where
multi-object interaction is required (LP2). In the example
shown in Fig. 8, the robot successfully moves the obstacles
away from the path and reaches the goal.
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FIGURE 8. Example of multi-object manipulation: the initial state (top)
and the last plan after the robot has moved away from the obstacles
(bottom).

Overall, our method was successful in all standard
storage-zone scenarios – themethodwas able to solve the task
without getting stuck and pushed all boxes into the appro-
priate storage zones. However, there were two failure cases
that come from these scenarios: 1) when there is an unseen
obstacle directly behind another, in which cases manipulating
both obstacles at the same time is the only viable solution;
2) when the obstacle is close to a wall that it needs to be
pushed away from – requiring a manipulation action located
in a point different from the four vertical face center points.
An interesting scenario is shown in Fig. 9, where the second
obstacle could have been pushed more down, which would
have obstructed the robot’s path to the goal. Instead, the robot
decides to push it to the side. Note that in this case, the optimal
solution could have been for the robot to push both of the last
two boxes together with a single manipulation action.

2) TIME PERFORMANCE
To showcase the speed improvement of the method,
we compare the times to finish a navigation task with the
baseline [21]. We set up the environment with different obsta-
cle configurations that block the path to the goal. For this
experiment, all obstacle configurations can be solved without
multi-object manipulations (LP1) to allow a fair comparison
with the baseline. Since the proposed method is an improve-
ment over the baseline, in any other scenario which doesn’t
make use of our proposed optimizations, the performance is
the same. Thus, we focus on three significant variations of
this task with the single object manipulation constraint: (i) a
simple scenario where one movable obstacle must be moved
to clear a path; (ii) a scenario with two obstacles blocking an

FIGURE 9. In this scenario, the robot successfully pushes a box to the
side instead of forward, in order to preserve enough space for the narrow
passage to the goal.

TABLE 1. Time comparison between the baseline and our improved
method.

opening, one of the obstacles being static, the other movable;
in this scenario, the robots will first attempt tomove the closer
obstacle which is static, before moving on the movable one;
(iii) a scenario where the robot must pass through obstacle
blockages, and must push the obstacles in a way that doesn’t
block its future path. These local configurations are standard
for the NAMO problem [12], [18].

Our method requires on average 78.45% less time to solve
a NAMO task than the baseline. The results are shown in
Table 1. We observe that the baseline wastes more time on
re-planning as well as pushing obstacles until collision, rather
than until a path is freed. The most significant delay in the
process is the one-step simulation updates performed for the
manipulated obstacles.

VI. DISCUSSION
There are multiple reasons why the proposed method per-
forms significantly quicker than the baseline: (i) while the
baseline simulates pushing action steps until a collision was
detected, our method plans steps until a new opening is
detected; (ii) the plans to reach the next-best obstacle are
kept during the plan selection phase, rather than re-planning
after each obstacle-move attempt that fails; and (iii) and

VOLUME 11, 2023 3181



K. Ellis et al.: Navigation Among Movable Obstacles via Multi-Object Pushing Into Storage Zones

FIGURE 10. Preliminary real-world NAMO experiments, where a mobile robot pushes a movable obstacle to clear the path towards the goal (as part of
the sim2real photorealistic method, introduced in [30]).

periodically checks if the path to the goal has been freed
up, i.e., if a plan around the obstacle is available, the agent
prefers it over moving an obstacle. Additionally, with the
wavefront obstacle movement, the method is able to solve
quicker the more complex scenarios that require moves in
multiple directions.

The work proposes a versatile method that can produce
more robust and efficient NAMO path plans. However, there
it is still limited in movements that require pushing in
non-standard obstacle faces (e.g., pushing an obstacle diag-
onally), and pushing of multiple objects at the same time,
which could also require a more sophisticated prediction of
the interaction. While the method works as a practical solu-
tion to a simplified version with two assumptions (i.e., single
obstacle pushing in the world’s xy-axes), it is essential that
these limitations are addressed for a more general practical
solution.

VII. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of Navigation Among
Movable Obstacles (NAMO), demonstrating several exten-
sions and improvements over the prior state-of-the-art work.
We propose methods that: (1) allow obstacle movement
via pushing along more complicated trajectories, instead of
single-axis movements; (2) add storage zones to obstacles
when they are moved, which highlights the practical use of
NAMO in the real-world; and most importantly (3) allow
multi-object manipulation capabilities that can be used to
solve challenging problems that prior work failed to (we have
tested with two obstacles, leaving the application to more
as future work). Moreover, the method’s time performance
presents a significant improvement over the baseline.

There are multiple directions that this work can be
extended. First, we will work on real-robot experiments that
need to be demonstrated. We have presented some prelimi-
nary real-world experiments in the sim-to-real solution to the
NAMOproblem in [30] (see Fig. 10). Secondly, an interesting
direction is the manipulation of multiple objects at the same
time, as well as focusing on manipulation points that are
less predictable – different than the vertical face centers.
Additionally, we are considering assigning obstacles to stor-
age zone based on semantic connection instead of minimum
distance, e.g., associating a chair with a dining room. Last,

moving from 2D to 3D environments that might also be
dynamic will allow the application of NAMO to real-world
settings.
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