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Abstract
Risk matrices communicate the likelihood and potential impact of risks and are often
used to inform decision-making around risk mitigations. The merits and demerits of risk
matrices in general have been discussed extensively, yet little attention has been paid
to the potential influence of color in risk matrices on their users. We draw from fuzzy-
trace theory and hypothesize that when color is present, individuals are likely to place
greater value on reducing risks that cross color boundaries (i.e., the boundary-crossing
effect), leading to sub-optimal decision making. In two randomized controlled studies,
employing forced-choice and willingness-to-pay measures to investigate the boundary-
crossing effect in two different color formats for risk matrices, we find preliminary
evidence to support our hypotheses that color can influence decision making. The evi-
dence also suggests that the boundary-crossing effect is only present in, or is stronger
for, higher numeracy individuals. We therefore recommend that designers should con-
sider avoiding color in risk matrices, particularly in situations where these are likely to
be used by highly numerate individuals, if the communication goal is to inform in an
unbiased way.

K E Y W O R D S
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1 INTRODUCTION

Risk matrices illustrate the gravity of certain hazards as a
function of their likelihood and potential impact and are used
across the public and private sectors to make decisions about
risk mitigation and about how to allocate resources (Cox,
2008; Duijm, 2015). They can communicate quantitative or
qualitative information about risks, depending on whether the
likelihood and impact axes are both numeric, as in the case
of quantitative risk matrices (e.g., 0.6% chance of an event
resulting in £100k cost increase), non-numeric categories, as
in the case of qualitative risk matrices (e.g., unlikely to hap-
pen with a catastrophic impact), or a combination of the two,
as in the case of semiqualitative risk matrices (e.g., 0.6%
chance of an event happening with a catastrophic impact).

Risk matrices are widely used to communicate risks and
support decision-making around risk mitigation. For exam-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2023 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

ple, risk matrices have recently been used to assist with the
development of therapeutic guidelines that mitigate health
risks (Lemmens et al., 2022), communicate the threat of
plastic pollution to aquatic wildlife across different species
(Roman et al., 2022), visualize various weather- and non-
weather-related risks to cereals production (Huet et al., 2022),
and communicate risks of various natural hazards such as
rock bursts (Kadkhodaei & Ghasemi, 2022), floods, and
droughts (Cotti et al., 2022). Risk matrices are also used
to support international and national risk management prac-
tices, e.g., those of the U.K. Cabinet Office (2017), World
Economic Forum (2021), and various international stan-
dards such as ISO 31010:2019 (International Organization for
Standardization, 2019).

Commonly, a risk matrix will delineate different categories
of risks through color codes that categorize the risk depend-
ing on its impact and likelihood levels, with red typically
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2 PROTO ET AL.

F I G U R E 1 Example risk matrix format using color categories (cell shading format)

attributed to the most grave, followed by orange, yellow, and
green for less grave risks (Levine, 2012). As an example, con-
sider the semiqualitative matrix format in Figure 1, where
the likelihood axis presents geometrically increasing prob-
abilities (e.g., 0.3%, 1.8%, 5.4%), the impact axis presents
ordinal categories of severity (e.g., significant, catastrophic),
and each cell is assigned a color, meaning that Risk A in this
case would be considered a ‘‘yellow’’ level risk. In this study,
we employ a format that includes geometrically increasing
probabilities, as this is a common nonlinear scaling used in
practice. Additionally, we include geometric labels on both
axes (i.e., 1, 3, 9, 27, 81), as previous research has found these
labels enhance comprehension of the nonlinear nature of the
axes (Sutherland et al., 2021).

There are extensive critiques that focus on the merits and
demerits of quantitative risk matrices (Cox, 2008; Duijm,
2015; Levine, 2012), qualitative risk matrices (Cox et al.,
2005), and emerging research critiquing semiqualitative risk
matrices (Monat & Doremus, 2020; Sutherland et al., 2021)
in general. Additionally, there is some evidence that present-
ing information about the likelihood and impact of an event
along with a warning color in a risk matrix format helps
individuals make objectively better decisions than presenting
only the warning color with no information about likelihood
and impact (Mu et al., 2018). However, while this study
shows that the risk matrix format has advantages over a color-
only format due to the additional information it presents,
there is no consideration of the potential psychological effects
of adding colors to otherwise blank risk matrices.

In this study, we draw from fuzzy-trace theory (Reyna &
Brainerd, 1995) and investigate empirically whether adding

color-based, qualitative boundaries between cells in a matrix
might motivate decision-makers to prefer mitigations that
move a risk into a different color category, even if this change
reduces risk less than an alternative mitigation of equal cost
(Experiment 1). We also test whether decision-makers are
likely to value risk reductions that cross color boundaries
more than those that do not cross color boundaries despite
the fact that both achieve the same absolute reduction in
likelihood (Experiment 2).

Fuzzy-trace theory argues that when processing risk
information, individuals use different types of cognitive rep-
resentations that vary in precision (Reyna & Brainerd, 1995).
The theory distinguishes between verbatim representations,
which encode precise, detailed information (e.g., the numeric
probability of an event happening), and gist representations,
which encode surface-level, simpler, categorical (e.g., some
risk vs. no risk) or ordinal (e.g., low risk vs. high risk) infor-
mation. A key precept of fuzzy-trace theory is that although
all these representations are encoded in parallel, individuals
prefer to rely on the simplest information that clearly differ-
entiates between options when making decisions (Reyna &
Brust-Renck, 2020).

As matrix cell colors convey a qualitative, ordinal descrip-
tion of risk severity, they are likely to facilitate decision-
making that relies on ordinal gist representations, rather than
verbatim representations. For example, consider a case where
someone has to choose between reducing either of two risks
as in Figure 2. According to the colors, the decision would be
reduced to a comparison of ordinal gist representations, that
is, choosing between reducing risk A from “bad” to “good”
(i.e., from A1: yellow to A2: green) and reducing risk B
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 3

F I G U R E 2 Risk reduction options in a cell shading format risk matrix: A1 to A2 is a mitigation that causes risk A to cross a color boundary; B1 to B2
is a mitigation that does not cause risk B to cross a color boundary.

from “bad” to “bad” (i.e., from B1: yellow to B2: yellow).
As this is the simplest representation available, fuzzy-trace
theory predicts that a decision maker will opt to reduce risk
A, which seems superior to reducing risk B according to the
simple color indications. However, note that reducing risk B
from position B1 to B2 achieves a greater absolute reduc-
tion (5.4%–1.8% = 3.6%) in likelihood than reducing Risk A
from A1 to A2 (1.8%–0.6% = 1.2%). This verbatim infor-
mation is much more precise and complex than the color
information, meaning it is less likely to be used in decision
making.

Thus, individuals might prefer a risk reduction that crosses
color boundaries even if another risk reduction that does
not cross color boundaries achieves a greater actual reduc-
tion in the likelihood of the event, which would be evident
when inspecting axis labels. We refer to this phenomenon
as the boundary-crossing effect. By contrast, a risk matrix
without color would provide fewer cues for qualitative dis-
tinctions, thus prompting participants to rely on verbatim
representations, which might lead to more rational decision-
making when reducing risks (i.e., a preference for those
risk reductions that minimize the likelihood or impact of an
event).

Considering the popularity of using colors in matrices, we
sought a variation that might alleviate any biassing effects
and developed what we call the color banding format (see
Figure 3). Crossing color boundaries in this format might
still be tempting because an ordinal gist distinction in risk
severity is still suggested by the different colors. However,
because the design adds a band of cells that are ‘‘half one
color, half another’’ between each color category, a more
continuous transition between risk categories is enforced.
Mitigations moving a risk to a single cell on either dimension
can no longer move it from one single color level directly to
another, which might reduce the perceived degree of differ-
ence between levels, thus lessening participants’ preference
for crossing color boundaries.

Arguably, the color banding format can be adapted to
include different color split ratios (e.g., 90% one color—10%
another color, 75% one color—25% another color). In this
study, we restrict our matrix design to a color banding format
wherein cells can either be “one color” or “half one color,
half another” in order to minimize the possibility that the
color split ratio could influence perceptions of what consti-
tutes crossing a color boundary (e.g., crossing from a red cell
to a another cell that is 90% red and 10% orange might not be
perceived as ‘‘crossing a color boundary’’ in the same way in
which crossing from a red cell to another cell that is 50% red
and 50% orange is perceived).

Following the same argument—that participants would
prefer risk reductions that cross color boundaries over those
that do not—it is plausible that participants would also value
risk reductions that cross color boundaries more than those
that do not. In decision sciences, eliciting the amounts indi-
viduals are willing to pay for certain items or to make certain
events happen is a widely employed approach to measure the
subjective value they attribute to those items/events (He &
Zhai, 2017). We carried out a pilot experiment (see Support-
ing Information Appendix A) prior to this study to determine
a suitable method for eliciting participants’ willingness to pay
to reduce a risk within the matrix, which we then used as
a metric for assessing perceived value of hypothetical risk
reductions.

1.1 Objectives

In this study, we report two experiments. Experiment 1 was
designed to test whether or not participants presented with
risk matrices in either the cell shading format (Figure 1), color
banding format (Figure 3), or a matrix with no color at all,
would differ in their preferences for one potential risk reduc-
tion over another in a forced choice task. We pre-registered
three hypotheses:
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4 PROTO ET AL.

F I G U R E 3 The color banding format, designed to make color groupings less categorical than the cell shading format

H1: Compared to participants presented with the
no-color format, participants presented with the
cell shading format will be more likely to prefer
absolute risk reductions that cross color bound-
aries over other risk reductions that achieve a
greater absolute risk reduction but do not cross
color boundaries.

H2: Compared with participants presented with
the no-color format, participants presented with
the color banding format will be more likely to
prefer absolute risk reductions that cross color
boundaries over risk reductions that achieve a
greater absolute risk reduction but do not cross
color boundaries.

H3: Compared with participants presented with
the cell shading format, participants presented
with the color banding format will be less likely
to prefer absolute risk reductions that cross
color boundaries over other risk reductions that
achieve a greater absolute risk reduction but do
not cross color boundaries.

Experiment 2 was designed to test whether or not par-
ticipants presented with risk matrices in the three possible
formats showed differences in the values they assigned
to different risk reduction options in a willingness-to-pay
experimental format. We pre-registered four hypotheses:

H4a: In the cell shading condition, partici-
pants presented with risk matrices where the
risk reduction crosses a color boundary will be
willing to pay more for that reduction than par-
ticipants presented with the same risk reductions
but in the no-color matrix condition.

H4b: In the cell shading condition, partici-
pants presented with risk matrices where the
risk reduction crosses a color boundary will be
willing to pay more for that reduction than par-
ticipants in the cell shading condition presented
with the same risk reductions but in risk matri-
ces modified such that these risk reductions do
not cross a color boundary.

H4c: In the color banding condition, partici-
pants presented with risk matrices where the
risk reduction crosses a color boundary will be
willing to pay more for that reduction than par-
ticipants presented with the same risk reductions
but in the no-color matrix condition.

H4d: In the color banding condition, partici-
pants presented with risk matrices where the
risk reduction crosses a color boundary will
be willing to pay more for that reduction than
participants in the color banding condition pre-
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 5

sented with the same risk reductions but in risk
matrices modified such that this risk reductions
do not cross a color boundary.

2 EXPERIMENT 1: FORCED CHOICE

2.1 Method

2.1.1 Participants and procedure

Recruitment of UK-resident participants was facilitated by
the ISO-accredited market research company Respondi.
Interlocking quotas ensured that the sample was proportional
to the UK population by gender and age, according to EURO-
STAT 2019. Participants were invited to take part in the study
and redirected to a Qualtrics survey, where they read the par-
ticipant information sheet and digitally signed the consent
form. Median completion time was 11 min, and participants
were paid £2.97.

We recruited 5791 participants. Participants were excluded
from analysis if they failed to complete the questionnaire in
full (37.25% failure rate), if they failed the attention check
(36.49% failure rate among remaining participants), or if they
reported any kind of color blindness and were assigned to
a color condition1 (2.60% of remaining participants). The
attention check (“How concerned should we be if you did
not pay attention? To check that you are paying attention,
please select 80 on the scale below:”) was answered using
a moving slider toward the second part of the survey detailed
in Experiment 2. Answers between 75 and 85 were coded as
attention check passes to account for imprecision when mov-
ing the slider. The final analytic sample consisted of 2249
individuals (39% of the recruited sample).

Experiments 1 and 2 were part of the same survey, and
our intended sample size was 3580 (see pre-registration
here: https://osf.io/bguxf, and study materials and data here:
https://osf.io/9nvk3). This sample size was intended to
achieve 90% power for an independent-samples t-test in a
set of four possible tests (corresponding to the four hypothe-
ses in Experiment 2), with a conservatively corrected alpha
level of 0.0125, and a small effect size (Cohen’s d = 0.2).
The lower size of our analytic sample is mainly driven by the
high attention check failure rate.

At the start of the survey, participants received instructions
on how to read risk matrices (i.e., what the axes and geo-
metric labels mean and explanations of the geometric scaling
of risks on both likelihood and impact dimensions). Before
being shown any of the experimental questions, participants
completed questions assessing their personal experience with
flooding, perceptions of the risk of flooding in the area where
they live, and experience with risk matrices. Participants were
then randomized to one of the three arms of Experiment 1.

1 Results presented below also hold when participants who reported color blindness
were excluded across all conditions.

Approximately 70% of participants had never used a risk
matrix before, around 18% reported having used them rarely,
around 8% reported using risk matrices sometimes, and fewer
than 5% reported using risk matrices on a regular basis. With
regard to flooding, around 80% of participants in each con-
dition reported having no personal experience with flooding.
Similarly, around 85% participants reported living in areas
where they perceived the flooding risk to be low (see Sup-
porting Information Appendix B for a detailed breakdown of
covariate values across the whole sample).

At the very end of the survey (i.e., after completing Exper-
iment 2 as well), participants completed a composite measure
of numeracy consisting of the adaptive Berlin numeracy test
(Cokely et al., 2012), the Schwartz numeracy scale (Schwartz
et al., 1997), and an item from the expanded numeracy scale
of Lipkus et al. (2001) in the light of previous research
indicating that this combination of numeracy tests produces
less-skewed distributions in public samples (e.g., Cokely
et al., 2013; Sutherland et al., 2021). They were then asked to
report their age, nationality, ethnicity, native language, house-
hold income, highest educational qualification, and political
views in order to assess the degree to which our sample rep-
resented a diverse range of demographic characteristics (see
Supporting Information Appendix B).

2.1.2 Design

This experiment adopted a fully randomized between-
subjects design. Participants were randomly allocated to one
of the three risk matrix formats. Participants in the no-color
condition represent the control group.

2.1.3 Dependent variable: Risk comparison
scores

Participant performance on four2 risk reduction decision
tasks was evaluated (one aimed at reducing impact, three
aimed at reducing likelihood). For each task, participants had
to choose between reducing two risks that were identical
on one dimension (e.g., likelihood), but had different posi-
tions on the other dimension (e.g., impact) (see Figure 4).
Risks were presented as hypothetical flood risks, referred to
as “Risk A” and “Risk B.” Participants were informed that
both risk reductions cost the same amount, but that they only
had resources to reduce one of them, and were asked to state
their choice. At the beginning of the survey, participants were
explicitly instructed that the lighter text (i.e., “A2,” “B2”)
represented the new risk positions after reduction, whereas
the darker text (i.e., “A1,” “B1”) represented current risk
positions, prior to any reduction.

2 Participants were presented with five risk reduction decision tasks, but a survey error
meant that one of the stimuli was not displayed correctly, and it was therefore removed
from analysis.
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6 PROTO ET AL.

F I G U R E 4 Example risk comparison stimuli from Experiment 1.1. Participants were shown one of the three pairs of matrices and asked whether they
would prefer to reduce risk A (from position A1 to A2) or risk B (from position B1 to B2), if the costs of doing so were equal.

The exact placement of the risks across different impact
and likelihood levels, and the absolute size of potential
risk reductions differed across questions. Specifically, the
amounts were selected such that the risk reduction option
that crossed color boundaries always achieved a smaller abso-
lute risk reduction than the alternative, which did not cross
color boundaries. We anticipated that if the correct answer
(the greater reduction) always corresponded to the choice that
did not cross a color boundary, this might become obvious to

attentive participants. To break this pattern, and thus to pre-
vent participants from becoming aware of our manipulation,
two distractors were included in this set of questions (one
aimed at reducing impact, one aimed at reducing likelihood).
For these questions, the choice that gave the maximum abso-
lute risk reduction was the one that crossed color boundaries,
which is the complete opposite pattern to our task-relevant
stimuli, and thus would prevent participants from picking up
a generic pattern on which to base their answers, thereby
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 7

increasing the validity of our measure. The order in which the
complete set of stimuli (task-relevant stimuli and distractors)
was randomized across participants.

The risk comparison measure was constructed as follows.
For each question where participants chose the option that
achieved the greatest absolute risk reduction (i.e., the one
that did not cross color boundaries), they were awarded one
point. Points on all decision tasks (excluding distractors) were
summed into an overall risk comparison score. Thus, a higher
risk comparison score indicates more ‘‘rational’’ decision
making, and, due to the nature of our stimuli, a preference for
risk mitigations that do not cross color boundaries, as these
were designed to achieve a greater absolute risk reduction
than those that crossed color boundaries. The scale showed a
slight ceiling effect but achieved a reasonable spread of scores
with most participants scoring between 1 and 3 (range from
0 to 4) in each experimental group (see Supporting Informa-
tion Appendix A). Compared to participants who failed the
attention check, participants who passed it achieved higher
risk comparison scores on average (B = 0.215, p < 0.001).

2.2 Results

2.2.1 Analytical approach

Variances in risk comparison scores were similar across
experimental groups, as indicated by a nonsignificant Lev-
ene’s test (F(2, 2246) = 0.674, p = 0.510) and visual
inspection of histograms. We chose covariates based on their
whole-sample correlations with risk comparison scores and
their variance explained in risk comparison scores when
included in models alongside the independent variable (color
format). This procedure is detailed in Supporting Informa-
tion Appendix C and resulted in numeracy and flooding risk
perceptions being selected as covariates. The assumption of
independence from the independent variable held for both
covariates.

Originally, we pre-registered a three-way between-subjects
analysis of covariance (ANCOVA). However, we chose to
fit a linear model that included the interaction between
numeracy and condition, and flooding risk perceptions as a
covariate, as this model improved variance explained (see
Supporting Information Appendix C). The model including
an interaction term between numeracy and format explained
incremental variance in risk comparison scores over a model
including only main effects for format, numeracy, and flood-
ing risk perceptions (F(4, 2238) = 4.375, p = 0.002,
η2

G = 0.004). This model decreased AIC (Akaike Infor-
mation Criterion) from 7769 to 7757, and decreased BIC
(Bayesian Information Criterion) slightly from 7803 to 7802,
indicating that the inclusion of the interaction term was justi-
fied when balanced against increased model complexity. This
interaction suggests that the ANCOVA assumption of homo-
geneity or regression slopes is violated, thus justifying our
deviation from the pre-registration.

2.2.2 Findings

Participants in the color banding condition had lower risk
comparison scores (i.e., performed worse in terms of maxi-
mizing risk reduction) than participants in the no-color and
the cell shading conditions, with these effects increasing in
strength as numeracy increased and reaching significance at
average and high numeracy levels (see Table 1). There was no
difference between the no-color and cell shading conditions
across numeracy levels. As higher risk comparison scores
indicate more rational, less biased decision-making, this pat-
tern of results suggests H2 was supported, but H1 and H3
were not supported. The differences between formats at low,
mean, and high numeracy levels, controlling for flooding risk
perceptions, are also illustrated in Figure 5.

3 EXPERIMENT 2: WILLINGNESS TO
PAY

As described above, this experiment was carried out within
the same survey, with the same participants, as Experiment 1.
The order in which participants completed experiments was
randomized.

3.1 Method

3.1.1 Design

The experiment adopted a fully randomized design wherein
participants were randomly allocated to one of five condi-
tions: no color, cell shading with risk reductions that do not
cross boundaries, cell shading with risk reductions that cross
boundaries, color banding with risk reductions that do not
cross boundaries, or color banding with risk reductions that
cross boundaries (see Figure 5). Within each color format, the
“crossing boundaries” group was compared against the “no
crossing boundaries” group, and against the no-color group.

3.1.2 Dependent variable: Willingness-to-pay
amount

Participants were presented with three risk reduction options
at low probability levels (reduction from 0.6% to 0.2%),
medium probability levels (reduction from 1.8% to 0.6%),
and high probability levels (reduction from 16.2% to 5.4%),
corresponding to absolute reductions of 0.4%, 1.2%, and
10.8%, respectively. In each case, participants were asked
to report how much they would be willing to pay out of a
total budget of £100k (in £1k units) to achieve the risk reduc-
tion presented to them. The color pattern of the matrix was
designed such that for some participants, the risk reductions
crossed color boundaries (e.g., from red to orange), while for
others, the same risk reductions did not cross color bound-
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8 PROTO ET AL.

TA B L E 1 Differences between formats at low, mean, and high numeracy levels, controlling for flooding risk perceptions

Reference level

No color Cell shading

Numeracy B SE t p p (B–H)

Low 0.075 0.010 0.758 0.449 0.505

Mean –0.008 0.070 –0.109 0.913 0.914

High –0.091 0.099 –0.919 0.358 0.460

No color Color banding

Numeracy B SE t p p (B–H)

Low –0.125 0.099 –1.260 0.208 0.311

Mean –0.399 0.070 –5.682 <0.001 <0.001

High –0.672 0.099 –6.800 <0.001 <0.001

Cell shading Color banding

Numeracy B SE t p p (B–H)

Low –0.201 0.098 –2.039 0.042 0.075

Mean –0.391 0.070 –5.598 <0.001 <0.001

High –0.582 0.100 –5.850 <0.001 <0.001

Note. p (B–H)—value adjusted with the Benjamini–Hochberg procedure. B—unstandardized regression weights. Low, mean, and high numeracy levels correspond to values one
standard deviation below the mean of numeracy, mean numeracy, and one standard deviation above mean numeracy calculated across experimental groups. The overall model
explained 4.3% of variance in risk comparison scores (R2

= 0.043, adj-R2
= 0.040).

F I G U R E 5 Marginal mean risk comparison scores and 95% confidence intervals in each format at different levels of numeracy, adjusted for flooding
risk perceptions. Significance levels: ns—p > 0.05, ***—p < 0.001

aries (e.g., reduction from a red cell to another red cell) (see
Figure 6). In order to make it possible for the same risk reduc-
tion to cross color boundaries for some participants, and not
cross color boundaries for others, the proportions of colors in
the matrix had to be altered accordingly. This is most evident
in the color banding condition in Figure 5, where the propor-
tion of orange relative to red changes depending on whether
boundaries are crossed or not. Compared to participants who
failed the attention check, participants who passed were will-
ing to pay more to reduce risks on average (B = 2.055,
p = 0.003).

3.1.3 Manipulation check

To ensure our manipulation of probability levels was success-
ful, we compared mean willingness-to-pay (WTP) amounts
across conditions at within-subject level. Including proba-
bility level as a predictor reduced deviance compared to
the unconditional model (X2(2) = 1405.1, p < 0.001), with
participants being willing to pay significantly less for risk
reductions at low probability levels (i.e., small risk reduc-
tions) than at medium (B = 5.534, t(4372.09) = 11.95,
p < 0.001) probability levels (medium reductions) and high
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 9

F I G U R E 6 Example risk reduction stimuli used in the five arms of Experiment 1.2. Participants were asked how much they would be willing to pay to
reduce risk A from position A1 to position A2.

(B = 18.357, t(4376.09) = 39.67, p < 0.001) probability lev-
els (large reductions). Similarly, participants were willing to
pay less at medium probability levels than at high probability

levels (B= 12.823, t(4372.85)= 27.80, p< 0.001), indicating
that the manipulation was successful. Unstandardized WTP
betas indicate differences in thousands of pounds.
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10 PROTO ET AL.

TA B L E 2 Multilevel model structure—Predicting willingness-to-pay (WTP) at each probability level

Unconditional model Covariate model Main effects model Interaction model

Level 2: Participant Random intercept Random intercept Random intercept Random intercept

Numeracy – Fixed effect Fixed effect Fixed effect

Format – – Fixed effect Fixed effect

Format × Numeracy – – – Fixed effect

Level 2: Probability Random intercept Random intercept Random intercept Random intercept

Level 1: Item

WTP amount (DV)

ICC participant 0.486 0.481 0.479 0.477

ICC probability 0.141 0.143 0.143 0.143

Deviance change (X2) – 39.887*** 12.809* 13.822**

AIC 58,264 58,227 58,214 58,204

BIC 58,291 58,261 58,275 58,292

Note: Tests for change in deviance were carried out using models fitted with ML, and models were compared from left to right, in the order shown. Fit indices are based on estimation
with REML. AIC - Akaike Information Criterion; BIC - Bayesian Information Criterion; ICC - Intraclass Correlation Coefficient
*p < 0.05;
**p < 0.01;
***p < 0.001.

3.2 Results

3.2.1 Analytical approach

Two plausible analytical approaches exist. One possibility
is for the dependent variable to be the average of all WTP
amounts across probability levels, predicted using a linear
model. Another possibility is for the dependent variable to
be represented by individual WTP amounts, and probability
level to be included as a random effect in a multilevel model
wherein individual WTP amounts are nested within individu-
als and within probability levels in a crossed random effects
structure.

Originally, we pre-registered a mixed ANCOVA to study
the effect of boundary crossing and color format on WTP
amounts. However, we have used a multilevel model to
enhance power. We have a sample size that is much lower
than originally planned, and we have missing observations on
our WTP measure, 67 at low probability levels, 45 at medium
probability levels, and 36 at high probability levels. Multi-
level models make use of all available data in estimation,
whereas traditional linear models (e.g., mixed ANCOVA)
would result in a loss of power as they require listwise dele-
tion of cases. However, results from a nonhierarchical linear
model predicting WTP amounts averaged across probability
levels are presented in Supporting Information Appendix D,
and are also discussed below.

We started by partitioning overall variance in WTP
amounts into participant-level, probability-level, and resid-
ual variance by including random intercepts for participants
and probability levels. Subsequently, we added fixed effects
for covariates, but only numeracy was found to minimize the
deviance of the overall model meaningfully, and thus it was
the only covariate considered. Table 2 illustrates the hierar-

chical structure of the data and shows the specification of
the unconditional and final models, together with model fit
indices, deviance statistics, and variance components. Includ-
ing an interaction between format and numeracy achieved
a reduction in deviance (X2(4) = 13.822, p = 0.008) and
AIC, so we decided to keep the interaction term despite
the increase in BIC. Results from a model not including
an interaction term are presented in Supporting Informa-
tion Appendix E and are also discussed here. Additional
exploratory analyses are presented in Supporting Information
Appendix F, but are not discussed here.

3.2.2 Findings

Results of simple slopes analyses are presented in Table 3.

Cell shading groups
Crossing color boundaries versus no color. Participants in the
boundary crossing condition were willing to pay more than
participants in the no-color group, but only at high numer-
acy levels. However, this effect disappeared following alpha
correction. A similar difference was found in the model pre-
dicting average WTP amounts at high numeracy levels prior
to alpha adjustment, but not in the multilevel model with-
out the interaction between format and numeracy. The effect
therefore does not appear to be robust, failing to support H4a.

Cell shading groups: Crossing color boundaries versus
no crossing color boundaries
Those in the boundary crossing condition were willing to pay
more than participants for whom risk reductions did not cross
color boundaries, with this effect increasing as numeracy
increased, and reaching significance at average and high
numeracy levels. This effect was also found by the model
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 11

TA B L E 3 Predicting willingness-to-pay (WTP) at each probability level at low, mean, and high numeracy levels

Cell shading

Reference level

No color Crossing boundaries

Numeracy B SE t p p (B–H)

Low –2.402 1.743 –1.378 0.168 0.253

Mean 0.666 1.251 0.532 0.595 0.714

High 3.734 1.785 2.092 0.037 0.073

No crossing boundaries Crossing boundaries

Numeracy B SE t p p (B–H)

Low 2.439 2.022 1.206 0.228 0.304

Mean 3.778 1.420 2.660 0.008 0.036

High 5.117 2.016 2.538 0.011 0.036

Color banding

Reference level

No color Crossing boundaries

Numeracy B SE t p p (B–H)

Low –3.363 1.713 –1.963 0.050 0.085

Mean 0.479 1.220 0.393 0.695 0.758

High 4.321 1.716 2.519 0.012 0.036

No crossing boundaries Crossing boundaries

Numeracy B SE t p p (B–H)

Low –0.458 1.996 –0.229 0.819 0.819

Mean 2.991 1.420 2.106 0.035 0.073

High 6.441 2.016 3.196 0.001 0.017

Note: p (B–H)—value adjusted with the Benjamini–Hochberg procedure. B—unstandardized regression weights (unit = £1k in a range from £0 to £100k).

F I G U R E 7 Marginal mean willingness-to-pay (WTP) amount and 95% confidence intervals in each format at different levels of numeracy. Significance
levels: ns—p > 0.05, *—p < 0.05

predicting average WTP amounts at mean and high numeracy
levels, and by the multilevel model without the interaction
between numeracy and format. Therefore, H4b is supported,
and the boundary crossing effect appears to increase with
numeracy. The differences between formats at low, mean,
and high numeracy levels are also illustrated in Figure 7.

Color banding groups: Crossing color boundaries versus
no color
Those in the boundary crossing condition were willing to pay
more than participants in the no-color group, but only at high
numeracy levels. This effect was also found by the model pre-
dicting average WTP amounts at high numeracy levels, but
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12 PROTO ET AL.

F I G U R E 8 Marginal mean willingness-to-pay (WTP) amount and 95% confidence intervals in each format at different levels of numeracy, adjusted for
flooding risk perceptions. Significance levels: ns—p > 0.05, *—p < 0.05

not by the multilevel model without the interaction between
numeracy and format. Therefore, H4c is supported, with the
effect occurring only at high numeracy levels.

3.2.2.4 Crossing color boundaries versus no crossing
color boundaries
Those in the boundary crossing condition were willing to
pay more than participants for whom risk reductions did not
cross color boundaries, with this effect increasing as numer-
acy increased, and reaching significance at average and high
numeracy levels. However, only the effect at high numer-
acy levels remained significant following alpha adjustment.
The same pattern was found by the model predicting average
WTP amounts, but the multilevel model without the inter-
action between numeracy and format only found this effect
significant prior to alpha-level adjustment. Therefore, hypoth-
esis H4d appears to be supported, and the boundary crossing
effect holds only at high numeracy levels. The differences
between formats at low, mean, and high numeracy levels are
also illustrated in Figure 8.

4 DISCUSSION

In these two experiments, we empirically investigated the
potential for bias induced by color boundaries between cells
in two risk matrix formats, with hypotheses consistent with
fuzzy-trace theory (Reyna & Brainerd, 1995). We expected
to find that colors in a risk matrix—conveying an ordinal
description of risk severity—lead to reliance on ordinal, gist
representations of risk information over precise numerical
information, as proposed by the theory (Reyna & Brust-
Renck, 2020). These decisions would sometimes favor risk
reductions that cross color boundaries even if they achieve
lower absolute risk reductions (i.e., the boundary-crossing
effect). Our results only partially supported our hypotheses.
Generally, we found evidence of a boundary-crossing effect
more consistently in the color banding format (H2, H4c, H4d
were supported) than in the cell shading format (H4b was
supported, but H1, H3, and H4a were not). Perhaps most

surprisingly, we found that the effect appears to be stronger,
or more often present, in individuals with higher numeracy.
Results from the two studies are discussed below together
with suggestions for future research.

4.1 The boundary-crossing effect

We hypothesized that participants randomized to either the
cell shading or the color banding format would be more likely
to prefer a risk reduction which crossed color boundaries
than participants allocated to the no-color condition, where
the same risk reduction did not cross any boundary (Experi-
ment 1: H1, H2). We also hypothesized that within each color
format, participants for whom risk reductions crossed color
boundaries would value the reductions more than participants
for whom the same risk reductions did not cross color bound-
aries, or participants shown the same risk reductions in blank
matrices (Experiment 2: H4a, H4b, H4c, H4d).

We found consistent support for these hypotheses in the
color banding format, but not the cell shading format. Com-
pared to participants in the no-color condition, participants
in the color banding condition had lower risk comparison
scores, that is, displayed the hypothesized boundary-crossing
effect, but only at average and high numeracy levels (Experi-
ment 1). Similarly, participants in the color banding condition
for whom risk reductions crossed color boundaries were will-
ing to pay more than participants for whom risk reductions
did not cross color boundaries, and participants for whom
risk reductions were presented in blank matrices, with these
effects holding only at high numeracy levels (Experiment
2). This pattern gives credence to the reasoning that matrix
coloration could influence ordinal gist perceptions, and bias
participants into making and valuing decisions that might not
be optimal—at least where the participants were of higher
numeracy.

By contrast, there was no difference between the cell
shading group and the no-color group in risk comparison
scores, indicating that decision-making in the cell shad-
ing group was not influenced by the boundary-crossing
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COLORED CELLS IN RISK MATRICES AFFECT DECISION-MAKING 13

effect, contrary to our hypothesis (Experiment 1). Similarly,
although participants in the cell shading format for whom
risk reductions crossed color boundaries were willing to pay
more than participants for whom risk reduction did not cross
color boundaries at high levels of numeracy, differences from
participants for whom the same risk reductions were pre-
sented in blank matrices were not significant (Experiment 2).
Therefore, it is not clear whether the significant effect found
in the second experiment is truly attributable to differences
in the coloration, or is a false positive result.

It should be noted that where significant differences
were found, the effects were very small, which could be
attributed to the simplicity of our tasks. It might be that the
boundary-crossing effect is more prominent in complex deci-
sion tasks (e.g., where participants have to compare more
than two risks). Future research should employ more com-
plex decision tasks, as these might more closely resemble
the reality of decision-making using risk matrices, offering a
more ecologically valid perspective on the boundary-crossing
effect.

4.2 Cell Shading versus color banding

We originally hypothesized that the increased granularity of
risk severity categories displayed in the color banding format
would lessen the boundary-crossing effect by reducing the
perceived discrepancy between risk categories. Our results
showed the reverse pattern, as participants in the color band-
ing format were more susceptible to the boundary-crossing
effect than participants in the cell shading format, but only
at mean and high numeracy levels. It might be that increasing
the granularity of risk categories had the opposite effect to the
intended one and strengthened the ordinal gist representations
induced by colors, with risk matrices having “half one color,
half another” cells more strongly suggesting an ordinal tran-
sition between risk categories than a matrix wherein each cell
is assigned one color only. It might be that the color banding
format communicates ordinal transitions between risk cate-
gories more clearly than the cell shading format, and in so
doing encourages participants to rely on ordinal gist repre-
sentations in decision making. This explanation is consistent
with the precept of fuzzy trace theory that the cognitive repre-
sentation individuals rely on in decision-making depends on
stimulus characteristics (Reyna & Brust-Renck, 2020).

4.3 The moderating effect of numeracy

One particularly unexpected finding in our studies was that
the boundary-crossing effect seemed to be present only,
or increase for, individuals with average or high levels of
numeracy. This pattern is consistent with other studies which
find that highly numerate individuals display more biased
decision-making than less numerate individuals (e.g., Kleber
et al., 2013; Peters et al., 2019). A key precept of fuzzy-
trace theory is that experts rely on gist knowledge when

making decisions, unlike novices, who rely more on verba-
tim information (Reyna et al., 2009). High numeracy can
be interpreted as evidence of expertise with numbers, which
thus should result in an increased reliance on gist when mak-
ing decisions based on numeric information. Accordingly, in
our study, individuals higher in numeracy were more likely
to rely on ordinal gist processing when making and evalu-
ating risk reductions, thus explaining their higher likelihood
of displaying the boundary-crossing effect. This argument
has been conceptually discussed in previous research (Peters
et al., 2019), but it remains a speculative interpretation of the
present findings since we did not include measures of ordinal
gist in our study. Distinguishing between individual prefer-
ences for gist representations of numeric information (i.e.,
categorical and ordinal) and including these as predictors
alongside objective numeracy could help test this argument.
This approach has been used in previous research to explain
decision paradoxes (e.g., the Allais paradox) and predict
risk comparisons beyond the effect of objective numeracy
(Reyna & Brust-Renck, 2020). Additionally, there is evi-
dence that individuals low in numeracy might struggle to
interpret risk information and therefore overestimate the like-
lihood of risks (Reyna et al., 2009). Indeed, in our study,
there was some indication that participants higher in numer-
acy were willing to pay less for risk reductions, which might
support the idea that participants lower in numeracy were
willing to pay more because they overestimated the poten-
tial likelihood and impact of risks. It might be that for these
participants the presence of color boundaries did not influ-
ence the amounts they were willing to pay due to a general
difficulty in understanding the risk information presented to
them.

4.4 Limitations and future directions

The findings of this study should be interpreted in light of
several limitations. First, exactly which cells appeared in
which colors within the matrix sometimes had to change to
make it possible for the same risk reduction to cross or not
cross a color boundary, meaning the proportion of colors
appearing in matrices was different across conditions. This
was particularly problematic in the color banding format, and
might have been at least partially responsible for our results.
Second, these results are not generalizable to quantitative
or qualitative risk matrices, as we only investigated the
boundary-crossing effect in semiqualitative risk matrices.
The complete absence of numeric information on the impact
axis, or alternatively a fully quantitative impact axis, could
lead participants to employ different cognitive processes
beyond those discussed in this study. Third, our exploratory
analyses (see Supporting Information Appendix F) failed
to replicate effects in Experiment 2 when risk reductions
were presented at low and medium probability levels, and
when risk reductions were presented at impact level 1. This
could point toward impact as a moderator of the boundary-
crossing effect, such that this effect gets stronger as the

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.14091 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [14/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 PROTO ET AL.

impact of the risk increases. To check the robustness of the
boundary-crossing effect, future research should focus on
systematically manipulating the impact levels at which risk
reductions are presented. Finally, these findings were found
in a sample of individuals wherein the majority had very
little or no experience with risk matrices, but were asked to
use them to make decisions about flooding risk mitigation. It
might be that domain specialists (e.g., disaster risk reduction
specialists) who are trained in the use, or contribute to the
design of risk matrices do not display the same bias, so these
findings might not generalize to them. Future research should
investigate the extent to which individuals who have domain-
specific expertise and training in the use of risk matrices are
susceptible to the boundary-crossing effect. Future research
might also benefit from investigating alternative ways of
using color in risk matrices beyond the formats considered in
this study, with a view to understanding whether and under
what conditions they might lead to biases in decision making.

4.5 Conclusion

These experiments show some preliminary evidence that the
color assignment in risk matrices might influence people’s
perception of risk gravity, and therefore their decision-
making with regards to risk mitigation. We found that
individuals might be tempted to cross color boundaries when
reducing risks even if this option is not advantageous (i.e.,
the boundary crossing effect). However, this effect was not
consistently found when we included exploratory analyses of
risk mitigations at different impact levels.

Pending future research replicating these results, the cau-
tious recommendation is that the potential biasing effects
of color should be considered alongside the goal of com-
munication. If the purpose of communication is informing
individuals in an unbiased way, these findings suggest it
might be worth eliminating colors from risk matrices in order
to reduce the risk of the boundary-crossing effect. On the
other hand, if the goal of communication is to persuade indi-
viduals to implement certain risk mitigation actions, it might
be that assigning colors so as to elicit the boundary-crossing
effect would facilitate this. This could be the case, for exam-
ple, when designing risk matrices that communicate action
standards (i.e., severity level at which risk mitigation should
be implemented) (Keller et al., 2009). This advice might be
particularly relevant in the case of semiqualitative risk matri-
ces, where color assignment might be arbitrary due to the
absence of clear numeric cut-off points separating risk sever-
ity categories, and to situations where the users of the risk
matrix are expected to be of higher numeracy and not have
prior training in the design and use of risk matrices.
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