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Aging is associated with a broad range of visual impairments that can have dramatic
consequences on the quality of life of those impacted. These changes are driven
by a complex series of alterations affecting interactions between multiple cellular and
extracellular elements. The resilience of many of these interactions may be key to
minimal loss of visual function in aging; yet many of them remain poorly understood. In
this review, we focus on the relation between retinal neurons and their respective mass
transport systems. These metabolite delivery systems include the retinal vasculature,
which lies within the inner portion of the retina, and the choroidal vasculature located
externally to the retinal tissue. A framework for investigation is proposed and applied to
identify the structures and processes determining retinal mass transport at the cellular
and tissue levels. Spatial variability in the structure of the retina and changes observed
in aging are then harnessed to explore the relation between variations in neuron
populations and those seen among retinal metabolite delivery systems. Existing data
demonstrate that the relation between inner retinal neurons and their mass transport
systems is different in nature from that observed between the outer retina and choroid.
The most prominent structural changes observed across the eye and in aging are seen
in Bruch’s membrane, which forms a selective barrier to mass transfers at the interface
between the choroidal vasculature and the outer retina.

Keywords: retina, retinal neurons, mass transport, retinal vasculature, Bruch’s membrane, choriocapillaris, aging,
photoreceptors

INTRODUCTION

Increasing age is associated with a broad range of visual impairments that include loss of spatial
contrast sensitivity, decreased light and wavelength sensitivities, deficits in the processing of
temporal information and slowing of visual processing speed (Zhang et al., 2008; Owsley, 2011).
These changes can have dramatic consequences on the quality of life of those affected (Owsley
and Burton, 1991; Owsley et al., 1998); however, they remain poorly understood. Improving our
understanding of the mechanisms involved in age-related vision impairments is essential to design
strategies to slow or even reverse them. It can also help determine characteristics that may be used
to differentiate individuals who “age well” – who suffer minimum or manageable vision loss as
they age – to those who do not, and, in doing so, assist in identifying precursors of eye diseases
(Owsley, 2011).
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Every part of the eye undergoes changes as we age (Owsley,
2011; Grossniklaus et al., 2013). The human eye, like that of
other vertebrates, essentially consists of concentric layers of tissue
enclosing a fluid-filled chamber (see Figure 1A). The primary
function of the cornea, iris, and lens located in the anterior part of
the eye is to focus and direct light toward the posterior segments,
where the retina lies (Zouache et al., 2016b); see Figure 1B.
It is there that photoreceptor cells perform phototransduction,
or the conversion of photons into electrochemical impulses.
Signals from the photoreceptors are received and processed
by an intricate machinery of neurons and turned into action
potentials carried by the axons of approximately one million
retinal ganglion cells (see Figures 1C,D). These axons run along
the inner surface of the retina before converging into the optic
nerve, which travels to the brain (Oyster, 1999; Masland, 2012).

While many age-related vision impairments are driven by
transmission losses in the optical media of the eye (Hockwin
and Ohrloff, 1984; Reim, 1984; Rohen and Lütjen-Drecoll,
1984; Owsley and Burton, 1991; Pierscionek, 1996), cellular
and molecular changes occurring within the retina also play an
important role (Weale, 1986; Marshall, 1987; Grossniklaus et al.,
2013; Campello et al., 2021). Retinal senescence is likely driven
by a complex series of changes that affect multiple cellular and
extracellular elements that interact with each other (Marshall,
1987). However, our understanding of normal interactions
between retinal elements and processes necessary for tissue
function and survival is considerably limited. The role that these
interactions and their alterations play in retinal aging is therefore
not fully appreciated, which considerably restricts our ability to
identify strategies to effectively slow or prevent visual changes
associated with increasing age.

The purpose of this review is to assess how documented spatial
and age-related variations in retinal neuron populations relate
to changes observed in the structure and function of the mass
transport systems to the retina. Homeostasis, metabolism, and
survival of retinal cells rely on the adequate supply of metabolism
substrates and clearance of metabolic waste products from the
retina. These processes are supported by a dual circulatory
system formed by the choroidal and retinal vasculatures (see
Figure 2). The choroidal vasculature and its microvascular
bed, the choriocapillaris, support the metabolic requirement
of the outer half of the retina, which is mainly composed of
photoreceptors and a monolayer of epithelial cells. The inner part
of the retina, which mainly consists of neuronal and glial cells, is
sustained by the retinal vasculature (Wong-Riley, 2010).

An underlying hypothesis to this work is that age-related
changes in the structure and function of the mass transport
systems sustaining the retina correlate with variations in retinal
cell populations observed in aging. This would support the
idea that the transport of material that is key to healthy cell
metabolism is adjusted in aging, so that correlated changes
in the retina and its metabolite delivery system are adaptive.
Departure from this correlated behavior may then put the eye
at a higher risk of vision impairments and disease. The first
step in testing this hypothesis is to determine the nature of the
relation between retinal neuron populations and mass transport
systems in health. The human eye offers an ideal template to

explore this relationship. Spatial variations in the structure of
the retina and choroid are well-documented and, within an
adequate framework, may be harnessed to identify correlated
patterns of change. Aging can provide valuable insights into
the resilience of correlated behaviors to perturbations occurring
over large timescales. Changes in the relation between retinal
neurons and their respective metabolite delivery system in aging
are therefore also explored.

FRAMEWORK FOR INVESTIGATION

This review investigates biological systems – retinal neurons and
their respective metabolite delivery systems – often considered
in isolation. An important factor to consider when assessing
relations between any biological systems is the characteristic
length- and timescales associated with the elements, systems, and
processes at play (Lesne, 2013).

Scale and Interactions
Many interactions between retinal cells and the retinal and
choroidal vasculatures occur through a movement of molecules.
For instance, the movement of oxygen, nutrients, metabolism
byproducts, signaling proteins and growth factors between
vasculatures and neurons partly determines the metabolism of
these cells, their function, and their ability to survive and adapt to
changes in their microenvironment. Exchange between neurons
and the retinal and choroidal vasculatures may be studied at the
scale of cells, tissue or even organs (see Figure 1). Phenomena
associated with each scale provide different – and sometime
overlapping – information on the state of retinal components.
For instance, quantum mechanics may be better suited to
describe phototransduction (Sia et al., 2014) whereas stochastic
kinetics is more appropriate to model chemical kinetics and
generate reaction constants (Lecca, 2013). As separate models
may be applied to understand and describe processes occurring
at different scales, the challenge becomes to integrate them into
a framework capable of capturing the interplay between them
(Lesne, 2013, 2007; Green and Batterman, 2017).

Advances in molecular techniques have made it possible
to explore variations in genome, epigenome, transcriptome,
metabolism and immune response in the retina of human donor
eyes (Campello et al., 2021). These methods have the potential
to provide a resolution sufficient to dissect spatial and temporal
changes such as the ones observed in aging up to the level of a
cell (Wang S. et al., 2020). Beyond the theoretical and technical
issues associated with the processing and analyses of these large
datasets (Mattmann, 2013; Leonelli, 2019; Teschendorff, 2019),
the characteristic length-scale associated with these methods is
too small to extract data pertaining to interactions between
cells and extracellular components. For instance, transcription
in photoreceptors is partly determined by external stimuli,
some of which result from chains of events involving the
choroidal vasculature. However, the choroid is far upstream
(or downstream) in this chain of event; measuring its effect
on photoreceptors may not be possible because of processes
involving other retinal components. It is therefore difficult to
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FIGURE 1 | Organization of the human eye and retina. (A) Schematic of a human eye. The anterior segments, which include the cornea, iris and lens, direct light
toward the retina located in the back of the eye. (B) En-face view of the retina captured in a healthy individual using an ophthalmoscope. The optic nerve and large
retinal arteries and veins are visible, but the underlying choroidal vasculature is not. The fovea, a region of the retina specialized for high-acuity and color vision, lies at
the center of the approximately 5.5 mm wide macula. (C) View of a transverse section of the retina taken from a human donor eye in the macula. Histologically, the
retina appears as layered tissue formed by retinal neurons, endothelium, and glial cells. (D) Schematic of the cellular organization of the retina and choriocapillaris,
adapted and modified with permission from Campello et al. (2021). The location of histologically defined retinal layers is indicated. The outer retina consists of the
retinal pigment epithelium and photoreceptor outer and inner segments. The inner retina includes horizontal, bipolar, amacrine and ganglion cells, which are all
involved in the processing of signals originating from the photoreceptors.

detect the effect of the choroidal vasculature on photoreceptors
at this scale. At the other end of the spectrum of length-scales,
interactions between retinal neurons and the retinal vasculature
are impossible to characterize at the organ level as this scale is too
large to consider them as distinct entities.

To ensure that most of the information relevant to interactions
between retinal neurons and their respective metabolite delivery
systems is captured, this review focuses on structures and
processes at the cellular and tissue scales.

From Geometry to Mass Transport
Capturing variations in the structures and processes determining
mass exchange at the cellular and tissue levels experimentally
is challenging. Our understanding comes mostly from
cross-sectional analyses of human donor eyes (Oyster, 1999),

which only provide snapshots of variations across the eye
and over time. In addition, these analyses are fundamentally
limited by the scarcity of human donor eyes in certain age
groups. Animal and in vitro models have been used to attempt
to address this limitation (Conn, 2006); however, the human
retina has singular properties that render extrapolation from
these systems difficult (Hussain et al., 2010; Kam et al.,
2019). In this review, we harness the fact that local mass
transport is partly determined by the morphology of cells
and the specific geometry of their interface with other tissue
components. We can therefore ascertain that variabilities in
the structure of the retina provide an indirect way of assessing
variations in transport processes. This approach is in some
ways imperfect, as structures alone are often insufficient to
describe mass transport within any biological system. A good
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FIGURE 2 | Organization, morphology, and ultrastructure of the dual circulatory systems of the retina formed by the retinal and choroidal vasculatures. The inner
two-thirds of the retina is sustained by at least four layers of retinal capillaries, which connect alternating arterial and venous branches. Oxygen and nutrients are
supplied to the outer one third of the retina by the choriocapillaris, located externally to the retinal pigment epithelium. En-face visualizations of the retinal and
choroidal vasculatures at the fovea were obtained by immunostaining portions of retinas and choroid with Ulex Europaeus Agglutinin and imaging them using
confocal microscopy. Stark differences in vascular density between the choriocapillaris and the retinal capillary bed can be observed. Ultrastructural differences are
also present. Retinal capillaries form a tightly regulated barrier between blood and tissue. Capillaries from the choriocapillaris present with closed fenestrations, which
facilitate the transfer of small and large molecules.

understanding of the fundamental laws governing transport
phenomena and how specific structures influence them is
necessary to draw any interpretation (Lighthill, 1972). This
understanding often comes from experimental and theoretical
models developed specifically to study well-defined systems and
requires careful considerations centered around basic principles
of mass transfers.

Fundamentals of Mass Transfers for
Cells and Tissues
Within blood vessels, molecules are transported through a
combination of advection and diffusion. Diffusion is the

net movement of material along gradients of concentration.
Advection is the movement of material due to the motion
of a fluid; it is the dominant transport mechanism in blood
vessels. Advection is a more efficient mode of transport, and
its prominence with respect to diffusion is determined by the
balance between pressure gradients along arteries, capillaries
and veins that drive blood flow and factors effectively creating
a resistance to this flow. Most of this vascular resistance is
caused by the diameter of blood vessels and the viscosity
of blood (Lighthill, 1972). The Hagen-Poiseuille law, which
applies to incompressible uniform viscous fluids flowing through
cylindrical tubes (Batchelor, 2000), is commonly used to describe
the salient features of the flow associated with the specific
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geometry of blood vessels (Lighthill, 1972; Pournaras et al., 2008).
This approximate law states that blood velocity varies as R2 and
that the blood flow rate varies as R21P/µL, where R and L
are the radius and length of the vessel considered, respectively,
1P is the pressure difference between the entry and exit of the
vessel and µ is the viscosity of blood. Blood velocity is minimal
within capillaries, where vessel radii are smallest and most of the
exchange between plasma and tissue occur.

Molecules contained in plasma may cross blood vessel walls
through passive or active transport. Passive transport does not
require any input of energy from the cell and instead relies
on the tendency of molecules to travel from regions of low
concentration to regions of high concentration. The main types
of passive transport across cells are diffusion, facilitated diffusion
(diffusion mediated by transport proteins embedded in plasma
membranes), filtration and osmosis (see Figure 3). The transfer

of oxygen from blood to tissue relies solely on molecular
diffusion, whereas glucose reaches tissue through facilitated
diffusion (by way of transporters including GLUTs) (Mantych
et al., 1993). Filtration consists of the movement of water and
soluble molecules along gradients of hydrostatic pressure. Active
transport typically involves a movement of molecules from
regions of high concentration to regions of low concentration
(thus ensuring that concentration gradients are maintained). It
requires energy input from the cell in the form of adenosine
triphosphate (ATP) or membrane potential and may also
involve moving material through transendothelial channels or
vesicles (also called caveolae). Macromolecules including lipids,
insulin and albumin typically cross endothelial cells through
active transport (Simionescu et al., 2002). Passive transport
across microvascular beds has been extensively studied both
experimentally and theoretically. Active transport is tightly linked

FIGURE 3 | Schematic representation of mass transport systems of the retina. The movement of molecules shown in (A,B) is directed from vasculatures to tissue
only for simplicity; although, displayed mechanisms are also applicable to the opposite direction. (A) Simplified schematic of the transfer of material across
choriocapillaris endothelial cells, Bruch’s membrane, RPE cells and photoreceptors (not to scale). (B) Mass transfers in the inner retina illustrating the symbiotic
relationship between retinal endothelial cells, glial cells (here a Müller cell) and retinal neurons. (C) Schematic of the mechanisms of transport across cells adapted
and modified from Hosoya and Tachikawa (2012). Transport is traditionally classified as passive (diffusion), carrier-mediated (facilitated diffusion, primary active efflux
and secondary active influx and efflux) or receptor-mediated. The conventions used to depict mechanisms of transport in (A,B) are consistent with (C).
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to several interdependent factors including cellular metabolism,
microenvironment and external stimuli and is therefore often
more complex to model as compared to passive transport.
Our understanding of active transport across capillaries relies
primarily on classic experimental studies of microvascular
permeability to lipid-insoluble endogenous and non-endogenous
macromolecules (Simionescu et al., 2002; Sarin, 2010).

The movement of molecules across capillaries is partly
determined by the physical characteristics of structures
composing them such as the thickness of their basement
membranes and the diameter and spatial distribution of
inter-endothelial junctions. The molecular composition of
the extravascular space, the structure of cells consuming or
delivering transported material and their distance from vascular
compartments also influence molecular transfers significantly.
At a basic tissue scale (∼1 mm), the movement of material
is generally described using average statistics based on mean
squared displacements of molecules. Within this framework,
the effect of structures influencing the movement of material –
such as the geometry of capillaries and composition of the
extravascular space – is described using averaged characteristics,
such as diffusivity, permeability and cellular density. These
measures translate the underlying small-scale structure of
molecules, cells and media across which transfers occur;
they may vary in space and time and are often determined
experimentally. Within frameworks using averaged statistics
(in tissue level models for instance), the transfer of diffusive
molecules between the vasculature and tissue is mainly a function
of blood flow, the geometry of capillaries, the concentration of
a specific compound in blood and its consumption in tissue
(which is generally a function of the number of cells consuming
this compound per volume of tissue) and the resistance of the
capillary wall, extravascular space and cells to diffusion (Keener
and Sneyd, 2009; Zouache et al., 2019). The topology of a
vascular bed is an important factor to consider when assessing
its capacity for tissue perfusion (LaBarbera, 1990; West et al.,
1997; Zouache et al., 2016a). Another element often examined
is the vascularity – or vascular density – of a vascular bed.
This parameter describes the fraction of tissue occupied by
blood vessels and is calculated over a closed volume. Variations
in vascular density give insights into spatial differences in
metabolite supply and tissue energy requirements.

Barriers to Transfers
In the retina, the transfer of metabolism substrates and by-
products to and from blood must be adequately controlled
and regulated. This is the main function of the blood-retinal
barrier (BRB), which involves several cellular and extracellular
structures regulating transfers between retinal capillaries and the
inner part of the retina (inner BRB, iBRB) and between the
choriocapillaris and the outer part of the retina (outer BRB,
oBRB) (Cunha-Vaz, 1976). Movement across these barriers is
generally described within frameworks that place the cell at the
center of all transport processes. While the terminology employed
may differ, this cell-centric description is entirely encompassed in
the fundamental framework described in Section “Fundamentals
of Mass Transfers for Cells and Tissues.” Within the cell-centric

framework, the exchange of molecules is described in terms of
transcellular and paracellular pathways (Pournaras et al., 2008;
Nakanishi et al., 2016). The movement of water, small nutrients,
ions, and macromolecules across endothelial cells occurs through
diffusion, carrier mediated or receptor-mediated transport (see
Figure 3C), which involve both passive and active types of
transport. Most proteins are non-selectively transported across
endothelial cells in vesicles (carrier-mediated transport) (Feng
et al., 1996; Simionescu et al., 2002; Minshall et al., 2003; Stan,
2005; Mehta and Malik, 2006). The paracellular pathway allows
for passive transport across the space separating endothelial cells
and is modulated by intercellular adhesion and the structure
of intercellular clefts (see Figure 2). Tight junctions form size-
and charge-selective semipermeable barriers to diffusion (Van
Itallie and Anderson, 2004; Campbell and Humphries, 2012;
Zihni et al., 2016).

The extracellular structures involved in the regulation of
transfers between blood and tissue are the glycocalyx and
extracellular matrix. The glycocalyx consists of a coat of
macromolecules bound to the apical and luminal plasma
membrane of epithelia and endothelial cells (Möckl, 2020).
Through its molecular structure it acts as a charge-selective
barrier to plasma membranes. It affects oncotic pressure
gradients driving capillary filtration (Mehta and Malik, 2006) and
may regulate protein diffusion (Freeman et al., 2018). Another
important function of the glycocalyx is to attenuate the effect of
mechanical forces caused by the flow of blood on endothelial cells
and thus to preserve their function (Gouverneur et al., 2006). The
extracellular matrix consists of the assembly of many components
secreted by surrounding cells. Its composition regulates transport
in and out of cells, and therefore influences cellular homeostasis
and cell-to-cell signaling (Hubmacher and Apte, 2013).

Experimental Data
Many experimental methods have been applied to characterize
retinal and choroidal structures and processes relevant to the
study of retinal mass transport systems at the cellular and tissue
levels. Investigations using histology rely on a variety of methods
to process and image tissue dissected from human eyes. These
studies may be limited by tissue availability and the difficulty of
phenotyping donor eyes for diseases of the anterior or posterior
segments. Variability in times to fixation and processing methods
may cause morphological changes that need to be accounted for
Tran et al. (2017). Differences in the location and size of the
samples analyzed can significantly limit comparisons between
studies. Inconsistencies between studies using histology may
also be due to the lack of correction for multiple counting of
cells on sections and for tissue shrinkage (Curcio et al., 1990;
Harman et al., 1997). The absence of consensus on diagnostics
and post-processing methods (Garza-Gisholt et al., 2014) can
also explain discrepancies between findings. In vivo imaging
techniques include optical coherence tomography (OCT), optical
coherence tomography angiography (OCTA) and adaptive optics
(AO). OCT uses low-coherence interferometry to generate cross-
sectional images (B-scans) of optical scattering from retinal
structures with a longitudinal and lateral spatial resolution of
a few micrometers (Huang et al., 1991). By serially recording
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B-scans, OCTA captures variations in the intensity and phase
of backscattered light due to intrinsic movement within tissue,
which comes mainly from erythrocytes in blood vessels (Kashani
et al., 2017). OCTA has been used to visualize and quantify
the retinal (Coscas et al., 2016; Iafe et al., 2016; Garrity et al.,
2017; Lavia et al., 2019) and choroidal (Maruko et al., 2018;
Wang et al., 2018; Zheng et al., 2019; Wang E. et al., 2020)
vasculatures, including in aging (Spaide, 2016; Wei et al., 2017;
Lavia et al., 2019; Zheng et al., 2019) and disease (Laíns et al.,
2021). OCT and OCTA provide valuable tissue-level information
on the retina; however, the lateral resolution that they offer is
not sufficient to image individual cells. AO systems have so
far mostly been used in research settings. A large number of
groups robustly image and quantify the retina at the cellular and
sub-cellular levels using AO, with instrumentation capabilities
varying according to applications (Marcos et al., 2017). AO-
based systems have been applied to image a variety of neurons
including cones (Chui et al., 2008a,b; Song et al., 2011; Zhang
et al., 2015), rods (Dubra et al., 2011; Merino et al., 2011;
Wells-Gray et al., 2018), and ganglion cells (Liu et al., 2017);
subretinal structures such as retinal pigment epithelial cells
(Liu et al., 2016) and choriocapillaris (Kurokawa et al., 2017);
normal and remodeled retinal vasculature (Chui et al., 2016;
Sapoznik et al., 2018); and structures and processes associated
with various pathologies of the retina (Langlo et al., 2014;
Querques et al., 2014; King et al., 2017; Zhang et al., 2017; Karst
et al., 2019; Miller et al., 2019; Hammer et al., 2020). Blood
flow in the retinal and choroidal vasculatures has been assessed
using several dye dilution techniques such as fluorescent dye
angiography and scanning laser ophthalmoscope angiography.
Dye dilution techniques rely on the injection of a dye into the
general circulation and its visualization as it travels through and
across blood vessels (Wei et al., 2018). Extractable information
includes structural characteristics of blood vessels and average
travel time, which has a dependence on the diffusivity of the dye
used (Zouache et al., 2016a).

CELLULAR ORGANIZATION OF THE
RETINA

The retina is composed of three classes of cells – neurons,
glial cells and epithelial cells – organized in four distinct
layers; see Figure 1C. Its outermost layer is the retinal pigment
epithelium (RPE), which consists of a continuous monolayer
of approximately hexagonal pigmented cells. The neural retina
lies internally to the RPE and is formed by three nuclear layers
enclosing neuronal cell bodies and two plexiform layers of
synapses (see Figure 1D; Oyster, 1999).

Neuronal Organization
General classifications of retinal neurons are based on
morphological and physiological analyses of human tissue.
They are consistent with methods based on single-cell RNA
sequencing (Liang et al., 2019; Menon et al., 2019; Peng et al.,
2019; Orozco et al., 2020; Yan et al., 2020; Yi et al., 2020). The
outermost layer of the neural retina is formed by approximately

100 million photoreceptors arranged in a continuous array.
Approximately 95% of these cells are rods (Curcio et al., 1990),
which use rhodopsin as a pigment and are specialized for
vision in dim light. The remaining photoreceptors consist of
three types of cones functionally defined by the opsin that they
express (Masland, 2012; Hoon et al., 2014). Cones are either
sensitive to short-, medium- or long-wavelengths. They are
approximately 100 times less sensitive to light than rods and
are better adapted for bright-light and high acuity color vision
(Hoon et al., 2014). Light is transduced in the outer segments,
where photopigments are located; photoreceptor inner segments
contain mitochondria, and the outer nuclear layer is made up
of photoreceptor nuclei (Oyster, 1999). Photoreceptors synapse
onto bipolar and horizontal cells at the outer plexiform layer.
The role of these neurons is to modify and edit photoreceptor
signals before communicating them to ganglion cells. The
retina contains at least twelve types of bipolar cells, each
with a unique physiology. Multiple types of bipolar cells are
connected to cones; however, only one type is connected to rods
(Strettoi et al., 2010; Masland, 2012). Horizontal cells modulate
synaptic transmissions between rods and cones and bipolar
cells. Widespread synaptic connections emphasize differences
in signals between photoreceptor cells by providing inhibitory
feedback to rods and cones and possibly bipolar dendrites
(Masland, 2012). The streams of information carried by bipolar
cells are reorganized at the inner plexiform layer and sampled
by ganglion cells under refinement from amacrine cells. The
body of ganglion cells along with some displaced amacrine
cells form the ganglion cell layer. Ganglion cells integrate the
processed signals from bipolar and amacrine cells and convey
information to the brain. Approximately 1% (La Morgia et al.,
2010) of ganglion cells express the protein melanopsin, which
makes them intrinsically photosensitive. With a sensitivity and
spatial resolution inferior to those of rods and cones, these cells
are mainly involved in non-image-forming vision. They play a
key role in contrast detection and modulate many responses to
light such as circadian entrainment and the pupillary light reflex
(Mure, 2021). The innermost layers of the retina consist of the
nerve fiber layer, which contains the axons of the ganglion cells,
and the inner limiting membrane, which is composed of terminal
expansions of Müller cells extending from the photoreceptor
layer (Oyster, 1999).

Glial Cells
The retina contains several types of glial cells that provide
structural support to retinal neurons and help maintain retinal
homeostasis and retinal integrity (Goldman, 2014; Vecino et al.,
2016; Jäkel and Dimou, 2017). Ninety percent of these glial
elements are Müller cells. These radially oriented cells extend
from the inner limiting membrane to the external limiting
membrane, where they form junctions with photoreceptor inner
segments (Goldman, 2014; Vecino et al., 2016). Müller cells
are not involved in the processing of vision. Their size and
number [they are estimated to account for up to 15% of the
volume of the retina (Oyster, 1999)], their dense and regular
pattern and their close proximity with retinal neurons indicate
that they constitute an anatomical and functional intermediary
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between neurons and compartments with which they exchange
molecules (Reichenbach and Robinson, 1995; Bringmann et al.,
2006; Vecino et al., 2016). Astrocytes are another type of glial
cells present in the human retina. Almost exclusively confined
to the innermost retinal layers, their presence and distribution is
correlated with that of blood vessels. Astrocyte processes extend
to both blood vessels and neurons. Their main functions are to
provide enhanced support for degenerating axons and to help
maintain the blood-retinal barrier (Vecino et al., 2016).

Retinal Pigment Epithelium
While not involved in the neuronal processing of vision
(Strauss, 2005), very few cells of the eye perform as many
different functions as the RPE. This monolayer of approximately
hexagonal cells separates the retina from the endothelium of
the underlying choriocapillaris. The RPE plays a critical role
in the normal functioning of photoreceptors by eliminating
water from the subretinal space, performing the phagocytosis of
photoreceptor outer segment membranes and supplying essential
nutrients to the photoreceptors through epithelial transport. In
doing so, it impacts on the kinetics of the chemical reactions
occurring during the visual cycle significantly (Marmor and
Wolfensberger, 1998; Strauss, 2005).

Blood Supply
The retinal vasculature sustains the region of the retina extending
approximately from the outer nuclear layer to the inner limiting
membrane. The remaining outer retina, which includes the
photoreceptor inner and outer segments and the RPE, is
supported by the choroidal vasculature (see Figure 2). These
two vascular systems arise from the ophthalmic artery, which
branches into the central retinal artery supplying the retinal
vasculature and into the medial and lateral posterior ciliary
arteries supplying the choroid (Hayreh, 1962, 1963; Hayreh and
Dass, 1962). Neither the retinal nor the choroidal vasculature can
compensate for the loss of the other, so that the retina relies on
both for survival (Oyster, 1999).

Metabolism of the Retina
The visual system is the highest energy-consuming system
of the brain (Niven and Laughlin, 2008). Impaired energy
metabolism causes visual deficits (Linsenmeier and Zhang, 2017)
and may be to blame in the pathogenesis of degenerative
vitreoretinal disorders (Léveillard et al., 2019). Energy necessary
for cellular function is transferred in the form of adenosine
triphosphate (ATP). This high-energy molecule is produced
through glycolysis or oxidative phosphorylation. Glycolysis takes
place in the cytosol. It converts glucose into pyruvate, generating
two molecules of ATP in the process. Oxidative phosphorylation
occurs in the mitochondria and uses pyruvate as a substrate. It
requires the presence of oxygen and produces up to 36 molecules
of ATP for each molecule of glucose consumed. When oxygen is
limited, oxidative phosphorylation is hindered and the pyruvate
produced through glycolysis is reduced to lactate (Alberts et al.,
2014). As in the brain, retinal neurons use glucose as their main
energy substrate and are dependent on the more energetically
effective oxidative phosphorylation to generate ATP. They are

therefore very sensitive to fluctuations in glucose and oxygen
supplies (Erecińska and Silver, 2001; Linsenmeier and Zhang,
2017). ATP supports most neuronal functions, including protein
and neurotransmitter syntheses and recycling. Active transport
of ions against their electrical and concentration gradients is
the largest energy-consuming neuronal functions (Wong-Riley,
2010). In contrast with retinal neurons, glial cells rely mainly on
glycolysis for their ATP needs (Winkler et al., 2000).

Photoreceptors have one of the highest metabolic rates of
any cell of the human body (Linsenmeier and Braun, 1992;
Niven and Laughlin, 2008; Wong-Riley, 2010). Most of the
ATP used by photoreceptors is produced through oxidative
phosphorylation, which occurs mainly in the mitochondria-rich
inner segments. It is there that most of the oxygen diffusing from
the choriocapillaris and retinal circulation is consumed. Studies
performed on monkeys indicate that oxygen consumption is
larger in the perifovea as compared to the fovea (Yu et al.,
2005; Birol et al., 2007). Oxygen consumption is also significantly
greater in dark-adapted condition than under illumination (Birol
et al., 2007). While many aspects of their normal metabolism
remain to be fully understood, it is now well established that
photoreceptors generate large amounts of lactate in the presence
of oxygen through glycolysis (aerobic glycolysis) (Lindsay et al.,
2014; Du et al., 2016a; Chinchore et al., 2017). In fact, it has been
estimated that between 80 and 90% of glucose molecules used
by adult photoreceptors is consumed through aerobic glycolysis
alone. This pathway generates intermediates necessary to the
formation of large molecules involved in the visual process
(Narayan et al., 2017). The large amounts of lactate produced by
photoreceptors may also fuel both Müller and RPE cells. Lactate
has been shown to suppress glucose consumption in the RPE,
with the effect of increasing the amount of the molecule reaching
photoreceptors (Kanow et al., 2017). RPE cells are specialized for
reductive carboxylation, a type of metabolism that heavily relies
on mitochondria (Du et al., 2016b).

DELIVERY SYSTEM TO INNER RETINAL
NEURONS

The inner retinal mass transport system supports the
metabolism of many retinal neurons including ganglion,
bipolar, horizontal and amacrine cells. Highly regulated, it relies
on an adequate blood supply to retinal capillaries in different
regions of the retina.

Retinal Vasculature
Upon branching from the ophthalmic artery, the central retinal
artery travels within the optic nerve and inserts into the retina
through the optic nerve head. There, it divides into large superior
and inferior branches, which further ramify into dependent
branches radiating across the retinal surface (Hayreh, 1962, 1963;
Hayreh and Dass, 1962). The basic network topology of the
retinal vasculature consists of a tree, where blood may only
follow a limited number of anatomical routes determined by
the branching pattern of arteries of veins (nodes of the tree).
Terminal arteries (arterioles) branch from parent vessels at
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an approximately right angle (Pournaras et al., 2008). In vivo
measurements indicate that the relation between blood flow rate
and diameter among retinal arteries and veins is consistent with
Poiseuille’s flows (Riva et al., 1985; Feke et al., 1989); although
the velocity profile is flatter rather than parabolic in larger
arteries and veins (Zhong et al., 2011). Throughout the retina,
larger vessels remain close to the inner limiting membrane.
Across most of the retina arteries and veins alternate, so that
one vein typically lies between two consecutive arteries (Stokoe
and Turner, 1966; Wise et al., 1975); although they tend to be
dissociated in the periphery of the retina (Stokoe and Turner,
1966). Capillary beds connect consecutive arterial and venular
branches, forming an interconnecting network arranged in a
multi-layer pattern, each of them supplying distinct sets of
neurons (see Figure 2). Retinal veins merge into the central
retinal vein, which exit the eye through the optic nerve head
and joins the superior ophthalmic vein (Hayreh, 1962, 1963;
Hayreh and Dass, 1962).

Retinal Vascular Pattern
Analyses based on histology (Snodderly et al., 1992; Pournaras
et al., 2008; Chan et al., 2012; Tan et al., 2012), OCT (Chan
et al., 2015), OCTA (Campbell et al., 2017; Muraoka et al.,
2018; Hormel et al., 2020) and AO (Kurokawa et al., 2012)
indicate that the retinal capillary network is arranged in up to
four layers (or plexuses) depending on location. Supplied by the
central retinal artery, the superficial vascular plexus consists of
a network of arteries, arterioles, capillaries, venules and veins
contained primarily within the ganglion cell layer. Intermediate
and deep capillary network line the inner and outer sides of
the inner nuclear layer, respectively, and support the metabolic
requirements of amacrine cells, bipolar cells and horizontal cells.
These plexuses are supplied by anastomoses from the superficial
vascular network (Snodderly et al., 1992; Provis, 2001) and have
a lobular organization. The dense radial peripapillary plexus seen
in the proximity of the optic nerve head and part of the macula
and posterior pole forms a fourth vascular plexus that sustains
the densely packed nerve fiber layer bundles (Michaelson, 1956;
Kornzweig et al., 1964; Henkind, 1967; Jia et al., 2014; Campbell
et al., 2017). Capillaries composing it are supplied and drained
by a small number of arterioles and venules from the superficial
vascular plexus and run parallel to axons from the nerve fiber
layer (Henkind, 1967; Alterman and Henkind, 1968; Campbell
et al., 2017; Muraoka et al., 2018). Close to the fovea, capillary
plexuses merge into a single layer of capillaries that delineate a
region of the retina deprived of blood vessels, the foveal avascular
zone (FAZ) (Campbell et al., 2017; Nesper and Fawzi, 2018).

The nature of the connections between capillary plexuses is a
key determinant of blood flow patterns in the retinal vasculature
and mass exchange with retinal neurons. Animal experiments
indicate that venous drainage may predominantly occur through
the deep vascular network (Fouquet et al., 2017). While some
controversy remains, evidence suggests that the organization of
retinal capillaries is neither serial nor parallel (Hormel et al.,
2020). The various retinal vascular plexuses rely on a composite
network of horizontal and vertical connections that are yet to be
fully characterized (Nesper and Fawzi, 2018).

Structure and Regulation of Blood Flow
The structure of retinal arteries, capillaries and veins is
characteristic of a vasculature almost entirely autoregulated for
local tissue requirements. The retinal vasculature is deprived
of autonomic innervation (Hogan and Feeney, 1963a,b; Laties
and Jacobowitz, 1966). Blood flow and local tissue perfusion
are adjusted to changes in neuronal activity through myogenic
response that involves vasoconstriction and vasodilation in
arteries and capillaries (Shepro and Morel, 1993; Haefliger et al.,
1994; Lombard, 2006; Peppiatt et al., 2006). Retinal vessels can
also adapt blood flow rates to changes in partial pressures of
oxygen and carbon dioxide and to variations in the concentration
of various molecules essential to retinal metabolism (Pournaras
et al., 2008; Aalkjær et al., 2011; Levick, 2018; Yu et al., 2019).
Autoregulation is mediated by the endothelium of retinal vessels
and by pericytes and smooth muscle cells encompassing them.
In contrast with other organs, retinal arteries lack an elastic
lamina and the coat of smooth muscle cells enclosing them is
more developed. Near the optic disk, this coat comprises five
to seven layers of cells. This number decreases to two or three
at the equator and to one or two at the periphery (Hogan and
Feeney, 1963a; Hogan, 1971). Glial and Müller cells generally
lie at the interface between the broad basement membrane
enclosing retinal arteries and the adjacent nerve fiber layer. The
size and distribution of pericytes surrounding veins is similar to
that of smooth muscle cells along arteries (Hogan and Feeney,
1963a; Hogan, 1971). When compared to other tissues, pericytes
enclosing retinal capillaries are more numerous and closely
spaced (there is approximately a 1:1 ratio between pericytes and
endothelial cells). Their basement membrane is adjacent to those
of Müller and other glial cells (Hogan and Feeney, 1963b,c;
Hogan, 1971).

Components of the Inner Blood-Retinal
Barrier
The continuous endothelium of retinal vessels constitutes the
main component of the iBRB. Transfers across this selective
barrier occur through passive, carrier-mediated or receptor-
mediated transports (see Figure 3). The wall of retinal capillaries
is composed of a single layer of endothelial cells enclosed by
intramural pericytes and a basement membrane (see Figure 2).
A basal lamina separates endothelial cells from pericytes. Passive
transport across vessel walls is modulated by the structure and
thickness of the basement membrane of capillaries and pericytes,
which is thicker than in other organs, and by tight junctions
between endothelial cells, which are numerous and extensive
(Hogan and Feeney, 1963b; Shakib and Cunha-Vaz, 1966; Hogan,
1971; Frank et al., 1990). The structure of these junctions
restricts paracellular transport considerably, so that metabolism
substrates and amino acids required for retinal metabolism
cross the endothelium predominantly through the transcellular
pathway. The permeability of the iBRB to many substrates is
known and well-documented (Hosoya and Tachikawa, 2012).
Limited evidence suggests that pericytes and smooth muscle
cells modulate the molecular permeability of retinal vessels
through paracellular transport (Frey et al., 1991). It is unclear
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if astrocytes and Müller cells impact on the permeability of
the iBRB in adults (Vecino et al., 2016). Müller cells may
modulate the barrier properties of retinal endothelial cells
through the secretion of factors contributing to the formation and
maintenance of tight junctions (Tout et al., 1993; Abukawa et al.,
2009). In addition, both Müller cells and astrocytes produce many
extracellular matrix components including collagens, vitronectin
and fibronectin that are likely to impact on mass transfers within
the retina (Behzadian et al., 2001).

Tissue-Level Models of Retinal Perfusion
Models linking retinal blood flow and mass exchange to retinal
structures or metabolism at the tissue level have mostly been
limited to the study of oxygen delivery and consumption. One of
the most basic approaches relies on the Krogh cylinder model,
which assumes that oxygen is supplied to a cylindrical region
surrounding evenly spaced capillaries (Krogh, 1919; Goldman,
2008). This model predicts the concentration of a passively
transported molecule in tissue as a function of its consumption
(assumed to be constant), its diffusivity and the radius of the
cylinder within which it is entirely consumed. While extended to
account for a range of complex processes involved in the delivery
of oxygen to the inner retina – including facilitated transport
(McGuire and Secomb, 2001), tissue metabolism and time-
varying concentrations (Friedland, 1978); the Krogh model is not
adapted to model supply regions containing multiple capillaries
(Wang and Bassingthwaighte, 2001). Alternative approaches,
mainly based on Green’s function (Secomb et al., 2004; Secomb,
2016), have been developed to model oxygen transport in
retinal tissue while accounting for non-uniformities in the
retinal vascular network and interactions between capillaries
(Causin et al., 2016). While built on general principles, these
models require a detailed map of the morphology of the
retinal vasculature to generate predictions. These maps may
be reconstructed from images of the retina (Fry et al., 2018),
or generated randomly by harnessing the regularity and fractal
nature of the retinal vascular tree (Causin et al., 2016). Because
aspects of the retinal vascular network (such as the pattern
of connections between different plexuses) are yet to be fully
characterized (see Section “Retinal Vascular Pattern”), methods
relying on the fractal nature of the retinal vascular tree are
generally only relevant to the description of the salient features
of the blood flow.

Oxygenation and metabolism in the retina have been
experimentally investigated using oxygen-sensitive electrodes
and retinal oximetry (Yu and Cringle, 2001; Linsenmeier and
Zhang, 2017). These approaches have been applied to explore
the resilience of the retina to perturbations including hypoxia
and hyperoxia. The main limitation of these approaches is that
measurements are often uncoupled from changes occurring at
the level of the retinal vasculature. Data collected mainly from
animals are at the basis of several mathematical models of oxygen
diffusion across the retina (Haugh et al., 1990; Linsenmeier
and Padnick-Silver, 2000; Verticchio Vercellin et al., 2021),
some of which include considerations on retinal blood flow
(Causin et al., 2016).

DELIVERY SYSTEM TO OUTER RETINAL
NEURONS

The metabolite delivery system to the outer retina has three
main components: the choriocapillaris, which is the vascular
bed of the choroidal vasculature, Bruch’s membrane and the
RPE. These three intrinsically multifunctional compartments are
interdependent and compose the outer blood-retinal barrier (see
Figure 3).

Choroidal Vasculature
The choroidal vasculature emerges from lateral, medial, superior
and long posterior ciliary arteries (PCA) that arise from the
ophthalmic artery (Hayreh, 1962). Each of them divides into to
10 to 20 short posterior ciliary arteries, which cross the sclera
near the optic nerve (Wybar, 1954; Hayreh, 1962, 1974c; Hogan,
1971; Virdi and Hayreh, 1987) and supply a distinct sector of
the choroid (Hayreh, 1974a, 1975). They further divide, each
subdivision supplying a smaller segment of the choroid. At the
end of this vascular tree, arterioles supply the choriocapillaris,
an 8–20 µm thick planar capillary bed extending from the optic
nerve to the lateral border of the peripheral retina (the ora
serrata) (Zouache et al., 2016a). Functionally, choroidal arteries,
arterioles, venules and veins form a segmented vascular tree
(Hayreh, 1974a, 1975). The choroid is drained by four vortex
veins (one per quadrant), which branch into either the superior
or inferior ophthalmic vein (Hayreh, 1990; Oyster, 1999).

The structure of choroidal vessels differs markedly from
those forming the retinal vasculature. Smooth muscle cells
and pericytes are present along choroidal arteries and veins,
respectively; however, their function and subtypes remain poorly
characterized in man (Salzman, 1912; Wolter, 1956; Hogan and
Feeney, 1961; Hogan, 1971; Condren et al., 2013). Pericytes
are the only perivascular cells found in the choriocapillaris.
They are horizontally and sparsely distributed, with only 11% of
ensheathment observed in adults (compared to 94% in retinal
capillaries) (Frank et al., 1990; Chan-Ling et al., 2011). Their
function remains unclear (Wolter, 1956; Condren et al., 2013).
In contrast with the retinal vasculature, choroidal blood flow
sees little to no autoregulation under normal conditions (Bill,
1962; Friedman, 1970; Armaly and Araki, 1975; Bill et al., 1983;
Gherezguiher et al., 1991). The presence of extrinsic regulation
mediated by sympathetic innervation has been demonstrated
in animals including primates (Reiner et al., 2018). This
regulation may cause vasoconstriction of arteries and pre-
capillary arterioles, which drives the redistribution of arterial
blood in the event of an increase in blood pressure (during
exercise for instance) (Levick, 2018). Evidence of local regulation
of choroidal blood flow mediated through myogenic mechanisms
has been found in rabbits (Kiel and Shepherd, 1992; Kiel, 1994;
Kiel and van Heuven, 1995).

The Choriocapillaris
The large diameter of choriocapillaris vessels (Hogan, 1971;
Olver, 1990; Ramrattan et al., 1994) demonstrates a weaker
resistance to blood flow as compared to retinal capillaries. High
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blood flow – choriocapillaris blood flow is, per unit mass, three
to four times higher than that in the kidney (Weiter et al.,
1973) – ensures that gradients of concentrations between the
choroid and retina remain steep, and therefore that rates of
transfers between these two compartments are maintained high.
In addition to low resistance to blood flow, the choriocapillaris
features many structures facilitating the movement of molecules
across its endothelium. Choriocapillaris vessels are composed
of a single layer of endothelial cells enclosed by a basement
membrane (Missotten, 1962) and are separated by discontinuous
tight junctions. Gap junctions are also observed in the plasma
membrane of the endothelium (Hogan, 1971; Spitznas and Reale,
1975), generally on the scleral side of the capillaries and between
pericytes and endothelial cells (Spitznas and Reale, 1975). As in
glomerular capillaries (Satchell and Braet, 2009), blood vessels
in the choriocapillaris contain fenestrations (Hogan and Feeney,
1961; Bernstein and Hollenberg, 1965; Hogan, 1971; Torczynski,
1982). These 600 to 800Å pores spanning the width of the
endothelium present with a diaphragm covering part of their
surface (Missotten, 1962; Garron, 1963; Hogan, 1971; Spitznas
and Reale, 1975), and are more frequent on the retinal side of
capillaries (Hogan and Feeney, 1961; Bernstein and Hollenberg,
1965; Federman, 1982).

Whereas fenestrations enhance the diffusion of molecules
of small to moderate size (typically with a Euler-Einstein
radius of 30–40Å or less), they do not allow for the free
transport of macromolecules from plasma to the extravascular
space as is often assumed (Nakanishi et al., 2016). In fact,
the choriocapillaris substantially restricts the passage of large
unreactive molecules (Pino and Essner, 1980, 1981; Törnquist
et al., 1990; Grebe et al., 2019) and features receptor-mediated
types of transport (Bernstein and Hollenberg, 1965; Pino
and Essner, 1981; Nakanishi et al., 2016). Choriocapillaris
endothelial cells differentially express several transendothelial
transport genes including CAV1 (caveolin), TSPO (cholesterol)
and TFRC (transferring receptor) (Voigt et al., 2019a). One
of the genes most strongly differentially expressed by these
cells is plasmalemmal vesicle-associated protein (PLVAP).
The Plvap protein is present in fenestrations, caveolae and
transendothelial channels, and therefore plays a key role in
the regulation of transendothelial transport (Wisniewska-Kruk
et al., 2016; Bosma et al., 2018; Brinks et al., 2021). Our
understanding of the mechanisms and dynamics of the transport
of specific macromolecules across the choriocapillaris is limited,
and mainly comes from examinations of the movement of
albumin. This macromolecule was experimentally found to cross
choriocapillaris endothelial cells through caveolae-mediated
transcytosis, with an estimated travel time of 30 min or less
(Nakanishi et al., 2016).

Bruch’s Membrane
Molecules reaching the choroidal extravascular space must
cross Bruch’s membrane, which occupies the space between
the choriocapillaris and the RPE, to reach photoreceptor outer
segments (see Figure 3A). Bruch’s membrane forms a selective
barrier to the reciprocal transport of molecules between the RPE
and choriocapillaris, restricts cellular movement between choroid

and retina and physically supports RPE adhesion (Booij et al.,
2010). Histologically part of the choroid, Bruch’s membrane is 2
to 5 µm thick and is composed of an elastin layer sandwiched
by two layers of collagen fibers (the inner and outer collagenous
layers). Its inner- and outermost layers are basement membranes
to the RPE and choriocapillaris, respectively (Hogan, 1961). The
inner and outer collagenous layers are composed of various forms
of collagen arranged in a grid-like structure and embedded in
a mass of interacting biomolecules. The elastin layer is made
up of coarse interlaced linear elastin fibers extending from the
optic nerve to the far retinal periphery. The outer basement
membrane of Bruch’s membrane is composed of several forms
of collagen. Because it coincides with the basement membrane
of the choriocapillaris, it is discontinuous – it is present close
to capillaries of the choriocapillaris but absent in the space
separating them (Marmor and Wolfensberger, 1998).

Since Bruch’s membrane is acellular, transport across it
is passive and entirely determined by its thickness and
molecular composition. Gradients of hydrostatic pressure and
concentration drive the movement of molecules, which either
cross the membrane or bind to it (Marmor and Wolfensberger,
1998; Strauss, 2005). The average diameter of gaps within the
elastin layer and its thickness are important determinants of the
diffusive properties of Bruch’s membrane (Chong et al., 2005).
Out of the five layers composing it, the inner collagenous layer
has been experimentally found to form the main resistance to
fluid movement, and is therefore the principal determinant of
Bruch’s membrane’s hydraulic conductivity (Starita et al., 1997).
Controversy exists regarding the maximal size of molecules able
to travel across Bruch’s membrane. Intravenous injections of
protein tracers in animals indicate that particles 64–500 kDa in
weight enter Bruch’s membrane but do not cross it (Bernstein
and Hollenberg, 1965; Pino and Essner, 1981; Pino and Thouron,
1983). However, molecules 40–200 kDA have been shown to
cross the membrane in vitro (Moore and Clover, 2001). This
discrepancy is likely to be caused by the experimental systems
used in in vitro studies, which may not replicate physiologically
realistic gradients of pressure and normal fluid fluxes, and
often involve both advective and diffusive transports across the
membrane (Hussain et al., 2010).

Retinal Pigment Epithelium
At the level of the RPE, tight junctions connecting adjacent
cells ensure that the outer blood-retinal barrier is maintained
(Raviola, 1977). The resistance to paracellular transport across
the RPE was estimated to be ten times higher than that to
transcellular transport in animals (Miller and Steinberg, 1977a,b).
Choriocapillaris fenestrations are maintained by growth factors
secreted by the RPE that diffuse across Bruch’s membrane
(Blaauwgeers et al., 1999; Kamba et al., 2006; Kim et al.,
2019), highlighting the close relationship between these three
components. The expression of PLVAP may be induced and
regulated by growth factors produced at the level of the RPE
including vascular endothelial growth factors (Vegf) (Marneros
et al., 2005; Bosma et al., 2018) and pigment epithelium-derived
factor (Pedf) (Farnoodian et al., 2018). Vegf exposure has been
shown to alter the vascular permeability of endothelial cells
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(Bates, 2010), partly by modulating the frequency and structure
of their fenestrations (Stan, 2007).

Tissue-Level Models of Exchange
Between Choroid and Retina
Tissue-level analyses of the movement of molecules between
retina and choriocapillaris, which describe the combination of
phenomena occurring at the level of choroidal endothelial cells,
Bruch’s membrane and the RPE, are scarce. Salient features of
the transfer of small passively transported molecules may be
inferred from theoretical and experimental analyses of oxygen
concentration profiles (Linsenmeier and Zhang, 2017; Yu et al.,
2019). These studies indicate that passively transported molecules
diffuse along a concentration gradient that is perpendicular to the
plane of the choriocapillaris. In the case of oxygen, this gradient
is directed toward the outer retina.

Blood enters and leaves the choriocapillaris through a set
of arterioles and venules connected to the surface furthest
from the retina approximately perpendicularly to the plane of
the capillaries. Because of this arrangement, the blood flow
is decomposed into contiguous functional vascular segments
separated by separation surfaces across which there is no flow
(Zouache et al., 2016a). Groups of functional vascular segments
are commonly referred to as lobules (Hayreh, 1974b), a term
introduced by analogy with liver functional units (Torczynski and
Tso, 1976). The pattern of segmentation of the choriocapillaris
blood flow is determined by pressure gradients between arteriolar
and venular insertions and their relative distribution (Flower
et al., 1995; Zouache et al., 2016a). The extraction of diffusive
species from the choriocapillaris and the distance across which
they diffuse across the retinal tissue is determined by the velocity
of blood flowing through the choriocapillaris and by the relative
distribution and flow rate of arterioles and venules inserting
into its plane. Blood velocities across the choriocapillaris have
been experimentally and theoretically shown to be spatially
heterogeneous (Flower, 1993; Flower et al., 1995; Zouache et al.,
2016a). Mass exchange between choriocapillaris and outer retina
(denoted η) is at the level of a functional vascular segment (basic
lobule unit) described by the theoretical relation:

η =
A0h
τQa

8

where A0 is the surface area of the lobule, h the local thickness of
the choriocapillaris, Qa is the flow rate in the arteriole feeding the
lobule, 8 is the vascular volume fraction of the choriocapillaris
(the volume of tissue occupied by capillaries) and 1/τ is a transfer
coefficient specific to the compound considered (Zouache et al.,
2015, 2016a). This relation may also be expressed as:

η =
< T >

τ

where < T > is the mean travel time of blood between an
arteriole and a venule supplying and draining a choriocapillaris
lobule, respectively. Both relations are functions of the ratio of
arterioles and venules supplying functional vascular segments.
Based on experimental data generated in animals, the extraction

rate of glucose and oxygen is between less than one percent
and five percent per volume of blood (Alm and Bill, 1972;
Wang et al., 1997; Linsenmeier and Padnick-Silver, 2000), which
yields τ ≈ 0.2− 1× 105s. In the case of glucose, this estimate is
partly determined by the abundance of GLUT receptors on the
plasma membrane of choroidal endothelial cells (Mantych et al.,
1993), RPE (Strauss, 2005) and photoreceptor outer segments
(Hsu and Molday, 1991).

SPATIAL VARIATIONS IN NEURON
POPULATIONS AND INNER AND OUTER
RETINAL MASS TRANSPORT SYSTEMS

In this section, we explore the relation between retinal neuron
populations and their respective mass transport systems by
harnessing spatial variations in the structure of the retina and
choroid. This variability evolved as an adaptation to spatial
variations in light intensity, contrast and amplitude of visual
aberrations across the retina (Walls, 1942; Hughes, 1977). To
optimize spatial resolution and sampling of light (Hirsch and
Hylton, 1984; Hirsch and Curcio, 1989), the size, density,
and tilling geometry of photoreceptors vary across the eye. In
addition, as in many vertebrates (Walls, 1937, 1942), the human
eye contains a region dedicated to high resolution vision, the
fovea centralis, which allows for the capture a small part of retinal
images only but in great details (Hughes, 1977). Anatomically, the
fovea consists of a 1500 µm-wide depression in the retinal tissue
caused by the absence of inner retinal layers; see Figure 1C. In
this region the retina is only 100 µm thick, and is deprived of the
inner nuclear, inner plexiform, ganglion cell and nerve fiber layers
as well as retinal capillaries (Hogan, 1971). The spatial variation
in the human photoreceptor mosaic can also be seen in other cells
and structures of the retina and choroid, including ganglion cells
and retinal and choroidal vasculatures. The location and classical
denomination of retinal regions are described in Figure 4A.

Retinal Neurons
Methods based on histology of human donor eyes (Osterberg,
1935; Polyak, 1941; Farber et al., 1985; Curcio et al., 1987, 1990;
Jonas et al., 1992) and in vivo imaging techniques (Chui et al.,
2008a,b; Song et al., 2011; Zhang et al., 2015) have shown that
the density of cones is maximal at the fovea (see Figure 4B). Its
reported peak can vary by several orders of magnitude between
individuals, ranging from 49,600 (Dorey et al., 1989) to 238,000
(Ahnelt et al., 1987) cones/mm2 on average. Inter-individual
variability varies with location in the retina (Zhang et al., 2015;
Elsner et al., 2017) and may be partly explained by differences in
axial length between eyes sampled (Chui et al., 2008a; Legras et al.,
2018). The most detailed sampling of the cone mosaic in human
donor eyes to date reported a mean peak density of 199,000
cones/mm2 at the foveal center (Curcio et al., 1987, 1990), which
is consistent with measurements made using AO (Zhang et al.,
2015). Cone density decreases sharply with distance from the
center of the fovea (Osterberg, 1935; Curcio et al., 1987, 1990;
Jonas et al., 1992; Chui et al., 2008a; Song et al., 2011; Zhang et al.,
2015), and is 40–45% higher in the nasal retina as compared to
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FIGURE 4 | Spatial variations in retinal neuron populations (B,D,F) and in the key structures of their respective metabolite delivery systems (C,E,G–I). The
approximate location of sampled retinal regions and their associated denomination is described in (A). Terminologies vary between studies; the ones employed here
are consistent with the main text. Plotted data were collected from publications listed in Supplementary Table 1. All spatial variations are displayed along the
nasal-temporal axis as illustrated in (B). Reported values are plotted as vertical line segments (ranges) or single points, and the approximate region they apply to is
delineated using horizontal dashed lines. Dashed arrows indicate qualitatively reported trends. The density of bipolar cells (F) is plotted as a range inferred from
approximate ratios between their density and that of their respective photoreceptor type. The maximal vascular density of retinal capillaries (H) appears to overlap
with the highest density of bipolar (F) and ganglion (D) cells. Bruch’s membrane is thickest at the fovea (G), where photoreceptor density (B) and choriocapillaris
vascular density (E) are highest.
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the temporal region (Curcio et al., 1990). It is also slightly larger
in the midperipheral inferior region of the fundus as compared
to the superior retina (Osterberg, 1935; Curcio et al., 1990; Jonas
et al., 1992). Certain cone subtypes have different distributions,
which do not appear to be either random or regular (Curcio et al.,
1991; Mollon and Bowmaker, 1992; Roorda and Williams, 1999).
Rods are absent from the fovea (Osterberg, 1935; Polyak, 1941;
Farber et al., 1985; Curcio et al., 1987, 1990; Jonas et al., 1992). The
diameter of the region of the fovea deprived of rods is 0.35 mm
on average (Curcio et al., 1990). The density of rods is largest
in the nasal region of the retina (Osterberg, 1935; Curcio et al.,
1990; Jonas et al., 1992), with a maximal density found in the
vicinity of the optic disk (approximately 3–5 mm from the foveal
center) (Curcio et al., 1990; Jonas et al., 1992). Peak rod density
ranges from 135,000 (Farber et al., 1985) to 176,000 rods/mm2

(Curcio et al., 1990) in this region. Differences in rod density
between individuals can reach 10%, and are much smaller than
those observed for cones (Curcio et al., 1990). In addition to their
density, the morphology of photoreceptors varies with location in
the eye. The diameter of cones increases from approximately 1.6
(Curcio et al., 1990) to 2.23 µm (Scoles et al., 2014) at the center of
the fovea to 8–10 µm in the periphery of the retina (Curcio et al.,
1990; Jonas et al., 1992; Scoles et al., 2014). The diameter of rods
increases from approximately 3 µm in the region with the highest
rod density to 5.5 µm in the peripheral retina (Curcio et al., 1990;
Jonas et al., 1992).

The ratio between photoreceptors and bipolar cells varies
across the eye. At the fovea, bipolar cells are connected on
average to one cone and one ganglion cell, thus forming a one-to-
one wiring. Multiple connections are observed between bipolar
cells and photoreceptors in the region extending from outside
the fovea to the peripheral retina, which provides pooling of
information over space. Ganglion cells in this region connect to
multiple bipolar cells and receive signal originating from distinct
photoreceptors (Oyster, 1999). Overall, the density of rod and
cone bipolar cells follows the distribution of their respective
photoreceptor type. The density of cone bipolar cells is 2.5 to 4
times larger than that of cone photoreceptors whereas rod bipolar
cell density is approximately a tenth of that of rods (Martin and
Grünert, 1992; Grünert et al., 1994); see Figure 4F.

The distribution of horizontal cells has yet to be determined
in humans; however, their density has been estimated in monkey
retinas. From a minimum of 250 cells/mm2 at the foveal center, it
increases rapidly at the edge of the fovea. It reaches a maximum
of approximately 23,000 cells/mm2 within an annulus of 0.6 mm
radius enclosing the fovea (Röhrenbeck et al., 1989). This peak is
reached in the region where pedicles of foveal cones are displaced
(Tsukamoto et al., 1992). Outside of the fovea, the density of
horizontal cells decreases approximately exponentially out to
the peripheral retina, in keeping with the distribution of cones
(Röhrenbeck et al., 1989; Wässle et al., 1989; Oyster, 1999). In
the peripheral retina this density is twenty times smaller than the
peak observed close to the fovea (Röhrenbeck et al., 1989).

Absent in the fovea, ganglion cells appear approximately 100–
500 µm from the foveal center. Their peak density varies greatly
between individuals and ranges from 32,000 to 38,000 cells/mm2

(Curcio and Allen, 1990), although studies using AO reported

lower values (Liu et al., 2017). This maximum is reached within
a horizontally oriented elliptical ring located 0.4 to 2.0 mm
from the foveal center. Ganglion cell density decreases sharply
with distance from the foveal center, reaching approximately
100 cells/mm2 in the retinal periphery, and does not correlate
with cone density (see Figure 4D). This pattern of variation
is not uniform across the eye. At similar distances from the
foveal center, the density of ganglion cells in the nasal retina
exceeds that of the temporal region by more than 300%. It is in
the superior retina larger than in the inferior region by more
than 60% (Curcio and Allen, 1990). The mean peak density
of melanopsin-expressing retinal ganglion cells decreases from
approximately 20–40 cells/mm2 at 2 mm from the center of
the fovea to 10 cells/mm2 at about 8 mm eccentricity (Nasir-
Ahmad et al., 2019). The topography of amacrine cells has not
been mapped in humans. Evidence from monkeys indicates that
their distribution, density and coverage varies between subtypes
(Dacey, 1990; Wässle et al., 1995). Their density peaks close to the
fovea and declines with distance from the foveal center (Dacey,
1990; Rodieck and Marshak, 1992; Wässle et al., 1995).

Differences in the function, distribution and morphology of
retinal cells between fovea and peripheral retina are associated
with marked differences in gene expression (Peng et al., 2019;
Voigt et al., 2019b, 2021; Yan et al., 2020). Using unstructured
statistical methods that assessed how close transcription profiles
from a large number of cells are, foveal cones were found to form
clusters that were distinct from their peripheral counterparts
(Voigt et al., 2019b). This method also differentiated between
distinct cone subtypes (Lukowski et al., 2019).

Glial Cells
The mean density of Müller cells across the retina in man
was estimated to be approximately 11,000 cells/mm2, a number
that is fairly consistent among mammals (Dreher et al., 1992).
Information on spatial variations in the density and morphology
of these cells is limited. In the monkey retina, the density of
Müller cells varies between 6000 cells/mm2 in the periphery and
more than 30,000 cells/mm2 in the parafoveal region. Müller
cells are generally longer in the central retina as compared to
the periphery, and the average proximity of neighboring cells
increases with distance from the fovea (Distler and Dreher, 1996).
The distribution of astrocytes across the monkey retina is uneven.
Their concentration, which correlates with the thickness of the
nerve fiber layer, is maximal in the proximity of the optic nerve
and is particularly low in the perifoveal region. Astrocytes of
the nerve fiber layer appear as star-shaped cells in the periphery
but seem bipolar close to the optic nerve. The morphology of
astrocytes present in the ganglion cell layer is consistent across
the retina (Büssow, 1980; Distler et al., 1993).

Retinal Vasculature
There is no evidence of spatial variation in the structure and
ultrastructure of blood vessels across the retina (Pournaras et al.,
2008). Blood flow to the temporal part of the retina is greater
than that to the nasal region (Riva et al., 1985; Feke et al.,
1989); it is also greater in the superior quadrant as compared
to the inferior retina (Tomita et al., 2020). These differences are
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likely to be associated with spatial variations in the perfusion
of retinal capillary beds across the retina. The arrangement and
number of plexuses composing the retinal capillary network
varies spatially. The fovea is deprived of retinal capillaries. Close
to the FAZ, retinal capillary plexuses merge into a single layer
of capillaries (Campbell et al., 2017; Nesper and Fawzi, 2018).
The superficial capillary network is present across most of the
retina. The intermediate and deep capillary plexuses may be seen
in the macula and posterior pole, but merge into one network
peripherally (Toussaint et al., 1961; Hogan, 1971; Campbell
et al., 2017). The radial peripapillary plexus is observed in the
peripapillary region and in part of the macula (Michaelson,
1956; Kornzweig et al., 1964; Henkind, 1967; Jia et al., 2014;
Campbell et al., 2017).

The density of retinal vessels is partly determined by
the thickness of the portion of the retina that they supply
(Michaelson, 1956; Chase, 1982; Buttery et al., 1991; Snodderly
et al., 1992). While the combined volume of retinal vessels
in the deeper networks remains constant across the eye, the
cumulated vascular volume of superficial retinal vessels increases
with the thickness of the nerve fiber layer. The fact that this
layer contributes more to vascularity than to retinal thickness
indicates that the density of retinal vessels is more likely to
be determined by local metabolic requirements (and diffusion
distances) than by tissue volume (Snodderly et al., 1992).
This observation is further strengthened by the fact that the
diameter of capillaries is larger in the superficial nerve fiber
layer as compared to the inner nuclear layer (Snodderly et al.,
1992; Tan et al., 2012). This indicates a smaller resistance to
blood flow in this layer and a higher propensity for passive
molecular exchange.

Analyses of human donor eyes indicate that the greatest
density of retinal capillaries, expressed as a percentage of total
retinal volume, is found at the margin of the avascular fovea,
where it reaches approximately 1% (Snodderly et al., 1992);
see Figure 4H. The density of capillaries decreases gradually
toward the mid-periphery and periphery of the eye. In these
regions the retina is thinner and capillaries are fewer in number
(Toussaint et al., 1961; Kornzweig et al., 1964; Hogan, 1971).
Histological studies (Snodderly et al., 1992) found that the density
of capillaries in the vicinity of the optic nerve is approximately
1.6–1.7% of the volume of the retina and decreases with distance
from the optic nerve head. Capillary density extracted from
OCTA slabs is generally calculated by dividing the surface area
of automatically or manually traced capillaries by the area of
the retina sampled. Comparisons between densities extracted
from histology and OCTA using perfused human donor eyes
(An et al., 2018; Balaratnasingam et al., 2018) and animal
eyes (Yu et al., 2021) indicate that OCTA provides a good
representation of large retinal vessels but does not visualize all
retinal capillaries. Estimates of capillary density obtained from
OCTA slabs range from 10 to 60% on average in similar regions
of the retina (Coscas et al., 2016; Iafe et al., 2016; Garrity et al.,
2017; Lavia et al., 2019). In comparison, histological studies
indicate that the percentage of retinal area occupied by capillaries
lies between 40 and 55% (Snodderly et al., 1992; An et al., 2018).
It increases steeply in the parafovea and reaches a maximum

approximately 1.5 mm from the foveal center (Snodderly et al.,
1992). OCTA studies have found that the density of the deep
capillary network is greater than that of the superficial capillary
network (Lavia et al., 2019).

Choroidal Vasculature
The choroidal vasculature displays marked variations in its
anatomy and physiology across the eye. The number of arterioles
and venules connected to the choriocapillaris per unit of volume
is maximal in the submacular region and decreases toward the
periphery. The ratio of arteriolar to venular insertions follows
a similar pattern, varying from up to 5:1 in the submacular
area to 1:4 in the periphery (Amalric, 1983; Fryczkowski
et al., 1991; Fryczkowski, 1994). Because of its unconventional
morphology and large local variations, quantifying differences
in the structure of the choriocapillaris across the eye has
proven challenging. Qualitatively, capillaries are narrowest in the
posterior pole (Ring and Fujino, 1967; Hogan, 1971; Torczynski,
1982) and become progressively wider in the periphery (Ring
and Fujino, 1967; Hogan, 1971). The space between capillaries
(called septa) follows a similar pattern, varying between about
3 and 18 µm in diameter at the posterior pole (Hogan, 1971)
and widening into longer and thinner channel-like structures
toward the equator (Salzman, 1912; Wybar, 1954; Hogan, 1971;
Torczynski and Tso, 1976); see Figure 4E. Septae further
elongate and widen toward the periphery and become loose
in the region of the ora serrata (Salzman, 1912; Klien, 1966;
Yoneya et al., 1983; Fryczkowski et al., 1991). Variations in
the diameter of capillaries and septae across the eye are best
described by a measure of vascular density. The vascular density
of the choriocapillaris has a strong dependence on age. In
the macula, it varies between 0.75 and 0.41 over a lifespan
(Ramrattan et al., 1994). Measurements unadjusted for age
indicate that the density of the choriocapillaris is approximately
0.5 on average in the peripapillary and peripheral regions.
It does appear to decline more abruptly in the periphery
(Ramrattan et al., 1994; Spraul et al., 1999, 2002); see Figure 4E.
Choriocapillaris density seems to be independent of extrinsic
anatomical features such as the thickness of Bruch’s membrane
or choroid and correlates with age better than capillary or septae
sizes (Ramrattan et al., 1994).

Variations in the anatomy of the choriocapillaris translate
important differences in the shape of functional lobules and
possibly their mass exchange with the outer retina. These
differences are yet to be fully characterized in vivo; however,
some of them can be inferred from anatomical studies by using
existing theoretical frameworks (Zouache et al., 2015, 2016a).
Estimates of the average distance (Torczynski and Tso, 1976;
Fryczkowski and Sherman, 1988; Olver, 1990) and ratio (Amalric,
1983; Fryczkowski et al., 1991; Fryczkowski, 1994) between
arteriolar and venular insertions into the choriocapillaris, of
their respective number (Araki, 1976) and variations in vascular
density (Ramrattan et al., 1994; Spraul et al., 1999, 2002)
indicate that the surface area of lobules is smallest in the
submacular area, where their shape is closest to a regular square,
pentagon or hexagon. Toward the periphery, the surface of
exchange between choriocapillaris and outer retina is larger,
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and likely to take the shape of an elongated rectangle. Because
of a lack of hemodynamic data, it is unclear if differences
in the characteristics of functional lobules across the eye
are synonymous with spatial variations in transfers between
choriocapillaris and outer retina.

Spatial variations in the ultrastructure of choroidal
vessels have seldom been examined. Limited data indicate
that fenestrations are more frequent in the submacular
choriocapillaris as compared to the periphery of the eye (they
cover 60.3% of endothelial cell walls in the fovea vs. 36.7% in the
periphery) (Federman, 1982).

Bruch’s Membrane
The thickness and composition of Bruch’s membrane are the
main structural factors assessed to characterize its diffusive
properties. This thickness appears to be larger in the vicinity
of the optic nerve head (Salzman, 1912; Garron, 1963) and
in the periphery of the eye (Nakaizumi, 1964; Nakaizumi
et al., 1964) as compared to the posterior pole and submacular
regions (see Figure 4G). The composition of the elastin layer
varies across the retina. Qualitatively, it is thicker and occupies
a larger portion of Bruch’s membrane in the posterior pole
(Garron, 1963) and submacular area (Chong et al., 2005) as
compared to the peripapillary region; although a large variability
is observed between samples. Spatial variations in the porosity
of Bruch’s membrane were assessed quantitatively by measuring
the integrity of this layer, defined as the total length of detectable
elastin divided by the length of the portion of membrane
considered. This measure is correlated with the thickness of
the elastin layer. Elastin integrity is minimal at the fovea
(approximately 40%). It is on average 60% higher in the periphery
as compared to the subfoveal choroid (Chong et al., 2005). In vitro
experiments indicate that the hydraulic conductivity of Bruch’s
membrane is higher in the retinal periphery as compared to the
submacular region (Moore et al., 1995); see Figure 4I.

Retinal Pigment Epithelium
The density of RPE cells is maximal at the fovea and decreases
almost linearly with distance from the foveal center (Ts’o and
Friedman, 1968; Streeten, 1969; Young, 1971; Gao and Hollyfield,
1992; Harman et al., 1997; Bhatia et al., 2016; Granger et al., 2018;
see Figure 4C); although a large variability is observed between
subjects. A decrease in the density of RPE cells is associated with
an increase in their mean surface area (Ts’o and Friedman, 1968;
Granger et al., 2018) and a reduction in the average number of
neighbors to each cell (Bhatia et al., 2016). Hexagonal cells are
significantly more frequent in the macula than in the peripheral
retina (Watzke et al., 1993). The mean cone-to-RPE cell ratio is
maximal at the fovea and decreases rapidly starting from 2 mm
from the foveal center (Granger et al., 2018).

Conclusion
Most investigations reporting spatial variations among retinal
neuron populations, retinal vasculature and choroid have
considered these systems in isolation. In part because of this,
combining published measurements is not sufficient to capture
local differences in retinal and choroidal structures that may

indicate a correlated pattern of variation. This “lack of resolution”
is exacerbated by variabilities in regions of the retina sampled
between studies. Therefore, similarities between the pattern of
change in retinal and choroidal structures across the eye can only
be described qualitatively.

Past investigations indicate that spatial variations in the
structure and physiology of retinal circulatory systems follow
those observed among the populations of cells that they support.
The density of retinal capillaries (expressed as a function of
retinal volume) is maximal close to the optic nerve head, where
the concentration of ganglion and bipolar cells is highest. It
decreases toward the periphery, where the density of retinal
neurons is comparatively reduced. The amplitude of differences
in vascular density displayed by the choriocapillaris across the
choroid seem almost marginal when compared to those seen
among photoreceptors. Variations in the thickness and hydraulic
conductivity of Bruch’s membrane indicate that this structure
forms a greater impediment to mass exchange in the submacular
area as compared to the periphery. Therefore, barriers to
transport appear to be more selective in regions where the density
of photoreceptors is highest.

RELATION BETWEEN NEURONS AND
RETINAL MASS TRANSPORT SYSTEMS
IN AGING

Aging can provide valuable insights into the relation between
retinal neuron populations and mass transport systems, including
information about its resilience to perturbations occurring over
large timescales. Many structural changes have been observed in
the aging retina (see Figure 5A). Some reports are conflicting,
partly because the effect of aging on retinal cells and structures
varies across the eye. Inconsistencies or inaccuracies in the
regions of the retina sampled may therefore introduce large
variabilities in quantified features, rendering any generalization
difficult. In addition, the ability to detect cellular changes
or losses caused by aging are limited by large inter-subject
variabilities (Gao and Hollyfield, 1992) present at baseline,
as seen in Section “Spatial Variations in Neuron Populations
and Inner and Outer Retinal Mass Transport Systems,” and
by differences in the range of ages considered in each study.
Finally, it is often difficult to determine if earlier assessments
of retinal aging considered samples presenting features that
would today be classified as pathological. The definition of
many vitreoretinal diseases has evolved considerably over the
years, and several phenotypes previously considered as age-
related are now known to be associated with degenerative
diseases. For instance, changes caused by age-related macular
degeneration (AMD) often overlap with those associated with
aging prior to the onset of clinical symptoms. However, the
existence of genetic associations with AMD (Fritsche et al.,
2016) and disease specific phenotypes (Ardeljan and Chan, 2013)
indicates that the chain of events associated with the onset and
progression of this disease has components that are independent
of the aging process.
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FIGURE 5 | Age-related variations in retinal neuron populations and in the key
structures of their respective metabolite delivery systems in the macula and
equator and periphery. A schematic of changes affecting the retina and
choroid adapted and modified with permission from Campello et al. (2021) is
shown in (A). Linear and non-linear regressions were collected from
publications listed in Supplementary Table 2. The features plotted are
normalized by the first value of each regression, which corresponds to the
estimate in the youngest eye included in each study. In the macula (B), there
can be large inter-individual differences that mask variations in the density of
RPE cells and cone photoreceptors with age. With careful elimination of
disease and other extraneous variables, some older subjects have significantly
lower cone densities than do younger subjects. Aging is associated with an
increase in the thickness of Bruch’s membrane and a reduction in its hydraulic
and macromolecular permeability. The rate of rod loss and the decrease in the
vascular density of the choriocapillaris observed with age lie within a similar
range. In the equatorial and peripheral region (C) loss of cones with age is
more pronounced as compared to rods.

Foveal and Macular Regions
Inner Retina
While this is disputed (Oyster, 1999; Harman et al., 2000) due
to methodological inconsistencies (Calkins, 2013), cells in the

ganglion cell layers may be lost in aging (Gao and Hollyfield,
1992; Curcio and Drucker, 1993). Their density was estimated
to decrease by 16% on average between the second and sixth
decade (Gao and Hollyfield, 1992). Differences between young
and old eyes appear to be more pronounced approximately 3 mm
from the foveal center, where losses in mean density reach 25%
(Curcio and Drucker, 1993). Data on horizontal, bipolar and
amacrine cells are scarce. It is generally assumed that their density
remains constant throughout adulthood (Oyster, 1999). Limited
data do point to a 21 to 27% decline in bipolar cell density
with age over years spanning from the third to the seventh
decade (Aggarwal et al., 2007); however, the region of the retina
where measurements were made was not specified. Endothelial
degeneration (Nag and Wadhwa, 2012) and acellularity of single
vessels (Kuwabara et al., 1961), sometimes associated with loss of
mural cells, are often seen among retinal capillaries. Acellularity is
however not necessarily significative of functional abnormalities
or structural changes in adjacent parts of the retina (Kuwabara
and Cogan, 1965). A gradual reduction of macular retinal
thickness is often observed with age, generally after the fourth
decade (Eriksson and Alm, 2009; Karampelas et al., 2013; von
Hanno et al., 2017; Ryoo et al., 2018; Zouache et al., 2020; Trinh
et al., 2021). The thickness of the ganglion cell, inner plexiform,
inner nuclear and outer nuclear layers demonstrate similar rates
of decline with age. In contrast, the thickness of the nerve fiber
layer does not vary significantly with age (Trinh et al., 2021).
In vivo methods have found that the vascular density of deep
and superficial retinal capillary layers decreases by 0.55–0.86%
per decade on average (Wei et al., 2017; Lavia et al., 2019).
This variation is associated with a reduction of the mean blood
flow velocity among retinal venules (Wei et al., 2017) and a
decrease in retinal tissue perfusion (defined as the blood flow
supplying the macula divided by the sampled volume of the inner
retina) (Lin et al., 2019). The effect of perturbations of the retinal
blood flow on metabolism has been investigated experimentally
(Linsenmeier and Zhang, 2017; Yu et al., 2019); however, none
of these perturbations occurred over a timescale relevant to
the aging process.

Outer Retina and Choroid
The amplitude of changes observed in the outer retina and
choroid appears larger in magnitude than those documented
in the inner retina. Displacement and patchy loss of nuclei
in cone outer segments have been observed in the macular
retina (Gartner and Henkind, 1981; Dorey et al., 1989; Gao and
Hollyfield, 1992). Analyses of human donor eyes suggest that
the density of foveal cones decreases with age, although this
reduction was not found to be statistically significant (Gao and
Hollyfield, 1992; Curcio et al., 1993). Assessments of variations
in cone density with age may however be affected by axial
length (Park et al., 2013; Wang et al., 2019), undiagnosed retinal
pathology and discrepancies in regions sampled (Elsner et al.,
2017), which AO-based techniques can control for. Studies using
AO have found that older eyes have significantly lower cone
densities as compared to younger ones in regions 500 µm to
4 mm (Chui et al., 2012) and 570 to 580 µm (2◦eccentricity)
(Legras et al., 2018) from the foveal center. Differences in cone
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density between younger and older subjects are largest near the
fovea and decrease with distance from its center (Song et al.,
2011; Chui et al., 2012). Loss of rod photoreceptors is observed
in the region inferior to the fovea. Starting at the fifth decade, the
proportion of rods lost reaches 30% by the ninth decade within
an annulus ranging from 0.5 to 3 mm from the foveal center
(see Figure 5B). Interestingly, this annulus of greatest rod loss
lies in a region distinct from the part of the retina displaying the
highest rod density. The drop in rod density does not result in
reduced rod coverage because the space vacated by lost cells is
filled by larger rods (Curcio et al., 1993), thereby maintaining
their overall tiling (Oyster, 1999). Loss of RPE at the foveal center
(Gao and Hollyfield, 1992) and in the macular and paramacular
retina (Ts’o and Friedman, 1968; Dorey et al., 1989) with age have
been reported; although this finding has been disputed (Watzke
et al., 1993; Harman et al., 1997). Reported variations in cell
density may in fact be caused by an increase in the surface area
of the retina with age (Harman et al., 1997). An increase in the
mean surface area of RPE cells and a reduction of the frequency
of hexagonal cells (Watzke et al., 1993; Bhatia et al., 2016) have
been observed in aging. These morphological changes are likely
to preserve the continuity of the RPE layer, which may be affected
by cell loss or changes in retinal area. Some have reported that the
ratio between cone and RPE cells lies within a similar range across
all age groups (Gao and Hollyfield, 1992). The decrease in retinal
thickness with age after the fourth decade (Eriksson and Alm,
2009; Karampelas et al., 2013; von Hanno et al., 2017; Ryoo et al.,
2018; Zouache et al., 2020; Trinh et al., 2021) is not attributable to
the thickness of the outer plexiform or RPE layers, which do not
vary significantly with age (Trinh et al., 2021).

Analyses of OCT volume scans suggest that the total choroidal
and mean choroidal luminal areas decrease with age (Nivison-
Smith et al., 2020). Choroidal blood flow and volume, measured
using laser Doppler flowmetry and expressed in arbitrary units,
have been experimentally found to decrease by 7.5 and 8.8%
per decade, respectively (Grunwald et al., 1998). Investigations
of variations in choroidal blood velocities with age have yielded
conflicting results (Grunwald et al., 1998; Straubhaar et al.,
2000). The mean cross-sectional diameter of vessels forming the
choriocapillaris (equivalent to choriocapillaris thickness) and its
vascular density decline by up to 45 and 34% between the first
and tenth decade, respectively (Ramrattan et al., 1994). This
latter finding may be correlated with the increase in flow deficits
observed in vivo using OCTA (Zheng et al., 2019). The effect of
these changes on the transfer of molecules to the outer retina is
unclear. Theoretical considerations suggest that a reduction in
choroidal blood flow may result in smaller blood velocities within
the choriocapillaris, causing an increase in spatial heterogeneities
in mass transfers between this vascular bed and the outer
retina (Zouache et al., 2016c). Mathematical models indicate that
reduced choriocapillaris thickness causes an increase in resistance
to blood flow (Zouache et al., 2015), but is also synonymous
with larger passive transfer rates between the choriocapillaris
and the outer retina (Zouache et al., 2019). A reduction in
vascular density results in a decline in the surface area of the
choriocapillaris available for exchange; however, it may also have
a positive effect on rates of transfers to the outer retina by

causing a local increase in blood velocity. The significance of the
observed decline in submacular total choroidal thickness with
age (Wakatsuki et al., 2015) is yet to be understood. Increasing
age is associated with a thickening of Bruch’s membrane by a
proportion reaching 135% between the first and tenth decade on
average (Ramrattan et al., 1994), a loss of definition of the elastin
layer and an accumulation of matrix and non-matrix material
rich in lipids within its sublayers (Hogan, 1967; Feeney-Burns
and Ellersieck, 1985; Pauleikhoff et al., 1990; Holz et al., 1994;
Karwatowski et al., 1995; Johnson et al., 2007). Increased cross-
linking of fibers and accumulations of advanced glycation end
products (Karwatowski et al., 1995; Handa et al., 1999) are also
observed. These structural changes begin early in life (Feeney-
Burns and Ellersieck, 1985) and alter the porosity and diffusive
properties of the membrane in a molecule-specific manner.
The hydraulic conductivity of Bruch’s membrane decreases
exponentially with age, being halved every 9.5 years on average
(Moore et al., 1995). This variation is partly explained by the
accumulation of extractable lipids within the membrane (Curcio
et al., 2011), which follows a reciprocal pattern (Holz et al., 1994).
In vitro experiments have demonstrated a 45–65% linear decrease
of the transport of amino-acids across Bruch’s membrane over
a lifespan (Hussain et al., 2002). The diffusional transport of
macromolecules (such as dextran) accross the membrane is
reduced by 93.5% between the first and ninth decade (Hussain
et al., 2010). The maximal size of serum proteins crossing Bruch’s
membrane is progressively reduced from approximately 200 kDa
in the first decade to 100 kDa in the ninth decade, and is
associated with a 10-fold reduction in their transport over this
time (Moore and Clover, 2001).

Equatorial and Peripheral Regions
At the temporal equator, the density of cones is reduced by
23% on average by the ninth decade (Curcio et al., 1993);
see Figure 5C. The average rate of decrease of cones and
RPE cells is uniform and estimated to be approximately to
16 and 14 cells/mm2/year, respectively (Gao and Hollyfield,
1992). Some have reported stable rod counts in this region
throughout adulthood (Curcio et al., 1993) whereas others
observed non-uniform rates of decrease with age (Gao and
Hollyfield, 1992). This later study suggested that the variation
in the density of rod with age was not linear. Rod loss appeared
to be more pronounced between the second and fourth decade
than between the fourth and ninth decade. Gao and Hollyfield
(1992) found that the ratio of photoreceptor to RPE cells did
not vary significantly with age, indicating a parallel loss of
these apposed cells. Loss of RPE cells in the far periphery is
associated with variations in their typical morphology that are
similar to those observed in the macular retina. In contrast,
the morphology of RPE cells in the mid-periphery appears to
remain stable throughout adulthood (Bhatia et al., 2016). Age-
related changes in the structure of Bruch’s membrane are not
as apparent in the peripheral retina as in the macular region.
Changes in non-collagen protein content (Karwatowski et al.,
1995) including lipids (Johnson et al., 2007) are not systematically
observed. The reduction in hydraulic conductivity is less
pronounced as compared to the macula (Moore et al., 1995), and
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macromolecular diffusion is only reduced by 66% between the
first and ninth decade (Hussain et al., 2010).

The extension of dendritic fibers of a subtype of bipolar cells
beyond the outer plexiform layer and into the outer nuclear layer
has been observed in aged peripheral retinas (Eliasieh et al., 2007).
Widespread loss of retinal capillaries with age has been observed
in the peripheral retina (Kuwabara et al., 1961; Kuwabara and
Cogan, 1965), as well as an increased incidence of vacuole-
like structures in capillary basement membranes (Hogan and
Feeney, 1963b; Powner et al., 2011); although the significance
of this later finding is unclear. The ratio between the density
of cells in the ganglion cell layer and that of rods does not
vary significantly with age. Similarly to rods, loss of cells within
the ganglion cell layer may be more pronounced between the
second and fourth decade than between the fourth and ninth
decade (Gao and Hollyfield, 1992). This study and others (Curcio
et al., 1993) support the idea that ganglion cell losses in the
peripheral retina occur at a rate smaller than that seen in the
macula, although this has been contested (Harman et al., 2000).
Curcio et al. (1993) identified a region of the peripheral retina
displaying consistently lower ganglion cell densities in older eyes
as compared to younger ones.

Systemic Factors
It is beyond the scope of this review to describe systemic
changes associated with aging; however, their effect on retinal
mass transport systems should not be overlooked. It has long
been known that cardiac output decreases with age while
blood pressure increases (Boss and Seegmiller, 1981). Plasma
proteome also displays marked variations with age (Lehallier
et al., 2019). Serum or plasma proteins influence transport across
endothelial cells (by modulating oncotic pressures for instance)
(Bhave and Neilson, 2011) and semi-permeable membranes,
and are therefore a key determinant of retinal homeostasis.
The effect of these changes on retinal and choroidal blood
flow is yet to be fully explored. Basic theoretical considerations
suggest that a reduction in cardiac output and/or an increase
in arterial blood pressure may exacerbate spatial heterogeneities
in mass transfers between the choriocapillaris and outer retina
(Zouache et al., 2016c). This effect is more pronounced for
larger molecules, which have a comparatively longer travel
time between blood and tissue. Whether the retinal and
choroidal vasculatures have evolved mechanisms to adapt to
these changes is unknown.

Conclusion
The effect of aging on the retina is spatially heterogeneous;
it is more prominent in the region with the highest energy
requirements, the macula, and in the outer retina and choroid
as compared to the inner retina. Direct and indirect evidence
point to a progressive breakdown of mass transfers between
retinal neurons and their respective metabolite delivery systems.
However, the contribution of this breakdown to retinal aging
and its correlation with cellular alterations and potential loss
of function remains to be fully elucidated. The 30% loss in rod
density in the macula appears to concord with the 34% decrease
in choriocapillaris density observed with age (see Figure 5B).

However, more work is necessary to understand the relation
between these two systems. The largest change in retinal mass
transport systems is by far seen in Bruch’s membrane. The
selectivity of this barrier to transport is dramatically altered in
aged eyes, with the transfer of larger molecules and fluids being
comparatively more affected. Changes seen in the inner retina
appear to be largely independent from those observed among
photoreceptors and choroid; however, more work is necessary
to confirm this.

CONCLUSION AND PERSPECTIVES

Our ability to fully assess correlations between variations in
retinal neuron populations and changes in their respective mass
transport systems using published data is limited by the fact
that the key components to consider – neurons, vasculatures,
extravascular and extracellular elements – have predominantly
been studied in isolation. The retina involves many cellular
elements that function through symbiotic relationships. It is now
thought that photoreceptors are at the center of a metabolic
landscape involving RPE and Müller cells (Kanow et al.,
2017; Viegas and Neuhauss, 2021). These functional units rely
on adequate mass exchange between Müller cells and retinal
capillaries, and between choriocapillaris, Bruch’s membrane and
RPE. Investigating these entities as units may yield better
insights not only into interaction between retinal cells and mass
transport systems, but also into the chain of events driving retinal
senescence and vitreoretinal disorders.

Our assessment of the relation between retinal neuron
populations and mass transport systems in aging is considerably
limited by the lack of models or frameworks developed to
differentiate between structural and functional changes caused by
aging and those driven by disease. This limitation is more broadly
a significant impediment to the study of retinal aging. A large part
of our understanding in this regard comes from samples selected
based on the absence of phenotypes traditionally associated with
vitreoretinal disorders. But many (Zouache et al., 2020; Williams
et al., 2021) have shown that defining retinal diseases using
phenotype alone is not sufficient. The consequences of genetic
mutations driving AMD is for instance often detected late in life;
however, their effect on retinal and choroidal structures is likely
to begin much earlier. An effective way to address this is to stratify
subjects base on genetic susceptibility for disease (Pappas et al.,
2021) and to exclude those at high risk from cross-sectional and
longitudinal analyses.

Future studies may benefit from considering variations
in mass exchange within the retina and their effect at the
molecular, cellular and tissue levels. Models developed within
frameworks centered around basic physical principles can
provide extremely valuable insights into processes driving
alterations and help generate hypotheses to be experimentally
tested. A benefit of these approaches is the ability to link
phenomenon occurring at distinct scales. Biological systems such
as the retina are intrinsically multiscale, and cells themselves must
integrate several scales to functions (Lecca, 2013). Integrating
information from different levels to build a better understanding
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of the retina is a major challenge; however, it is key to designing
effective strategies to slow or even reverse vision losses caused by
aging and vitreoretinal disorders.

Laying down a framework capable of assessing the effect of
variations in retinal neuron populations and their respective mass
transport systems on visual function is incredibly challenging,
in part because of the broad range of scales associated with the
processes and structure at play. Such a framework is however
necessary to determine the nature of the relation between cellular
and tissue-level changes and vision. Alterations in the selective
permeability of Bruch’s membrane restrict the movement of
many molecules essential to the visual cycle; however, their effect
on visual function is presently impossible to assess directly.
Some have proposed that rod visual function is unlikely to be
affected by rod losses observed in aging (Oyster, 1999). This
would indicate that the relation between photoreceptor loss
and visual impairment is not linear. Integrating functional and
structural information from multiple scales will be necessary in
future studies to understand the full extent of the resilience and
adaptability of our visual system.
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