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Abstract 
Road traffic data is important for various applications in transport studies, such as those related to safety, 
environmental damages and economic evaluations. Although significant improvement in estimation 
accuracy has been achieved, less is known about the association of specific factors with road traffic 
volumes. This paper presents an investigation of the relation of various road, area and socio-economic 
characteristics with Annual Average Daily Traffic (AADT) in England and Wales for four different road 
classes and five vehicle types. This is achieved by applying the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression on a comprehensive set of land use, socioeconomic, public transport and 
roadway variables. The output reveals that specific socioeconomic and roadway characteristics are those 
that are mainly associated with traffic volumes across all vehicle types and road classes. Moreover, the 
association of other variables with  traffic volume varies, depending on the road class and vehicle type, 
creating space for future research. The results can support urban planning and inform policies related to 
transport congestion and environmental impacts mitigation. 
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1. Introduction 
Availability of road traffic data is of high importance for several disciplines, as it is used for Green House 
Gases (GHG) and air pollutant emission estimation (1), exposure to noise generation and related health 
impacts (2) as well as economic evaluations of safety projects (3) among others. However, traffic data 
collection across the full extent of the road network is challenging and costly, and therefore transport 
departments rely on automatic traffic counters installed on limited sites and sometimes on manual 
measurements undertaken seasonally on few locations. Consequently, several methods to estimate traffic 
volumes across the network have been investigated, taking into consideration, to a different extent, the 
factors associated with traffic. In particular, Annual Average Daily Traffic (AADT) – a measure of traffic 
volume (traffic volume definition in provided in the Supplementary Information) defined as the average 
daily traffic on a street segment over a year (4) – has been the research focus for studies on motorised (5) 
and non-motorised transport (6,7), aiming to address issues such as accident prediction (8) and air pollutants 
estimation (9). 
Whilst research on AADT estimation and related driving factors has been improved with the incorporation 
of novel modelling approaches, significant limitations are still observed. First, estimations are mainly 
conducted on total AADT while volumes for different vehicle types is largely unexplored. Secondly, 
research is preoccupied with AADT estimation on major roads (10), while only a few studies take into 
account minor roads (3,11). Moreover, the majority of studies focuses on estimation accuracy (12,13), 
without considering the relationships between several characteristics – such as land use – and road transport. 
Finally, the explanatory variables used in several models are limited and consequently many driving factors 
are excluded. This is fundamental not only to facilitate traffic volume estimation, but also to examine the 
complexity of road transport and how it interrelates with urban – and where possible rural – infrastructure 
and demographics. The latter is vital for decision making in the transport field, but also across wide range 
of interconnected sectors such as urban and environmental planning and of course the economy. 
In this paper, we investigate the association of driving factors with traffic volumes (AADT) focusing on 
England and Wales. The Department for Transport (DfT) in the UK, classifies road network to two 
categories, major and minor roads (14). The major road network includes Motorways and ‘A’ roads 
indicating main arteries with heavy traffic flows and often many lanes, used for long distance travel, with 
‘A’ roads further subclassified in Trunk and Principal roads (15). The minor road network includes ‘B’, ‘C’ 
and Unclassified (‘U’) roads, which are of lesser significance, carry lower traffic and are normally 
maintained by local authorities (15). Our analysis is focused on four different road classes which are 
examined individually (i.e., ‘A’, ‘B’, ‘C’ and ‘U’ roads). Motorways are excluded taking into consideration 
that these roads are not affected by the surrounding characteristics (30). The analysis is conducted for five 
different vehicle types (i.e., Cars, buses, Light Good Vehicles, Heavy Good Vehicles and two-wheeled 
vehicles) where a statistical model is applied, and the most statistically significant variables are identified 
so that their association with  AADT can be assessed. To perform this, we build on the work conducted in 
(16), where high AADT estimation accuracy is achieved across all road types and a comprehensive set of 
driving factors is used in the study. 
The paper is presented in seven sections. Section 2 provides a literature review on AADT modelling 
approaches and the findings regarding the driving factors. Section 3 presents the dataset used and section 4 
describes the methodology used to understand the association of various factors with AADT. Section 5 
presents the summarised results, while the full set of results for ‘A’, ‘B’, ‘C’, and ‘U’ roads is presented in 
the Supplementary Information. Section 6 analyses and discusses the findings while section 7 concludes 
the outcomes of this study and explores future considerations to improve this work to further contribute to 
the field. 
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2. Literature review 
Numerous studies undertake AADT estimation, with the use of various explanatory variables incorporated 
in Machine Learning (ML) and Data Mining approaches (4,17), Linear Regressions (18) and Spatial 
statistics (19). Recent rise in applications of Machine Learning algorithms has provided higher prediction 
accuracy (20–22), although these models may lack strong theoretical basis and are sometimes considered 
‘black-boxes’ (23–25) which means there is a lack of knowledge in the internal process (26,27) making 
them unsuitable for interpreting the outcomes (20). This is reflected both in AADT estimation studies (4) 
and other disciplines (28,29), where ML models provide more accurate results compared to other models, 
but the exact relations of predictors with the response variable cannot be assessed and interpreted. In this 
section we provide a synopsis of AADT estimation studies, firstly by briefly summarising models aimed at 
increasing prediction accuracy and secondly by focusing on modelling approaches where statistical 
coefficients are shown and discussed. 

2.1. Prediction-driven AADT models 
This subsection presents statistical models intent to increase AADT estimation accuracy rather than 
interpreting the potential effects of explanatory variables on traffic volumes. For example, in (30) and (31) 
Kriging interpolation is applied using mean square prediction error (MSPE) and absolute percentage errors 
(APE) to evaluate the spatial models developed. Similarly, in (19) Kriging and Geographic Weighted 
Regression (GWR) is also applied and the models are assessed with APE, while in (32) regression Kriging 
is applied and the model outputs are assessed by using the Mean absolute percentage error (MAPE) 
evaluation metric. 
In the Machine Learning literature, in (12) the K-STAR (K*) and Random Forest models are used and 
validated with the P-value and Nash-Sutcliffe (N-S) statistic, while in (13)  Artificial Neural Networks are 
applied and validated with MAPE. Root Mean Square Error (RMSE) is used in (4) to validate the Random 
Forest, Support Vector Regression and K-nearest neighbour models used to estimate AADT in low volume 
roads. A combination of clustering and regression modelling has been evaluated with Mean Absolute Error 
(MAE) and MAPE in (33). 

2.2. Coefficient-based AADT estimation models 
This subsection presents studies where predictor coefficients are extracted, mainly based on standard 
statistical regression models. Specifically, the authors in (34) used linear regression with 11 independent 
variables in Indiana, US. The results show that road environment (i.e., the road located in an urban or rural 
area), accessibility to motorways and population are statistically significant and exhibit positive 
coefficients. The authors in (35) also apply linear regression on 12 variables, to conclude that the number 
of lanes, road environment and functional classification (i.e., the road being arterial or collector) exhibit 
high positive coefficients. Number of lanes and functional classification explain 50% and 26% of the 
variation respectively. A multiple regression model has been used in (36) to estimate AADT in rural roads 
in Georgia, US. Among the 45 variables, population and number of farms are statistically significant with 
positive signs, while distance to large urban areas is also significant with negative impact. In (37) four 
regression models are tested with eight variables in Florida. The best performing model – validated by MSE 
– indicates that functional class and number of lanes are the most significant predictors with high positive 
coefficients. Accessibility to employment centres and motorways, population and workplace population are 
also statistically significant and have positive signs. In (38) Ordinary Least Squares (OLS) regression is 
applied on a similar set of variables to find that the number of lanes and access to motorways have higher 
positive signs. In the same study, the variables of population, employment population and distance to 
employment centres are statistically significant with positive coefficients. 
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More recently, the authors in (11) used liner regression to estimate AADT values on low volume roads in 
Wyoming, US. Six variables are statistically significant with paved roads – as opposed to dirt roads – 
accessibility to primary roads and population in the vicinity of traffic counters result into positive signs as 
opposed to land use variables which exhibit negative coefficients. In (39) with a multiple linear regression 
model for two cities in Alabama, US, the authors identified that functional class and number of lanes are 
statistically significant with high positive coefficients. Retail employment has also a positive sign. On the 
contrary, population and non-retail employment have negative signs as opposed to findings from other 
studies. Finally, the authors in (40) used a Generalised Linear Mixture Model (GLMM) and the Synthetic 
Minority Over-sampling Technique (SMOTE) with twenty variables in Seattle, US. The findings show that 
17 and 15 variables respectively are statistically significant with the “Spatial weighted volume” having the 
highest positive coefficient. The Spatial weighted volume is defined as the “the sum of other roads’ 
weighted AADT divided by the reciprocal of squared Euclidean distance, in counts/sq. feet” (40). Roadway 
characteristics also indicate high positive signs, while five variables for GLMM and seven for SMOTE 
have negative coefficients with local streets and one-way roads exhibiting the highest. Distance to 
motorways also has a negative sign. 
 

3. Data 
We use the dataset presented in (16), which fits our purposes due to low AADT estimation errors achieved 
in the paper and the rich set of variables introduced in the models. The dataset contains approximately 
19,000 geotagged traffic count points located in England and Wales on four different road types – ‘A’, ‘B’, 
‘C’ and ‘U’. For each road type, AADT for different vehicle types – Cars, Buses, LGVs, HGVs and Two-
wheeled – are taken. For each count point, service areas of different sizes are drawn and for each service 
area four different sets of variables associated with AADT are considered: i) roadway characteristics taking 
into account attributes of the roadway, ii) socioeconomic characteristics considering attributes such as 
population and income in the counters’ vicinity, iii) land use characteristics related to building use and 
infrastructure around a count point and iv) public transport facilities including bus stops and train station 
accessibility. The service areas are essentially “buffers” that consider the road network – instead of using 
straight Euclidean distances. The measure captures the actual distance (in metres) a vehicle covers on the 
network (16). The complete set of variables is presented in Table A1. 

For each road class, the count points are split into five subcategories (henceforth referred to as groups), 
which are colour coded in the same way across all road types and each group has a different service area. 
The groups are a result of the clustering process followed to create the dataset and therefore, are 
characterised by the variables where in some cases exhibit considerable variation. Consequently, the 
distribution of the variables is not similar across the groups and some variables have zero values in some 
groups. However, a generalised pattern related to traffic volumes emerge – as reported in (16) – with AADT 
decrease starting from group 1 towards group 5 for all road types (Figure 1). Moreover, the groups appear 
to be significantly affected by the location of traffic counters, being placed in urban, suburban or rural areas 
(Table 1). The independent variables are presented in Table A1 in the Supplementary Information. For more 
information on the process followed to build the dataset, the reader can refer to (16). 
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[FIGURE 1 HERE] 

 

Figure 1: Total AADT Values by Road Class and Group 
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Table 1: Indication of Count Point Locations and samples for each Group 

Group 
Number 

Colour 
Code 

Road Class Location 
‘A’ ‘B’ ‘C’ ‘U’  

Service Areas Size (in metres) 
 

Number of Points 

1 Red 
800 800 500 3200 ‘A’ roads – evenly split between urban and rural areas 

‘B’,’C’ and ‘U’ roads – mainly in urban areas 521 86 59 31 

2 Yellow 
1600 1000 800 800 ‘A’ roads – evenly split between urban and rural areas 

‘B’,’C’ and ‘U’ roads – predominantly in urban areas 2,170 216 207 187 

3 Blue 
500 800 1000 1000 

‘A’ roads – predominantly in major urban areas and 
centres of smaller urban 
‘B’ roads – evenly split between urban and rural 
‘C’ and ‘U’ roads – predominantly urban 1,672 184 147 557 

4 White 
500 800 800 1000 ‘A’ and ‘U’ roads – predominantly in urban areas 

‘B’ and ‘C’ roads – split between urban and rural (many in 
the centres of smaller settlements as well as outskirts and 
suburbs of large urban centres) 

5,627 252 218 1,070 

5 Green 
500 2000 1600 500 Almost exclusively rural. Some points for ‘U’ roads are 

located at smaller settlements. 4,680 284 427 196 
Total Number of Points 14,670 1,022 1,058 2,041 18,791 
Proportion of Points in 

each road class 78.07% 5.44% 5.63% 10.86%  

 

4. Methodology 
To understand the association of particular factors with AADT we examine the coefficients obtained from 
statistical modelling by first transforming the data in a form enabling comparison of coefficients across 
variables, then by applying the regression model, and lastly by extracting statistically significant 
coefficients. From Table A1, one can see that numerical variables are mainly count variables although a 
number of continuous variables measured in different units are also included – e.g., distances (in meters) 
and income (in British pounds). To allow comparison of the coefficients, we standardised all variables 
(using what is sometimes called the z-transformation). Any count or continuous variable, 𝑥𝑥, regardless of 
the distribution, can be transformed into a variable with mean of 0 and a standard deviation of 1, provided 
that they have finite mean 𝜇𝜇 and standard deviation (SD) 𝜎𝜎 : 

𝑥𝑥′ =  
𝑥𝑥 − 𝜇𝜇 
𝜎𝜎

 (1) 

This transformation will allow to compare and assess the association of each variable with AADT (41). 

Moreover, to account for the distribution of the dependent variable that is skewed to the right, we apply 
logarithmic transformation on the variable (42) for all groups and subgroups. Therefore, one can interpret 
the coefficients of predictors on the dependent variable as percentage impacts (43), rather than absolute 
units. 

To model the relationship between the independent and dependent variables, we use the Least Absolute 
Shrinkage and Selection Operator (LASSO) method (44) applied on each vehicle type, road class and 
subgroup individually. Lasso is both a regression and variable selection method, that aims to produce a set 
of statistically significant predictors to minimise the estimation error (45) and it has been found to perform 
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well when used for both regression as well as variable selection tasks (46,47). The variable selection is done 
by imposing a penalty term on the model parameters so that some regression coefficients shrink to zero 
(48) and consequently these variables are excluded. This is an advantage over similar methods such as 
Ridge regression, that do not reduce the number of variables (49) and therefore not able to reduce the 
complexity of a dataset incorporating a large number of variables. The so-called L1 penalty is applied by 
using the parameter λ controlling the shrinkage level, so that the set of coefficients estimated by Lasso 
minimises the expression in the Equation 2 below  (50): 

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
1
2
��𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗

𝑝𝑝

𝑗𝑗=1

�

2

+ 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

� (2) 

 

where 𝑦𝑦𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the outcome and predictor variables respectively and β represents the coefficients at the 
𝑖𝑖𝑖𝑖ℎ observation of the  𝑗𝑗𝑗𝑗ℎ independent variable.  

The parameter λ is key, as changing its values can affect the number of chosen variables and estimated 
coefficients. Specifically, the larger the value of λ, the greater the level of shrinkage and the fewer variables 
retained by Lasso. Therefore, for each λ, we apply the k-fold cross validation method (51,52) to select the 
optimal value. During this process the sample is randomly split into k partitions. The k-1 subsets are used 
to train the model and the remaining subset is used to test how well the model fit the data by computing the 
cross-validation error. The process is repeated with a different subsample and the error is computed for 
each iteration. The value providing the lowest error is selected (53,54). 

However, to account for randomness in the subset selection, a repeated k-fold cross-validation is applied. 
This process replicates k-fold cross-validation multiple times, with the data being rearranged for each 
iteration (55). Here we use k=10 and test on 100 repetitions. The average value for optimal lambda across 
the repetitions is calculated and used as the parameter in Lasso. 

 

5. Results 
In this section, results are presented for each road and vehicle type. Firstly, we present and briefly discuss 
the coefficient of determination (i.e., R squared – R2) for all models applied, indicating the goodness of fit 
and then, we show the coefficients extracted from Lasso.  

5.1. R-squared (R2) 
In Table 2 the R2 values for all the models applied are shown. Overall, it can be observed that certain 
patterns emerge across vehicle types, road classes and groups. More specifically, the R2 values tend to be 
higher in the ‘A’ road class while they are normally lower in other road classes with a few exceptions, 
indicating the higher reliability of the results for ‘A’ roads. Moreover, R2 values are normally higher in high 
traffic volume groups (e.g., groups 1 and 2), and in most cases gradually decrease in low traffic volume 
groups, a pattern that is again more distinct in the case of ‘A’ roads. This observation also complies with 
the finding from (16) – where the data have been extracted from – where the models perform better in high 
volume road classes and groups. In terms of vehicle types, it can also be observed that the R2 statistic is in 
most cases higher for buses and two-wheeled vehicles and are normally lower in the case of LGVs and 
HGVs, with a few exceptions such as group 1 in ‘C’ roads (LGVs) and group 1 in ‘U’ roads (HGVs). The 
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goodness of fit is also normally lower for cars compared to other vehicle types. However, it should be noted 
that the amount of noise in the data does prevents from reaching very high R2 values. Low R2 is also 
common in cross-sectional data (56) compared to time-series data analysis, where the values tend to be 
higher. 

 

Table 2: Lasso R-squared values for each road class, group and vehicle type 

Group Cars Buses LGVs HGVs Two-wheeled 
 A 

1 0.22 0.57 0.36 0.37 0.63 
2 0.10 0.40 0.22 0.54 0.52 
3 0.22 0.23 0.16 0.28 0.65 
4 0.20 0.18 0.23 0.35 0.20 
5 0.22 0.15 0.18 0.20 0.13 
 B 

1 0.27 0.49 0.17 0.10 0.39 
2 0.10 0.41 0.17 0.32 0.46 
3 0.25 0.18 0.28 0.31 0.28 
4 0.21 0.23 0.22 0.32 0.23 
5 0.10 0.27 0.10 0.10 0.10 
 C 

1 0.46 0.10 0.36 0.10 0.42 
2 0.18 0.24 0.10 0.25 0.38 
3 0.44 0.24 0.23 0.13 0.41 
4 0.24 0.17 0.10 0.18 0.10 
5 0.10 0.10 0.10 0.10 0.10 
 U 

1 0.38 0.32 0.10 0.66 0.20 
2 0.10 0.32 0.11 0.26 0.13 
3 0.36 0.11 0.25 0.15 0.21 
4 0.10 0.10 0.10 0.10 0.10 
5 0.40 0.10 0.14 0.10 0.10 

 

5.2. Lasso coefficients 
The results from Lasso include only a subset of variables, as some of the variables have zero coefficient. In 
some cases, this happens for a great share of the variables, while in other cases most variables are retained. 
It is worth pointing out that the meaning of coefficients is different across variable types. In the case of 
continuous variables, the estimated coefficients are standardised semi-elasticities and represent percentage 
changes in traffic volumes arising from an increase of 1 standard deviation (SD) in the variable. In the case 
of categorical variables, the coefficients represent percentage change when switching from the base 
category to the other category as seen in Table A2 in the Supplementary Information. In this section we 
present the Lasso regression outcomes for all road classes. However, due to the large number of variables 
investigated, we identify and present the variables exhibiting high positive or negative coefficients across 
all groups and vehicle types for each road class separately. Specifically, the three most statistically 
significant variables for each road class are shown in Table 3. The complete set of results is presented in 
the Supplementary Information also including the coefficients in Tables A3 – A10. Discussion and 
interpretation of our findings are presented in section 6. 
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Table 3: Lasso coefficients for each road class and vehicle type 

Variable Cars Buses LHVs & HGVs Two-wheeled 
 A 

Distance from Urban Area -12.9% – 0.8% -11.8% – 0.1% -10.4% – 5.7% -6.1% – -1.2% 
Dual Carriageway 16.9% – 48.9% 6.2% – 32.2% 18.1% – 76% 21.6% – 32.4% 

Ring Road 2.5% – 19.5% -29.7% – -11.8% 6% – 32.1% -11.4% – 13% 
 B 

Distance from Urban Area -2.2% – -2% -17.8% – -2.8% 3.3% – 24.1% 2.6% – 12.3% 
Bus stops -1.2% – 0.2% 22.1% – 24% -20.1% – -0.9% -14% – -4.4% 
Income -1.1% – 7.7% -17.8% – -5.7% 0.7% – 5.5% 2.9% – 25.1% 

 C 
Distance from Urban Area -23.6% – -1.7% -22.4% – -7% -10.9% – 3.6% 3.7% – 10.1% 

Population -2.9% – 21.5% 0% – 8.5% 5.5% – 12.2% 0% – 1.5% 
Income 0.5% – 12.8% -3.2% – 0% -1.5% – 6.4% 4.6% – 9.6% 

 U 
Distance from Urban Area -16.2% – -0.4% -4.4% – -3.1% -8.4% – 10.7% -3.6% – 2.3% 

Bus stops 0% – 33.3% 1.6% – 86.4% -14.2% – 14% -4.5% – 12.7% 
Income 0% – 3.8% -9.7% – -4.8% -2.2% – 44.8% 0% – 11.4% 

5.2.1. ‘A’ roads 

For this road type, we have observed that the variables representing roadway characteristics are those highly 
associated with large deviations in traffic volume  across all groups for the vehicle types we have examined. 
Specifically, from Table 3, it can be observed that dual carriageways are correlated with high vehicle 
volumes compared to single carriageways ranging from 6% for buses, up to 76% for HGVs, while the 
values are also high in the case of cars, which are the vehicles that dominate the streets. The distance from 
urban areas’ centres is also statistically significant for all vehicle types in the majority of groups, with mixed 
signs being observed in the case of LGVs and HGVs. In particular, the negative sigs – up to -10% for LGVs 
and -6% for HGVs – are observed in the low traffic volume group (i.e., group 5 – see Supplementary 
Information), while positive signs are evident in higher volume groups. On the contrary, the coefficients 
for cars, buses and two-wheeled vehicles indicate that the further a count point is from an urban area, the 
lower the traffic volumes for these vehicles, considering all other factors being equal. The values are as 
high as -13% for cars, -12% for buses and -6% for two-wheeled vehicles, all being observed in the low 
volume group. The occurrence of ring roads completes the set of roadway characteristics associated with 
deviations in traffic volumes. Ring roads are related to significantly higher volumes for car, LGV and HGV 
traffic across all groups with the coefficient signs being as high as 20% for cars, 21% for LGVs and 37% 
for HGVs respectively, mainly observed in groups 3 and 4. Ring roads are also related to lower two-wheeled 
vehicle traffic volumes in group 1 although the signs are positive in all other groups, reaching 13% in group 
3. On the contrary, these roads are associated with significantly lower bus volumes across all groups ranging 
from -12% in group 1, up to -30% in group 5.  

5.2.2. ‘B’ roads 

For ‘B’ roads the set of variables associated with deviations in traffic volumes across all groups and vehicle 
types are not only related to the roadway characteristics, but also consist of public transport and 
socioeconomic indicators. The distance from urban areas is again statistically significant and correlated 
with lower car and bus traffic volumes, as high as -2% and -18% for these vehicle types respectively, 
although the signs for two-wheeled vehicles are positive, ranging from 3% to 12%. Similarly, the further 
the count point is from an urban area, the higher LGVs and HGVs traffic volumes, particularly in the case 
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of HGVs, where distance is correlated with higher traffic volumes at 24%. The presence of bus stops, 
however, is related to lower LGV traffic volume as high as -2%, while the sings indicate significantly 
smaller number of HGV vehicles, ranging from -10% up to -20% and observed in groups 3, 4 and 5. Bus 
stops are also correlated with a slightly lower traffic volume for cars in this road class, although the 
coefficients signs are remarkably higher for two-wheeled vehicles, ranging from -4% to -14%. 
Unsurprisingly, bus stops are related to higher bus numbers in ‘B’ roads, ranging from 22% to 24% across 
the groups. Finally, income is the socioeconomic variable that is found to be correlated with traffic volumes 
across the groups and vehicle types for this road class. In particular, income is highly correlated with 
increased numbers of two-wheeled vehicles across all groups, reaching as high as 25%, while it is also 
correlated with higher number of cars (8%), although the sign is negative in group 3 (-1%). Income is also 
associated with lower bus traffic volumes indicating a smaller number of vehicles of about -3% in group 5 
and up to -16% and -18% in groups 3 and 4 respectively. This socioeconomic variable is related with higher 
LGV and HGV volumes ranging from 1% to 6% for LGVs and being retained by Lasso in group 5 only for 
HGVs (6%). 

5.2.3. ‘C’ roads 

In the case of ‘C’ roads, the distance from urban areas variable is retained by Lasso and is correlated with 
lower car and bus traffic volumes, as well as higher two-wheeled vehicle numbers. Specifically, the 
coefficient sings indicate fewer cars ranging from -2% to -24% and fewer buses from -7% to -22% the 
further the count point is from an urban area, with all signs being observed in groups 1-4. On the contrary, 
distance is associated with more two-wheeled vehicles in groups 1-3, with the signs ranging from 4% to 
10%. In the case of LGVs and HGVs mixed signs are observed where the traffic volume is higher in group 
3 at 4% and 2%, although the coefficients are negative in low volume groups 4 and 5 at -11% and -7% for 
each vehicle type respectively. The socioeconomic variable of population is associated with higher number 
of all vehicle types across all groups, with the exception of cars in group 3, where the coefficient is negative 
(-3%). In other groups, population is related to higher car volumes up to 22%, higher bus and two-wheeled 
vehicle volumes at 9% and 2% respectively, as well as increased LGV traffic volumes as high as 12%, with 
all coefficients being observed in low traffic volume groups, such as group 4 and group 5. Finally, income 
is again selected by Lasso, where the coefficient signs are mostly similar to the ones observed for the ‘B’ 
road class. Income is correlated with higher two-wheeled and car vehicle traffic volume up to 10% and 13% 
respectively and with lower bus traffic volume of approximately -3%. The variable is also associated with 
higher LGVs in group 4 at 6%, although the sign is negative in group 1 at -2%.  

5.2.4. ‘U’ roads 

For ‘U’ roads the variable indicating distance from urban areas is again statistically significant, with the 
signs being similar to the ones observed in other road classes. For cars, distance is associated with lower 
traffic volumes reaching -16% in group 5, while for buses, the values range from -3% to -4% in groups 2 
and 3, similar to road class ‘C’. The signs for two-wheeled vehicles are mixed, indicating lower volumes 
in group 3 (-4%) and higher in groups 2 and 4 reaching 2%. Similarly, the coefficient signs are also mixed 
in the case of LGVs indicating that distance is associated with fewer LGVs in group 5 by 8%, although the 
sign is positive in group 3 at 2%. However, distance is associated with higher HGV volumes up to 11%, 
with the variable being retained in most groups. The variable indicating bus stops is retained by Lasso, as 
it has been the case in the ‘B’ road class. The presence of bus stops is again unsurprisingly associated with 
significantly higher bus traffic volumes up to 86%, although it also indicates higher car and two-wheeled 
vehicles volumes in group 5 at 33% and 13% respectively. However, the signs are negative for two-wheeled 
vehicles in other groups ranging from -1% to -5% as are the coefficients for LGVs and HGVs. In particular, 
bus stops are correlated with lower LGV and HGV traffic volumes up to -14% with the exception of LGVs 
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again in group 5, where the signs are positive at 14%. Finally, income is again retained by Lasso as in ‘B’ 
and ‘C’ road classes with similar coefficients. Income is related to higher car and two-wheeled vehicle 
volumes (i.e., 4% and 11% respectively) and lower bus traffic volumes ranging from -5% to -10%. Similar 
to ‘B’ roads income is correlated with lower LGV volumes by -2%, although the sign is different and 
indicates considerably higher HGV volumes reaching up to 45% in group 1. 

 

6. Discussion 
This study focused on the identification of several characteristics that are associated with traffic volumes 
of the five different vehicle types, normally used by the Department for Transport (DfT). The coefficients 
were analysed by road class and vehicle type, further classified in five subgroups. In this section we discuss 
the results presented in section 5 identifying the causes behind the statistically significant variables 
produced by Lasso and providing evidence of how these can be of importance to practitioners, such as 
policy makers, urban and transport planners. Due to the large number of variables, we focus on those 
exhibiting similar patters across road types and groups and those with the highest impact on each vehicle’s 
traffic volume as indicated by the coefficients. 

As a general observation we can see that most coefficients take the expected value across road classes, 
vehicle types and groups. However, one has to bear in mind the imbalanced number of traffic counters for 
each road type (Table 1) and that for smaller road classes traffic counts are taken seasonally and manually, 
and eventually adjusted to estimate AADT (57,58), therefore adding additional uncertainty to the results. 
Moreover, the number of vehicles driving through roads with lower traffic volumes is small, so that zero 
counts are not uncommon for some vehicle types, and most count points are in urban areas. 

We also can observe the significance of some variables across all road classes and groups. For example, 
one can observe that distance to urban areas is statistically significant for all vehicle types, across all road 
classes and most groups as shown in Table 3 and Tables A3-A10. This pattern – which is more distinct for 
‘A’ roads – indicates that the further from urban areas the less cars, buses and two-wheeled vehicles will 
be on the streets. The number of private vehicles (i.e., cars and two-wheeled) is expected to be higher in 
urban areas considering the larger population concentration and higher economic activity taking place in 
these areas, while  more buses are expected in urban rather than rural areas (59). The coefficients for HGVs 
and LGVs are mixed, implying further investigation. In particular, for ‘A’ roads, the higher the distance 
from urban and major urban areas, the lower the level of HGV and LGV traffic; a reflection that higher 
economic activity – usually observed in large urban areas – drives demand for LGVs and HGVs. On the 
contrary, high coefficients for HGVs in ‘B’ roads, indicate that large vehicles are difficult to operate within 
dense urban environments on secondary roads, therefore are usually observed far from urban areas, an 
expected outcome. For smaller road classes (i.e., ‘C’ and ‘U’) in high volume groups (i.e., groups 1, 2 and 
3) the signs are similar to ‘B’ roads. However, the negative coefficients observed in low volume rural groups 
4 and 5 particularly for HGVs, indicate that operation of these vehicles is related with urban areas of higher 
economic activity. 

Moreover, carriageway type is significant for ‘A’ roads, with dual carriageways being associated with 
higher  traffic volumes for all vehicle types. The variable is also statistically significant for the majority of 
vehicle types in ‘B’ and ‘C’ roads, although it is not significant for ‘U’ roads, due to the fact that there are 
not many dual carriageways in these roads. More vehicles are expected to drive through dual carriageways 
– as opposed to single – due to safety and increased speed limits (60–62) and lower design standards for 
single carriageways (63). Studies have shown that accidents are less likely to occur on dual carriageways 
(64,65) while the occurrence of these roads is key, particularly in urban environments, due to the fact that 
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they normally reduce travel time of individuals and therefore, providing access to significant services such 
as schools, workplaces and healthcare facilities (66). However, the design and construction of dual 
carriageways should not be considered a de facto approach by urban and transport planners due to multiple 
concerns related with these roads. For example, safety in dual carriageways does not only depend on design 
standards but also on other factors, such as lighting and weather conditions (67), while the higher number 
of vehicles normally driving through these roads is associated with higher noise and air pollution levels 
(68) as well as other health-related conditions such as attention-deficit/hyperactivity disorder (ADHD) (69). 
In fact, our findings highlight the importance of considering additional factors related to the functionality 
of dual carriageways. For instance, taking into account the higher traffic volumes, introducing bus lanes to 
facilitate bus flow or imposing restrictions for HGVs similar to those applied in the Greater London area 
(70) can be considered. 

In a similar manner, ring roads are statistically significant in ‘A’ roads only, due to the fact that all ring 
roads in the dataset belong to this road class. These roads are associated with higher traffic volumes for 
cars, LGVs and HGVs and lower traffic volumes for buses, while the coefficient signs are mixed in the case 
of two-wheeled vehicles as also mentioned in section 5. This is an expected outcome since ring roads are 
usually large roads designed to carry and distribute large traffic volumes radially across the network (71) 
and also maximising the average travel speed (72). This is clearly reflected in Table 3 in the case of cars 
and large number of HGVs which use ring roads to access large facilities normally located at a distance 
from the urban core, before transportation switches to smaller vehicles in inner city roads (73). Hence, the 
importance of ring roads cannot be overstated considering the increased capacity and the capability to 
reduce traffic congestion (74,75), although transport planners should be aware of major concerns related to 
the functionality and limitations of ring roads. Ring roads encourage the use of private vehicles , which in 
turn, can result into extensive urban sprawl (76) and increased levels of air pollution (77,78). Moreover, 
studies have investigated the economic effects of ring roads, concluding that they decentralise the service 
sector and industrial activity, as well as displacing population to surrounding regions, normally resulting 
into reduced inner city GDP (79). Similarly, (80) concludes that ring roads affect the spatial configuration 
of shops and the economic centres of built environments. Ring roads are also associated with lower bus 
traffic, and although buses are less likely to drive through these roads, a similar pattern in the coefficient 
signs is observed for the income variable (Table 3). Income is associated with higher car – and two-wheeled 
– traffic volumes and lower for buses, particularly in the case of ‘B’, ‘C’ and ‘U’ road classes. Many studies 
have concluded that households with higher incomes are more likely to own private vehicles, such as cars 
(81–83), resulting in lower bus traffic, since transport needs are met by private vehicles (84,85). On the 
contrary, lower income and regularly marginalised communities rely on public transport which in many 
occasions suffer from poor services (86). Dividing communities is also facilitated by the occurrence of ring 
roads obstructing the continuity of urban flows (87) and individuals who reside in these areas are normally 
characterized by lower income and also spend more time commuting as opposed to higher income earners 
(88). 

This highlights the necessity to invest in public transport which has beneficial effects on social quality (89) 
and economic development (90), as well as the potential to mitigate traffic congestion caused by the excess 
usage of private vehicles, which again, is associated with higher air pollution levels and adverse impacts on 
health (91,92). The latter is also clearly reflected in the results, where bus stops are associated with higher 
bus volumes and lower car and two-wheeled vehicle volumes in the majority of cases with a few exceptions. 
These exceptions are normally identified in group 5, where counters are located mainly in rural and/or 
suburban areas. In these areas commuting is more likely to occur with private vehicles, due to lack of public 
transport (85) and long waiting times (93). The importance of public transport to address the aforementioned 
issues is also reflected by the coefficients for the train/light rail accessibility (Tables A3-A10), which is 
associated with lower car and two-wheeled vehicle traffic volumes in the majority of cases. Exceptions – 
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i.e., positive coefficient signs for private vehicles – are again observed in group 5, and in group 3, where  
train station accessibility is correlated with higher car volumes in  ‘A’ roads due to the fact that train stations 
are usually located near heavy traffic roads (94). Interestingly, train/light rail station accessibility is also 
associated with higher bus volumes due to buses connecting to train stations (95–97). Finally, it is worth 
commenting on the association between bus stops and HGV and LGV traffic volumes where the coefficient 
signs are mainly negative as expected, considering that these vehicles normally operate close to industrial 
areas where people commute with private vehicles. Again, an exception is observed in group 5, indicating 
rural and suburban areas. These areas are significantly different in terms of land use and demographic 
characteristics compared to urban environments where most of the traffic counters in the dataset are located 
(Table 1) and thus different traffic patterns are expected.  

In terms of the socioeconomic characteristics examined, it is shown that the population variable is 
statistically significant across all vehicle types and most groups. Again, the model has returned the expected 
outcomes, with a few exceptions, suggesting that the higher the population the higher the traffic volumes 
of all vehicle types. Specifically, in the case of cars, the coefficients associated to population – and other 
socioeconomic factors as shown in Tables A3-A10 – are all associated with higher traffic volumes 
complying with outcomes from other models (34,37,38). Similar to the case of cars the population variable 
is associated with higher bus volumes across ‘A’, ‘B’ and ‘C’ roads and most groups, indicating that bus 
routes are placed and used in heavy populated urban areas, where public transport has a significant effect 
(98,99). The coefficient signs, which are similar for two-wheeled vehicles, indicate that these vehicles are 
concentrated in dense urban areas with large populations as it is also stated in (100) and (101), while the 
fact that population also attracts larger number of LGVs and HGVs is also a reflection that higher economic 
activity – usually observed in large urban areas – drives demand for LGVs and HGVs. 

 

7. Conclusions and future work 
In this paper we have examined a comprehensive set of variables to understand their association with traffic 
volumes of five different vehicle types in England and Wales. The analysis of traffic volumes has been 
undertaken for four different road classes where traffic counters have been subdivided into five groups 
based on specific land use, socioeconomic, public transport and roadway characteristics in the vicinity of 
each counter. The results produced by Lasso reveal patterns for specific explanatory variables across vehicle 
types and road classes. In some cases, heterogeneous results across estimated models have been reconciled 
by looking at the characteristics of the counters and areas in each model. In this section, we summarise the 
outcomes as presented and discussed in sections 5 and 6 and reflect on potential conclusions and ways to 
improve our understanding on traffic volumes. 

Overall, we can conclude that specific variables are associated with traffic volumes across almost all groups, 
road classes and vehicle types. For example, distance to urban areas was found to be statistically significant 
in all cases, although factors related to densely populated urban centres are mainly associated with car, bus 
and two-wheeled vehicles’ traffic volumes , while LGVs and HGVs are more present at industrialised areas 
close to urban centres and their outskirts. Socioeconomic variables are related with traffic volumes in 
numerous ways. Income is associated with the increased use of private vehicles which contributes to the 
decreased volumes of buses, while population – and workplace population densities – also associated with 
the distinction between urban and rural environments – relate to volumes of all vehicle types in a different 
manner. An interesting finding is that population density relates to higher bus volumes (see Supplementary 
Information), although these patterns are more significant for higher class roads (e.g., ‘A’ or ‘B’), probably 
due to the fact that buses normally drive through major arteries where bus lanes are more likely to occur. 
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The distinction between urban and rural environments and the respective association with traffic volumes 
is also clear from other characteristics. Variables such as public transport presence and accessibility are 
statistically significant for all vehicle types in most cases. 

However, we can also distinguish specific variables correlated only with vehicle types on specific road 
classes as it can be seen in Table 3 and Tables A3-A10. For instance, we have noticed that some variables 
are statistically significant on ‘A’ roads only, due to the different nature of these roads and use by the 
vehicles. As an example, carriage way type is found to be correlated with higher traffic volumes of all 
vehicle types in ‘A’ roads, although the variable is also retained in other road classes for some vehicle types. 
The variable indicating ring roads is present only on ‘A’ roads, due to the fact that all ring roads in England 
and Wales are of ‘A’ road type, although it affects vehicle types in a different manner. Similar conclusions 
can be drawn when investigating the relations of specific variables with different vehicle types. For 
instance, it has been observed that warehouses and factories are always positively correlated with LGVs 
and HGVs, and registered vehicles are mainly correlated with bus and two-wheeled vehicle volumes.  

The above leads us to also consider the number of data points within each road class and subgroup. For ‘A’ 
roads the 14,670 points represent over 99% of the total road links for this road class in the study area, while 
the proportions for the other road classes are 13.1% for ‘B’ roads, 0.7% for ‘C’ roads and 0.15% for ‘U’ 
roads respectively. Moreover, counts for ‘C’ and ‘U’ roads are undertaken manually, and the number of 
counted vehicles is low and therefore traffic volume modelling and resulting coefficients is challenging and 
potentially less reliable. Furthermore, ‘U’ roads are often located in entrances to industrial areas or within 
private properties (e.g., warehouse courtyards) and can introduce bias to the models. Hence, we can safely 
assume that results for ‘A’ roads are more reliable. 

Moreover, one has to consider the spatial dataset used to distinguish between urban and rural areas and 
calculate the respective distances. The dataset considers all build up areas as urban (102), indicating that 
large cities are classified together with villages and small towns, something which would be helpful to 
differentiate in future studies. Even in the case of the six major urban areas there are considerable 
differences among them. Specifically, cities such as London or Manchester, where industrial areas can be 
surrounded by residential neighbourhoods can add complexity to the analysis and should be examined 
individually.  

Hence, we can identify that further sampling and acquisition of more reliable data can potentially lead to 
an improved model and understanding of traffic volumes. Moreover, one could apply similar regularisation 
methods such as ridge regression (103) and elastic net (49) to compare the results and conclude with more 
meaningful outcomes. 

Finally, considering the availability of the utilized dataset across time, a spatiotemporal analysis could be 
considered in future research, to provide a more comprehensive investigation of the associations between 
the driving factors and traffic volumes across space and time. The implementation of such a modelling 
approach, could be conducted by cross-sectional analysis across a predefined timeframe and by identifying 
patterns in the extracted coefficients signs for each year or by implementing panel data analysis. The latter 
would also be beneficial to consider unobserved heterogeneity, although we consider that the presented 
approach of applying independent models for each road class, group and vehicle type addresses – at least 
to a certain extent – this issue. 

Regardless of the identified limitations and potential ways to improve and enrich research in this area, we 
have been able to set a number of conclusions on how our findings can be of significance to planners and 
decision makers. For example, the results confirm that the presence of and accessibility to public transport 
services can reduce congestion, while it has also been discussed that public transport can facilitate in the 
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air pollution mitigation and contribute towards alleviating social inequalities. On the contrary, ring roads 
encourage the use of private vehicles and are associated with higher traffic volumes of LGVs and HGVs 
indicating the occurrence of converse effects. These and all other results presented in this paper strengthen 
the outcomes produced by related studies providing evidence on the relationship between economic 
activity, infrastructure and social issues with transport, considering the numerous factors investigated. The 
utilisation of Lasso estimator on this dataset is able to explain how several indicators correlate with traffic 
volumes and in turn affect economic activity and the environment among other factors. Consequently, road 
and urban planners can take into account these relationships and act accordingly to identify optimal ways 
to improve transportation while also considering the corresponding socioeconomic and environmental 
effects. This knowledge is vital for sustainable urban development. 

We acknowledge that our research does not provide answers or solutions to these vital problems. However, 
we consider that it contributes towards explaining how several roadway, socioeconomic, and transport 
related indicators can affect our streets, our societies as well as the economic development and urban 
environments. 
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