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Abstract

In 1990, based on numerical and formal asymptotic analysis, Ori and Piran predicted
the existence of selfsimilar spacetimes, called relativistic Larson-Penston solutions,
that can be suitably flattened to obtain examples of spacetimes that dynamically
form naked singularities from smooth initial data, and solve the radially symmet-
ric Einstein-Euler system. Despite its importance, a rigorous proof of the existence of
such spacetimes has remained elusive, in part due to the complications associated with
the analysis across the so-called sonic hypersurface. We provide a rigorous mathemat-
ical proof. Our strategy is based on a delicate study of nonlinear invariances associated
with the underlying non-autonomous dynamical system to which the problem reduces
after a selfsimilar reduction. Key technical ingredients are a monotonicity lemma tai-
lored to the problem, an ad hoc shooting method developed to construct a solution
connecting the sonic hypersurface to the so-called Friedmann solution, and a nonlin-
ear argument to construct the maximal analytic extension of the solution. Finally, we
reformulate the problem in double-null gauge to flatten the selfsimilar profile and thus
obtain an asymptotically flat spacetime with an isolated naked singularity.
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1 Introduction

We study the Einstein-Euler system which couples the Einstein field equations to the
Euler equations of fluid mechanics. The unknowns are the 4-dimensional Lorentzian
spacetime (M, g), the fluid pressure p, the mass-density p, and the 4-velocity u“. In
an arbitrary coordinate system, the Einstein-Euler equations read

. 1
RlCaﬂ — ERgaﬁ = Taﬁv (a7 :3 = 0’ 1’ 2’ 3)’ (11)
VoT? =0, (B=0,1,2,3), (1.2)
gaﬂuauﬂ =1, (1.3)

where Ricyg is the Ricci curvature tensor, R the scalar curvature of gug, and Tyg is
the energy momentum tensor given by the formula

Top = (p + plugup + pgap. (. p=0,1,2,3). (1.4)

To close the system, we assume the linear equation of state

p =&p, (1.5)

where 0 < ¢ < 1 corresponds to the square of the speed of sound.

The system (1.1)—(1.5) is a fundamental model of a selfgravitating relativistic gas.
We are interested in the existence of selfsimilar solutions to (1.1)—(1.5) under the
assumption of radial symmetry. This amounts to the existence of a homothetic Killing
vector field & with the property

[:gg =2g, (1.6)

where the left-hand side is the Lie derivative of the metric g. The presence of such
a vector field induces a scaling symmetry, which allows us to look for selfsimilar
solutions to (1.1)—(1.5). Study of selfsimilar solutions to Einstein-matter systems has
arich history in the physics literature. They in particular provide a way of constructing
spacetimes with so-called naked singularities, a notion intimately tied to the validity
of the weak cosmic censorship of Penrose [30], see the discussion in [7, 10, 32].
Naked singularities intuitively correspond to spacetime singularities that are “visible"
to far away observers, which informally means that there exists a future outgoing null-
geodesic “emanating” from the singularity and reaching the asymptotically flat region
of the spacetime. We adopt here a precise mathematical definition from the work of
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Rodnianski and Shlapentokh-Rothman [32, Definition 1.1], which in turn is related to
a formulation of weak cosmic censorship by Christodoulou [7].

In the absence of pressure (¢ = 0 in (1.5)) and under the assumption of radial
symmetry, the problem simplifies considerably. The corresponding family of solutions
was studied by Lemaitre [21] and Tolman [34] in early 1930s (see also [1]). In their
seminal work from 1939, Oppenheimer and Snyder [25] studied the causal structure
of a subclass of Lemaitre-Tolman solutions with space-homogeneous densities, thus
exhibiting the first example of a dynamically forming (what later became known as)
black hole. However, in 1984 Christodoulou [5] showed that, within the larger class
of Lemaitre-Tolman solutions with space-inhomogeneous densities, black holes are
exceptional and instead naked singularities form generically.

Of course, in the context of astrophysics, one expects the role of pressure to be
very important in the process of gravitational collapse for relativistic gases. In the
late stages of collapse, the core region is expected to be very dense and the linear
equation of state (1.5) is commonly used in such a setting, as it is compatible with
the requirement that the speed of sound is smaller than the speed of light, ./¢ < 1. In
their pioneering works, Ori and Piran [26-28] found numerically selfsimilar solutions
to (1.1)—(1.5), which are the relativistic analogues of the Larson-Penston selfsimilar
collapsing solutions to the isothermal Euler-Poisson system, see [15, 20, 31]. Through
both numerical and asymptotic analysis methods Ori and Piran investigated the causal
structure of such relativistic Larson-Penston solutions, ascertaining the existence of
spacetimes with naked singularities when ¢ is smaller than a certain value. Our main
goal is to justify the findings of Ori and Piran on rigorous mathematical grounds.

Broadly speaking, this manuscript consists of two parts. In the first part, which
constitutes the bulk of our work, we construct a selfsimilar solution of the Einstein-
Euler system (Sections 3-8), assuming that ¢ — the square of the speed of sound — is
sufficiently small.

Theorem 1.1 (Existence of the relativistic Larson-Penston spacetimes) For any suffi-
ciently small 0 < ¢ K 1 there exists a radially symmetric real-analytic selfsimilar
solution to the Einstein-Euler system with a curvature singularity at the scaling origin
and an outgoing null-geodesic emanating from it all the way to infinity. The resulting
spacetime is called the relativistic Larson-Penston (RLP) spacetime.

It is not hard to see that the selfsimilar solution constructed in Theorem 1.1 is not
asymptotically flat. In the second step (Section 9), using PDE techniques, we flatten
the selfsimilar RLP-profile in a region away from the singularity and thus obtain an
asymptotically flat solution with a naked singularity. Thus, our main theorem states
that in the presence of pressure there do exist examples of naked singularities which
form from smooth data.

Theorem 1.2 (Existence of naked singularities) For sufficiently small 0 < ¢ < 1 there
exist radially symmetric asymptotically flat solutions to the Einstein-Euler system that
form a naked singularity in the sense of [32, Definition 1.1].

Other than the dust-Einstein model mentioned above, we are aware of two other
rigorous results on the existence of naked singularities. In 1994 Christodoulou [6]
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provided a rigorous proof of the existence of radially symmetric solutions to the
Einstein-scalar field system, which contain naked singularities (see also [8] for the
proof of their instability). Very recently, Rodnianski and Shlapentokh-Rothman [32]
proved the existence of solutions to the Einstein-vacuum equations which contain
naked singularities and are (necessarily) not radially symmetric.

In the physics literature much attention has been given to selfsimilar solutions and
naked singularities for the Einstein-Euler system, see for example [2, 14]. A selfsimilar
reduction of the problem was first given in [33]. As explained above, a detailed analysis
of the resulting equations, including the discussion of naked singularities, was given
in [26-28]. Subsequent to [28], a further analysis of the causal structure, including
the nonradial null-geodesics was presented in [19], see also [4]. There exist various
approaches to the existence of solutions to the selfsimilar problem, most of them rely
on numerics [3, 17, 28]. A dynamical systems approach with a discussion of some
qualitative properties of the solutions was developed in [3, 13]. Numerical investigation
of the stability of the RLP-spacetimes can be found in [17, 18]. selfsimilar relativistic
perfect fluids play an important role in the study of the so-called critical phenomena
- we refer to reviews [14, 24].

The proof of Theorem 1.1 relies on a careful study of the nonlinear invariances
of the finite-dimensional non-autonomous dynamical system obtained through the
selfsimilar reduction. The solutions we construct are real-analytic in a suitable choice
of coordinates. A special role is played by the so-called sonic line (sonic point), the
boundary of the backward sound cone emanating from the scaling origin O. Many
difficulties in the proof of Theorem 1.1 originate from possible singularities across this
line, which together with the requirement of smoothness, puts severe limitations on the
possible space of smooth selfsimilar solutions. We are aware of no general ODE theory
for global existence in the presence of singular sonic points. Therefore, our proofs are
all based on continuity arguments, where we extract many delicate invariant properties
of the nonlinear flow, specific to the ODE system at hand. In particular, the discovery
of a crucial monotonicity lemma enables us to apply an ad hoc shooting method, which
was developed for the limiting Larson-Penston solution in the non-relativistic context
by the authors. From the point of view of fluid mechanics, the singularity at O is an
imploding one, as the energy density blows up on approach to O. It is in particular not
a shock singularity.

The asymptotic flattening in Theorem 1.2 requires solving a suitable characteristic
problem for the Einstein-Euler system formulated in the double-null gauge. We do
this in a semi-infinite characteristic rectangular domain wherefrom the resulting solu-
tion can be glued smoothly to the exact selfsimilar solution in the region around the
singularity O. The proof of Theorem 1.2 is given in Section 9.6.

Due to the complexity of our analysis, in Section 2 we give an extensive overview
of our methods and key ideas behind the detailed proofs in Sections 3-9.
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2 Methodology and Outline
2.1 Formulation of the Problem (Section 3)

Following [28] it is convenient to work with the comoving coordinates

g =—eTR g2 4 PHTRGRI 4 v 2(¢ R) y, 2.7

where y = yAdeA dxB is the standard metric on S2, x4, A = 2, 3 are local coordi-

nates on S2, and r is the areal radius. The vector field dr is chosen in such a way that
the four velocity u" is parallel to ;. The normalisation condition (1.3) then implies

u=e"y,. 2.8)

The coordinate R acts as a particle label. The coordinates (r, R) are then uniquely
determined by fixing the remaining gauge freedoms in the problem, the value of
w(t, R)| r—o and by setting r(—1, R) = R, which states that on the hypersurface
T = —1 the comoving label R coincides with the areal radius.
Introduce the radial velocity
VY i=e Ho.r, 2.9)

the Hawking (also known as Misner-Sharp) mass
r(t,R) R ~
m(t, R):=47w / ps>ds = 4w / prlogrdR, (2.10)
0 0

and the mean density

G(r Ry = OB 3 * o, Byr(e, R agr(e. VAR, @11
(T, ) L 4an(‘[7 R)3 - I"(T, R)3[) p(rv )r(T’ ) R}"(T, ) . ( . )

Recalling the equation of state (1.5), the spherically symmetric Einstein-Euler sys-
tem in comoving coordinates reads (see [12, 23])

RV LV
dp+(+e)p <R—+2—> e =0, (2.12)
oRr r
IRV
dh = et R (2.13)
ORr
_ & Ogre 1
e MoV + ——Orp+4nr{ =G +¢ep | =0, (2.14)
14+¢ o 3

8
(Orr)2e P =1+ V2 — ?ﬂGrZ, (2.15)
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where we recall (2.11). The well-known Tolman-Oppenheimer-Volkov relation reads
(p 4+ p)oru + dr p = 0, which after plugging in (1.5) further gives the relation

e ORp

. 2.16
14+¢ p ( )

R = —

2.1.1 Comoving Selfsimilar Formulation

Itis straightforward to check that the system (2.12)—(2.15) is invariant under the scaling
transformation

p>alp(s,y), risar(s,y), Vi V(s,y), A Als,y), e uls,y),

(2.17)
where the comoving “time" 7 and the particle label R scale according to
T R
s=—, y=—, a>0. (2.18)
a a

Motivated by the scaling invariance (2.17)—(2.18), we look for selfsimilar spacetimes
of the form

P R) = 5 2(). (2.19)
TT
r(t, R) = —/eti(y), (2.20)
V(t, R) = eV (y), 2.21)
Az, R) = A(y), (2.22)
u(T, R) = u(y), (2.23)
~ 3 y o Dmp m
G R) = —G0) = m/o () dy, (2.24)
where
__K 2.25)
y - _\/ET‘ ( .

Associated with the comoving selfsimilar coordinates are the two fundamental
unknowns:

d:= Y1, (2.26)

MV -
wim (4 vt (2.27)
r

For future use it is convenient to sometimes consider the quantity

x(y) = r(y—y) (2.28)

@ Springer



4 Page8of 182 Y.Guo et al.

instead of 7. Quantity d corresponds to the selfsimilar number density, while w is
referred to as the relative velocity. It is shown in Proposition 3.4 that the radial Einstein-
Euler system under the selfsimilar ansatz above reduces to the following system of
ODE:

r_ 2(1 —e)d(d — w)
d = (14 &)y(e2n=22y=2 1)’ (2.29)
,  (w+e)(1—3w) 2w(d — w)
B (1+e)y Y(e2—2hy=2 1)’ (2.30)

This formulation of the selfsimilar problem highlights the danger from possible
singularities associated with the vanishing of the denominators on the right-hand side
of (2.29)—(2.30). Such points play a distinguished role in our analysis, and as we
shall show shortly, are unavoidable in the study of physically interesting selfsimilar
solutions.

Definition 2.1 (The sonic point) For any smooth solution to (2.29)—(2.30) we refer to
a point y, € (0, co) satisfying

yf — eZu(y*)fﬂ(y*) (2.31)
as the sonic point.

2.1.2 Schwarzschild Selfsimilar Formulation

The comoving formulation (2.29)—(2.30) as written does not form a closed system of
ODE. To do so, we must express the metric coefficients p, A as functions of d, w,
which can be done at the expense of working with 7 (or equivalently y) as a fur-
ther unknown. To avoid this, it is possible to introduce the so-called Schwarzschild
selfsimilar coordinate:
x:=r(y) (2.32)

so that

dx _, x(w+e)

— =7 = —7.

dy y(1 +¢€)
In this coordinate system the problem takes on a form analogous to the Eulerian for-
mulation of the selfsimilar Euler-Poisson system from [15]. It is shown in Lemma 3.5
that the new unknowns

(2.33)

D(x):=d(y), W(x):=w(y), (2.34)
solve the system

D'(x) = _2x(1 - E)D(V[;—l— e)(D — W)’

1=3W) 2x(I1+e)WW+e)(D—-W)
X + B

(2.35)

W (x) =

, (2.36)
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where
B=B[x:D,W]:=D"— [(W 162 —e(W—1)> +48DW]x2, (2.37)

and

(2.38)

The Greek letter n will always be used to mean (2.38) in the rest of the paper. In this
formulation, sonic points correspond to zeroes of B = B[x; D, W], i.e.if y, is a sonic
point in the sense of Definition 2.1, then x,.:=7(y) is a zero of the denominator B.

2.1.3 Friedmann, Far-Field, and the Necessity of the Sonic Point

There are two exact solutions to (2.35)—(2.36). The far-field solution
2 _ 2
Drx)=(1—¢g) Tix T, Wex) =1, (2.39)

features a density D that blows up at x = 0 and decays to 0 as x — oo. On the other
hand, the Friedmann solution

1 1
Dr(x) = 3 Wr(x) = 3 (2.40)

is bounded at x = 0, but the density does not decay as x — oo. Our goal is to construct
asmooth solution to (2.35)-(2.36) which qualitatively behaves like the far-field solution
as x — oo and like the Friedmann solution as x — 01. We can therefore think of
it as a heteroclinic orbit for the dynamical system (2.35)-(2.36). It is then easy to see
that any such solution has the property lim,_,oo B = —o0 and lim,_, g+ B(x) > O.
By the intermediate value theorem there must exist a point where B vanishes, i.e. a
sonic point.

It is important to understand the formal Newtonian limit, which is obtained by
letting ¢ = 0 in (2.35)—(2.36). This yields the system

5 2xDW(D — W)
X)=——"—""—"7"—""
1 —x2w?2
1 —3W) 2xW3(D—W)
+ _
X 1 — x2wW?2

, (2.41)

W (x) =

, (2.42)

which is precisely the selfsimilar formulation of the isothermal Euler-Poisson system.
In [15] we showed that there exists a solution to (2.41)—(2.42) satisfying W(0) = %,
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limy s 0o W(x) =1, D(O) > %, and D =100 X 2.1 The behaviour of the relativistic
solutions when 0 < ¢ < 1 in the region x € [0, co) is modelled on this solution,
called the Larson-Penston (LP) solution.

The system (2.35)—(2.37) is a non-autonomous 2 x 2 system of ODE which is at the
heart of the proof of Theorem 1.1 and is used to show the existence of the RLP-solution
in the region x € [0, 0c0). As x — oo, we are forced to switch back to a version of
the comoving variables in order to extend the solution beyond x = oo in a unique
way, see the discussion in Section 2.5. A version of the comoving formulation (2.29)—
(2.30) plays a crucial role in that extension. In our analysis of the radial null-geodesics
(Section 8) and the nonradial ones (Appendix B), we often switch between different
choices of coordinates to facilitate our calculations.

Even though the smallness of ¢ is crucial for the validity of our estimates, we
emphasise that we do not use perturbation theory to construct the relativistic solution,
by for example perturbing away from the Newtonian one. Such an argument is a priori
challenging due to the singular nature of the sonic point, as well as complications
arising from boundary conditions.

We mention that selfsimilar imploding flows for the compressible Euler system,
featuring a sonic point, were constructed recently in the pioneering work of Merle,
Raphaél, Rodnianski, and Szeftel [22] - here the associated 2 x 2 dynamical sys-
tem is autonomous. In the context of the Euler-Poisson system with polytropic gas
law, selfsimilar collapsing solutions featuring a sonic point were recently constructed
in [16].

2.2 The Sonic Point Analysis (Section 4)

The solution we are trying to construct is on one hand assumed to be smooth, but it also
must feature an a priori unknown sonic point, which we name x,. This is a singular
point for the dynamical system and the assumption of smoothness therefore imposes
a hierarchy of constraints on the Taylor coefficients of a solution in a neighbourhood
of x,. More precisely, we look for solutions (D, W) to (2.35)-(2.36) of the form

o0 (o8]
D= Z Dy(x —x)N, W= Z Wy (x —x0)N. (2.43)
N=0 N=0

Itis clear that the first constraint reads Dy = Wy, as the numerator in (2.35) must vanish
at x, for the solution to be smooth. Together with the condition B (x,) = 0, we can show
that for any ¢ > 0 sufficiently small, Do = W is a function of x,, which converges to
xi* as ¢ — 0 in accordance with the limiting Newtonian problem (2.41)—(2.42). Our
goal is to express Dy, Wy recursively in terms of Dy, ..., Dy—1, Wo, ..., Wy_1

! For two non-vanishing functions x — A(x), x > B(x) we write A <,_,; B to mean that there exist
e-independent constants C1, C> > 0 such that

i s A®)
< lim sup < (Cs.

A
Cq < liminf =
xX—X (x)

X—>X X
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and thus obtain a hierarchy of algebraic relations that allows to compute the Taylor
coefficients up to an arbitrary order.

However, an intriguing dichotomy emerges. At the next order, one obtains a cubic
equation for Wi, see Lemma4.7. One of the solutions is a “ghost" solution and therefore
unphysical, while the remaining two roots, when real, are both viable candidates for
W1, given as a function of Dy (and therefore x,). This is related to an analogous
dichotomy in the Newtonian case - where one choice of the root leads to so-called
Larson-Penston-type (LP type) solutions, while the other choice of the root leads
to Hunter-type solutions. Based on this, for any 0 < ¢ « 1 sufficiently small, we
select Wi = Wj(¢e) to correspond to the choice of the branch converging to the LP-
type coefficient as ¢ — 0. This is a de facto selection principle which allows us
to introduce formal Taylor expansions of the relativistic Larson-Penston-type (RLP
type), see Definition 4.11. Upon fixing the choice of W) (and thereby D), all the
higher-order coefficients (Dy, Wy), N > 2, are then uniquely determined through a
recursive relation, see Section 4.3. We mention that D and W cease to exist as real
numbers before x, reaches 2 from above, which led us to define x(¢), see Lemma
4.10. This should be contrasted to the Newtonian problem where D and W) are real-
valued as x, passes below 22. The existence of a forbidden range for x, is related to
the band structure in the space of all smooth solutions, see [13, 28].

Guided by the intuition developed in the construction of the (non-relativistic)
Larson-Penston solution [15], our next goal is to identify the so-called sonic win-
dow - a closed interval [Xpin, Xmax] Within which we will find a sonic point for the
global solution of the ODE system on [0, 00). In fact, by Lemma 5.12 and Lemma 5.9,
theset W < % andtheset W > ﬁ = %+ O (¢) are invariant under the flow to the left
of the sonic point. Motivated by this, we choose Xmax = Xmax(€) < 3 so that the zero
order coefficient W coincides with the Friedmann solution (2.40): Wy |y, =x. = %
(see (4.245)) and fix xpin = 2480 > xcri¢ for §9 > 0 sufficiently small but independent
of e, so that W (x; xpmin) > ﬁ for some x < xpin (see (4.285)).

The main result of Section 4 is Theorem 4.18, which states that there exists an
0 < g9 < 1 sufficiently small such that for all 0 < ¢ < gp and for any choice of
X« in the sonic window, there in fact exists a local-in-x real analytic solution around
Xx = x4. The proof of this theorem relies on a delicate combinatorial argument, where
enumeration of indices and N -dependent growth bounds for the coefficients (Dy, Wy)
are moved to Appendix A.

Having fixed the sonic window [Xmin, Xmax] C [2, 3], our strategy is to determine
what values of x, € [Xmin, Ymax] allow for RLP-type solutions that exist on the whole
real line. We approach this problem by splitting it into two subquestions. We identify
those x, which give global solutions to the left, i.e. all the way from x = x, tox =0,
and separately to the right, i.e. on [x,, 00).

2.3 The Friedmann Connection (Section 5)

The main goal of Section 5 is to identify a value X, € [Xmin, Xmax], S0 that the associated
local solution (D(-; x), W(-; X)) exists on [0, x,] and is real analytic everywhere.

2 The LP- and Hunter-type solutions coincide at xs = 2.
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Fig.1 Schematic depiction of
the shooting argument. Here
Xx1 € X_1,Xx40 € X1.The 1

*1 > 1% % Wo (J? ) p
critical point Xy is obtained by
sliding to the left in X' until we

y 3 W

reach the boundary of its first
connected component X

From the technical point of view the main obstruction to our analysis is the possi-
bility that the flow features more than one sonic point. By the precise analysis around
X = X, in Section 4 we know that B is strictly positive/negative locally around x.
to the left/right respectively (and vanishes at x = x,). Our strategy is to propagate
these signs dynamically. To do so we develop a technical tool, referred to as the
monotonicity lemma, even though it is an exact identity, see Lemma 3.7. It is a first
order differential equation for a quantity f(x) = J[x; D] — x D with a source term
depending on the solution, but with good sign properties in the regime we are inter-
ested in, hence — monotonicity lemma. Here J[x; D] — xW is a factor of B in (2.37):
B={0-¢ —xW)J +2n(l + D)x + xW) (see Lemmas 3.6-3.7). Roughly
speaking, the function f allows us to relate the sign of B to the sign of the difference
(D — W) in a precise dynamic way, so that we eventually show that away from the
sonic point D > W and B > 0 to the left, while D < W and B < 0 to the right of
the sonic point for the relativistic Larson-Penston solution.

To construct the solution to the left of the sonic point we develop a shooting-type
method, which we refer to as shooting toward Friedmann. Namely, the requirement
of smoothness at x = 0 is easily seen to imply W(0) = %, which precisely agrees
with the value of Wg, see (2.40).

The key idea is to separate the sonic window [Xmin, Xmax] into the sets of sonic
points x, that launch solutions W (-; x,.) which either stay above the Friedmann value
Wr = % on its maximum interval of existence (s(x.), x,] or cross it, see Figure 1.
This motivates the following definition.

Definition 2.2 (X>%, X%, X<%, and X) Let &9 > 0 be a small constant introduced in

Section 2.2 (see also Theorem 4.18). For any & € (0, e9] and Xy € [Xmin, Xmax] We
consider the associated RLP-type solution (D(-; x4), W(-; x,)). We introduce the sets

X
>

inf W(x; xg) > %} s (2.44)

= X% € [Xmin, X
{ % € [Xmin, ¥max] re(sten) xn)

1
3
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X = {x* € [Xmin, ¥max]| 3 x € (s(xx), x4) such that W(x; xy) = %} (2.45)
3
X = {x* € [Xmin» Xmax] | W (x; x4) > l for all x € (s(xx), xx) and inf W(x; xy) < l}
<3 3 x€E(s (xs),Xs) 3
(2.46)
Finally, we introduce the fundamental set X C X 1 given by
X i= {2, € Limin, ¥man] | o€ Xy forall F€[veamal]. 247)

The basic observation is that solutions that correspond to the set X1 have the
3

property that once they take on value %, they never go back up above it. This is
a nonlinear invariance of the flow, which guides our shooting argument idea. It is
possible to show that both sets A ! and X 1 are non- empty. In Lemma 5.9 we show
that xmin € A_1 and that for some K > O (Xmax — K, Xmax] C X1. Intuitively, we

then slide down x, starting from xp,x, until we reach the first value of x, that does
not belong to X, i.e. we let
3

Xy := inf x,, (2.48)

xx€X

see Figure 1. This is the candidate for the value of x, which gives a real-analytic
solution on [0, x,]. Using the nonlinear invariances of the flow and its continuity
properties, in Proposition 5.15, we show that the solution (D(-; x4), W (-, X)) exists
on the semi-open interval (0, x.].

To show that the solution is indeed analytic all the way tox = 0, W(0; x,) = % and
D(0; x4) > %, we adapt the strategy developed for the classical LP solution in [15].
Using the method of upper and lower solutions (Definition 5.23), we show that there
exists a choice of Dy > % such that the solution (D(-; x4), W (-, X4)) coincides with
a unique real analytic solution to (2.35)—(2.36), with data D(0) = Doy, W(0) =
3, solving from x = O to the right. Detailed account of this strategy is contained
in Sections 5.3-5.4. Finally, combining the above results we can prove the central
statement of Section 5:

Theorem 2.3 There exists an g > 0 sufficiently small, such that for any 0 < & < &,
the solution of RLP-type to (2.35)—(2.36) launched at x, (defined by (2.48)) extends
(to the left) to the closed interval [0, X, is real analytic, and satisfies W (0; x,) = %

D(0; %) > }
This theorem is formally proved at the very end of Section 5.4.
2.4 The Far-Field Connection (Section 6)
By contrast to establishing the existence of the Friedmann connection in Section 5, we
show that for any choice of x, in our sonic window [Xmin, Xmax ], there exists a global

solution to the right, i.e. we prove the following theorem:
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Theorem 2.4 Let x, € [Xiin, Xmax]- There exists an 0 < gy < 1 such that the unique
RLP-type solution (W, D) exists globally to the right for all ¢ € (0, &o].

The proof relies on a careful study of nonlinear invariances of the flow, and once
again the monotonicity properties encoded in Lemma 3.7 play a critical role in our
proof. This is highlighted in Lemma 6.3, which allows us to propagate the negativity
of the sonic denominator B to the right of the sonic point. Importantly, we may now let
Xy = X, defined in (2.48) to obtain a real-analytic RLP-type solution defined globally
on [0, 00). As it turns out, the obtained spacetime is not maximally extended, and to
address this issue we need to understand the asymptotic behaviour of our solutions as
X — 0.

In Lemma 6.5 we show that solutions from Theorem 2.4 honour the asymptotic
behaviour

2
lim W(x:x,) =1, lm [D(x;x*)xm] -0 (2.49)
X—>00 X—>00

hence the name far-field connection, see (2.39). This is however not enough for the
purposes of extending the solution beyond x = oo, as we also need sharp asymptotic
behaviour of the relative velocity W. Working with the nonlinear flow (2.35)—(2.36),
in Proposition 6.8 we show that the leading order behaviour of W is given by the
relation 1

1 — W <y 00 x 0, (2.50)

2.5 Maximal Analytic Extension (Section 7)

Asymptotic relations (2.49)—(2.50) suggest that our unknowns are asymptotically “reg-
1

ular" only if thought of as functions of x ™ ™7 . In fact, it turns out to be more convenient
to interpret this in the original comoving selfsimilar variable y, see (2.25). Due to (2.49)
and (2.32)—(2.33), it is easy to see that asymptotically

X Xy00 Y- (2.51)

2
Moreover, by (2.49) and (2.34), we have d(y) <y, y '. Furthermore by (3.101)
we have the relation

YT = ———d7. (2.52)

As a consequence of (2.49) we then conclude that

4e
e Xy oo YT, (2.53)

which implies that the metric g given by (2.7) becomes singular as y — oo (or equiv-
alently x — 00). In Section 7 we show that this is merely a coordinate singularity, and
the spacetime extends smoothly (in fact analytically in a suitable choice of coordinates)
across the surface {(t =0, R) ‘ R > 0}
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Motivated by the above considerations, we switch to an adapted comoving chart
(7, R), defined through

Z(1,R) = —e T RTH (—1)T5, 7 <0, R > 0. (2.54)

We introduce the selfsimilar variable

y o YT (2.55)
R
which is then easily checked to be equivalent to the change of variables
1
Y=y ™, y=y 17, (2.56)

where we recall n = n(¢g) = 12786 To formulate the extension problem, it is natural to
define the new variables

xX):=x©), d¥):=d(y), w@):=w(), (2.57)

where we recall the fundamental variables d, w, x from (2.26)—(2.28). Note that
by (2.28) and (2.56) we have x(Y) = Y!'*77(y). It is shown in Lemma 7.1 that
the original system (2.29)—(2.30) in the new variables reads

B %d(w +6)%2(d — w)

= } , (2.58)
- 2 24—
w,:_(w—i—e)(l 3w) _ 20+ &) x” w(w + &) (d w)y (2.59)
1—e)Y 1—e)yY C
; 1—w
=Gt (2.60)
where
= (dr?)_'7 Y2 — 2 [(w Fe)l—ew—1)12+ 4swd] . 2.61)

The first main result of Section 7 is Theorem 7.4, where we prove the local existence
of a real analytic solution in an open neighbourhood of ¥ = 0, which provides the
local extension of the solution from ¥ = 0" to ¥ = 0~. Initial data at ¥ = 0 are read
off from the asymptotic behaviour (2.49)—(2.50), see Remark 7.2. The most important
result of the section is the maximal extension theorem of the solution to the negative
Y-s:

Theorem 2.5 (Maximal extension) There exists an 0 < go << 1 sufficiently small such
that for any ¢ € (0, gg] there exists a Y™ < 0 such that the unique solution to the
initial value problem (2.58)—(2.60) exists on the interval (Y™, 0], and

lim w()=

lim  d(Y) = oo, (2.62)
Y- (Yms)= Y — (Yms)—
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ym Y

Fig.2 Schematic depiction of the behaviour of x (Y) and w(Y') in the maximal extension. As Y approaches
Y™S from the right, x approaches 0 and w blows up to co

x(¥Y) >0, Ye@™oO0] (2.63)
lim  x(Y)=0. (2.64)
yﬁ(ymx)—

We see from the statement of the theorem that the maximal extension is characterised
by the simultaneous blow-up of w, d, and % at the terminal point Y™S. By (2.55), in
the adapted comoving chart, the point Y™ coincides with the hypersurface

~ ~ 1 ms
MSE;:= {(T, R) |7 = ﬁIY IR} \ {(0, 0)},

which we refer to as the massive singularity, following the terminology in [28]. The
proof of Theorem 2.5 relies on a careful understanding of nonlinear invariances associ-
ated with the dynamical system (2.58)—(2.60) and the key dynamic “sandwich" bound

d
1<—<1, forY <Yy <O,
w
where Yy < 01is small. This is shown in Lemma 7.9. The blow-up proof finally follows
from a Ricatti-type ordinary differential inequality for the relative velocity w.

In Section 7.4 we compute the sharp asymptotics of w,d, and x on approach
to the massive singularity Y™S. This result is stated in Proposition 7.16, which is
later crucially used in the study of the causal structure of such a maximally extended
solution, where it is in particular shown that the spacetime curvature blows up on
approach to the massive singularity.

Remark 2.6 The maximal selfsimilar extension makes sense in the Newtonian limit
& — 0, which is one of the key observations of Ori and Piran [28]. Our proof of
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Theorem 2.5 easily extends to the simpler case ¢ = 0, which in particular shows
that the LP-solutions constructed in [15] have a natural maximal extension in the
Lagrangian (comoving) coordinates.

2.6 The RLP-Spacetime and Its Causal Structure (Section 8)

As a consequence of Theorems 2.3, 2.4, and 2.5, we can now formally introduce the
exactly selfsimilar solution of the Einstein-Euler system by patching the solutions in
the subsonic region x € [0, x,], the supersonic region x € [X,, 00), and the extended
region Y € (Y™, 0]. Following Ori and Piran [28], we call this spacetime the rela-
tivistic Larson-Penston (RLP) solution?.

Definition 2.7 (grpp..-metric) We refer to the 1-parameter family of spherically sym-
metric  selfsimilar spacetimes (MRLp ¢, grLP,:) constructed above as the
relativistic Larson-Penston spacetimes. In the adapted comoving coordinates (7, R)
the metric takes the form

; 4VE | 5 ;4 ;
— 2 ~2 2 ~ 2A 22 2 2
SrLps =~ AT = T Ye “"”’“(6 Tt ) ARy
(2.65)

where the metric coefficients are defined on the connected component of the (7, R)
coordinate plane given by

Dripe :={(F,R)|R>0, Y e (¥™, c0)}. (2.66)
Here
r(Z,R) = x(Y)R, (%, R)=a(Y), A(f,R)=Ar(Y), (2.67)
where Y = —%,
i — L% o oun g, (2.68)
(I—e)?
and
) — 20y > 0. (2.69)

Metric coefficients ji(Y), A(Y) for Y < 0 are then defined by expressing them as
appropriate functions of d, w, x and extending to ¥ < 0, see Proposition 7.16.

3 The nomenclature is motivated by their Newtonian analogue discovered by Larson [20] and Penston [31]
in 1969, see [15] for the rigorous proof of existence of the Newtonian solution.
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The RLP-spacetime in the original comoving coordinates. In the original comoving
coordinates (z, R), the metric takes the form

grip.e = —e*Hdt? + ¥ dR*> + 1% y. (2.70)
Itis clear from (2.53) that the metric (2.70) becomes singular across the surface T = 0
(equivalently y = o00). Nevertheless, away from this surface (i.e. when T > 0 and
T < 0) we can keep using comoving coordinates, whereby we define

t=|Y|"t, T>0, 2.71)

where we recall (2.55). Therefore the metric coefficients are defined on the union of
the connected components of the (t, R) coordinate plane given by

Drrp,e = 1{(7, R) € (=00,0) x (0,00)} U {(z, R) € (0,00) x (0,00) |y € (=00, y™)}, (2.72)
where
Y =y,
Here

r(t, R) = —etr(y), wu(r,R) =pu(y), AMt,R)=xr(y), for 7 <O,

and
o R .
r=—etrr(y), FM=xMy, y= e = T for w0,

where x (y) = x(¥),y <0.
Remark 2.8 1tis of interest to understand the leading order asymptotic behaviour of the
radius 7 as a function of the comoving selfsimilar variable y. It follows from (2.34) and

the boundary condition W (0) = % that lim,,_, o+ wW(y) = % Therefore, using (2.33) it
is easy to see that the leading order behaviour of 7(y) at y = 0 is of the form

143¢ 14+3¢ __2
F(y) = Foy 3 + 0y o+ (y3059),  F(y) =xy0+ y~ 3059, (2.73)

143¢
for some ry > 0. It follows in particular that y +— 7(y) is only c” S aty = 0.
The selfsimilar reduction of the constraint equation (2.15) reads F2e™ = 14¢eV?—
%Esz (see (3.95)). Using this and (2.73), it then follows

A = or FI(Y) = yor 00, (2.74)
which shows that the metric g (2.7) is singular at y = 0.
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This singularity is not geometric, but instead caused by the Friedmann-like
behaviour of the relative velocity W at y = 0, see (2.40). It captures an important
difference between the comoving and the Schwarzschild coordinates at the centre of
symmetry {(z, R) | T < 0, R = 0}. It can be checked that the space-time is regular at
the centre of symmetry by switching to the (t, r) coordinate. The same phenomenon

occurs in the Newtonian setting, where it can be shown that the map x = § associated

with the LP-solution is exactly C 0.3 and therefore X is not smooth at the labelling

origin y = 0.
Remark 2.9 Note that the trace of T, is easily evaluated
"' Ty = (o + p) g uyuy +4p = —p+3p =—(1-3e)p.

On the other hand, the trace of the left-hand side of (1.1) is exactly —R, and therefore
the Ricci scalar of any classical solution of (1.1)—(1.5) satisfies the relation

R=(1-3e)p. (2.75)

This relation also implies that the blow-up of the Ricci scalar is equivalent to the blow
up of the mass-energy density when ¢ # %

Remark 2.10 In Christodolou’s work [6], across the boundary of the backward light
cone N emanating from the first singularity, the selfsimilar solution has finite regularity
(measured in the Holder class). This is to be contrasted with the RLP solution which
remains real analytic across both characteristic cones - the sonic line and the light
cone.

2.6.1 The Outgoing Null-Geodesic

The maximally extended RLP spacetime constructed above has two singular boundary
components - the scaling origin O and the massive singularity M, introduced in
Section 2.5, see Figure 3. They are very different in nature, as the density (and the
curvature components) blow up at two distinct rates.

The main result of Section 8 states that there exist an outgoing radial null-geodesic
(RNG) emanating from the scaling origin O and reaching infinity. Following Ori and
Piran we look for a so-called simple RNG:

Definition 2.11 (Simple radial null-geodesics) An RNG of the form
R(t)=017, o eR\{0}, (2.76)

is called a simple radial null-geodesic (simple RNG).

Then the key result we prove is the following theorem.
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Fig.3 Schematic depiction of ~

7
the outgoing null-geodesics By, MSE
B>, and the massive singularity BQ
MS;
B
(@)
R

Theorem 2.12 (Existence of global outgoing simple RNG-s) There exists an 0 < gy <K
1 sufficiently small so that for any ¢ € (0, ] there exist at least two and at most finitely
many outgoing simple RNG-s emanating out of the singularity (0, 0). In other words,
there exist

Y™ <Y, <...Y1<0, n>2, 2.77)
so that the associated simple RNG-s are given by

. —/eT .
B :={(f,R) € Mgrp, | ‘Rf =Y}, i=1,...n. (2.78)

The proof relies on a beautiful idea of Ori and Piran [28], which we make rigorous.
Namely, one can show that the slopes of outgoing simple RNG-s must correspond to
roots of a certain real-analytic function, see Lemma 8.2. Using the sharp asymptotic
behaviour of the metric coefficients, brought about through our analysis in Sections 6—
7, we can prove that this function converges to negative valuesat Y = Oand Y = Y™,
On the other hand, by the local existence theory for the ODE-system (2.58)—(2.60),
we can also ascertain the function in question peaks above 0 for a Yy € (Y™, 0).
Therefore, by the intermediate value theorem, we conclude the proof of Theorem 2.12,
see Section 8, immediately after Proposition 8.4.

Informally, the null-hypersurface B is the “first" outgoing null-curve emanating
from the singular scaling origin and reaching the infinity. It is easy to see that r grows
to +o00 along ;. Since the spacetime is not asymptotically flat, we perform a suitable
truncation in Section 9 in order to interpret O as a naked singularity.

The maximal extension we construct is unique only if we insist on it being selfsimi-
lar, otherwise there could exist other extensions in the causal future of ©. Nevertheless,
in our analysis the role of the massive singularity MS; is important, as we use the
sharp blow-up asymptotics of our unknowns to run the intermediate value theorem-
argument above. Conceptually, MS, has a natural Newtonian limit as ¢ — 0, see
Remark 2.6, which makes it a useful object for our analysis.
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Fig.4 Schematic depiction of T
the ingoing null-curve N and

the sonic line. The spacetime is

smooth across both surfaces O

sonic line

In the remainder of Section 8 we give a detailed account of radial null-geodesics,
showing in particular that there is a unique ingoing null-geodesic A emanating from
the scaling origin to the past, see Figure 4. This is the boundary of the backward light
cone “emanating” from the scaling origin. Following the terminology in [6], it splits
the spacetime into the exterior region (in the future of N) and the interior region (in
the past of \), see Definition 8.6 and Figure 5. Moreover, the sonic line is contained
strictly in the interior region. The complete analysis of nonradial null-geodesics is
given in Appendix B.

2.7 Double Null Gauge, Asymptotic Flattening, and Naked Singularities
(Section 9)

The final step in the proof of Theorem 1.2 is to truncate the profile away from the
scaling origin O and glue it to the already constructed selfsimilar solution. To do that
we set up this problem in the double-null gauge:

g =—Q*dpdq +r’y, (2.79)

where p = const. corresponds to outgoing null-surfaces and g = const. to the ingoing
null-surfaces. A similar procedure for the scalar field model was implemented in [6],
however due to the complications associated with the Euler evolution, a mere cut-off
argument connecting the “inner region" to pure vacuum as we approach null-infinity
is hard to do. Instead, we carefully design function spaces that capture the asymptotic
decay of the fluid density toward future null-infinity in a way that is both consistent
with the asymptotic flatness, and can be propagated dynamically.

2.7.1 Formulation of the Problem in Double-Null Gauge

In addition to the unknowns associated with the fluid, the metric unknowns are the
conformal factor 2 = Q(p, g) and the areal radius r = r(p, q). Clearly,

1 _
8pp = 8qq = 0, 8pq = _592, gl = -2Q 2, (2.80)
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Fig.5 Schematic depiction of

the interior (dark grey) and the N

exterior (light grey) region, see By \
Definition 8.6 7 N
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Let u = (u?,u?,0,0) be the components of the velocity 4-vector u in the frame
{0p, 94, Ez, E3}, where {E5}, A = 2,3, describe the generators of some local
coordinates on S2. We have g(0p, Ex) = g(9y, E4) =0, A =2, 3. The normalisation
condition (1.3) in the double-null gauge reads

—1 = g uyuy = gMupuy, = —4Q 2upuy, (2.81)

which therefore equivalently reads
1 2 P49 -2
Uplly = ZQ , uful =Q~. (2.82)

Lemma 2.13 (Einstein-Euler system in double-null gauge) In the double-null gauge (2.79),
the Einstein field equations take the form

Q1 4
0p0y1r = myrie ;Bpraqr +arQ TP, (2.83)
4rrpg Q2 1
0p0ylogQ = —(1+nrQ'TH + 2 + r—zapraqr, (2.84)
9y (Q_28qr) = —nr QTP (2.85)
9, (Q*Za,,r) — —7rQ2T9. (2.86)

Moreover, the components of the energy-momentum tensor satisfy

QZ
3, (Q*2TPP) + Tnzaq(szer”TPq) =0, (2.87)
r
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Fig.6 The grey shaded area is
the region D, where the
truncation of the selfsimilar
profile takes place. Data are
prescribed on the two
characteristic surfaces C and C

2n

r

dp(QErTITPT) 4 @aq(sz“rZTW) -0, (2.88)
where the energy-momentum tensor is given by the formulas

TP = (148)pwP)?, T =0+e)pw)?, TP =(1-—2epQ~2 (2.89)
TAB = gpr=2y4B, TPA=TI4 =0, A, B=23. (2.90)

Moreover, its components are related through the algebraic relation
TPPTI9 = (1 4 n)>(TP9)>. (2.91)

Proof The proof is a straightforward calculation and is given in Appendix C. O

2.7.2 The Characteristic Cauchy Problem and Asymptotic Flattening

The idea is to choose a point (pg, go) in the exterior region (recall Figure 5) and solve
the Einstein-Euler system in an infinite semi-rectangular domain (in the (p, g)-plane)
D depicted in Figure 6. We normalise the choice of the double-null coordinates by
making the outgoing curve B; in the RLP-spacetime (see Figures 4-5) correspond to
the {p = 0} level set, and the ingoing curve N (see Figure 5) to the {g = 0} level set. We
have the freedom to prescribe the data along the ingoing boundary C = {(p, q) | p €
[po, 0], ¢ = qo} and the outgoing boundary C = {(p, q) ]p = po,q > qo}. On C
we demand that data be given by the restriction of the selfsimilar RLP solution to
C, and on the outgoing piece we make the data exactly selfsimilar on a subinterval
q € [q0, q0 + Ap] for some Ap > 0. On the remaining part of the outgoing boundary
q € [q0 + Ao, 00), we prescribe asymptotically flat data.

The key result of Section 9 is Theorem 9.4, which states that the above described
PDE is well-posed on D, if we choose |pg| = § sufficiently small. We are not aware
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Fig.7 The light grey shaded
area is the region D, where
the truncated solution from
Theorem 9.4 coincides with the
exact selfsimilar solution

of such a well-posedness result for the Einstein-Euler system in the double-null gauge
in the literature, and we therefore carefully develop the necessary theory. Precise
statements are provided in Section 9.2. The idea is standard and relies on the method
of characteristics. However, to make it work we rely on an effective “diagonalisation”
of the Euler equations (2.87)—(2.88), which replaces these equations by two transport
equations for the new unknowns £ and f~, see Lemma 9.1. This change of variables
highlights the role of the acoustic cone and allows us to track the acoustic domain
of dependence by following the characteristics, see Figure 6. The analysis of the
fluid characteristics is presented in Section 9.3. Various a priori bounds are given
in Section 9.4. In Section 9.5 we finally introduce an iteration procedure and prove
Theorem 9.4.

2.7.3 Formation of Naked Singularities: Proof of Theorem 1.2

Since the data on C and the portion of C with g9 < g < qo + Ao agrees with the
RLP-solution, the solution must, by the finite-speed of propagation, coincide with the
exact RLP solution in the region D,4,, depicted in Figure 7. By uniqueness the solution
extends smoothly (in fact analytically) to the exact RLP-solution in the past of C, all
the way to the regular centre {r = R = 0}.

The future boundary of the maximal development is precisely the surface {p = 0},
the Cauchy horizon for the new spacetime. The boundary of the null-cone corre-
sponding to {p = po} is complete, and we show in Section 9.6 that for any sequence
of points (po, g,) with g, approaching infinity, the affine length of maximal future-
oriented ingoing geodesics launched from (py, ¢,) and normalised so that the tangent
vector corresponds to d,, is bounded by a constant, uniformly-in-z. This shows that the
future null-infinity is incomplete in the sense of [32, Definition 1.1], thus completing
the proof of Theorem 1.2, see the Penrose diagram, Figure 8.
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Fig.8 Penrose diagram of our
spacetime with an incomplete

\
N/AS
future null-infinity h

C'HJF N

AN

3 Radially Symmetric Einstein-Euler System in Comoving Coordinates
3.1 Selfsimilar Comoving Coordinates

We plug in (2.19)-(2.24) into (2.12)—(2.15) and obtain the selfsimilar formulation of
the Einstein-Euler system:

V' 2V
224y + (1 +e)% (~—, + T> et =0, (3.92)
r r
V/
() = e =, (3.93)
r
_ 1 F(y)e 20 A
kyy' ¥’ -G +2¥% | =0, 3.94
ey (y)+1+é3 =0 ) +7 30 +2 ) (3.94)

2 .
PPe ™ =14¢eV? — gstz.

(3.95)
Remark 3.1 Recall that the radial velocity V satisfies )V = e~#d,r and therefore
V =e (=7 + yi' (). (3.96)

From (3.92), (3.93), and (3.96) we obtain

E/ ~/
0=2+y 2((;)) +(1+e (y/\’(y) +2 <yrr((yy)) — 1))

and therefore

V) =-— ! <£+3>—2<i—1>. (3.97)
I+e\X vy ooy
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For smooth solutions with strictly positive density X, an explicit integration of the
identity (3.97) gives the formula

1 2 __o

e =oX TreyTrer -, (3.98)

for some constant o > 0.

Remark 3.2 (Gauge normalisation) From (2.16) we also obtain

e Xy
l4+e2(y)’

Wy =- (3.99)

For any given 0 < ¢ < 1 we finally fix the remaining freedom in the problem by
setting

= OnO)F = —— 3.100
¢ = 0% EsE (3.100)
Upon integrating (3.99) we obtain the identity
w(y) 1 -1
e =—— X(y) T. (3.101)

1+e

Before we reduce the selfsimilar formulation (3.92)—(3.95) to a suitable 2 x 2
nonautonomous ODE system, we first prove an auxiliary lemma.

Lemma3.3 Let (2, V, A, n) be a smooth solution to (3.92)—(3.95).

(a) The following important relationship holds:

=/
wre _r (3.102)
1+¢ r
with w defined by (2.27). N
(b) (Local expression for the mean density) The selfsimilar mean density G defined by
- 6 [Y
Gy == / S dy (3.103)
r=Jo
satisfies the relation y
G =6Zw. (3.104)

(c) The expression K defined by

NN S (l(l +eG  ed “)2). (3.105)

__1+8 6 w+te w+e
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satisfies the relation

1
K=—d—w), 3.106
1+e( w) ( )
with d defined by (2.26).
(d) The metric coefficient e** satisfies the formula
~2 2
e — ! (X +e) . (3.107)
(14 £)2y2 [1 FeSTER(W—1)2 — 482w72]
Proof Proof of part (a). This is a trivial consequence of (3.96) and (2.27).
Proof of part (b). After multiplying (3.92) by 727 we obtain
0=2%/F 4+ yi' Y +A+e)TFV +2fFV)eH (3.108)
——
=i+Vel
=257 + TP+ TPV 4+ (1 +e)et 27V (3.109)
=27 + TP + (1 4 &) (e =V (3.110)

where in the second line we used y7’ = 7 + Vet (which follows from (3.96)) and in
the last line the identity

/
e 2): 1 el

ZM’ZE/M St (— -
(2e) e+e(1+82 1+e¢

which uses the field equation (3.99). After integrating over the interval [0, y] and
integrating-by-parts, we obtain

v
/ TPFds = P + (1 + 0)e'V) = Fw G.111)
0

where we have used (2.27). Hence dividing by 73 we obtain (3.104).
Proof of part (c). From (3.105) and (3.104) we immediately have

K=(+4ees W 1 (zﬁ—w) (3.112)
l4+e 1+4¢ ’ ’

where we have used (3.101).
Proof of part (d). The formula is a simple consequence of (3.95), (3.96), and (3.104).
O

Proposition 3.4 (The ODE system in comoving selfsimilar coordinates) Let (X, V, A, )

be a smooth solution to (3.92)—(3.95). Then the pair (d, w) solves the system (2.29)—
(2.30), where d, w are defined in (2.26)—(2.27).
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Proof A routine calculation starting from (3.92) and (3.94) (these can be thought of
as the continuity and the momentum equation respectively) gives:

<y+a Y (w—1))2/+Mw’—(1+38)2+3(w+8)2:0, (3.113)
W+ e W&
e, L e W (W (w—1)
e YEW +1+8<se y(w 1)+7, Y +e 2714—3
F4e) (%zngzZ) —0. (3.114)
We may rewrite (3.113)—(3.114) in the form
;20492 [ w 2w [(10+6G6  e(l+6)F
. _)'2—62/42)‘( Tre ¢ (6 wts | wts )) (3.115)
w o (w+e) (1 —-3w) 2yw w 20 l(l-i—e)é e(l+e)x
1+e (482 -2 Tre T 6 Twre T Tware '
(3.116)

With (3.105) in mind, equations (3.115)—(3.116) take the form

’ 2(14+e)XK
¥ = T (@22 _ 1y (3.117)
,  (w+e)(1 —3w) 2(1+&)wk
e T N T (3.118)

where K is given by (3.105) and G by (3.103). Equations (2.29)—(2.30) now follow
from (2.26) and parts (b) and (c) of Lemma 3.3. O

3.2 Selfsimilar Schwarzschild Coordinates
We recall the selfsimilar Schwarzschild coordinate introduced in (2.32).

Lemma 3.5 (Selfsimilar Schwarzschild formulation) Let (X, W) be a smooth solu-
tion to (3.117)—(3.118). Then the variables (D, W) defined by (2.34) solve the
system (2.35)—(2.36), with B given by (2.37) and n = n(e) = 12ng

Proof With the above notation and Lemma 3.3 we have K = ﬁ (D —W). Itis
straightforward to see that the system (3.117)—(3.118) transforms into

,  2(1—e)xD(W +&)(D — W)

T OXX(W e (e2n2hy2 1)
_1=3W  2(1+e)xW(W 4 &) (D — W)
- X XZ(W + g)Z(eZM—Z)»y—2 -1 :

(3.119)

w’ (3.120)
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From (2.33), the constraint equation (3.95), and (2.27)

W48 5 0um 2 anouon 2 2 2 =
m ® y =7""et =€M(1+8V —§8Gr)

W —1)2
= 62“ (1 + 8672/Lx2ﬁ — 482Wx2> s (3121)

where we have slightly abused notation by letting ¥ (x) = X(y). Therefore

2
W6 5 im0 WHe? , T

t+e2" ¢ Y A+e2" ~ Ute2
(W +¢)? (W —=1)? de - )
_[(1+8)2 U e Paser” 'W]x’ (3.122)

where we have used (3.101). Plugging this back into (3.119)—(3.119), the claim fol-
lows. O

Lemma 3.6 (Algebraic structure of the sonic denominator B) Consider the denomi-
nator B[x; D, W] defined in (2.37). We may factorise B in the form

Blx; D, W] = (1 —&)(J[x: D] — xW(x))(H[x; D] + xW(x)), (3.123)
where
2¢ 482 D"
Jix;Dl=J:=———0+Dx+,|—— 1+ D)2x2 +ex? + ,
l1—c¢ (1 —¢)?2 1—¢
(3.124)
Hix: D] = H := J[x: D] + 14%8(1 + D)x. (3.125)
Moreover,
(1—e)JH =D7"+e(l —e)x>, (3.126)

and

204 D) el = e)x - Qexd + e L (3.127)
= (1 —e)J +2ex(1 + D) ' '

Proof From (2.37) it is clear that we may view B[x; D, W] as a quadratic polynomial
in W:

2 48 .x_zD_r’
W+ —1A+DW—-e— — =0.
1—¢ 1—¢
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Solving for W, we obtain two roots, which when multiplied by x give

~2ex(1 + D) % \[4e222(1+ D2 + (1 = ) ((1 — &) + D7)

1—c¢

xWy = (3.128)
We now observe from (3.124)—(3.125) that the positive solution corresponds to
J[x; D] and the negative one to —H [x; D]. This in turn immediately gives (3.123).
Property (3.126) is obvious from (3.124)—(3.125). Finally, to show (3.127) observe
that J solves

(1—e)J?>+4ex(1+D)J —e(1 —e)x> = D" =0.

We differentiate the above equality, regroup terms and obtain (3.127). O

3.3 The Monotonicity Lemma

Controlling the sonic denominator B from below will be one of the central technical
challenges in our analysis. From Lemma 3.6 it is clear that this can be accomplished by
tracking the quantity J[x; D]—x W (x). A related quantity, of fundamental importance
in our analysis is given by

fx):=J[x; D] —xD. (3.129)

The goal of the next lemma is to derive a first order ODE satisfied by f, assuming
that we have a smooth solution to the system (2.35)—(2.36). This lemma will play a
central role in our analysis.

Lemma 3.7 Let (D, W) be a smooth solution to the selfsimilar Einstein-Euler sys-
tem (2.35)—(2.36) on some interval I C (0, 00), and let f be given by (3.129). Then,
the function f satisfies the ODE

f'(x)+alx; D, W]f(x) =blx: D, W], xel, (3.130)

where

alx; D, Wl =ay[x; D, W]+ ax[x; D, W], blx; D, W] = by[x; D, W]+ eby[x; D, W]

and
2exJ + £ D1 -
al[x;D,W]:( kil x)2(1 &)D (W +¢)
(1—e)J +2ex(1+ D) B
-n
—zs( ! D—+(1—s)x+(D+s)f)z*l; (3.131)
1—¢ x
aylx; D, W] =2e[(J —xW)(D—1)+2f +4ex +xD (5+¢e)] 2z}, (3.132)
bllx;D,WJ:L(xW—J)-i—s(xW—J)Z_l(x<2D2—2D+l—s)
H+xW
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L D’”); (3.133)

balx, D, W] = —2x2{D [02 +G+eD—(1— s)}
2(1 + )

=t
+e& D +
1—¢

ZIx; D, W] =[(1 —&)J +2ex (1+ D)][H +xW]. (3.135)

D(1+D)+ D2+3D 2+s]}z—1; (3.134)

Proof Since f' = J'—xD'— D, the goal s to find the desirable form (3.130) by using

the dynamics of J and D (3.127) and (2.35). The factorisation of the denominator B

in terms of J and H given in (3.123) will be importantly used in the derivation.
Using (3.123) and xD — xW = xD — J + J — xW, we first rewrite D’ as

o 2x(L=e)DW +e)(D—=W) _ 2(1—e)D(W +¢) 2D(W +¢)
B - B H+xW ~

Using further (3.127), it leads to

- 2exJ + D717 2(1 — &)D(W +¢)
! __<(1—8)J+28x(1+D)+ )( B )f

2eJ(1+ D) —e(l —e)x — 2exJ + 1= e D" 1y 2D(W+e)
_< . )T (3.137)

(3.136)

(1 —=e)J 4+ 2ex(1 + D)

2D(W +¢)
— <—)Cm + D) . (3138)

(3.136) is the form of —af, and it corresponds to the first term of a; in (3.131).
We next examine (3.138). Using (3.125), we see that

D
—(u138) = g (26(W + &) + H +2W)
__b (—Zx(W 4T+ (14 Dy —i—xW)
H+xW 1—¢
D gD <2gl+sx+ 4e Dx)
H+xW H+xW 1—¢ 1—¢
I +D. (3.139)

Then the first term /] corresponds to the first term of by in (3.133). The second term
I, will be combined together with the second line (3.137).
Let us rewrite 1-(3.137) as

I
I —(3.137) = 53 (3.140)

where Z is given in (3.135) and the numerator /3 reads as
Iz = D((1 — &)J +2ex(1 4+ D))(2¢ 1Jffx + 145 Dx) +2eJ(1+ D)(H +xW) (3.141)
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—2(W +6)(2exDJ 4+ {5, D7) — (1 — )x(H 4+ xW) (3.142)
= D((1 — &)J + 2ex(1 + D))2e £ x + £ Dx) +2eJ (1 + D)(H + J) (3.143)
—2(l+8)(2£xDJ+ﬁD My —e(l —e)x(H + J) (3.144)

—2(W — 7)(2$xDJ + D) —e(l —e)x(xW — D) +2eJ(1+ D)xW — ). (3.145)
We first observe that (3.145) can be written into the form of af — b:
(3.145) =2e(J —xW)(D - 1) f (3.146)
x

o] —xW) (x (2D2—2D+1—8)+%D—_n) (3.147)

where the first line corresponds to the first term of a, in (3.132) and the second line
corresponds to the second term of b1 in (3.133).

We next examine (3.143) and (3.144). Using (3.125) to replace H, and (3.126) to
replace D™, and writing J = f + x D to replace J, we arrive at

(3.143)+(3.144) = af (3.148)
+ D((1 —e)xD + 28x(1 + D)) (2e tHx + £ Dx) (3.149)
+4ex?D*(1+ D) + & x 2D(1 + D)? (3.150)
+262x%(D + ¢) (3.151)
—2(D +)2ex>D? + x> D? + #2.(1 + D)x*D) (3.152)
—e(l —&)x(2xD + £ (1 + D)x), (3.153)

where

a=D(—e)Q2eix + £ Dx) (3.154)
+2¢(1+ D) [2f+2xD+(2xD+l%(l+D)x)] (3.155)

—2l [stDf +2ex2D? + ngD—"] (3.156)

—2(D+e)e [2xD + @D+ A+ D)x)] (3.157)

—2e(l — &)x (3.158)
=_2s((1 1D~ ’7+(1—s)x+(D+8)f) (3.159)

+2e[2f +xD(5 + ¢) + 4ex] . (3.160)

Now (3.159) corresponds to the second term of @ in (3.131) and (3.160) corresponds
to the last three terms of a; in (3.132). It remains to check the formula for b,. To this
end, we now group (3.149)—(3.153) into ¢ term and &2 terms:

(3.149) + - - - + (3.153) (3.161)
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[28(1 +e)x2D? + 4eD3x? + 462 22 D(1 4 D) + S22 D2(1 + D)

(3.162)
+4ex’D*(1 4+ D) + 32x>D(1 + D)* + 2£2x2(D + s)] (3.163)
- [6ex2D3+682x2D2+ 32 2D2(1 + D) + $242D(1 + D) (3.164)
+26(1 — £)x2D + 462x%(1 + D)] (3.165)

= [88x2D3 +2ex’D*(3 + &) - [68x2D3 +2e(1 = e)xzD]
+[4e2 22 D(1 + D) + 250207 + 1242 D2 4 262 (4 + D’ D + 26327
— [(66% + B2)x? D2 + (3£ 4 467)x7 D + 46%x7]

= 2ex2D [1)2 +G+e)D—(1— 8)] (3.166)
+26%7 [ .07+ AL+ D)+ 35D2 43D — 2+ ¢ (3.167)
This completes the proof. O

Corollary 3.8 Let (D, W) be a smooth solution to the selfsimilar Einstein-Euler sys-
tem (2.35)—(2.36) on some interval I C (0, 00). Then for any x; < x, x1,x € I, we
have the formula

\ alz:D.Wldz

f) =f(X1)eff*1

Lo — [} alzD.W1d / (bilz: D. W]+ ebalz: D. W]) e Ji alsiD.W1ds
X1

dz.
(3.168)

Proof The proof follows by applying the integrating factor method to (3.130). O

Lemma 3.9 (Sign properties of b) Assume that J — xW > 0 and B[x; D, W] > 0.
Then there exists an gy > O sufficiently small such that for all0 < ¢ < gg the following
statements hold:

(a) Forany D > 0
bi[x; D, W] < 0. (3.169)

(b) Furthermore,
1
by[x; D,W] <0 forall D > 3 (3.170)

Proof The assumptions of the lemma and the decomposition (3.123) imply that Z > 0
and H +xW > 0.

Proof of part (a). The negativity of b1 is obvious from (3.133) and the obvious bound
2D? —2D + 1 — ¢ > 0 for & sufficiently small.
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Proof of part (b). Let ¢o be the larger of the two roots of the quadratic polynomial
D+ D>+ (3+¢)D — (1 —¢), which is given by

B+ +VB+e?+4(1 -9
Qo= ) .

It is easily checked that there exists an &g > 0 such that0 < ¢y < % forall0 < & < g
and in particular

D[D2+(3+8)D—(1—8)]>0

for D > %(> ¢0). On the other hand,

4 2(1 5—

D+ (]+8)D(1+D)+]—8D2+3D—2+e>4D3+602+SD—2>0
— & — & — &

for D > % and the claim follows from (3.134). O

4 The Sonic Point Analysis

It turns out that for purposes of homogeneity, it is more convenient to work with
rescaled unknowns where the sonic point is pulled-back to a fixed value 1. Namely,
we introduce the change of variables:

=2 W) = W), RG) = D). 4.171)

R

so that the sonic point x, is mapped to z = 1. It is then easily checked from (2.35)—
(2.36) that (R, W) solves

dR _ 2x7z(1 —e)RW + &) (R - W)

= (4.172)
dz B
1— 2x2z(1 —
Ay (1-3W) n x;z(1L+ WOV + ) (R W)’ 4.173)
dz z B
where
B=R" —[W+e) —e0V = 1) +4eRW | 222, (4.174)
We introduce
dzi=z—1. (4.175)
we look for solutions R, W to (4.172)-(4.173) of the form
o0 o
R=) Rnv@Y, W=7 Wy@)". (4.176)

N=0 N=0
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We observe that there is a simple relation between the formal Taylor coefficients of
(D, W) and (R, W):

R;j=Djx], Wj=W;xl, j=0,12,.... (4.177)

4.1 Sonic Point Conditions

Lemma 4.1 (Sonic conditions) There exists a small ey > 0 such that for all |e| < &g
and all x, € [%, %] there exists a continuously differentiable curve [—¢q, 9] > € >
(Ro(e), Wo(e)) = (Ro(e; xx), Wo(e; x4)) such that

Ro(e) = Wy(e) > 0.

B[Ro(g), Wo(e)] = 0.

Ro(0) = Wp(0) = xi

—00 < 9:Ro(0) = 3. Wp(0) < 0.

R~

Proof Fix an x, € [%, %]. Consider a small neighbourhood of (¢, W) = (0, xi*), open
rectangle (e, W) € (—I,1) x (w1, wy), and a continuously differentiable function
h:(—=1,1) x (wg, w2) - R defined by

he, W)::[(l L3NV +4eW + (e — 1)] W — —, (4.178)

=
*ro| —

where we recall n = n(e) = 12788 Then the sonic point conditions R = W and B = 0
with z = 1 reduce to k(e, VW) = 0 and moreover we have £(0, xl*) = 0. Clearly £ is

continuously differentiable in all arguments. Observe that

oh
= [2(1 +3W? +4eW + ((1 +3OW? +4eW +e(e — 1))] wr!
(4.179)
from which we have
dh 2 o (4.180)
—_— = — > U. .
IWlewW=0.L) x4

Therefore, by the implicit function theorem, we deduce that there exists an open inter-
val (—ly, lp) of ¢ = 0 and a unique continuously differential function g : (—lo, ly) —
(w1, wy) such that g(0) = XL* and h(e, g(e)) = 0 for all ¢ € (—ly, lp). Moreover, we
have

g 9k
2. =i £ € (ol (4.181)
€ W
where
oh _ [3W2 FAW 426 — 14 ((1 +3e)WE +4eW + e(e — 1)) ZIHWZ] Wi (4.182)
de 1—e)
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When ¢ = 0,
oh 2Inx,
08 ) _ selot) xz T 24y, 4 2l0gy, — 3
5( )__ﬂ| - 2 - 2x '
awlo. L) X ¥
(4.183)

The derivative of the map x, — x —4xye +2logxy, — 318 22—+ (e — - and the function
is therefore strictly increasing for x, # 1. It is easy to check that the value at x,, = %
is negative, and therefore there exists a constant ¥ > 0 such that g—‘g(O) < —« for all

Xy € [%, %]. In particular, there exists a 0 < g9 < 1 sufficiently small and a constant
¢y > 0 such that

1 1 3 7
— —ce<g(erxy) <—, €€0,80], xe€|=z, <.
Xy Xy 22

We let
Ro:=R(e) = g(e), Wo:=Wo(e) = g(e). (4.184)
O
Remark 4.2 (The map x, — W)y(e; x,) is decreasing) In order to examine the

behaviour of Wy(e; x.) = g(e; x4) as a function of x, for any fixed ¢, we rewrite
the relation A (e, Wh(¢)) = 0 in the form

h(e, g(&; x4); x4) = 0.

Upon taking the 57— demvatwe of the above, we easily see that d,,g(e; xx) < 0. In
h = F > 0 from (4.178), and dyyh > O is

*

fact, we have 8x* g =
given in (4.179).

Fora given function f,we write (f), M € N, todenote the M-th Taylor coefficient
in the expansion of f around the sonic point z = 1. In particular,

RW+R=Wy =D RiWu +83)(Ry — W),
[+m+n=M

W+ R =Wy = D WiWn+83) (R — Wa),
l+m+n=M

W= Y Wila,
I+m=M

RWm = ) RiW.
I+m=M

Weset (f)y =0for M < 0.
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Formula of Faa Di Bruno. Given two functions f, g with formula power series
expansions

o o
fE =) " g =) gax", (4.185)
n=0 n=1
we can compute the formal Taylor series expansion of the composition 7 = f o g via
o
h(x) =) hpx" (4.186)
where
Z Z fm (gl))Ll (gn))w P hO = fO (4187)
m=1m(n,
and
n n
wm) =i h) i hi €220, ) Ai=m, Y iki=n{. (4.188)

An element of 7 (n, m) encodes the partitions of the first » numbers into A; classes of
cardinality i fori € {1, ..., m}. Observe that by necessity

Aj=0forn—m+2=<j<n.
To see this, suppose A; = p > 1 forsomen —m +2 < j <n.Thenm — p

Zi#)\i < Zi;ﬁ/’“‘i =n—jp<n—m—m+2)p,whichleadsto(n —m+1)p <
n — m. But this is impossible if p > 1.

Now

© i\ o .
R =Ry" (1 + R—’(«Sz)’) =Ry + Y (R7);(82)! (4.189)
X 0 X
i=1 j=1
where

(R, —RO”Z Y (- M RyMLRM, j =10 (4.190)

0 ﬂ(/ m) . P .

Here (—1)y = (—n)(—n — 1) - - - (—n — m + 1). Then we may write B as

B=R"— [(1 — W2 £ AW 4 4eRW + % — ]x2z2 (4.191)
=R —xXH7? (4.192)
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=Y RG22y Hi(62) (1 + 282 + (62)°) (4.193)
[=0 =0
so that
Hy = (1 — &)V 4 4eW) + 4e(RW); + (6% — £)8). (4.194)

Lemma4.3 Forany N > 0, the following formulas hold:

D A DRy (R
I+m=N

2 A DR H A2 Y A DR H Y.+ DRyt Hy
I+m=N [+m=N—1 I+m=N-2

+2x2(1 — &) (ROV + &) (R = W)y + (ROV +)(R = W)y_1) =0
(4.195)
and

D A DW (R
I+m=N

=22 D DWW H 2 Y A DWa B+ Y m+ DWWy Hy
I+m=N I+m=N—1 I+m=N-2

= Y RTEDT 3 Y WaRT (=1

I+m=N l+m+n=N
a2l Y HED" 2 Y HED" Y H(=D"
I+m=N I+m=N—1 I+m=N-2

3X§( STOWHD" 42 Y WhH-D" Y W,,Hl(l)’”)

l+m+n=N I+m+n=N—-1 I+m+n=N-2
—22(1+8) (WOV + ) (R = W)y + VOV +8)(R —W)y_1) =0

(4.196)
where we recall (f)y = 0 for M < 0.
Proof Proof of (4.195). We now plug (4.176) into
BR 4+ 2x2(1 —&)(1 +82)RW +)(R —W) =0, (4.197)
BW — U;—F;);VZ)B — 220+ &)1+ 8)WW + ) (R—W) =0.  (4.198)

(4.197) reads as
0= [Z(R_")I(Bz)l —x Y H$)' (14252 + (az)%} [Z (m+ DRy (8z>’”}
=0 =0 m=0

oo
+253(1 = 8) Y ROV + &) (R — W), (52! (1 +82)
=0
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oo
=Y Y m+ DRy (RN
N=0Il+m=N

00
—xf Z ( Z (m+ DRyy+1H

N=0 \l/+m=N

420 ) A DRy H+ Y m+ DRygr H | ()Y
I[+m=N—-1 I+m=N-2

+23(1—2) Y (ROV+e)(R=W))y + (RO +£)(R=W)n_1) GV
N=0

Comparing the coefficients, we obtain (4.195).
Proof of (4.196). Since ﬁ =Y o o(=1)"(82)™, we can expand U=3WB g

1448z
1 -3W)B
1+46z
oo o0 o0
= (1 —3) W (8z)"> (Z(R‘")z@z)’ —x3 ) H62) (14257 + (5z)2))
n=0 =0 =0
o0
Z (71)m(51)m
m=0
o0 o0
=D > RMED"E)N =3 DT RT3
N=0Il+m=N N=0Il+m+n=N
oo
—x3 ( dOoHED" 2 Y HED"+ Y H;(l)’") 62V
N=0 \I4+m=N I+m=N—-1 I[+m=N-2

o0
+3Xf2( dWH-D" 2 YT WaH D"+ Y WnH,(—nm)(az)N.

N=0 \l+m+n=N I+m+n=N—1 I+m+n=N-2

We plug (2.43) into (4.198)

0= [Z(Rnn((sz)’ —x2 Y H62)' (1 + 26z + (82)2):| [Z (m+ D)Wy (8z)’”}

=0 =0 m=0
= /(1 -3W)B s
- (ﬂ) @GN = 2221 +6) S WOV + &) (R — W) (52)! (1 + 62)
146z N
N=0 1=0
o0
=y (m + DW1 (R™1) (52N
N=0l+m=N
o0
—x | X W H
N=0 \/[+m=N

203 A DWW Hi+ Y A+ DWag Hy | 69N
I+m=N—1 l+m=N-2
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(1-3W)B N
B Z ( 1+6z )N(&)

—2x*(1+8)z VWV + )R = W)y + VW +&)(R - W)y—_1) ()Y
N=0

which leads to (4.196). O

Remark 4.4 (Rg, Wp) obtained in Lemma 4.1 satisfy the sonic conditions:
Ro =Wy, Ry"=x2Hy (4.199)

and it is easy to verify that for such choice of (Ro, W), the relations (4.195)y—9
and (4.196)y—g trivially hold. Moreover, with (4.199), there are no (Ry+1, Wn+1)
in (4.195) and (4.196).

Remark 4.5 To determine Ry, W, we record (4.195)y—; and (4.196)y—:
(RN Ry — x2H R — 2x2HoRy + 2x2(1 — &)RoWo + &) (R1 —Wi) =0

(4.200)
and

(R Wi — x2(OWi Hy 4+ 2Wi Hp) — [(R™")1 — Ry "]
+3DMVIR, T+ Wo(R™M)1 — WoRy " + x2[H + Hol

— 3x2[Wi Ho + WoH; + WoHol — 2x2(1 + e)WoOMy + ) (R — Wy) = 0,
(4.201)
where we have used the sonic conditions (4.199). Recalling from (4.190) and (4.194)

(R = —nRy" 'Ry, (4.202)
Hi =2[(1 4+ )Wy + 2] W) + 4eWp'Rq, (4.203)

we see that for general nonzero ¢, (4.200) is linear in W, and quadratic in R and
(4.201) is linear in R and quadratic in V). On the other hand, when ¢ = 0, since
(R™M)1 =0, Hy = 2WoWi, Hy = W3, (4.200) becomes

—2x2WoWI R — 2x2W3R1 + 2x2RoWo(R1 — W) = 0,
and (4.201) becomes

—x2QWoW?E £ 2WIW3) 4 1+ 3[Wy — Wol + x22WoW + W3]
—3x2DVIWE + 2WiW1 + Wil — 22 W3 (R — W) = 0.

Thus by using Rg |£ = Wo| , we see that (4.200) and (4.201) are reduced
to

—2Wi (xsR1+1) =0, (4.204)

@ Springer



Naked Singularities in the Einstein-Euler System Page 41 of 182 4

3
-2 (x*wf — XM 43IV R+ = - 1) =0, (4.205)
*

which are the the sonic point conditions satisfied in the Newtonian limit, see [15]. In
general, there are two pairs of solutlons to (4.204)-(4.205), one is of Larson-Penston
type given by (R, W)) = (— -2 o) and the other one is of Hunter type given

by (R1. W) = (1 — 2,0).
In the following, we will show that there exists a continuously differentiable curve
(R1(e), Wi (e)) satistying (4.200)—(4.201), which at ¢ = 0 agrees precisely with the

values of (R, W) associated with the (Newtonian) Larson-Penston solution, namely
(R1(0), Wi (0)) = (—xi*, - X%) for x, > 2.

Lemma 4.6 (RLP conditions) Let x, € (2, %) be fixed and let (R, W) be as obtained
in Lemma 4.1. Then there exists an €1 > 0 such that there exists a continuously
differentiable curve (—e1, €1) 2 € — (R1(g), Wi(¢e)) such that

1. The relations (4.195)ny—=1 and (4.196)Ny—1 hold.
2. Ri(0) = —é and Wi (0) =1 — xl

Proof AsinLemma4.1 we will use the implicit function theorem To this end, consider
a small neighborhood (-1, [) x (r1, r2) x (wy, wp) of (0, —=, 1 — 3) and introduce

F (=L, 1) x (r1,r2) x (w1, wa) — R as
Fle, R, W1) = (Fi(e, Ri, W1), Fale, Ri, W) (4.206)
where
Fi(e, R1, Wp) = LHS of (4.200) and F> (e, Ry, Wi) = LHS of (4.201) (4.207)

so that (4.200) and (4.201) are equivalent to F(g, Ry, Wy) = 0. It is clear that F
is continuously differentiable in all arguments and F (0, —i, 1 - xz_*) = 0. We next

compute the Jacobi matrix #}M

0F LA A
— =& %yrvzl (4.208)
0[R1, W1] TR, AV
where
971 _ —n—1 2 x2 8H1 2 2
R —2nR, Ri—x, H — R] —2x; Ho + 2x,(1 —e)RoWo + ¢),
1
oF
8W11 = —xIRi 3 — 2x2(1 — e)RoWo + ),
8‘7:2 _ R_U_IW 2 JH| —n—1 3 —n—1
W = =Ny 1 —X*Wlm + T]RO — nW()RO

+ x]SR = 3N — 262 (1 + &)W + ¢),
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IF .
ﬁ = —nRy"" Ry — x2(Hy +2Ho) — x2W ZHE + 3Ry

+ X7 5 — 3x7 Ho — 3x) Mo Sk + 222 (1 + &)WV + &),
and

TA-=4eW), SR =201+ &)W + 2e].

Using Hy(0) = 2W(0)W;(0), 37’2 ® =0, 5%1 ©) = 2W(0), Ho(©) = W5 0),
Wo(0) = Ro(0) = 1=, Wi (0) = *5
(&, Ri, W) = (0, =, 1 = )

——, we evaluate the above at

aF] ‘ 2 2 2
— Lo ==X H(0) — 2x; Hp(0) + 2x, Ro(0)Wp(0) = —2(xx — 2),
Rk, Ry WD=(0,—- 1= 2) * * *
3.7:1 2 2
W‘(k RIWD=0— 1= 2y = OO = 26RO O =0,
? ’ T x0T Xx
3..7:2 2 2
7z =2 0) = —
AR ‘(k,Rl,W1)=(0,fﬁ,lfﬁ) MO
8.7'—2 2
Iy ‘(k RyWD=(0— L 1- 2 ) —X (Hl (0) +2Hp(0)) = 2x; W1 (OWp(0) + 3

+2x2Wp(0) — 3x2 Ho(0) — 6x2W3(0) + 2x2W3(0)
= —4x2Wo(O)W](0) + 25 — 6 = —4(xy —2) + 2x4 — 6
= —2(xyx — 1).

The Jacobian at (¢, Ry, W) = (0, —ﬁ, 1 - %) is

oF
—_— =4(xe —2)(xx— 1) >0 if x4 > 2
la[RleI] (e R1WD=(0.~ 1= 2) ’ ’ ’
(4 209)
and thus, ﬁ is invertible in sufficiently small neighborhood of (0, ——, 1 — 2z o)

for any fixed x,. > 2. Now by the implicit function theorem, we deduce that there ex1sts
an open interval (—Ilp, [p) of ¢ = 0 and unique continuously differential functions
g1 : (=lo, lo) = (r1,72), g2 : (lo, lo) = (w1, wy) such that g1(0) = —5-, g2(0) =
1-— x% and F (e, g1(¢), g2(¢)) = 0for all ¢ € (—lo, lp). O

It is evident that R| and VW, become degenerate at x, = 2. In particular, when
& = 0, the corresponding R and W for the LP-type and the Hunter-type solutions
coincide precisely at x, = 2, while they are well-defined for further values of x, below
2, see [15]. Interestingly this feature does not persist for ¢ > 0. In fact, we will show
that R | and W), cease to exist as real numbers before x, reaches 2 from above. To this
end, we first derive the algebraic equation satisfied by W;.
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Lemma 4.7 (The cubic equation for W1) The Taylor coefficient W is a root of the
cubic polynomial

Px)y=x3+L2x2 Uy & (4.210)
as as as

where aj, j =0, 1,2, 3 are real-valued continuous functions of Wy given in (4.221)—
(4.224) below. Moreover; there exists a constant ¢ > 0 and 0 < gy < 1 such that for

1 1 ag 1
all0 <e Kegpandany 3 < Wy < 1, wehavec <az < ;,c < W=D < < In
particular any root of X — P(X) is not zero for 0 < ¢ K €.

Proof Note that (4.201) can be rearranged as

—x2 Hi W1 + 3Wo — 1] = x7 Holn e + 210V +3Wp — 1]

(4.211)
—2x2(1 + e )WoWo + €)(R1 — W) = 0.
Rewrite (4.200) as
_ _ Ho_ 1 Hy
(1= DNVoONy + ) = Ho — [543 +2eWol R | Ry W)

—[(I = WoWo + &) + [(1 + )Wy + 2e]R11 W1 =0,
and (4.211) as

[+ W +2e]W] +[3 +5e)Wg — (1 =8 + e)Wp — (Be — e2)IW + 3Wo — DHo
(1L+ WO Wo + &) + [§ 33 +2W013W0 — D + (3 i + 26y '
(4.213)
We would like to derive an algebraic equation for W;. To this end, write (4.213) and
(4.212) as

R =

dW? 4+ eW + cHy

R =
! h + bW,

(4.214)

where

di=(1+ )Wy +2¢, e=(B+5)W3 — (1 —8e + )Wy — Be —2), e=3Wp —1, (4.215)
._ n Ho _ 1 Ho
hi=(14+e)WoWy + &) + 3 Wo +2eWpl13Wy — 1), b._2 Wo +2eW). (4.216)
We observe that we may write & = (1 + €)a + bc, where

a:=WoWp + ¢). 4.217)

If we let
f:=0 —¢&)a — Hy, (4.218)

then (4.212) can be rewritten in the form

[f —bRiIR1 — [(1 —&)a+dR 1]V =0, (4.219)
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with f, .b, a, d as above. Now replace R in (4.219) using the relation (4.214):

_ |:f n de% +eW + CHO:| dW12 + eW) + cHy

h+ bW h + bW,

dW? + eW H,
—|:(1—8)a—d pteite O}WFO,

h 4+ bW,
Multiply (h + bW1)?:

- [f(h + BW) + bAW? + eW) + cHo)] (dW? + eW, + cHy)

- [(1 — )alh + bWy) — d(dW? + eW) + cHo)] (h + bWDW) = 0.

Note that the highest order term Wf is not present. Rearrange similar terms to conclude
the identity

azWi + ax Wi +aiWi +ag =0, (4.220)
where
ay:=d(dh — be) — b(fd + (1 — £)ab), 4.221)
agi= — [bcdHo — e(dh —be) + h(fd + (1 — e)ab) + b(fe + (1 — e)ah)],
4.222)
a= — [bceHo — ¢Hy(dh — be) + bef Hy + h(fe + (1 — 8)ah)], (4.223)
aog:=— cHy(bcHy + fh). (4.224)

By (4.224), the sign of a is the same as the sign of bc Hy + fh. We now use

H
beHo+ fh=| 220 120wy | BWo — 11 Ho
2 Wy

+[(1 = )Wo(Wo + &) = Hol [(1+ )Wo(Wo + &) + [§ 3% + 26Wpl3Wo — 1)
=[(1 =Wy + &) — Hol (1 + e)Wo(Wp + ¢)

+ (1= WOV + &)l § 2 +2Wp1 (B — 1)
= WoOWh + ) [ (1 46 [ = )Wo N + ) = Hol +e [ 4201 — yWpl3Wo — D),

—
) n

1)

where we have used % = ﬁ in the last line. Now

) =A=-—eWoWo+¢)—( +38)W§ —4eWy + & — &2
=& [-NF - G+e+1-¢
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and

(1) = (1+3e)W0 +4e — 52 +2(1 — )W
= B+ +4s — 5.
Hence

U1 = o] =41+ WG = G+e)(1+ 2V +1 =62 + [+ +4e — S5 1GWp — D)

Wo

e[ G- NG = 6= Te + W+ (1 = Te +267) + 5t |
=e[Wg - +1+ 0@},
Since SW3 — 6Wo + 1= (SWop — DMy — 1) < Ofor £ < Wy < 1,
ao = —cHy(bcHy + fh)
= —ecHWoWo + &) |SW§ = 6 + 1+ 0(0)}

1
> 0 for §<W0<1and0<e<<1. (4.225)

From (4.215)—(4.217) it is easy to see that

a=W}+0(@), b=0(), c=3Wy—1, d=Wy+ 0(e), (4.226)
e=3W, —Wo+0(), f=(1-eWoOWo+e) —Hy=0(e), (4.227)
h=(1+WoWo + ) + [15 it +26W13Wo — 1) = Wi + O(e). (4.228)

This then implies

a3 =W§ + 0(e), ar=WiBWo — 1) + O(e),

ay =Wi2Wo — 1) + 0(e), 0

O | (4.229)
eB3Wo — 1)

which shows the uniform positivity and boundedness of a3 for sufficiently small ¢.
Upon dividing (4.220) by a3 we finally conclude the proof of the lemma. O

Remark 4.8 In the formal Newtonian limit ¢ = 0, the cubic equation P(X) = 0
reduces to

X34+ BWo— DX>+ CWo — DWoX = X (X +Wo)(X +2Wy — 1) = 0. (4.230)

The root X = 0 corresponds to the Hunter-type, X = 1 — 2W) is of the LP-type, and
X = —)W) is the Newtonian ghost solution, see [15].
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4.2 Relativistic Larson-Penston-Type Solutions

By Lemma 4.7 we know that there are in general three complex roots of (4.210)
giving possible values for ;. One of those roots is a “ghost root" and is discarded as
unphysical solution of (4.210). More precisely, in the Newtonian limit ¢ — 0 such a
spurious root corresponds to the value Wy (0) = — Xl* Our goal is to first mod out such

a solution by using the implicit function theorem to construct a curve & — ngh(s) of
spurious solutions agreeing with —xi when ¢ = 0.

Lemma 4.9 (Ghost root) The cubic polynomial P introduced in Lemma 4.7 can be
factorised in the form

P(X) = (X = W () 0(X), 4.231)

where th (e) is a real valued function of Wy(e) and Q is a quadratic polynomial
given by

0(X)=X*+ [a—2+wf”}x— . (4.232)
as a3Wf
Proof We differentiate (4.210) to obtain
oP
- = (3x2+2%2x+4
X 1(e,X)=(0,— ) as az ) 1(e,X)=0,—) 4.233)
=3i_23—x*i+2—x*:x*—1>0' .

2 2 2
b Xy Xy b Xz

The implicit function theorem implies the existence of a unique e-parametrised curve

W (e) = —xi + 0(e) (4.234)

*

satisfying P(th(s)) = 0. Identity (4.231) can now be checked directly, keeping in
mind (4.232).
The discriminant of Q is given by

2
a 4a
AQ=<—2+W§*‘) .
a3 azWi

O

Lemma 4.10 (Definition of x.i;(€)) There exists a continuous curve (0, g9] > € >
Xerir(€) € (%, %) such that

Ao (xerie(€)) = 0, (4.235)
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Ag(xs) > 0, xy € (Xcrir(€)s Xmax(€)], (4.236)
Xerit(€) =24+ 0(Ve) > 2. (4.237)

Moreover, for any x, € (Xcrir(€), %] there exists a constant C, = Cy(xy) > 0 such
that for all ¢ € (0, go]

< Cse. (4.238)

)erLP(S; x) —

Xk

When x, = X¢rit(€) the rate of convergence changes and there exists a constant C>0
such that

< C/e. (4.239)

Xerir(€) — 2

Xerir(€)

’W{“P(s; Xerit(€)) —

Proof Step 1. Existence of Xt From the asymptotic formulas (4.229) and (4.234) it
is clear that for all ¢ € (0, 9] we have

- [a Wgh} Y72 1 0, (4.240)
3

KX
and therefore

-2 2 4
+0(@)) + -
x az Wi

Xx
Ap(e, xy) = <

However, by Lemma 4.7 we know that ?\‘j&h
as

< —a(3Wy — 1)¢ for some positive

constantao > 0. Choosing x,, < 2suchthat2—x, = O(e), weseethat Ag (e, x4) < 0.
On the other hand, for any x, > 2 4 § for some small, but fixed § > 0, we see
that Ag(e, x4) > 0. Therefore, by the intermediate value property, there exists an
Xy € (2= 0(e),2 + 8) such that Ap(x,) = 0. Let x¢rj¢ be the largest such x, - it is
clear from the construction that the properties (4.235)—(4.236) are satisfied.

Step 2. Asymptotic behaviour of Xit(¢). From (4.240), the identity

_ |:a_2 + nghi|
as

and Lemma 4.7 we easily conclude (4.237).
Step 3. Continuity properties of the map & +— WFLP (e, x4). Fix an x, € (X¢rit, Xmax |-
Then

dag

(4.241)

X =Xcrit (€) as ngh

X =Xcrit (€)

[2+ Wi+ [(2 +wih 4 S
RLP Xy —2 Wi x, =2
Wi (&5 xx) — = —
Xx Xk
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oh Cdag  xx—2
@ i) - 2 (2 +WiH2 + -
_[E A e \/ W]h -

2 2
S () + i) (4.242)

By (4.240) we have (i) = O(¢). For (ii),

(18] Xg—212 4ag
(@ +WED? = (522 + 0y
a3 1 X asWE 0(¢)

|:\/(az T T +M} T Vo274 06) + (i —2)
Wl

Xk

as a—>0+,

(i) =

(4.243)

by (4.229) and (4.240). Therefore, the bound (4.238) follows.
If we now let x, = xcrit(€), since by definition A g (xcric(¢)) = 0, we have

a gh
WRP(e: xg(ey — @ =2 s TV (@) =

Xerit (€) 2 Xerit(€)
—_ [_ a Xerit(8) —
a3W1gh Xerit (€)
= O+ (Ve), (4.244)
where we have used (4.237) and Lemma 4.7. This proves (4.239). O

Of special importance in our analysis is the Friedmann solution, which has the
property that forany e > 0 Wy = Ry = % By Lemma 4.1 there exists a continuously
differentiable curve ¢ — xmax(¢) defined through the property

Wo(e; xmax(€)) = %, e €0, ¢ep]. (4.245)

Since Wy(0; 3) = 3, we conclude from Lemma 4.1 that
Xmax(€) <3 and 3 — xpax(e) = O(e), € € [0, &o]. (4.246)

With above preparations in place, we are now ready to define what we mean by a
solution of the relativistic Larson-Penston type.

Definition 4.11 (Solutions of RLP-type) Let 0 < &9 < 1 be given by Lemma 4.7 and
let xi € [Xcrits *max]- We say that the sequence (Ry,Wpy)nven is of
relativistic Larson-Penston (RLP)-type if for all ¢ € (0, &¢]

Ro =W, (4.247)
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the coefficients (Ry, YWn)nen satisfy the recursive relations (4.195)—(4.196), W is
the root of the quadratic polynomial Q (4.232) given by

gh gh 4
-2 +w ]+\/(3—§+W1 Pt S

2 ’

Wy = WREP = (4.248)

and R is given as a function of YWy and W via (4.213).

Remark 4.12 Foralle € (0, gg]itis clear from the proof of the lemma that the following
bound holds in the interval x, € [X¢rit(€), Xmax(€)]:

-2 0]
WRLP(g: x ) — T T2 ©) . (4.249)
Xk V(X — 2)2 + 0() + (xx —2)
4.3 High-Order Taylor Coefficients
We now consider (4.195)n>2 and (4.196) y>2.
Lemma4.13 Let N > 2. Then the following holds
RN SN >
AvWo, Wi, R = . 4.250
N Wo, Wi 1)<WN) <VN ( )
Here
AN Wo, Wi, R1) = (A“ A12> (4.251)
Azl Ax
where
Ayl = —2x2HgN +2x2(1 — ) RoWy + &) — x2H| N — r;Ra”_lRl (N +1) —4ex2WyR1,

A = —x2R1Q2(1 — &)Wy + 4e + 4eRg) — 2x2(1 — e)RoWo + &),
Agy = =221+ WOV +8) — Ry + 4sWoxDY W1 +3Wp — 1),
Ay = —2x2HoN —3x2Hy + 3Ry " +2x2(1 + )WoWp + &)
—x2OW; +3W) — DA — &)Wy + 46 +4sRg) — x2HIN — Ry ' RN,

and

Sy = Sn[Ro, Wo; Ri, Whs -+, Rn—1, Wn—1l,
Vn = Vn[Ro, Wo; Ri, Wh; -+, Rn—1, Wn-1l,

are given in (4.255) and (4.258).

Proof We first observe that there are no terms involving (Ry+1, Wy+1) in (4.195)
and (4.196) due to the sonic conditions (4.199) (cf. Remark 4.4 and see the cancelation
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below). To prove the lemma, we isolate all the coefficients in (R™7)y and Hy that
contain the top order coefficients Ry, Wy. For (R™"7)p, from (4.190) we have

(R™Mn = _UR(;H_IRN

+R0"Z - (= M RiM RN

m= 2 JT(N m)

(4.252)

where werecall A =0 for N —m +2 < j < N, in particular Ay = 0 and therefore
there are no terms involving Ry in the summation term. For Hy, from (4.194), we

have
Hy =21 —e)WoWn + 4eWn + de(RoWn + Ry Wo)

+0—e) E WeW + E 4eR Wi (4.253)
+m=N l+m=N
1<m<N-1 1<m<N-1

Using (4.252) and (4.253), we can isolate all the coefficients in (4.195) that contain
contributions from (Ry, Wy) as follows:

0 =(N £ BRyT1Ry "+ NRy (R +Ri(R™M)N
—x} (N + O Ry+1Ho + NRyHy + RiHy + 2NRy Ho)

+2x(1 — &)RoOWo + &) (Ry — Wh) — Sn
:[ — Ry RIN 4 1) — x2NHy — 4ex>WoRy — 2x2N Hy
+2x2(1 — &)RoWo + e)]RN

+[ —x2R12(1 — &)Wy + 4e + 4eRo) — 2x2(1 — &)RoWo + a)]WN — Sy

(4.254)
where
Sy —RIRO"Z Ry D R R
O nNom) ) (4.255)
+x§R1[(1—8) S W+ Z 48R@Wm]+81v,
{+m=N {+m=N
1<m<N-1 1<m<N-1
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and
Sv=—= ) m+DRu 1 (R
L+m=N
1<sm<N-2

+x2 Y mADRupHe+2 Y mADRyypiHe+ Y. (m+ DRy Hy

{+m=N L+m=N—1 +m=N-2
1<m<N-=-2 m<N-=-2

—2x;(1—¢) > RV A+m(R =W + ROV +&)(R = W)y_

L+m+n=N
I<n<N-1

(4.256)
Here we recall the definitions of (R™7); in (4.190) and H; in (4.203) as well as the
sonic conditions in (4.199). Note that we have also used (4.202) above.
Following the same procedure, we now isolate all the coefficients in (4.196) that
contain contributions from (Ry, Why).

0= VTR + NWh(R™D1+ Wi (RN

—xf W-I— NWyH| + Wi Hy +2NWNH())

— (RN +3WN(R o +Wo(R™"N)
+ x2Hy — 3x2(Wn Ho + WoHy)
—2x2(1 + e)WoOWo + &)(Ry — Wy) — Vy
=[ — Ry OV = 14 3Wp) — 2OV — 1 4 3Wp)de W (4.257)
= 2621 + WMy + &) | Ry
[ = 1R RIN = ZHIN — 262 HoN + 3Ry — 3x2Hy
— X2OW; — 14 3W)2(1 — &)W + 4e + 4¢Rp)
+ 2621+ )WoOWo + &) Wiy = Vi

where

N
_ 1 1
VN = —(Wl -1+ 3W0)R0 7 E W E (—n)mle)‘l .. .’R,N)»N
2 <0 Z(Nm) e :

IO = 1HI[A—8) 3 W+ Y 4eRW |+ Dy

l+m=N t+m=N
1<m<N-1 I1<m<N-1
(4.258)
and
f}N =— Z (m+ DWWy (R,
L+m=N
1<m<N-2
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a2 Y DWW H 42 Y i DWaga He+ Y+ DWWy Hy

{+m=N {+m=N—1 L+m=N-2
1<m<N-2 m<N-2
Y RT DT =3 > W (R (-1)™
{+m=N L+m+n=N
1<m<N 1<m<N

x| Y H=Dm+2 Y H(-D"+ Y He(=D"
{+m=N {+m=N—1 {4+m=N-2
1<m<N

32 (Y WaHi+ Y WaH -D"+2 Y WaH D"+ Y WaH(=1)"

{+n=N {+m+n=N L+m+n=N-1 £+m+n=N-2
l<n<N-1 1<m<N
+220+0 | > WeWHm R = Wi + WOV + )R - W)y |- (4.259)
L4+m+n=N
1<n<N-1
This completes the proof. O

Let « > 0 be a sufficiently small number independent of ¢ to be fixed later in
Section 4.5.

Lemma4.14 Letxy € [Xcrir+K, Xmax] be given. Then the components A;; of the matrix
Ay satisfy the following

Al ==2N(x,— 1+ 0(@)+2+ O(e), (4.260)
App = 0O(e), (4.261)
Aol = —2+ 0(e), (4.262)
A2y = —2N (xx — 14+ O(e)) + O(e). (4.263)

In particular, the matrix Ay is invertible for all sufficiently small ¢ and det Ay =
O(N?). Moreover, the Taylor coefficients (Ry, Wn), N > 2, satisfy the recursive
relationship

A A
Ry = Sy — Vv, 4.264
M= detay ™V T detay N (4.264)
Al Ao

Wh Sn., (4.265)

T detAy N detAy
where the source terms Vy, Sy, N > 2, are given by Lemma 4.13.

Proof We rearrange terms in A;; of Lemma 4.13 as

N 5—n—1
Al = —2N (x,%HO + 1a2H, + IRg" 721)
+ 22 RoWy + 26xIRo(1 — £ — W) — nng”“Rl —4ex2WoR,
Ay = —2x2R Wy — 2x2RoWo — 26x2R1 (2 + 2Rg — W) — 26x2Ro(1 — & — W),

@ Springer



Naked Singularities in the Einstein-Euler System Page 53 of 182 4

Apy = —22WE —2exIWo OV + 1 +6) — 2e(Fe Ry "™ 4+ 2Woa2) (Wi +3Wp — 1),
N.5—n—1
Ay = —2N (x,%Ho + xiH + 3Ry Rl)
—3x2Ho + 3Ry " + 20203 — 22WoWi +3Wp — 1)
+ 26ex2WoOM + 1+ ) — 26x2 (W) +3Wp — D2 + 2R — WA).

From (4.199), equations (4.202)—(4.203) and Lemmas 4.1, 4.6, we have the relations

1 2 2
Ho = — + 0(), Hi =2WO)M(0) + 0e) = — <1 - —) + 0(e),

X X
and therefore

An==2N (14 B +0) +2+ 0,

Ay = =250 — 2+ 0,
Ay = =2+ 0(e),

_ Wi(0) LW
Ap=-2N (1+ W8 + 0)) - 4+ 253k — 2B + 0¢e).

Since Ro(0) = Wy(0) = -, JpH& = x, —2and R (0) = — -, the claimed behavior
of A;; follows.
Since N > 2 and x4 > Xqit + £ > 2, the determinant of Ay has a lower bound

%detAN =N —140@E)+0E)(Nxxy —14+0()) =1+ 0()) + O(e)
> (N(xsx — 1 = Cep)) — Cep) (N(xx —1 = Ceg) — 1 —Ceo) — Ceo

for some universal constant C > 0. For a sufficiently small &g > 0 we have N (x, —
1 —Csgp)) — Cegy > % for N > 2 and x, > x¢it + & > 2. We see that det Ay > 0
and hence Ay is invertible for all 0 < & < gy with &g chosen sufficiently small. It
immediately follows that det Ay = O(N?). Since Ay is invertible, relations (4.264)—

(4.265) follow by multiplying (4.250) by A;l from the left. O

Remark 4.15 A simple consequence of the previous lemma is the existence of a uni-
versal constant Sy > 0 such that for any x, € [Xcri¢ + &, Xmax] and sufficiently small
0 < & < gp the following bounds hold:

&

Ryl < % <|3N| + val) , (4.266)
1

Wyl < % (|VN| + N|SN|) . 4267)

Remark 4.16 1t is a routine to check

2
—XxZ+6x, —7
Roy=—2—"""— 1+ 0(e), 4.268
2 0 3) + O(e) ( )
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—5x2 4 19x, — 17
= 0(e), 4.269
Wh o 3) + O(e) ( )

for any x4 € [x¢r + K, Xmax].

Remark 4.17 In Lemma 4.14, the lower bound x.s; + « for the x.-interval has been
chosen for convenience to ensure O (¢e) disturbance of the coefficients to the corre-
sponding ones to LP type solutions. It can be relaxed to x.j; by replacing O (¢) by
0O (4/¢). See the change of the distance of W) near x.j; in Lemma 4.10.

4.4 Series Convergence and Local Existence Around a Sonic Point

Theorem 4.18 (Local existence around the sonic point) There exist an &g > 0 and
r > O sufficiently small such that for all0 < ¢ < gy and all x, € [X¢rir(€) +K, Xmax(€)]
the sequence {Rn, WnYnez., of RLP-type (see Definition 4.11) has the following
property: the formal power series

R):= Y RyGY, W= W)V (4.270)
N=0 N=0

converge for all z € (1 —r, 1 + r) and functions z — R(z) and z — W(z) are real
analytic inside |z — 1| < r. We can differentiate the infinite sums term by term, the
pair z — (R(2), W(z)) solves (4.172)—(4.173) for |z — 1| < r, and R(z) is strictly
positive for |z — 1| < r.

Proof The proof is analogous to Theorem 2.10 of [15]. By Lemma A.9, using o €
(1, 2), there exists C > 1 such that

|Coz|Y
Z|RN||8z|N+Z|WN||5z| <2Z e

when |§z| < %::r. The claim follows by the comparison test. The real analyticity
and differentiability statements are clear. Recalling (4.193), we may rewrite B as

oo o0
B=Y R My6)N —x2 Y HyGaN (1 +282 + (627
N=0 N=0

[o¢]
=[R™1 = a2t +2H0) |52+ Y[R = x3(Hy +2Hy 1 + Hy )| 62",

N=2
(4.271)
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By (4.202)—(4.203)

(R™M)1 — x2(Hy + 2Ho)

= =Ry Ry = 22 (2101 + )Wy + 26] W1 + 4R,
(4.272)
42 [(1 — &)WE + 4eWp + 4eRoWo + €2 — e] )

= —22Wo(W + Wo) — 26 P # 0,

for all sufficiently small ¢, where
P=LRy"IRy 42 <W0W1 FOW 4+ 2W0R) + AWy + 3WE e — 1)

Therefore, it is now easy to see that for all sufficiently small ¢ and for r > 0 sufficiently
small, the function B # 0 for all |z — 1| < r and z # 1. As a consequence, R(z) and
W(z) are indeed the solutions as can be seen by plugging the infinite series (4.270)
into (4.197) and (4.198). O

Lemma 4.19 There exist an ¢y > 0 and r > O sufficiently small such that for any
a € (1,2) and for all xy € [Xcrif(e) + K, Xpmax(€)] the sequence {Ryn, Wn}neN-,
of RLP-type (see Definition 4.11) has the following property: There exists a constant
C = C(xy, @) > Osuchthat for all 0 < ¢ < gg the bounds |0y, Ro|, |0x,Wol, |0x, R1l,
[0x, Wi| < C hold and

N—«

[0y, Rin| < N > 2, (4.273)
CN*O(

[0x, Wi < ER N >2. (4.274)

In particular, the formal power series

o0 o0
D 0 RGN, Y o, W)Y

N=0 N=0

converge for all z satisfying |z—1| < r. Moreover, the function x, € (Xcrit4HK, Xmax) —
(R(z; x4), W(z; x4)) is C! and the derivatives Ox, R and d,,VV are given by the infinite
series above.

Proof From Lemma 4.1 and Lemma 4.6, 9, Ro(0) = 9, Wo(0) = —% and

0y, R1(0) = 2, I W1(0) = 2, and it is clear that |0y, Rol, [0x, Wol, 105, R1l,
[0, W1 < C for Xy € [Xcrit + K, xmax] and for all sufficiently small €. For N > 2,
dx, Ry and 9, Wy are recursively given by differentiating the expression in (4.264)
and (4.265):

, , A A A A
O, Ry =0 Sy 0, S - 9 . 4.275
Tx TEN = G (detAN> tdetAy tAy N T (detAN VN det Ay N ( )
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All All Az Azl
3 =9 v a -9 Sy — ., Sy. (4.276
v VWN = Ox, (detAN) N+ detAy e VN — Ox, <detAN> N " Geray SN ( )

When N = 2, the claim immediately follows. For N > 3, we will apply the same
induction argument used for Ry, Wy bounds. To this end, we first observe that from
Lemma 4.13 and Lemma 4.14

Oy, A1l = =2N(1 + 0(e)) + O(e), 0Ox, A2 = O(e), 4.277)
A, A2l = 0(e), dx,Azp = —2N(1+ 0(e)) + O(e), 4.278)
Oy, det Ay =4N(1+ O()2N((x« — 1) + O(e)) — 1) + O(e), 4.279)

leading to

A2 All 1
O, s |0k < =,
det Ay det Ay N

Hence using Lemmas A.§ and A.9,

Al2 & Aoy 1
o, <55 o <L
det Ay N det Ay N

1 1 e &
|0, Ry | S N|SN| + Nlax*SNl + W|VN| + mlaX*VNl

cN—« 1 I3
S =5+ o0 SNl+ 5105 VNI
N3 N N
| | ) | (4.280)
|0 W] S 5 VNI + 5105 Vv + 15188 + 171058
chN— 1 1
S N3 +N|ax*VN|+mlax*SN|'

We now recall that Sy and Vy consist of sum and product of polynomials in
Ro, Wo, - .., Rn—1, Wn—1 and power functions of Rg. When we differentiate with
respect to x, at most one term indexed by R; or W;, 0 <i < N — 1 is differentiated.
In particular, the same combinatorial structure in the problem is maintained and the
same inductive proof relying on the already established bounds (1.828) and (1.829)
gives (4.273) and (4.274). The remaining conclusions now follow easily. O

4.5 The Sonic Window and xnin

The goal of this subsection is to define xpj, and to define the sonic window, which
serves as the basic interval in our shooting method in the next section. We begin with
the following lemma.

Lemma 4.20 Consider the RLP type solution constructed in Theorem 4.18. There exist
a small constant 8o > 0 independent of ¢ and 0 < zo = zo(So) < 1 such that for
Xy = 2480 > Xcrir

Wi(zo) > 2
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for all sufficiently small ¢ > 0. Here we recall n = ]2788

Proof For any x, € (Xcrit, Xmax), We Taylor-expand W in z around z = 1:

W// (Z)
2

W@ =W +W Dz -1+ (z—1)? (4.281)

for some Z € [z, 1]. We note that W(1) = Wy and W/ (1) = W;.Let§ > 0 be a small
constant independent of ¢ to be fixed and set x, = 2 + §. Then we have

1 )
- 10 4.282
Wo = 71 +0(e), W s + O(e), (4.282)

see the end of Remark 4.5. On the other hand, from (4.269) we have

W (1) =2W), = _1-8-582 + 0(e) (4.283)
T T e+ ' '

Now let
. /! 1
z0(8, &) = min{zy : W' (z) > 7 forall z € [z1, 1]}.

Observe that zg < 1 by (4.283) for ¢, § sufficiently small. We now claim that there
exists a small enough §p > 0 such that z9(§p, ) < 1 — 8(1)/ * for all sufficiently small
. Suppose not. Then for all § > 0 and for some gy > 0, zo(3, g9) > 1 — 814 Thus
there exists 1 —8'/4 < z; = z(8, e9) < 1sothat W"(z;) < 1, but this is impossible
because of (4.283) and the continuity of WW’. Now the Taylor expansion (4.281) at
z=1- 8(1)/4 gives rise to

1 3 W'z
Wi =ity = —— - 20 gl ﬁsé/z +0(e)

2468 246 2 (4.284)

L s/4 151/2+ 0

T2+48 2+8 0 80
from which we deduce W(1 — 53/ 4) > ﬁ for all sufficiently small €. O
We now define

Xmin:=2 + 8o (4.285)

where &g is given in Lemma 4.20. We observe that by construction xp;, is independent
of &. We are ready to introduce the sonic window:

Definition 4.21 (The sonic window) For any 0 < & < go we refer to the interval

[Xmin, Xmax (¢)] as the sonic window. We often drop the e-dependence when the ¢ is
fixed.
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Remark 4.22 Observe that by construction, the sonic window [Xpin, Xmax (€)] 18 a strict
subset of the interval [2, 3], while the interval [xci¢(€), xmax (€)] coincides with the
interval [2, 3] when ¢ = 0. The latter is precisely the range of possible sonic points
within which we found the Newtonian Larson-Penston solution in [15] and our new
sonic window [Xmin, Xmax (¢)] shows that the lower bound x, = 2 can be improved to
2 4 §¢ even for the Newtonian problem.

For future use in Sections 5 and 6, we analyse the behaviour of J —xW and J —x D
near the sonic point x..

Lemma 4.23 (Initialisation) Let ¢ € (0, gg], where ey > 0 is a sufficiently small
constant given by Theorem 4.18. There exist a § > 0 and co > 0 such that coeg < §
and for any x, € [Xmin, Xmax), the unique local RLP-type solution associated to x
given by Theorem 4.18, satisfies the bounds

(a)
Jx; D] < xW, x € (x4, x5 +96), (4.286)
Jx; D] > xW, x € (xu — 6, Xy). 4.287)

(b)
Jx; D] > xD, x € (x4 — 28, X« — C0&0), (4.288)
Jx; D] > xD, x € (x4 + co0, X5 + 26). (4.289)

(c) Moreover, the following bound holds

[x(1 — W(x))] forall ¢ € (0, &)]. (4.290)

1
z =
X=Xx+6 2

Proof Proof of part (a). Let g(x):=xW — J. Since g is a smooth function of D and
W, by Theorem 4.18, g is smooth near the sonic point. Note that g(x,) = 0 from
Lemma 4.1. Since ¢’ = W +xW’ — J’, using Lemma 4.1, Lemma 4.6 and (3.127),
we deduce that

1 1
g/(x*) =1- )C_ +O0(¢) > 5 for all x, € [Xmin, Xmax]
*

for all sufficiently small ¢ > 0. Therefore, g is locally strictly increasing and (4.286)
and (4.287) hold for some § > 0.

Proof of part (b). Since J — xD = 0 at x = x,, we use this and the formula (3.127)
to conclude

/ / ~2(1 4 Do)xDo + (1 = ey — (262 DDy + 11, 0y "' Dy )
J' = (D =
( DY) xX=x4 ¢ (I = &)xxDg + 2ex5(1 + D)

—xx«D1 — Dy, (4.291)
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where we recall (2.43). By Remark 4.5 and (4.177), we have Dy = Wy = ﬁ + O (¢)

and D = —xiz + O(¢). Plugging this into the above expression, we conclude that

() = ("= (xD)) = 0(e).

X=Xy

—x2 _
Similarly, f” = J"~2D'~xD" andthus using D" (x,) = 2Ry = & 722
O(¢) (see (4.268)) and J" (x4) = O(g), we have

2 —x2—|—6x*—7 x2—2x*+1
14 k ES

f (x)___x —(—)+0(8)——+0(8)
* xf *xf 2x:(2x, — 3) xf 2xye — 3)

and hence f"(xy) > é for all x4 € [Xmin, Xmax]. Since f” is uniformly continuous,
there exists a § > 0 such that

1
f(x) > m for x € (xx — 8, Xy +96) (4.292)

for all x4 € [Xmin, Xmax]-
We now Taylor-expand f at x = x, to obtain

(x —x0)%, x € (xx — 8, x4 +8)

F&) = 0 (x —x) + L Z(X)

for some x between x, and x. For x > x, and for some ¢; > 0 we have

fx) > —cre(x —xy) + 3—16()6 —x)° = %(x — Xy) (x — Xy — 36c1€) .

Therefore we deduce (4.289) with ¢y = 36¢1. An analogous argument gives (4.288).
Proof of part (c). Bound (4.290) follows trivially from Theorem 4.18 and the asymp-
totic behaviour as ¢ — 0 in Lemma 4.1. O

4.6 Singularity at the Originx =0

By analogy to the previous section, we Taylor-expand the solution at the origin z =
0 in order to prove a local existence theorem starting from the origin to the right.

An immediate consistency condition follows from the presence of ]jw in (4.173):

W) = % and R(0) = 7%0 > 0 is a free parameter. Denote the solution from the left
by R— and WW_ and assume that locally around z = 0

o0 o0
R-(z;Ro):= ) Rz, W_(z;Ro)i= ) Wyz" (4.293)
N=0 N=0
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where Ry > 0 is a free parameter and Wo = % The following theorem asserts that
the formal power series converge and hence (R_, VV_) are real analytic in a small
neighbourhood of z = 0.

Theorem 4.24 Let Ry > 0 be given. There exists an 0 < i < 1 such that the formal
power series (4.293) converge for all z € [0, r). In particular, R_ and W_ are real
analytic on [0, 7). We can differentiate the infinite sums term by term and the func-
tions R_(z, ’Ro) and W-_(z, Ro) solve (4.172) and (4.173) with the initial conditions
R_(0; Ro) = Ro, W_(0; Ro) = 3

Proof Around the origin z = O we write out the formal expansion of B:

o0 o0
B=R"—x]H®=) Rzl —x}Y H;z/ . (4.294)
j=0 j=0

By the Faa di Bruno formula (4.186)—(4.188)

...}L. .
(R™™M); —RO"Z > (= DT RQ'. R j=10 (4295)
Ry o

and (R™") = 7@5 7. Plugging (4.293) into (4.172), we obtain the formal relation

0= (Z(R—mzf —x ) ngHz) (Z(m + 1)7im+1z'”>

=0 =0 m=0

+2x7(1 =) ) (ROV +&)(R = W)z
£=0

=Y Y m+ DRy (RN - Z Z <m+1>7”zm+1szN
N=0f¢+m=N—

N=0{+m=N

+ 20 (1 =€) Y (ROV+e)(R = W))y-1z".
N (4.296)

Comparing the coefficients, we obtain

Y mA DRy (R —x7 Y (m+ DRy 1 He
L+m=N L+m=N-2 (4.297)

+2x2(1 — &) (RO + &) (R = W))y_1 = 0.
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Similarly, plugging (4.293) into (4.173), we obtain

o0 o o o
0= (Z(R"uz‘ Xy sz‘”) <Z<m + D W12 +3) Wm+1z'">
=0 =0

—2x(1+2) Y WOV + &)(R — W)z !
£=0

o (o)
=D Y AW RN =Y D mA W HeZV
N=0/{+m=N N=0{l+m=N-2

— 257 (148 Y WOV + &) (R = W))n-1z".

N=0
(4.298)

Comparing the coefficients, we obtain

Yo D R —x0 Y (m+H Wi He
L+m=N {+m=N-2 (4.299)
—2x2(1 4 &)(ROW + &)(R = W))y_1 = 0.

Identities (4.297) and (4.299) give the recursive relationships

Snv+1, N >0, (4.300)

TN+1
Vni1, N >0, (4.301)

T N+4
where

Sy =RY[= 3+ DRyt R +22 Y (n+ DRsr He
ﬁlt%il\]’ l+m=N-2
(4.302)

= 26201 = ) (ROV + )(R = W))y-1 ],

17N+1=7ég[— Yo AW R e+x7 Y (m+ S Wi He

l+m=N l4+m=N-2
m<N-—1
+223(1+ YOVOV + ) (R = W1 |, (4.303)

where S N+1 and ]}NH depend only on (ﬁi, W,-) for 0 <i < N. The rest of the proof
is now entirely analogous to the proof of Theorem 4.18 and we omit the details. O

Remark 4.25 We may repeat the same procedure as in Lemma 4.19 to deduce that
87%72, (z; Ro) and 87@0 W_(z; Rp) have the convergent power series near the origin
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and the function R € (0,00) > (R_(z; 7@0), W_(z; 7@0)) is C!. And the derivatives
8730 R_ and 87%0 W_ satisfy the system of ODEs obtained by the differentiating (4.172)

and (4.173) with initial conditions 5 R (0; Ro) = 1 and 35, W-(0; Ro) = 0.

5 The Friedmann Connection
5.1 Sonic Time, A Priori Bounds, and the Key Continuity Properties of the Flow

We denote x,r by 7, where r is the analyticity radius given by Theorem 4.18.

Definition 5.1 (Sonic time) For any x, € [Xmin, Xmax] consider the unique local solu-
tion on the interval [x, — 7, x, + 7] given by Theorem 4.18. The sonic time s(x,) is
given by

s(xy) 1= 11&f H(D( Xx4), W(-; x4)) is a solution to (2.35)—(2.36) on [x, x,) and

B(x'; D, W) > Oforall x' e [x,x*)}, (5.304)

where we recall the definition (3.123) of B.

Lemma5.2 Let 7 > 0 be as above. Then

1 Jx %] -
- < ———— forall x € [0, xpax —T]. (5.305)
X

3

Proof By (3.124), bound (5.305) is equivalent to showing

1 2 (7"
53 “n(+ )<8+—(1—8)x (5.306)

Since x < Xmax — 7 =3+ O(e) — 7 the right-hand side above is larger than ¢ +
l —
I )2 as ¢ — OT1. The left-hand side on the

(1-&)3+0(e)—r)>’ (3—
other hand converges to % and thus the claim follows. O

which converges to

Lemma 5.3 Forany xy € [Xmin, Xmax] consider the unique local solution on the inter-
val [x, — 7, x4« + 7] given by Theorem 4.18. Then for any x € (s(x4), x4] the following
bounds hold:

W(x) < ? (5.307)
(W (x)| < Q +20(1 + D), (5.308)
0< D(x), (5.309)
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where J is definedin (3.124). Moreover, for any x € (s(x4), x4 —38] suchthat D(x) > %
we have the upper bound

D(x) < Jix), (5.310)

where 0 < § K 1 is an e-independent constant from Lemma 4.23.
Proof Let x, € [Xmin, Xmax] and let x € (s(x4), x4). By Definition 5.1 there exists

a k > 0 such that B(x) > « for all x € [x, x, — F), which according to (3.123) is
equivalent to the bound

(J —xW)(J +2nx(1 + D) + xW) > IL
— &

If W(x) > 0 then from the strict positivity of J and the above bound we immediately
have W(x) < @ If on the other hand W(x) < 0 then J — xW > 0 and therefore

from the above bound again |xW| = —xW < J 4+ 2nx(1 + D). The two bounds
together imply
J(x)
IW(x)| < —~ +2n(1 + D), x € (s(xx), Xx), (5.311)

which shows (5.308). The strict positivity of D on (s (x4), x.] follows by rewriting the
equation (2.35) in the form

21 =W +e)(D = W)
= .

% (log D) = (5.312)

Finally, to prove (5.310), we observe that it suffices to show f > 0 where we recall

the formula f = J —xD.If D(x) = %,by Lemma 5.2, we are done. If D(x) > %, we

consider two cases. First suppose D > % on [x,xy —&]. Then b < 0 on [x, x4 — ]
by Lemma 3.9 and (5.307), and f(xx — 8) > 0 by Lemma 4.23. Hence, by using
Corollary 3.8, we have

FG) > flre— 8k alzD Wz L,
If D ¥ % on [x, x4 — 6], there should exist x; € (x, x4 — §] such that D > % on
[x,x1) and D(x;) = % Note that b < O on [x, x1) and f(x;) > 0 by Lemma 5.2. By
using Corollary 3.8 again, we obtain
F@) > fapel! dspWidi (5.313)

which proves the claim. O
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Lemma5.4 Let e € (0, gol, where g9 > 0 is a small constant given by Theorem 4.18.
For any x, € [Xmin, Xmax] consider the unique local RLP-type solution associated to
X« given by Theorem 4.18. If D(x) > %for some x € (s(x4), Xx — 0), then

D(x) < % (5.314)
X

Proof Since D(x) > %, by Lemma 5.3, we have ﬁ < )]7 Using the definition of

J[-; D] (3.124) it is easy to see that the inequality ﬁ < % is equivalent to

” ex? +
\/nz(l + D)2x2 4 ex? + ZI)T; < ——== (1 + D)x.
Dx

This in turn implies

(ex +L0y2 .
ex? + 22 S — P e + )
(ex? + 25)
- (1+D)
— 1 < D2x2 —2n 5

) i
— [(1 +36)D? 4 4eD — (1 —e)] D" < —.
X

Now we note that

(1 +38)D* +4eD — (1 —s)=D2+g[3D2+4D—(1 —g)] > D2

where we have used D > % This implies (5.314). m]

Remark 5.5 1t is a priori possible that the solution blows-up at a point at which B
remains strictly positive, for example through blow-up of W. It is trivial to see that
this cannot happen in the Newtonian setting, but in the relativistic case it requires a
careful argument, which is given in the next lemma.

Lemma 5.6 (No blow up before the sonic point) For any x4« € [Xmin, Xmax] consider
the unique RLP-type solution on the interval (s(x4), X«]. If s(xx) > 0O, then

liminf B(x) = 0. (5.315)

x—>s(x) T

Proof Assume the opposite. In that case there exists a constant k > 0 such that
B(x) > k forall x € (s(x4), xs — F]. Our goal is to show that | D(x)| + |W(x)| < oo
on (s(x4), x4], which would lead to the contradiction.

Step 1. Boundedness ofD If D(x) > % the bound (5.310) gives D + n(1 + D) <

\/nz(l + D)+ ¢ +1 ) —£— which upon taking a square and using 2nD(1 + D) > 0
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leads to

D™ D™

D2 _— _—
R TR v R R TR s

Since 0 < n K 1, this gives a uniform upper bound on D on (s(xy), X, — 7]

D(x) <M, x e (s(xg),x«]. (5.316)
Step 2. Boundedness of |W|. It follows from (2.35)—(2.36) that there exists a sufficiently
large value N = N (s(xy), x4) > Osuchthat W <0, D’ > 0if W > N and W > 0,

D' > 0if W < —N, where we use the already shown upper bound on D. In both
cases, the two regions are dynamically trapped and we denote the union of the two

regions by /y. For any x € Iy we multiply (2.35) by (117%, (2.36) by % and sum
them to obtain
20 p2)) = 2 (]
<log (D % )) = (5 —3) <0 for Wi >, (5.317)
X

with N sufficiently large. In particular, for any s(x,) < x1 < X3 < Xy, where x1, x2
both belong to the invariant region /) above, we obtain

D) MW (x)? > D(x2)* MW (x2)? (5.318)

On the other hand, since B > «, |W| > N, and D < M there exists a universal
constant constant C = C(s(x,), xx) such that for a sufficiently large choice of N, rom
(2.37) we have

D> CW?, xely. (5.319)

We apply this to (5.318) to conclude that
1
E1)(x1)2+'7 > D(x2)>M MW (x2)?, forany x; € (s(xs), x2).

This gives a lower bound for D and therefore an upper bound for |W| via (5.319) in
the region /. In particular lim sup,_, (. )+ [W(x)| < oo and the claim follows. O

Essentially a consequence of the previous lemma and a standard ODE argument
is the statement that as long as the sonic denominator B is bounded below by some
constant § > O for all x > x > s(x4), we can extend the solution to the left to some
interval [x — ¢, x,], where t > 0 depends only on é and x. The statement and the proof
are analogous to Lemma 4.3 in [15] and we state it without proof.

Lemma 5.7 Let xi € [Xmin, Xmax] be given and consider the unique RLP-type solution
(D(-; x4), W(-; x4)) to the left of x = x4, given by Theorem 4.18. Assume that for
some x € (0, xy —7) and § > 0 we have X > s(x4) and the conditions

B(x) >3, D(x) >0, xe€l[x,xe—7F], (5.320)
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hold. Then there exists at = t(5,x) > 0 such that the solution can be continued to
the interval [X — t, x4] so that

B(x) >0, Dx)>0, xe€[Xx—t,x«—T7]
Proposition 5.8 Let x. € [Xmin, Xmax] be given and consider the unique RLP-type
solution (D(-; xx), W(-; x)) to the left of x = x.

(a) (Upper semi-continuity of the sonic time). Then

lim sup s (X,) < s(xy),
Xy X

i.e. the map x, — s(x4) is upper semi-continuous. In particular, if s(x,) = 0 then
the map s(-) is continuous at x..

(b) ([Continuity of the flow away from the sonic time]) Let {x]},eN C [Xmin, Xmax]
and xx C  [Xpmin, Xmax) satisfy lim,_oox] = x4 Let xo —F > 7 >
max{s(xy), sup,cn s (x})}. Then

lim W(x;xl) = W(x;x,), Hm D(x;x)) = D(x; xy).
n— o0 n—o0

(©) Let {x;}neN C [Xmin, Xmax] and x« C [Xpmin, Xmax] satisfy lim, o0 X = X
Assume that there exist 0 < X < x, — F and k > 0 such that s(x}!) < X for all
n € N and the following uniform bound holds:

Blx;x}, W,D] >k, neN, xe[x,x,—F] (5.321)
Then there existsa T = T (k, x) > 0 such that

s(xy) <x =T, s(xy)<x—-T, neNlN. (5.322)

5.2 The Friedmann Shooting Argument

The basic idea of this section is inspired by a related proof in our earlier work on the
existence of Newtonian Larson-Penston solutions [15]. We start by recalling Defini-
tion 2.2.

Lemma 5.9 (X>% and X% are nonempty) There exists an 0 < g9 <K 1 sufficiently
small so that the following statements hold for any 0 < ¢ < gy

(a) There exists a k = k(&) > 0 such that (Xpax(8) — kK, Xmax(€)] C X C X%.
(b) Moreover, X, € X> 1. \

W

Proof Proof of part (a). We use the mean value theorem to write
W (x5 x,) = Wo + W/ (55 x) (x — x), X € (5(x), X))

@ Springer



Naked Singularities in the Einstein-Euler System Page 67 of 182 4

for some X € (x, x4). Note that W’ (xy; xy) = in = L* (1 - x% + 0(8)) =

R

L — 2 4 0(e). By (4.245), it follows that W’ (Xmax(€); Xmax(€)) = & + O(e). By

Xx x,%
Theorem 4.18 there exist small enough r > 0 and §; > 0 such that W’/ (x; x,) > %
forall x € (x4 —r, xx] and xx € [Xmax(€) — 81, Xmax(€)]. For such x, and x, we have

1 1
Wix; xe) < — 4+ —(x — xy),
X 18

where we have used Wy = Wy < é for ¢ € (0, g9], see Lemma 4.1. Note xl—* +
T —x) =+ whenx = ¥(x,) = x, — @ Therefore for all x, € (Xmax(&) —
K, Xmax (8)] C (3—«, 3) withk = min{d, xmax(e)—3+63ﬁ},thereexists anx > X(xy)
such that W(x; x,) = %, which shows the claim. Here we have used (4.246) and the

smallness of 0 < g9 <« 1.
Proof of part (b). We rewrite (2.36) in the form

B —2x2(14 &) (W +¢&)(D — W)

W =1-2W-W
B

(5.323)
We now recall Lemma 3.6 and express the numerator above in the form

B—2x2(1 + &) (W + &) (D — W)
= (1 —&)(J[D] — xW)(H[D] + xW) — 2(1 + &)x(W + &)(xD — J[D] + J[D] — xW)
=201+ &)x(W + &) f + (J[D] — xW) {(1 — &)(H[D] + xW) — 2(1 + &)x (W + ¢)} .

where we recall f(x) = J[x; D] — xD. Using (3.125),

(1 —=e)(H[D]+xW) =2(1 +&)x(W +¢)
=1 —-e)J[D]+2n(1+ D)x +xW) =2(1 + e)x(W +¢)
=1 =-e)(J[D]—xW)+4de(xD —xW) +2e(1 —e)x
=1 +4+3e)(J[D] —xW) —def +2e(1 — e)x.

Putting these together, and by (3.123) and W > 0, (5.323) reads as

f

AW =1-2W+2p———W
H[D]+xW
W (14 3e)(J[D] — xW)2 +2(1 + &)x(W + £)(J[D] — xD) + 2e(1 — &)(J[D] — xW)x
B
<1-@2-2nw, (5.324)

where we have used 0 < f = J[D] —xD < H[D] 4+ xW and B > 0 for x € (s(x4), x«). Hence the set

(5.325)

x € (5(0x), 1)) [ W5 xs) > T
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is an invariant set.
We now use Lemma 4.20 and the definition of xni, to obtain W (x¢; Xmin) > ﬁ
for some xg € (s(x4), x4)). Together with the invariance of (5.325) we conclude that

Xmin €X>%. O

Remark 5.10 A corollary of Definition 2.2 and Lemma 5.9 is that the fundamental set
X is a simply connected subset of (Xmin, XYmax] Which contains the point xpax. The set
X is in particular an interval.

Of fundamental importance in our analysis are the following two quantities.
Definition 5.11 (Critical point and Friedmann time) Let &9 > 0 be a small constant

given by Theorem 4.18. For any ¢ € (0, 9] we introduce the critical point

Xy = inf xy, (5.326)

xe€X

and the Friedmann time
. 1
XF = xXp(xy) ;= inf {x € (s(x*),x*)| Wi(t; xy) > 3 for T € (x,x*)} . (5.327)

We will show later, the unique local RLP-type solution associated with the sonic
point X, is in fact global and extends all the way to the origin x = 0. The Friedmann
time introduced above plays a crucial role in the proof.

The sets X’ 1 and X_ ! enjoy several important properties which we prove in the

next lemma.

Lemma5.12 Let ¢y > 0 be a small constant given by Theorem 4.18. Then for any
e € (0, go] the following statements hold.

(a) Forany xy € X% UX<% we have

W(x; xe) < D(x; x4), x € (s(xy), X4), (5.328)
Wix; ye) < % X € (s(xy4), xF (x4)), (5.329)

where (5.329) is considered trivially true in the case s(xy) = xf(xy).
(b) Forany x, € X% we have W' (xr(x4); xs) > 0. Moreover, the set X% is relatively

open in [Xuin, Xmax]-

Proof Proof of Part (a). Let x,. € X% U X<%. Then from Lemma 4.6 we know that
W(x) < D(x) for all x € [(1 — F)xy, x) for some 7 < r where r is given by
Theorem 4.18. We first prove (5.328). By way of contradiction, assume that there
exists x. € (s(x4), x4) such that

W(x.) = D(x;) and W(x) < D(x), x € (x¢, X4).
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We distinguish three cases.

Case 1: x. € (xF, x+). In this case, from (2.35) and (2.36), we have W’ (x.) < 0 and
D'(x.) = 0. In particular, (D — W)'(x.) > 0 and locally strictly to the left of x. we
have

1
W <0, W—D >0, D' >0, W>§.

We observe that these conditions are dynamically trapped and since W' < 0, we
deduce that W stays strictly bounded away from % from above for all x € (xfg, x4),
which is a contradiction to the assumption x, € X 1 UX_ L

Case 2: x. = xr. In this case, x, € X% necessarily and W(x.) = D(x.) = % On
the other hand, since D — W > 0 for x € (xp, x4), it follows D’ < 0 on (xf, x4)
from (2.35). Hence, D(x;) > D(xy) = Wy > % since X4 € [Xmin, Xmax]. This is a
contradiction.

Case 3: x. € (s(x4), xF). In this case, x, € X% necessarily. Since x, < xr we know

that D — W > 0 locally around x . Therefore, we have
, 1
W >0, D—W >0, W<§ on (xgp — 6, xF)

for a sufficiently small § > 0. These conditions are dynamically trapped and we
concludethat D—W > Qon (s(x,), xr). This is a contradiction, and hence completing
the proof of (5.328).

Inequality (5.329) follows by a similar argument, since the property W’ > 0, D —
W >0 W< % is dynamically preserved and all three conditions are easily checked
to hold locally to the left of xf (xy).
Proof of Part (b). For any x, € X% by part (a) and (2.36) we have W’ (x (x4); x4) > 0.

Therefore there exists a sufficiently small § > 0 so that W(x; x,) < % for all x €
(xF(x¢) — 8, xF(xy)). By Proposition 5.8, there exists a small neighborhood of x,
such that W(x; x,) < % for some x € (xp(xy) — &, xF(x4)). Therefore X% is open. O

Lemma5.13 Let ¢g > 0 be a small constant given by Theorem 4.18 and for any
X« € [Xmin, Xmax] consider the unique local RLP-type solution given by Theorem 4.18.
If xF(x4) = s(x4) > O then necessarily

Wxr(xe); xs) > % (5.330)

In particular if x, € X, then necessarily s(xy) < X (Xy).
Proof Assume the claim is not true, in other words W (xp(x4); xy) = % Since D
is decreasing on (xr, x4 — 8] by Lemma 5.12 and (2.35) and since D(x,) > 1/3 it

follows that limy_, v, D(x) > % In particular, since J > xD on (s(x4), xx — &) by
(5.310), it follows from (3.123) that B(x; x4) > (1 — e)x(D — W)(H (x) + xW).
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Therefore

liminf B(x) > 0,

X—>XF

a contradiction to the assumption xr(x4x) = s(xx) due to Lemma 5.6. The second
claim is a consequence of the just proven claim and the definition of the set X. O

Lemma5.14 Let 9 > 0 be a small constant given by Theorem 4.18 and for any
X € X_1 C [Xmin> Xmax] consider the unique local RLP-type solution given by

Theorem 4.18. Then there exists a monotonically increasing continuous function
m: (0, x, — 7] — (0, 00),
such that for any X € (0, xy, — ]
B(x; xx) > m(X) >0 forall x € (max(X, s(x4)), xx — 7] (5.331)

Proof Since x, € X%,by Lemma 5.12J —xW > J —xD = f on (s(x4), Xx — 7).

Since H +xW > J —xW > f we conclude from (3.123) that B > (1 —¢) f2. Since
W(x; xy) > Lforallx € [xF(xy4), x4 — 7], it follows from Lemma 5.12 that D > %
on the same interval. Therefore, by Lemma 3.9 we conclude that b[x; D, W] < 0 on

[xF(x4), x4 — F]. By Corollary 3.8 we then conclude

FO) > Flae — el T almDWidz o[y n(x,), xe — 7. (5.332)
From (3.132) it is clear that on [x g (xy), x4 — 7],

ar=2e[(J —xW)(D—1)+2f +4ex+xD(5+¢)] 27!
=2e[(J —xW)(D+1)+2xW+4ex+xDB+¢e)]Z" > 0.

Similarly, the first line of (3.131) is strictly positive on the same interval, and we
conclude from (5.332) and (3.131) that

. DTin+(1—s)z+(D+8)f)Z_' dz

f&) > fla,— f)e‘zgff”(lfg

, X € [xp(xy), xo — 7]
(5.333)

From (2.46), W > % on [xg(xx), x« — 7], and H > J we have Z > max{%szz, %JZ}
on [xf(xy), x4 — F]. Similarly,

2¢ —+ A —-8)z+D+e)f|Z
1—¢ 2

311 3 (M +¢e)J 1 1 1 1
<2 S+ (- 2 <Cl=+=+-)<0—,
< 8<1_8Z+( s)x*>28Z2+8 %Jz < ]<Z3+12+z>_ 23
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for and some Cj, C» > 0 where we recall the upper bound M of D in (5.316).
Combining the two bounds and plugging it back into (5.333) we get

1
=R

F@) = frs — e T (5.334)

Together with the established lower bound B > (1 — &) f> we conclude the proof. O

Proposition 5.15 The unique RLP-type solution associated with Xy € (Xmin, Xmax)
exists globally to the left, i.e. s(xy) = 0.

Proof Case 1. We assume x (xy) = 0. Since 0 < s(x4) < xr(X,) we are done.
Case 2. We assume xr(Xy) > s(x,) > 0. In this case x, € X which is impossible,
since X is relatively open in [Xmin, Xmax] by Lemma 5.12 and xpi, ¢ X by Lemma 5.9.
Case 3. We now assume that xg(xx) = s(xx) > 0. By Lemma 5.13 this in particular
implies that

X € [Xmin, Ymax] \ X1 (5.335)

and
o 1
W(xr(Xy); Xe) > §
Consider now a sequence {x}},en C X such that lim,_, » x} = X,. We consider

Xp = limsupxp(x})
n—od

and after possibly passing to a subsequence, we assume without loss thatlim,,—, oo X (x]}) =
Xr. We now consider two possibilities.
Case 3 a). Assume that xr > 0. Since {x!},en C X, by Lemma 5.13 necessarily
s(xl) < xp(x}), n € N. Upon possibly passing to a further subsequence, we can
ascertain that there exists some § > O such that Xxp > xp(x!!) > xp — 8 > 0 for all
n € N. By Lemma 5.14 we conclude in particular that

B(x;x}) >m(xXp —38) >0 forall x € [xp(x)), xs—7F], neN. (5.336)

Therefore, by part (c) of Proposition 5.8, there exists T = T (m(xr — §), Xr) such
that

s(Xe) <xp—T, s(x{) <xrp—T, nelN. (5.337)

Fixan x € (xp — T, xr) and observe that

(5.338)

1
W(x; x,) = lim W(x, xy) < 3

where we have used Lemma 5.12. This implies x, € X L a contradiction to (5.335).
Case 3 b). Assume that X = 0. For any fixed X > 0 we can apply the argument from

Case 3 a) to conclude that s(xy) < x. Therefore s(x,) = 0 in this case. O
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Lemma 5.16 (Continuity ofX% 3 Xy > xF(x4)) The map
X% S Xy > XF(Xy)

is continuous and

lim xp(x) =0 =xp(xy). (5.339)
DX — Xy
Proof The proof is nearly identical to the proof of Lemma 4.13 in [15]. O

5.3 The Solution from the Origin x = 0 to the Right

In this section we consider the solutions (D_, W_) to (2.35)—(2.36) generated by
the data imposed at x = 0 and satisfying W_(0) = % Upon specifying the value
Dy = D_(0) > 0, the problem is well-posed by Theorem 4.24 on some interval
[0, r].

Definition 5.17 We introduce the sonic time from the left

S—(Dg):=sup{x | J[x; D_(x; Dg)] — xW_(x; Do) > 0}. (5.340)

x>0

Lemma5.18 Let D_(0) = Dy > %, W_(@0) = % and xy € [Xmin, Xmax)- The solution
(D_(x; Dg), W_(x; Dg)) to (2.35)—(2.36) with the initial data

1
D_(0,Dg) =Dy = =, W_(0; Dg) = 3 (5.341)

W | =

exists on the interval [0,s_(Dg)) and satisfies the following bounds: for x €
(0, s—(Do))

1
W_ > 3 (5.342)
D_ w_ Dy 1
, 5.343
e Tve T-¢ 31+9 (349
D1+8
prrew!— < 3 (5.344)
D_ > W_, (5.345)
D' <. (5.346)
Proof The proof is analogous to the proof of Lemma 4.14 from [15]. O

In the following lemma we identify a spatial scale xo ~ ﬁ over which we

0
obtain quantitative lower bounds on the density D_ over [0, xq].
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Lemma 5.19 (Quantitative lower bounds on D_) Let Dy > % and xy € [Xmin, Xmax]
be given and consider the unique solution (D_(-; Do), W_(-; Dy)) to the initial-value
problem (2.35)—(2.36), (5.341). For any Dy > % let

1—¢
1 3171 IL P DO > 1;
x0 = xo(Do) = § 282 0p " (5.347)
-, 1<Dy=<L
22 (148¢)2

Then s—_(Dg) > xg for all Dy > % and

Dg exp (—D&He) , Dy >1;

x € [0, xo]. (5.348)
Dyexp(—1), 1<Dy=1,

D_(x; Dp) > {

Moreover, for all sufficiently small ¢ > O, there exists a D > 1 such that for all
Doy > D we have

D_(xq; Do) > = (5.349)
X0
Proof Equation (2.35) is equivalent to
*2t(1 —e)(W_ D_—W_
D_(x) = Dyexp <—/ v = eX ;8)( )dt). (5.350)
0

2
Since W_ = (WHw!=)3 < (D W =) and D_W_ = (D tew!—#)me w it
by Lemma 5.18, we have the following bounds on the interval (0, s_(Dg))

W_ < D_ < Dy, (5.351)
1 DH—@ %
3= W_ < 3{[6 , (5.352)
D1+€
D_W_ < 3?_5 ) (5.353)

Now from the definition (2.37) of B, for any 0 < x < x¢ using (5.351)-(5.353) and
the definition of x¢ in (5.347), we have

2¢ 2¢
I—¢

D B=1-D"* [(1 — YW £ 4eD_W_ + 4eW_ + &2 —8]x2

v

1
2 D1+e D1+e 2
1= DI | (1+36) 3?_6 +4e(3?_s +er—¢|x?
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2¢e I+e
T—¢ 0 2
> 1= Dy (1+88) o1x
1 1
l=sp= 25 Do=1i
> e e (5.354)
12— >l lopy<1

Note from the second line to the third line we have used the upper bound of [-] term

1+£ Dl—i—s 1+s Dl—i—s
Z_e<(1+8)="—, (5355)
30 8_(1+38) — +4e 318 +& —e < 3 .

1—g

which holds true for Dy > % and sufficiently small 0 < ¢. Therefore, s_(Dg) > xo
for all Dy > —.

From (5. 351) (5.353), and (5.354) for any x € [0, xo] we obtain

X271 — ) (W_ D_ —W_ x pyte x
/ T( 8)( +8)( )d <4(1 —8)D1 F( 1 +8D0) Tdf
0 B 3¢ 0
1+F
(1-) (20 +eDy)
L e G i IR
<231 —e)D]~ 5(31 - +eDo) =10 (B

(1- s)Dm(Dwazl 1
Do (1+8¢) » 3<Do=1L

Now comparing the denominator and numerator of the last fractions, we see that

D1+F 1+£

1+¢
1+ 8¢

(1—8)( +8D0)—8|:9 3? - (l—a)Doj| >0 forall Dy > 1

and

26
1+8e—(1—e)D) *(Df +e3'7) = 1+8: — (1 —&)(1 +£3'7)

1
=e(9—(1—¢)3'7¢) >0 forall 3<Do<1

and hence we deduce that for any x € [0, x¢]

X 1 .
/ 2¢(1 — 8)(W_Zs)(D_ W 3 { Dy > 1;
0

Plugging this bound in (5.350) we obtain (5.348).
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To show (5.349), we first rewrite (5.347) for Dy > 1 as

1 3178 %
Dy = —— <—> . (5.356)
X0 & 2(1 +88)
Using this in (5.348)
=1 3l-e T -
D_(x0 Do) = Doe %" = — (2—) e A (5357)
X (1+ 8e)

1

l—e 1
The bound (5.349) follows if (7 ) * ¢ °0 > 1 which is clearly true for

sufficiently large Dg and sufficiently small e. O

Remark 5.20 The specific choice of xq in (5.347) has been made to ensure the lower

bound in (5.349) to be compared with the bound (5.314) satisfied by the solutions

emanating from the sonic point. In fact, better bounds are obtained by choosing dif-

ferent xq. For instance, if xg = O(ﬁ) for == + 5 + J<l+as ﬁ in (5.347),
0

then we may deduce that for such xo, D_(xo; Do) > —— > ——
T+a Xo
X,

with the equality

0
being valid for @ = 1= for all sufficiently large Do and small e.

Remark 5.21 Since the mapping Dy +— xo(Dg) from (5.347) is nonincreasing, it
follows that for any fixed Dy > % we have the uniform bound on the sonic time:

s_(Dg) > xo(Dg) > xo(Dg), forall = < Dy < Dy.

W | =

The following lemma shows the crucial monotonicity property of D_(-; Do) with
3
. -(340
respect to Dy on a time-scale of order ~ D, G+ (8)).
Lemma 5.22 Let x, € [Xmin, Xmax]- There exists a sufficiently small k > 0 such that
forall Dy > %

0p,D—(x; Do) > 0 forall x € [0, KDO_b], where b = w
Proof We introduce the short-hand notation dD_ = dp,D_ and dW_ = dp,W_,

where we note that the map Do — (D_, W_) is C! by Remark 4.25. It is then easy
to check that (d D_, 9W_) solve

2x(1 (W
ow! = _Saw _ XUFOW-V-Fe), .,
X B
2x(1 +6)(D_ — W_
+ 2 H); )(2W_+e—%w_(w_+s))aw_ (5.358)
2x(1 4 &)W_(W_
N x( +8)B( +e) (I—DgB(D_—W_))BD_,
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op, = 20— 8Z;W‘ +e) (2D_ —w_—28p (p_— W_)) aD_
. % (D_ W —e— 2B (W_ 4 e)(D_— W_ )) aW_,
(5.359)
where
DwB = —[2(1 — &)W +4e(1 + D)|x*, DpB = —%D’%” —deWa?,
At x = 0 we have the initial values
dD_(0) =1, dW_(0) = 0. (5.360)

We multiply (5.358) by d W_ and integrate over the region [0, x]. By (5.360) we
obtain

%8W3(x) +/X (% N 2t(1 + e)W_(W_ +e)> aW? dr
0

B

_ [fud 4o~ W) 0,5 )
_fo - (2W-+e - 2EW_(W_+e)) aW2 dr
+/ 2e(l +S)V;‘(W‘ ) (1= 252D~ Wo)) aD_oW_dz. (5.361)
0

Just like in (5.354), by using (5.351)—(5.353), and (5.355) we have

D1+6 D1+S %
(14 3e¢) 31 . 48(310_8> +e2—¢|7?
26 Dl-‘rS
1—1+ 88)D0"€

2e 2e
DI"B>1-D;~

v

2.

31—8
Therefore

28 1 1
D!I*B > —, forany 7 € [0, (8D, et

[\.J

)" 2] (5.362)

where we have used 2(1 + 8¢)3¢~1 < 8 for all x, < Xmax and sufficiently small €.
Using the bounds x, < xmax, (5.351)—(5.353), (5.362), we obtain from (5.361)

X
%wﬁu) +/ (% + = H)W;*(W* +s)> w2 de

X I+e ) I+e+ 273 1 —1
<C D, = rgw? dt +CD, 7:|3D [[oW_|dT, x<(8DO )
0

(5.363)
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for all sufficiently small e. Here we have used — 2 gB (D_—W_) > 0and DpBy

B
0, and

DpB DpB _ _®DpB npltn
0<—=p~(D-—-W_)<—=5-D_=— DfB D_

. Dl+6+n
< Cie(1 +DMW_12) < Cie(1 + g t2) < Cre

1—¢

1 2
for any t € [0, (8D0+€+H)_

constant.

2] so that (1 — %(D, — W,)> is bounded by a

- _ et . .
Let X =« D, b where b = % with a sufficiently small ¥ > 0 to be specified
N 1 2e
later. Note that X < (8D0+5+'_5)
small and independent of Dy. For any 7 € [0, X ] we have Dy < K%‘L'_%. Therefore

2¢
D(1)+S+HT < b (et ) 41

x € [0, X,

-3 for all Dy > % and « chosen sufficiently

. From these estimates and (5.363) we conclude for

X
%BWE(x)+/ <%+2I(1+8)W*(W*+8)>8W3dr
0

B

R YR N - ST B C pern (3.0 \E( [ 30192 .
§C/ Kb =) 17b T OW2 dr + —= D, ”(/ 73W_dr> (/ rBD_dr)

0 V3 0T 0

X1 26y 1 1 [*3 c? x
5cf A e b“awﬁdr+5/ —BWEdr—t-?D(%HHZ”HZ)D,H?}O/ 3 dr.

0 07

(5.364)

Since —ll, + 1 > —1, with k chosen sufficiently small, but independent of D, we can
absorb the first two integrals on the right-most side into the term f(f %3 W2 dt on the
left-hand side. We then conclude

OW_(x)| < CDYF X2 0D ||, x €10, X1. (5.365)

We now integrate (5.359), use (5.351)—(5.353), (5.362), and conclude from (5.360)

1+£+12%F *
[0D_(x) — 1| = CD, 'HBD—Hoo/O tdt

X
+ c/ (D52 + [ D52 oDy 2 23) oW (o)) dr
0

<C (Dé+s+rix2 + D(3)+s+2r]x4 T (D(3)+35+3r] T 8Dg+25+3n)x6) 19D lloo

< Ck20D|loo. x €0, X], (5.366)
for all sufficiently small ¢, where we have used (5.365) and 0 < x <« Dy b, Therefore,
[0D_]loc < 1+ Cx*13D_|no
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and thus, for k sufficiently small so that Ck? < L wehave ||[0D_|ls < % From here

3 9’
we infer

3 1 .
AD_(x)>1— ECKZ >3 >0, x€[0,X]

5.4 Upper and Lower Solutions

Definition 5.23 (Upper and lower solution) For any x, € [Xmin, Xmax] We say that
(D(-; x4), W(-; x4)) is an upper (resp. lower) solution at xo € (0, x,) if there exists
Dg > 0 such that

D(xo; x+) = D_(x0; Do)
and
W(xo; xx) > (resp. <) W_(xo; Do).

Lemma 5.24 (Existence of a lower solution) There exists a k > 0 such that for any

X0 < Kk there exists an Xy € [Xy, Xmax] such that (D(+; Xex), W(-; X44)) is a lower

solution at xo. Moreover, there exists a universal constant C such that D1 < 1—€
X,

0 °
where D_(xo; D1) = D(x0; Xsx).

Proof For any x, € X we consider the function

S(xy) = sup  {xp(Xe)}. (5.367)

X*G[)E*,X*]

The function x, — S(x,) is clearly increasing, continuous, and by Lemma 5.16,
limy, 5, S(xx) = 0. Therefore, the range of S is of the form [0, ] for some « > 0.
For any x, € X, by Lemma 5.16, the supremum in (5.367) is attained, i.e. there exists
Xix € [Xy, Xi] such that S(x,) = xFr(x4)=:x0. Therefore, for any X, < X, < Xy WE
have

s(xx) < xF(xy) < X0.

By Lemma 5.12 we have the bound D (x(; X4x) > W(X0; X4s) = % By Lemma 5.19
1—¢

. 1 3l—e A .
choosing Dy = Dy (xg) = ped <m) and using Lemmas 5.4 and 5.3 we have
1 J[xo; D]
D_(x0; Do) > —— > ———— > D(x0; Xss),
X X0
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where we have assumed xg to be sufficiently small. On the other hand D_ (xo; %) =
% < D(xq; x4x) (Where we recall that D_(-; %) is the Friedmann solution, see (2.40)).

Using Remark 5.21 and the Intermediate Value Theorem, there exists a Dy € (%, Do)
such that

D(x0; Xsx) = D—(x0; D1).
By (5.342) W_(x0; D7) > % = W(x0; x4+) and therefore (D (-, X4x), W(:; X44)) is @
lower solution at xg. The upper bound on D follows from our choice of Dy above. O

Remark 5.25 The proof of Lemma 5.24 follows closely the analogous proof in the
Newtonian case (Lemma 4.20 in [15]).

Lemma5.26 Let x, € X>% (see (2.44) for the definition of X>%) and assume that
s(xy) = 0. Then )

(a)
D(x; xy) > W(x; x4), x € (0,x4);
(b)

lim sup x' "W (x; x,) > 0.
x—0

Proof Proof of Part (a). If not let

Xe:= sup {D(t;xy) — W(T;x4) >0, T € (x,x5), D(x;x) = W(x;x5)} >0
XE(O.X*)
At x. we have from (2.35)—(2.36) W'(x.; xy) = ﬂ < 0 since W > for

Xy €X L and D’ (x.; x,) = 0. Therefore there exists a nelghbourhood strictly to the

left of x. such that W' < 0, D < W, and D’ > 0. Itis easily checked that this property
is dynamically trapped and we conclude

1 —-3W(x;
W xy) < LWV X) (5.368)
X

Integrating the above equation over [x, x.] we conclude

c

1 1
Wi(x; x*)x3 > w(xe; x*)xg. — §x3 = <W(xc; Xy) — §> xf::c > 0. (5.369)

We now recall (5.317). From (5.369), this implies that (log (D7 Wz))/ < 0 since
Xy € X 1 In particular we obtain the lower bound

D)MW (x)? > Dx)*TPW (x0)? = W(x)* 21 > 37420 ¢ <y
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It follows that

_ n(2+n) _n
DT <3 T W, x < x. (5.370)
On the other hand, bound (5.369) implies
2 2 2
x“>c3W™3, x < x.. (5.371)

From (2.37), (5.370)—(5.371) we therefore have

n(2+n)

B <3 Wi — CW3, x <x.. (5.372)

for some universal constant C > 0. Since W grows to infinity as x — 0, this implies
that the right-hand side above necessarily becomes negative, i.e. s(x,) > 0. A contra-
diction.

Proof of Part (b). Since D > W by part (a) and W > % (since x, € X>%), from

Lemmas 5.3 and 5.4 {

xl=¢°

D < (5.373)

By way of contradiction we assume that lim sup, o x' ¢ W (x; x,) = 0.Forany & > 0
choose § > 0 so small that

' TEW(x; x) <3, x €(0,6). (5.374)
Note that in particular, for any x € (0, §) we have
XZWDIH = x1=ewx e D1 <& x € (0, 9), (5.375)
where we have used (5.373) and (5.374). Similarly,
X*WDT = x""Ewx D1y < 8817 x € (0, 8). (5.376)
We next claim that there exists a universal constant C such that
2(1 + &)x*(W 4 &)(D — W) < CB. (5.377)
Keeping in mind (2.37), this is equivalent to the estimate

X2W2DT (C(1 — &) —2(1 + &) + x> WD" (=26(1 + &) +2(1 + &) D +4¢C(1 + D))
+x2D" (26(1+£)D + C(e* — #)) = C. (5.378)

For any 0 < C < 2 the first term on the left-hand side of (5.378) is strictly negative,
and so are —2¢(1 + &)x2W D" and C(e% — &)x2D". On the other hand

WD (2(1 +£)D + 4eC(1 + D)) = x> WD (2(1 4 &) + 4C) + 4eCx> W D'l
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<&(2(1+¢) +4eC) +4eCe8' ¢, (5.379)

where we have used (5.375) and (5.376). Similarly,
2e(1 + &)x’ D' < 26(1 + 6)x' 78 < 2e(1 +6)8' 72, (5.380)
where we have used (5.373). Itis thus clear that we can choose C of the form C = C e+
817¢) for some universal constant C > 0and &, § sufficiently small, so that (5.377) is

true. It then follows from (2.36) that

13w CE+8"W 1-Q3-CE+s'*)W
- x x N x ’

W/

(5.381)

As a consequence of (5.381), for sufficiently small €, § > 0 and x € (0, §) we have

2w
P

W <

which in turn implies W (x; x,) > Cx~2 for some C > 0 and sufficiently small x, a
contradiction. ]

Lemma 5.27 (Existence of an upper solution) If
lim W(x; %) # :
im W(x;x =
=0 ) VX 3 ’

then there exists a universal constant C > 0 and an arbitrarily small xo > 0 such that
(D(+; x4), W(-; X)) is an upper solution at xo and D1 < %, where D_(xo; D1) =
D(x0; ).

Proof 1t is clear that liminf, .o W(x; X,) > % as otherwise we would have x, € X,
a contradiction to the definition (5.326) of x, and the openness of X. We distinguish
three cases.

Case 1.

1
liminf W(x; x =.
inigt Wosi %) > 3

In this case x, € X>% and by Proposition 5.15 we have s(x,) = 0. By part (b) of

Lemma 5.26 there exists a constant C > 0 and a sequence {x,},en C (0, 1) such that
lim;, o0 x;, = 0 and

W (i B) > —— (5.382)
X,

—&
n

where C is independent of n. For any such x,, we have by part (a) of Lemma 5.26 and
Lemma 5.4

D(xp; X)) > W(xy; Xy) > > CD(x,; X4) (5.383)

i
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where we have used the assumption x, € X_ 1 and part (a) of Lemma 5.26 to conclude

D(-; Xxy) > %, which is necessary for the application of Lemma 5.4.
For any 0 < x, < 1 sufficiently small consider (D_(-; Do ), W_(:; Do, »)) with

Don = Do(xp) = XL <%)T > 1 for n large enough. By Lemmas 5.19

1—¢
and 5.26 ’

1 _ _ 1
D_(xu: Do,n) > = = D(xp; X)) > W(xn; Xi) > 3
n

On the other hand,
- 1 1
D (xp; Xi) > 3= D_(xp; 5),
where we recall that D_(:; %) = % is the Friedmann solution. Moreover, by

Remark 5.21 [0, x,] C [O, s_(ﬁo)) for all [)o C [%, Dy »]. By the continuity of
the map [%, Do nl > Do — D_(x,; Do) the Intermediate Value Theorem implies that
there exists D, 1 € (%, Dy ;,) such that

D_(x,; DY) = D(xy; xx) for all sufficiently large n € N. (5.384)

Let

exp (— (D,,,l)_Hg) , if Dy >1;
Clon ‘=
" exp (=), if <D, <1

Clearly c¢1, > e l=:c; for all n € N. By Lemma 5.19 D_(x,; Dy1) >

14e
c1Dp 1. Using (5.344)—(5.345) we also have W_(x,; Dp,1) < an1
with (5.383) and (5.384) we conclude that for all n sufficiently large

3-5° Together

I+e 1+e
2 2

e g : _ % e
W_(x: Dpp) < D, 2 3175 < (P2l Dn)) 2 y-boe (Dlni X)) 2 - dse
ns> Pn,l n,1 a a1
- 1+ 1+
<37 T (10) T W k) 2. (5.385)

By (5.383) W(x,; x.) grows to positive infinity as x,, approaches zero. Therefore, we
may choose a sufficiently large N € Nandsetxo = xy < 1, Do = Do.n, D1 = Dy N
so that the right-hand side of (5.385) is bounded from above by W (xo; x.). This gives

W_(x0; D1) < W(xo; Xx).
We conclude that (D(+; Xx), W(:; X)) is an upper solution (see Definition 5.23) at xq

and the upper bound on D follows from our choice of Dy.
Case 2.

1 1
— < limsup W(x; x,) < oo, liminf W(x;xy) = =. (5.386)
3 x—0 3

x—0
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In particular x, € X<% (see (2.46)) and by Lemma 5.12 D(x; Xx) > W(x; Xy).
Assumption (5.386) also implies that there exists a constant ¢ > 0 independent of x
such that

W(x; %) <c, x € (0, %l (5.387)

We now claim that there exists a constant C such that

CD

xé‘

D' > —

, (5.388)

for all sufficiently small x. To prove (5.388) we note that by (2.35) this is equivalent to
the bound x! (W + ¢)(D — W) < CB, which, by (2.37) is equivalent to the bound

1 1
x2W?D" (—1— +C(1— 8)) +x>W D" (— + 48C)>
xl-e xlfs

&

4+ 2WD" (—xf—_g + 4gc) +x2D" ( + O — 8)) <C.  (5389)

xl—s
Using (5.387) and Lemma 5.4, we have
X2W?D" < ?x27% ) 2WDM < ox! 78 XPWDT < ex?7%, x2D" < X272,

Choosing ¢ > 0 sufficiently small, x so small that —xl%g +(1—-¢)<0,and C > 1
sufficiently large, but independent of &, we use the above bounds to conclude the claim.

/
Bound (5.388) gives (1og D+ &xl—e) > 0, which in turn gives the bound
_. € gl-e_ C ,l-¢ _
D(x) < D(x)eT=" ~T==*  x € (0, x], (5.390)

for some x sufficiently small. This immediately implies the uniform boundedness of
D(; Xy), i.e.

D(x;xy) <c, x € (0, x4], (5.391)

where we have (possibly) enlarged c so that (5.387) and (5.391) are both true. There
exists an § > 0 and a sequence {x,},cn such that lim,_, o x, = 0 and

1
—4+8 < W(xp; X)), and lim W(x,; x,) = lim sup W(x; X,).
3 n—00 Y0

Since {D(x;; X4)}neN is bounded, by Lemma 5.19 we can choose an Dy > 1 such
that D_(x,;; Dg) > D(x,; xx) for all n € N. On the other hand D(x,; xx) > % =

D_(xy; %). By the intermediate value theorem there exists a sequence {Dg ,}nen C
(%, Do) such that

D_(xy; DO,n) = D(xp; Xy).
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I+e I+e

. D D
Since W_()c;Do,n)2 < 3?—;’1 < 3{’—,5 and D_(x; Don) < Don < Do

(Lemma 5.18) we conclude from (2.35)~(2.36) and Theorem 4.24 that | D’_(x,; Do,,)|
and ]W’_ (X3 Do,n)| are bounded uniformly-in-n, by some constant C > 0. Therefore

1 -
W_(xn; DO,n) = g + Cxp.

We thus conclude that for a fixed n sufficiently large W_(x,; Do) < % +4§ <
W (xp; x4). Therefore, W(-; x,) is an upper solution (see Definition 5.23) at xo:=x,
with D1 = Dy ;. The claimed upper bound on D is clear.

Case 3.

1 1
— < limsup W(x; xy) = oo, liminf W(x; xy) = —.
3 x—=0 x—0 3

As W (-; x,) must oscillate between % and oo we can use the mean value theorem to
conclude that there exists a sequence {x,}, <y such that lim,_, », x, = 0 and

W (xp; %) > n, and W/(x,; x.) = 0. (5.392)

We claim that there exist No > 0 and 0 < n < 1 such that

1
> No. (5.393)

W(xn; Xs) > = =
Xn

To prove this, assume that (5.393) is not true. Then there exists a subsequence of

{xn}nen such that W(x,; xy) < ZIT We now rewrite (2.36) in the form
Xn

— 2 —
, W(i_G_yH_ 7B +2(1+&)x>(W +&)(D = W)

= W B > . (5.394)

where y € (0, 3) is a control parameter to be chosen below. We use (2.37) to evaluate

—yB+2x>(1+&)(W+e)(D — W)
=2 [y ((W +o)l—e(W-12+ 45DW) “2(1 4 &)W + &) (W — D)] — YD
= [ [y =) =201 + &) W2 + [4ye — 2(1 + e)e + (4ye +2(1 + &) D] W

+V(8278)+28(1+8)D}7yD_". (5.395)

Since D > %, by Lemma 5.4 we also have the bound D (x) < ﬁ We may therefore
estimate

D' (—yB £ 221+ &)(W +&)(D — W))
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< 2D {[y(1 —e) =20+ W2+ 4)/8W} +[(ye +2(1 +&)] 2 WD
+2e(1+e)x’D'" — y. (5.396)
By (5.392), for any y € (0, %) we have [y(1—¢) —2(1 4 &)] W(x,; )% +

4yeW (x,; x4) < O for all sufficiently large n. We use the upper bounds on (D, W)
along the sequence {x,},cN to obtain

1
WD < 5 and 2D < x17E
and therefore

D" (fyB + 22021+ &) (W + )(D — W)) sz <2ye+l+e+2e(l+e)xl -y <0
(5.397)

for some y € (1, %) and all sufficiently small €. Feeding this back into (5.394), we
conclude

W/ (xp; X5) < -3 - y)) <0, (5.398)

W (xn; Xs)

Xn

W (x5 Xy) ( 1

for all sufficiently large n, where we use the first bound in (5.392), which contradicts the
second claim in (5.392). We can therefore repeat the same argument following (5.382)
to conclude that W (-; X, ) is an upper solution at xo:=x,, for some n sufficiently large.
The upper bound on D follows in the same way. O

We next show that W (-; x,) takes on value % atx = 0.

Proposition 5.28 The limit lim,_,o W (x; x) exists and
lim W (x; xy) !
im ; = —.
x—0 oo 3

Proof Assume that the claim is not true. By Lemmas 5.24 and 5.27 we can find a
0 < x9 < 1 and x4y € X so that (D(-; X4x), W(-; X4s)) and (D (-5 X4), W(-; X4)) are
respectively a lower and an upper solution at xo. Without loss of generality let

A = D(x0; x4%) < D(x0; X4)=:B.

By Lemmas 5.24 and 5.27 there exist Dy, Dp > % such that A = D_(x¢; Da),

B = D_(xo; Dg),and D4, Dg € (%, Dy), where Dy > 1 and xg < CDLO. Therefore
 34e+2n

by Lemma 5.22, dp, D— (xo; [)0) > 0 for all [)0 € [%, Do], since D, RSN Dgl

for Dg large and all ¢ < &g with g sufficiently small. By the inverse function theorem,

there exists a continuous function T + g(t) such that

D_(xp;: g(t)) =71, 1 €[A, B],
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g§(Dy) = A.

By strict monotonicity of ﬁo — D_(xo; 50) on (0, Dg] the inverse g is in fact
injective and therefore g(Dp) = B. We consider the map

[Xs, Xaxe] 2 X4 > W(x0; x5) — W_(x0; g(D(x0; X)) =: h(xy).

By the above discussion # is continuous, A(A) < 0 and h(B) > 0. Therefore, by the
Intermediate Value Theorem there exists an xg € (X, X4x) such that 2(x;) = 0. The
solution (D(-; x5), W(-; x4)) exists on [0, x,], satisfies W(0) = % and belongs to X.
This is a contradiction to the definition of X. O

In the next proposition we will prove that the solution (D(-; x4), W(:; x4)) is ana-
Iytic in a left neighbourhood of x = 0, by showing that it coincides with a solution
emanating from the origin.

Proposition 5.29 There exists a constant C, > 0 so that

_ _ W(x; 5 — % _
[D(x; Xe)| + [W(x; X4)| + x—2 < Cy, x € (0, x4].
The solution D(-; xyx) : (0,x.] — R.o extends continuously to x = 0 and

D,:=D(0; xy) < 00. Moreover, the solution (D(-; x4), W(-; X4)) coincides with
(D—(+; Dy), W_(-; Dy)) and it is therefore analytic at x = 0 by Theorem 4.24.

Proof By Proposition 5.28 it is clear that W (-; X,) is bounded on [0, X.]. Moreover,
D>W> % on [0, x.] and therefore by Lemma 5.4 D < 11,5. We may now apply
the exact same argument as in the proof of (5.391) to conclude that D is uniformly
bounded on [0, X,]. Since B > 0 and D > W on [0, X,], by (2.35) D’ < 0 and
therefore the limit D,:=1lim,_,o D(x; X,) exists and it is finite. It is also clear that

there exists a constant ¢g > 0 such that

B(x) > cg, x €[0, x, —F]. (5.399)
Let
=W ! >0
= 3 =0

It is then easy to check from (2.36)

(§x3>’ _ x32(1 +e)xWW +e)(D— W)
o B

and therefore, by (5.399) and the uniform boundedness of W and D, forany 0 < x| < x
we obtain

{()c)x3 - ;(xl)xf < C/ thdr = % (x5 —xls), x € (0, x4 — ]

X1
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We now let x; — 07 and conclude
c(x) <x2 (5.400)

Consider now D (x):=D(x; %) — D_(x; D,) and W (x):=W (x; %) — W_(x; D,),
both are defined in a (right) neighbourhood of x = 0 and satisfy

D' =0()D+ o)W,

_ w _ _
W =-3—+00)D+O0MLW,
X

where [)(0) = W(O) = 0. Here we have used the already proven bounded-
ness of (D(-; x4), W(-; x4)) and the boundedness of (D_(-; Dy), W_(-; D,)), see
Lemma 5.18. We multiply the first equation by D, the second by W, integrate over
[0, x] and use Cauchy-Schwarz to get

T 2 X
WO e < cf <D(r)2 + W(r)2> dr.  (5.401)
T 0

D(x)? + Wx)* +3 /
0

We note that f(;‘ W(Tr)z dt is well-defined, since W = {—¢_,where_ = W_ — %;
we use (5.400) and observe ¢ < xZin the vicinity of x = 0 by the analyticity of W_,
see Theorem 4.24. Therefore D(x)* + W(x)? = 0 by (5.401). The analyticity claim
now follows from Theorem 4.24. m|
Remark 5.30 Propositions 5.28 and 5.29 follow closely the arguments in the Newto-
nian case (Propositions 4.22 and 4.23 in [15]). However, an important difference is
the use of (5.391) in the proof of Proposition 5.29.

Proof of Theorem 2.3. Theorem 2.3 is now a simple corollary of Proposi-
tions 5.15, 5.28, and 5.29. O
6 The Far Field Connection
The goal of this section is to construct a global-to-the-right solution of the dynamical

system (2.35)—(2.36) for all x, in the sonic window [Xmin, Xmax]- We refer to Section 2.4
for a detailed overview.

6.1 A Priori Bounds

Remark 6.1 The condition J > x D is equivalent to the inequality

D > x2 ((1 —e)D* — e(1 — &) +4eD(1 + D)) , (6.402)
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which can be seen directly from the definition (3.124) of J[x; D]. Similarly, the
inequality xW > J is equivalent to

D7 < x? ((1 —e)W?2 —e(l —e) +4eW(1 +D)). (6.403)

Lemma 6.2 (A priori bounds to the right) Let Xy« € [Xmin, Xmax])- Let X > xy be the
maximal time of existence to the right of the associated RLP-type solution on which
we have

xW(x) > Jx; D], x € (x4 + 6, X), (6.404)
Jlx; D] > xD(x), x € (x4 + 6, X), (6.405)

where 0 < § < 1 is an e-independent constant from Lemma 4.23. Then the following
claims hold

(@)
D <0, x e (xs+8 X), (6.406)
W > é x € (x4 + 6, X), (6.407)
D(x)W(x) > D? (x*j‘s)S L x € (X +8,X), (6.408)
where
Ds:=D(xy + 95).

(b) There exists a constant C independent of X and ¢g > O such that forall) < & < g9
W) <C, x € (xs+8, X). (6.409)
(c) There exist constants C > 0, 0 < g9 < 1 such that for all ¢ € (0, o)

D'x
D

<—y, x€x:+6,X), y=1—-Ce>0 (6.410)

and therefore

-y
D(x) < Ds < > . (6.411)

Xy + 6

In particular, with 0 < g9 < 1 sufficiently small, we may choose y = 1 — Cgg
uniform for all ¢ € (0, &).
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Proof We note that by Lemma 4.23 there exists a § > 0 such that X > x, + 2§.
Proof of part (a). Notice that by assumptions (6.404)—(6.405) we have

W > D, x e (x«+96,X). (6.412)

Bound (6.406) follows from (2.35), (3.123), (6.404), and (6.412).
By (2.36) and (6.404)—(6.405) we conclude W’ > % or equivalently (Wx3)' >
x2. We conclude that for any x € (x4 + 6, X) we have

3 3
W(x) > Ws (x*;”) T % (1 - (x*j(S) ) > é (6.413)

since Ws:=W (xx +8) = Wo(e, xx) — O(8) = Wo(e; Xxmax(e)) — O(6) = % - 0(),
for 0 < § <« 1 sufficiently small and independent of ¢. Here we have also used
Remark 4.2 and the definition of xy,x in (4.245).

From (2.35)-(2.36) we have

x'“P(WDxP) = D'Wx + DW'x + BDW
4ex>’DW (W +)(D — W)

=D+ (B—3)DW + A

(6.414)

We may let 8 = 3 and conclude from (6.404), (6.412) that % (WDxP) > 0 on
(x4 + 8, X). In particular

X+ 6

3
D(x)W(x) > Dg( ) , X € (xe +6, X), (6.415)

which is (6.408).
Proof of part (b). Let now y € (0, 3) and rewrite (2.36) in the following way:

_1=G=pw W (—yB + 257 (1 + &) (W + )(D — W)> - (6.416)
X xB

W/
We use (2.37) to evaluate

—yB+22(1+e)(W +e)(D— W)
=52 [y ((W ro)? —eW -2+ 4eDW) “2(1 + &) (W + &) (W — D)] —yD7
- x2{ [y(1 = &) — 21 +&)] W2 + [4ye — 2(1 + £)e + (4ye +2(1 + £)) D] W
+yEr—e) +2e +s)D} —yD"

=:Gy[x; D, W]. (6.417)
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By (6.408) we know that for any x € (x, +8, X), D(x) > D?(x, +8)3x W),
and therefore

D7 < Dy (i + 8) XMW (), x € (x + 8, X). (6.418)

Fix now any y € (2(]1:;8), 3), which is possible since & can be chosen small.

The expression G [x; D, W] in (6.417) can be bounded from below with the help
of (6.418) by

2(1+¢)

alx, W] = x2(1 — ) (y— e )W2—|—x2x1[D]W+x2x2[D]—Co(x*)x3”W(x)”, (6.419)

where
x1[D] :=4ye —2(1 +e)e + (4ye +2(1 +¢)) D,

x2[D] = y(e? — &) +2e(1 +¢)D,
Co(xa) 1=y Dy " (s +8) 7.

By the already proven bound (6.406) it follows that D(x) < Djs. Therefore, from the
above formulas, there exists a universal constant C such that

1Dl + [x2[ DIl + [Co(xs)| < C, x € (x4 + 8, X), Xy € [Xmin, Xmax]-

Since x > x + 8 > 1 and for sufficiently small & we have 3n < 2 (recall (2.38)), it
follows that there exists a constant C = C(y) independent of X and ¢ such that

glx, Wl>1, if W(x) > C. (6.420)

Let now C = max{C, %y}. It then follows that both summands on the right-hand

side of (6.416) are strictly negative when W > C; the first term is negative due to
1— (3 —y)C < 0and the second one due to (6.420) and the negativity of B. Therefore
the region W > C is dynamically inaccessible. This completes the proof of (6.409).
Proof of part (c). For any y € R it follows from (2.35) that

Dx  _yB-2(- e)x*(W + ) (D — W)

6.421
D TV B ( )

We focus on the numerator of the right-hand side above. By (2.37) we have

yB —2(1 —e)x2(W +e)(D — W)
—yD M —y [(W To)k—e(W—1)2 +4sDW] X2 21— e)x2(W + e)(D — W)
> yx2 ((1 —e)D? —s(1—¢) +4eD(1 + D))

—y [(W Fo)2—e(W—1)2 +48DW} 2201 —e)x2(W + &) (D — W)
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=x2(W — D) [y(W=D)+Q2=2)W —e@ByD+WQ2—y)+4y +2¢ —2)]. (6.422)

In the third line above we crucially used the bound (6.402), which by Remark 6.1 is
equivalent to the assumption (6.405). Since W > D, C>Ww > é, and 0 < D < Dg
on (x,+§, X), wemay choose y = 1—Ce with C sufficiently large, but e-independent,
so that the above expression is strictly positive, since in this case (2 — 2y)W > %
Therefore, for sufficiently small € and y = 1 — Ce, the right-hand side of (6.421)
is negative, since B < 0 on (x4, X). This proves (6.410), which after an integration

gives (6.411). O

6.2 Monotonicity and Global Existence
Lemma 6.3 (Monotonicity properties of the flow) Let X € [Xmin, Xmax]- Let X > x4

be the maximal time of existence to the right of the associated RLP-type solution on
which we have

xW(x) > J[x; D], x € (xx +6, X). (6.423)

Then there exists an 0 < ey < 1 such that for all ¢ € (0, &g] the associated RLP-type
solution satisfies,

J[x; D] > xD(x), x € (x4 + 8, X). (6.424)

If in addition X < oo, then there exists a constant k = k(X) > 0 such that f(x) =
J[x; D] —xD(x) > k forall x € (x4 + 6, X).

Proof We observe that b1[x; D, W] is strictly positive on (x, + 8, X) by our assump-

tjon. Moreover, from the definition of (3.134), it is clear that by[x; D, W] >
byr[x; D, W], where

balx: D, W] = — 2x2D{D2 +GB+e)D—(1—¢)

4 21 5
te L LR B S }Z’l;
1—¢ 1—¢ 1—¢
(6.425)

It is clear that for any D < ;11 and ¢gq sufficiently small the expression Ez[x; D, W]
is strictly positive for all 0 < & < gg. If there exists an X > x4 + & such that
D(x) < %, then by the monotonicity of x — D(x), D(x) < % for all x > x. Thus
l;z [x; D, W] and therefore b[x; D, W] remain positive. It follows that if f(X) > 0,
then by Corollary 3.8 f(x) > O forall x € [x, X).

We next show that for a sufficiently small ¢y the value of D always drops below
3—1 at some X for all ¢ € (0, go] so that f remains strictly positive on (x4 + &, X]. By

1
the bound (6.411) and Ds < 1 it follows that D(x) < le as long as x > x,47. Since
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y =14 O(¢) and x, < 3, then with

1

F=3x4"% =48 (6.426)

it follows that if X > X and f(x) > 0 on (x4 + 8, x], then f(x) > O for all x €
(x4« + 8, X), with g9 chosen sufficiently small.

It remains to show that for all ¢ € (0, &g] with g9 chosen sufficiently small, we
indeed have f > 0 on (x4 + §, min{x, X}). Let (xsx + §, X1) C (x4 + 8, X) be the
maximal subinterval of (x, 4§, X), such that f > O on (x, + 8, X1). By Lemma 4.23
we have X| > x, +248. Notice that on the interval (x, + 3, X1), by the strict negativity
of B the factor a;[x; D, W] (3.131)is strictly negative. Since b is positive and by > 152
we have from Lemma 3.7

f/ +arf > 852.

For any x, + § < x1 < x < X this immediately yields

X . . _rx . X Z " ]
Fo) > f(xl)e_f"l ar[z;D,W]dz . fXI az[z.D,W]dz/ bylz: D. W]e-fn ay[s;D,W]ds d-.

' (6.427)

Observe that

1 6
ZDW < D’ (6.428)

7z ' <

where we have used H + xW > xW, (1 —&)J +2ex(1+ D) > (1 —e)xD +
2¢x (1 + D) > xD, and finally W > %. Therefore

2x2D

‘Ez[x;D, W]‘ < T(‘[D2+(3+8)D—(1—£)]‘
+2¢ [&D%%(HDH%DH”)
<c, (6.429)

for some universal constant C, which follows from (6.428) and the a priori bound
D < Ds < 1.
We note that by (2.46) and (3.125),

2 (foW)(Dfl)Z_l‘=2£

(J—xW)(D—-1) ‘
[(1—¢)J +2ex (1 + D)|[H + xW]
J—xW)(D—-1

=2
[(1 = )] +2ex (1+ D)I[JID] + 12 (1 + D)x + xW ]
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I 4+ xW| (1 — 1)5>
[(1 = &)J +2ex (1 + D)] [J + 2 (14 D) +xW]
- 1— Dg

<2e

<1, (6.430)

X

where we haveused [(1—¢)J+2ex (1 + D) > 2ex, J+146 (I+D)x+xW > J+xW,
and x > x, > 1. Similarly,

J+xD
T [(1—&)J +2ex(1+ D)][H+xW]
J+xW

< 2¢

[(1—&)xD +2ex (1 + D)][H + xW]

1 1

<2—=-<1, (6.431)

2ex X

where we have used f = J —xD < J + xD in the first line, D < W and J > xD
in the second, and finally J +xW < H +xW, (1 — ¢)xD + 2¢ex (1 + D) > 2e¢x,
and x > x, > 1 in the last line. Also, since H +xW > xW > éx and (1 —e)xD +
2ex (1 + D) > 2ex, we have the following simple bound

3
Z7 < Pk (6.432)

Since D < Ds < 1, we can use (6.430), (6.431), (6.428), (6.432), and the defini-
tion (3.132) of ay[x; D, W] to conclude that

laslx; D, W]| < 26 )(J —xW) (D — 1)2‘1) tde %‘

<c. (6.433)

+2¢Z7 " (dex +xD (5+¢))

We now feed the bounds (6.429) and (6.433) into (6.427) to conclude

ar[z;D,Wldz

eC(x—xl)f(x) > f(x)ef"xl
> f(x1) —eCeCC ™ (x —x)), x € (x1,X), x1 € [xe+38,X1). (6.434)

Let x; = x4 + & so that by Lemma 4.23 f(x1) > ¢ for some ¢ > O and all ¢ € (0, go]
and all x, € [Xmin, *max]. From (6.434) we conclude that we can choose & so that
f(x) > ¢ > 0forall x € (x, + 8, min{x, X}), where we recall x = 48. By the
definition of X1, this concludes the proof of (6.424).

To prove the remaining claim, by (6.434) we need only to address the case when X >
% = 48. In this case b, is strictly positive for x > ¥ by the argument following (6.425)
and therefore by (6.427) and (6.433)

fx) > fFe Jr @lmDWidz 5 g (5y,~Co—D) (6.435)
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and thus the claim follows. O

We are now ready to prove Theorem 2.4, which asserts global-to-the-right existence
of RLP-type solutions.
Proof of Theorem 2.4. Let [x,, X) be the maximal time of existence on which

xW > J, x € (x4, X). (6.436)

By Lemma 6.3 we conclude that J > xD on (x4 + 8, X) for all ¢ < g¢ sufficiently
small and therefore all the conclusions of Lemma 6.2 apply. We argue by contradiction
and assume that X < oco. By Lemma 6.3 we know that there exists a constantk = i (X)
suchthat f(x) > i forallx € (x,+4, X).Inparticularlim sup,_, x- (W (x)—D(x)) >
0. It follows that

lim sup (kW) = J') <0. (6.437)

x—>X—

By (2.36) and (3.127), we have

221+ &)W (W +)(D — W)

B
2eJ(1+D)—e(1 —e)x (2exJ + lsTgpfrH)D/
(I —&)J +2ex(1+D) (1 —-e)J +2ex(1+ D)
26J(14+ D) —e(l —&)x
(1 —¢)J +2ex(1+ D)

x(1+eW 2] + ;D7 /
(1—-¢)D

W) —J =1-2W(x) +

=1-2W(x)+

) (6.438)
(1 —¢)J +2ex(1+ D)

By the uniform bounds (6.407) and (6.409) we have ; < W < C. By (6.406)
and (6.408) we have

S 3 8 3
Ds > D(x) > Dg% > D(%M

= 6.439
x3C X3C ( )

Therefore the first line of the right-most side of (6.438) is bounded. Since
lim, _, x- (xW — J) = 0 it follows that lim,_, y- B = 0 and therefore lim sup, _, y-
D’(x) = —oo by (2.35). On the other hand, the second line of the right-most side
of (6.438) is of the form g(x)D’, where

x(14+ &)W 2xJ 4+ D!
TU=oD " fU=67J+2ex(1+D)
—xW(l + &) [(1 —&)J +2ex(1 + D)] + [2st + fTeD—’?—l] (1—¢)D
1 —e)D[(I —e)J + 2ex(1 + D)]
—(1 —e)xWJ —2e(1 4+ &)x*W( + D) +2¢(1 —e)xDJ + D"
(1—e)D[(1 —e)J +2ex(1+ D)] '

gx) =

(6.440)
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We now use (6.403), which for any x < X allows us to estimate the numerator
of (6.440) from above:
—(1—eHxWJ =2e(1 +e)x*W( + D) +2e(1 —e)xDJ +eD7"
< —(1—&)HxWJ —=2e(1 4+ &)x*W(l + D) +2¢(1 — e)xDJ
T ex? ((1 — W2 —e(1—e) +4eW(l + D))

= x?2 [_(1 — sz)Wg +2e(1 — 8)D% +e(l — 8)W2]
— (26 = 26H)x*W(1 + D) — x%e*(1 — ). (6.441)

Asx — X, % approaches W and therefore the above expression is negative for ¢
sufficiently small (and independent of X'). Therefore by (6.440) g(x) < Oasx — X,
which implies that the right-most side of (6.438) blows up to +00 as x — X, which
is a contradiction to (6.437). This concludes the proof of the theorem. O

6.3 Asymptotic Behaviour as x — oo

We introduce the unknown IT(x) = X (y), where X is the energy density introduced
in (2.19). Recalling (2.34) and (2.26), we have

M=p'+ = pr=. (6.442)

It is straightforward to check that the system (2.35)—(2.36) can be reformulated as
follows

214+ &II(W +e)(D - W)
2 ,

1=3W) 2x(1+e)WW +¢e)(D—-W)

- X + B '

n=

(6.443)

W/

(6.444)

Lemma 6.4 There exist an xog > X4, a constant C and ¢ > 0 sufficiently small so that
forall x > xg

I (x)x
+2=ca(x)(W—1)+ B(x), x € (x4, 00), (6.445)
IT(x)
where
la(x)] < C x > xo, (6.446)
1B < Cx™2, x> xo. (6.447)

Proof From (6.443) and the definition (3.123) of B it follows that

'x 2B —2x2(1 4+ &)(W + &)(D — W)
e B
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D — 2 [(W 162 —e(W =12 +4DW + (1 + &) (W + £)(D — W)}

=2 D1 —xZ((W+6)2 —e(W— 1)> +4sDW) (6.448)
We rewrite the rectangular brackets in the numerator above in the form
- [(W 462 —e(W—1)2+4eDW + (1 +&)(W +)(D — W)]
=eW-DR2W+e—-11-DGBeW+W+e(1+¢)). (6.449)

We feed this back into (6.448), divide the numerator and the denominator by x2, and
obtain

I'x eW—-1DR2W+e—11—DGBeW+W+e(l +¢)+D "x2
+2=2
—((W+e)?2—e(W—12+4DW) + D~x 2
=eca(x)(W — 1)+ B(x), (6.450)
where
a(x):= 2QW+e— D) (6.451)

—((W+e)?—e(W—12+4eDW) + D1x~2’
—2D (5¢W + W +¢e(1 +¢))+2D 1x2
((W+e)?—eW—12+4eDW) + D 1x—2

Blx):=— (6.452)

By (6.408) and W < C, it follows that D(x) > ¢;x > for some universal constant
c1 > 0. Together with (6.411) we conclude

cx 3 < D) < ex7, (6.453)

where y = 1 — Ce for some gy < 1. We conclude that D~ x 2 < cl_"x3”_2. Since
é < W < C by Lemma 6.2, for ¢ < &g sufficiently small we conclude that there exist

a constant C and xg > x, such that for all x > xg
l . 2 _1\2 -n,—2
C < (W +e) eW —-1D"+4eDW )+ D x <C.

This immediately yields (6.446). Note that the leading order behaviour in the rectangu-
lar brackets in the very last line of (6.422) is of the form y (W — D)+ (2—-2y)W+ 0O (¢).
We use the decay bound (6.411), namely D(x) < x~!+€¢ and we see that the right-
most side of (6.422) becomes positive with y = %, with x sufficiently large and ¢
sufficiently small. The identity (6.421) yields (6.447). O

Lemma 6.5 Let x4y € [Xmin, Xmax] and let (W, D) be the unique RLP-type solution
defined globally to the right for all ¢ € (0, g9). Then for any ¢ € (0, go] there exists a
constant dy > 0 such that

lim W(x) =1, (6.454)
X—> 00
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lim T(x)x? = ds. (6.455)

X—> 00

Claim (6.455) equivalently reads

. 1—¢
lim D(x)x>T5 = d)* (6.456)

X—> 00

Proof Note that by (6.444)

2 _
(W — Dy = Wa W — 1 — 2w + 2x2(1 + &)W(W + &)(D — W)

B
2B —2x%(1 w D—-W
W X (I +e)(W +e)( )‘ (6.457)
B
From this and the first line of (6.448) we conclude
l—[/
(W= 1)x) = —W ( Hx + 2) . (6.458)
Let now
?Hx) ;= (1 — W)x. (6.459)
Equation (6.458) and Lemma 6.4 now give
w
' (x) = —e DD 5 W), (6.460)
X
We now use the integrating factor to solve for ¢. For any x¢ > x, we have
x - W(s)a(s) X s WiHa(s) ;.0
s o P = 9(x) + / W)Bs)e o v as. (6.461)
X0

By Lemma 6.4 and the bound % <W< C from Lemma 6.2 we have W] < C and
therefore
—Ce x W(s)als) Ce
<ﬁ) <o W< <i> . (6.462)

X0 X0

We use this bound in (6.461) and together with (6.447) we conclude that

x —Ce x _§+C
al |z9(x>|s|ﬂ<xo)|+c/ s—3Ce gs < €. (6.463)
X0 .

0

We now recall the definition (6.459) of ©# and conclude from the above bound that

11— W|<Cx 7 forall & e (0, &]. (6.464)
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where we recall (6.410). The claim (6.454) follows.
From Lemma 6.4 we conclude

log(T(x)x?) = log(TT(x0)x3) + /

X0

; (8@(“@ b4 @) ds.  (6.465)

and thus

5 (2L W) -+ ) ds

I (x)x? = T (x0)x3 eho (6.466)

(s) B(s)
e XD (W(s) — 1) + £2| <

~

We now use (6.464) and Lemma 6.4 to conclude that

s720@ and is therefore integrable. Letting x — 0o we conclude (6.455).
That (6.456) is equivalent to (6.455) follows from (6.442). O

Remark 6.6 Stronger versions of the claims (6.454) and (6.455) are contained
in (6.464) and (6.466) respectively. Formula (6.466) can be used to give a quanti-
tative decay bound for

H(x)xz—dz , as x — oo.

In the following lemma we establish the strict upper bound W < 1 for the RLP-
type solutions and provide the crucial e-independent bounds at spacelike hypersurface
x = +oo, which will play an important role in the construction of the maximal
selfsimilar extension of the RLP spacetime.

Lemma 6.7 (W stays below 1) Let x4 € [Xmin, Xmax] and let (W, D) be the unique
RLP-type solution defined globally to the right for all ¢ € (0, eol. Then there exist a
sufficiently small 0 < g9 < 1 and constants ¢y > c¢1 > 0 such that
Wi(x) <1, x € [x4,00), forall ¢ € (0,¢eo], (6.467)
and
l4+ca>dy>1+4c; forall € € (0, &), (6.468)
where dy = limy_ oo TT(X)W (x)x2 = limy s oo H(x)xz.
Proof We first observe that by (6.443)—(6.444)
(MWx?) = Tx(1 — W) = I19, (6.469)
where we have used (6.459) in the second equality. By way of contradiction, assume
that there exists an X € (x,, co) suchthat W(x) = land W(x) < 1 forall x € (x4, X).

Integrating (6.469) over [x,, X] we conclude that

M(x)x% = ME)W(x)x>
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= M (x,) W (x)x2 + /X (s)d(s) ds

Xx

= W2 + f TI(s)® (s) ds, (6.470)

*

where we recall (6.442). On the other hand, clearly W/(x) > 0 and therefore,
by (6.444), at X we have

L 2 25(1+ 6D —1)
O=W@=—c+5m7 ((1 + £)2 + 4¢D) &2
—2(D7" — ((1 +&)> + 4eD) ¥2) + 2x2(1 + &)>(D — 1)
X (D71 —((14¢)%+4eD)x2)
2D+ 2Dx? (4e + (1 +¢)?)
X (D=1 — ((1+&)? +4¢D) x?)
1 — T2 (4e + (1 + #)?)

=-2D7" . 6.471
X (D71 = ((1+¢)?+4eD) x?) (47D
Since the denominator is strictly negative, it follows that
n@it< — o (6.472)
T de+ (1462 '
Combining (6.470) and (6.472) we conclude that
bt Wy tx2 + / ) T(s)¥ (s) ds. (6.473)
de +(1+¢)?% — * s

Our goal is to provide a lower bound for ¥ (x) which is uniform-in-¢. Using (6.461),
(6.462), and (6.447), we conclude that for any X > x > xo > x,

Ce X
(i) 19 (x)| > 9 (x0) —c/ s3FCe g, (6.474)
X0 X0
Therefore
—Ce x —Ce
19 (x)| = 9 (x0) (ﬁ> - c/ §T2tCe g (i) . (6.475)
X0 X0 X0

Now choose xgp = x, + § with § as in Lemma 4.23 so that, by Lemma 4.23 we can
ascertain the uniform-in-¢ bound

¥ (x0) =

1
= for all ¢ € (0, g]. (6.476)
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This bound together with the lower bound (6.475) yields

1 —Ce x ; —Ce
HOTES <i) _ cf §3FCe g (i> . foralle € (0, go]. (6.477)
X0 X0

X0

The right-hand side of (6.477) is a continuous function in x which converges to % as
x — x; . Therefore, there exists an e-independent real number X > x¢ such that

, forall x € [xg,Xx] andall ¢ € (0, &]. (6.478)

FN

0 (x) =

Observe that the bound (6.478) also ascertains that X < x, see (6.459).
_ Itis easily checked from (6.443)—(6.444) that (TTWx?)' = TTx? > 0. Since |W| <
C by Lemma 6.2 it then follows that

M)Woe)xd Wy xl
M(x) > (x*)é Ex*)x* - OC ;‘* > Cx73, x> x, (6.479)
X~ X

where, as usual, the constant C is independent of ¢.
We now use the bounds (6.478) and (6.479) in (6.473) to conclude

1 240 2 /i 241 2 /x
— > W M(s)9(s)ds > W, M(5)9 (s) d
det(Itep = 0 Xt s (D (s)ds = Wy 'x; + s (5)0(s)ds
24n_2 S 241 2 1 1
> Wy 'xp +C s77ds > Wy Txp +C - =] (6.480)
X0 .XO X

Observe that we have used the non-negativity of ¥ on [x,, x] in the second bound
above.
By the e-asymptotic behaviour of Wy from Lemma 4.1 we have

W2 =14 0(),

and clearly m = 1 4 O(¢). Since however the term C (% — ;ZLZ) is bounded

from below by some ¢-independent positive real number § > 0, we obtain contradic-
tion by choosing &g sufficiently small. This completes the proof of (6.467).
By Lemma 6.5 we may integrate (6.469) over the whole interval [x,., 00) to conclude

lim_ TT(x)W (x)x? = T (x) W (x,)x2 + foo T1(s)9(s)ds

Xx

> T(x) W(x)x2 + /X (s)9 (s) ds

X0
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1 1
> W02+nx>% +C <; — ﬁ)
0

>14+0@)+6>1, (6.481)

for ¢ < gg sufficiently small. This proves the lower bound stated in (6.468).
To prove the upper bound on I1(x)W(x)x2, we rewrite (6.469) in the form
log(TTWx?) = l;—WW and integrate to obtain the identity

’ 2 1= W)
log(TT(x) W (x)x~) = log(IT(xo) W (x0)xg) + ——ds, x. <Xxp < X.
X0 sW(s)
(6.482)
Using (6.464) and (6.407) we conclude from (6.482) that

X
log(TT(x)W (x)x?) < log(IT(x0) W (x0)x3) + 6C f s72HCe g, (6.483)

X0

where the constant C does not depend on . We let xg = x., so that for sufficiently
small ¢ < gg the e-dependent quantity IT(x,)W (x,) is bounded uniformly-in-¢. On
the other hand

X o 6C
6C/ S—2+C8 ds < 6Cf s—2+C8 ds = x*—1+Cs’
X o 1—-Cs¢
which, since xy € [Xmin, Xmax], 1 also bounded uniformly-in-¢. This completes the
proof of the lemma. O

In the following proposition, we establish the sharp asymptotic behaviour of the
variable W as x — oo - this will play an important role in constructing the unique
extension of the solution in Section 7.

Proposition 6.8 (Precise asymptotic behaviour for W) Let x, € [Xpmin, Xmax] and let
(W, D) be the unique RLP-type solution defined globally to the right forall e € (0, &o].

After choosing a possibly smaller gy > 0, there exists a constant ¢ such that for any
e € (0, o] there exists a constant wy < O such that

1= W) = —wix 15 + 0y oo 15, x > Xy, (6.484)

where w1 < —¢ < 0 forall e € (0, g].

Proof We may now derive more precise asymptotics for the functions «(x) and B(x)
from (6.451)—(6.452). Using (6.456) and (6.454) we see that
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B(x) _ 2 . _1%:; o
00 D(x) (1 +8) (1+8(6+8)_x11>“éo (D T ))
2 1
- e <1 te6+e) — ;> , (6.485)

where 1 + ¢) > ¢ = lim,_, (D%xz) > 14 ¢y forall ¢ € (0, &9] by Lemma 6.7.
We conclude that there exists a constant ¢ > 0 such that for all € € (0, &o],

1
Lo tim P9 & (6.486)
c X—00 x—2m
Using (6.454) and (6.456), it is easy to see that
(x) 2 (6.487)
a(X) Xyx00 ——. .
X—00 l+e

Recall now ¢ from (6.459). Letting W = 1 + (W — 1) = 1 — %, we may
rewrite (6.460) in the form

2 V() ed(x)? o 9) 2 -
7o » 2 a(x) — eoz(x)T +Wx)Bx), a= —m +a, (6.488)

¥ (x) =

with lim,_, oo @(x) = 0. This yields the identity

/ ) 2
(z&‘x_l%) — xTie <‘9ﬂ(x) () — i) o 4 W(x),B(x)). (6.489)

x2 x
By the bound (6.464) and by (6.486)—(6.487), it follows that the right-hand side of
of the above identity is integrable on [x,, co) and therefore (6.484) holds for some
v1 < 0 (note that v; cannot be positive by Lemma 6.7). To prove the e-uniform upper

bound on vy, we must first estimate the rate of decay of &(x) as x — oo. From (6.488)
and (6.451), we directly check

2(1—e)(1 — W)*>+4eDW — D™ "x2)

&(x) = — . 6.490
00 (148 (D71x72 = ((W + )2 —e(W — 1)2+4¢DW)) ( )

Therefore, for sufficiently large x > 1 we have the upper bound
@] < Kx—2H00), (6.491)

for some K > 0 independent of ¢. Here we have used (6.464), the bound (6.456),
and Lemma 6.5. Keeping in mind (6.459), the bound 1 — W > 0 (from Lemma 6.7)
and (6.486) we conclude that for any x > x, sufficiently large we have

1— 2
—wp = lim (1= Wa)xTF | = lim (900x T+
X—>00 X—>00
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l—¢ [e'e} 2 3
= —W(X()))xl“ / £x i ( Sl a(x) —alx )ﬁ()> x F?W(X)ﬂ(X)dx
X0

o) 2 oo e —&
zs/ x 1+s< 0 ) —a ()()>dx+C1/ T 2T dx
X0 X0

e / T T dx— Coe / = 3Ce gy (6.492)

0 X0

for some constants C1, C» > 0 and independent of €. Note that we have used W > %

in the third line and (6.491) in the last. This implies the claim for ¢ sufficiently small.
O

7 Maximal Analytic Extension

The main results of this section are the description of the local and the global extension

of the flow across the coordinate singularity at y = oo, see Theorems 7.4 and 2.5
respectively. For a detailed overview, we refer to Section 2.5.

7.1 Adapted Comoving Coordinates
Asexplained in Section 2.5 the metric g given by (2.7) becomes singularas y — o0. To
show that this is merely a coordinate singularity, we introduced the adapted comoving

chart (2.54), and the new selfsimilar variable Y given by (2.55)—(2.56). A simple
manipulation of (2.54) gives the relation

t=1(,R)=Y"%, 1 <0, R>0. (7.493)

Recall the new unknowns x (Y), d(Y), and w(Y) from (2.57). In the new chart the
spacetime metric (2.7) by (2.19)—(2.24), (7.493), and (2.57) takes the form

g =~ gg2 - AVE i) gz gy (2P0 74 Y220 ) dR? + 24 (1)? y.
I+e (1+e)?2

where we recall (2.68)—(2.69). Note that by (2.52) and (2.68), we have

. 1 -
20(Y) _ -2
e = —(1 o (dY ) , Y >0. (7.494)

Itis clear thatin the limit y — oo,i.e. ¥ — 07 the metric coefficient e2*(Y) approaches
a positive constant due to (2.53) and (2.56).

Lemma 7.1 Let the triple (r, d, W) be a smooth solution to (3.117)—(3.118). Then the
new unknowns (x, d, w) defined in (2.57) solve the system (2.58)—(2.61).
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Proof The Lagrangian system (3.117)—(3.118) now takes the form

4 - ~wHe2d —e)F2d(w+e)(d—w)

T ; 5 , (7.495)
W e (1—3w+2(1+e)f2w(w+8)(d—w)>, (7.496)
I+e¢ y y B
- F W+e
P : 1:8’ (7.497)
where
B=d"—7? [(w fe)—ew—1)2+ 48wd] , (7.498)

and ' refers to differentiation with respect to y. Using (2.57) it is then straightforward
to check that (2.58)—(2.61) hold. O

Remark 7.2 From (7.497) and the leading order behaviour of w(y) = w(Y) at y = oo
it is easy to see that

- 1 1

r(y) =ay + oy 4o0(y) = Ay + 0Y40+(m), Y >0, (7.499)
lim x(Y)=a, (7.500)

Y—0t

for some constant @ > 0. Here the constant a corresponds to the labelling gauge
freedom and we set without loss of generality

a=1. (7.501)
We note that the unknown d corresponds to the modified density d defined in (2.57).

By Lemma 6.5 and Proposition 6.8, and the asymptotic behaviour (7.499) witha = 1,
we have the leading order asymptotic behaviour

d(Y) = dY? + oy_ o+ (Yz) , (7.502)
w@)=14+wY +oy_ o+ (Y), (7.503)

where 1 + ¢y > dr > 1+ ¢y and
wy < —c<0 (7.504)

by Lemma 6.7 and Proposition 6.8. We note that

o (1)? gy _ 2 _
Ylglg+ v w¥)d TN(Y) = xlglgo Nx)Wx)x“=dy > 1 (7.505)
by Lemma 6.7.
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7.2 Local Extension

To prove the existence of a solution to (2.58)—(2.60) with suitable boundary conditions
(see (7.528)—(7.530)), we formally Taylor-expand the unknowns d, w, x aroundY = 0
and prove the convergence of the series. Assume that the following expansions hold

o0
d(Y)=dyY*+ ) dyy", (7.506)
N=3
o0
w®¥) =1+ wyy", (7.507)
N=1
o0
X =xo+ Y xn¥", (7.508)
N=1

where by (7.501) xo = 1. From this and (2.61) we have the formal expansion
o
c=>Y cyrV, (7.509)
N=0

where for any N > 0

Cy = ((dxv*z)*ﬂ)m2 -3 x [(1 — &)Wy + dewy + (2 — )5y +4s(wd)4 . (7.510)
k+=N

Here we employ the convention that (f); = 0if j < 0. We may single out the leading
order contribution on the right-hand side of (7.510):

Cy = —dexddy —2(1 + &) xdwy —2(1 +&)?xoxn +Cn .1 (7.511)

where

Crai=(@r27) = 3 k[ = e+ dewg + (62 — ) +4e(wd) |

k+t=N
kt<N-—1
—X(% (1—¢) Z wywe + 4e Z wydy | . (7.512)
k+l=N k+l=N
k<N-—1 {<N—-1

Lemma?7.3 Forany N > 1, N € N, the Taylor coefficients (dy, wn, xn) satisfy the
following recursive relations

(N = 2)x3 (1 +&)%dy = Uy, (7.513)
(= )1+ (N = DxGun =20 +e&) (1 +0)% +4e) xGdw =V, (7.514)
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xowy +(—e)Nxy ==Y xwe  (7.515)

k+t=N
kL<N—1

where

Uv =Y kdiCi=2 Y (Pudeldn — wm) (@D + 26wy +e%50,), N =3,

k+j=N k-+e+m+n=N
k<N I =NT1
(7.516)
Uy=(0-¢ Y kuC;
k+j=N
k<N-1
-3 (3(w2)k - 3s)wk) Cot2(l+e)Cyt +30+0%3¢ Y wewg
k+€=N k+€=N
kt<N-—1 kt<N-—1
+20+8) Y GOk — wm) (@ + 20D + 2w )
k+m+n=N
k,m,n<N-—1

—2(1+5)X(% Z wrwewy + 2¢€ Z Wi Wy —2(1—i—e2)3 Z xexe- (1.517)

k+L+4+n=N k+t=N k+{=N
k.t,n<N-—1 k<N—1 k<N—1

Proof Proof of (7.513). We multiply (2.58) by YC and plug in the formal expan-
sions (7.506)—(7.510). We formally obtain that the N-th Taylor coefficient in the
expansion of d'YC is given by

> kdiCy. (7.518)
k+j=N

On the other hand, the N-th Taylor coefficient in the expansion of 2 x2d(w+¢e)*(d —
w) = 2x2d(w? 4 2ew + €2)(d — w) is easily checked to be

20 el = wn) (W + 20w, +6%0,) . (7.519)
k+L+m+n=N

We now extract the leading order terms in (7.518) and (7.519) - these are the factors
containing either dy or wy. We see that

> kdkCj=NdyCo+ Y kdiC;

k+j=N k+j=N
k<N-1
=-Nxg(l+&dy+ Y kdiC), (7.520)
k+j=N
k<N-—1
where we have used Cp = — Xg(l + ¢)2. Note that the term Cy does not contribute

a copy of dy on the right-hand side above since k = 0 when j = N. Similarly, the
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expression (7.519) can be split into

“293( % +2 Y Odeldn = wn) (W + 26w, + 620, )

k4+L+m4+n=N
L<N-1

(7.521)

Note that we have repeatedly used the assumption dy = d; = 0. Equating (7.520)
and (7.521) we obtain the recursive relation (7.513).

Proof of (7.514). We multiply (2.59) by (1 — )Y C and expand the two sides of the
equation by analogy to the above. We obtain formally

o0
A—owyC=0-2)Y [ > kwce;| ¥V (7.522)
N=0 \k+j=N

Upon extracting the leading order term in the N-th Taylor coefficient on the right-hand
side of (7.522), by analogy to (7.520) we obtain

(1—c¢) Z kwiCj = —(1 — )N xZ(1 + &)*wy + (1 — &) Z kwiC,.

k+j=N k+j=N
k<N-1

(7.523)

‘We now turn our attention to the right-hand side. Observe that formally the N-th Taylor
coefficient in the expansion of —(w+&)(1—3w)C = (3w? — (1 — 3e)w — &) C equals

3 (3(w2)kCg — (1 = 38)upCy — gao,(CZ) . (7.524)
k+¢=N

To single out the leading order contribution we use (7.511) and thus (7.524) can be
rewritten in the form

2m+sz+<xw%N—a—3wWQco+ 3 (uw%k—m—3mwacg
k+€=N
k,<N-—1
= —8e(1+&)xddy — 31 +&)2G+ &) xdwy — 41 + &) xoxn
+ Yy (3(w2)k*(1*3€)wk>cl+2(1+€)CN,l*3(1+€)2X§ > wewe. (7.525)

k+l=N k+L=N
k<N—1 k<N—-1

By analogy to (7.519) and (7.521) we also check that the N-the Taylor coefficient in
the expansion of —2(1 + &) x2w(w + &)%(d — w) formally corresponds to

20148 D OO = wn) (WD + 26w, + 2w, ). (1.526)
k+m+n=N
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After isolating the leading order coefficients, the above expression can be rewritten in
the form

—2(1 + &)’ x3dy + 40 + &) Q2+ &) xdwy +4(1 4+ ) xoxn

—2048) Y GO = wa) (W + 26, + 2w, )

k+m+n=N
k,m,n<N-—1

+o0+exg | Y. wewews+2e Y wewe [+20+2)° D xexe.

k+l+n=N k+€=N k+€=N
k. {,n<N-—1 k<N-—1 k<N—1

(7.527)

Claim (7.514) now follows from (7.523) (7.525), and (7.527).
Proof of (7.515). The claim follows by substituting the formal expansions for x
and w into (2.60), comparing the coefficients and using wy = 1. O

Theorem 7.4 (Local extension) There exists and 0 < ¢g < 1 and a Yy < 0 such that
forany € € (0, eg] there exists a unique analytic-in-Y solution to (2.58)—(2.60) on the
interval (—|Yy|, |Yo|) such that

Jim df% =dy, (7.528)
w(0) =1, w'0) =w, (7.529)
x(©0) =1, (7.530)
C(Y) <0, Y e (=Yl Yo, (7.531)

where dy, wy are constants given by Lemma 6.7 and Proposition 6.8. Moreover,

(a) There exists a & > 0 such that
1
d(Yp) > 68, x(Yo) >38, and w(Yp) < 3 forall ¢ € (0, ¢&p]. (7.532)
(b) There exists a constant cy > 0 such that

Kw@dY H" > 14co, forall Y €[Yy,0] andall € € (0, ). (7.533)

(c) There exists a constant § > 0 such that

1 d -
— > — 8, 0, go]. 7.534
100 ~ w Y=Yy - ¢ € (0, &l ( )

(d) There exists a constant ¢y, > 0 such that

w(Yy) > 1+ cu, forall e e (0, (7.535)
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Proof The proof of existence of a local real-analytic solution is analogous to the proof
of Theorem 4.18. We observe that the occurrence of the factors (N — 2) and (N — 1)
in (7.513) and (7.514) respectively reflects the fact that d> and w; must be prescribed
in order to consistently solve the ensuing recursive relations between the higher-order
coefficients. We leave out the details, as they are similar to the ideas of the proof of
Theorem 4.18.

Proof of part (a). Estimates (7.532) are a trivial consequence of the leading order
Taylor expansions from Remark 7.2 the uniform-in-¢ positivity of d> and negativity
of wi.

Proofofpart (b). Since there exists a constant ¢o such that limy _, (X 2w(dY ™2 1+”) >
1 4 ¢p for all ¢ € (0, go], by Taylor expansion around ¥ = 0 we can ascertain that
there is a constant ¢yg > 0 and an interval [—|Yy], |Yo|], Yo < O, such that (7.533)
holds.

Proof of part (c). Observe that %‘ = 0. Since d is locally bounded from below

and w locally increases to the left, {h} bound follows from continuity.

Proof of part (d). By the Taylor expansion (7.507) around Y = 0 and the uniform-in-¢
bound (7.504) we can guarantee that w’ < 0 on [Yp, 0) and that ¢,, can be chosen
independently of ¢. O

Remark 7.5 Note that Y is e-independent, which plays an important role in our proof
of the existence of outgoing null-geodesics from the scaling origin O. The constants
d> and w act as initial conditions for the system (2.58)—(2.60) to extend the solution
to the left.

It is a priori possible that the solution constructed by Theorem 7.4 does not coincide
with the RLP solution constructed for x € (0, 0c0). The overlapping region (0, |Yo|)

_
expressed in the x-coordinate is given by (Xo, 00), where Xo = (7 (|Yo|~(1+7)) T,
Asitis less clear how to apply the standard uniqueness theorem for the problem phrased
in the Y -coordinate, we shall revert to the coordinate

1

X=x T, x=X"17, (7.536)

and reduce the question of uniqueness to the standard ODE theory.

Proposition 7.6 (Uniqueness of the RLP-extension) In the region Y > 0, the solution
constructed in Theorem 7.4 coincides with the RLP-type solution emanating from the
sonic point X, constructed in Section 6.

Proof Introduce the unknowns
D(x) = X*D(X), W(x) =1+ XW(X). (7.537)
A direct calculation gives

B(x) = X2 (—(1 +e)?—2(1+8)XW + X2K,(X: D. W)) ,
(7.538)

@ Springer



4 Page 1100f 182 Y.Guo et al.

Ki(X;: D, W):=D""— (1 —e)W?> —4¢D —4e¢XDW. (7.539)
Using (7.536) and (2.35)—(2.36), we may further compute

d _D/dx

dx~ T dXx

oy (1+8)D(1+8+XW2(XZD—1—)_(W_)
—(1+8&)?2=2(14+&)XW+ X2K{(X; D, W)

=:2XD + X’K»(X, D, W), (7.540)

where it is easy to check that the function K»(X, D, W) is Lipschitz. An analogous
calculation based on (2.36) then gives

d W_W,dx
dx =~ dXx

2 (1+XW)(1+8+XW)(X2D1XW):|

X(1+e) L 12 XW - X2

2 _
=l+n|=+3W+
X X2k,

(1+e)?

2 -2 1 -
=l —+3W—- -+ —W+XK3(X; D, W
(+n)[X+ X+1+r7 + X K3( )]

=W+ (1+nXK3(X;: D, W), (7.541)

where itis easy to check that the function K3 (X, D, W) is Lipschitz. Recalling (7.537),
we conclude that

d - - d - _
—D=K)X;D, W), —W=(1 K3(X; D, W). 7.542
e 2( Y I +mKs3( ) ( )

Therefore, the dynamical system (7.542) is regular at X = 0 and must coincide with
1

the RLP-solution emanating from the sonic point X, = xx 7. Since the mapping
X — Y is smooth and invertible locally around X = 0, the claimed uniqueness
statement follows. O

7.3 Maximal Extension

By analogy to Lemma 3.6, we factorise the denominator C into

C=0-e)(JY:d, x] = xw) (H[Y;d, x]+ xw), (7.543)
where
dy-2)""y?
J:d, x1=T :=—n(l+d)x + \/nz(l +d)?x* +ex?+ %
(7.544)
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HIY;d, x]1=H:=J +2n(1+d)yx. (7.545)

Clearly, for any fixed Y and d , J[Y, d] is the solution of the equation C = 0 viewed
as a quadratic equation in y w. Just like in the proof of Lemma 3.6, it can be checked
that

4ex T +n@y=2H—'
21 —e)J +4ex(1+d)

—dex'(1+d)T —2(e* — &)y x' + 3@y~ 1" 'd +2(dY =)~y
+ 2(1 — )T +4ex(1+d) '

J =

(7.546)

Our next goal is to prove a global extension result, which is shown later in Theo-
rem 2.5. To that end define

Y™ .— inf {Y <0 )3 a smooth solution to (2.58)~(2.60) and w(Y) > 1, C(Y) < 0, x(Y) > o}.

(7.547)
Lemma 7.7 Let (x, w, d) be a local-in-Y solution to (2.58)—(2.60).
(@) Then forallY € (Y™, 0] the following identities hold:
1-3
(d1+’7w)/ — _d1+nw’ (7.548)
(1-e)Y
2 g1+n
2 7141 ’ X d 2 _
Oy = A (w +w(l +3¢) s). (7.549)
(b) ForallY € (Y™, 0) we have the bounds
0<d<w. (7.550)

Proof Proof of part (a). Dividing (2.58) by d and (2.59) by w and the summing the
(14 n)-multiple of the first equation with the second, we obtain (7.548). Using (7.548)
and (2.60) we then obtain

X241+

(M) = Gy Quil —w) = (w+e)(1 = 3w)
2 g14n
= ()lcjl—g)y(u)z—{-w(l—l—&e)—s).

Proof of part (b). The strict positivity of d in a small open left neighbourhood of Y =
0 follows from Theorem 7.4. The global positivity then follows by integrating (2.58),
which can be rewritten as

2x* (w+e)*(d —w)

logd) =
(logd) 7 c
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The upper bound d < w clearly holds at ¥ = 0 and in its small neighbourhood due
to (7.502)—(7.503). Assume now by contradiction that there exists Y™ < Y, < 0 so
that Y, is the infimum over all values of Y € (Y™, 0] such that d(Y) < w(Y). By
continuity obviously d(Yy) = w(Y,). However, by (2.58)—(2.59) d'(Yy) — w'(Yy) =
W > 0, since w(Yy) > 1 by (7.547). This is a contradiction, as this means
that d — w decays locally going to the left of Y. O

Lemma 7.8 Let (x, w, d) be a local-in-Y solution to (2.58)—(2.60) and let
Ts(Y) := (YH)!" — (1 = &) x>wd' ", § > 0. (7.551)

Then there exista 0 < § < 1 and 0 < g9 <K 1 sufficiently small such that for all
e € (0, g9] we have

[s(Y) <0, Y e X™,0). (7.552)
Proof We observe that by (7.549),

T5(Y) = Q+2n)Y3)"Y — (1 —8)(x>wd' 1y
2 g1+4n

— 2 _ . x°d 2 B

= @+ — (=8 G (w2 + w1 +3e) — &)

_ o2l (2 _

= oy 20T + (1 =0 (<u? o —ew )|
S — T Y BT

= U—oy [2(1+8>F6(Y) (1= 8)x*d " (w 1)(w+e)]. (7.553)

Since w > 1 by our assumptions, it follows that
1 =8)x%d" " (w — DH(w +¢) > 0.
Since T5(Y) = (Y7 (1 — (1 — 8)x*>w(@Y ~2)!*7) it follows from Theorem 7.4,

inequality (7.533) that we can choose § = 8(cp) > O such that I's < 0 on [Yp, 0).
Using the standard integrating factor argument it then follows from (7.553) that

Ts(Y) <0, Y € (Y™,0). (7.554)

O

Lemma7.9 Let (x,w,d) be alocal-in-Y solution to (2.58)—(2.60) with th~e radius of
analyticity (Yo, —Yo) given by Theorem 7.4. Then there exists a constant § > 0 such
that

U

— >38 forall Y™ <Y <Yy, 0<c¢<e¢p. (7.555)

€
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Proof By (2.58)—(2.59) we obtain

;2@ +mxldww +e)>d —w) | dw+e)(1 - 3w)

d'w—dw
YC (1—e)Y

-4 {4x2w(w +o%d—w)

(1-e)YC

+w+e)(1 = 3w) ((dy*)_" Y2 — 2 [(w +6)2 —s(w—1)> +4awdD }

d _
= mA, (7.556)
where we used 2(2 + 1) = &. We now rewrite A to obtain

A=—4x*w*w+e)? — w+e)d —3w)x>(w+e)>
+4x’wd(w + &)* — dex’wd(w + &)(1 — 3w)

+ @ +e)(=3w) (ar2) " V2 4 e+ o)1 = 3w)w - 1)
= 2w +¢)> (—w2 —w—e+ 38w) +ax2widw + e)(1 + 3¢)

+w+e)(=3w) (ar2) Y2+ e+ o)1 = 3w)w - 1)
= x2(w +¢) {4w2d(1 +38) — (w+¢) (w2 Fwtel — 3w)>}

+ @ +e)1=3w) (ar2) V2 + e+ o)1 = w)(w — 1)
= x2(w +¢) {w2 [4(1 +3e)d — w —&] — (w+ &) (w + &(1 — Sw))]

+(w+e)(1 —3w) (dY—2)7" Y2 + 2w + &) (1 = 3w)(w — 1)2
< x*(w + e)w? [4(1 + 3e)d — w], (7.557)

where we have used w > 1, whichin turn gives the bounds —(w-+-¢) (w + ¢(1 — 3w)) <
0, (w+e)(1—3w) (dY2)7"Y? <0, ex*(w + &)(1 — 3w)(w — 1)*> < 0. Recall
that % 0= 0 by (7.528)—(7.529). From (7.556) and (7.557) it then follows that

d\ . d 1
—) <0 if — < ——. (7.558)
w w - 4(1 + 3¢)

Therefore by Theorem 7.4, inequality (7.534) and (7.558), the ratio % increases to
the left of ¥ = Y as long as % < m. If the ratio ever exceeds m going

to the left then it must stay larger than m as seen by a contradiction argument
using (7.557). Therefore the claim follows. ]
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The next lemma establishes the monotonicity of the function x w, and as a conse-
quence the strict lower bound w > 1+ ¢ on (Y™, 0] for some ¢ > 0. The former is a
preparatory step to prove that the flow remains supersonic in Lemma 7.11.

Lemma7.10 Let (x,w,d) be a local-in-Y solution to (2.58)—(2.60) analytic in
(Yo, —Yo) given by Theorem 7.4. Then there exists an 0 < g9 <K 1 sufficiently small
so that

(xw) <0, Y™ <Y <Yj. (7.559)

Moreover, there exists a constant ¢ > 0 such that
wl¥)>14+c, Y™ <Y <Yy, 0<e<e. (7.560)

In particular, inf (yms gy w(Y) > 1.

Proof By (2.59)—(2.60) we have

_U—wyw  xw+e)d=3w) 20+ n)x ww+e)’d—w)

(xw) (1-¢e)Y TSYZ Ve
_ 2xw? —ex +3ewy o2 +mxww + £)2(d — w)
B (1—-¢)Y Yo
B ﬁ {(2w2 —et 38w)C —2(1+ &) x2w(w + &)*(d — w)}
X

= G- ove A. (7.561)

From (2.61) we have

A= (2w2 —e+ 3£w> ((dez)_n Y2 _ X2 [(w + 8)2 —e(w — 1)2 + 48wd])
—2(1 4+ &) x2wdw + €)% +2(1 + &) x 2w (w + £)%
= X2(w + 8)2 [—2w2 —3ew+e+2(1+ s)wz] + sxz (Zw2 —&+ 3aw) (w — l)2
—dexwd (2w2 e+ 38w) —2(1 + &) 2wd(w + &)
+ <2w2 —&+ 3sw) (dY’2>_n v?
= exz(w +s)2(w —DQRw-—1) +sx2 (Zw2 —e+ 3ew) (w — 1)2
— 48X2wd (2w2 —e+ 3aw) -2(1+ s)xzwd(w + 8)2

n (zw2 et 3aw> (dy—z)’” 2 (7.562)

By Lemma 7.8 there exists a § > 0 such that (dY‘2)_" Y2 < (1 — 8)x2wd.
Therefore

—4$X2wd <2w2 —e+ 3811)) -2(1+ s)xzwd(w -i-s)2 + <2w2 —e+ 3811)) (dY*Z)_n y?
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< x2wd (—4e <2w2 P 3€w) 21+ 8w +e)? + <2w2 e+ 3sw) (- 5))
= x2wd {(—25 —10e)w? + (—1252 —de(1 + ) +3e(1 — 5)) w
1462 262 (1 +¢) —e(l — 5)]
< —28x2wd, (7.563)

for ¢ < gg sufficiently small. Therefore

A< axz(w +8)(w—1DQRw—1)+ 8)(2 (2w2 —e+ 38w) (w—1)2%— 28)(2w3d
= 6‘)(2(11) —1) (4w3 + (=3 + 78)w2 + (282 —68)w +¢& — 82) - 28x2w3d
< 48X2w4 — 28)(2w3d
= 252w (=8d + 2cw), (7.564)
where we have used the bounds w—1 < w and (—=347¢) w2+ (22 —68)w+e—e2 < 0,

where the latter follows from the assumption w > 1 on (Y™, 0]. Plugging (7.564)
into (7.561) we obtain the estimate

Grw) 250w’ (—8d + 2ew) 20w 59 1o
w) < ——— (— ew) = ———— | 86— &
X (1—e)YC 1—orc\ w
253w - 883wt
——— (=85 +2 —-—— <0, 7.565
<(1—8)Yc( +€)< 1—e)rc ~ (7.565)
for 0 < ¢ < gg sufficiently small. Here we have crucially used Lemma 7.9.
To prove (7.560) we note that by (7.565)
xMNw@) > x Yow¥y), Y™ <Y <Yy (7.566)
and therefore
x (Yo)
w() > ) w¥p) = w¥p) > 1+ ¢y, (7.567)
X

where we have used part (d) of Theorem 7.4 in the last inequality. We have also used
the bound y (Y) < x(Yy) for Y < Y, which follows from x’ > 0 on (Y™, ¥y), which
in turn follows from the bound w > 1 and (2.60). O

Lemma7.11 Let (x, w, d) be a local-in-Y solution to (2.58)—(2.60) with the radius
of analyticity (Yo, —Yo) given by Theorem 7.4. Then

limsup C(Y) <0,
Y — (Yms)—

in other words - the flow remains supersonic.
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Proof Using (7.546) and (7.559), and the bounds

_ AexJ @yt
21 = &)J +4ex(1+d)

d >0, =26>—e)xx >0,

we get

, , 88y 3w* —dex' M +d)T + Q2n+2)dY 27"y
S = gre 21— )T +4ex(1+d) - (7368)

Since (dY " 2)7"Y2 = (1 —e)T*+4eTJ(1 +d)x — (1 — &) x2, it follows that
@Yy )Y < (1 —e)T*+4eTJ0+d)x < T Q1 —e)J +4e(1 +d)x).

Therefore

—2\—1n
‘ Qn+2@r 7Y | _cJ (7.569)

20 —e)J +aex(I+d)| ~ Y|

From (2.60) and the bound w > 1 we have the rough bound |x’| < C%%. Therefore

Y]
—dex' M +d)T - Cewyx(1+d)J s ij. 7.570)
21— )T +4ex(L+d)| = [Y|Q(I — )T +4ex(1+d) ~ Y|
Using (7.569)—(7.570) in (7.568) we obtain
/ ,shtwt Ja4w) o 8w Gt D
J = (xw) > A= o¥C — 7 — Gy _ o
(7.571)

Assume now that limy_, (yms)- (J — xw) = 0. In that case limy_, (yms)- C = 0 and it
is clear from (7.571) that 7' — (x w)’ is strictly positive in some right neighbourhood
of Y™S. Here we use the uniform positivity of xw on (¥Y™$, 0], which follows from
Lemma 7.10. A contradiction. O

We have shown that the flow remains supersonic to the left of ¥ = 0 and therefore
the only obstruction to the global existence of the solution is the finite-time blow-up
of the unknowns. We shall show that this is precisely the case. The intuition is that
right-hand side of (2.59) will be, in a suitable sense, dominated by the first term on the
right-hand side, which will lead to the blow-up of w through a Riccati-type argument.

Proof of Theorem 2.5. Let « > 0 be a positive constant to be specified later. We
rewrite (2.59) in the form

o (w+ed -G -20w) 2(w +¢€) 3 ) B
w' = Ty * Goere (ewe = 1+ o) 2w+ e)d —w).  (7.572)
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We focus on the term
E:=awC— (1+&)x’ww+e)d —w).
By (2.61) we have

E = awd "Y' — qw(l — &) x*w? — dsaw’ x>

+ awx2(8 —?)— 48ax2w2d

— (I + o) wd(w+¢) + (1 + &) x°w’(w + ¢). (7.573)
We let _
146

o=t (7.574)
1—c¢

where § > 0 is a constant to be specified later. After regrouping terms in E above we

obtain
E = x*w? <—(l + 8w —2n(1 +8) + (1 +&)(w +¢) + 8(112— S))
+ %iwd—’?(ﬂ)lw —2n(1 4+ 8) x2wd — (1 + &) x*wd(w + &)
< x2w? <_(S—g)w—2n(1+g)+8+82+8(1w_+5))
Hawd (i%i(l =8 =2m(1+8 - (1 +8)), (7.575)

where we have used Lemma 7.8 in the last inequality. It is now clear that with the
choice

§< =6, (7.576)

N =

there exists an 0 < g9 < 1 sufficiently small, so that both expressions on the right-
most side of (7.575) are strictly negative for all 0 < ¢ < go. Here we use w > 1.
We conclude therefore from (7.572) and (7.574) that

Rl G =B w) _ 1-3:-25 (w+e) (=55 — W)
- (1—e)Y 1—¢ (1—-e)Y
(7.577)
Now choose § sufficiently small (but independent of ¢) so that w(Y) > 1—1%;i 35 for

allY € (Y™, Yy), which is possible due to (7.560). Let now

1-3-25
o 1l-g

K :
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We conclude from (7.577) that

Kw—1 Kw—1
w’g_c(w“)l(Y'w ) o g™ Iil ) ym_y <y (1.578)

for some universal constant a > 0. Inequality (7.578) is a Riccati-type differential
inequality and leads to finite ¥ blow-up of w. We provide here the standard argument
for the sake of completeness. Upon multiplying w by K and then redefining a > 0,
we may assume without loss of generality that K = 1. Divide (7.578) (with K = 1)
by w(w — 1) and express both sides as an exact derivative to conclude

1 /
log ((1 - —> |Y|_”) <0, Y <Y (7.579)
w

Upon integration this yields the bound

> Y <Y, 7.580
YT e T (7:380)

and therefore w necessarily blows up as ¥ — Y7 for some —oo < ¥ < ¥, < 0. By
Lemma 7.9 this also implies that d blows up as ¥ — Y.

We next want to show that lim,_, 5, x(¥) = 0 and therefore Y = Y™, We note
that for any Y € (17, 0] we necessarily have x(Y) > 0, which follows from (2.60).
Since x’ > 0 by (2.60) and the bound w > 1 it follows that x decreases to the left of
Y = 0 and the limit

X+« := lim x()>0 (7.581)
Y—>Y+

exists. Assume by the way of contradiction that x, > 0. We look more closely at the
leading order behaviour of the right-hand side of (2.59) on approach to the blow-up
point Y. Since

- d
0<d<—<1 (7.582)
w

by Lemmas 7.7 and 7.9, and the assumption yx, > 0 it is easily seen that

3w? 2(1 4+ e)w(d — w)
w' = + +R, 7.583
(I-8Y Y ((I-ew?+4ewd) ( )
where R has the property
R(Y)
L sy = O
Yoyt 2040w d—w)

Y ((1—&)w?+4eswd)
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From (7.582) and (7.583) it is now clear that there exist constants 0 < k; < k7 such
that
R T AR (7.584)
-5 <5 <7, ) B .
Y w? Y
for some constant 8 > 0. Integrating the above differential inequalities over an interval
[Yo, Y] C (Y,Y + B) and letting Yo — Y, we conclude

1 1
- . > w(Y) > —— . (7.585)
Y =Y+ 0(Y —Y|?) kil =Y+ O0(Y —Y|?)

in a possibly smaller open right neighbourhood of Y. By (2.60) we have (log x)' =
l}w , which together with (7.585) shows that there exist some positive constants 0 <

K1 < k2 such that

k1< ogx) |Y —Y| <k (7.586)
in a small open right neighbourhood of ¥ . Integrating (7.586) we conclude that

lim x(Y) =0, (7.587)

Y—>Y+
which contradicts the assumption x5 > 0. It follows that in particular ¥ = Y™, 0O

Corollary 7.12 (Uniformity-in-¢) There exist a constant A > 0 and 0 < gy < 1 such
that for all ¢ € (0, eg] we have the uniform bounds

1
< << A, (7.588)

where —oo < Y™ < 0 is the maximal existence interval to the left from Theorem 2.5.

Proof Both constants C and a in (7.580) can be chosen to be e-independent for &g
sufficiently small and so we obtain a uniform upper bound on the maximal time Y™,
Since by the construction Y™ < Yy < 0, where Y is the ¢-independent constant from
Theorem 7.4, we conclude the proof. O

7.4 The Massive Singularity

Definition 7.13 (The massive singularity) The hypersurface MS, defined through

JE

Y]

MS, = {(f,R)‘R: f}\{(0,0)}

is called the massive singularity.
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In this section we compute the precise blow up rates of the RLP-solution at the
massive singularity. To this end, it is convenient to introduce the quantity

5 - 1 d
Ci=—x w2 = —x 2w (ar=?) 24 [(1 + o) —e(l— —)? +4s—i| .
w w w
(7.589)

Lemma 7.14 The limits Qq:=limy_, yms % and limy _, yms C_(Y) exist and are finite.
Moreover 0 < Qo < 1 and

lim C(Y)=1—¢+4¢0,.
Y}?M() e+4eQo

Proof We let J
Q:=—.

w

We use (7.556)—(7.557) to derive a differential equation for Q:

(7.590)

, dw(w + &) 1 A1 (w + &)(1 = 3w)|Y |22
= 7" (143540 —-1)— —a(Y -

@ (1—9)Yw2C [( FiaEe—b wa( )]+ (1 —o)Y|x2w*C

=1 (V) +ap(¥)d' 7, (7.591)

where the function «(Y) is given by

Te —3e* & —
a(¥)=1-9s 4 _E- (7.592)
w w

By the invariance of the flow, we know that (14-3¢)(4Q—1) > %ot (Y) and in particular
the function « is nonnegative on (Y™, Yp]. Integrating (7.591) we conclude that

Y Y
oY) — Q(Y™) =/ ay(s)ds +/ d' oy (s)ds. (7.593)
Yl'ﬂS YmS

We observe that o is a bounded function on (Y™, Yy] and d'~" is bounded from
above by k1= (8Y) =1+ and therefore ‘ Ir L d" e (s) a’s‘ < Ly —y™sn_Since Qs

~ £

bounded, it follows from (7.593) thato; € L1 ((Y™S, Yy]). For any Y1, Y2 € (Y™, Y]
we conclude that

Y Yy Y 1 !
Q(Yl)—Q(Y2)=/ al(S)dS-i-/ dl*"az(S)dSS/ aj(s)ds + —|Y —Y™"
Yy Y; Y1 e

1

In particular, Q is uniformly continuous on (Y™, Yy] and therefore Q¢ =

limy_ yms Q(Y) exists as claimed. Since 0 < % < 1 by Lemma 7.9 we have

Qo € (0, 1]. To show that limy_,yms C(Y) exists it follows from (7.585) and the
continuity of Q that we only need to show the continuity of x ~>w ™2 (d Y’z)_77 y?
at Y™, However, by Lemma 7.10 the quantity x ~2w~? is uniformly bounded from
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above on approach to Y™ and by (7.585) (dY 2) " Y2 < |Y — Y™[Tas ¥ — Y™,
so that x 2w ™2 (dY_z)_n Y? necessarily converges to 0 as ¥ — Y™, Therefore
Y +— C(Y) is continuous and it converges to 1 — & 4 4e Qg at Y™, O

Lemma 7.15 There exist positive constants W, d > 0 such that

A

w ms|—1
w(Y) = m +oyym (Y —Y™|7), (7.594)
dA ms|—1
A0 = e orpm (Y =Y, (7.595)
Moreover
s YmE 21y

Proof Dividing (2.58) by d? and using (7.589) we obtain

d 2 (049G =D

—_— = 7.597
Z =Y c (7.597)

The right-hand side has a strictly positive limit i by Lemma 7.14, where d equals

Y™ Qo(1 +¢&(4Q0 — 1))
2 1= 0o

d= , (7.598)

and we may write the limit in the form % + oy yms(|]Y — Y™|). We may now inte-
grate (7.597) to conclude (7.595). Analogously, we divide (2.59) by w? and obtain

w1+ E)(5-3) 204+nA+52%L -1
w2 -9y Y c '

(7.599)

By Lemma 7.14, the right-hand side converges to a limit denoted by %, given by

1 3 201+ 1— 0o
W (1 —e)|Yms| [Yms| 14e(4Qo—1)

(7.600)

We may now integrate (7.599) to conclude (7.594). Since by (7.594) and (7.595)
Qo = %, it follows by multiplying (7.598) and (7.600) that

Y™ Qo1+ (400 — 1)) ( 3 2(1+mn) 1—- 0o )
Qo = ( — .

2 1= 0o 1 —g)|ym| |Yms| 1+e(4Qo— 1)
(7.601)
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Since Qo > 0 by Lemma 7.14, we may divide by Q¢ above and reduce the problem

to the linear equation (4Qo — 1) (1 + ¢) = 0, hence % = Qo = %. From (7.598)
and (7.600) we now conclude (7.596). O

Proposition 7.16 (Massive singularity) Let (W, d) be given by (7.596). There exists a
X > 0 such that on approach to the massive singularity MS; the solution (d, w, x)
of (2.58)—(2.60) obeys the following asymptotic behaviour:

A

w
Y) = ———+—— (14 Oy_yms(|Y = Y™|N)), 7.602
W) = s (14 Or | ") (7.602)
40) = — (14 Oy syl — 771 (7.603)
|Y — yms| - ’ ‘
X(Y) = ZIY = Y™S[T5 (14 Oyyms (1Y — Y™|7)) . (7.604)

Moreover, the quantities fi, , defined by the extension of (2.68) and (3.107)t0 Y €
(Y™, 0) respectively, satisfy

20 msy 12 2% s\ — 5
et =<y yms (Y = Y"™)T=¢, e xy_yms (Y = Y"") 30-9), (7.605)

The star density p and the Ricci scalar R blow up on approach to MS,.

Proof We introduce ¢:=Q — }‘ = % — 4]'1’ we can rewrite (7.591) in the form

A
/
¢ =5 —5md+B (7.606)

where

A 4(1 4+ 38)d|Y — Y™S|w(w + &)

(1 —e)|Y|w2C
O(w +¢) A" (w + e)(1 — 3w)|Y |22
= — =0 = .
(1—=2¢)|Y|wC (1 —8)|Y|x2w*C

From (7.585) and Lemma 7.15 we immediately have

A(1+3e)d 2

lim A(Y) = FA+2m) = 4o, (7.607)

Y —yms - (1 _8)|Ym§| -
B(Y) = Oy_ym(|Y — Y™|71Fm), (7.608)

We now consider Y™ < Y < Y for some fixed Y and integrate (7.606). We obtain

Y _A@) Y vy ac
g(Y) = g(¥p)eln = ”’f+/ o 4T B () ds. (7.609)
Y
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For any 0 < § < 1 there exists a Y] > Y™ such that |A — Ag| < §. Itis then easy to
see that

Y A() Y A Y] Ag—$ _ yms|Ap—§
efyl T—Yms dr = JY rfg’rrz"s dr < e Jr rfowd‘[ = —|Y Y | .
|Y1 _ Yms|A0—5

We use the bound in (7.609) and conclude

s — Y™~ dg

Y — YmS|A0—5 Y Y — YmS|A0—3
lq(V)] < lg(¥)] /
Y]

|Y1 _ Yms|A0—6 : |S _ Yms|A0—6

S|y —Yy™sjAo=d oy —ymsn < |y — Y™, (7.610)

Plugging this back into (7.597) and (7.599) allows us to obtain the (suboptimal)
rates (7.602)—(7.603). Upon dividing (2.60) by x and integrating, using (7.602), for
any Y™ < Y < Y| we obtain

Y D
x(Y) = X(Y])e'l: Iy roymsy (1O yms (IT=Y™ M) d
2 ho_ ™ ymsy
= X(YI)ES(I—s) fY r(r,ymS)(H'OyﬁymsﬂY Y™S|)) dt

Y
N A = e T

2
= O(D|Y —Y™[309 (14 Oy yms(|Y —Y™M)), (7.611)

which proves (7.604).

The asymptotics for €2 in (7.605) follows directly from (7.603) and (7.494). The
asymptotics for e2* in (7.605) can be read off from (7.603)—(7.604), (2.69), and the
identity (3.98), which in the (d, w, x) variables reads

AT 2 = qyH, (7.612)

for some constant « > 0. It then follows from (7.612) that as Y — 07, e2X =

(8Y)_ﬁ.
From (2.57), we conclude that X(Y) = a’(Y)%%i Xy _yms SY_%, where we

slightly abuse notation by continuing to denote X (Y) to signify the selfsimilar energy
density (see (2.19)). Therefore by (2.19), for any 7 > 0

R 1 _lke
¥)= ———3)= —=2(Y) xy_yms §Y T-=.

‘L’(f, R)2 52%877 72y2

p(T, R) =
(7.613)

The fluid density therefore implodes along MS, and as a consequence of (2.75), the
Ricci scalar blows up at MS,. O
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Remark 7.17 We can now use the asymptotic rates from from the previous lemma to
replace the rough upper bound x ~>w~2 < 1, by the sharp upper bound rate |¥ —

__4 . . .
Y mS|2 3a-¢) . This can then be bootstrapped to obtain the near optimal next order

correction in the rates (7.603)—(7.602), where n can be replaced by % 4+ O(¢e). We do
not pursue this here, as it will not be needed in the rest of the paper.

8 Causal Structure of the RLP Family of Solutions

As explained in Section 2.6, Theorems 2.3, 2.4, and 2.5 imply the existence of a
maximally selfsimilarly extended RLP spacetime, recall Definition 2.7. The standard
ODE-theory implies that the solution is indeed real-analytic in ¥ on (Y™, co). We next
show that the RLP-spacetimes are not asymptotically flat and compute the associated
mass-aspect function as r — co.

Lemma 8.1 ((Mpgrp.e, grLP.¢) is notasymptotically flat) The RLP spacetimes (MRLp ¢,
8RrLP,s) are not asymptotically flat, i.e. for any T < 0, limg_, oo m(zr, R) = oco. More

. . 2m(z,r) .
precisely the mass aspect function === salisfies

2m(t,r) . 2m(t, R)
m —= lim —————

= =ded,,
r—o0 r R—oco r(t, R)

where dy > 1 is the e-independent constant introduced in Lemma 6.5.

Proof Fix at < 0. As R increases to oo we have y = _551 — 00. Recalling (2.10)
we have
Loom@R) AT o s B(y) er? () (v) dR
R— o0 R R— o0 R
=2¢ lim foy Z@F @) dz
y—>oo y
=2¢ yll)ngo TP (y)F (y) = 2¢eda, (8.614)

where we have changed variables and used y = — R - in the second equality, the

I’Hospital rule in the third, and (6.454)—(6.455), (2.33)1, Remark 7.2 in the last. Note
that limp_ o % = lim, _ % = 1 by (7.499)—(7.501). O

As stated in [28], it is clear that along any line of the form (7, @t) the density
p(t,at) = ?1,22(:/—%) diverges as T — 0. A similar statement applies when

we approach the scaling origin (0, 0) along the lines of the form (7, @7), T > 0.
In particular, by (2.75) the Ricci scalar blows up at (0, 0) and this is a geometric
singularity. We now proceed to study the radial null-geodesics that “emanate"” from
this singularity. We shall henceforth use the abbreviation RNG for the radial null
geodesics.

@ Springer



Naked Singularities in the Einstein-Euler System Page 125 of 182 4

Lemma 8.2 (a) In the (t, R)-plane the outgoing/ingoing RNG-s respectively satisfy
the equations

AR _ | purr, = R@

dt NG

whenever the right-hand side is well-defined.
(b) Similarly, in the (T, R)-plane the outgoing/ingoing RNG-s respectively satisfy the

(8.615)

equations
dR +1 —/eT
= ¥= R@’, (8.616)
T - 3 Ny (7)
whenever the right-hand side is well-defined.
(c) IfweletY = —‘/75, then the curve (o T, T) is a simple outgoing/ingoingRNG (see
Definition 2.11) if and only if
G+(Y) =0, (8.617)
where i !
Ga(Y):=rfee =R 4 fy. (8.618)
e

Proof Proof of part (a). Equation (8.615) is just the condition that the radial geodesic
has null length in the local coordinates (2.70).
Proof of part (b). In the local coordinates (2.65) the RNG-s satisfy

_ ) (%(s))z - %Y@Zﬁlé(s)é(s) + (ezx(") - 47"51/%2[‘(”) (R(s))* =0, (8.619)

(1+¢6)2
where it is understood that Y = _‘gf)(s) in the above expression. Reparametrising by
T the above ODE, we obtain
- 2
1= (-2 _ 48y (dRYT_ 4ve | dR (8.620)
(1+¢)2 dt l1+e drt

or equivalently

dR\? Siv)-2cr 2 L dR\?

AR\ pphm—2am) _ (4 ye2) . (8.621)

dt I+¢ dt

Upon taking the square root, solutions to the equation (8.621) are given by the solutions
of (8.616).
Proof of part (c). The proof follows by direct substitution in (8.616). O
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Remark 8.3 For the purpose of describing the causal structure of the selfsimilar space-
times under consideration, it is convenient to introduce the function

Fo(Y) = Y2e2Re(=20e(¥) y o yms, (8.622)
where Y = _‘/Rgf is the selfsimilar coordinate associated with the patch (2.65) and we
keep the index ¢ to emphasise the dependence on ¢. It is then straightforward to check
from part (c) of Lemma 8.2 that an RNG (o7, T), 0 # 0, is simple if and only if

1 14¢\? &
—FS(Y)=< ) Cy- Y (8.623)
e 1—¢ o

Formulas (8.618) and (8.622) give the obvious factorisation property:

2 2
G (Y)G_(Y) =—¢ (1;8> ?re (V)= 2ite (V) (lFs(Y) - <Iﬂ> ) (8.624)
1+¢ e 1—¢

Proposition 8.4 Let F,(-) be the function given by (8.622). There existsan 0 < gy < 1
such that the following statements are true.

(a) The function F; satisfies the formula

(1482 dY )Y +ex2 [(we — 1)? — dw,d, ]
(1—e)? (we +€)2x2

F.(Y) = LY > Y,

(8.625)

(b) There exists an Y < 0 such thatY > Y™ (= Y["™) forall ¢ € (0, e9] and

1
EFS(Y) > 2 forall ¢ € (0, &]. (8.626)

(c) For any fixed ¢ € (0, gg] we have

lim F.(Y) =0, (8.627)
Y—0

lim F.(Y) = 0. (8.628)
y_)YI‘ﬂ.Y

Proof Proof of part (a). By (2.68) we have for any Y > 0

- 2
Fo(v) = y2e2iem =20 _ LH O aiay 2. r)-20,0)

(1—¢)?
_ a4+ e)? ~2 2016 (=206 (Y) ()2 de " + e [(we — 1)” — ddewe
(1 _ 8)2 (1 — 8)2 (w€ + 8)2;62
1462 (Y)Y 4 ex2 [(we — 1) — 4wed,
_ ( +8)2( & ) Xe [(uz]g 5 ) We 8], y,Y >0, (8.629)
(1—¢) (we + &) x;

@ Springer



Naked Singularities in the Einstein-Euler System Page 127 of 182 4

where the index ¢ is added to emphasise the dependence on . We used the for-
mula (2.56) in the third equality, and (7.498) to express y~2e2Hc()=22() in terms of
We, dg, and 7, in the fourth. Since the right-most side of (8.629) extends analytically
to Y € (Y™, 0] by Theorems 7.4 and 2.5 the claim in part (a) follows.

Proof of part (b). Note that for Y € (Y™$, 0] by (8.629)

1. (+8? dY )72 (1482 [(we — 1) — dwede]
JFe= s =2 (s 0222 + e ST - (8.630)

We now fix ¥ = Y, a constant provided by the local extendibility statement of
Theorem 7.4. In particular, by part (a) of Theorem 7.4 there exists a § > 0 such that
for all & € (0, g9] we have d,(Yo) > 8, x.(Yo) > & and ds(Yy) < w,(¥y) < }. By
letting ¢ — 0 in (8.630) we conclude that

1
—F.(Yp) > 2 for e sufficiently small. (8.631)
&

Proof of part (c). Claim (8.627) follows from the formula (8.629) and the asymp-
totic behaviour (7.499)—(7.503). To prove (8.628) we work directly with (8.622) and
use (7.605). This gives

lim F.(Y)= lim (Y262M5(Y)*2)»s()’))
Y—(yms)* Y (yms)+

2 ) 2(14+3¢)
Xyyms C(Yms) lim (8Y) 3= =0. (8.632)

(Y —Yms)—0+
a

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. Our first goal is to show that for 0 < ¢ < 1 there exist at
least two solutions to the equation (8.623). By parts (b) and (c) of Proposition 8.4 it
is now clear that the function ¥ %FS (Y) convergestoOat Y = Y™ and Y = 0,

2
but necessarily peaks above (%) at Y = Yy, where Y is given by Theorem 7.4.

Therefore there exist Y; € (Yp, 0) and Y> € (Y™, Yy) such that (8.623) holds with
Y =Y and Y =Y. Since Y1, ¥ are strictly negative and necessarily zeroes of G+
defined by (8.618), they must in fact be zeroes of G and therefore represent outgoing

2
simple RNG-s. Note that the function ¥ — F.(Y) — ¢ (}%ﬁ) is real analytic on
(Y™s,0) and therefore the number of zeroes is finite. By slight abuse of notation we
enumerate the zeroes as in (2.77). O

We recall the relationship (2.56) between the comoving selfsimilar coordinates y
and Y, as well as the relation between the comoving coordinate y and the Schwarzschild
coordinates x in Subsection 3.2. Recalling the sonic point Xy, the slope of the sonic
line in the Y-coordinates is given by

1

Y= (f—l(x*))fm . (8.633)
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The next lemma is important for the description of ingoing null-geodesics. It in par-
ticular implies that the curve A is the unique simple ingoing RNG.

Lemma 8.5 For any ¢ € (0, &), consider the relativistic Larson-Penston spacetime
given by Definition 2.7. Then there exists a Ynr € (0, Y*P) such that the curve

N :={(F,R) € Mgrp, | _fr

=Y, (8.634)

represents a simple ingoing null-geodesics i.e. the boundary of the past light cone of
the scaling origin O. Moreover; the curve N is the unique simple ingoing RNG and
the following bounds hold:

G_(Y)>0, Ye™ YN, (8.635)
G_(Y) <0, Y eXn,00), (8.636)

where G_(-) is defined in (8.618).

Proof By Theorem 2.12 it suffices to show that there exists a Yar € (0, Y*P) which
solves the equation (8.623). By part (c) of Proposition 8.4 we know that the function
Y — éFg(Y ) converges to 0 at Y = 0. On the other hand, from (8.622) and (2.68)
we have

1 2 1 2 1 2
F.(Y) = ﬂyfzezu(y%zx(y) _ ﬁy—z (ezu(y)fzx(y) B yz) (1+¢)

C(-e)? (1—¢)? (1—8)?
(8.637)
Therefore, at the sonic point Y*P we conclude F,(Y*P) = + )2 , which implies that

1F (Y*P) is larger than (%) for all ¢ € (0, 1). By continuity, there exists an

Yn € (0, Y*P) such that —F Yn) = (HS) Now observe that by (8.637), the

2
zeroes of the function %FS(Y) — (%) are in 1-1 relationship with the zeroes of

the function (0,00) > y +— e?*y? — %ezl‘. It is shown in Lemma A.4 that the

map y > 7(y)? (e?*y% — Le2#) is strictly monotone on (0, 00) and the uniqueness
claim follows. Inequahtles (8.635)—(8.636) are a simple consequence of the factorisa-
tion (8.624), the above monotonicity, and the positivity of G4 forall Y > 0. O

Definition 8.6 We refer to the region in the future of the backward null-curve A/ as the
exterior region, and the region in the past of the null-curve A as the interior region,
following here the terminology in [6], see Figure 5.

Remark 8.7 For any (R, T) in the exterior region, we note that \/Ee‘l_’i 1 + -Y s
clearly positive for Y € (Y™, 0]. When Y € (0, Ynr) we may rewrite this expression
as G_(Y) + 1 38 Y, which is then positive by Lemma 8.5 for sufficiently small ¢.

On the other hand the expression /gef~ Iy 1 132 Y is clearly positive for ¥ > 0. If
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Y € (Y1, 0), we may rewrite itas G4 (Y) — lljf; Y, which is then necessarily positive.

This shows that the right-hand side of the null-geodesic equation appearing in (8.616)
is well-defined in the exterior region {¥Y] < Y < Yxr}.

Lemma 8.8 (General structure of radial null geodesics)

(a) Forany point (Ry, To) in the interior region, the future oriented ingoing null curve
T + R(T) through (Ry, To) remains in the interior region and intersects the
surface {R = 0} at some T < Q.

(b) For any point (Ro, To) in the exterior region, the future oriented ingoing null curve
T + R(T) exits the exterior region by intersecting B| and also intersects By at
positive values of the R-coordinate.

(c) For any (Rg, To) in the union of the exterior and the interior region, the outgoing
null curve T +— R(T) through (R, To) exists globally-in-T and lim; _, o, R(T) =
00. Moreover, no such curve can converge to the scaling origin O to the past.

Proof Proof of part (a). Assume now that (Ry, Tp) is in the interior region. The
future oriented ingoing geodesic must stay in the interior region, as it cannot cross
the backward light cone ¥ = Y,s by the ODE uniqueness theorem. In the inte-
rior region it is more convenient to switch to the original comoving coordinates
(R, t) as they also cover the centre of symmetry surface {(R, 7) | R =01 <
0} = {(r,7), |r = 0,7 < 0}. Let (R, t9) correspond to (Ry, Tg). The ingoing
geodesic equation reads 9; R = —e*~* and the interior region is characterised by
the condition e~ > /ey Let now T = —log(—1) for T < 0. We then have

d dy R (=2 (y) _ . d
D= g = — 5+ ¢§r2) (—7) = —%. In particular 2% < 0, the
right-hand side is smooth, and there are no fixed points of the above ODE on the
interval (0, yanr). We wish to show that the time 7 it takes to reach y = 0 is finite.

Integrating the above ODE, we see that

T(y)—To=/y_—*/Ed9,
B

L eh OO [0

Ro
—Jen'
use (2.73) and M@ < 0 to conclude that, as y — 0%, the denominator inside the

2

where Tp = —log |tol, yo = Note that e =4 =y0t % by (3.95). We next

integral above asymptotes to a constant multiple y~ 31+ . Since the latter is integrable
near y = 0, it follows that lim,_, o+ T'(y) < 00, as desired.

Proof of part (b). Let (Ry, To) belong to the exterior region. We consider the change
of variables T +— Y and the particle label R as a function of Y. By (2.55) and the
geodesic equations (8.616), along any null-geodesic we have

dY_d( ﬁf) —\/5<1_~ I dR>

a7 di\ R® )T R® "R(G) di
el Y 1 G+(Y)
= ——=C TN 2 Y= — 2 s
R(7) VE Gh)—iu¥) % R(T) h)—a(¥) %

(8.638)
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where ) 1
Gy (Y):=faer =AM 4 fY. (8.639)
£

We note that by Remark 8.7 all the denominators appearing above are nonzero. There-
fore the geodesic equations (8.616) transform into

+1 dR dY -1 G+(Y) dR
A 2T dY dF R gnonn w 28y ay” 040
e()*u):FW e()*u():f:m
For as long as R > 0 we can rewrite the above ODE in the form
4 log Ry = — T (8.641)
— (10 = . .
dy 8 G(Y)

We remark that by Lemma 8.5 the denominator is strictly positive in the exterior region
and in the case of outgoing geodesics, function G is in fact strictly positive for all
Y € (Y1, o0) (positivity of G characterises the region “below" By).

For the ingoing geodesics, the exterior region is invariant by the flow. We inte-

grate (8.641) to conclude that (with Yg:= — IRLEO)

Yo 1

log R(Y) —log Ry = —/ dz. (8.642)

vy G-(2)

The map Z +— G_(Z) is smooth and by Lemma 8.5 it is strictly positive on the
interval (Y™, Yr). Therefore, R is positive as the ingoing RNG traverses B and 5;,
as the right-hand side of (8.642) is finite for any ¥ > Y™S.

Proofofpart (c). Let (Ry, Tp) belong to the exterior region. The outgoing null-geodesic
solves the ODE

d -1

—(ogR) = .

dy G4 (Y)

Note that G is smooth on (Y1, Yr). Since Y; < O is the largest negative root of
Z +— G4 (Z), the right-hand side above is negative. It follows that ¥ +— R(Y) is
decreasing on (Y7, Y,), i.e. R(Y) increases as Y approaches Y| from the right. In
particular, the solution exists for all Y € (Y7, Y,] by the strict negativity of the right-
hand side above. We consequently have the formula

Yoo
R(Y) = Rpexp </Y G2 dZ> , Y > Y. (8.643)

Since the function G is positive for Z > Y,ift G(Z) = C(Z—Y)"(1+0(|Z—Y1]))
is the first term of Taylor expansion of G at Yj, with m € N (recall that G is real
analytic), then necessarily C > 0. Plugging this expansion into (8.643) and integrating
we conclude limy_, v R(Y) = oo, which shows that the outgoing null-geodesic
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asymptotes to ;. Since ¥ = —‘/If(fg) and limy_, (yy+ R(Y) = o0, it follows that

limy_, (y,)+ T(¥) = 00, and therefore the outgoing geodesic exists globally on [, 00)
and lim;_, o R(T) = oo. If (Rp, Tp) belongs to the interior region, a similar analysis
in the original comoving coordinates (R, t) yields the same conclusion.

Since the function G (Z) is smooth and bounded in a neighbourhood of Z = 0,
it follows from (8.643) that any outgoing geodesic starting at (R, 7o) with 7o > 0
intersects {7 = 0} axis (i.e. ¥ = 0) at a positive value of R to the past. Due to the
monotonicity of the flow (8.643), any outgoing geodesic emanating from (Ry, 7o) with
7o < 0 remains below {T = 0} axis to the past. O

9 Asymptotic Flattening of the Selfsimilar Profile

The key result of this section is the local well-posedness for the characteristic initial
value problem for the Einstein-Euler system, see Theorem 9.4. The idea is to suitably
truncate the selfsimilar spacetime as described in Section 2.7. We work with the
double-null formulation, see Section 2.7.1, and our starting point is the reformulation
of the fluid evolution equations (2.87)—(2.88).

9.1 Reformulation of the Fluid Evolution and the Effective Transport Velocity

We introduce the constant
V2n+n?

ky:i=1=%
* 1+7

, (9.644)

where we recall n = n(¢) is given by (2.38) and from (9.644) it is clear that k1 =
1+ 00(/m.

Lemma 9.1 (Reformulation of the Euler equations) Assume that (p, u”, r, Q) isa C'
solution of (2.87)—(2.88). Let

U=(1 + Q2 u)?, (9.645)
| — eykr

A Gl H‘Si PR =2 e =1 (092 (9.646)

- 14+¢ }’27<2+2'7)k—p1*k— 0647

L S (0-647)

Then the new unknowns f* satisfy

0,2 9
0 sl 42Uy QTS — 2T fT =0, (0.648)
r

_ _ 0,2 ogr _
Opf~ +hk_Udyf~ —2k_ (2? —2n—)Uf~ =0. (9.649)
r
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Proof Let U:=Q42TPP and V:=Q2r2+21TP4, Using (2.91) we rewrite Q42199 =
1+ n)z% sz Therefore, (2.87)—(2.88) can be rewritten in the form

92 217 4 V2

_ 2F
0pU + —3:0gV =0, 8,V + (1417 550 () =0. (9.650)

For any k € R we now compute 9, ( ) and thereby use (9.650):

Vk Vk—l Vk
0p(77) = ke, V = 750,V
L 292 174 Vk - 2Vk+l QZ
= k(1 + ) g () — 2K+ P (5
) 2 k Vk QZ
—kQ—-k(A+n 2’7U28 V—i—mrTn@qV. (9.651)

We see that the last line (9.651) vanishes if & is a solution of the quadratic equation

1
K —2%k+— =0. 9.652
(14 n)? ( )

The two distinct roots k+ of (9.652) are given in (9.644), and the equation for %
reads

Vki 292 Vv Vki zvki-i-l QZ
a,,<U)+ki<1+n) aq(U)+zki(1+n> - aq(rﬂ):o.

2nU

When k = k4 > 1, we keep % as the unknown. When however k = k_ < 1, we

work with 2= instead, to avoid singularities for small values of p. From above we
obtain the equation

U ,Q*V U N Q2
8<Vk>+k (1+1n) 2w‘a) <V_k) 2k-(L+m?VITg, (=) =0.

. .. . v _ r2n V_k _
Going back to original variables, note that 7 = TP wr? and o =
(1—g)k F@F20n=2 k1

e Fan — S° that

2y 1+n
r2n U QZ(up)2
Vk+ _ (1 _ 8)k+ r(2+2ﬂ)k+—2pk+—1

1+ = +mnQ°W)* =U

= = fT
U 1+e¢ Q4 (ur)? ’
u l+e 4 p2o- - -
— Q P QCH+2mk— J1—k— _ ,
Ve = o W p f
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S

S
light cone sound cone /

(Po,90)

Fig. 9 The grey shaded area in the infinite rectangular region D is a schematic depiction of the region
bounded by the backward fluid characteristics emanating from a point S € D. The opening angle is of order
V€ < 1, which of course is precisely the speed of sound

where we recall (9.645)—(9.647). O

Remark 9.2 1t follows from (9.646)—(9.647) that

1 (f+f )k+ k_

T l—e oy

(9.653)

Moreover, from (2.82) and (9.646)~(9.647) we have 4~ — 41 (y1)*, which

Ly
) = 7 (4p?
leads to the relation

+
U= (1+n@w)? = (1 -+ (;_) . 9.654)

9.2 Statement of the Local Well-Posedness Theorem

In order to flatten the the grrp. metric at asymptotic infinity, we shall treat
the system (2.83)—(2.84) and (9.648)—(9.649) as the evolutionary part and equa-
tions (2.86)—(2.85) as the constraints.

9.2.1 Fixing the Choice of Double-Null Coordinates

We now fix a choice of double-null coordinates which will then be used to dampen
the tails of the solution and produce an asymptotically flat spacetimes containing
a naked singularity. Let (7Tp, Rg) € fDRLp,‘s be a given point in the exterior region
(see Definition 8.6 and (2.66) for the definition of f)RLp,s). Through (7, Rp) we
consider the ingoing null-curve which intersects the outgoing null-curve B (given
by R = &l r) at some (Rp, 71) where by Lemma 8.8, Ry > 0. We then fix the
null-coordlnate p by demanding that

p = —2(r —rp) along the ingoing null-geodesic through (Ry, Tp), 71 := F(Ry, T1);

(9.655)
and demanding that the level sets of p correspond to outgoing null-geodesics. The
choice (9.655) normalises B; to correspond to the hypersruface {p = 0} in the
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RLP-spacetime. Note that in the RLP spacetime, the ingoing curve through (7p, R)
terminates at the massive singularity MS; to the future.

Let now the outgoing null geodesic through (7, Rp) intersect the surface A/ (bound-
ary of the past of the scaling origin O) at (R, T,). We then fix the null coordinate ¢
by demanding that

q = 2(r —r,) along the outgoing null-geodesic through (7o, Rp), 7y := F(Ry, T4);
(9.656)
and demanding that the level sets of ¢ correspond to ingoing null-geodesics. The
normalisation (9.656) makes the surface N correspond to the hypersurface {g = 0}.
A more detailed description of the RLP-spacetime in this double-null gauge is given
in Lemma A.1.
Let (po, go) be the point (Ty, Rp) in the above double-null gauge. We shall consider
the seminfinite rectangular domain

D:={(p,q):po<p <0, qg>qol, (9.657)

where | po| > 0 is sufficiently small, with data prescribed on the set C U C, where

C:= {(p,q) ‘ g =40, P € [po, 0]], (9.658)

¢={w.0|r=r. q¢lq ) (9.659)

correspond to the ingoing and the outgoing null-curves emanating from (po, qo)
respectively. See Figure 6.

9.2.2 Norms and Local Well-Posedness

Fix N1+ > 0 so that

ki —k_
Ny=N_—4y, N_> +T + 27 (9.660)
and let 0 < 6 < 1 be a small fixed constant. For any f* € W2 (D) and (2, [51) €

W3°°(D), we define the total norm by

L= rlll= (0| + s, F i (9.661)
where
2 o
NLFE=1og@™ £l + Y llg? 9 log £ lloo (9.662)
j=1

2
+ 11og(g™ f oo + D 1785 108 oo
Jj=1
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3
T2, 71l = [ og oo + Y llg7 735 log Rl (9.663)
j=1

q

7 4
r2 Bq(rz)

+

o0

3
+ Y g7 720] () lloo + (9.664)
j=0

‘ 00
and the data norm

lLr=s 2. riievelll=lLF=Neve I + [T, rliewell

2
= 1og(g™* fHlcuclloo + Y 1978 1og £ ¥lcuclloo
Jj=1
2 o
+ log(g™~ f)leuelloo + Y llg? 84 Tog £~ leuelloo
j=1

3
+ llog Qleuclloo + Y lg7 9 log Qlcuclloo
j=1

2 q

9y(r?) ’guc

3
=24 q
+ Y llg? 720 leuelloo + ‘ r_z’cUc
j=0 -

o0
r 40,ro,r

(1 p"% ‘
2<+ Q2 >C

We choose the data ( f £ 7 )on C to coincide with the corresponding data obtained
by restricting the RLP-solution to C. Let Ag > ¢go be a real number to be specified
later.

o]

+ g7 9, lellos +

o0

(i) The data on C is chosen so that [ f +, Q 7] coincide with the exact selfsimilar
grLP,¢ solution on the segment {(p, q) ‘P = po, q € [qo0, Aol};
(i) f* e W>®CUC),andQ, L e W3 UC) with H’[fi, &, f]@cm < 00 and
f £ Q. F>0;
(iii) the constraint equations (2.85)—(2.86) hold on C and C respectively.
Due to the choice of the double-null gauge (9.655)—(9.656), the metric coefficient 7

is determined along C. In order to impose the constraint (2.85) we can solve it for Q.
By (9.656) we have 0,r = % and by (2.89) and Remark 9.2 we may rewrite (2.85) as

1
1 _ L fT\? __
5aq(gz 2):_§(f+f == (f_+> Q2. (9.665)
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Moving the copy of 72 to the left-hand side and then integrating, we obtain the
formula

9 2m
o S+ 2r

i -\ 2
Q(po, q) = 2(po, q0) exp / (fr )=+ (%) ds|. (9.666)
q

Remark 9.3 (The Hawking mass) We recall the Hawking mass introduced in (2.10).
It can be alternatively expressed via the formula

r 40prdyr
m= 7 1+ o . (9.667)

Using (2.83)—(2.86) one can show that for classical solutions of the Einstein-Euler
system we have the identities

dpm = 2mr?Q* (TP43,r — T999,r), (9.668)
dgm =27 Q* (TP19,r — TPP9,r), (9.669)

see for example Section 1.2 of [9]. Using (2.89) we may rewrite the right-hand side
of (9.669) as 2rr?(1 —&)p (8,7 — (1 + 7)Q*(u”)?d,r). Integration along a constant
p-slice then gives

q
m(p,q) =m(p,qo) + 2w (1 — 8)/ r2p (8qr -1+ r})Qz(up)28pr) ds.
” (9.670)

We now state the main local existence and uniqueness theorem for the characteristic
problem described above.

Theorem 9.4 There exist sufficiently small §g¢ > 0 such that for any § € (0, §p)
and po = —§, with initial boundary data satisfying (1)-(iii) above, there exists a
unique asymptotically flat solution [ f*, Q, r]to the system (2.83)—(2.84) and (9.648)-
(9.649), with f* € W>*(D), [Q, -] € W>*(D), and such that ||+, 2, r1]| <
00. Moreover, this solution is a solution of the original system (2.83)—(2.88).

We shall prove Theorem 9.4 by the method of characteristics. Our strategy is to first
solve the fluid evolution equations for f* given the effective fluid velocity / and the
metric components €2, . Then we will feed that back into the wave equations (2.83)—
(2.84) for the metric components to obtain the bounds for [r, €2]. To make this strategy
work, in Section 9.3 we carefully look at the characteristics associated with the fluid
evolution. After collecting some preparatory a priori bounds in Section 9.4, in Sec-
tion 9.5 we use an iteration scheme to conclude the proof of Theorem 9.4.
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9.3 Characteristics for the Fluid Evolution

Let q+(s) = q+(s; p, q) be the backward characteristics associated with the speeds
k+U such that

d
%(82 P, q) = kiU(s, q+(s; p,q)), s < p, (9.671)
q+(p; P, q) =q. (9.672)

Since our solutions as well as I/ reside in the domain D and the boundary, we track
the backward characteristics (s, g+ (s)) until they leave the domain. In the next lemma,
we show the existence and regularity properties of g+ (s) and exit time p, = p«(p, q)
and position g, = g«(p, q).

Lemma9.5 Let £ € N. Suppose U € Ct(D) or W&°(D) and CLO < U < Cyon
D for some Co > 1. Then for any given (p,q) € D, there exist a unique exit time
P« = p«(p, q) and position g, = q.(p, q) such that

1. A unique solution q+ € C*((ps, pl; CY(D)) or C*((p«, pl; WE-(D)) of (9.671)
and (9.672) exists so that (s, q+(s; p,q)) € D.
2. Ats = px, (Px, gx) € CUC where g« = q+(px; p, q) and it satisfies

p
g - o= / ksld(s. 4 (s: p. q) ds. 9.673)
P

¢

If p« > po then g, = qo.
3. (p.q) = p«(p,q) € C(D). _
4. If p« # po, px € CH(D) or W-(D).

In particular, if ¢ > qo + k+Co(p — po), then (p«, q+) = (po, gx) € C.

Proof We prove the claims for i € C* as the case of i/ € W% follows in the same
way. The local existence and uniqueness of q+ € C* follows from & € C* via the
Picard iteration

p
q+(s) =¢q —/ k+U(S, 9+ (S5 p, q)) ds. (9.674)

Thanks to the positive uniform bound of ¢/ and Grénwall, the solution can be continued

as long as the characteristics belong to the domain (s, q+ (s; p, g)) € D.Sinceld > CLO,

q+(s) < g — ]é—io (p—5s), (s, q+(s)) will exit the domain D either through the outgoing
boundary C or through the ingoing boundary C. We denote such an exit time by p, and
the associated value ¢, = g+ (p«; p, q) where (p4, g«) € C U C. Note that for each
given (p, q) € D, (p«, gx) is uniquely determined since the backward characteristics
g+ are unique. By integrating (9.671) from s = p to s = p,, we see that (p, g«)
satisfies (9.673). We observe that if (p, g«) € C, ¢+ = qo and pg < p, < p, and
(9.673) reads as

P
q—q0= / k+U(s, q+(s; p, q))ds. (9.675)

*
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If (p«., q«) € C, px = po and gy is given by (9.673).

Clearly p. is continuous in p and ¢g. Since higher regularity of p, fails in general
at the corner of the domain where (p., g«) = (po, o), we show the regularity when
p # po. First let (p, g) € D be given. Suppose p. = p«(p,g) > po. Consider a
small neighborhood B of (p, ¢) in D such that I = p.(B), inf I} > pg. Recalling
(9.675), we define an auxiliary function H : I} x B — R by

p
H(ps, p.q) =9 —qo — f kiU (s, q+(s; p, q))ds.
Px

Then H € C! since U € C¥, while we have H(ps, p,q) =0and 95, H(p«, p,q) =
kil (px, Gsx) > 0. Therefore, by the implicit function theorem, p, = p«(p, q) € ct
in a small neighborhood of (p, g).

Lastly, sinced < Co,ifq > qo+k+Co(p — po), the backward characteristics will
intersect the outgoing surface C, in which case p. = po. O

9.4 A Priori Bounds

In this subsection, we provide estimates for various quantities appearing the iteration
scheme in terms of our norms. We will frequently use the following inequality: for
any positive function g > 0

max{llglloc, g oo} < ellogslo (9.676)

which directly follows from g = ¢!°28 and g=! = e~ 1088,

Lemma 9.6 Suppose ||[2, r]|ll < oo. Then the following holds:

= RN N
> e’y (q?_”_>H < My (IR, r1ii, (9.677)
j=0
2 - ) Qz
> la o) (73)H < Ma ([, 11D, (9.678)
j=1 &0

where M1 and M» are continuous functions of their arguments.
Proof We start with (9.677). For j = 0, it is easy to see that

3, (r?)
q

7
2

where the right-hand side is a continuous function of ||[€2, r]||| by (9.676). For j =1,

since - -
9,2 K] 0;(ro) )
0, (q——nir>=a§10gsz—g ) 1G0T
r

(9.679)

o]

n
H (——n—)H < — ||ql+98qlogm|oo 5‘
‘Io

Q r2 2 r4
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we have
0,2 d,r 1
g%, == —n— )| = —lg*82log Qo
Q r o 45
2 22 2y 112
nlq 2,2 nllq g (r°)
| 9 S 9.680
+2‘r200”q(r)”°°+2 rzoo‘ 7 ( )

which shows (9.677). Lastly, from

3,9 9 ) 39, rHa2(r) 3, (r2))3
5 (M2 ™) < grop - 10D 4 AT Gl
r

Q r2 2 r4 ré
we obtain
. 052 g1 1 n q2 .
a°0; (% - ni) H < 5 1g7 8} 10g Qoo + 5 |5 | 1995 D) lloo
r S 2|\ r
o0
2 2 3 3
2 2
+ 3n ﬁ 94 (%) 1923 [loo + 1 ﬁ 9q (%)
2 |2 4 a2 q

oo o0 o0 o0

This completes the proof of (9.677). The estimation of (9.678) follows similarly, we
omit the details. O

Lemma 9.7 (U bounds) Suppose |||[fi, Q, r]||| < 00. Then the following holds:

2
Iehlloo + 14 oo + D g? 3y Ulloo < Ma(([|LF=, 2, 71]|)) (9.682)
j=1

where M3 is a continuous function of its argument.

Proof From the first condition of our choice Ny in (9.660), we may rewrite U/ as

1
2 Ny p+\ 2
umaene (@) ()

Then by (9.676), we see that

=
U e < (14+7)*2 %H o210 Qo1 102(g ™ f oot 3 1Toz@™= F)lloe (9 683)

o]

which shows (9.682) for [|U||so + I/~ || so. Next computing 9,4 as

042 01 1 L1 -
U = |2 o " —i—iaqlogf —anlogf u (9.684)
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we obtain

ladotdle < (2 Y g r
9% loo = a Q nr

Together with (9.679), it implies (9.682) for j = 1. Moreover, since

3,2 yr 1 1 (3L1)2
2 q 2 + 2 q
U <aq<Q r)—l—zaqogf 80f> 7 (9.686)

1 1
+ 5\|q3q log f+”oo + E”qaq log f_”oo) Ul 0o- (9685)

‘ o0

we have

g2 ogr
la*83U o < (2 Hq2aq (q— - ni>

L o920 + L2 -
L2 =) |+ S1g%02 10g £ oo + 510702 1og £ oo ) o

+ 11U oo llgdgU1%.
(9.687)
Using (9.680) and (9.685), we deduce (9.682), where we recall (9.661). m]

Remark 9.8 The relation N. = N_ — 475 in (9.660) is importantly used to ensure the
boundedness (both upper and lower) of the transport speed U4.

We introduce the constant 8 > 0:

Ny +N_ OIN_ — (kp —k_ +4
Bi=2n + MotV o 20 + (ke ) 0, (9.688)
ky — k_ ky —k_

where we have used (9.660) in the second equality.

Lemma 9.9 Suppose m [fE, Q,r] ||| < 00. Then the following bounds hold:

2 ) . 92 1
Z q]+1+ﬂaqj (rTn(f+f—)k+—k>H (9.689)
j=0 >
2 ) . 02 1
Z q1+3+ﬂ 34 <r2+2n (fT )+ ) H < (9.690)
j=0 >

where M4 and Ms are continuous functions of their arguments.
Proof We will ﬁrst prove (9.689). We start with j = 0. Using (9.688), we rewrite
217 f+f )k+ k7 as

2n %
g = Py a2 (1) (M e )
r
from which we have
2 q2 7 ___
la' 9] <ueiX | L] da™ sl Tl 5 0691
o] r 00
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By (9.676), the claim immediately follows. We next compute

0,2 o,yr dglog fT 4 0, log f~
pH=(2(-L" —nLt 4 4. 692
s ((Q nr)+ P 9 (9.692)

and obtain

W2 dgr ligdq 1og Tl + llgdq log £l
lg* P 3y 10 < (2 Hq (%—niﬂ' + > Z ) g Sl

ke —k_
(9.693)
With (9.679) and (9.691), it gives (9.689) for j = 1. We next have
,Q 9 92log f* +92log f~
Q r k+ — k,
. (9.694)
0,92 o, r 0y log f™ + 9y log [~
L I A b 9 q 9,9,
+(<Q nr>+ =k 19
and therefore
3R dyr lg*82 1og f T llo + llg%82 1og £~ lloo
34842 2. q g7 1+p
la**#02 91100 = (2 g aq< = )Hw e a5l

. ladq 1og *lloo + llgdg log |
2 k"j . 2 Z ) 14> P g Hlloo.

‘ [e¢]

0,2 o1
(2o (7 o)

Hence the claim follows from (9.691), (9.693) and (9.677).
The proof of (9.690) follows easily from (9.689) by applying the product rule for

(9.695)

1
r2 H,} (ft f7)&F = r=2§ or by estimating them directly in the same way as done
for (9.689). We omit the details. O

In the iteration scheme, we will make use of the Hawking mass m given in (9.667).
From (9.669) and (2.82) we see that the Hawking mass satisfies

dym = 2712 [(1 —e)pdyr — (1 + E)Q_zp(uq)_zapr]

1 f- 3 (9.696)
Car e [ Lo a2 (5) o]

We observe that p-derivatives are not featured in our function space hierarchy, however
d,r appears in the above expression. To go around this difficulty, we observe that (2.83)
can be formally rewritten in the form

Q2 Q2 2 92
Ipg(r?) = -5t amr2Qirrt = -~ 4 8

5 AN L == (9.697)
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where we have used (2.89) and (9.653) in the second equality. Therefore, rather than
directly estimating m from (9.667), we slightly abuse notation, and redefine m to be

q PN | Q2 ()2 N
m(PsCI)i=m(P7QO)+/qO 2 (fT )RR rTna"r_7<f_+) s | |dg

(9.698)
where

m(p. go)=— (1 n M) ( , (9.699)
2 Q2 (p,q0)

ar Q? 2n92
s(p. )=y ()] -
qu) % 2

We observe that 3,7 is well-defined at (p, go) since the data there is given by the
exact selfsimilar RLP-solution. We note that s corresponds exactly to d, (r?) fora C?-
solution of the problem. In the following, we show that m in (9.698) can be estimated
by using the norm [||[ /%, 2, ]|

TR k—}dq (9.700)

Lemma 9.10 Suppose H|[fi, Q, r]m < 00. Then the following holds:

(9.701)

Imlleo <

2
> a7 Pomllee < Ma(||LF7,

Jj=1

(9.702)

where Mg and M7 are continuous functions of its argument.

Proof We first observe that from (9.700) using ¢ > go and q;"o <1
_ <r2> IQl%, 27 | 1459 o 1
llg™"slloo < % ’ R (P Lo
q 00 a0 | oy ) q(1)+ﬁ 5 TS N
(9.703)
and
1905 , 27 | g @2 p oo it
104500 < ) + 5B Tr](f [k (9.704)
9o 00

From the definition of the boundary data norm, we have |m(p, go)| < |H [2, rllcue |||
For the integral term in (9.698), using (9.688) and (9.660), we rewrite the integrand
as

1
1 2n N_ =\ 2
qflfﬁ(qN+f+qN—f*)W qu; dgr — 9721 (CI f ) bl (9.705)
r q
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so that

1
1 b | L, 27 <£>7
/qo (ZN(f URE Tk AV

S
U™ Flloollg™= £ lloo) F+ 7%=

—_
%\

ﬁ
1 142 g q 4 IR S
[ 27 0 M) loo + 5 ||s2 n§o||;noo||q”’*f 12116@™ FH ™M1 lg ™ slloo

where we have used fq‘f) G ' Pdg < ﬂ%. Hence, using (9.676), we deduce (9.701).
q
Moreover since ’

1

NN | Q72 (f\2
— R are gl R _ .
dgm =2 (fTf)k g oyr 5 (f+) 5 (9.706)
from (9.705), we immediately obtain
1
la" P ogmlios < 27(lg™+ fHlloollg™= £~ lloo) B+ 5=
1 1
{1 14138 g™ 8y D) lloo + %usz"u%on loollg™= £ 121N+ 511%™ slloo
(9.707)
which shows (9.702) for j = 1. Lastly, we compute 8§m as
1
2 TR Q2 (/72
Pm =m(fTfHT 2n+1 q( )7T<F> Y
LR U T 8,07 (g log S+ + 0y log £~ 2410507
21 r ky —k— 2 r2
1
1 -\ 2 19 2
—aQ (R <§—+> ; <2aq log 2 + c19g log fT + ¢85 log f+ — 5%
(9.708)
where ¢| = k+ik 5 Land ¢; = e k + 2 Following the same strategy, it is now

clear that ||g>t# ajm lloc is bounded by a continuous function of [||[ f*, €2, 7]|||. This
finishes the proof. O
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9.5 Proof of the Local Well-Posedness
9.5.1 Iteration Scheme

We now set up the iteration scheme. Let fn , Qy, rp] be given so that |||[ fni, Qs rn]H| <
oo. And letU,, and m,, be givenin (9.654) and (9.698) where [ f, 2, 7] = [fn , Qs

1

Q)% (£\?

e B ()
={+n i \f

and

) 1
my, = m(p, qo) ~|—/q Zn(fn+fn—)ﬁ ;3 rp — 1(9”) (fl)z Sp daq.

@ T2 ) \ A

Here s, is given by the rlght—hand side of (9.700) where [ f = Q.= fni, Q.
We then define [ f wt1> S2n+1, 'at1] to be the solution of the following system

Q}’l n
O fE +kallndy f5, £ 2ki(28q9— " )y £ =0, (9.709)
Q)2 Qn
3p34[(rn+1)2]=—( 2) +2 E )gn(fJ“f == S (9.710)
(Qn)z mpy (2 n)2
0pdq log 2n41 = W E T (I +mm rERyET (fF 7= == (9.711)

with given characteristic data [fnjirl, Qut1, Int1] = [fi, Q, 7] lcuc satisfying the
conditions (i)—(iii) as in Theorem 9.4. We note that for exact solutions, (9.710)-(9.711)
are equivalent to (2.83), (2.84).

Our next goal is to prove the solvablhty of the iterative system (9.709)-(9.711) and
derive the uniform bounds of ||| [ fn Q415 g1 |H for sufficiently small § > 0. Let

A:=max{4, 1 + qu }.

+

Proposition 9.11 Let the characteristic data | f £ Q.7 satisfying the assumptions of
Theorem 9.4 be given. Suppose |H[fni, Q. rn]||| < ZAH‘[]&, Q, f]lgucm. Then there

exist sufficiently small 6o > 0 depending only on H‘ [fAjt Q, f]lcuc‘ such that for all
8 € (0, 8¢) there exists a unique solution f il € W2°°(D), [Qnt1, r”“] € W3 (D)
10 (9.709)-(9.711) with [f w1 Skl a1l = f NoW: ] on C UC satisfying

A st run1] = 24175, @ Alue | 9.712)
Proposition 9.11 immediately follows from the following two lemmas.
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Lemma9.12 (Solving the Euler part) Assume the same as in Proposition 9.11. Then
such that

there exist sufficiently small 5o > 0 depending only on H’[fi, Q, f]lguc’
for all 5 € (0, 680) there exists a unique solution fn:l-:i-l € W2'°°(Z_)) to (9.709) with
fnjfrl = f* on CUC satisfying

szl <2l eue]]| + A% @ flece||. 0713

Lemma 9.13 (Solving the metric part) Assume the same as in Proposition 9.11. Then
there exist sufficiently small 5y > 0 depending only on ‘ [fi, <, Flleue H) such that
forall § € (0, 8) there exists a unique solution [Q2,41, r”q“] € W3°(D) 10 (9.710)-
(9.711) with [Qp+1, ra+1] = [2, F] on C U C satisfying

M1, rasa Tl < A€ Allece|| + 4175 @ Allece|| 0714

In what follows, we prove the above two lemmas. We start with Lemma 9.12.

Proof (Proof of Lemma 9.12 (Solving the Euler part).) For the sake of notational

convenience, throughout the proof, weuse i = U,,, 2 = Q,, v =1y, f == ni SO

that the variables without the indices refer to the ones from the n-th step.
Uniqueness follows from the uniqueness of characteristics since W>> < C! solu-

tions fnj-:l-l > 0 satisfy the ODE along the characteristics

d . Q. B,r
dp log 2 1(p,g+) = ¢2ki(2? - 2777)U(p, q+). (9.715)

The existence follows by the integral representation of (9.715)

A P 042 0
(o) = [, @) exp {:F / 2k [(z"? - 2n%’>u] s, qi(s»ds}

’ (9.716)
where f*lL (P, q) = fE(ps. q+), and (py, g4) is the exit time and position associated
with (p, q) constructed in Lemma 9.5. We focus on verifying the desired regularity
and estimates. -

Firstof all, clearly fnij € C(D) since py is continuous. To estimate || log(g™N=+ fnij ) o>
we take log of (9.716) and rewrite it as

o p 0y 2 0
log(qufanrl) = log(quf*i) :F/ 2k [(2% — ZH%)U} (s, q+(s))ds.

' (9.717)
For the first term, we may write it as

log(g"*= fF) = log(gl* f) + N log <1> .

qx
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Since |log(gr* f5)| < [ 1og(g™* f*)]cuc lloos it suffices to estimate log(;1). To this
end, first let p, = po. Then we have

14
qx = 9+(po; p,q) =q — / kil (s)ds > q — k+|U|loo(p — p0) = q — k+|lU]| 8.
Po

In particular, using g > ¢go, we have g, > (1 - ki||U||Ooq(;18) q. Hence,

| log (qi) | < —log(l — ke lUlloogqy ') < gy ' SkallUlloo (9.718)
*

for sufficiently small § > 0. If p, > po, wehave g, = goand g < qo+k+||U|lcoc(p —
Po). Hence in this case, for sufficiently small § > 0,

| log <i) | <log(l + ke Ul oogq '8) < ks Ul ooy 'S (9.719)

*

We next estimate the integral term in (9.717). Using q4.(s) > g forall p, < s < p,
and p — py <6,

p 8q§2 a,,r
f 2hs [(2——2n—)u (s, 2. (5))ds
Pa Q r

P 8,9
- 4ki/ e 222 0% 0| 5. qe(s))ds
N Cli Q r

q 0,82 qogr
o) n

(9.720)
P — Px
o) qx

8

oo 40

< 4k+ U0 .

q 0482 qogr
Q g r

< 4k+ Ul H

Therefore by (9.717), (9.718), (9.719), (9.720), we obtain

1)
1og(q™ £, Dlloo < I1og(q™* f5)lcuclloo + Nk [Ulloo
8

ooqo'

00,9 aiyr (9.721)

4k U
+ 4k | ||ooH g

Next we show that 9, fn:l-:i-l is continuous. Since p, € C!if p, # po by Lemma9.5,
the right-hand side of (9.716) is C! and thus if p, # po, 0y fni+l is clearly continuous.
Therefore, it suffices to show that 9, fni_H (p, g) is continuous when p, = po and g, =

qo. To this end, let p..(p, q) = po and g«(p, q) = qo, and take any (p, q) # (p, q)
in a small neighborhood of such (p, ¢). Then we have p.(p,q) # po and hence
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aqfnﬁl(ﬁ, q) is continuous. In fact, for any (p, g) with p.:=p.(p, g) # po we can
solve the equations for 9, log fnil:

+ + , + 3 dgr
0p (0 log £, ) + ko (0 log £15, ) + kedgUy log 5 £ aksdy ((“5° —n=0ou) =0

along the characteristics and obtain the integral representation

39 log f5 (5. §) = dg log fE(p.9)

P 4 0, Oyr
_/_ kidgUy log fif, 4kt ( (<57 = n=L00U ) | (5. az (5))ds
Dx

(9.722)

where
A= =\ 1. AlE, - = ~ A, = =
dg log f.7(p. q) = 15,5 py 0, log f|Q(P*vCI*) + 85, p09g log f7(Px, G+),

where 8, p, is the usual Kronecker delta. Notice that the integral terms are all contin-
uous due to the continuity of p, in Lemma 9.5 and therefore fnij e C'(D).

To estimate ¢d, log fnij, as done in (9.718) and (9.719), we first observe that

4 < % Then for sufficiently small § > 0 we have
e I*ki”u”oo‘k) 3
2
)
L L <14 2k U o —. (9.723)
q* q* 610

Based on the integral representation (9.722) we proceed to estimate
NI S ~
lqdg log f(p. q)| < 1+2kj:||u||ooq_0 llg 94 log f~lcuclloo (9.724)

where we have used the first bound in (9.723).
For the second term in (9.722),

P 4 0y 2 g7
q / k404U 0, log an £ 4k10, (? — nT)L{ (s, q+(s))ds

3,2 A (p — py)
()] e
r o0 q*

0,2 g1 1)

2 q q
0 | (—— — 77—)2/{) H ) 2—
7% < Q r 00 q0
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where we have used the upper bound - 7 = 2 as it follows from (9.723) for § > 0
sufficiently small. Therefore, we deduce that

)
(1 - 2ki||qaqu||oo%) llgdg log £ oo
(9.725)

< (1424 5 llgdq log F¥Icuc oo + 8k 8 142 (3‘1Q a"r)u
— 0 — — —n— .
< + ooqo q09q 108 cuClloo iqo q~oq 9 n . -

From (9.716), since f 11 € W22 we just need to estimate q282 log fjt . After
applying 9,4 to the equation (9.709), we have the following 1ntegra1 representation:

N .
07 10g £, (P, q) = 07 10g fa- «(p. q)

p 052 g1
_/ [kiaguaq log £, | + 2k+0,U2 log f5, | + 4k0} ((% - n%)uﬂ (s, g ())ds.
Px
(9.726)
Analogously to the previous step, we obtain

) ) A
(1 - 2k:t||l]3qu||oo%> g0 og £, 1 oo < (1 + 2ki||u||o%) lg>35 log F = Ieuclloo

92 ) dgr
+2k:|: IIq U0 llg9g logfn+]|\oo+8kiq0 H ((—f f)U> H
(9.727)
We now collect (9.721), (9.725), (9.727) and use (9.677), (9.682) as well as
|||[fni, Q, rn]||| < 2Am[fi, Q, f]lgucm to deduce (9.713) for sufficiently small
6 > 0. This completes the proof. O

Proof (Proof of Lemma 9.13 (Solving the metric part).) As in the previous proof, for
the sake of notational convenience, throughout the proof, we use Q2 = Q,,, r = ry,
f* fn , m = m, so that the variables without the indices refer to the ones from the
n-th step.

Since (9.710), (9.711) are linear inhomogeneous ODEs, we directly integrate them
to solve for r,+1 and €2,,+1. As the existence is clear, we focus on the estimates.

We now integrate (9.710) along an ingoing null curve from pg to p to obtain

PT Q2 2 92
3y () (P, @) = 3,7 (po, q) + / [—7 z (TR = ]
" (9.728)
with g
(rns1)* (P, @) = 72 (p, qo) + / 3y ((ras 1) (p, . (9.729)
q0
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We first estimate 19 ((ra+1)?). To this end, we bound the integral term of (9.728)

y

as

‘l/p |:_Q_2 N 2n92 oy k]dp'
g (9.730)

q Jpo 2
2
Si ||Q||oo+27;
q0 2 dp

L _qp 0 < q‘s—o Therefore, we have

]“’ <f+f e

where we have used

1 R Il | 27 Q? e
Hgaq«rm)z)Hm O H +( b T
(9.731)
We also have
1 2 L.
gaq((rrﬁrl) )P, q) = gaq(r )(pos q)
2 (9.732)
_£<”92”00 +2_7; 1+ﬂ (f+f )k+lk, ’ )
q0 qp I
Since 1 8 (rz)(po q) > W for sufficiently small § we obtain
g (r ©
q - 1
3 (rn 1) (P @) ~ 2 D
o T o~ 0 <"92”°° + 2 g1 S R ‘ )
s ) /) (9.733)
g s a1k 2m | s @ e e
Rz ™ aq<f2>CHoo <2+qg t=T AR oo)'

On the other hand, from (9.729) and (9.731), the upper bound of (r”q+‘) is easily

obtained: since g9 < ¢ and using (9.731),

3 ((rasDH (P, §) di

ras)*(poq)  PA(poqo) 1 (9.
q0

q q q q
_A | 5 _1 q(’A )| 7134
= 5 IcuC B 0 C 9.
q 00 21lq 00 ( )

J)

1+f‘ (f*f e ‘

18 (IQ1% 27
+§_<|| 2||oo+_/S
q0 qp
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Next we use (9.732) to first obtain from (9.729)

(ra+D*(p. @) _ 72(p.q0) 4% — (q0)? 2
q> = q> * 22 CU[a()}

IQI%, | 27 Q@
‘f( R =TI R
q0 5 r ~
1 1 1 (9.735)
> §rn1n 3 s 7
||(rl_2|QUC||oo I 3, (F2) |QUC||oo
15 (Il | 2n
‘5‘( S e s i I
q0 s -
ing: if & r(pqo) P(p.go) < 1 1
where we have used the following: if NE < qo, then 7 > ont 3”{12 lCUCHOO
ile i 4 =g’ [l Az] 1 |
while if gg < N infee qaq(r) > 3—|\3qf;2)\gucl\oo'As done in (9.733),
we deduce
2 2
S S q° g
(rn1)2(p. @) ‘3max{ jricue . aq<A2>‘QUC oo} (9.736)
g e’ T
+9= 7 i N -l |
qomax= ;2|QUC . aq(z)\cuc Oo} ( 2 qg (f ) .

We now differentiate (9.710) with respect to 9, and integrate:

X0 ((rax1)*) (P> 9) = 9 (FH)(po. q) + /

P [92 271522
3 | —
Po

7 — (TR k—}dp
(9.737)

Now the estimation of 33((rn+1)2) follows similarly. Using 2 ; P < j

195 ((rng 1) lloo < 137 F2lelloo

8 (IQ1% . 140 2
+ — llg 05 10g 2|00 + —=
qo< ad ! Tt

Q? 1
2, (S|

(9.738)
The third derivative qag ((rp41)?) can be estimated analogously:

R 1)
1993 (s H oo <1983 GH)Iclloo + %nszn%o ( 7

llg*+? 97 log Qllco | 2llg" 79 log @1, )
40 9%

§ 2w
2 q1+ﬂ

g (2 o
,+ﬁaq <’_2,7(f+f)k+_k

(9.739)
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We proceed in the same way for €2,41. By integrating (9.711) along an ingoing
curve we obtain the expression for 9, log 2, 11(p, q)

2 2 1
3g 10g 2 41(p. q) = 04 (log ) (po. 9) + fp: [frz'f -+ n)nrﬁzn (f*f)'w—k—] dp
(9.740)
with . o
Qi1 (p. q) = Qp. go)eln "1 081 (007, (9.741)

To estimate g 1“'98 log 2,41, we start with the integral term of (9.740). By taking
the sup norm, and using £~ p 0 < q‘s—o, we obtain

rIQ? Q?
q‘+9f [2 S5 — (A m e (FF k—]dp‘

) R AE I+
< - (5611—_9nsznoo 2], e + = 55

and hence

Q? o
q3+ﬂ ST (f+f—)k+—k_ H )
(9.742)

g™ 98,102 Qus1lloo < lg" 08, log lclloo

5 » |2 (1 +
—0( 1212 | 2] il + P

g X e
q r2+2n (f f )k+—k, H

(9C.X7D43)

For 2,41, we first estimate the integral of (9.741).

q o a 1 o
/ 0 log 2, 11(p, q)dq‘ = / quwaq log Q,+1(p, Q)dCI‘
490 q0

1
< llg"*?9, log 9n+1||005q—0.
0

Therefore we deduce

1
lllog 11l < llog lcuclioo + = 14099 1og 2 111clloo

2 )al\q

1168 (1 q A+ | 5,5 @ +k1k‘)
+-5— lIs2 Imlloo + —= q U= -
gng (qu 0 00” H o0 qol 0+B 242 .

(9.744)
To estimate 83 log €2,,41, we first observe that
2 2 9 r @ m @ + k lk
02 log9n+1<p,q>=aq<logsz)(po,q>+/po iy | Sy = (OB |,
(9.745)
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wherefrom we deduce

1g>* 97 1og Qu41lloe < llg*™78] log Qle oo

4 (9_2)H llm
AN qé —0 (9.746)

s 1 q > lg"Pa m]
+——<||9||OOH |} La o
Q2 o
q**’a, <r2T2,7(f+f )k+"—)H .
o0

1—0+
90 P
Similarly one can derive

s (1+nm
N )2
q 9o

lg> 083 log 21 oo < 1437793 log Qe lloo
51 g3 lg¥PaZmco 4. (92 lg' tPogmloe | 5., (2 llm oo
+*’ m”wH H =otp  T2|7 0% | 5 —0+p %\ 5 =
7 r
90 00 40 o 90

8 d4+nmm
90 90

PR 2( 2+2n(f+f V== - )H

[o¢)

(9.747)

We now collect (9.731), (9.733), (9.734), (9.736), (9.738), (9.739), (9.743),
(9.744), (9.746), (9.747) and use (9.689), (9.690), (9.678), (9.701), (9.702) as well

as (1L, @ rall| = 24[17%, @ Fllece| to deduce 9.713) for sufficiently small
8 > 0. This concludes the proof. O

9.5.2 Convergence of the Iteration Scheme

From Proposition 9.11, the solutions [fni_H, Qu+1, '+1] of (9.709), (9.710), (9.711)

have the uniform bounds |||[fnji1, Qg1 a1 < ZAH‘[]&, Q, 7

n > 0. In this section, we show the convergence of the sequence of approximations
[fn_H, n+1, 'n+1]- We will estimate the difference between [f T Qu+1, rn+1] and
[fn , Qn, ry]. Let

[AfE 1 AQurt, Arppr li=[log £ —log £, 1og Qui1 — log 2, (rat1)? — (ra)?]
(9.748)
for n > 0. Our next task is to prove the corresponding difference bounds.

Proposition 9.14 Let [f w1 2ntls a1l be the solution (9.709), (9.710), (9.711)
enjoying the uniform bounds H|[fni+1, n+1,rn+1]H| < 2AH)[]&, <, f]|QucH)for all

n > 0. Then the difference norm for [Af 110 AQnt1, Arpy1] defined in (9.748) sat-
isfies the following recursive inequality

B
ant1 < C—ay for n>1 (9.749)
q0
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where

ang1 = IAF5 oo + g2 Arnptlloo + 197 89 Arnyilloo + 1AQn+1llo0 + 1" 083 A1 1o
(9.750)

and C does not depend on n but only on ZA)H[fAi, Q, f]lgucm.

The proof relies on C 0 estimates of [A fni_H] and C! estimates of [AR,41, Arpt]
in the spirit of Lemma 9.12 and Lemma 9.13. Before giving the proof, we present
some preliminary estimates. First, we note that [A fnﬂi 1 ARy 41, Aryy] satisty

IpALE |+ hillndg AL | + ks Un — Uy—1)dg log £ (9.751)
+ 2ky [(2@, log 2 — ﬂzrtr;z)zwn — (294 log Q| — na‘gr(:':)‘z)z)unl} —0.
dpdg Arpy1 = w + 27 [%(flffn)’“ri"— - m(f,f_lfn_l)’wlk—] ,
(9.752)
ot = 5 [(::))22 " (<Sr2::11>)22 o }
— 1+ [%(ﬁm)“lk - M(f,f_lfn__l)”l"] , (9.753)

with [A £ | AQuy1, Aratilleue = 0.
We start with the following inequality, which will allow us to compare the difference

of two functions to the logarithm of their ratio.

Lemma9.15 Let L > 0 be given. For any —1 < x < L, the following holds
[x] < (14 L)|log(l + x)|. (9.754)

Proof If x € (—1,0), we claim —x < —(1 + L)log(l + x). Letting h(x) = (1 +
L)log(14x)—x,wehave 2(0) = Oand h'(x) = =2 —1 > Oforx € (~1,0). Hence
h <0Oforx € (—1,0). Nowlet0 < x < L. Then since h'(x) > 0for0 < x < L,

h > 0for 0 < x < L, which shows (9.754). O

Lemma9.16 Forany b > 0 let

b b
£gQ:=max | sup (@)? sup (@—1)? ¢F = max sup i sup f"i_l
n (Qn—l)2 "n (Qn)z ' n fni_l " n fr;t ’

(9.755)
and
tpimmax sup| 20— @) = @ ) ¢’ @ 'm)’ =@’ |
w || n=DP (@71 = @ D2 | T e | )P (@7 ) = (@ D2
(9.756)
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Note that Lq, €=, Lg are finite by the uniform bound |||[fnj5r1, Qu+1, rn+1]||| <
2Am [fi, Q, f]|Qucm. Then the following bounds hold:

+ b + b
(ffi 1) -1 ’ (f;n;1> -1 = bzi”Afn”oo, (9.757)
() (1)
(Qp-1)? B Hoo ’ ‘ ()2 - lHOO = 2ol AL oo, (9.758)
(r”)b (rn—l)b D)
(rp—1)? - Hoo (_rn)b - 1”00 <U{p Hq Ary - (9.759)

Proof (9.757) and (9. 758) are direct consequences of (9.754), (9.755) with x + 1 =

i
fn b n 1\b (Qn (n—1 )2
( ) ( ) s (1 )2 ’ (Qn)z

. (9.759) directly follows by writing

G L V) el C R eV
(ra—1)?b (rn—l)b (qilrn)z - (qilrn—l)2

(47210 = @a00?1).

We are now ready to prove Proposition 9.14.

Proof of Proposition 9.14 We start with ||A f t1llco- We recall the notations from
Lemma 9.12. By integrating (9.751) along the characteristics and using the zero data,
we have the representation of A f," |

p
Afnjil(p, q) = kd:/ (S1+ $2)(s, q+(5))ds (9.760)
where

S1 = —Un — Un—1)3q log fF,

g (r m)?
Sy =7F2| (0, log, —n e Wy — (204 log @, 1 —

8 (1 (9.761)
n ‘f( 1;3 Wy 1}

Using q+(s) > g4 forall p, <s < pand p — ps <6,

p
/ S1(s, q£(s))ds| =

*

|
/ Uy = U9y Tog £ ()

9.762
u, ( )

un—l

.
-1 —.
oo 40

< U110 llg g 10g f"lloo H
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For’u

, We rewrite
l 1
Uy ( Q2 )2 fn f_ . (rn—1)2 !
—1= —1
Un—1 Q- fntl fn (rn)2
- 1 1
(Qn )2 fn+ 2 fn_—] 2 (rnf])2 !
= —1
L Q1 fn+—l fn (rn)z
r 1 1 "
N () (e
f:;] fn (rn)2
- 1
fni—l 2 (”n—l)2 ! (rn—l)z !
+2E=] -1 + -1
(2 -

Note that factors next to the rectangular brackets are all uniformly bounded. By
Lemma 9.16, we deduce that

n—1

(9.763)

ea

T IH < c1(lA fulloo + 1A fulloo + 1g > Arn o) (9.764)
n—1 00

where ¢; > 0 is independent of n and hence using the uniform bounds of the uniform
bounds of [||[ £ |, u—1, ra—1]]| and [|[[£;F, 2u,

=< 62—(I|Afnlloo + 18 lo0 + g > Aralloc)  (9.765)

/ S1(s. 4 ())ds

%

where ¢y > 0 is independent of n. For S,, we first rewrite

S (3 | e [raD)®
T2 _<234m” ”((m)z HCAne [ wr )

a (rn— 1) Uy
20, log Q2,1 — U, — —1).
+ ( q Og 1 ( n_ )2 ) 1 (un | )

(9.766)

Now by using the uniform bounds on |H[fni_1, Qu—1, ra—11]|| and [||[[£E, Q.
Lemma 9.16, (9.764), and 2222 < 3 we deduce

q0°
8 _
/ Sa(s, g ())ds <c3q—(||q1+3aqmn||oo+uq g Arnlloo + 182 loo
Px

(9.767)
1A falloo + lg ™2 Arnlloo).

We now estimate ||q‘2Arn+1 loo + ||q_18q Arp+1|leo- We recall the notations used
in the proof of Lemma 9.13. We first integrate (9.752) along an ingoing null curve
from the initial point pg = pg to p to obtain

p
i () = |51+ 50 (9.768)
Po
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where

@D @)
5= 2 |:(Qn—l)2 ]:| '

2 2 2 +
Sy =2m (€2,—1) (fn_‘__lfn__l)lurlk< (€2,)" (rp—1) 77( Jn )1\+ k (fn k+lk, ~1).

(rn—l)b7 (anl)z (rn)277 fn+_ fn—]

(9.769)
The last factor of S4 can be rewritten via add and subtract trick as done for uu—il —1

in (9.763). Then using % < q’s—o, Lemma 9.16, the uniform bounds, we deduce that

- 8 -
llg™" 0y Arnsilloo < C4q—0(IIAfn||oo + 18 lloo + g™ Arnloo)- (9.770)

By integrating (9.768) with respectto g, we have Ar, 41 (p, q) = quo g Arpy1(p, §)dg.

-2

Then by writing ¢ 2>Ar,41(p, q) = ¢ q qq 19 g Arny1(p, G)dg, we deduce that

_ c4 6 _
lg 2 Arpitlloo < Eq—0(||Afn||oo+||Aszn||oo+||q 2Arylloo)- (9.771)

The estimates for | A2 41llco + llg' 10 0y A, 41ll0o can be derived in the same
fashion. By integrating (9.753),

p
0y A1 (P, q) = / S5+ Sedp, 9.772)
Po

where

§c — (Qn) Mp (Qn—])2 Mp—1
5T (rn)? ra (rn—1)? 1, '

(Q,-1)? Q@2 a2 fiF

- e L et
o221 it ) [(Qn 5 e G S

S6 = —(1+m)7

n—

(9.773)
The structure of Se is similar to S4 in the previous case. Using the uniform bounds
for |||[fni_1, Q_1, r,1_1]||| and |H[fni, Qs rn]|H and Lemma 9.16, we have

q1+9/ Sed
Po

for some ¢s5 > 0 independent of n. For S5, we rewrite it

= 65—(||Afn||oo + 1800 + g 7> Arnlloo) 9.714)

2 2 X ’
) ((Qn) (Fn—1) _1) (Qn-1) 1. (9.775)

28 n n—1
5= o T ) G )3 (rn_1)?
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The second term is in the form where we can apply Lemma 9.16. For the first term,
note that

1 -2 o\
my —my—1 = /q Zn(fn+fn_)k+_k7 : 0 B l(Qn) <fi) 2 o
q90

2 T2 A

1
R 1 L) (i | _
—|2n(f )R | —— 0 — s ———— sn_1 | | d
T=t/n ra—D)? "2 i) !
(9.776)

where we also recall (9.700) for s,,. As done for uufl — 11in (9.763), it is evident that
the integrand can be written as the sum of the terms that contain one of the forms in
Lemma 9.16 or 9, Ar, or 5, — 5,1 where

27 (Qu1)* 4

I — . —
U £ == <f;11fn1>"+"-}dé-

L fq (Qu-1D* = (@) | 27(Q)*
Sp — Sp—1 = " B (rn)zn
Following the strategy of the proof of (9.701) in Lemma 9.10, using Lemma 9.16 and
the uniform bounds of |||[fni_1, 1, rn_l]m and |||[fni, Q. ra]lll, we deduce

8 _ -
llmp — mu—tlloo < C6%(||Afn”oo 18 lloo + 7> Arnlloo + 11§ ™" g Aralloo).

(9.777)
Thus the S5 term gives the desired estimates and hence

) _ _
lig" 8, AR 411100 sC7q—0<||Afn||oo+||Aszn||oo+||q 2Arnllo + 11 8y ATy lloo)

(9.778)
for some constant ¢; > 0 independent of n. The estimation of ||A€2,41]lco directly
follows from AQ,41(p, q) = qu* g A1 1(p, g)dg and (9.778):

8 _ -
AL 1l SCS%(”AJCH||oo+”AQn||oo+”q 2Arnlloo+llg ™ g Arallos) (9.779)

for some constant cg > 0 independent of n. Collecting (9.765), (9.767), (9.770),
(9.771), (9.778), (9.779), we obtain (9.749). O

We will now finish the proof of Theorem 9.4.
Proof of Theorem 9.4 Convergence and uniqueness. By Proposition 9.11 and Proposi-
tion 9.14, the iterates [fni, Qu, rnlnen satisfy the uniform bounds ||| [fni, Qs rnl |H <
2A‘H[fi, Q, f]lgucm for all n € N. Moreover ||Afni||oo + ||q_2Arn||<>o +

g™ 8y Arn oo+ 1A loo 11 085 ARy oo — Oasn — oo, which in turn implies
the strong convergence in C! for fnjE and in C? for [$2,,, %"] by standard interpolation.
Hence, as n — oo, [£2,,, ’7"] converges to [€2, :7] strongly in C? and fnﬂE to fjE inCl.
Using the strong convergence shown above, the fundamental theorem of calculus, and
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the formulas (9.722), (9.728)—(9.729), (9.737), (9.740)—(9.741), and (9.745), we may
pass to the limit as n — o0 to conclude that 3,7 (p, -), 3,2 (p, -) € W2’°°([q0, 0))
and 9, f(p,-) € W1’°°([q0, 00)). In particular, using (9.697) and (9.710), upon
passing to the limit we obtain a classical solution of (2.83). After passing to the
limit in (9.709)-(9.711), we see that [ f*, Q, L] is the desired classical solution to
(2.83)—(2.84) and (9.648)—(9.649) in D. Note that in fact 9,,7(p, -), 3ppR2(p,-) €
W‘>°°([q0, 0)), which follows easily from (2.84), (9.697) and the bootstrap argu-
ment (involving one application of the d,-derivative) similarly to above.

Observe that f* € W>* and [Q, 7] € W™ by standard weak-* convergence
arguments, since the iterates are uniformly bounded in the same spaces. Unique-
ness easily follows an adaptation of the difference estimates of Proposition 9.14. To
show that the solution corresponds to the solution of the original problem (2.83)—
(2.88), it only remains to show that the constraint equations (2.86)—(2.85) are satisfied
on the interior of the domain D. This is a standard argument, which follows from
the observation that for the solutions of (2.83)—(2.84) and (2.87)—(2.88) necessarily
dp (3g (2720yr) + 7rQ*TPP) = 0 and 9, (3, (Q728,r) + 7rQ2T99) = 0. Since
the constraints are satisfied by the characteristic data, this gives the claim. Note that
these expressions make sense given the above shown regularity.

Asymptotic flatness. To show the asymptotic flatness we must show thatlim, . oo m(p, q) <
oo for all p € [po, po + 8]. By (9.670) this follows if we can show that pd,r and
pQ2(u”)28pr are integrable on [go, 00). Note that [|3,7 ||z ((49,00)) < 00 by the
boundedness of our norms. Moreover, by integrating (9.697) with respect to g and
using ¢ S r < ¢ and the boundedness of €2, we conclude that [|9,7 [|oc S 1. From
(9.653) we have

1
_ (f+f_)k+7k7 _ l *1Z+J:]1¢V: 7272'7 q 2+27’] N+ + N_ p— k. lk7
T (1 —g)r2tm T 1_8q " (;) (@™ fTq™ )
l A q 2421 _ 1
= a7 &) e e lla™ Tl
— & r lloo

(9.780)
where we recall B from (9.688). Therefore p(p, -) € L'([qo, 00)) since [||[f*, . r]||| <
00. To show that pQ2(uP)? is integrable, we observe that

(FHfHFE 1 2 (f—)é R e ks

P =T T 2 \ 7 (1 +6)Q2r2

Using (2.82) and (9.654), we also have the expression

1 1
1 r2n f— 2 Ny—N_ qN*f_ 2
2¢.pN2 _ _ — (L 2n+ 1 J
e (f+) SqtT (qN+f+) <L 781

where we have used (9.660), (9.676), and the boundedness of our norms. Therefore,
from (9.780) we conclude ,092(141’)2 e L! ([go, 00)), and the spacetime is therefore
asymptotically flat. O
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9.6 Proof of Theorem 1.2: Existence of Naked Singularities

Recall the discussion of naked singularities in the introduction and in Section 2.7.3.
Following [32], a spacetime contains a naked singularity if it corresponds to a max-
imal hyperbolic development of suitably regular data, and the future null-infinity is
geodesically incomplete. The latter statement does not actually require the construc-
tion of future null-infinity as an idealised boundary attached to a suitable spacetime
compactification. Instead, we define it to mean that affine length of a sequence of
maximal ingoing null geodesics initiated along a sequence of points (approaching
infinity) along an asymptotically flat outgoing null-surface, and suitably normalised,
is uniformly bounded by some positive constant.

Proof of Theorem 1.2. For any ¢ € (0, gg] we consider the associated RLP space-
time (MRrp.e, grRLP.¢) given in Definition 2.7. We use it to prescribe the data for
the characteristic problem in the region D as described in Section 9.2. The associ-
ated solution to the Einstein-Euler system exists in region D by Theorem 9.4. Since
Ut = 1+ 0(/¢) > 0, and since the data are exactly selfsimilar on C and on the finite
segment {(po, q) | q € [q0, g0 + Aol} C C, we conclude that the solution coincides
with the selfsimilar RLP-solution in the region D4, = {(p, q) | po<p<0,qo <
q < qo+ Ao}, see Figure 7. We now consider a new spacetime (M., g.) obtained by
gluing together the solution in the region D and to the past of the ingoing null-segment
C inside MRyp . Clearly, the new spacetime is identical to the RLP spacetime (and
therefore smooth) in an open neighbourhood across C. It therefore coincides with the
exact selfsimilar RLP-spacetime (MRLp ¢, grLP,¢) in the past of C.

The exterior region, viewed as a development of the characteristic problem with
data prescribed along the semi-infinite rectangle with outgoing data prescribed on
{g > 0} and ingoing data on p € [po, 0) is maximal, as the ingoing null-curve N is
incomplete on approach to the singularity. In fact, since along backward null-cone N

we have — 5& = yn, we have
lim p(t,R) = 3 X(yn) = o0, (9.782)
>0~ 2T
(T, R)eN

since X (ynr) # 0, where we recall that the density X is in fact strictly positive on
[0, 00). Therefore, by (2.75) the Ricci scalar blows up as the observer approaches the
scaling origin O along V.

It remains to show that the future null-infinity is incomplete in the sense of Definition
1.1. from [32]. Consider now a sequence of points (po, g, ) such thatlim,,_, o, g, = o0.
For any n € N, consider the future oriented ingoing radial null-geodesic emanating
from (po, ¢n). Let the affine parameter* be denoted by £. Then ¢(£) = ¢,, and the
angular coordinates are also constant. The p-component satisfies the ODE

0= jp(0) + Thy(p(0)* = B(0) + 8, 1og(2H) (p(£))?, (9.783)

4 A geodesic y"” is parametrised by an affine parameter £ if 7" (£) + F(‘;ﬁ)}"‘ @yP) =o.
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where we have used (3.869). By our assumptions p(0) = pg and we normalise the
tangent vector to be parallel to d,, so that at (po, g,), we have —2 = g(3,, p(0)d,) =
—ﬁ(O)%Q%, where 2, := Q(po, q») for all n € N. Therefore p(0) = 49;2. We may
integrate (9.783) once to conclude that dd—z(—% + log(Qz)) = 0 and therefore

1 2 Q% 2
-+ log(2) = =" + log(2). (9.784)

It then follows that

1

pl) = o (9.785)

n Qll ’
3 —2log (mm_a,_qn))

However, by the proof of Theorem 9.4 there exists a constant C which depends only
on the data |[|[f=, @, rllcuc||| such that |0, log Q| ~(py < C. In particular, by the

mean value theorem log W) < C|p — po| < Cé, for any p € [po,0) and

n € N. Note further that by (9.666) and our bounds on the data along C, Qﬁ is bounded
from below and above uniformly in n. For § « 1 sufficiently small, we conclude that p
remains positive and p reaches O (i.e. the Cauchy horizon) in finite £-time, independent
of n. O

Remark 9.17 (The Cauchy horizon) By construction, the Cauchy horizon coincides
with the null-curve {p = 0}.

Remark 9.18 By construction, for any ¢ € (0, go] there exists in fact an infinite family
of naked singularity solutions. This freedom comes from the essentially arbitrary
choice of the truncation in the region D, modulo the size and decay limitations imposed
by the local existence theorem, Theorem 9.4. In a neighbourhood of the scaling origin
O, our solutions are however exactly selfsimilar.
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Appendix

A Proof of Local Existence Around the Sonic Point: Combinatorial
Argument

The main goal of the rest of this section is to show the convergence of the power series
Y S0 Ry (8x)N and Y"3_o Wi (8x)N . We will do so by induction on the coefficients
Ry and Wy. Before proceeding, we record some technical lemmas. The proofs of
Lemmas A.1-A.4 below are given in detail in [16] and we therefore only state the
lemmas without proof for reader’s convenience.

Lemma A.1 There exists a constant ¢ > O such that for all N € N, the following holds

1 c
E —_— < —, (1.786)
3.,3 3
N °m N
Lm>1

1 c
Z 3m2 = N2’ (1.787)
1 c
Y G S (1.788)

1 c
Y Foaa S (1.789)

l+m+n=N
£,m,n>1

Lemma A.2 There exists a constant ¢ > 0 such that for all N > 3 and all C > 2, the
following holds

=
|
_
S
|
—

CN—2
Yz N4

. q9=2,3. (1.790)

~
||
S}

For any @ € R, we let

((}{)z((x.)j:a(a—l)...-(a—j—i-l) for j €N, and (a)zl.
j J! j! 0

Lemma A.3 Recall the set w(n, m) defined in (4.188).
1. Foreachn € N,

> ey

m=1 7 (n,m)

A

1
=2(n+ D(;:il) (1.791)

holds.
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2. There exist universal constants ci, ¢y > 0 such that

1 1 1
cl— < (—1)”—1(2) <c—, nelN (1.792)
n2 n n2
LemmaA.4 Let p > 0 be a given positive number. Let (A1, ..., y) € w(£, m) where

1 <m < {andl > 2 be given.

1. If1<m< [%] there exists a constant ¢z = c3(p) > 0 such that

T(L oo 1793
I1 prvl By 2 (1.793)
n=1

2. There exist c4 = c4(p) > 0 and Ly = Lo(p) > 1 such that if L > Ly, the
following holds:

1 ¢ 1\? c4
=1 H el BT foralll <m < (. (1.794)

n=1

3. Let £ > 3. Then there exists cs = c5(p) > 0 such that if L > Ly, the following
holds:

1 S/ 1\ o
m]_[ ) = foralz=m=t. (1.795)
n=1

By Lemmas 4.1 and 4.6 there exist constants 0 < m < M < 1 such that

[Rol, Wol, IR1l, Wil <M, (1.796)
Ro > m, (1.797)

for all ¢ € (0, o], with &g > 0 chosen sufficiently small as in Lemma 4.1.

LemmaA.5 Let x, € [Xcrit + K, Xmax] and a € (1, 2). Assume that

Cm—(x

Rml = — 5=, 2=m=N-—1, (1.798)
Cm—(x

Wil < — 5=, 2=m=<N-1, (1.799)

for some C > 1 and N > 3. Then there exists a constant c=C (M) > 0 such that

c if £=0,1,
OVl + IR+ 1RDel < e (1.800)
C if2<¢<N-1,
¢ if £=0,1,
|Hyl < 1 - e (1.801)
CU+0S" F2<t<N-1.
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Proof We first prove the bounds for [OV2)¢, £ > 0. The bounds |(W?)¢| < M? and
[OWV?)1| < 2M? are obvious from (1.796). Clearly

2—«a 2—a

C C
|OV),| < 2MWs| + M? < 2M +z\425<2M+23A42)2—3 (1.802)

23

where we have used C2~% > 1. If £ > 3 we then have

l
(OV2)el < 37 Wl Wi

m=0
)
< 2IWolIWel + 2IWi[IWe—1| + Z Wi [IWe—ml
m=2
cl—« ct-1-« £-2 Ccl—2e
<2M 7 +2M(Z_ e +m72—’”3(€_’”)3

<omcte Ly ! +1§ :
- G (=17 T 2M Zmde—m)3

l—a

<2MC

R (1.803)

for some constant C. It is now clear, that the estimates for (RW), and (R%)¢, £ > 0
follow in the same way, as the only estimates we have used are (1.796) and the
inductive assumptions (1.798)—(1.798), which both depend only on the index, and
are symmetric with respect to R and W. Recalling Hy from (4.194), the bounds
(1.801) now immediately follow from (1.800) and (1.799). O

LemmaA.6 Letx, € [Xcrit +K, Xmax] and a € (1, 2). Assume that (1.798) and (1.799)
for N > 3 and some large enough C > 1 satisfying

4L
1

C> (1.804)

where ¢ and Ly = Lo(%) are universal constants in (1.792) and Lemma A.4. Then
there exists a constant C = C (Ro) such that

(9%

if0=1,

SN L 1.805
I( )A_{CCE +%;) if2<e<N-1L (1.805)
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Proof When ¢ =1, |(R™")| = | — nRgn_lRH < Rgn_l. When ¢ = 2 it is easy to
see from (4.190) that

(R = —nRy" (Rg' Rz = (n + DRGRY) . (1.806)

In particular,

| < cm "2 (Rz—l-’R%) < cm 12 (%—i—Mz) <

A 2—« . A . .
C (C2—3 + %) for some universal constant C and the claim is thus clear for £ = 2.

For ¢ > 3, we rewrite (R~"), in the form

4

(RN = —Ry"™ 1Rg+7€0”z R (- n)m—MRIM LR
=2 "0 2@ ToooAg!
(1.807)
Now clearly, by the inductive assumption
n—1 CE o
Ry Re| < c (1.808)

for a universal constant C > 0. To bound the second summand on the right-hand side
of (1.807), we use (1.798) and Lemma A.3 first to conclude

€
]—[ R,);”

n=1

S ()
Cle—DA YL (7 —a;) ﬁ <1>kn ﬁ( 1 )
n=1 n% n=1 nM

4 1
< C(a_])lnce_amcf"l |:l_[ ((_1):1—1 <7)
n

n=1

‘Rl}‘l ...R/‘f‘ -

[S1o8)

|

where we have used (¢ — 1)A1 < (o — 1)m in the third line since > 1 and 1| < m.
Hence, using |(—n);;| < m!, we observe that

1
— — RMLRM
( n)mlll...)»g! ! ¢

Al 1\ Ae V4 3 (1809)
t—m, fm e D"m! % 2 12
<C (=D —)\'<1 o }:[1 o .

In turn by recalling (4.190) and using Lemma A.3 and Lemma A.4 with p = %, we
see that
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”Z Z(mm

&) 7(€,m)

S
=70 (¢ CRyp)? — . (e1CRoy"=2 1L \ntn alog\1) e
Cl 1
n 4
=Ro (€1CR)? 43 3( D 2““)(“1)

—n—12cocy CZ*2
=Ry 2 .
1 o3 ern?

(1.810)
where C is large enough so that (1.804) holds. This proves (1.805). O

all x, € [Xcrit + &, Xmax], since for g > 0 sufficiently small, there exists a constant
0<6< 1suchthatRLo <3+ 68foralle € (0, gl

LemmaA.8 Let x € [Xerir + K, Xpax] and a € (1, 2). Then there exists a constant
Cy > O such that if C > Cy and for any N > 3, the following assumptions hold

Cm—(x
[Rm| < prcal 2<m<N -1, (1.811)
CWI*O{
Wil < m3 2<m<N —1, (1.812)
then we have
cN—e[ | 1 1
ISnl = B—p [cal + o t E]’ (1.813)
cN—e1 | 1 1
Z=Y N2 | caT + ca +ﬁ , (1.814)

for some universal constant > 0.
Proof We start with (1.813). Recall (4.255). First we show
CN—2

Sy (= M RiM RN < v (1819
s L.y

RiRy ”Z

Note that Ay = 0 and thus (1.815) does not depend on Ry. As in (1.809), using
(1.811) and Lemma A.3, we have

- ,RW RN
N-:

...
< V(- 1>N—( Dmm' (%> "'<%)AN[
1 N

‘(_n)m il

()]

n=1
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Hence by using (1.795) of Lemma A.4, the left-hand side of (1.815) is bounded by

LHS of (1.815)

eV [
<7217201 "CNZ > (clcRo)m [U(

m=2m(N,m

D]y
)

2k CN
(c1CR0)?> N

+ D=

<RiR, * 3( 1)N2(N+1)<N

<R1R01 2k —22c)c5 cN-2
i NI+ 1)

which shows (1.815). To estimate the second term on the right-hand side of (4.255),
we use (1.811), (1.812) and (1.786) to obtain

SRI[A=2) D W+ Y 4R
L+m=N {+m=N

1<m<N-1 1<m<N-1
xR [2(1 —WIWn_1 +4e(R1Wn_1 + RN—IWI):H
(1.816)
N—2 N=2
R[4 =) YWy War + Y 46RN - W

m=2 m=2

CNflfa N-2 N—2a CcN-1-a

SU+e)—s— +<1+e)ZWN(1+s)—.

Finally, we estimate the last term on the right-hand side of (4.255) - the expression S N
- given by (4.256). To treat the first line of (4.256), by (1.811) and (1.805), we obtain

Z Z CWH’]*O{ lea Cl*2
(m+l)Rm+l(R_n)[ S 2 3 + 2
tHm=N ttmey D a ¢
1<m<N-2 1<m<N-2
1 [%] 1 1
< CN+1—2a Z + CN—l—ot .
~ 203 2 —m)2
ttman Mt me1 M N =m)
1<m<N-=-2
N—a
_c ( 1 +i>.
~ N2 \c*l C
(1.817)

@ Springer



Naked Singularities in the Einstein-Euler System Page 167 of 182 4

For the first term of the second line of (4.256), by (1.811), (1.801), (1.787)

Cm-l—l—oz Cl—a

2 <
2 D mADRwnHN\S ) e

I+m=N L+m=N (1.818)
1<m<N-2 1<m<N-2
CN-‘rl—Za

The other two terms of the second line can be estimated analogously. For the first term
of the third line of (4.256), by (1.811), (1.812), (1.800), (1.786) we obtain

il —e) Y ROV +enR-W),

Grmin=h
SIRW +eNN—1(R1 = WD+ [(ROV + e)1(Rn—1 — Wn-1)]
N-=-2
+ D ROV +e)N-(R—=W),
n=2

CN—I—ot CN—l—a N-2 CN—n—ot cn—«

< - -
SN TN +,12=; (N —n)3 n?
CN—l—oz CN—Za

’S N3 + N3

(1.819)

The bound on the remaining term in the third line of (4.256) is entirely analogous.
Collecting all the bounds (1.815), (1.816), (1.817), (1.818), (1.819), we conclude

chN=e1 1 1 1 1
Sl < S —1, 1.820
NS [C“‘+CN+C°‘N+C] (1.820)

which leads to (1.813) since 1 <o < 2and C > 1.

To prove (1.814), we first recall (4.258). Two first two terms on the right-hand side
of (4.258) have the same structure as the first two terms in (4.255) and hence, by
using the same uniform bound (1.796), they can be bounded analogously to (1.815)
and (1.816). It remains to estimate f}N given in (4.259). The first, second and sixth
lines of (4.259) have the same formal structure as the first, second and third lines of
(4.256) and hence we obtain the same bounds as in (1.817), (1.818), and (1.819) by
using (1.812) in place of (1.811) when necessary. We focus on the third, fourth and
fifth lines of (4.259). For the first term of the third line, by using (1.805)
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N-1
Yo R SR H[R] 4+ Y (R
L+m=N =2
1<m<N
AN 1 CE o Cl -2 (1821)
S1+C Z — + 5
(=2
CN l—a CN—3
’S N3 + NZ

where we have used N3 < CN=1=¢ for all N > 3 and (1.790) with ¢ = 2,3 and
C > 2. For the second term of the third line, we isolate m = N, m = N — 1 cases,

£ = 0,1 cases, further £ = N —m and £ = N — m — 1, and use (1.796), (1.805),
(1.812)

N-2N-m
3030 WhRM=D" [ ST4e+ ) Y Wyom—e(R7)|
l+m+n=N m=1 (=0
1<m<N
N-2N—m ct—o CZ -2
<1+Z|wNm|+Z|WNm1|+cZZ|WNme|( )
m=1 (=2
N-2 -3
CN—m—ot CN—m—]—a
<14 + Z - @
~ _ 3 —m —1)3
= (N —m) = (N—m—1)
N-2 CN m—o CN—m—Z N-2 CN—m—l—a CN—m—3
N AR N = .|
= (N—m)> (N —m) (N—m—-1) (N—m—1)
+N—2 N—Xm:—Z cN-m—t—a <Cl—a . Cz—2>
— AR 3 2
= (N—m—10) 12 14
(1.822)
To bound the summations appearing in the third and the fourth line of (1 822), we
apply (1.790) six times with £ = N —m and additionally we use 1 < C to bound
them by
CN—l—ot CN—3
SIS~ v (1.823)
To bound the last line of (1.822) we use (1.787) and (1.790) to bound it by
N-2 N—m—2 1 1 N-2 N—m-2 1 1
CN—m—ot — ¥ CN—m—2—o¢ -
Z (N—m—€)3ﬁ3 Z Z (N—m—Z)3E2
m=1 =2 m=1 =2
N-2 ~N-m— N-2 ~N-m—2—a N—l-a N-3—a
ch—m=e C C C
SY ——+> St (1.824)
— (N —m)- — (N —m) N N
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For the fourth line of (4.259) we only present the details for the first term as the other
two terms are estimated analogously. We first isolate m = N and m = N — 1 and then
use (1.801), (1.790), and (1.786) to obtain

CE o CN—I—ot
x2 Y H(-)" <1+Z|HZ|<1+Z S (1829
4+m=N
1<m<N

For the fifth line of (4.259) we only present the detail for the first two terms, as the
estimate for the remaining two terms in the fifth line of the right-hand side of (4.259)
is analogous and strictly easier. By (1.796), (1.812), (1.801) we have

N-2
> WuH| S IWaoitHil+ IWiHN 1+ Y Wy ¢ Hl
t+n=N =2
1<n<N-1
CN*I*O( N-2 CN*(*O! C@*D{ (1.826)

S +

ST =Z -0 O
CN—l—a CN—2a

~ (N -=1)3 + N3

The second term of the fifth line of (4.259) can be estimated in a similar way as in
(1.822) by using (1.801) instead of (1.805):

N—2N-m
32 ) WhHi(=D"[ S 1+ ) Y Wy o Hil
L+m4n=N m=1 £=0
1<m<N
N—-2N-—m
<1+Z|WN m|+Z|WN el D0 D W Hl
m=1 m=1 (=2
N-2 e N-3 —1— N-2 —m— —m—1—
CNmot Cleoz CNmot Clea
<1+ — + —_— + +
~ mgl(N—m)3 mZZI(N—m—l)3 [(N—m)3 (N—m—1)3}
N-2N—-m=2 N—-m—Ll—a l—a
C C
+ Z (N —m — £)3 £3
m=1 (=2
N—1—« N—1-2«a
< C n C
~ N3 N3
(1.827)
where we have used (1.790) and (1.786) as before. Combining all the estimates, we
deduce the desired bound (1.814). O

@ Springer



4 Page 170 0of 182 Y.Guo et al.

LemmaA.9 Let x, € [Xerir + K, Xpmax] and o € (1, 2). Consider (Ro, Wo), (R1, Wh)
constructed in Lemma 4.1 and Lemma 4.6, and let (R, Wy) be given recursively
by (4.264) and (4.265). There exist a constant C > 1 and ¢y > 0 such that for all
0 < e < e¢ggandall xy € (Ximin, Xmax)

N—«a

Ryl < ER (1.828)
N—a

Wil < ER (1.829)

forall N > 2.

Proof The proof is based on induction on N. When N = 2, it is clear that there exists
Co = Co(«) > 1 such that for any C > Cy the bound

2—a

Ral. W2l = —3

(1.830)

holds true for any x, € [Xcrit + &, Xmax]. Fixan N > 3 and suppose the claim is true for
all2 <m < N — 1. Then (1.811) and (1.812) are satisfied and therefore by Lemma
A.8 we conclude that (1.813) and (1.814) hold for all C > C,. Together with (4.266)
and (4.267), those bounds lead to

N N3
1 CNfa CNfa
a5+ TS5

(

( _
IWN|</30ﬂ( )[C 1+i+a}c—a

B

1 CN—(x
Rl < Bob (142 )[C 1+C—+a}—

CN N3
CN—(X CN—Ot
/3 I:C“ 1 +8i| N3 =i 3

It is now clear that since « > 1 we can choose C > C,, Cy sufficiently large and
& < go with g9 > 0 sufficiently small so that ¢y, ¢ < 1 and hence (1.828) and (1.829)
hold true. O

B Null-Geodesic Flow in the RLP-Spacetime

We shall carry out the analysis of nonradial null-geodesics (NNG) in the comoving
coordinates (7, R, 6, ¢). Partial analysis of simple NNG-s in Schwarzschild coordi-
nates was already carried out in [28] and a further analysis of non-spacelike geodesics
was done in [19]. A related problem for the selfsimilar dust collapsing clouds was
studied in detail in [29].
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It is convenient to introduce

1
z::ﬂ <= ——) , s:=—1ogR, (2.831)
R y
so that
1 1
N=——, Z1:=— —, (2.832)
YN Y1

correspond to the boundary of the backward light cone N (ynr = Y/;flf") and the
“first" outgoing null-geodesic By (y; = —|¥1|~'~") respectively. Then 9.7 = \/ige_s

and 0,7 = —Lsze_x and hence dt = %(dz — zds) and dR = —e’ds. It is

straightforward to check that the homothetic Killing vector field £ = t0, + Rdg takes
the form £ = —d; and the metric g in these coordinates reads

21 2L 21
g=e % [—%dzz n 2%zdzds n (e” - %f) ds® + x2d¢2} . (2833)

We note that the metric is not regular at z = 0. This corresponds to a harmless
coordinate singularity which can be easily avoided by introducing a suitable change
of variables, see Section 7. We shall nevertheless work with (2.833) to avoid further
notational complications and formally limit our analysis to the regions of MRgrp ¢
satisfying {z < 0} and {z > 0}.

Let y*, k = z,s5,6, ¢ be a null-geodesic and we denote the associated tangent
vector by V¥:=y* k = z,s5,0,¢. We let £ denote the affine parameter. Due to
spherical symmetry, we have

0 b
y () =0() = > (2.834)

The remaining geodesic equations read

dV,
dt

1 wu B
=§(3xgaﬁ)V VP k=259, (2.835)

where V, = g, V".

Lemma A.1 (Geodesic flow) Let V* be the tangent to a null-geodesic as above. Then,
there exist constants C, L € R such that

2

2p M 2p
—%(VZ)Z +2—2VIV 4 (e” - %zz> (VH2+ x2(v9? =0, (2.836)

Vg=L, (2.837)
Vy=C. (2.838)
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Moreover, the V*-component satisfies the quadratic equation

Vs 2 Vs L2

s (z2 - 8(3”‘2“) <T> +2Cee™H (—) —e Mgt f M 22—,
e2s e2s XZ

(2.839)

Proof Equation (2.836) is just the statement that the 4-vector V¢ is null. We now let
o = ¢ in (2.835). Since gup-terms do not depend on ¢, from (2.835) we immediately

see that % = 0, which implies (2.837). Since V,, = g4V ?, we also obtain
V= e (2.840)
X

Next let « = s in (2.835). Since d;¢ = —2g (cf. (2.833)) we deduce that % =0
from (2.835) and (2.838) follows.
Since Vi = g5 V* + g5, V¢, we obtain

21 Vs 21 Ve
oY) € _
(6 — TZ ) 67 + TZZ = C, (2841)
which in turn gives
ve_eC 2 -2\ V’
Zej = e + (Z —¢ge ) s (2.842)

Using (2.840), we may rewrite (2.836) as

() () () - ()

P e2s P e2s 28 e e2s X 2 :
(2.843)
Recall that we work in a patch where z # 0. Plugging (2.842) into (2.843) to replace

VZ, we get
e 1 V2
R (T - 2A—2u> A
. (zezﬂ +Z <Z ge €2S>
21 s
e eC L/, w2\ Y Vv
+2—12 ( 21 + Z (Z ee ) e2s e2s
21 Vs 2 L2
_e_(zz ce2 2#)(23> S=0
& e X
which is easily simplified to give (2.839). O

Remark A.2 Relations (2.837)—(2.838) are the Hamiltonian constraints associated with
the geodesic flow. Equation (2.837) expresses the conservation of angular momentum
associated with the Killing vector field dy, while (2.838) is the conservation law
generated by the homothetic Killing vector field —d; = t9d; + ROR.
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Lemma A.3 Assume that there exists a simple nonradial null-geodesic, i.e. a null-
geodesic such that L # 0 and z(£) = 7 = const for all £ € R. Then 7 is a critical
point of the function

H(z) = (e”@ _ae z2> @7 (2.844)
= . x@) . .

Proof By our assumption, for any simple geodesic we have V¢ = 0. By letting k = z
in (2.835), we then obtain the formula

d Z;L 8_2S eZu
i (—e_ZSVS) =% (e” -— )(v )+ 5 a (XH (VP2 (2.845)

Since V? = 0 in (2.841), we conclude that V*e~% is ¢-independent and therefore
the left-hand side of (2 845) vanishes. Letting V¢ = 0 in (2.836) we have (V)2 =

— (ezA — Ei“ z ) v ) . We plug this back into (2.845) and the claim follows. O

Lemma A.4 (Monotonicity of H) The function 'H defined by (2.844) is strictly mono-
tone on (—o0, 0).

Proof Recalling the notation x = 7(y), x(y) = %,and z = —%, we see that H, written

. . . y
as a function of y can be written in the form

&

H(y) = x> (e” v — 1e2“) ) (2.846)

Therefore

! 1 1 2
H,(y):_zx—zi<82Ay2_7ezu>+x—2 (262»\)12 (A/-i——)——ez“;/)
x & y &
_ g2 Ve (g Loy (e (L L (22
(1+e)y e 1+e \ X y
! 1 1 1 >/
-2 i_, + — )+ = 2,U~ i
X y y & l+e S

1 2072 ¥ 1+3
_ g2 Wte (ezxyz _ ,ezu) P (ezxyz (,f Lt 2L+8>
(I+e)y & I+e¢ z y y

!/
+e2“%>
o WHe (g Lo\ 2P (% 2hy2 _
=—2x (1+£)y(€ y ge )+1+£ 2:(e )+e y(14+¢e—2w)
(2.847)
where we have used the relation x;/ = (IV:LJS"V (see (2.33)), formula (3.97) for A/,

and (3.99) to substitute for u’. We now use (3.117) and part (c) of Lemma 3.3 to
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obtain the formula

3/ 2(d —w)
m (62“ 2)Ly2> 2y€ZAK meZAy. (2848)

Using this in (2.847) we obtain

w+e 1 2x72
! 2 -2 212 2/,L 2X 1 2d
71 (y)—— X —(1 g)y <€ y ——83 + 1 86‘ y( +&— )

252

= ST S)yez’\ <é(w +e)e P 4y (1 —w— 2d)> . (2.849)

We now recall the formula
2
o220 y - 2 2 2
TR (a7 +ex?w = )? — dedwa?) (2.850)

see (3.121). We plug it back into (2.849) to conclude that

2x 2y o1 d w—1D*  dw o
H ()= (1+£) <£x2(w+£)+ w+e 4w—5—a+1 w-2d
I ) (d [1;,d1+nx2<2+47w>}+(w D) +1w>. (2.851)
(l+s) x2 |ew+e w+e w+e

Recall that % <w < 1forall y € (0, 00). Moreover, by (6.469) and the inequality
w(y) = W(x) < 1forall y, x > 0 we know that that the function x > D'*7x2W (x)
is increasing. It follows from (6.468) that there exists an e-independent constant C

such that D'+7x? < C foralle € (0, &o], with &g sufficiently small. Since -— +8 > Toe»
2+ vf,‘fs <2+ 1—,and (V:VJ:S) + 1 —w > 0, we conclude from (2.851) that for

& > 0 sufficiently small that H' is strictly positive for y € (0, 00). O

LemmaA.5 (L = 0: radial null-geodesics) Let V* as above. If L = 0 the flow takes

the form
ds V* 1 (2.852)
dz Vi z4 . Jeetn’ ’
while V*, V* are then recovered using (2.842). The behaviour of the solutions is
described by Lemma 8.8.

Proof Equation (2.852) is a simple consequence of (2.843). Equation (2.852) is equiv-
alent to the radial null geodesic equation (8.641) expressed in (Y, log R)-variables.
O

LemmaA.6 (L # O: nonradial null-geodesics) Let V* as above and L # 0. Then
any such geodesic that emanates from the union of the exterior and the interior region
exists globally in its affine time and does not converge to the scaling origin.
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Proof Step 1. We first consider the case where C = 0. Then (2.842) gives the relation

ds V¢ b4
d—Z = W = _—862)\_2#' — Z2 . (2853)

In order for V¥ to satisfy (2.839) we must have se**~2# — z2 > 0 since X; > 0.In
particular, the null geodesics are confined to the exterior region zzr < z < z1 where
= — YA " < 0and z;:=[Y ' > 0. Let so € R and z9 € (z)7, z1) be given
initial point in the exterior region. Then by integrating (2.853), we obtain

z(s) z
s =50 — AO mdz (2854)
We recall that ee?* =2 — 72|, . = Oand ee?* "2 — 22 > Oforz)y < z < z1.
Since s = — log R, we deduce that R — 0o (s — —00) as z(s) — za/ or z(s) — z1.
Therefore a null geodesic in this case asymptotes to the backward light cone z = zxr
in the past and to the Cauchy horizon z = z; in the future. In particular, there are no
null geodesics emanating from or going into the origin.

Step 2. We now consider the general case C # 0. Assume without loss of gener-
ality C > 0. In order for the solution of (2.839) to exist the discriminant must be
nonnegative. This amounts to requiring

2/L(Z2 _ 862)\72/1,) - €C2

=07 (2.855)
Note that lim,_, _« a(z) = 00, which follows from z = —1,(2.74),and e*|,—¢ > 0,
while lim,_, ,ms a(z) = —oo by Proposition 7.16. Moreover, we also know a(zxr) = 0,
a(z1) = 0and a(z) < 0 for zpr < z < z; from the analysis of radial null geodesics
Therefore, for given ELL; > (, there exists z < zas such that a(z) > SC for all
z € (—o0, z) and hence, the non-radial null geodesics cannot enter the part of the
interior region z < Z.
Under the assumption (2.855), the solution to (2.839) is given by

Vs Vet 7] I - TEET L
eC?
== CJE preT e 2M) . (2.856)

From (2.842) we also have (recall z # 0)

vz C 2 (72 — ge2r—2py 12
1o = Cveld] [y e e ™) L7 (2.857)
s e, i X2 eC?
Let
e (ZZ _ 862)‘_2“) L2
Q(z):=\/1 - e o (2.858)
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We then conclude that

ds V' z[=e " £ 1210(0)]
dz Vi £)710(z) (22 — geh—2m)" (2859)

Step 3. No simple NNG-s. By definition, we have Z—i = 0 for simple NNG-s. Therefore
by (2.859) they must satisfy either 722 — ee? =2 = 0 or Q(z) = 0. The first case
corresponds to simple radial null geodesics, while zeros of Q(z) = 0 possibly describe
the simple non-radial geodesics. We know that z> — ge?*~¢* < O forall zy < z < 23
and thus, Q > O for all zns < z < z;. Therefore we deduce that there is no simple
non-radial null geodesics in the exterior (i.e. in the causal past of ;). In the interior
region however z cannot correspond to a geodesic, since otherwise by Lemma A.3 we
would have H'(Z) = 0, but this is impossible by Lemma A.4.
Step 4. NNG-s cannot emanate from or go towards the scaling origin O.

Step 4.1. First letz1 > zo > 0 and so € R be given in the exterior region above
7 = 0 (z > 0). Then the null geodesics satisfy

ds  —\ee’ " £20(2)
dz ~ +0(2)(2 — g2y

(2.860)

We start with (—) part. In this case, the right-hand side of (2.860) is negative and
hence the null geodesics are outgoing. We claim that outgoing null geodesics (—)
starting from zg > 0 and so € R meet z = 0 (namely 7 = 0) for some positive
R > 0 in the past. Observe that there exist —oo < M| < My < 0 such that M| <
0(2) (22 — ee®*21y < My for all z € [0, zo]. Integrating (2.860), we have

0 Vet M +20(2)

5(0) = s(z0) + D@ = s z.

(2.861)

The integral in the right-hand side is finite and using s = — log R, the claim follows.
On the other hand, in the future direction, since z2 — ge?*~2*¢ — 0 as 7 — 2y
s — —ooas z — z; and thus it asymptotes to the Cauchy horizon z = z;.

We move onto (4) part, the ingoing case. As above, the null geodesics meet T = 0
for some positive R > 0 in the past as the corresponding integral stays finite. We claim
that the null geodesics meets B at positive R > 0 in the future. Integrating (2.860),

we have ) N
W Jeer M+ z0(z
s=s(zg)+/ NG 0()
Z

L 0@ — ey F

for z = z(s) < z1. To prove the claim, it suffices to show the integral is finite when
z(s) = z1. To this end, we rewrite the integrand as

(2.862)

—VE T +20(0) Vel T+ 4+2(0k) - 1)
0(2)(z% — ge?—21) 0(2)(z? — ge? ~2m)
_ 1 n 2(0()? = 1)
Q@) (z+ Ve 1) Q(2)(z? — ee?~21)(Q(x) + 1)
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& 12
1 7

T 0@+ Ve ) 0@(Q@) + 1)

for zy < z < z1, where we have used (2.858) in the last line. It is now clear that both
terms are finite and thus the integral is indeed bounded, thereby proving the claim.

Step 4.2. Next we let znr < zo < 0and sg € R be given in the exterior region below
T = 0 (z < 0). The null geodesics satisfy

ds =" F20(2)
dz  FO(2)(z2 — ge? =2’

(2.863)

We start with (4) part. In this case, we claim that the null geodesics meet T = 0 for
positive R > 0 in the future and asymptotes to the past light cone z s in the past. The
geodesic in the future satisfies

0 — Ve +20(2)

5(0) = s(z0) + . 02 — ee?—2n) zZ.

(2.864)

Observe that the integrand is positive and uniformly bounded. Therefore, the claim
for the future follows. Now in the past, the right-hand side of (2.863) is positive and
the denominator goes to 0 as z — zs. Therefore s - —ocoand R — oo as 7z = zp/,
and hence the null geodesics asymptote to z = z/.

We move onto (—) part. Since the denominator is uniformly bounded for z € [zo, O],
the integral is finite and hence we deduce that the null geodesics meet T = 0 for some
positive R > 0 in the future. On the other hand, the null geodesics in the past satisfy

z(s) A—
s = s(20) + / Vee M +20) (2.865)

L 0@ — ey T

We claim that they meet z = z s for finite R > 0. To this end, we rewrite the integrand
as

62”‘ 12
Ve T 420 Vel P 4z42(0@ -1 I e
0@)(2 — 72— Q)2 —ee? 7MY Q) — Ve ) Q@(QR) + 1)

for zn < z < zp < 0, where we have used (2.858) in the last line. It is now clear that
both terms are finite and thus the integral is bounded, thereby proving the claim.
Step 5. NNG-s in the interior region. Using the same strategy as above, one can
show that nonradial geodesics (L # 0) starting in the interior region will asymptote
to the past to the boundary of the backward light cone N, and in the future they will
asymptote to the Cauchy horizon 5, to the future. In between, they will go through a
turning point, which corresponds to the point (s, 7), where 7 < zs is the zero of Q
discussed above. We omit the details. O
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C Einstein-Euler System in the Double-Null Gauge
C.1 Proof of Lemma 2.13

Proofof Lemma 2.13 Note that
_14pq _14qq _141717
lpq_4sz TP, T,,,,_4sz T, 7",1,1_452 TrP, (3.866)

We use (2.89) to obtain y 48T p = 2epr?> = nQr>TP4. Equations (2.83)—(2.86)
now follow directly from Section 5 of [11]. Formulas (2.89)-(2.90) follow directly
from (1.4) and (2.80). The fluid evolution equations (2.87)—(2.88) are a consequence of
the Bianchi identities V, T*" = 0, v = p, ¢, 2, 3. The Christoffel symbols associated
with the purely angular degrees of freedom Fgc, A, B, C € {2, 3} may not vanish,
but are not needed in the computations to follow, so we do not compute them. All the
remaining non-vanishing Christoffel symbols are given by (Appendix A in [11])

Thy = —g"rogryap. Ty =—g"ropryas. (3.867)
g dpr

Py =Tgp=—0g T, =Tpp=""0p (3.868)

Tpp = 0,log(Q%), T, = d, log(2?). (3.869)

By (2.90) we note that
VAB TAB = g,or_zyAByAB = 28,07'_2. (3.870)
We also observe that by (3.870) and (2.89)

2
=f L 2rea = nr2TPe (3.871)

Q 2yupTA8 = 2epQ7 2% = 1
— &

where we recall the notation n = 12%8 To express the Bianchi identities in coordinates,
we use the formula

Vs T = 8,7 1o, 7% 1 TF 70 (3.872)

and the formulas (3.867)—(3.869). We start the with the p-equation and obtain
from (1.2)

0=V, TH =V,TP" +V, T + V4T, (3.873)

By (3.872) and (3.867)~(3.869) we have
» 9,2
VpTP = 8,TP + 20}, TP = (8, +4-0= | T77. (3.874)

@ Springer



Naked Singularities in the Einstein-Euler System Page 179 of 182 4

3,2
VT = 3,TP + T2, TP = (aq + 2%) TP, (3.875)

VAT = 05T + T, TP + T T
A A p AB
=T, TP + 1), T +Th, T
opr

3
=22 per 4 289 e oy pyy pTAE
r r

5 9
=220 prr 4 220 g 4 0Q 2,1y g TAB
r r

0 )
=220 e 4 22l ra, (3.876)
r r

where we have used (2.80) in the next-to-last line and (3.871) in the last. Similarly,
we compute the g-equation of the Bianchi identities (1.2).

0=V,TH =V,TP + V,T9 + V4T, (3.877)

By (3.872) and (3.867)—(3.869) we have just like above

3,0
V,T? = (ap + 2?) T,
3,9
v, T4 = (aq +4%> T4, (3.878)

VAT =T9, TP + T, T + T4, 74P

= zyTPq + 2a‘1_rqu + zna’l]‘l’q
r r r

9 3
— 42y e 4 0% aq, (3.879)
r r

Therefore, keeping in mind equations (3.873) and (3.877) can be rewritten in the
form

(a,, + 9, log <Q4r2>) TP 4 (aq + 9, log (Q2r2+2")) TP =0,  (3.880)
(95 + 0 log (R242)) 779 + (3, + 9, log (2*r?) ) T4 =0, (3.881)

which is equivalent to (2.87)—(2.88). From (2.89)—(2.90) and (2.82) we have the addi-
tional relationship

TPPT = (1 +&)*p*(wP)*u9)? = (1 + &)*p*Q™*

2
= (1 fi) (TP1)? = (1+ (TP, (3.882)

O
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C.2 Double-Null Description of the RLP-Spacetime

Lemma A.1 The region to the past of the curve BBy in the RLP spacetime (MRLp. ¢, SRLP.)
is well-defined in the double-null coordinates, with the normalisation condi-
tions (9.655)—(9.656).

Proof Recalling the expressions (2.7) and (2.79), it is easy to see that

a a
029, porg = e, QPogpirg = —, TP L %4 _ (3.883)
Orp  Orq
Using (3.883) we conclude that % = —g}’TZ = e"*~*. Recall that the 4-velocity u"
in the comoving frame takes the form e # 9, and therefore
V = e Fayr = uPdyr + uldyr = ——dyr + u9d,r (3.884)
=e "or =ul9, uq—Qzqu uloyr. .

Itfollows that u solves the quadratic equation o, r (u? )2 —Vud+ # dpr = 0. Therefore

L A N R

P — = , 3.885
" 20,r 20,71 ( )
R A N A R
u? = >3 = , (3.886)
g7 2047

where the choice of signs in the solutions of the quadratic equations is consistent with
the normalisation that e #9; = u”9d, + u?9, is future pointing.

We now let r — oo along the outgoing geodesic through (tp, Rg). By Lemma 8.8
we know that this curve asymptotes to B; in the (7, R) plane, or equivalently, y
converges to yp in the (7, R)-plane. Recalling (2.21), (3.99)—(3.101), and (2.27), we

see that V(t, R) = eV (y) = «/Ef(y)%il(y)f? — Ci/easy — y for some

constant C; > 0. Recall here that the density X (y) = d(y){% = d(Y)%i fory <O.
Observe that along the outgoing geodesic

2
lim (—m _ 1) = _1+Cs (3.887)

for some e-independent constant C > 0 by an argument analogous to (8.614). Using
the normalisation condition (9.656), we see that there exists a constant C» > 0 such
that

lim (u?)?> = C, > 0. (3.888)

q—>00

@ Springer



Naked Singularities in the Einstein-Euler System Page 181 of 182 4

Using the normalisation condition (9.656), equation (2.85) along the outgoing null-
geodesic through (7, Rg) takes the form

9, (Q7%) = —27(1 + 8)(%(] +r0Q 2 o) 72, (3.889)

where we have used (2.82) and (2.82). Equivalently, after multiplying by £ and
integrating, we obtain the formula

1
0yl0g 2 = (1 +&)7(3q + rph ™. (3.890)

Note that by (2.19) p(r, R) = %yzﬁ(y). Since we know by Lemma 8.8 that as
q — 00,y — y1, and thereby & — x(y1) it follows by ¢ = 2(r — r,) that there
exists a constant Cy independent of ¢ such that

p(z, R)
1
7

—>q—>oo C18.

We then use (3.888) to conclude that that the leading order asymptotic behaviour of the
right-hand side of (3.890) is % for some e-independent constant C > 0. Therefore

Q(po, -) is well-defined and € ~; g©¢. Moreover, from (9.667) and (3.887), we
have

. 40,royr . 2m
Iim ———— = lim — —1=—-1+4 Ce. (3.891)
q— 00 Q2 qg—o0 1

It follows therefore, that along the outgoing geodesic d,r ~y_ oo Q? R g— o0 q>¢%. We
can similarly use the normalisation condition (9.655) to determine €2 along the ingoing
geodesic through (7, Rp) in the past of B;. Using (2.83)—(2.84), it is straightforward
to show that the the solution exists everywhere in the past of 3] with the asymptotic
behaviour Q =, 00 ¢°°, 3,7 =Xg00 ¢2CF, 837 Xgoo L. ]
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