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Abstract: In recent years, nanoparticles have been highly investigated in the laboratory. However,
only a few laboratory discoveries have been translated into clinical practice. These findings in
the laboratory are limited by trial-and-error methods to determine the optimum formulation for
successful drug delivery. A new paradigm is required to ease the translation of lab discoveries
to clinical practice. Due to their previous success in antiviral activity, it is vital to accelerate the
discovery of novel drugs to treat and manage viruses. Machine learning is a subfield of artificial
intelligence and consists of computer algorithms which are improved through experience. It can
generate predictions from data inputs via an algorithm which includes a method built from inputs
and outputs. Combining nanotherapeutics and well-established machine-learning algorithms can
simplify antiviral-drug development systems by automating the analysis. Other relationships in bio-
pharmaceutical networks would eventually aid in reaching a complex goal very easily. From previous
laboratory experiments, data can be extracted and input into machine learning algorithms to generate
predictions. In this study, poly (lactic-co-glycolic acid) (PLGA) nanoparticles were investigated in
antiviral drug delivery. Data was extracted from research articles on nanoparticle size, polydispersity
index, drug loading capacity and encapsulation efficiency. The Gaussian Process, a form of machine
learning algorithm, could be applied to this data to generate graphs with predictions of the datasets.
The Gaussian Process is a probabilistic machine learning model which defines a prior over function.
The mean and variance of the data can be calculated via matrix multiplications, leading to the
formation of prediction graphs—the graphs generated in this study which could be used for the
discovery of novel antiviral drugs. The drug load and encapsulation efficiency of a nanoparticle with
a specific size can be predicted using these graphs. This could eliminate the trial-and-error discovery
method and save laboratory time and ease efficiency.

Keywords: nanoparticles; machine learning; antiviral; PLGA

1. Introduction

Traditional pharmaceutical drug development processes depend on trial-and-error
methods, which are time-consuming and costly, and depend on finding the optimum
formulation in the laboratory, making them challenging. In addition, they are limited
by experimental conditions such as high equipment supplies, controlled experimental
environments and practical experience [1-3]. Hence, there is a crucial need to design a new
paradigm for time and performance efficiency for nanomaterials science.
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A large amount of experimental data is currently available and can be used in machine
learning algorithms to generate predictions. Machine learning can become a promising path
to accelerating nanomaterials design and applications using predictions for future antiviral
drug design [4,5]. In this present study, we employed data pertaining to poly (lactic-co-
glycolic acid) (PLGA) nanoparticles to predict the drug loading capacity and encapsulation
efficiency of antiviral agents. The findings of these predictions could aid the design of novel
antiviral drugs and allow discoveries to be made more efficiently. The first-generation
paradigm requires the featuring of raw data in descriptors and building models from the
descriptors. The second generation paradigm is unique, as it eliminates human feature
engineering as the models can be made from automated feature engineering [6]. Machine
learning can combine experimental and theoretical methods for future perspectives. The
integration of this machine learning method into drug development pipelines would
decrease the time and cost of production. To date, the study of machine learning approaches
for predicting the properties of antiviral agents has not yet been conducted, making this
study a novel area of research. Machine learning approaches have excelled in other fields,
and more research needs to be done on machine learning for drug discovery and design
due to the potential success it can offer.

This study’s predictions will focus on nanoparticle size, polydispersity index (PDI),
drug loading capacity and encapsulation efficiency. Particle size is a vital factor in the design
of nanomaterials in antiviral activity. Nanomaterials ranging in size from 100-300 nm have
shown to be successful in avoiding the liver and spleen, which metabolises nanoparticles
and reduces circulation time. Particle geometry and surface characteristics also play a
crucial role, as they allow specific cellular targeting [7]. Nanoparticle size can be changed via
alternating the solution conditions, polymer concentration, manufacturing, drug loading,
and the release of drugs [8]. The manipulation of nanoparticle size has been investigated to
enhance bioavailability, increase cellular uptake, and improve drug delivery efficiency. By
controlling the size of the nanoparticles, targeted drug delivery can be achieved [9,10]. PDI
is the measurement of a sample’s heterogeneity based on nanoparticle size. Nanoparticles
can have a large PDI due to a large size distribution or agglomeration of the sample [11]. A
low PDI (close to 0) means that the sample is narrowly dispersed, which is the goal, as a
high polydispersity (up to 1) can result in an assortment of nanoparticles with fluctuating
loading capacities, lower physical stability, and different release profiles [12]. The drug
load is the ratio of drugs to the nanoparticle. The encapsulation efficiency is the percentage
of medicine effectively captured into the nanoparticle.

The aims of these studies are to generate prediction graphs of PLGA for future antiviral
drug design and discovery. The first objective is to gather data on polymer and metal
nanoparticles in antiviral drug delivery by thoroughly searching the literature and data
mining. The second objective that brings novelty to this study is to use data from PLGA
nanoparticles and analyse the data to predict drug-loading capacity and the entrapment
efficiency of antiviral agents, information not reported previously. The project uses the
Gaussian Process, a machine learning algorithm, to provide new sets of drug loading and
encapsulation efficiency predictions according to nanoparticle size and polydispersity index
data [13,14]. This could eliminate the trial-and-error discovery method, save laboratory
time, and ease efficiency.

2. Materials and Methods

A search of the national and international publications was undertaken using PubMed,
Web of Science and the UCL Database Library with the search term ‘nanoparticles in
antiviral activity’. The present study involved an extensive examination of a variety of
nanomaterials, with a particular focus on PLGA. Subsequently, an investigation of PLGA
nanoparticles with varying ratios was carried out. For PLGA nanoparticles, the following
terms were explored: ‘PLGA nanoparticles in antiviral activity” and ‘PLGA nanomaterials
against viruses’. These searches from three different databases produced 275 publications.
These were put together and examined to remove duplicates. This resulted in 54 papers
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which were reviewed based on the title and abstract to discover only literature about PLGA
nanoparticles, and these review papers were removed. Finally, the literature papers were
further studied to find sufficient data on PLGA nanoparticles, as indicated in Figure 1. Data
was found on nanoparticle size, polydispersity index (PDI), drug load and encapsulation
efficiency from eight research articles. The equation for drug load and encapsulation
efficiency calculation is displayed in Equations (1) and (2).

Weight of drug in nanoparticles
Weight of total nanoparticle

Drug Loading (%) = x 100 1)

. .. o Weight of drug in nanoparticle
Encapsulation Efficiency (%) = Inftial Z{] eigh§ of blzmlf drug x 100 ()

Database Searching Records
PubMed: 57
Web of Science: 136
University Database Library: 82

N:275 — Removal of Duplicates

Records included after review Exclude other

of title and abstract .
_ nanomaterials and papers
with insufficient data

N: 54
Records included meeting Inclusion criteria — English
inclusion criteria _ Language, sufficient data on
PLGA nanoparticles
N:8

Figure 1. PLGA Nanoparticles Data Extraction Algorithm.

Review papers were removed from the results; the literature consisted of papers in
English and research papers only. The search took place in July 2020 and includes papers
from 2010 onward. Before the machine learning analysis, the gathered data was prepared.
The dataset was checked for missing data and then organised in numerical order according
to particle size.

The data analysis took place via the Gaussian Process [13,14]. The Gaussian Process
(GP) is a probabilistic machine learning model which defines a prior over function. After
observing some function values, it can be converted into posterior over functions given
the data. In this context, the inference of continuous function values is widely known
as GP regression. In the setting of this study, the data input includes a two-dimensional
vector. To perform prediction at all possible input values, the Gaussian posterior prediction
distribution was estimated. Particularly for such Gaussian distributions, there is a need
to estimate both the mean and the variance. The computation for the mean and variance
involves matrix multiplications and inversions, as described in [13,14]. Using GP modelling,
the desirable property that similar input tends to have similar output was taken advantage
of. Thus, it establishes a statistical correlation between the output and the input across two
dimensions. Although the study has considered two-dimensional input, it is noted that the
Gaussian process can be generalised to handle more than two input dimensions, as shown
in recent applications with GP [14,15].
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3. Results
3.1. PLGA 50:50 Nanoparticles

The search of the database resulted in the finding of eight papers with data on
PLGA nanoparticles.

Table 1 represents the accumulated sixty-two data points gathered from the literature
on PLGA 50:50 nanoparticles. Data was found on size, polydispersity index, drug load,
and encapsulation efficiency. The data found was not consistent, and very rarely was data
found on all four categories. However, the combination of the data allowed two prediction
graphs to be generated, as shown in Figures 2 and 3.

Table 1. PLGA 50:50 nanoparticle data extracted from the literature.

PLGA 50:50
Size (nm) PDI %DL EE% Reference
118 0.14 84
119 0.13 80
125 0.17 78
140.3 17.50 27.50
167 23 46
171.8 30.72
174.2 55.84 84.30
180.3 36.75 77.50
182.7 34.49
184.3 0.06 45.90
185.3 36 72
186.6 0.08 70.10
188.8 0.07 40.70
188.9 40.61 91.24
192.5 29.43 83.41
192.8 10 20
195.9 25.30 67.75
198.1 39.81 88.19
203.2 29 58
204 14.50 51.30
220.6 33.25
221 0.10 30.28
223.4 0.13 25.37
230.7 42.18
232.7 40.19
234.2 0.20 28.25
236 18.70 62.30
236.7 0.18 21.88
239 16 53.40
244.3 46.64
248.5 40.18
250.1 0.15 25.71 [16-22]
251.2 23.55 81.95
256.3 39.27
256.9 51.64
258 0.16 9.62 49.90
258.6 41.57
259.4 37.76
259.4 41.85
260.7 49.46
263 29.60 98.70
268.7 0.19 8.34 40.27
272.4 30.64 88.34
274.3 47.25

275.6 20.31 67.95
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Table 1. Cont.

PLGA 50:50
Size (nm) PDI %DL EE% Reference
276.9 46.81
281.4 53.44
284.2 51.64
292.4 58.54
299.8 60.91
311.1 57.57
336 16.20 54
407 24 80
740 80.16
810 80.09
870 84.12
914 86.26
1107 80.59
1210 89.90
1420 88.12
1580 93.70
1630 94.10

Figure 2 represents a graph with size, PDI and encapsulation efficiency for PLGA
50:50 nanoparticles. The red circles represent the data found in the literature, and the
green lines represent the predictions made using the Gaussian Process. Areas where the
green lines are high on the axis indicate that the prediction probability is higher, creating
a wave-like structure. The graph represents a non-linear relationship between the three
components, and no correlation can be found within the data. The encapsulation efficiency
fluctuates with various nanoparticle sizes. At a particle size of approximately 200 nm, the
highest encapsulation efficiency of approximately 60% with a low PDI between 0.02-0.04
can be observed. The encapsulation efficiency also varies and reaches a little over 50% at
approximately 260 nm, with a higher PDI of 0.18. Hence, this proves that the encapsulation
efficiency fluctuates and a direct correlation between size and encapsulation efficiency
cannot be assumed. Therefore, the graph would be most beneficial when predicting future
antiviral drug designs where the encapsulation efficiency can be estimated based on the
size and PDI of the desired nanomaterial. For example, in Figure 2, at a size of 240 nm and
PDI of 0.18, the encapsulation efficiency was very low (between 0-20%). A researcher could
use this information and create a nanoparticle size of 200 nm instead, where encapsulation
efficiency is predicted to be higher.

In Figure 3, the graph represents the size, drug load and encapsulation efficiency for
PLGA 50:50 nanoparticles. No linear relationship can be seen between the three factors.
The drug load is seen to be low in the graph, except between 300-350 nm, where it is seen
to be the highest at approximately 40%, with an encapsulation efficiency of roughly 40%.
Similar to Figure 2, high entrapment efficiency is seen between 200-300 nm. The two graphs
in Figures 2 and 3 could be used in combination to predict drug load and encapsulation
efficiency for PLGA 50:50 nanoparticles. For example, Figure 2 predicted that entrapment
efficiency is higher for a 200 nm particle size. However, Figure 3 predicts that the drug load
would be low (between 10-20%) at 200 nm. Therefore, a different particle size could be
chosen based on the study’s requirements and the nanoparticle’s function.
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Figure 2. PLGA 50:50—graph showing size (nm), Polydispersity Index (PDI) and Encapsulation
Efficiency (EE%).
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Figure 3. PLGA 50:50—graph showing size (nm), % Drug Load (DL) and Encapsulation Efficiency (EE%).

3.2. PLGA 65:15 Nanoparticles

Data was gathered on PLGA 65:15, 75:25 and 85:15 nanoparticles from one single
paper [23] with nine data points. The data for PLGA 65:15 is represented in Table 2.
Figures 4-6 illustrate the three predicted graphs from the data gathered from Table 2,
representing the size, polydispersity index, drug load and encapsulation efficiency of
PLGA 65:15 nanoparticles. There is a smaller amount of data available for this ratio than
the PLGA 50:50 ratio. However, this data is consistent, where all four information factors
are available for each data point.
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Table 2. PLGA 65:35.
PLGA 65:35
Size (nm) PDI %DL EE% Reference

134.7 0.005 2.76 27.6

143 0.005 2.79 41.8
215.7 0.005 2.54 38.1
223.6 0.123 22 22
256.4 0.005 2.15 429 [23]
269.5 0.005 2.3 46
273.5 0.233 32 32
323.8 0.260 241 36.1
356.3 0.16 2.02 40.4

0.05
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Figure 4. PLGA 65:35—graph with size (nm), Polydispersity Index (PDI) and Drug Load (%DL).

—— Prediction by GP
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Figure 5. PLGA 65:35—graph with size (nm), Polydispersity Index (PDI) and Encapsulation Efficiency (EE%).
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Figure 6. PLGA 65:35—graph with size (nm), Drug Load (DL%) and Encapsulation Efficiency (EE%).

Figure 4 represents graphs with size, PDI and drug load. Similar to PLGA 50:50, no
correlation between the three categories can be seen. The data is scarcely distributed along
the plot; however, the predictions exhibit that the highest drug load of 2.8% can be achieved
with smaller nanoparticles (approximately 150 nm) and low PDI (between 0-0.05). The
drug load is slightly high (2.2%) for a nanomaterial size of approximately 200 nm and a
PDI of 0.15. However, the drug load is seen to be lowest (below 2%) at a nanoparticle size
of about 350 nm and PDI of roughly 0.15, suggesting that drug load is not dependent on
nanomaterial size or PDI.

Figure 5 represents the predicted graph of PLGA 65:35 nanomaterial data with size,
PDI, and encapsulation efficiency. The predictions exhibit the highest encapsulation effi-
ciency of approximately 55% with lower particle-sized nanomaterials of 150-200 nm and
low PDI between 0-0.05. The encapsulation efficiency is also slightly high at 45%, with a
nanomaterial size between 250-300 nm and a low PDL. In contrast to this, the encapsulation
efficiency is predicted to be at its lowest of between 20-25% with nanomaterial sizes of
200-250 nm and a slightly higher PDI of 0.1. This suggests that there is no relation between
size and encapsulation efficiency.

Figure 6 shows a graph with size, drug load and encapsulation efficiency for PLGA
65:15 nanoparticles. The predictions show that the highest encapsulation efficiency of
approximately 50% exists for a nanoparticle size of 150-250 nm, where the drug load is also
highest at 2.8%. Encapsulation efficiency is also high for nanoparticle sizes of 300-350 nm.
However, the drug load is low here at less than 2%. The predictions can combine the three
Figures 4-6 and be altered based on the needs of the experiment in question. Each graph could
also be used to cross-reference the other, as they contain at least two common denominators.

3.3. PLGA 75:25 Nanoparticles

The data gathered from article [23] on PLGA 75:25 nanoparticles are represented in
Table 3. Figures 7-9 are prediction graphs generated from Table 3, which demonstrates data
gathered on PLGA 75:25 nanoparticles with size, PDI, Drug load and encapsulation efficiency.
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Table 3. Data Extracted PLGA 75:25.
PLGA 75:25
Size (nm) PDI %DL EE% Reference

110.6 0.005 3.94 39.4

116.6 0.005 3.87 38.7

134.1 0.005 3.02 45.3

181.8 0.112 2.39 47.7

198 0.007 2.69 404 [23]
205.6 0.155 1.82 18.2
251.4 0.14 2.26 452

401 0.422 2.52 37.8
569.4 0.467 2.07 413

0.4

0.5 600

)
500 5‘\?& “‘\m

—— Prediction by GP
® Observations

Figure 7. PLGA 75:25—Size (nm), Polydispersity Index (PDI) and Drug Load (DL%).

—— Prediction by GP
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Figure 8. PLGA 75:25—size (nm), Polydispersity Index (PDI) and Encapsulation Efficiency (EE%).
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Figure 9. PLGA 75:25—graph representing size (nm), Drug Load (DL%) and Encapsulation Efficiency (EE%).

Figure 7 represents PLGA 75:25 nanoparticle data with size, PDI and drug load. It was
seen that the highest drug load of approximately 4% was for the smaller-sized nanoparticles
of 100 nm and PDI between 0-0.1. The lowest drug load of less than 2% was seen in two
different nanomaterial sizes: one at approximately 200 nm with a PDI of 0.2 and the other
between 500-600 nm with a higher PDI of 0.4. This does not represent any connection
between size and drug load. However, the data heavily lies between 100-200 nm, and the
limited data between 300-600 nm nanomaterial sizes are insufficient for prediction via GP.
Therefore, predictions may be inaccurate in the 300-600 nm range.

In Figure 8, the graph represents PLGA 75:25 nanoparticles with size, PDI and encap-
sulation efficiency. The graph predicts that a smaller nanoparticle size between 100-200 nm
has a lower PDI (between 0-0.1) and a high encapsulation efficiency of approximately 40%.
The lowest encapsulation efficiency of less than 10% is also predicted for 100-200 nm, with
a higher PDI of 0.2. This suggests that there may be a correlation between encapsulation
efficiency and PDI; however, this cannot be confirmed due to insufficient data between
300-600 nm.

In Figure 9, the graph shows predictions for PLGA 75:25 nanoparticles with size, drug
load and encapsulation efficiency. Similar to Figures 7 and 8, drug load and encapsulation
efficiency are predicted to be higher for smaller nanoparticles. Here, an outlier lies at the
largest nanoparticle size (600 nm), where the predictions are not clear due to the scarcity of
data. Instead of combining the graphs, the predictions would be more precise with regard
to drug load and entrapment efficiency on separate graphs where PDI data is also available.
Figure 9 can be used for confirmation purposes.

3.4. PLGA 85:15 Nanoparticles

The data gathered from article [23], on PLGA 85:15 nanoparticles, are represented in
Table 4. Figures 10-12 are prediction graphs generated from Table 4, representing PLGA
85:15 nanoparticles with data on size, PDI, drug load and encapsulation efficiency. Three
sets of graphs were generated from this data.
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Table 4. Data of PLGA 85:15.
PLGA 85:15
Size (nm) PDI %DL EE% Reference
173.6 0.115 1.73 259
207.8 0.005 2.35 23.5
210.6 0.009 1.52 30.4
233.5 0.005 191 28.6
237.8 0.018 1.66 16.6 [23]
240.8 0.009 1.95 38.9
266.6 0.315 1.59 23.8
275.5 0.679 1.81 36.2
367.5 0.353 1.74 17.4

—— Prediction by GP
@® Observations

Figure 10. PLGA 85:15—graph representing size (nm), Polydispersity Index (PDI) and Drug Load (DL%).

—— Prediction by GP

® Observations

Figure 11. PLGA 85:15—graph representing size (nm), Polydispersity Index (PDI) and Encapsulation

Efficiency (EE%).
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Figure 12. PLGA 85:15—graph representing size (nm), Drug Load (DL%) and Encapsulation
Efficiency (EE%).

In Figure 10, the graph represents data on size, PDI and drug load. The graph estimates
that the drug load is highest with the smallest sized nanoparticle of 150 nm and a low
PDI of 0-0.1. The drug load is also lowest between 200-250 nm with a PDI of 0.1-0.2. The
graph has two outliers, one between 200-250 nm and one between 300-350 nm. Similar to
Figures 7 and 8, there is insufficient data in these ranges for GP predictions.

Figure 11 demonstrates a graph of PLGA 85:15 nanoparticles with size, PDI and encap-
sulation efficiency. The highest encapsulation efficiency of approximately 60% is predicted
for a nanoparticle size between 250-300 nm with low PDI between 0-0.1. The lowest encap-
sulation efficiency is predicted between nanoparticle sizes of 200-250 nm, with a slightly
higher PDI value of 0.1-0.2. The encapsulation efficiency axis is seen to be below 0 in
Figure 11; however, Table 4 does not exhibit any data points below 0. Therefore, GP has pre-
dicted the encapsulation efficiency to be close to 0 for nanomaterials within the 200-250 nm
size range.

In Figure 12, the graph predicts size, drug load and encapsulation efficiency data. The
encapsulation efficiency is highest at approximately 200 nm, and the drug load is highest at
150 nm. The drug load is lowest at approximately 200 nm. The predictions in Figures 10-12
have given similar results in each graph, suggesting the accuracy of the predictions based
on the combination of the data set. These three figures could be beneficial for predictions.
For example, if a high entrapment efficiency is required for a specific experiment, Figure 12
can be used, which would show that the nanoparticle size should be between 150-200 nm.
Confirming this in Figure 11 would give the same size prediction and provide PDI infor-
mation. In this case, a low PDI is needed, which would suggest that the researcher control
experimental conditions to aim for a low PDI.

4. Discussion
4.1. PLGA Nanoparticles

For PLGA 50:50 nanoparticles, data were extracted from seven papers as follows: the
first paper [16] was an investigation of nelfinavir mesylate (NFV), an antiviral drug for
the treatment of Acquired Immunodeficiency Syndrome (AIDS). NFV is known to have
poor bioavailability and a short half-life, leading to clinical limitations. The study aimed
to produce NFV-loaded PLGA nanoparticles to increase solubility and bioavailability and
allow sustained release. The NPs were assessed according to particle size, zeta potential,
morphology, drug content, encapsulation efficiency and dissolution studies. In vivo studies
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in rabbits demonstrated that bioavailability was enhanced 4.94-fold, drug release was
sustained for 24 h, and half-life was increased compared to NFV suspension. Five batches
of nanoparticles were prepared with varied PLGA concentrations, but there were constant
drug concentrations where the rise in polymer concentration led to an upsurge in size.
The batch with the highest drug loading and entrapment efficiency was chosen for further
study. However, the data exhibited by the other nanoparticles were beneficial in this study.

The second paper chosen for PLGA 50:50 nanoparticles [17] investigated griffithsin
(GRFT) for the treatment of human immunodeficiency virus (HIV-1). PH-responsive
fibres comprised of PLGA or methoxypolyethylene glycol-b-PLGA (mPEG-PLGA) were
produced with GRFT loaded. It is designed to release the drug under certain pH conditions
investigated by various ratios of PLGA to the drug. mPEG-PLGA illustrated high GRFT
loading and successful pH-dependent release against HIV-1. The fibres indicate a pH-
dependent release for at least 72 h. The data on size in this study is the diameter of
the fibres.

The next paper [18] chosen was based on lamivudine (LMV), an antiretroviral drug
encapsulated into PLGA nanoparticles and conjugated with Lactosaminated-Human Serum
Albumin (L-HSA) peptide. The conjugation resulted in a 2.17-fold rise in cellular uptake
and 3.84 times extended retention. This can make the conjugated nanoparticles a promising
target for the liver. Twenty various formulations were investigated with different polymer
concentrations, and the optimum formulation was chosen for further study.

The fourth article, with data on PLGA 50:50 nanoparticles [19], investigated acyclovir-
loaded mucoadhesive PLGA nanoparticles for the treatment of herpes. Using polymer-
loaded nanoparticles enables the drug to offer sustained release over a prolonged period.
Drug to polymer ratio and surfactant concentration was varied, altering particle size and %
drug release. In vivo studies demonstrated that 57.71-78.31% of the drug was released in
32 h, showing sustained release.

The next chosen article, [20], combined two antiretrovirals, GRFT and dapivirine
(DPV), to prevent HIV. This was possible due to the drugs having separate physicochemical
properties and being able to target the fusion and reverse transcription of HIV replication
specifically. Several batches of nanoparticles were manufactured and assessed for particle
size, drug release, cytotoxicity, cellular uptake and in vitro bioactivity. PLGA NPs were
approximately 180-200 nm and were effectively encapsulated with GRFT (45%) and DPV
(70%). Nanoparticles showed no signs of toxicity and sustained bioactivity in a cell-based
assay. Four different nanoparticles were prepared: a placebo, two nanoparticles with a
drug encapsulated in each, and the fourth nanoparticle with both drugs encapsulated. Data
were selected for the latter three nanoparticles of this study.

In the sixth paper selected [21], LMV-loaded PLGA nanoparticles were formulated.
Similar properties as the above studies were investigated to discover the optimum formula-
tion. In vitro studies of LMV-loaded NPs illustrated a prolonged release of approximately
144 h. The optimum formulation was found to be stable in the gastrointestinal tract for
up to 24 h. Studies also demonstrated the upgraded bioavailability of LMV. Five different
formulations of varying particle sizes were collected and investigated for this study.

The last paper was chosen for PLGA 50:50 nanoparticles [22], which investigated PLGA
nanoparticles with NFV and the histone deacetylase inhibitor suberoylanilide hydroxamic
acid (SAHA). The loaded nanoparticles were shown to target infected CD4" T-cells and
obstruct the HIV viral spread. Three different nanoparticle sizes were investigated for the
presence and absence of SAHA, which was included in this study. The gathered data from
seven articles led to 62 data points represented in Table 1. Figures 7 and 8 are the two
graphs generated from this data on size, PDI, drug load and encapsulation efficiency.

For PLGA 65:15, 75:25 and 85:15 nanoparticles, data were taken for one paper [23].
This article was a study of three different prodrugs of ganciclovir (GCV) distributed in a
PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1)
induced viral corneal keratitis. No toxicity was observed in in vitro studies. The research
showed that prodrugs loaded with PLGA nanoparticles spread in thermosensitive gels and
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can be a promising sustained-release drug delivery system. Various ratios of polymers and
prodrugs were tested to produce the nine different nanoparticles.

All graphs generated have red circles as observations and green lines representing
the GP predictions. Areas of high green waves represent areas of prediction probability
depending on the position of the green lines.

According to Equations (1) and (2), the drug load is the percentage of drug in the
nanoparticle, and encapsulation efficiency is the amount of drug present in the nanoparticle
compared to the initial amount of drug taken. Therefore, based on theory, it cannot be
assumed that drug load and encapsulation efficiency should be correlated. In PLGA 65:35
nanoparticles, drug load and encapsulation efficiency are seen to be high between 150200 nm,
suggesting that there could be a correlation for this ratio. However, it must be considered
that the data here is taken from one single paper with the same drug. Therefore, the
correlation seen may be due to the prodrug of GCV and may be unique to the properties of
this drug. No correlation with size was seen.

In PLGA 75:25, nanoparticles correlation between encapsulation efficiency and PDI
can be seen where lower PDI predicts higher encapsulation efficiency. However, due to the
lack of data on particle sizes of 300-600 nm, this is hard to conclude from this graph.

In PLGA 85:15 and 50:50 nanoparticles, no correlations were observed. PLGA 50:50
nanoparticles graphs (Figures 2 and 3) consist of the most data, sixty-two data points gath-
ered from seven research articles. All graphs in this study could be highly valuable for a
novel design, as the prediction could save valuable time and give an idea of which nanopar-
ticle size should be chosen based on what drug load and encapsulation are predicted via
the GP method. The predictions can be made use of depending on the requirements of the
research. For example, based on the requirement of drug load and encapsulation efficiency,
a suitable nanomaterial size can be found from the graph manufactured.

It is significant to note that, although predictions can be made based on the graphs
and data available, experimental conditions may deviate from the result. The addition of
different drugs may increase or decrease the loading capacity and encapsulation efficiency.
Nine different antiviral drugs were investigated in the gathered PLGA nanoparticle data.
Different drugs can alter nanoparticle size; however, these graphs can indicate the successful
loading capacities and entrapment efficiencies in previous studies and aid in the first step
of the research and skip the trial-and-error steps required.

4.2. Current Research in this Field

The use of machine learning in material sciences has been applied to other fields,
as well as nanomedicine. The algorithmic learning of models can vastly speed up the
system’s state space. The characterisation and design of nanoparticles can have advantages
compared with machine learning methods. However, combinations of machine learning
with experimental design can also offer additional benefits. Active machine learning uses
techniques such as reinforcement learning to select only the most successful candidates for
testing. This approach reduces the time taken for trial-and-error methods and has already
gained success in clinical trial investigations for cancer treatment [24]. Other research has
taken place with the combination of machine learning and nanomedicine, as outlined below.

Machine learning methods may also offer predictive analysis of protein surroundings
with the knowledge of protein biophysiochemical characteristics, nanomaterial size, surface
charge and solution ionic strength [25].

The size of the nanoparticles is determined at the early stages of drug design. It influ-
ences stability, surface area, in vivo behaviour and cellular uptake. Within the 1-100 nm
size range, the nanoparticles dispersion in solution is governed by the surface charge attrac-
tion and repulsion between particles and steric effects [26]. A study on tumour targeting
based on the enhanced permeability and retention effect showed better results with a
particle size of 100-150 nm. The smaller particle size of 30 nm nanoparticles was quickly
washed out from the body, and larger particle sizes of approximately 300 nm were gathered
in the spleen and liver [27].
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Another study investigated the features needed for polymer nanoparticle prediction
using an Artificial Neural Network (ANN) algorithm. Fifty-one samples were used with
four data inputs: the quantity of drug, polymer concentration, solvent ratio and mixing
rate. This ANN algorithm was used to generate a method to predict the size of the polymer-
based nanoparticles. This study found that the polymer concentration was one of the
most vital features for determining the particle size [28]. A separate study predicted the
drug load with the machine learning algorithm. The variables included were molecular
weight, the ratio of polymer to drug and the number of blocks per polymer. The ratio of
the polymer was critical for estimations to be generated [29].

The studies above researched the components separately, where the best parts were
discovered via machine learning. In this research, in contrast, size, PDI, drug load and
entrapment efficiencies were found in combination, which has not yet been completed.

Spherical nucleic acids (SNAs) were investigated in a separate study as cancer vaccine
candidates. The study aimed to describe a methodology for discovering structure-activity
relationships and design guidelines for SNAs. Several steps were taken to reach this goal.
The point of interest was the use of machine learning for quantitively modelling the SNA
immune activation and determining the lowest number of SNAs required for an optimum
structure-activity relationship [30,31]. The study demonstrates machine learning prospects
via data modelling to predict the activity of SNA. Supervised machine learning models
were applied to automatically predict the immune activity of data generated on a selection
of antigens and their positions. This paper demonstrates that machine learning can be used
successfully to generate predictions of nanomaterial activity. The novelty of this research
limits further studies to verify predicted data. However, similar to the research of this
project, the predictions from this research can be used successfully to ease novel drug
design and discovery.

5. Conclusions

This study focused on the use of data from existing literature to make predictions with
the help of machine learning. Machine learning is a subfield of artificial intelligence that
can generate predictions based on data sets. It uses algorithms and develops methods to
provide an output. Nanomaterials in antiviral activity were the focus of this study based on
the current need for antiviral medicine for novel viruses. Although many drug candidates
are available for various viruses, they are limited, and many manage the symptoms of
the virus rather than the virus itself. Nanomaterials can be a promising lead for the
delivery of antiviral drugs due their benefits such as large surface area and nano size.
More specifically, the study concentrated on PLGA, a biocompatible polymer nanoparticle.
PLGA was chosen based on its biodegradability, acceptance by the FDA and high loading
capacities. PLGA nanoparticles also demonstrate antiviral activity via different mechanisms
in various viruses.

The data from previous experiments can create predictions via machine learning.
Machine learning allows predictions to be generated via models and functions. The graphs
generated in this study were predicted via the Gaussian Process, a non-parametric approach.
The data of PLGA were extracted from the literature. Libraries such as Web of Science and
PubMed were searched, and eight articles for PLGA were narrowed down with inclusion
and exclusion criteria. Twelve sets of graphs were generated with the use of the Gaussian
Process by estimating the mean and variance of the data. A statistical correlation was
established between the data inputs and outputs to generate predictions.

Two-dimensional graphs were created for PLGA 50:50, 65:15, 75:25 and 85:15 nanopar-
ticles with data inputs of particle size (size range from 110 nm to 1630 nm), PDI (range from
0.005 to 0.679), drug load (range from 1.52% to 94.10%) and entrapment efficiency (range
from 16.6% to 98.7%). In general, it was observed that smaller size has smaller PDI with
varying drug load entrapment efficiency. A non-linear relationship was found between the
drug load and entrapment efficiency. The graphs generated can be used in future antiviral
drug discovery to predict aspects such as drug loading capacity and encapsulation efficien-
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cies of the nanomaterial. One of the biggest limitations of this study was the availability of
existing data to carry out predictions. The graphs are better represented with well-curated
datasets; however, the limited data available in the graphs generated also have limitations.
The results in this manuscript could provide ideas to predict the choice of drugs and, thus,
this could save valuable time and avoid the use of trial-and-error to generate a successful
nanoparticle. Therefore, machine learning could revolutionise novel drugs and allow them
to be used clinically.
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