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Abstract— Soft robotic grippers are becoming increasingly
popular for agricultural and logistics automation. Their passive
conformability enables them to adapt to varying product
shapes and sizes, providing stable large-area grasps. This
work presents a novel methodology for combining soft robotic
grippers with electrical impedance tomography-based sensors
to infer intrinsic properties of grasped fruits. We use a Fin
Ray soft robotic finger with embedded microspines to grab
and obtain rich multi-direction electrical properties of the
object. Learning-based techniques are then used to infer the
desired fruit properties. The framework is extensively tested
and validated on multiple fruit groups. Our results show that
ripeness parameters and even weight of the grasped fruit can
be estimated with reasonable accuracy autonomously using the
proposed system.

I. INTRODUCTION

Agri-food is one of the largest manufacturing sector in
the world. However, the long-standing human operated field
has been coming under pressure due to population growth,
climate change and urban migration [1]. In the UK, the agri-
fruit industry is worth approximately £1 billion [2] which
have legal requirements for fruit ripeness. For example, citrus
fruits that fall under the Specific Market Standards (SMS)
class 1 require at least a 6-to-1 ratio of Brix to acidity
levels [3]. However, up to 40% food-waste occurs, 3% of
which is from the retail supply chain, costing approximately
£360 million in economic loss due to agricultural produce
not meeting the required market standards [4]. A report by
the AMT Fruit company highlighted that 55% of their food
waste comes from insufficiently ripe citrus fruits [5]. Cur-
rently, fruit quality testing is done manually using invasive
techniques. These biological and biochemical analyses often
require sample preparations of fruit extracts or supernatant
which require the destruction of the fruits, expertise on the
biological laboratory equipment and time [6]. Hence, the
field is ripe for robotic automation [7], [8]. When it comes
to crop manipulation, soft robotic technologies are identified
as key facilitators [1]. Soft grippers utilize their compliance
and underactuation to conform to the shape of an object,
providing stable large-area grasps without active control [9].
This passive conformability not only provides stable grasps,
but can also act as an avenue for surface measurements of
the grasped object in a reliable and robust manner.

This work presents a Fin Ray inspired soft robotic gripper
[10] embedded with passive microspines that serve a dual
purpose, as electrodes and as frictional elements (see Fig. 1).
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Fig. 1. Tendon driven gripper. Eight spine electrodes are embedded on
the inner surface of the two Fin Ray fingers. Each row of spines is a single
electrode.

Electrical Impedance Tomography-based technique is used to
obtain electrical properties of the grabbed object. Electrical
Impedance Tomography (EIT) is an imaging technique that
applies alternating currents through some electrodes and the
resulting equipotentials recorded from the other electrodes
(see Fig. 2), similar to Computer Tomography (CT) scans
which uses X-rays [11]. This process is repeated using
different electrode configurations to obtain rich information
about the electrical properties of the object in different
directions.

Vision-based methods have proven capable of assessing
fruit ripeness [12]. However, certain fruits such as mangoes,
kiwis, and citruses do not provide useful visual cues as
their colours are not indicative of their ripeness levels [13].
Scimeca et al. [14] proposed a non-destructive robotic grip-
per which uses capacitive tactile sensor arrays to determine
mango ripeness levels based on stiffness. Similarly, other
works have used spectrometer probes [15] and accelerome-
ters [16] for mango ripeness identification. These approaches
however, are limited to ripeness classification and are in-
capable of directly predicting intrinsic characteristic values
such as weight, acidity, or sugar content due to the external
form of sensing.

When alternating current is applied to organic matter, the
bio-impedance of the biological tissue impedes its passage.
The bioimpedance is a function of the anisotropic com-
position of the material, as well as the frequency of the
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Fig. 2. Opposite effects of higher sugar and acid content on measured
impedance values. a) Acidity increases with more free H+ ions. Conduc-
tivity of a solution increases with ionic molecules. Therefore, in general, the
impedance should increase with higher acidity. b) Sugar molecules are non-
conductive, therefore higher sugar content will lead to higher impedance.

applied current. Thus, it can be used to obtain knowledge
of the material properties [17], [18]. Bio-impedance is a
complex number consisting of the resistance (real part), and
the phase angle reactance (imaginary component) [19], [20],
[21]. Each cell within the medium can then be treated as
part of a circuit. Where the cell membranes behave like
capacitors, with the resistive properties coming from the
intracellular and extracellular fluids (see Fig. 4). Hence, the
frequency of the AC source also decides the path of the least
resistance. At low frequencies, biological cells introduce high
impedance, hence the current pass around the cells through
the extracellular fluids. However, at higher frequencies, the
current can easily pass through the cells due to the local
ionic conductivity [22], [23].

Fruits undergo physiological changes during the ripening
period [24]. Ripening can occur when the fruits are still
attached to the tree [25], or after picking, where the climac-
teric fruits seed contain ethylene, a fruit ripening hormone.
Examples of climacteric fruits include apples, bananas, and
kiwis. Examples of non-climacteric fruits include citrus
fruits, strawberries, and watermelons. In general, sugar con-
tent increases, whilst acidity decreases during the ripening
stage [26]. It is widely known that sugar in water impedes
conductivity. Sugar molecules are held by covalent bonds
that do not dissociate free ions in water (see Fig. 2b).

Chowdhury et al. [27] studied the bioimpedance of ba-
nanas during ripening. They found that impedance increases
with ripening across a range of applied excitation fre-
quencies. They suggested that the increase in sugar levels
along with the reduction of water and acidic biochemicals
contributed to this behaviour. They also found that there
is a decreasing relationship between bioimpedance and the
applied AC frequency. The same behaviour was also found
in another investigation for bananas [28]. Work by Xingshu
et al. [29] found that the impedance magnitudes decreased
with kiwi ripening at low frequencies. In general, there is
a proportional relationship between acidity and conductivity.

Higher concentration of mobile hydrogen ions in an arbitrary
solution allows for higher conductivity (lower impedance) on
an applied AC current [30], [31] (see Fig. 2a). Juansah et.
al. [32] found that the real resistance of Garut citrus fruits
actually decreased during ripening (lower acidity), with an
increase in the imaginary capacitance component. Both rela-
tionships were non-linear. They suggested that the changes
in internal structure such as the cell wall, membranes,
and composition of the fruit during ripening dominates the
bioimpedance behaviour. A similar effect was found for nec-
tarines [33]. The application of bioimpedance measurements
for ripeness classification using learning-based methods was
demonstrated by Islam et. al. [34].

The bioimpedance of fruits is a function of multiple
variables; the mobility of hydrogen ions, presence of other
chemicals such as sugars, the species and the internal struc-
ture of the fruit itself, and the applied signal frequency.
However, these relationships are often intertwined in the
ripening process, which makes their electrochemical relations
highly non-linear. All previous works have observed this
effect using fixed electrodes on a fruit and observing the
effects over time, hence limiting their application. We extend
the applicability of the approach by embedding the electrical
probes onto the microspines of a soft robotic gripper, thereby
giving the system the ability to probe the desired fruit au-
tonomously. Now the modelling challenge is to estimate the
low-dimensional physical parameters of the grasped object
using the high-dimensional impedance value, without any
prior knowledge about the shape of the fruit and location
of grasp. In this work, we use machine learning techniques
to solve this complex inference problem. We show how the
spined soft grippers can provide both higher holding forces
and a way to measure intrinsic electrical properties of the
grasped object, which can be used to estimate desired physi-
cal properties of the fruit. We validate the applicability of our
methodology on three fruits groups: predicting the ripeness
of bananas; weight, sugar and acid content of oranges and
kiwis. Our results show that the proposed methodology is
highly promising for automated and fast quality testing of
produce in the least invasive manner, compared to existing
methods available in the market.

II. METHODOLOGY
A. EIT-enabled Soft Gripper

1) Gripper Design: The gripper consists of a pair of soft
silicone Fin Ray [10] fingers attached to a 3D printed PLA
gripper base (see Fig. 1). Actuation is achieved by a tendon
attached to a servo motor. The gripper itself was mounted to
a UR5 robot. Fin Ray fingers are based on the mechanism
of fish fins. The structure bends in the opposite direction to
the force applied. This allows for passive shape adaptation to
the geometry of the object applying the force. The fingers’
passive shape compliance makes it very suitable for grasping
agricultural produce, which vary significantly in size and
geometry.

The microspine electrodes have two main functionalities.
The first is to increase the frictional forces. The second
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Fig. 3. Fabrication of the spine-embedded soft Fin Ray gripper.
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Fig. 4. Diagram showing the working principle of EIT-enabled microspine
sensors. Characteristics of the fruit cells influence the measured impedance.
The current flow lines between driving electrodes 1 and 8 take the path of
the least electrical resistance.

purpose is to act as electrical impedance electrodes for the
Minds Eye Biomedical Spectra EIT board 1. The spines
themselves are 300µm in diameter. Through preliminary
testing, it was found that better conductivity was achieved
when the spines were slightly piercing into the skin of
the fruits. As such, the spines were deliberately designed
to penetrate the fruits. Due to this, only fruits with thick
epicarps were used; bananas, oranges and kiwis, as to not
damage the edible tissue.

The Spectra EIT board is configurable up to 32 electrodes
with 896 combinations of impedance measurements. How-
ever, to reduce the complexity of wiring the sensors to the
soft fingers, only 8 electrodes are used, which provides 32
impedance measurements (see Fig. 4). The board was con-
figured using the pre-packaged open source Python software.
There are two protocols for impedance measurements: two
and four electrode methods [17]. Two-electrode methods uses
the same pair of electrodes as the driver to supply current,

1https://shop.openbci.com/products/spectra-openeit-
kit?variant=34541328400542

and to measure the voltage. However, this method suffers
from voltage drop due to the contact impedance. In the four-
electrode method, the driver and the sensor are two separate
pairs of electrodes. The potential difference between the
sensing electrodes equipotentials is then used to measure
the impedance. One pair is used as the driver, and the
remaining electrode pairs are successively measured for the
mediums’ impedance (see Fig. 2). Through multiplexing, the
remaining electrode pairs are cycled through. The impedance
measurements were made using an AC signal of 50KHz.

2) Gripper Fabrication: Fig. 3 shows the fabrication steps
for the gripper. The initial step was the 3D printing of
the custom Fin Ray finger mould. Dragon Skin 20 with a
shore hardness of 20A was then cast to create the connected
fingers. A separate component was 3D printed to allow the
attachment of the string tendon to the soft fingers. The second
step was the soldering of 8 steel spines, 300µm in diameter,
to jumper cables connected to the multiplex pins of the EIT
Spectra board. These were then threaded from the outer to
the inner surface such that they protruded out at an angle. The
third step was to include 4 additional spines to form 8 rows
of spines, with the active electrode at the centre. Conductive
thread was then wound around each spine to short each row
to the centre spine, followed by gluing them down using
conductive ink. A last layer of silicone glue was used to
increase stability of the spines. The rows were implemented

a) b) c)

Fig. 5. Experimental setup for measuring the impedance of various fruits:
a) banana, b) orange, and c) kiwi. The gripper was oriented parallel to the
ground.
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Fig. 6. For each plot, a singular fruit was grasped 5 times at the same pose, with the 32 impedance sensor readings recorded. The kiwi had the lowest
standard deviation error bars, followed by the banana, then the orange.

to increase the likelihood of the electrode engaging with the
fruits. The final step was to trim down each spine to 3 mm
in length, followed by the gluing of the fingers to the gripper
base. Two near identical grippers were created for the project;
one with the sensorised spines, and one without.

B. Experimental Setup

As discussed previously, a fruits’ bioimpendance has non-
linear relations to the sugar content, acidity, the excitation
frequency of the AC signal, and its structure. Fig. 4 illustrates
the working principle of the EIT-enabled soft gripper, with a
cross-section of an orange as an example. Due to the adaptive
nature of the Fin Ray fingers, traditional EIT techniques
for image reconstruction such as Graz Consensus, Gauss-
Newton Method, and Back Projection are not analytically
feasible as they require complete knowledge of the electrode
placement. However, we only require low-dimensional scalar
information about the fruit. Supervised learning methods are
therefore employed to obtain the relationship between the
day ripeness of bananas, and the weight, acidity and the sugar
content of oranges and kiwis to the measured impedance
pattern.

Here the methodology of the two main ripeness experi-
ments are explained. The first experiment type is the learning
of the fruit ripeness characteristics using Quadratic Support
Vector Machines for banana-ripeness classification. The sec-
ond is the use of simple Feed-Forward Neural Networks for
weight, acidity, and sugar prediction.

1) Data Collection: The 32 sensor impedance readings
are used as the feature training data for the banana day
ripeness classification, and the orange and kiwi weight,
acidity and sugar content regression. For all fruits, the robot
arm was posed such that the gripper was parallel to the
ground, as seen from Fig. 5.

For the banana day classification, a single bunch with
5 bananas was used for obtaining the training data. Each
banana was grasped 10 times, with the corresponding sensor
data recorded. Training data was recorded at the same time
of day for 5 consecutive days, resulting in 250 data instances.
To ease the process of data collection, the pose of the banana
as seen in Fig. 5c, was kept the same throughout. Bananas,

being climacteric fruits, ripen over time when left at room
temperature. Day ripeness was therefore induced by waiting
a day between each sensor reading. No dates were given on
the packaging, hence the day labels are with respect to the
day the bananas were bought.

For the orange data collection, 12 mandarins were used.
Each orange was grasped 20 times, with 3 sensor recordings
for each grasp. Oranges and citrus fruits are not climacteric.
Hence, to obtain training data for varying levels of weight,
acidity and sugar content, they were injected with the sugar
and citric acid solutions. 400ml of water was mixed with
100g of sugar. 400ml was mixed with 50g of citric acid.
Arbitrary amounts were added to each orange to induce
variability in the data. After each injection, each fruit were
left for an hour to allow the solutions to diffuse within the
fruit. Impedance sensor measurements were first recorded
for the unadulterated oranges. Another sensor measurement
was recorded after the first sugar water injection. A final
sensor measurement was recorded after the second citric acid
solution injection. This resulted in 2160 data samples for the
orange dataset.

The same methodology was done for the kiwi fruit. Ten
kiwi fruits were used. This resulted in 1800 data instances.
Kiwis are climacteric. However, to conduct a fair test be-
tween the kiwi and the orange, the same procedure was
done. Multiple juice extraction points across each fruit were
done to obtain an average distribution of the fluid content.
The sugar content was measured in Brix using a pocket
refractometer. Fluid was extracted until the refractometer
sensor was fully filled, after which five readings were taken
and averaged. An Extech pH meter was used on the extracted
fluids to obtain the acidity labels in pH. Five readings
were taken to get an average value. Acidity pH level is
a function of temperature, hence all data were collected
at room temperature. Both the kiwi and oranges were of
class 1 under the UK Specific Market Standard. Bananas
are generally imported to the UK, hence, they fall under the
General Market Standard category [3]. The sensor data and
its repeatability results is shown in Fig. 6. Here, a single
fruit of each species was grasped 5 times in the same pose
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Fig. 7. Experimental setup for determining the maximum holding weight
for the grippers. Comparison was done between two identical grippers; one
with the microspines, and one without.

to analyse the repeatability. Note that even though the fruit is
not moved between each grasp, there is still some variability,
indicating that there will always be some variability in the
placement of the electrodes.

C. Learning Methodology

The MATLAB Machine Learning Toolbox was used for
learning the mapping between the labels and impedance fea-
tures. A multi-class 1-to-1 Support Vector Machine using the
Quadratic kernel function was used to classify the different
day ripeness. For predicting the weight, acidity, and sugar
content, a single hidden layer neural network with 60 neurons
was used. The inputs to both the networks are 32 impedance
values. For the classification task, 5-fold cross validation was
used. For the regression task, the data were divided into train,
validation, and test instances at ratios of 80%, 5%, and 15%
respectively.

III. EXPERIMENTAL RESULTS

A. Maximum Gripper Holding Load

We first characterize the increase in gripping force
achieved with the microspine addition. Maximum holding
weight experiments using 5 oranges were done between
two identical grippers: one with sensorised spines and one
without (see Fig. 7). Each orange had an M6 bolt pierced
through its centre to allow attachment of the weight tray.
Weights were incrementally added until either the orange
was dropped or the bolt was ripped out of the orange.

Results for the weight experiments are given in Table
I. The average maximum graspable weight for the spined
gripper is 74% higher than its non-spined counterpart. Note
that three of the test oranges failed by being incapable of
supporting the weight tray.

B. Banana Day Ripeness Classification

The objective of the ripeness classification task is to
predict the age of the banana given the raw sensor data.

TABLE I
GRIP FORCE IMPROVEMENT WITH THE MICROSPINED GRIPPER.

Normal
Gripper

Microspined
Gripper

Test
Orange

Maximum
Weight

(g)

Failure
Mode

Maximum
Weight

(g)

Failure
Mode

1 296 Dropped 496 Dropped
2 318 Dropped 544 Ripped
3 352 Dropped 580 Ripped
4 376 Dropped 716 Ripped
5 366 Dropped 654 Dropped

Average 342 596

After training, the SVM achieved an 85.6% accuracy on
the validation set. The confusion matrix is given in Fig. 8.
From this figure, it can be seen that the majority of the
incorrect classifications happen between consecutive days,
indicating that there is a smooth relation between the sensor
data and the day of ripeness. With the addition of more
electrodes and more training data, the accuracy can be
improved significantly.

Fig. 8. Confusion matrix for the banana day ripeness classification using
the SVM model.

C. Mandarin and Kiwi Ripeness Identification

In this task, we try to predict the weight, sugar, and acid
content of a grasped fruit using the raw impedance value.
The prediction errors for quality testing the oranges, and
kiwis are given in Table II. From the table, it can be seen
that the error and standard deviation for the kiwi is lower
than the orange for the three ripeness characteristics. The pH
precision observed with the Kiwi measurement even meet
the standards of industrial devices 2. The larger observed
deviations in oranges could be because of our artificial
ripening technique, which can lead to uniform material
distribution in kiwis but not in a segment fruit like orange.
Natural variants must be used for better evaluation of the
technique. Fig. 9 plots the test predictions for each parameter

2https://www.awe-ltd.co.uk/products/ph/ph-meter/ph-tester-
phtestr10.html
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Fig. 9. Fruit quality predictions on the orange test data.

0 100 200
Samples

70

75

80

85

W
ei

gh
t (

g)

Weight: Test Set

Predicted
Measured

0 100 200
Samples

2

2.5

3

3.5

4

pH

pH: Test Set

Predicted
Measured

0 100 200
Samples

8

10

12

14

16

B
rix

 C
on

te
nt

 (
%

)

Brix: Test Set

Predicted
Measured

Fig. 10. Fruit quality predictions on the kiwi test data.

of orange. Similarly, for kiwi, the test predictions are shown
in Fig. 10.

TABLE II
PERFORMANCE OF THE LEARNED MODEL ON THE TEST SET FOR

ORANGES AND KIWIS.

Oranges Kiwis
Ripeness Property Average Error Average Error

Weight (g) 6.62± 5.95 1.12± 1.10
Acidity (pH) 0.37± 0.30 0.16± 0.14

Sugar Content (Brix %) 3.24± 3.28 0.72± 0.62

IV. DISCUSSION AND CONCLUSION
In this letter, we propose a proof-of-concept EIT-enabled

microspined soft Fin Ray gripper for fruit quality testing.
We integrated machine learning techniques with an EIT-
based sensing method to gather features for learning the
relation between a fruit’s bio-impedance, and its ripeness
characteristics. This is an advantage over external stiffness-
based sensing approaches which are incapable of directly
predicting ripeness characteristics [14], [15], [16]. Our EIT-
based gripper was able to predict the day-ripeness of bananas
with 85.6% accuracy. For oranges, we were able to achieve
weight, acidity, and sugar content predictions with errors of
6.62±5.95g, 0.37±0.30pH, and 3.24±3.28% respectively.
Likewise for kiwis, it achieved errors of 1.12 ± 1.10g,
0.16±0.14pH, and 0.72±0.62% for mass, acidity and sugar
content respectively. It has also been proven to increase the
maximum holding weight of Fin Ray based grippers by at
least 74%.

The EIT-enabled robotic gripper therefore has many po-
tential uses in agri-fruit robotics. The gripper is far less
destructive than industrial quality assessment techniques [6],
[35]. This robotic gripper can therefore be used as a much
faster method of routine inspections in processes such as

quality control or artificial ripening. In the latter, the fruits
are stimulated by chemical treatments to allow for production
and marketing out of season, as well as for transport [36].
Control of these processes are therefore of vital importance
in achieving optimum ripeness. As the sensors are integrated
to the robot gripper, it also bypasses the need for manually
attaching the sensors to the fruits as was done in all previous
research that integrated Electrical Impedance Tomography or
Spectroscopy based ripeness identification [27], [37], [29],
[38].

Future work include usage of the EIT-enabled robotic
gripper for the determination of the ripeness of fruits before
harvesting. Thus, it has the potential to reduce food-waste by
assessing the properties in situ such that fruits and vegetables
are only harvested once they are sufficiently ripe and meet
market standards.

Previous works using EIS and EIT based sensing have
looked at adulteration, ageing or damage to fruits [38], milk
[39], and meat [40]. In the same vein, future subjects of
research will look at identification of fruits with internal rot,
mould, and damage. Other potential uses of the EIT-based
gripper outside the agri-fruit domain will also be explored.
Such as quality assessments of meat, or in applications such
as culinary robotics. The EIT technology uses low power AC
frequencies [41], hence they are much safer than CT scans
which use ionizing X-Rays [42] as well as being energy
efficient and inexpensive.

The EIT-enabled spine gripper is far from being industry
ready. There is much scope for improvement. The mi-
crospines does meet the UK market standards for class 1
fruits, where the minimum requirement are that the fruits
must be free of extensive healed over cuts without rot,
damage from pests or foreign matter [3]. Further research
is required to minimise damage to fruits. One way of
achieving this would be through the incorporation of smaller
microspines, in both length and diameter, such that they
would have a smaller contact area per spine, whilst ensuring
the electrical contact is sturdy. The prediction errors of the
method is also higher than industrial equipment, especially
for the orange predictions. Thus, to achieve commercial
viability, the accuracy must meet the tolerances of industrial
weighing scales, refractomers and pH sensors with accuracy
of around ±2g 3, ±0.2% 4, and ±0.2pH 5. Our initial results
do however indicate that, at least for kiwis, the precision
of the device is close to industrial standards. Possible ways
to further improve accuracy would be by adding more
electrodes to the gripper to obtain richer impedance data and
by collecting more data from non-simulated fruits of varying
ripeness. In conclusion, we have shown a high performing
and non-destructive EIT-based soft gripper proof-of-concept
that is capable of identifying fruit ripeness during grasping.
With improvements, this has large potentials for industrial
use, as well as high research prospects in other domains such

3https://www.oneweigh.co.uk/brecknell-405-bench-scale-181-p.asp
4https://www.atago.net/en/products-pal-top.php
5https://www.awe-ltd.co.uk/products/ph/ph-meter/ph-tester-

phtestr10.html



as the robotic automation of the meat industry and robotic
kitchen applications.
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acid profiles during fruit development and ripening: Correlation or
causation?” Frontiers in Plant Science, vol. 9, 2018.

[27] A. Chowdhury, T. Kanti Bera, D. Ghoshal, and B. Chakraborty, “Elec-
trical impedance variations in banana ripening: An analytical study
with electrical impedance spectroscopy,” Journal of Food Process
Engineering, vol. 40, no. 2, p. e12387, 2017.

[28] P. Pushparaj and K. Athmaselvi, “Influence of sucrose concentration
on electric conductivity of banana pulp during ohmic heating,” Food
Science and Technology International, vol. 24, p. 108201321878706,
07 2018.

[29] X. Li, G. Xu, L. Huang, Z. Zhang, and T. Yue, “Effect of plant growth
regulator on electrical impedance spectroscopy during ripening process
in kiwifruits,” Transactions of the Chinese Society of Agricultural
Engineering, vol. 31, pp. 288–293, 2015.

[30] P. Atkins and J. Paula, Atkins’ physical chemistry. Oxford University
press, 2008.

[31] K. Sugiyama, S. Fujita, H. Narita, S. Mae, T. Hondoh, K. Goto-Azuma,
D. Fisher, and R. Koerner, “Measurement of electrical conductance in
ice cores by ac-ecm method,” 01 2000.

[32] J. Juansah, I. W. Budiastra, K. Dahlan, and K. Seminar, “Electrical
behavior of garut citrus fruits during ripening: Changes in resistance
and capacitance models of internal fruits,” International Journal for
the History of Engineering Technology, vol. 12, pp. 01–08, 08 2012.

[33] F. Harker and J. Dunlop, “Electrical impedance studies of nectarines
during coolstorage and fruit ripening,” Postharvest Biology and Tech-
nology, vol. 4, no. 1, pp. 125–134, 1994.

[34] M. Islam, K. Wahid, and A. Dinh, “Assessment of ripening degree
of avocado by electrical impedance spectroscopy and support vector
machine,” Journal of Food Quality, vol. 2018, 2018.

[35] K. Miloski, K. Wallace, A. Fenger, E. Schneider, and K. Bendinskas,
“Comparison of biochemical and chemical digestion and detection
methods for carbohydrates,” Am. J. Undergrad. Res., vol. 7, 09 2008.

[36] M. Mursalat, A. H. Rony, A. Rahman, M. Islam, and M. S. Khan, “A
critical analysis of artificial fruit ripening: Scientific, legislative and
socio-economic aspects,” vol. 04, pp. 6–12, 06 2013.

[37] P. Ibba, A. Falco, A. Rivadeneyra, and P. Lugli, “Low-cost bio-
impedance analysis system for the evaluation of fruit ripeness,” in
2018 IEEE SENSORS, 2018, pp. 1–4.
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