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Abstract Using maximum achievable throughput as an objective, message passing neural networks
(MPNN) are applied to larger optical networks (25-100 nodes), enabling physical properties-aware large-
scale topology optimisation in record time, reducing computation time by 5 orders of magnitude, with
close to perfect throughput correlation (ρ = 0.986).

Introduction
Optical core networks underpin the digital com-
munications infrastructure, connecting datacen-
tres to each other and many millions of service-
users throughout the world. The maximum
achievable throughput (MAT) of any optical net-
work is mostly constrained by its physical topol-
ogy. To ensure that optical networks can sustain
future demands, the challenge is to maximise the
network MAT, given a specific data demand ma-
trix. Calculating this exact value for an optical net-
work is, however, an NP-hard problem, making
it impossible to include it in the design process
as a cost function[1]. Integer linear programming
(ILP) formulations are used to find the exact so-
lution, however they are infeasible for larger net-
works (> 30)[2]–[4]. General optimisation frame-
works, such as meta-heuristics, are more compu-
tationally efficient, however cannot guarantee op-
timal solutions and are associated with long com-
putation times[5]–[8]. Hand-crafted routing specific
heuristics are the only scalable option, yet these
do not guarantee optimal solutions[9]. Therefore,
there is a need for fast (order of milliseconds) and
scalable (up to 100 nodes) MAT prediction, to en-
able its optimisation in future topology design and
optimisation.

Message passing neural networks (MPNN) are
a type of graph neural network (GNN), which are
a form of geometric deep learning, where com-
mon deep learning concepts are adapted for rela-
tional data. Previously, MPNNs have been used

to learn the relationship between the topology and
the MAT of optical networks[10]. This was, how-
ever, only shown for very small topologies be-
tween 10 and 15 nodes, as an ILP was used to
generate the training labels, which cannot scale
to graphs with more than 30 nodes. Optical core
networks, however, can reach 100+ nodes[1].

In this paper we expand the previous MPNN
model to larger node scales and demonstrate its
ability to learn accurate cost functions for net-
works up to 100 nodes. The difficulty with scaling
to larger topologies however is the lack of training
data that is accurate, as the ILP becomes infeasi-
ble (> 30 nodes), therefore, we first demonstrate
that a routing heuristic, first-fit k-shortest paths
(FF-kSP), previously proven to perform the best
with regards to the ILP[9], achieves MAT trends
that have a high linear correlation when compared
to the ILP solutions. We then use this heuristic
to produce MAT labels for 160,000 graphs in the
range of 25-100 nodes. Using this training data,
the MPNN is expanded to learn throughput distri-
butions of graphs up to a 100 nodes, whilst reduc-
ing computation times by 5 orders of magnitude
for the highest number of nodes.

This method allows for massive gains in
throughput by allowing throughput to be directly
optimised in the physical topology design, which
is not possible to date. Hereby we enable future
intelligent topology design taking into account the
physical layer, the topology structure and their im-
pact on the MAT of a topology.

Fig. 1: Data generation process for the maximum achievable throughput labels. SL- sequential loading



Message Passing Neural Networks
The network is represented as a digraph denoted
as G(N,E), whereby N and E denote the sets
of nodes and edges respectively. The network’s
nodes and edges have specific node and edge
features xn and enu, respectively, where n, u ∈ N

and (n, u) ∈ E. The node and edge features
used in this work are degree, normalised node
traffic and worst case noise-to-signal ratio (NSR)
respectively. In addition to this, MPNNs use a set
of abstract vectors, referred to as a node’s hid-
den state, represented by ht

n, t being a message
passing iteration. The hidden states are node em-
beddings that record structural features from the
rest of the graph.

MPNNs use 3 processes to produce embed-
dings that are then used for regression or classi-
fication: (i) message passing (ii) update (iii) read-
out. The MPNN repeats T message passing iter-
ations, where both stages (i) and (ii) are iterated
over. In (i) each network node acquires messages
from its local neighbourhood (N (n)). This mes-
sage is given by a message function, that uses
the original edge features and hidden state vec-
tors (Mt(h

t
n, h

t
u, enu)). To form the final message

of a node n (mt+1
n ), the output from the mes-

sage function are summed over the neighbour-
hood of n. In (ii) one uses an update function
(Ut(h

t
n,m

t+1
n )), which iteratively updates the node

hidden states (ht+1
n ) of each node. After finish-

ing T - chosen in the order of the diameter of the
graphs - rounds of (i) and (ii), the hidden states
are aggregated and fed through a readout func-
tion which makes a graph level prediction - i.e.
a throughput prediction. The exact formulation
of message, update and readout functions is de-
tailed in[10] and based on[11]. Supervised learning
is then used to train these three functions, end-to-
end, on a large dataset of about 160,000 graphs
in the range of 25-100 nodes. The next section
describes how the graphs were generated and
how their MAT was calculated.

Data Generation
A dataset of about 160,000 unique graphs, with
25 to 100 nodes, was generated to train two
MPNN models. The node locations were chosen
uniformly over a grid the size of north-America,
from which the graphs were then generated via
the SNR-BA model[12],[13]. In previous work[10],
an ILP formulation was used to calculate the
true MAT, this however does not scale to graphs
larger than 30 nodes, therefore FF-kSP in con-
junction with sequential loading was investigated
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Fig. 2: Coefficient of determination and Pearson’s correlation
coefficient calculated between the FF-kSP and ILP

throughput distributions for 10-15 nodes.

as a suitable replacement, due to previous work
showing its good results with regards to ILP solu-
tions[9]. Sequential loading works by sequentially
adding more and more demand to the network un-
til blocking is achieved.

When looking at the throughput labels gener-
ated for 10 to 15 node graphs by the ILP and
those generated by FF-kSP with sequential load-
ing; high linear correlation is present. This can
be realised by looking at the coefficient of deter-
mination (R2), which measures accuracy, and the
Pearson’s correlation coefficient (ρ), which mea-
sures linear correlation, where 1 is a perfect score
for both. Figure 2 plots both R2 and ρ calculated
between the ILP and FF-kSP calculated through-
put distributions for graphs of 10-15 nodes. One
can see that although the R2 values are generally
low (below 0.8 mostly), indicating low predictive
accuracy; the ρ values are all close to 1, mean-
ing high linear correlation to the original ILP data.
Therefore, using FF-kSP with sequential loading
can correctly predict the trend of MAT and, there-
fore, was chosen as the methodology for labelling
graphs larger than 20 nodes. The 160,000 graphs
were thus labelled with their corresponding MAT,
by finding the RWA that maximises the through-
put, using sequential loading and FF-kSP, given a
uniform traffic distribution.

Finally, the MAT was calculated using a closed
form Gaussian noise (GN) model[14] to calculate
the SNR of the different lightpaths. 32 GBd
Nyquist spaced channels over the C-band (1530-
70 nm) were used, giving 156 possible wave-
lengths. Edges within the network were assumed
to be multiples of 80km standard single mode fi-
bre spans, with β = 0.2 dB

km ,D = 18 ps
mm·km and

γ = 1.2 1
W ·km , amplified with identical erbium-

doped fibre amplifiers (noise figure of 4dB). Shan-
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Fig. 3: Coefficient of determination and Pearson’s correlation
coefficient calculated between MPNN and FF-kSP

throughput distributions for 25-100 nodes.

non’s capacity formula was then used to calcu-
late the throughput of lightpaths, which were then
summed[15].

The process of data labelling for both small
and large networks is visualised in figure 1. As
the network scale grows, so did the sparsity of
the graph. Therefore, to allow for enough capac-
ity, every edge modelled had 4 and 16 fibres for
graphs of 25-45 and 55-100 nodes respectively.
Using these throughput labels, two MPNN mod-
els were trained, one for 25-45 node scales (al-
pha model) and one for 55-100 node scales (beta
model).

Results
To test the accuracy and performance of the
MPNN, a test dataset of 16,000 graphs was
generated in the same manner as the training
dataset. These graphs however are unseen by
the training process. To measure the perfor-
mance of the model, the coefficient of determi-
nation (R2) and the Pearson’s correlation (ρ) co-
efficient are used again. These are measured for
each of the node scales tested between 25-100
nodes and plotted in figure 3. One can clearly
see that both alpha and beta models have R2 and
ρ values close to one, none dropping below 0.93
and 0.96 respectively. Generally the alpha model
predicts the trend and actual throughput values
better, with an average R2 and ρ score of 0.973
and 0.986 respectively, compared to 0.948 and
0.974 respectively for the beta model. This es-
sentially boils down to the amount of data avail-
able for training for each of these models, where
a larger proportion of training data was gener-
ated for the alpha model as the node scales were
smaller and number of fibres per edge used were
also less, therefore taking less time to generate.
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Fig. 4: Speed up factor between MAT calculation using
FF-kSP with sequential loading and the MPNN model.

The overwhelming advantage of this model
is the low computational complexity required for
the inference of a network’s MAT via the MPNN
model. To demonstrate this, the time taken for es-
timating the MAT via FF-kSP with sequential load-
ing and using the MPNN was measured and the
speed up factor plotted in figure 4. Here one can
see that the benefit becomes apparent when the
node scales approach 55 to 100 nodes. Here, the
MPNN takes about 5 orders of magnitude less
time than the heuristic, as the heuristic has to
load the network many times before it realises the
MAT. In addition, there is a big jump in computa-
tion time required for FF-kSP with the larger node
scales (55-100) due to more fibres being used.
These speed-ups allow for the MPNN to be used
in an optimisation process as a cost function and,
therefore, enable throughput optimisation of opti-
cal networks.
Conclusions
This paper expanded the previous MPNN model
from 10-15 node graphs[10] to graphs of 25-100
nodes. This was done by initially showing that
FF-kSP has a high linear correlation to the origi-
nal ILP data and therefore was chosen to gener-
ate training data for these larger graphs. 160,000
graphs were generated with their corresponding
MAT labels (calculated via FF-kSP) and used to
train two MPNN models that then were tested
against unseen test sets. Both models showed
high accuracy, with R2 and ρ values of 0.973 and
0.986 respectively for the best model. In addi-
tion both models showed computation speed ups
of up to 5 orders of magnitude compared to FF-
kSP. This model therefore enables future intelli-
gent optical network design, that can maximise
the throughput of optical networks, previously not
possible.
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