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Abstract—Inspired by the digital twinning systems, a novel
real-time digital double framework is developed to enhance robot
perception of the terrain conditions. Based on the very same
physical model and motion control, this work exploits the use
of such simulated digital double synchronized with a real robot
to capture and extract discrepancy information between the
two systems, which provides high dimensional cues in multiple
physical quantities to represent differences between the modelled
and the real world. Soft, non-rigid terrains cause common
failures in legged locomotion, whereby visual perception solely is
insufficient in estimating such physical properties of terrains. We
used digital double to develop the estimation of the collapsibility,
which addressed this issue through physical interactions during
dynamic walking. The discrepancy in sensory measurements
between the real robot and its digital double are used as input
of a learning-based algorithm for terrain collapsibility analysis.
Although trained only in simulation, the learned model can per-
form collapsibility estimation successfully in both simulation and
real world. Our evaluation of results showed the generalization
to different scenarios and the advantages of the digital double to
reliably detect nuances in ground conditions.

I. INTRODUCTION

Physics simulation has significant advancement in recent
years, and has been an important tool to develop and test robot
software without physical robots. It helps to prevent robot wear
and tear, breakage, and the duplication of resources. Various
type of simulators, capable of emulating the real world with
high fidelity [1]–[3], have facilitated the rapid development
of control algorithms and training of various control policies
that can be deployed in the real world [4]. As such simulators
can be computed in real-time with appropriate hardware, we
envisage a new research direction to explore the idea of digital
twinning for creating new solutions in mobile robotics.

By utilizing digital twin technology, self-navigating robots
can detect anomalies with robust perception and environment
understanding and may take action before failing while walk-
ing on unpredictable terrain. In this work, we adopt the digital
twin concept and propose a new approach by examining the
information from the discrepancy between the real and the
simulated systems to develop robot perception, which is a
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Fig. 1. Real-time digital double framework: the time synchronizer ensures
a consistent timing between the real robot and the digital double. As the
real robot steps over an unpredictable terrain, the multi-sensory discrepancy
between both robots is measured to estimate the collapsibility, and thus more
reliably perceives the non-rigid ground properties during fast movements.

proof of concept that extends the use of realistic physics-based
simulations.

We took the advantage of embedding exactly the same
control in the full physics simulation, which allows the robot
to dynamically interact with the simulated environment and
produce more realistic effects of foot-ground impacts. Even
with the most recent advanced optimization-based planning,
desired motions and forces considering impacts are very hard
to model accurately or to compute in real time [5]. That is why
we are motivated to use the very same control and high-fidelity
physics simulation, where state observations can fully capture
the effects coming from more realistic physical interactions in
simulated physics, e.g., impacts and their interactive effects
coming from the control software.

Great progress has been made in legged locomotion through
optimization methods, such as blind walking on rigid and
level ground [6]–[9]. New advancements were realized on
challenging terrain by using reinforcement learning techniques
[10], [11] and significant improvements were also achieved
in vision-aided locomotion to adjust foot placements over
irregular terrains [12]–[14]. The visual perception module
can initially scan the environment during motion planning to
avoid gaps, holes, and risky obstacles. However, the valuable
information of knowing if the terrain can be rigid (concrete,
asphalt, hard rock) or collapsible (mud, sand, unstable rocks)
is not captured from visual feedback but only can be perceived
via physical interactions.

Ensuring the dynamic stability of legged robots remains dif-
ficult while traversing areas that are collapsible, deformable, or
with unstable support structures. The motivation of our work

ar
X

iv
:2

20
9.

09
50

8v
1 

 [
cs

.R
O

] 
 2

0 
Se

p 
20

22



2 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS). PREPRINT VERSION. ACCEPTED JUNE 2022

is to establish an effective detection of such anomalies for
dynamic walking by examining discrepancy from simulated
and real-world environments. That is, by exploiting the phys-
ical causality, we can infer the ground condition (the cause)
from the resulted full-body motion (the effect). This will serve
as the basis of future development on decision making and
reaction strategies to these unanticipated emergencies in real-
world applications.

A. Related Work

A digital twin is defined as the digital information created
by combining physical properties from the real world. It is
a duplicate of a real-world system, and both are linked and
can affect each other throughout the system’s life cycle [15].
Digital twins can act as part of a real robot’s decision making
and vice-versa [16]. In recent years, digital twin technology
has been increasingly adopted in the field of robotics for
decision-making in real robots by estimating information in
the present and past, as well as predicting future states [17],
[18] and monitoring operations and logistic data [19]–[21].

Drawing inspiration from these works, we developed our
own framework which allows simultaneous running of a
physical robot and its simulated counterpart, as well as the
monitoring of the differences in sensing measurements during
the synchronized execution. In this proof of concept, the
simulated robot does not take part in the real robot’s decision
making; thus, we hereby define the simulated robot as a digital
double.

The choice of simulator is important as it affects both the
speed and fidelity of the simulation. Based on a previous
benchmark [22], Pybullet was selected as our simulator for
the digital double. Bullet is a lightweight physics engine that
can accurately model rigid body collision, joint actuation, and
non-rigid object dynamics [23], and is well-documented and
widely known in the locomotion community.

As legged robots are designed to explore areas that are
inaccessible for wheeled robots, their capabilities shine in
difficult terrains, such as hilly or unstable grounds that wheels
cannot drive through. However for legged robots, the risk
of falling over when traversing unknown and unpredictable
terrain lead researchers to study whether ground properties
can be identified. Mathematical models have been investigated
for estimating foot-terrain interaction (hard/soft foot versus
hard/soft ground) in legged robots for decades, ranging from
early works by Krotkov [24] to more recent ones by Ding et
al. [25]. While these models make use of normal forces to
analyze terrain-foot interactions, it is important to note that
they have only been tested in static experimental setups, and
not on actual mobile robots.

Some studies focused on static gaits and specific foot de-
signs with embedded sensors to classify soils [26] or concrete
deterioration [27]. On hexapods, probing has also been used
in combination with an adapted gait to ensure stability and
possible recovery in a collapsible environment [28]. Multi-
sensory integration is another approach to fuse RGB-D data
and joint torque measurements to classify different soils [29],
where the classification technique can only be performed on

previously seen similar grounds. The work in [30] showed
that it was possible to estimate the ground stiffness and
friction with a quadruped robot named SMC while hopping,
and adapt the gait accordingly. Cong et. al [31] proposed
a foot contact force estimation method that uses position
information of the joint and applied control torque. Wu et al.
designed a capacitive tactile sensor and mounted it to the feet
of a small hexapod with C-shaped rotating legs [32]. Fahmi
et al. [33] proposed soft terrain adaption and compliance
estimation (STANCE) framework for their legged robot HyQ.
Their proposed terrain compliance estimator registers ground
reaction force, foot pose and foot velocity on a grid map and
estimates stiffness and damping accordingly.

Overall, previous studies which estimate/classify terrain
properties used either specially designed legged robots with
additional sensors on foot [26]–[28], [32], a modified static
walking gait [26]–[28] or a longer stance duration [33] to cap-
ture sensory measurement accurately. Moreover, these studies
that adopts a learning model mostly use prepared testbeds
for training, thus, it may not be generalizable to classify
or estimate ground properties that is not trained beforehand.
Nonetheless, these studies showed that estimation of ground
characteristics is feasible within pre-trained ground charac-
teristics, but doing so with a dynamic gait for commercially
available legged robots that solely rely on onboard sensors
(base IMU and joint sensors) to estimate unseen ground
characteristics is still a challenge.

B. Contribution

Inspired by the works on twinning physical and digital
systems, we introduce the ideas of using digital simulation
tools and develop a new method to estimate and infer terrain
properties for legged robots. Our contributions can be summa-
rized as follows:
• The development of a novel digital double framework with

a synchronized real-time physical simulation, within which
a real robot and its simulated physical model can use
the very same control software to perform the same task
simultaneously.

• Leveraging the digital double framework to extract motion
discrepancy and observe the anomaly between the actual
versus expected motions of the robots, where the discrep-
ancy is formed by comparing the synchronized controls from
real robot on actual terrain and its digital double on the ideal
terrain.

• Effective online collapsibility estimation by correlating the
motion discrepancy. The learning model is trained in simula-
tion, and directly deployed in the real robot utilizing onboard
sensors (base IMU and joint sensors), without adapting any
sim-to-real techniques or retraining with real-world features.
The remainder of the paper is organized as follows. Sec-

tion II presents the real-time digital double framework, defines
a collapsibility metric, followed by the simulation environ-
ment, and the elaboration of using motion discrepancy as
input features for designing the learning model. Section III
reports the performance of our digital double framework in
real world, the neural network input feature analysis and
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Fig. 2. Time synchronizer and its interaction with the real robot and its digital
double controllers. Same controllers are running on them and each time step
is synchronized through the time synchronizer module.

online collapsibility estimation in simulation and real world
experiments. Finally, Section IV discusses alternative terrain
property estimation approaches and advantages/disadvantages
of using proposed framework, Section V concludes this work
and discusses future researches.

II. METHODOLOGY

In this section, the real-time digital double framework is
used to measure a quantitative disturbance – the collapsibility
of the surface the robot is walking on.

A. Real-time Digital Double Framework

The real-time digital double framework (Fig. 1) consists of
three components: a digital double, time synchronizer, and a
real robot. The digital double is simulated in the PyBullet
physics simulation [1] in real-time, alongside the real robot.

The real and simulated robots are based on the Unitree A1
robot [34] with 12 actuated joints (3 motors on each leg). To
control the robot, a modular locomotion control framework
from [7] is adopted which includes Model Predictive Control
(MPC) and the Whole-Body Controller (WBC) methods. Both
the digital double and the real robot are made to run two
identical but independent controllers.

An accurate Unified Robotic Description Format (URDF)
file of the Unitree A1 robot is used to reduce the modelling
error between the simulation and the real world. The real robot
and the digital double must both run the same control step so
that they perform the same action at a given time in similar
environment. It is assumed here that the simulation runs faster
than the real robot control step. As such, we ensure that control
loops are synced for both the real robot and digital double.

To accomplish this, a time synchronizer module is for-
mulated, as shown in Fig. 2, that synchronizes each control
step loop-timings for both the real and the digital locomotion
controller. The time synchronizer module will first initialize
and establish a socket connection between the real robot
and the digital double. Upon initialization of the real robot
controller and digital double controller, both wait to receive a
start signal from the time synchronizer in order to initialize at
the same starting time. After the initialization, the real robot
and the digital double run their controller step at the same
time. To ensure this, the real robot sends the step done flag
to the time-synchronizer module after each control loop step.

a)

b)

Fig. 3. Various scenarios tested in a physical simulation environment: (a)
Front-Right (FR) placed Non-Rigid Tile in Collapsible case, with ground truth
collapsibility of Cgt → 1 and sinking depth of x ≥ 10cm; (b) Front-Right
(FR) placed Non-Rigid Tile in Semi-Collapsible case, with Cgt ∈ (0, 1) and
0 < x < 10cm.

The message is forwarded by the time synchronizer module
sending the resume signal as true to the digital double, which
computes the next controller step. On the other hand, if the
resume signal is false, the simulated world pauses so that
the real robot can synchronize (reach the same controller step)
with the digital double.

B. Collapsible Terrain

Inspired by the work from [28], we define collapsible terrain
as: a terrain that looks traversable by vision, but collapses after
stepping on it. We propose to use a dimensionless definition as
the ratio of the terrain vertical deformation (x) relative to the
maximum allowed terrain deformation (xmax) that the leg can
reach out to when the terrain is collapsing. Thus, xmax is the
maximum ground penetration limit that robot can withstand
without failing.

C =
x

xmax
(1)

The proposed collapsibility metric is used for developing
anomaly detection in the context of non-rigid, collapsible
surfaces using discrepancy features which are the difference
between real and digital robots. Specifically, it is used to
quantify (1) the deviation of foot contact and (2) learn
the correspondence between non-rigid surfaces and the col-
lapsed/sunken depths, which has a nonlinear relation, rather
than identifying or discerning specific terrain properties. Note
that as long as these discrepancies are observed in the digital
double, collapsibility can be estimated on any type of terrain,
and it is not limited to flat ground. Assuming a hole is already
detected in the map, the real world and simulated environment
would be reconstructed similarly. Thus, both the real robot and
the digital double would behave similarly which would not be
the case in a collapsible case.

The collapsibility of the terrain for each foot is noted C ∈
Q : C ∈ [0, 1]. C ≈ 0 is considered as rigid terrain, which has
high stiffness and hard ground properties such that the terrain
deformation is nearly x ≈ 0cm. Semi-collapsible terrain C ∈
(0, 1) has relatively less stiffness compared to rigid ground.
This means that semi-collapsible ground is safer to walk on
than collapsible ground while still allowing for foot movement
upon ground contact. Therefore, the terrain deformation is in
the interval 0 < x < xmax where the ground has variable
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Fig. 4. Front-Right leg normalized discrepancy features, i.e. body orientation (roll, pitch, yaw), FR leg’s joint position, velocity (knee, hip, abduct), and foot
force errors where each feature is normalized by its maximum value. Distinguishable discrepancies appear within a short time window according to ground
truth collapsibility. The instant when the robot steps into the non-rigid platform is represented as ground truth collapsibility Cf ∈ [0, 1]. (a) robot walks on
rigid terrain, (b) robot steps on semi-collapsible terrain with its FR leg, (c) robot steps on collapsible terrain with its FR leg.

rigidity. A collapsible terrain, C → 1, means that the terrain
exceeds allowed maximum sinking depth x ≥ xmax which
will cause the robot to fall.

C. Dataset Collection

To build up the training and testing for quadrupedal walking
over a collapsible platform, we developed a unique simulation
environment that uses Pybullet bindings to simulate non-
rigid collapsible ground [1]. Two robots are spawned in a
customized simulation to train the neural network model: one
simulates the real robot, and the other represents the digital
double. From the simulation, we collected both the data of
sensing inputs and the ground truth values of collapsibility
Cgt to train the neural network model.

Fig. 3 shows the robot on a platform including a non-rigid
tile (orange and red square), which is modeled as a spring-
damper system that produces a one-dimensional displacement
under the vertical external force, i.e. contact force applied by
the robot’s foot. Thus, it allows us to simulate varying levels of
vertical tile deformation. We placed a non-rigid square tile in
4 positions where each leg will be stepping onto the non-rigid
region first respectively: Front-Left (FL), Front-Right (FR),
Back-Left (BL), and Back-Right (BR). The tile’s stiffness
properties were adjusted to simulate collapsible as shown in
Fig.3-a and semi-collapsible cases shown as Fig. 3-b.

Four individual NN models are trained to estimate each
leg’s collapsibility. The reason for an individual model for
each leg is the disturbance of the robot’s orientation varies
depending on the leg which will induce different motions
to compensate during locomotion and thus induce different
angular joint motion patterns. Even though the left and right
legs are symmetrical, entering with different sides into the non-
rigid tile can induce different patterns. Therefore, four models
that are specifically trained for each individual leg can capture
these patterns and assess individual collapsibility for each leg.

In total, we collected 40 trials as a configuration of FL-FR-
BL-BR (4) placed tiles for semi-collapsible and collapsible
cases (2), where each configuration is repeated 5 times, four
for the training set and one for the test set. Duration of
each semi-collapsible and collapsible trails (assuming 50Hz
sampling rate) are 8 second with 400 sample and 4 second
with 200 samples, respectively.

D. Input for the Neural Network (NN)

The neural network inputs are considered as the discrepancy
between real robot and digital double measured sensory in-
formation accumulated through a time window. We formulate
such discrepancy as Eq. 2.

Θ
q
q̇
f

 =


ΘR

qR

q̇R

fR

−


ΘD

qD

q̇D

fD

 , (2)

where the body orientation Θ is expressed as a vector of roll,
pitch, and yaw Euler angles, while q and q̇ are positions and
velocities, respectively, for knee, hip and abduct joints. Finally,
f represents feet forces. These features are defined by the
difference between the real robot and digital double and are
denoted with superscripts R and D, respectively.

The discrepancy feature image in Fig. 4 visualizes body
orientation error (roll, pitch, yaw), FR leg’s joint position,
velocity (knee, hip, abduct), and foot force error where each
feature is normalized by its maximum value. Robot steps
over FR placed tiles when non-collapsible (Fig. 4-a), semi-
collapsible (Fig. 4-b) and collapsible (Fig. 4-c) tile in simula-
tion. Distinguishable patterns can be observed from the image
whereas the discrepancy increases in proportion to the ground
truth collapsibility.

Indeed, the discrepancy arises relatively to how collapsible
the surface is, i.e. when the robot steps on a surface, exerting
smaller reaction forces due to the collapse of the ground, there
is no physically available or sufficient reaction forces to reduce
the position errors. When the robot enters a collapsible area,
the discrepancy significantly increases between the real mea-
surements and their expected values from the digital double.
As a result, the subsequent errors during the stance phase rise
and persist, despite any feedback control. This discrepancy
and level of deviation from the nominal, expected motions,
therefore, inherit recognizable patterns for the estimation of
the collapsibility.

E. Neural Network (NN) Design

The proposed neural network represented as Fig.5 is com-
posed of two 1D-convolution layers, each followed by a ReLu
activation layer with a Max pool layer in between. Then,
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Fig. 5. The neural network structure for collapsibility estimation.
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Fig. 6. Performance of the real-time digital double framework: a-b) the
position and velocity profiles of the FR hip joint, from the real robot and its
digital double respectively during trotting on a flat ground. The high Pearson’s
r score shows a strong correlation of two signals from the real robot and its
digital double.

2 fully-connected layers are used to provide a single value
output which is collapsibility estimation. The 1D-convolutions
are independent for each variable. The two convolution layers
output 280 and 120 channels with a kernel size of 5 and 3,
respectively. This structure was selected as the convolution
layers are able to capture temporal patterns among the data.
In total, there are 243641 trainable parameters when 9 input
features are used. This structure was selected as the convo-
lution layers are able to capture temporal patterns among the
data.

Input features are accumulated over a time window of 0.5
second, where the sliding window time is chosen as,0.04
second. We have observed that the selected time window size
is enough to capture features in one gait cycle. Different sets of
input features were investigated through several training runs.
For each training, 100 epochs are processed with a learning
rate kept constant at 0.001.

III. RESULTS

We present our results in 5 subsections. First, an assessment
of real-time digital double framework in real-world experiment
is presented. Thereafter, an analysis of the NN parameters
reveals the influence of the input features, and the NN’s
performance is assessed on the test dataset for each leg.
Finally, the online collapsible estimation in simulation and
real-world experiments is presented for semi-collapsible and
collapsible cases.

A. Assessment of the Real-time Digital Double Framework

In order to demonstrate the performance of the real-time
digital double framework, the real robot and its digital double
walked on a flat rigid surface. The robot’s on-board computer
does the computations for the locomotion controller, while
the time synchronizer and physics simulation runs on a host
PC linked to the robot via Ethernet. For the host PC, we
use an Intel Core i7-10870H CPU with 8 cores, each with

TABLE I
TEST ERRORS BY INPUT FEATURE

Order Symbol Discrepancy Feature Definition Size

Zero Θ Body Orientation Angle 3
q Joint Position* 3

First q̇ Joint Velocity* 3
Higher f Foot Force* *in a single leg 1

Input
Feature Error(%) Variance

Θ 9.06 0.012
q 5.32 0.006
Θ,q 5.56 0.006
q̇ 4.23 0.005
f 5.195 0.008

Input
Feature Error (%) Variance

q̇,f 7.02 0.011
q,q̇ 4.19 0.003
q,f 6.62 0.012
Θ,q,q̇ 3.817 0.003
Θ,q,q̇,f 5.121 0.004

a clocking speed of 2.20 GHz, with a GeForce RTX 3070
GPU for simulation rendering.

Without the time synchronizer, the digital double’s control
loop finishes faster (1109µs) than the real one (2203µs).
Such large difference in average control loop time causes
large motion discrepancy between two systems since both
controllers does not perform the same action at given time.
As a result, we observed non-periodic time delays in the
scale of milliseconds on both robots’ control loop instead of
periodic patterns due to occasional time delay in computation
and in data transfer. With the implementation of the time
synchronizer, both real robot and digital double compute their
control loop with an average time difference of 9µs, thus both
controllers perform similar action at a given time. Fig. 6 shows
the close look-up of the FR hip joint position and velocity
for the real robot and the digital double. We can observe
that the digital double has similar dynamic results to the real
robot under standard settings (assuming robots walking level
ground) since both joint position and velocities have matching
amplitudes. Within the time window of 1 seconds, phases of
the real robot and digital double are fully synchronized. A
strong positive correlation on joint position and velocity is
observed with Pearson’s r scores of 0.97 and 0.95 respectively,
where the Pearson’s r score in statistics is defined as a linear
correlation coefficient of two sets of data.

B. Analysis of NN Inputs

All the quantities involved in the physical interactions can
potentially provide correlations between their discrepancy and
the level of collapsibility. Our analysis explores how informa-
tive each variable is, and our results show which discrepancy
features reflect and correlate more with an abnormal gait over
the collapsible terrains.

Inputs for the model are grouped by the order of derivatives
(zero, first, higher) in Table III-A, and the NN is trained with
different combinations to quantify the contribution of each
variable. The mean absolute error that is used to evaluate
performance of the models is calculated as MAE(%) =
100 1

k

∑k
t=0 |Cgt(t)−Ĉ(t)|, |Cgt(t)−Ĉ(t)| ∈ [0, 1] by first cal-

culating the absolute difference of estimation (Ĉ) and ground
truth collapsibility (Cgt) at time stamp t and then averaging it
over time k. In order to ensure reliable statistics in analysis of
NN inputs, the error mean and its variance is calculated from
five different training cycles. From Table III-A, according to
our analysis, we can observe that solely using body orientation
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Fig. 7. Online collapsibility estimation in the Simulation: (a) Front-Right (FR)
foot estimation, where a collapsible tile was placed FR and its sinking depth
was more than xmax (x ≥ 10cm, Cgt → 1) ; (b) FR and Back-Right (BR)
foot estimation, where a semi-collapsible tile with Cgt ∈ (0, 1) was placed
at FR; (c) BR foot estimation where a collapsible tile was placed at BR; (d)
Front-Left (FL) and Back-Left (BL) foot estimation where a semi-collapsible
tile was placed at BL.

error (Θ) gives the highest error, however when used in
combination with joint position and joint velocity (set Θ, q,
q̇) achieves the lowest error.

Unlike the related works presented in Section I-A, our
study shows that contact force information f alone does not
provide the best results and degrades the performance when in
combination with others (shown in Table III-A). Using contact
force information for collapsibility estimation can be feasible
in static walking or active probing motion, but in dynamic
walking, impact force induces noises and spikes in small time-
window since the robot locomotion controller balances the
torso and legs in a compliant and dynamic manner rather
than standing and only probing the ground. Thus, for our
learning pipeline the level of noises and spikes in force data
decrease the quality of the collapsibility estimation on our test
dataset. In this regard, for our proposed deep learning model,
the collapsibility is more easily predicted using the zero or
first-order features as inputs – they form the principle and
primary components for online estimation of collapsibility. By
studying all the combinations, we finalized the set of features
(Θ, q and, q̇) as the input for our proposed deep learning
model, as it renders the highest accuracy.

Moreover, according to our statistical observation on the
testing set retrieved during the dataset collection, individual
leg’s NN models have R2 = [0.87, 0.9, 0.91, 0.94] values
which indicate a high level of correlation between the esti-
mated collapsibility and the ground truth. As a result, we can
conclude that all four models are capable of correlating the
motion discrepancy features with the continuous ground truth
collapsibility encountered during training.

C. Collapsible Terrain Estimation in Simulation

Real-time online collapsibility estimation in simulation is
presented to demonstrate the performance of the trained model.
Multiple scenarios are carried out to test the capabilities
of an individual foot’s collapsibility estimation. Four of the
outcomes that have similar ground truth plots are used to

generate the mean collapsibility estimation and its upper-lower
boundaries.

Fig. 3(a) displays FR foot stepping on collapsible tile (x ≥
10cm, Cgt → 1) placed in the front-right corner and Fig. 7
(a) shows its estimation graph. The same collapsible tile is
also placed back-right and the BR feet estimation graph is
presented as Fig. 7 (c) when the robot is walking backward.

Fig. 3(b) shows FR and BR feet stepping on semi-
collapsible tile (0 < x < 10cm, Cgt ∈ (0, 1)) with both
front and back legs in sequence as the robot continues walking
forward and its online estimation result is shown as Fig.7 (b).
Similarly, semi-collapsible tile placed back-left and while the
robot is walking backwards, the FL, BL feet estimation graph
is captured as in Fig. 7 (d). We can observe that the FR-FL-
BR-BL feet models are capable of precisely estimating non-
collapsible, semi-collapsible, and collapsible tiles as well as
identifying them separately.

D. Real world Implementation of Collapsibility Estimation

In the experimental setting shown in Fig. 8(i), real robot
walks on semi-collapsible terrain while digital double walks
on hard ground in Fig. 8(ii). Unitree A1 quadruped robot [34]
is used along with the host computer that simulates digital
double and executes the time synchronizer.

Collapsibility ground truth (Cgt) is calculated through the
foot’s relative vertical displacement and the foot position with
respect to a fixed frame is obtained from a real-time 2D motion
analysis software – Kinovea. Thereafter, accuracy is calculated
by averaging the absolute difference of estimation and ground
truth over time.

Fig. 9(a-i) shows FR placed collapsible tile estimation where
non-rigid tile can deform such that ground truth Cgt → 1,
sinking foot depth becomes x ≥ 10cm. A discrepancy between
real robot and digital double can be seen from the hip joint
positions when FR foot steps on the collapsible tile in Fig.
9(a-ii). FR foot successfully estimates collapsibility with 6.7%
of MAE compared to ground truth during the experiment.
After the robot falls (3.8s onward), estimation fails since joint
failures was not part of the training process.

Fig. 9(b-i) shows FR placed semi-collapsible tile estima-
tion where non-rigid tile can deform such that ground truth
Cgt ∈ [0, 1] and sinking foot depth becomes 0 < x < 10cm.
Therefore, the robot could cross over it with its FR and BR legs
and both is able to estimate collapsible tile with 3.43%, 1.23%
of MAE compared to ground truth during the experiment.
The motion FR hip joint discrepancy between the real robot
and digital double can be seen in Fig. 9(b-ii). While the BR
foot is still on the non-rigid tile, a FR hip joint discrepancy
can still be seen when the FR foot leaves the tile. However,
the FR collapsibility estimator appropriately estimates as non-
collapsible (Ĉ ≈ 0) after the FR foot leaves the non-rigid
tile. This is the benefit of using four individual NN model
since each model can capture patterns for each foot’s actual
collapsibility even though there is discrepancy on one of the
input features.

It should be highlighted that the estimation was trained in
simulation and then directly deployed on the real robot, with
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i)

ii)

0.0 s 4.2 s 6.0 s

Fig. 8. Snapshots of real world experiments with the digital double running
in parallel: (i) the real robot steps over front-right placed semi-collapsible tile,
where the real situation differs from the expectation; (ii) the digital double
simultaneously walks on a hard ground as if in an ideal scenario. Time is
stamped according to result of semi-collapsible case shown in Fig. 9(b-i) and
in Fig. 9(b-ii)

no additional retraining using real data. This shows a clear
advantage of using the proposed digital double to learn how
to infer the ground property.

IV. DISCUSSION

For static walking, the terrain stiffness, as the changes in
forces versus that in spatial displacements ( ∆F

∆x ), can possi-
bly detect the property of contact surfaces. However, during
dynamic walking, it is more challenging for several reasons.
Firstly, IMU and joint encoders have limited resolutions and
have phase lag/mismatch between them, which can cause sig-
nificant errors in the end-effector positions. Thus, the precision
of the calculated spatial position of the foot is difficult during
fast locomotion. Secondly, adding a force sensor at foot for
directly sensing reduces stability during dynamic walking, due
to increased mass-inertia. Also, estimating force indirectly via
joint torques is not accurate during dynamic motions. Finally,
in dynamic walking, the stepping frequency can be 2 Hz or
higher, with a very short stance time of 0.16-0.25 s. During
the stance, contact/impact forces are largely fluctuating and
spiking, making stiffness calculations very problematic in such
a short time window.

As alternative approach for motion discrepancy, real robot’s
sensory information solely can be used to train the learning
model and estimate collapsibility. Moreover, rather than using
digital double framework, motion discrepancy could have been
estimated if the real robot’s motion pattern can be captured
offline and synchronized with the real robot online. The
main drawback of these methods is that the dataset collection
must account for all possible robot actions and scenarios,
including varying speeds, directions, gaits, and more. As a
result, collecting and training all conceivable combinations is
inefficient and time-consuming. Thus, one advantage of using
a real-time digital double is the scalability. It can effortlessly
deliver motion discrepancy in different robots and payload
mass without pre-training or pre-recording since the robot’s
model and controller can be easily updated in a simulated
world. We decided to use motion discrepancies between reality
and expectations, so that the learning model can be more
generalizable and perform effectively in untrained real-world
cases which are tested in Section III-D.

One of the major disadvantage of utilizing a digital double
for terrain estimate is the assumption that the simulation world
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Fig. 9. Online collapsibility estimation in Real-world Environment: (a-i)
Front-Right (FR) feet estimation, where a collapsible tile was placed FR
and its sinking depth is more than xmax (x ≥ 10cm, Cgt → 1); (b-i)
FR and Back-Right (BR) feet estimation, where a semi-collapsible tile with
Cgt ∈ (0, 1); (a-ii and b-ii) Front-Right hip’s joint Position in real and digital
double while FR foot enters the non-rigid tile.

has similar geometric ground properties to the real world. In
reality, rough terrain might have irregular and uneven shapes,
making the digital double technique less effective. In our proof
of concept, we show in Section III-D that if the simulated
environment have similar terrain shapes and location to the real
one, we can have a similar estimation performance. As we will
demonstrate in future work, by incorporating SLAM, we can
recreate perceived real-world geometric shapes in the physics
simulation while also running the proposed framework.

The advantage of simulating more realistic interactions
comes at a higher computational cost. However, according
to our experiment, our framework uses only 7.5% of overall
computing in the PC (Intel Core i7-10870H CPU with 8 cores
and 2.20 GHz clocking speed). Although we used a host PC
to simulate digital double in this study, it is feasible to run
whole framework in the robot onboard computer.

V. CONCLUSION

We presented the proof of concept of a real-time digital
double framework for legged robots to extend the robot’s sens-
ing on real-world terrains. By utilizing the time synchronizer
on two independent locomotion control loops, digital double
and the real robot were able to behave similarly in real-time.
The motion discrepancy, between the digital double walking
in hard ground versus real robot walking on non-rigid terrain
surfaces, is used for online detection of anomalies correlated to
collapsibility of the terrain. The estimation interpolates semi-
collapsible grounds as relatively safe to step on, compared to
the collapsible ground.

We benchmarked the relative influence of each input feature
in the neural network model and concluded the effective
combination is to use the discrepancy of joint positions, joint
velocities, and body orientation, which are easily available
in most platforms and provide good results in collapsibility
estimation. We showed that it is feasible to analyze the
collapsibility of the ground in dynamic legged motion with
minimal latency and high accuracy using the proposed method.
No retraining or data collection in real world was necessary,
even though the training was solely done in simulation, which



8 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS). PREPRINT VERSION. ACCEPTED JUNE 2022

is an advantage of using high-dimensional sensory date based
on the digital double framework.

Future work will investigate uneven and outdoor cases to
test proposed collapsibility estimation framework. Moreover,
our method can be used for the research in reactive locomotion
on quadruped robots. Fully integrated digital twin, as in the
literature, can also be investigated with vision feedback for
mitigation upon detected undesired behaviors.
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