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A B S T R A C T   

Determining the extent and nature of ancient glacial deposits is fundamental to understanding Earth’s climate in 
the Cryogenian Period. Although the detailed study of sedimentary facies has allowed significant insights, it 
typically fails to produce high confidence interpretations for the past position of grounded ice, its thermal regime 
and flow direction, which are of fundamental importance to any glaciological reconstruction. When correctly 
identified, Cryogenian subglacially striated surfaces (pavements) unequivocally indicate grounded ice, a warm- 
based thermal regime and flow direction. However, they are globally rare and open to misinterpretation. Despite 
a discontinuous belt of Cryogenian strata, stretching thousands of kilometres from Alaska to California, the only 
purported Cryogenian pavements from the North American continent or the western margin of the Laurentian 
palaeocontinent occur in the Big Cottonwood Canyon area, Utah. We critically reappraise the only uncontested 
pavement from this area, presenting a detailed description derived from new high resolution photogrammetry 
and traditional field observations. These suggest that the purported pavement is unlikely to be a Cryogenian 
feature, but is instead a recent erosional phenomenon consistent with other structurally controlled features 
within the surrounding modern landscape. Our reinterpretation questions whether grounded Cryogenian ice 
reached the Utah – Idaho region and whether the lower reaches of the Mineral Fork Formation record glacially 
influenced deposition or non-glacial, rift-related sedimentation that transitions upwards into glacial conditions.   

1. Introduction 

During the Cryogenian Period (ca. 720–635 Ma) glaciation is 
hypothesised to have reached sea-level at equatorial latitudes, implying 
extreme global cold. However, our understanding of glacial dynamics 
and ice cover extent from this period remains poor (Kirschvink, 1992; 
Hoffman et al., 1998; Eyles and Januszczak, 2004; Abbot et al., 2011; 
Rose, 2015; Hoffman et al., 2017; Le Heron et al., 2020). Determining 
the past position of grounded ice, its thermal regime and flow direction 
are fundamental to improving that understanding. The study of sedi
mentary facies is rarely able to determine these three parameters with 
confidence as Cryogenian deposits tend to be the reworked products of 
glaciation, rather than directly deposited by grounded ice (Eyles and 
Januszczak, 2004; van Loon, 2008; Hambrey and Glasser, 2012; Spence 
et al., 2016). Subglacially striated bedrock surfaces (pavements) provide 

high-confidence evidence for grounded ice, a warm-based thermal 
regime and ice flow direction. They therefore have the potential to 
provide fundamentally important insights into Cryogenian glacial dy
namics and ice cover extent, insights seldom possible through the study 
of sedimentary facies. 

Cryogenian striated pavements are globally rare and known exam
ples typically only exist as metre-scale fragments (Table 1). This is in 
unexplained contrast to pavements of the subsequent Late Palaeozoic Ice 
Age (LPIA), for example, that may be traced over hundreds of square 
kilometres (Trosdtorf et al., 2005; Le Heron, 2018; Assine et al., 2018; 
see Table 3 of Laajoki, 2002 for review of LPIA pavements). In addition 
to rarity, erroneous interpretation is a problem. Several of the few 
known Cryogenian striated pavements have alternatively been inter
preted as non-glacial features (Table 1) (Daily et al., 1973; Christie- 
Blick, 1982; Jensen and Wulff-Pedersen, 1996). Given these challenges 
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and the unique insights that pavements allow into Cryogenian ice dy
namics and extent, the careful documentation and scrutiny of each and 
every example is essential. 

On the North American continent, a discontinuous belt of Cry
ogenian glacigenic formations stretches thousands of kilometres, from 
Alaska to California, along the western margin of the Laurentian 
palaeocontinent (Fig. 1 A) (e.g. Macdonald et al., 2013; Yonkee et al., 
2014; Moynihan et al., 2019). Despite this abundance of preserved 
strata, the only purported Cryogenian pavements known from the North 
American continent belong to the Big Cottonwood Canyon area of Utah 
(Fig. 1 B, C). These occur upon the Tonian (1000 Ma–ca. 720 Ma) Big 
Cottonwood Formation, immediately beneath the Cryogenian Mineral 
Fork Formation. They are reported in two modern day valleys, “Mill B 
North Fork” (Ojakangas and Matsch, 1980) and “Mill B South Fork” 
(Blick, 1979) (Fig. 1 C). Re-examination, however, has suggested that 
the purported Cryogenian pavements of Mill B South Fork are in fact a 
tectonic feature or the result of Pleistocene glaciation (Christie-Blick, 
1982) (Supplementary Data). By contrast, no new data or scrutiny have 
been published from the purported pavement in Mill B North Fork since 
its initial description and interpretation over 40 years ago (Blick, 1979) 
(Fig. 2). 

The purported Mill B North Fork pavement is therefore unique as the 
only uncontested Cryogenian pavement known on either the western 
Laurentian margin or the North American continent. If its subglacial 
interpretation is correct, it provides the highest confidence tie-point for 
grounded Cryogenian ice and ice flow direction on the western Lau
rentian margin. Increasing this potential significance, the Big Cotton
wood Canyon area has not been significantly displaced by either the 
Sevier Orogeny or subsequent Basin and Range tectonics (Yonkee et al., 
2014), which for the tectonically juxtaposed Cryogenian strata of the 
western Laurentian margin is almost unknown (Johnston, 2008) (Fig. 1 
B). 

Considering the potential importance of this purported pavement, 
advances in field techniques over the past 40 years and the interpreta
tive difficulties associated with ancient pavements, reappraisal is long 

overdue. Our goal, therefore, is to critically reassess the purported Mill B 
North Fork pavement, presenting a detailed description derived from 
new high resolution photogrammetry and traditional field observations. 
These suggest that the purported pavement is unlikely to be a Cry
ogenian feature, but is instead a recent erosional phenomenon consistent 
with other structurally controlled features within the surrounding 
modern landscape. 

1.1. Geologic Setting, age and previous work 

1.1.1. Geologic setting 
The Mineral Fork Formation of the Big Cottonwood Canyon study 

area is one of several Cryogenian glacigenic units in the Utah – Idaho 
region (Fanning and Link, 2004; Balgord et al., 2013; Keeley et al., 2013; 
Yonkee et al., 2014; Gaschnig et al., 2016) (Fig. 1 B). According to the 
regional reconstruction of Yonkee et al. (2014, their Fig. 12 A, B), these 
units were deposited in a north–south trending system of rift basins, 
accompanied by uplifted rift flanks. Subsequently, to the west of these 
glacigenic units, a passive margin developed during the Ediacaran to 
Cambrian periods (see 87Sr/86Sr isopleth in Fig. 1 A, B) (Armstrong et al., 
1977; Elison et al., 1990). This margin then became active and accreted 
terranes from the Mesozoic onwards, inducing folding and thrusting 
during the Sevier Orogeny, followed by extensional “Basin and Range” 
tectonics (e.g. Yonkee and Weil, 2015). 

As a consequence of this tectonic history, the Precambrian to 
Palaeozoic strata of the Big Cottonwood study area have been tilted 
towards the NE to NNE and form the northern limb of a gently eastward 
plunging anticline (e.g. Paulsen and Marshak, 1999) (Fig. 1 C). They 
were then rapidly exhumed between 10 and 5 million years ago (Arm
strong et al., 2003). Whereas most of the Utah – Idaho region’s Pre
cambrian glacigenic units have been tectonically shifted eastward by 80 
km to 150 km, the study area has been shifted only ~20 km and the 
neighbouring Provo area only ~50 km (compare “modern” and 
“restored” positions in Fig. 1 B) (Yonkee et al., 2014). During deposition 
of the Mineral Fork Formation, these two areas were further east and 

Table 1 
Neoproterozoic striated pavements.  

Palaeocontinent Unit Age Discussion of age Example of glacial/non-glacial interpretation 

(country)    Glacial Non-glacial 

Baltica Moelv Fm E (?) Nystuen and Lamminen 
(2011) 

Nystuen and Lamminen (2011) None 

Central Iran Kahar Fm E Etemad-Saeed et al. (2016) Etemad-Saeed et al. (2016) None 
Rio de la Plata - Congo – São  

Francisco (Namibia) 
Nama Grp E Germs and Gaucher (2012) Germs (1972) None 

North Australia Egan Fm E Grey and Corkeron (1998) Corkeron (2011) None 
North China Luoquan Fm E Le Heron et al. (2018) Le Heron et al. (2018), Le Heron et al. 

(2019) 
None 

Morroco Ouarzazate Grp E Vernhet et al. (2012) Vernhet et al. (2012) None 
Baltica (Sweden) Långmarkberg Fm E (?) Kumpulainen and Greiling 

(2011) 
Asklund (1960)† Crowell (1964)†

India Blaini Fm E/C 
(?) 

Etienne et al. (2011) Etienne et al. (2011) Dey et al. (2020) 

São Francisco (Brazil) Jequitai Fm, Bebedouro 
Fm 

C de Andrade Caxito et al. 
(2012) 

Isotta et al. (1969), Montes et al. (1985) None 

North Australia Walsh, Fargoo, Landrigan 
Fm 

C Corkeron (2011) Perry and Roberts (1968), Corkeron 
(2011) 

None 

Baltica (Norway) Smalfjord Fm C Rice et al. (2011) Rice and Hofmann (2000) Jensen and Wulff-Pedersen 
(1996) 

W. African Craton 
(Mauritania) 

Jbéliat Grp C Deynoux (1985) Shields-Zhou et al. (2011) None 

Laurentia (NE Greenland) Tillite Grp C Stouge et al. (2011) Moncrieff and Hambrey (1988) None 
Tarim (NW China) Yuermeinak Fm C Vandyk et al. (2019) Vandyk et al. (2019) None 
Laurentia (SW USA) Mineral Fork Fm C This study Blick (1979) This study 
South Australia Merinjina Fm C Preiss et al. (2011) Coats and Preiss (1987) Daily et al. (1973) 
East African Orogen (Oman) Ayn Fm C Rieu et al. (2006) Kellerhals and Matter (2003) None 
Note: E = Ediacaran, C = Cryogenian, Fm = Formation, Grp = Group. Certainty of age assignments is variable and the reader is directed to the references in the “Discussion of Age” 

column for further detail.  
†as cited by Kumpulainen and Greiling (2011, p.626)  
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therefore closer to the rift flanks than any of the other Precambrian 
glacigenic units of the Utah – Idaho region (Fig. 12B, C of Yonkee et al., 
2014). 

The study area comprises Precambrian to Palaeozoic strata, partially 
obscured by Quaternary cover. Together, these form 4 valleys with 
intervening ridges: Mill B South Fork and Mineral Fork Canyon to the 
south of Big Cottonwood Canyon and Mill B North Fork to its north 
(Fig. 1 C). Mill B South Fork hosts a well-documented Pleistocene sub
glacially eroded landscape in its upper reaches, including streamlined 
and striated bedforms (Atwood, 1909; Quirk et al., 2018) (supplemen
tary data). Contrastingly, no evidence of Pleistocene subglacial erosion 
has been reported from Mill B North Fork, which is sinuous, v-shaped 
and flanked by angular, joint-controlled cliffs. Minor faults of 100 m to 
km-scale length are common, predominantly striking E-W and NE-SW, 
as are similarly oriented dykes (Fig. 1 C). In Mill B North Fork, 
thrusting has duplicated the Precambrian strata. They are poorly 
exposed in a foot-wall block, which is not considered further, but better 
exposed in a hanging-wall block ~ 300 m to the N (Fig. 1 C, D). The 
purported Mill B North Fork pavement occurs upon this hanging-wall 
block (Figs. 1 D; 2). 

From oldest to youngest, the Precambrian strata comprise the Big 
Cottonwood, Mineral Fork and Mutual formations. These are separated 
by sharp disconformable boundaries and are unconformably overlain by 
the Cambrian Tintic Quartzite (Fig. 1 C). The lower boundary of the Big 
Cottonwood Formation is not exposed. Its upper boundary has been 
deeply incised, prior to which strata were already consolidated (Link 
and Christie-Blick, 2011). The depth of this incision reaches ~180 m in 
Mill B North Fork and ~800 m in Mill B South Fork (Fig. 1 C). The 
incised boundary cannot be traced continuously between the two Forks 
(Fig. 1 C). According to the interpretation of Blick (1979), the purported 
pavement of Mill B North Fork occurs upon this incised upper boundary. 
Our observations, however, suggest that its stratigraphic position is less 
clear and that it may be stratigraphically lower than the formation 
boundary (see Section 3.1.1; Fig. 2 A-D). 

Big Cottonwood Formation strata comprise slightly metamorphosed 
argillites to medium-grained rippled, cross-bedded or massive sand
stones. Facies include tidal-fluvial and supratidal to shallow subtidal 
sedimentary rocks, within which tidal rhythmites confirm a marine 
connection (Ehlers and Chan, 1999). These were deposited at equatorial 
latitudes in an estuarine setting with westward-palaeoflows (Bressler, 
1981; Ehlers and Chan, 1999; Weil et al., 2006). 

The Mineral Fork Formation rests upon the incision into the top of 
Big Cottonwood Formation. It is overlain by the Mutual Formation or 
Palaeozoic strata (Fig. 1 C, D). In Mill B North Fork, it forms a ~2 km NW 
– SE elongate outcrop that reaches ~180 m thickness (Fig. 1 C, D). This 
pinches out to the NW and is truncated by a fault to the SE. Spanning 
Mill B South Fork to Mineral Fork Canyon, it forms a ~6 km NNW – SSE 
elongate outcrop that reaches ~800 m thickness. This is truncated by an 
inferred fault to the NNW and passes into multiple minor faults and non- 
exposure to the SSE (Fig. 1 C). The Mineral Fork Formation exposure 
therefore provides only a partial NW – SE or NNW – SSE section of 
exposure, which is too incomplete to allow confirmation of a U-shaped 
or any other glacially diagnostic valley geometry (c.f. Christie-Blick, 

1983) (Fig. 1 C; see 3D model restored to palaeo-horizontal in Fig. S2 of 
the Supplementary Data). The upper boundary of the Mineral Fork 
Formation has been incised and its original thickness is therefore un
known (Condie, 1967; Ojakangas and Matsch, 1980; Levy et al., 1994). 

The Mineral Fork Formation strata of the Big Cottonwood study area 
include laminated mudstones, massive to graded sandstones, clast-poor 
boulder-bearing diamictites and clast-supported cobble conglomerates 
(Crittenden et al., 1952; Condie, 1967; Varney, 1976; Blick, 1979; 
Ojakangas and Matsch, 1980; Christie-Blick, 1983). Cross-beds and 
ripples record water flowing towards the W to NNW and N respectively 
(Varney, 1976; Ojakangas and Matsch, 1980; Christie-Blick, 1983). A 
glacial influence during deposition of the Mineral Fork Formation has 
been suggested by most, but not all, authors (Hintze, 1914; Blackwelder, 
1932; Varney, 1976; Ojakangas and Matsch, 1980; Christie-Blick, 1983). 
There is, however, no consensus regarding specific depositional pro
cesses or environments, other than general agreement that at least some 
of the strata were deposited by sediment gravity flows (i.e. turbidites or 
debrites) (Condie, 1967; Varney, 1976; Blick, 1979; Ojakangas and 
Matsch, 1980; Christie-Blick, 1983). Condie (1967) interpreted the 
strata entirely as sediment gravity flows but could not determine 
whether a glacial influence was present. They noted that the presence or 
absence of a striated pavement, which they searched for in vain, would 
be of particular importance in resolving this question (Condie, 1967 pp. 
1320–1321). 

Importantly, a “glacial influence” does not require grounded ice in 
the study area. Some Mineral Fork Formation diamictites have been 
interpreted as debrites (i.e. sediment gravity flows) and others as tillites 
(Condie, 1967; Varney, 1976; Ojakangas and Matsch, 1980; Christie- 
Blick, 1983). Tillites are deposited directly by glacial ice and not sub
sequently reworked by water, thus indicating the past presence of 
grounded ice. However, distinguishing between tillite and debrite in the 
ancient record remains problematic (e.g. Eyles and Januszczak, 2004; 
Arnaud and Etienne, 2011). In Mill B South Fork, Ojakangas and Matsch 
(1980) interpreted tillite from a long-axis bimodal clast orientation (e.g. 
Hicock et al., 1996) but subsequent research has suggested that tills 
cannot be reliably “fingerprinted” in this manner (e.g. Bennett et al., 
1999; Benn and Evans, 2010; Hambrey and Glasser, 2012). Previous 
interpretations of tillite in the study area should therefore be treated as 
reasonable suggestions rather than high confidence interpretations. 

1.1.2. Age of the Big Cottonwood and Mineral Fork formations 
The youngest detrital zircons known from the Big Cottonwood For

mation of the study area are around 1000 Ma (Dehler et al., 2010; 
Spencer et al., 2012; Yonkee et al., 2014). Five kilometres west of Mill B 
South Fork, Spencer et al. (2012) reported 4 zircons of 748 to 851 Ma 
from the Little Willow Formation. They corrleated this formation with 
the Big Cottonwood Formation but considered their data unable to 
provide a precise maximum depositional age. Lithostratigraphic and 
palaeomagnetic correlations suggest that the Big Cottonwood Formation 
is a similar age to the Uinta Mountain Group, 50 to 220 km east of the 
study area (Fig. 1 B). This group has yielded a detrital zircon maximum 
depositional age of 766 ± 5 Ma (n = 4; 1σ) (Dehler et al., 2010). If 
palaeontologic and carbon isotopic correlations between the Uinta 

Fig. 1. Maps of study area. A: Western Laurentian Margin showing exposures of Neoproterozoic to Cambrian strata. DV: Death Valley. Modified from Fig. 1 of Yonkee 
et al. (2014). B: NW Utah – SE Idaho Region showing modern and restored positions of Cryogenian glacigenic units. Restored positions are position prior to Mesozoic 
to Cenozoic contractional (Sevier) then extensional (Basin and Range) tectonics. Ediacaran to Cambrian passive margin development occurred westward of the 
87Sr/86Sr isopleth, which indicates the approximate western limit of Precambrian crystalline basement (Armstrong et al., 1977; Levy and Christie-Blick, 1989; Elison 
et al., 1990; Lund, 2008). Modified from Fig. 1 of Yonkee et al. (2014). Position given in Fig. 1A. C: Geologic map of study area, modified from Crittenden (1965a,b), 
Blick (1979 plate 4) and Christie-Blick (1983, Fig. 3). Contours derived from 2 m LIDAR (State of Utah, 2006). Unit boundaries slightly modified using 12.5 cm aerial 
photography (State of Utah, 2012) and ground observations. For clarity, the Big Cottonwood Formation has only been differentiated into quartzite (q) and shale (s) in 
Mill B North Fork. Position given in Fig. 1B. D: Orthomosaic of Mill B North Fork hanging wall with bedding orientation data of this study. 12.5 cm aerial 
photography (State of Utah, 2012). Positions of Fig. 2C (containing the “pavement”), Fig. 5B-D (fault grooves, ridge-in-groove, cataclastic material), Fig. 5E (partially 
abraded surface), Fig. 7 (Mineral fork Formation measured section) and Fig. 9C (Surface B) are indicated. Profile sections A-B and C-D demonstrate break in slope 
across the “pavement” (A-B) and Surface B (C-D) and are derived from 2 m bare Earth LIDAR (State of Utah, 2006). Subfigure at bottom right shows approximate 
position of unit boundaries. Position of D is given in Fig. 1C. 
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Fig. 2. The “pavement” in context. A, B: Location of “pavement” at the topographically highest end of a NE-dipping (056◦/56◦) Big Cottonwood Formation bedding 
surface. “non-exposure” is the same area as “non-exp” in Fig. 2 C. C: Vertical orthomosaic of the NE-dipping (056◦/56◦) Big Cottonwood Formation bedding surface. 
Built from 544 UAV images. Positions of Fig. 4A (high resolution orthomosaic of “pavement”) and 5E (northern side of the “roche moutonnée” ridge) are indicated. 
“non-exp” is the same as non-exposure” in Fig. 2 B. D: Oblique UAV image of the “pavement”. E, F: Oblique terrestrial image of the “pavement”. Positions of Fig. 5A, 
6D-F and 8 are indicated. Note that the full extent of the northern side of the “roche moutonnée ridge” is visible in Fig. 2C but not 2D-F. Abbreviations: NSRM- 
Northern Side of “Roche Moutonnée” Ridge; SSRM-Southern Side of “Roche Moutonnée” Ridge; BCF-Big Cottonwood Formation; MFF-Mineral Fork Formation. 
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Fig. 3. A: Sketch profile and terminology minimally modified from Fig. 59 E of Blick (1979), showing his roche moutonnée ridges and grooved surface. B, C: Profiles 
WW-X and Y-Z across part of the northern side of the “roche moutonnée” ridge and onto the grooved surface, derived from digital elevation model (DEM) used in D. 
The positions of these profiles are shown in Fig. 3 D and Fig. 4 B as lines W-X and Y-Z D: Hillshade DEM. Position of profiles indicated. Source DEM built from 1039 
terrestrial images, using the same point cloud as Fig. 4, with a nominal resolution of 0.48 mm/pix. Full resolution hillshade and source DEM available in Fig. S8 and 
DEM 1 of Supplementary Data. 
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Mountain Group and Chuar Group (Fig. 1 A) are correct, then a 742 ± 6 
Ma ash layer in the latter places the tops of both groups around 740 Ma 
(Karlstrom et al., 2000; Dehler et al., 2010; Dehler et al., 2017). 

The youngest detrital zircons extracted from the Mineral Fork For
mation of the study area are ~1000 Ma (Yonkee et al., 2014). Two 
younger detrital zircons, 705 ± 41 Ma and 750 ± 16.5 Ma (1σ: Yonkee 
et al., 2014), have been extracted from the Mineral Fork Formation near 
Provo, today 45 km south of the study area (Fig. 1 B). The small number 
of these zircons, their high analytical uncertainty and an unclear strat
igraphic relationship between the two areas suggest only a tentative 
maximum depositional age for the study area. Mudstones in the upper 
Mineral Fork Formation of the study area approach the composition of 
an iron formation (Fe2O3t ≤ 14.78 wt%; Young, 2002). This is more 
commonly associated with the older, “Sturtian” (e.g. Hoffman et al., 
2017), part of the Cryogenian Period but is not diagnostic of age (Lechte 
et al., 2018). Providing a minimum depositional age for the Mineral Fork 
Formation of the study area, the incision along its upper boundary has 
been assigned to the regional Upper Caddy Canyon sequence boundary 
(Levy et al., 1994), which is older than 580 ± 7 Ma (Crittenden and 
Wallace, 1973; recalculated by Bond et al., 1985). 

In summary, the Big Cottonwood Formation was deposited during 
the late Tonian. Enough time then elapsed to allow its burial and 
consolidation prior to incision. It is not known whether Mineral Fork 
Formation deposition occurred immediately after or millions of years 
after this incision. Relying upon regional correlations, deposition of the 
Mineral Fork Formation is bracketed between the late Tonian and 580 ±
7 Ma. Most authors, however, presume a Cryogenian age. 

1.1.3. Previous work and terminology used in this paper 
According to Blick (1979), the purported pavement in Mill B North 

Fork comprises two parts: (1) two erosional ridges of metre-scale length 
and height and (2) an adjoining grooved surface with millimetre-depth, 
metre-length grooves (Fig. 3 A). It was reasoned that, because the 
grooves cut across bedding, they are the result of subglacial erosion. 
These “subglacial grooves” were interpreted as Cryogenian, rather than 
Pleistocene, as their trend is normal to the presumed direction of 
Pleistocene ice flow. The grooves could not be traced beneath strata of 
the Mineral Fork Formation. This “subglacially grooved” surface could 
equally be referred to as a “subglacially striated” surface. As the 
erosional ridges run parallel to the “subglacial grooves”, they were 
interpreted as Cryogenian “roches moutonnées”. One erosional ridge 
was smaller than the other, forming subordinate relief upon the larger 
ridge’s flank (Fig. 3 A). Most of the data of Blick (1979) are reproduced 
in Christie-Blick (1983) and Christie-Blick (1997). 

For clarity we have slightly modified the terminology used by Blick 
(1979) (Fig. 3). We treat the two “roches moutonnées” of Blick (1979) 
together as one feature, named the “roche moutonnée” ridge (Figs. 2 B; 
3). We refer to the “roche moutonnée” ridge and adjoining grooved 
surface collectively as the “pavement” (Figs. 2 B; 3). The following terms 
are used to divide the “pavement” into specific sections: the “roche 
moutonnée” ridge; northern side of the “roche moutonnée” ridge; 
southern side of the “roche moutonnée” ridge; “roche moutonnée” ridge 
axis; grooved surface. These terms are defined in Figs. 2 and 3 and used 
throughout the remaining text. 

2. Methods 

Fieldwork was undertaken in the Big Cottonwood Canyon area 
during October 2019. In addition to traditional field based measure
ments and observations, multiple overlapping images were taken for 
Uncrewed Aerial Vehicle (UAV) photogrammetry using a DJI Mavic Pro 
UAV and for terrestrial photogrammetry using a Fuji X-T3 digital cam
era. UAV images relied upon UAV GPS whereas terrestrial photogram
metry used printed ground control points. Photogrammetric point 
clouds and resulting textured mesh models, digital elevation models and 
orthomosaic images were built using Agisoft Metashape (2020). 

Geometric measurements were extracted from point-clouds using 
Cloudcompare (2020), including use of the qCompass (Thiele et al., 
2017) and qFacets (Dewez et al., 2016) plugins. Point cloud-based sur
face orientation measurements have only been reported where surface 
(s) within the same model have been ground-truthed using a compass 
clinometer. Orientations are reported in the format (dip direction◦/dip 
angle◦). Intersection lineations were checked using the Stereonet 10 
software (Allmendinger et al., 2011; Cardozo and Allmendinger, 2013). 

3. Observations and interpretations 

3.1. Observations 

The “pavement” is a subaerially exposed rock surface that has been 
exhumed within the last ten million years. It has experienced the same, 
geologically recent, erosional and neotectonic process as other rock 
surfaces in the surrounding landscape and at least some of its geomor
phological features will undoubtedly record these processes. Our task is 
to determine whether any of its geomorphological features also record 
subglacial erosion during an earlier, Precambrian, exposure. To do so we 
describe: (1) features previously attributed to Cryogenian subglacial 
erosion i.e. the “roche moutonnée” ridge and “subglacial grooves” 
(3.1.1); (2) non-glacial sedimentary (3.1.2) and tectonic (3.1.3) struc
tures of the “pavement” that contribute to its geomorphology; (3) fea
tures from the surrounding modern landscape resembling those features 
of the “pavement” that have been attributed to Cryogenian subglacial 
erosion (3.1.4). 

Within the Supplementary Data, animated models of the “pavement” 
and Mill B North Fork are provided to aid visualisation, along with a 
high resolution digital elevation model and orthomosaic. Additionally, 
although beyond the aim of this study, the Supplementary Data provides 
new outcrop observations and interpretations from the area of the 
purported Precambrian pavement in Mill B South Fork. These data are 
consistent with the tectonic re-interpretation of that purported Pre
cambrian pavement, as proposed by Christie-Blick (1982). 

3.1.1. “Roche moutonnée” and “subglacial grooves” 
In Mill B North Fork, the lithological contrast between the resistant, 

non-friable, Big Cottonwood Formation and the overlying, friable, 
Mineral Fork Formation forms a break in slope; from hillside above the 
break to a cliff face below it (profiles A-B and C-D of Fig. 1 D). The Big 
Cottonwood – Mineral Fork formation boundary approximately co
incides with this break but locally diverges by at least several metres. 
Along parts of the break, exposed surfaces of the Big Cottonwood For
mation protrude from the hillside to form a resistant lip. The “pavement” 
occurs upon the topographically highest point of one of these lips 
(profile A-B of Fig. 1 D). The lip in question is a steeply NE-dipping 
bedding surface (056◦/56◦) that protrudes westward from the hillside 
by up to 10 m and continues north–south for 45 m (Fig. 2 A-C). The 
hillside directly overlying this surface is recessive and exposes no strata 
(Fig. 2 A-D). At the lowest (northern) end of the surface, this area of non- 
exposure is overlain by further strata of the Big Cottonwood Formation 
(Fig. 2 C). Above the “pavement”, at the highest (southern) end of the 
surface, the area of non-exposure is overlain by isolated exposures of the 

Table 2 
Orientations of key linear features reported in this study.  

Feature Azimuth Plunge Figure 

“Roche Moutonnée” ridge axis 130◦ 13◦ 2, 3, 4 
“Subglacial Grooves” 130◦/310◦ – 4, 5 
Cross-set boundaries on grooved surface 130◦/310◦ – 4, 6 
Slickensides on grooved surface 114◦/294◦ – 6 
Fault grooves passing beneath BCF 147◦/327◦ – 5 
Ridge-in-groove on BCF 113◦/293◦ – 5 
Ridges on surface B 125◦ 5◦ to 16◦ 9 
Ridges on 100 m scale staircase 122◦ 25◦ to 35◦ 10  
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Mineral Fork Formation, several metres above (Fig. 2 D). No contact 
between the Mineral Fork Formation and the “pavement” could be 
found. 

The “roche moutonnée” ridge is formed where the topographically 
highest (southern) end of the NE-dipping bedding surface has been 
rounded off by erosion (Figs. 2 A, B; 3). The axis of the “roche 

Fig. 4. Orthomosaic of the Mill B North Fork “pavement”, comprising the grooved surface, southern side of the “roche moutonnée” ridge and part of its northern side. 
A: Orthomosaic with arbitrary grid. Grid positions are referred to in the text in [X, Y] format. B: Reduced size figure indicating positions of Figs. 5A; 6A, B, D; 8A, B 
and profiles W-X and Y-Z from Fig. 3. A high resolution version of this image is available in Fig. S7 of Supplementary Data. The position of this figure is indicated in 
Fig. 2 C. Orthomosaic built from 1039 terrestrial images, using the same point cloud as Fig. 3D. Nominal image resolution of 0.24 mm/pix. 
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moutonnée” ridge (Fig. 3 B) is ~5 m long and plunges gently towards the 
SE (130◦/13◦) (Table 2). It is truncated by hillside to the SE and by a 
joint-controlled cliff to the NW (Fig. 2 C-E). The northern side of the 
“roche moutonnée” ridge is sub-horizontal where it joins the ridge axis 
(Figs. 2 D-F; 3B-D). Northward, it steepens to form a ~12 m long, gently 
convex transition into the remaining, bedding-parallel part of the NE- 
dipping surface (Fig. 5 E). The southern side of the “roche 
moutonnée” ridge is steep, convex and smooth where not fractured 
(Fig. 3 B-D). It descends 2.5 m to an abrupt break in slope, which marks 
the edge of the adjoining grooved surface. 

The grooved surface is similarly oriented to the part of the northern 
side of the “roche moutonnée” ridge that joins the ridge axis, resulting in 
a step-like geometry (Fig. 3 B). It is truncated by cliffs, a metre beneath 
which 057◦/45◦ bedding was measured. The grooved surface is partially 
obscured by a dark brown patina (Fig. 4). This gradually transitions into 
a yellow-grey fresh surface that exposes well-sorted, typically medium- 
grained, meta-sandstone of the Big Cottonwood Formation. The surface 
has an irregular cm-scale topography with an increasingly karst-like or 
blistered appearance where the patina is strongest (e.g. grid position 
[0.8, 2.2] of Fig. 4 A). The “subglacial grooves” are visible in an area of 

Fig. 5. Erosional and tectonic features of the “pavement” and surrounding landscape. A: The “subglacial grooves”. These are the exact same “subglacial grooves” 
shown in Fig. 59C of Blick (1979), Fig. 30 of Christie-Blick (1983) and Fig. 17a of Christie-Blick (1997). Position given in Fig. 2 E, F; Fig. 4 and Fig. 8 D. B: Fault 
grooves passing beneath the Big Cottonwood Formation. These occur on the same break in slope as the pavement. Subfigures A and B are shown at identical scales for 
comparative purposes. Position given in Fig. 1 D. C: Tectonic ridge-in-groove structure within metres of B. Location shown in Fig. 1 D.D: Cataclastic material closely 
associated with C. Location shown in Fig. 1 D.E: The northern side of the “roche moutonnée ridge” as it transitions northwards, downslope, into a bedding parallel 
surface. Note the partially abraded texture, better developed towards lower half of the image. Position given in Fig. 2 C. F: Partially abraded surface further along the 
break in slope. Position given in Fig. 1 D. 
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weak patina (centred at grid position [2.1, 2.3] of Fig. 4 A). The specific 
examples of “subglacial grooves” shown in Fig. 59C of Blick (1979) are 
shown in Fig. 5 A (also shown in Figs. 30 and 17a of Christie-Blick, 1983 
and Christie-Blick, 1997 respectively). These are straight to very slightly 
curved, reach ~1 mm depth, ~5 mm width, several dm length and trend 
~130◦/ 310◦, which is parallel to the “roche moutonnée” ridge axis 
(Table 2). 

3.1.2. Sedimentary structures of the “pavement” and the overlying Mineral 
Fork Formation 

Upon the southern side of the “roche moutonnée” ridge, straight to 

slightly concave, low angle cross-laminae of the Big Cottonwood For
mation form planar-based, tabular to wedge-shaped sets of typically 6 to 
10 cm thickness (terminology of Mckee and Weir, 1953) (Fig. 6 A, C). 
The apparent dip of these cross-laminae is mostly NW but occasionally 
NE or horizontal. Differential weathering has preserved cross-laminae as 
ridges up to ~1 mm high (Fig. 6 C). By contrast, cross-set boundaries 
form more pronounced ridges, up to ~1 cm high (Fig. 6 A). These cross- 
set boundary ridges also occur on the grooved surface, where they trend 
parallel to the subglacial grooves (~130◦/310◦), which is the expected 
intersection lineation between 057◦/45◦ bedding and the grooved sur
face (e.g. grid position [2.2, 2.8] of Figs. 4; 6 B; Table 2; Supplementary 

Fig. 6. Sedimentary and tectonic features of the “pavement”.A: Small ridges, up to 1 cm high, formed by differential weathering of tabular cross-set boundaries on 
the southern side of the “roche moutonnée” ridge. Position given in Fig. 4. B: Similar cross-set boundary ridges to A but upon the grooved surface. Position given in 
Fig. 4. C: Detail of cross laminae from A. Position given in Fig. 6B. D: Mineralised layers hosting slickensides. Patches of plastered material are likely cataclastic 
material. Position given in Fig. 4. E: Detail of slickensides from D. Position given in Fig. 6D. F: Slickensides merge into grooves. 
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Data). Unambiguous identification of cross-laminae upon the grooved 
surface is problematic on account of the surface’s irregular topography 
and patina. 

Above the “pavement”, but not observed in contact with the “pave
ment”, the stratigraphically lowest Mineral Fork Formation exposure 
comprises friable, intermittently exposed, poorly-sorted greywacke with 
occasional pebbles. Around 75 m upslope from the “pavement”, the 
exposure improves and displays a different character of sedimentation. 
This comprises a proud-weathering section of well-bedded, sorted, fine 
to coarse grained, massive to laminated sandstone (Figs. 1 D, 7). 

3.1.3. Tectonic features of the “pavement” 
A slickenside surface partially covers the SE part of the grooved 

surface (grid position [0, 1] of Fig. 4; Fig. 6 D, F). It comprises a dark, <1 
mm thick, mineral layer with lineation trending 114◦/294◦ and sub-mm 
steps descending ESE (Fig. 6 D, E; Table 2). Towards the WNW the 
slickensides transition into grooves that are up to ~1 cm wide and ~1 
mm deep (Fig. 6 F). 

A steeply-dipping orthogonal joint system occurs across the “pave
ment”, comprising a well developed NE – SW striking master set and a 
younger, less well developed, NW – SE cross-joint set (e.g. grid position 
[1.8, 2.5] of Fig. 4). These are approximately parallel to the cliffs that 
truncate the “pavement”. Less regular fractures with a shallower dip and 
a larger, cm-scale, aperture pass into the southern side of the “roche 
moutonnée” ridge and grooved surface (e.g. grid positions [2.8, 2.8] and 

[1.4, 2.0] of Fig. 4). 
Across the “pavement”, the rims of fractures vary from sharp to 

rounded, which is typical of a “partially abraded surface” (typology of 
Richardson and Carling, 2005). An important demonstration of this can 
be seen in two distinctively similar depressions (Fig. 8). One adjoins the 
northern side of the “roche moutonnée” ridge axis and the other occurs 
upon the grooved surface. The former is up to ~20 cm deep and has a 
sharp rim to the north but a smoother rim to the south (Fig. 8 A, C). The 
latter has a smoother rim throughout (Fig. 8 B, D). Nevertheless, the rims 
of both depressions feature the same saw-tooth planform, defined by the 
orthogonal joint system. The only other notable difference is between 
the basal surfaces of the two depressions. The depression adjoining the 
northern side of the “roche moutonnée” ridge axis has plumose struc
tures along its base, with arrest lines convex towards the SSW to SW 
(Figs. 4; 8 A, C). The depression upon the grooved surface hosts the 
“subglacial grooves” but no plumose structures (Figs. 5 A; 8 B, D) 

3.1.4. Features of the surrounding landscape 
The surrounding landscape provides analogous features to the 

“pavement” at three scales of observation, the mm to cm-scale, the metre 
to 10 m scale and the 100 m scale. 

At the mm to cm-scale, there are grooves with a similar trend (147◦/ 
327◦) and appearance to the “subglacial grooves” (compare Fig. 5 A and 
B). Like the “subglacial grooves”, these are situated upon an exposed 
surface of the Big Cottonwood Formation and within metres of the Big 

Fig. 7. Example of a better exposure of the Mineral Fork Formation in Mill B North Fork, ~75 m upslope from the break in slope. Position given in Fig. 1 D. A: 
Measured section. Abbreviations. c: clay, s: silt, f/m/c/vc: fine/medium/coarse/very corase sand, g: granules, p: pebbles. B: Centimetre-scale sandstone beds without 
lonestones. Coin for scale, diameter 2.45 cm. C: Wisps of sand within a dm-scale bed containing sand lenses. Coin for scale, diameter 2.59 cm. Positions of B and C are 
given in A. 
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Cottonwood – Mineral Fork Formation boundary. However, unlike the 
“subglacial grooves”, these pass beneath further strata of the Big 
Cottonwood Formation and are therefore undoubtedly fault grooves, not 
subglacial grooves. Within metres of these grooves is a cm-width tec
tonic ridge-in-groove structure of a similar trend (113◦/293◦) to the 
“subglacial grooves” and associated with cataclastic material ( Fig. 5 C, 
D; Table 2). 

Along the remainder of the break in slope, other exposed surfaces of 
the Big Cottonwood Formation tend to form partially abraded surfaces 
(typology of Richardson and Carling, 2005) that are comparable to the 
partially abraded surface of the “pavement” (compare Fig. 5 E and F). 
Notably, however, some of these other partially abraded surfaces are 
overlain by further strata of the Big Cottonwood Formation and the 
partial abrasion cuts across stratigraphic levels. This indicates that the 
partial abrasion most likely developed since or during the most recent 
exhumation of the landscape (≤10 to 5 Ma). 

At the metre to 10 m scale, the topographically highest (southern) 
end of another exposed NE-dipping (048◦/54◦) bedding surface of the 
Big Cottonwood Formation has been rounded off by erosion, in a similar 
manner to the “pavement” (40.64325◦− 111.71935◦; Figs. 1 D, 9). We 
refer to this rounded off part as Surface B. The nearest Mineral Fork 
Formation exposure is around 10 m from Surface B and it is unclear 
whether Surface B represents the Big Cottonwood - Mineral Fork For
mation boundary or a lower stratigraphic level within the Big Cotton
wood Formation. Whereas the surface of the “pavement” is only 
partially smooth and covered by patina, Surface B is entirely smooth and 
has a strong patina throughout. Traces of bedding may be distinguished 
but in general the patina obscures detail. Surface B features smooth, ~ 
10 m long ridges and depressions of several metres relief and width. 

Ridgelines plunge towards 125◦ at 5◦ to 16◦ (Fig. 9 B), which is similar to 
the 130◦/13◦ plunge of the “roche moutonnée” ridge (Table 2) and 
parallel to the strike of the adjacent joint-controlled cliffs (Fig. 9 C). A 
distinct dm-width parallel-sided furrow descends approximately east
ward down the lower part of the surface (typology of Richardson and 
Carling, 2005). This cuts across the ridges and is at least partly formed 
along a fracture (Fig. 9 A-C). Within Mill B North Fork, we observed no 
other surfaces that were smoothed and rounded to the same extent as 
Surface B or the “pavement”. 

At the 100 m scale, the step-like geometry of the “pavement” 
(Figs. 2A, B; 3 B, C) also occurs within the surrounding landscape. This is 
illustrated on the opposite side of the Mill B North Fork valley to the 
“pavement”, where the Big Cottonwood Formation forms a staircase of 
100 m scale exposed bedding surfaces separated by cliffs (Fig. 10). The 
intersections between these bedding surfaces and adjoining cliffs form 
ridges that are comparable to the “roche mountonée” ridge axis. These 
ridges plunge towards ~ 122◦, which is a similar orientation to both the 
“roche moutonnée” ridge axis and the ridges of Surface B (Fig. 10, 
Table 2). 

3.2. Interpretation 

The presence of grooves upon the “pavement” was taken by Blick 
(1979) as evidence of subglacial erosion. However, some fault surface 
processes are analogous to those of subglacial erosion and produce 
identical products (Fig. 11 A, B). These include fault grooves, crescentic 
fractures, flute ridges, nail head striation and striated clasts (Eyles and 
Boyce, 1998; Atkins, 2003). Discriminating between subglacial and 
tectonic origins for these features therefore relies upon their context 

Fig. 8. Comparison between the depression adjoining the northern side of the “roche moutonnée” ridge axis (A, C) and the depression upon the grooved surface (B, 
D). White square marker is 10 × 10 cm. Position given in Figs. 2F and 4. 
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Fig. 9. Surface B. A, B: Oblique view towards the SW, showing furrow and ridges. C: Orthomomosaic built from 366 UAV images with a nominal resolution of 4.36 
mm/pixel. Position indicated in Figs. 1 D, 2D. D: Orthomosaic, showing detail of surface, Built from 352 terrestrial image with a nominal resolution of 0.307 mm/ 
pixel. Position indicated in C. 
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rather than the characteristics of the features themselves (Fig. 11 C, D). 
The morphology of the “subglacial grooves” is consistent with either a 
subglacial or tectonic origin. However, contextual evidence from both 
the “pavement” and surrounding landscape strongly suggests a tectonic 
origin. 

Upon the “pavement”, slickensides that transition into grooves 
confirm that at least part of the grooved surface was a fault surface 
(Fig. 6 D-F). It is unlikely that these slickensides are instead subglacial 
striae as their stepped, perfectly parallel form is quite unlike the un
equivocal Pleistocene subglacial striae formed upon strata of the same 
formation in Mill B South Fork (Supplementary Data; Fig. S5). Addi
tionally, neither the mineral layer that hosts the slickensides nor the 
patina upon the “pavement” resemble glacial polish, which often ac
companies subglacial striae. Glacial polish frequently weathers in a 
characteristic manner, peeling off as mm-thickness circular patches 
(Siman-Tov et al., 2017). This applies equally to recent and Precambrian 
subglacially striated surfaces, which may be identical in appearance (e. 
g. compare Fig. 1A of Siman-Tov et al., 2017; and Fig. 11D of Vandyk 
et al., 2019). Glacial polish upon Pleistocene striated surfaces of the Big 
Cottonwood Formation in Mill B South Fork exhibits this classic 
weathering pattern and provides an indication of the appearance that 
would be expected of glacial polish upon the “pavement” (Supplemen
tary Data; Fig. S5). This appearance is quite unlike the stepped weath
ering of the slickenside-hosting mineral layer on the "pavement" or the 
gradual lateral transitions of its patina. 

Only a short distance from the “pavement”, the fault grooves (Fig. 5 
B) are analogous to the “subglacial grooves” in almost every sense (Fig. 5 
A). This includes their position on the break in slope, lithology and 
overall appearance. The key difference is that the fault grooves pass 
beneath overlying Big Cottonwood Formation strata, confirming their 
tectonic interpretation, whereas no overlying strata are preserved in 
contact with the “pavement”. The orientation of the “subglacial 
grooves” (~130◦/310◦) is also consistent with a tectonic origin. It is 

midway between the fault grooves (147◦/327◦) and both the tectonic 
ridge-in-groove structure (113◦/293◦) and the slickensides on the 
grooved surface (114◦/294◦) (Figs. 5, 6; Table 2). 

In addition to fault-related processes, considerable precipitation 
running off the hillside has had a significant erosional influence upon 
the landscape of the study area (Stock et al., 2009; Quirk et al., 2018). In 
this context, the partially abraded texture found along the break in 
slope, which occurred during or since the most recent exhumation (≤10 
to 5 Ma), records competing erosional processes (Fig. 5 F). On the one 
hand, fluvial plucking or subaerial weathering exploit the densely 
jointed nature of the landscape to produce angular features; on the other 
hand, fluvial abrasion or dissolution processes tend to smooth and round 
features (Richardson and Carling, 2005; Wray and Sauro, 2017; Scott 
and Wohl, 2019). As part of the same break in slope, some or all of the 
partial abrasion on the “pavement” must also have been produced by 
these same erosional processes, during or since the most recent exhu
mation (≤10 to 5 Ma). 

Upon the basal surface of the depression that adjoins the “roche 
moutonnée” ridge axis, arrest lines record the incremental propagation 
of an opening mode fracture plane (Ziegler et al., 2014) (Figs. 4, 8 A, C). 
The intersection between this sub-horizontal opening mode fracture and 
the sub-vertical orthogonal joint system, which defines the depression’s 
perimeter, has liberated a slab of the Big Cottonwood Formation. This 
slab was then removed to create the depression. Given the clear evidence 
for geologically recent widespread abrasion along the break in slope, the 
sharp (i.e. unabraded) northern rim of the depression confirms that it is 
a geologically recent feature. Most likely the removed slab has now 
simply fallen down-slope, perhaps aided by run-off or seismicity (e.g. 
Pang et al., 2020). The similarity between this depression and the 
depression upon the grooved surface strongly suggests a common pro
cess and age of formation (compare Fig. 8 A, D with B, D). In this case, 
the part of the grooved surface within the depression was only exposed 
in the geologically recent past, not during the Precambrian, and the 

Fig. 10. Mill B North Fork, staircase of 100 m scale exposed bedding surfaces separated by cliffs (lower left of figure). For comparison, the axes orientations of the 
ridges formed along this staircase and the axes orientations of the “roche moutonnée” and Surface B ridges are labelled. Also compare the step-like geometry of the 
staircase to the “pavement” (see Figs. 2, 3). Figure created from a UAV point cloud constructed from 1340 images, staircase ridge orientations measured using 
qCompass (Thiele et al., 2017) in Cloudcompare (2020). 
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“subglacial grooves” upon it cannot be the product of Precambrian 
subglacial erosion. This is consistent with the reinterpretation of the 
“subglacial grooves” as fault grooves produced by sliding of the removed 
slab. 

In comparison to the “pavement”, the better developed smoothing, 
rounding and patina of Surface B demonstrate that abrasion has domi
nated. The furrow and smooth, rounded ridges of Surface B are typical of 
either fluvial abrasion in an open bedrock channel (e.g. Richardson and 
Carling, 2005) or subglacial erosion of an S-form (e.g. Shaw et al., 2020). 
The fluvial explanation is more likely. First, there is a lack of subglacial 
striation or glacial polish, which are most often at least partially present 
upon an S-form. Second, the strong patina, especially well developed on 
Surface B, has the classic “burnished copper” appearance associated 
with fluvially polished bedrock surfaces (Richardson and Carling, 2005) 
and, as described above for the patina on the “pavement”, is distinctly 
different to the glacial polish preserved on strata of the same formation 
in Mill B South Fork. Third, an S-form of Pleistocene age is particularly 
unlikely as the angular cliffs, 100 m scale “staircase” geomorphology 
and v-shaped valley of Mill B North Fork are inconsistent with recent 
subglacial erosion (compare to Mill B South Fork: Supplementary Data, 
Fig. S3). 

If formed by Precambrian subglacial erosion the “pavement” must 
represent the Big Cottonwood – Mineral Fork Formation boundary. 
However, as we could not find any contact between the “pavement” or 
Surface B and the Mineral Fork Formation, it remains possible that either 
surface is instead below that boundary. Recessive non-exposure above 

the “pavement” cannot be assumed to represent the Mineral Fork For
mation. This is demonstrated above the northern end of the NE-dipping 
bedding surface that hosts the “pavement” (Fig. 2 A, B). There, recessive 
non-exposure, similar to that above the “pavement”, is overlain by 
further strata of the Big Cottonwood Formation. 

The fact that the distinctly smoothed texture of Surface B, and to a 
lesser extent the “pavement”, were uniquely observed in proximity to 
the break in slope, associated with the Big Cottonwood – Mineral Fork 
Formation boundary, suggests two possibilities. Either the “pavement” 
and Surface B record Precambrian erosion (not necessarily glacial) upon 
the Big Cottonwood – Mineral Fork Formation boundary or they record 
fluvial erosion across the break in slope during or since the most recent 
exhumation (≤10 to 5 Ma). The geologically recent fluvial explanation is 
favoured for three reasons. 

First, episodic fluvial erosion by run-off is likely to have been 
enhanced upon the pronounced break in slope where the “pavement” 
and Surface B protrude (Section A-B and C-D of Fig. 1 D). This is referred 
to as a knickpoint lip in the fluvial literature (Miller, 1991; Hancock 
et al., 1998; Richardson and Carling, 2005). In this context the furrow on 
Surface B is a “chute furrow”, typical of such a bedrock step (Richardson 
and Carling, 2005, p. 38). 

Second, the “roche moutonnée” and Surface B ridges are similarly 
oriented to both the surrounding joint controlled cliffs and the ridges of 
the 100 m scale staircase. This implies that, although these are all 
erosional features formed at the Earth’s surface, their formation was 
controlled by the same structural influences, especially the well- 

Fig. 11. An example of the similarity between subglacial and fault features. Distinguishing between A (subglacial grooves) and B (fault grooves) is only possible 
when their contexts are revealed, which are shown in C and D respectively. A: Subglacially striated surface revealed form beneath Gepatsch glacier at Kaunertal, 
Austria, within the last century. B: Grooved fault surface on Carboniferous strata at Spireslack Quarry, Scotland. Reflection is due to rain. C: Striated surface from A in 
context, revealing that it is a subglacial feature. D: Grooved fault surface from B in context, revealing it is a tectonic feature. Note people for scale in C and D. 

T.M. Vandyk et al.                                                                                                                                                                                                                             



Precambrian Research 363 (2021) 106345

16

developed cross-joint system (Scott and Wohl, 2019). It is unlikely that 
the same structural influences existed during any Precambrian exposure, 
which would have occurred in a different tectonic regime and before 
tilting of the beds. Therefore these features most likely formed at the 
Earth’s surface during or since the most recent exhumation (≤10 to 5 
Ma). 

Third, the step-like geometry of the “pavement” is also shown by the 
100 m scale staircase. The bench and cliff configuration of the staircase 
was produced within the geologically recent landscape, as a response to 
fluvial incision along Mill B North Fork. Similar responses to fluvial 
incision, within similar meta-sandstone landscapes, are documented in 
the literature. For example, the Sioux Quartzite (USA) is a Proterozoic, 
bedded to cross-bedded, meta-sandstone. Where it has been incised by 
streams, as a result of prominent bedding and joints, it has formed 
alternating benches and vertical faces that are analogous to the staircase 
of Mill B North Fork (Southwick et al., 1986; Young et al., 2009). 
Therefore, processes capable of producing the step-like morphology of 
the “roche moutonnée” ridge have been active within the surrounding 
recent landscape. Invoking Precambrian subglacial erosion to explain 
the metre-scale morphology of the “pavement” is therefore neither 
necessary nor parsimonious. 

3.2.1. Summary 
It remains unconfirmed whether the “pavement” and Surface B occur 

upon or beneath the Big Cottonwood – Mineral Fork Formation 
boundary. Contextual evidence strongly suggests that the “subglacial 
grooves” of Blick (1979) are more likely a later tectonic feature than the 
result of Precambrian glaciation. The part of the grooved surface within 
the depression is likely a geologically recent feature, in which case the 
“subglacial grooves” within it cannot be attributed to Precambrian 
subglacial erosion. The smoothed and rounded parts of the “pavement” 
and especially Surface B likely record recent bedrock fluvial erosion, 
resulting from their position upon a break in slope, combined with sig
nificant precipitation. The resulting erosional morphologies were 
formed under the influence of the same structural controls as the sur
rounding geologically recent landscape (≤10 to 5 Ma). This has resulted 
in similar orientations between the ridges of the “roche moutonnée”, 
Surface B and the 100 m scale staircase. Since it is unlikely that these 
same structural controls existed during the Precambrian, this favours a 
geologically recent explanation for the “pavement” and Surface B. The 
step-like geometry of the “pavement” may also be explained by 
geologically recent processes, evident in the 100 m scale staircase and 
similar meta-sandstone landscapes in the literature. 

4. Discussion 

Without the supporting evidence of the “pavement” we must re- 
evaluate the incision between the Mineral Fork and Big Cottonwood 
formations. The steep angle of incision (≤40◦) is consistent with either 
subglacial (Glasser and Bennett, 2004) or bedrock fluvial erosion 
(Gibling, 2006). Likewise the depth of incision (≤800 m) is consistent 
with a glacial trough or fluvial incision driven by rift flank uplift (e.g. 
eastern flank of Kenyan rift: Xue et al., 2019). 

As previously described, the incision is insufficiently exposed to 
determine any diagnostic glacial geometry (Fig. 1 C; Fig. S2 and text of 
Supplementary Data). Nevertheless, Christie-Blick (1983) proposed a 
more complex geometric argument to imply subglacial erosion. This 
relied upon comparison of incision depths between the Mill B North Fork 
footwall and hanging wall blocks (Christie-Blick, 1983, p. 752, point 3). 
However, this is problematic as variable incision along the Mineral Fork 
Formation’s upper boundary, exacerbated by faulting and poor exposure 
of the footwall block, mean that the original incision depth is unknown 
(Crittenden, 1965a; Crittenden, 1976; Ojakangas and Matsch, 1980; 
Levy et al., 1994) (Fig. 1 C). 

Greywacke, in Mill B North Fork, and diamictite or laminated fine- 
grained sandstone, in Mill B South Fork, rest upon the incision and 

may be glacially influenced deposits (Blick, 1979; Ojakangas and 
Matsch, 1980; Christie-Blick, 1983). However, the presence of glacially 
influenced strata above an incision does not necessarily indicate sub
glacial erosion. For example, Quaternary glaciomarine deposits of the 
Warren House Formation of the UK directly fill fluvial valleys that were 
incised during non-glacial conditions (Davies, 2008). 

In summary, it is just as likely that incision into the Big Cottonwood 
Formation was caused by fluvial rather than subglacial erosion, poten
tially under non-glacial climatic conditions. Before the present study, 
the Big Cottonwood study area was the only point in the Utah – Idaho 
region where the presence of grounded Cryogenian ice could be asserted 
with any confidence. From modern glacial grounding lines, debris has 
been rafted for hundreds or thousands of kilometres by ice shelves or 
bergs respectively (Andrews, 2000; Talley et al., 2011) and glacially 
influenced gravity flows have run-out hundreds of kilometres (King 
et al., 1998; Wilken and Mienert, 2006). Therefore, combining our 
reinterpretation of the “pavement” with the uncertainties associated 
with previous tillite interpretations, it is now questionable whether 
grounded Cryogenian ice was ever present or even near to the Utah – 
Idaho region. 

The possibility of fluvial incision may also help clarify long standing 
correlation and age uncertainties plaguing the Mineral Fork Formation 
(Crittenden et al., 1983). Incision above the Mineral Fork Formation in 
the study area has previously been assigned to the Upper Caddy Canyon 
sequence boundary (Levy et al., 1994). In their regional lithostrati
graphic analysis, Levy and Christie-Blick (1991, their Figure 2) tenta
tively placed the next sequence boundary below this, namely the Upper 
Maple Canyon sequence boundary at Huntsville (Fig. 1 B), at a strati
graphic level overlapping the Mineral Fork Formation of the study area 
(also see Levy et al., 1994). Only minimal modification of their analysis 
is therefore required to assign the Upper Maple Canyon sequence 
boundary to the incised Big Cottonwood – Mineral Fork Formation 
boundary in the study area. If correct, the Mineral Fork Formation of the 
study area is significantly younger than the glacigenic Perry Canyon 
Formation, which has a maximum depositional age of 667 ± 5 Ma 
(Crittenden et al., 1983; Balgord et al., 2013; Yonkee et al., 2014). 

In a rift setting, such as the Utah – Idaho region of the Cryogenian, 
diamictites are frequently deposited by sediment gravity flows, trig
gered by tectonism. These mass flows alone do not indicate glaciation 
and have no climatic significance (e.g. Crowell, 1957; Carto and Eyles, 
2012). Distinguishing poorly sorted deposits of non-glacial, mass flow 
origin from those that are ultimately from a glacial source represents a 
long running challenge to understandings of the extent, duration and 
severity of Cryogenian glaciation (Kennedy and Eyles, 2020). Prior to 
our re-interpretation of the “pavement”, it was irrefutable that the 
stratigraphically lowest confirmed evidence for glaciation in the study 
area was the incised Big Cottonwood - Mineral Fork Formation bound
ary. Above this, the lowest documented striated clasts and dropstones, 
which have been considered diagnostic of a glacial influence, are 
stratigraphically > 300 m higher (Fig. 23 and Table 21 of Blick, 1979). 
In light of our re-interpretation and the possibility of non-glacial incision 
into the Big Cottonwood Formation, we must now question whether the 
lower reaches of the Mineral Fork Formation record glacially influenced 
deposition or non-glacial, rift-related sedimentation that transitions 
upwards into glacial conditions. In a global context, this latter possibility 
serves to reiterate concerns raised by previous authors, that the extent 
and duration of Cryogenian glaciation may be over-estimated if tectonic 
and climatic influences are conflated (e.g. Eyles and Januszczak, 2004; 
Kennedy and Eyles, 2020). 

5. Conclusions 

The only uncontested Cryogenian “pavement” from the western 
margin of the Laurentian palaeocontinent and the entire modern North 
American continent is best explained as a structurally controlled 
erosional feature of the modern landscape, with no connection to 
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Precambrian glaciation; 
The incision beneath the Mineral Fork Formation, previously pre

sumed to record subglacial erosion, can as easily be explained by fluvial 
erosion, potentially under non-glacial conditions; 

The presence of grounded ice in the Utah – Idaho region during the 
Cryogenian Period is now unconfirmed; 

Building upon the long established consensus that the Mineral Fork 
Formation strata contain within them multiple sediment gravity flows 
deposited in a rift setting, it is possible that lower strata of the formation 
record non-glacial conditions that transition upwards into glaciation. 
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