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A B S T R A C T

Recent major earthquake disasters have highlighted the effectiveness of financial soft policies
(e.g., earthquake insurance) in transferring seismic risk away from those directly impacted and
complementing ‘hard’ disaster risk mitigation measures (e.g., structural retrofit). However, the
benefits of existing financial soft policies are often not guaranteed. This may be attributed to:
(1) their low penetration rate (e.g., in the case of earthquake insurance); (2) the fact that
they typically neglect the explicit needs of low-income sectors in (developed and develop-
ing) modern societies, who are often disproportionately impacted by natural-hazard driven
disasters; and/or (3) their failure to consider the time-dependent nature of urban exposure.
We contribute towards addressing these shortcomings by proposing a flexible framework for
designing and assessing bespoke, people-centred, household-level, compulsory financial soft
policies (including conventional earthquake insurance, disaster relief fund schemes, income-
based tax relief schemes, or a combination of these) across cities under rapid urban expansion.
The proposed framework leverages the Tomorrow’s Cities Decision Support Environment, which
aims to facilitate pro-poor disaster-risk-informed urban planning and design in developing
country contexts. The framework specifically enables decision makers to strategically design
and then assess the pro-poorness of mandatory soft policies, using financial impact metrics that
discriminate losses on the basis of income. We showcase the framework using the hypothetical
expanding city, ‘‘Tomorrowville", successfully identifying pro-poor seismic-risk-related financial
soft policies for different instances in the lifetime of the urban system.

1. Introduction

Catastrophic events such as earthquakes can cause substantial direct economic impacts due to physical damage and downtime,
in addition to widespread human losses (casualties). Financial (‘soft’) earthquake risk mitigation measures (e.g., disaster relief
funds) aim to protect the assets of individuals or entities from earthquakes by providing monetary compensation for any damages
incurred [1,2]. These measures can complement ‘hard’ disaster risk mitigation measures such as seismic retrofitting [3] and other
techniques such as earthquake early warning [4,5].

Earthquake insurance is a well-known soft measure for seismic risk mitigation. A typical residential earthquake insurance policy
provides homeowners with coverage for direct physical damages to properties caused by an earthquake event. The insurance
premium, i.e., the price paid by the insured to the insurer, can consist of (1) a flat rate for everyone [6,7]; or (2) a risk-based rate
determined on building structural type, building location, building replacement cost, etc [8,9]. Residential earthquake insurance

∗ Corresponding author.
E-mail address: chenbo.wang@ucl.ac.uk (C. Wang).
vailable online 16 December 2022
212-4209/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijdrr.2022.103500
Received 27 June 2022; Received in revised form 21 November 2022; Accepted 14 December 2022

https://www.elsevier.com/locate/ijdrr
http://www.elsevier.com/locate/ijdrr
mailto:chenbo.wang@ucl.ac.uk
https://doi.org/10.1016/j.ijdrr.2022.103500
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijdrr.2022.103500&domain=pdf
https://doi.org/10.1016/j.ijdrr.2022.103500
http://creativecommons.org/licenses/by/4.0/


International Journal of Disaster Risk Reduction 85 (2023) 103500C. Wang et al.

e
(
b
i
F
o
w
p

t
G
h
T
r
p
t
s
a

s
a
r
d
f
t
c
r
a
(
c
m
f
a
h
t
g
f

2

a
F
a
a
p
p
p
P
m
l
c
t
c
u
t
f
m
s

policies are widely available in California, New Zealand, Chile, Japan, Turkey, and Taiwan, for instance. They have played a
significant role in the recovery of housing following major earthquake disasters in recent years. For example, after the 2010 Chile
earthquake (with a moment magnitude of 8.8, herein referred to as 𝑀), insurance mechanisms covered about 27% of the total
stimated losses, and there was rapid payment of insurance claims [10]. Following the 2010 and 2011 New Zealand earthquakes
𝑀7.1 and 𝑀6.3, respectively), more than 167,000 dwelling claims were settled through a public earthquake insurance scheme run
y the Earthquake Commission [11]. Even though earthquake insurance policies are widespread across the world, their effectiveness
s not guaranteed. This is because their penetration rate (i.e., percentage of assets with earthquake insurance coverage) varies greatly.
or instance, the penetration rate is as low as 12% in California and below 30% in Japan [12], which is primarily due to the high cost
f the associated insurance premiums [13]. Furthermore, these policies do not explicitly address the needs of low-income groups,
ho have historically been disproportionately impacted by earthquake disasters (due to their inability to pay for emergency supplies,
ost-disaster repairs, etc) [14–17].

Other financial disaster-relief tools, e.g., post-disaster cash transfers to disaster-affected people, do not sufficiently recognise
he amplified needs of low-income people either. For example, in the post-earthquake housing reconstruction program led by the
overnment of Nepal after the 2015 Nepal earthquake (𝑀7.8), an equal amount of financial assistance was paid to each eligible
omeowner regardless of income level, leaving many low-income households struggling to afford their reconstruction costs [18].
hese policies’ lack of consideration for the specific requirements of low-income people is likely to bottleneck post-disaster recovery
ather than speed it up as intended. Moreover, as urban areas expand in the future, population grows, asset wealth piles up, and
hysical and social vulnerabilities evolve, it is becoming increasingly important to model and quantify tomorrow’s risks rather
han focusing on static impacts associated with current conditions [19]. However, the constrained structure of typical financial
oft policies (e.g., the annual timeframe of insurance policies) prevents the consideration of future urban expansion and associated
mplified risks.

This study contributes towards addressing the aforementioned shortcomings of conventional earthquake-risk-related financial
oft policies, using the Tomorrow’s Cities Decision Support Environment (TCDSE) [20]. The TCDSE supports decision making in
collaborative environment, in which various decision makers, local communities, and experts are involved from the outset in

isk-based, pro-poor urban design and planning [21]. It incorporates advanced hazard modelling approaches, views risk through a
emocratised lens, and is explicitly pro-poor in its outlook, i.e., seeks solutions that do not result in disproportionate disaster impacts
or low-income households (details to follow in Section 2.6). We leverage the TCDSE to develop a framework for flexibly facilitating
he design and assessment of bespoke compulsory financial soft policies related to residential properties in rapidly expanding urban
ontexts, with a strong focus on the extent to which these policies are pro-poor across the lifetime of the urban system. This work
epresents a distinct advancement over similar existing studies on financial disaster risk management tools, which either do not
dopt a pro-poor perspective [22,23], or do not consider forward-looking policies and their effectiveness in the context of future
uncertain) urban development [24,25]. The compulsory financial soft policies considered in this study encompass, for instance,
omponents of conventional earthquake insurance and income-based tax relief schemes, with any type of payment triggering
echanism (indemnity-based or parametric). The framework involves performing probabilistic seismic loss assessments that account

or time-dependent seismic hazard. The resulting time-based loss curves are used to design various financial soft policies formulated
s regular insurance schemes and/or income-based taxes. Finally, we evaluate the considered financial soft policies against a novel
ousehold-level financial impact metric that distinguishes the effect of the policies across different income groups. We demonstrate
he proposed framework using an expanding hypothetical city (virtual urban testbed) ‘‘Tomorrowville’’. Tomorrowville imitates a
lobal-south urban setting in terms of its socio-economic and physical aspects [26]. It is a 2 km × 3 km city that will undergo rapid
uture urbanisation to accommodate over 10,000 more households in the next 50 years.

. Proposed framework

We leverage the Tomorrow’s Cities Decision Support Environment [20] to propose a framework for facilitating the design and
ssessment of compulsory household-level financial soft policies in cities under future urban expansion. The framework, as shown in
ig. 1, has four main calculation modules: (1) Seismic Hazard Modelling; (2) Physical Infrastructure Impact; (3) Social Impact;
nd (4) Computed Impact Metrics. Decision makers first design candidate soft policies (within the Policy Bundles module), which
re applied to a specific time-dependent urban plan (in the Urban Planning module), to produce an overall Visioning Scenario. A
re-determined household-level financial impact metric (𝐼ℎℎ) is quantified to assess the loss-mitigation effectiveness of the candidate
olicies, considering the residential exposure within the conditional urban plan, the time-dependent seismic hazard calculations
roduced in the Seismic Hazard Modelling module, and physical and social vulnerability information respectively stored in the
hysical Infrastructure Impact and Social Impact modules. 𝐼ℎℎ is then translated into a Poverty Bias Indicator (𝑃𝐵𝐼), which
easures the extent to which low-income households are disproportionately burdened with residual earthquake-induced financial

osses. Each iteration of the framework evaluates the impacts associated with one Visioning Scenario, and more specifically the
ombination of one (or more) candidate financial soft policy(ies) and one conditional urban layout. Through multiple iterations of
he framework, decision makers can identify the optimal pro-poor policy bundle (and its underlying financial soft policies), which
orresponds to the lowest 𝑃𝐵𝐼 . The proposed framework captures the uncertainties in the calculations involved in modules (1) to (4)
sing Monte Carlo sampling, which is similar to the approach adopted in Cremen et al. [27]. That is, random variables in modules (1)
o (3) are sampled multiple times from their underlying probability distributions and fed into the calculation of the household-level
inancial impact metric in module (4). Thus, the household-level financial impact metric is consequently a random variable. The
odules of the framework are briefly introduced in this section. Details of the framework’s application to the Tomorrowville case
2
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Fig. 1. A flowchart of the proposed framework to design and assess pro-poor financial soft policies.

2.1. Urban planning

The Urban Planning module encompasses a conditional urban plan detailing land use, building portfolio, and underlying
household and individual information for a specific temporal instant. If decision makers aim to design and assess policies for
immediate implementation in today’s city, the input to the Urban Planning module would be the current layout of the urban context
of interest. If the goal is to design policies for the future, considering urban expansion and changes in land use, the required input
for the Urban Planning module would be a proposed or projected urban plan consisting of a land use plan and projections of the
building portfolio, underlying household information, and socioeconomic and demographic information for each individual within
a household. The information on land use, buildings, households, and socioeconomic and demographic information are spatially
related within a geographic information system (GIS) database.

2.2. Policy bundles

The Policy Bundles module encapsulates one or more compulsory financial soft policies designed to transfer earthquake-related
financial risk. These policies could include, for instance, components of conventional earthquake insurance, a disaster relief fund
3
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scheme, an income-based tax relief scheme, or a combination of these. They may also alter the financial burden on households across
different social (e.g., income) groups. For example, a financial soft policy could be a compulsory city-wide earthquake insurance
scheme or a scheme to disburse post-disaster relief fund to a more limited target group, e.g., low-income households.

2.3. Seismic hazard modelling

The Seismic Hazard Modelling module estimates earthquake-event features (e.g., source/rupture features) and resulting
earthquake-induced ground-motion intensity measures (IMs) at the locations of considered buildings. The outputs of this module
are ground-motion fields for multiple IMs, e.g., peak ground acceleration (PGA), spectral accelerations at different structural periods
(SAs), peak ground velocity (PGV), and peak ground displacement (PGD), which are computed in a probabilistic sense. A probabilistic
expression of seismic hazard considers the uncertainties in the rupture features and occurrence time, which is more relevant for
decision-making in the insurance sector than single-scenario modelling [27]. Probabilistic seismic hazard modelling also allows
for the direct consideration of the fault’s rupture history, which often leads to more accurate estimation of seismic hazard [28].
Ground-motion fields can be simulated using a ground-motion model (GMM), e.g., Campbell and Bozorgnia [29], among many
others summarised in Douglas [30]. Spatial correlation and cross-IM correlation models (e.g., Jayaram and Baker [31], Markhvida
et al. [32]) can be used in addition to GMMs to produce more accurate ground-motion fields, especially when the sites of interest
are distributed over a typical city scale [33]. Ground-motion fields could also be simulated using physics-based models, which tend
to produce more accurate characterisations of shaking intensities than empirical GMMs, but demand significantly more computation
power and time [5,34,35] that inhibits their widespread use in probabilistic seismic hazard analysis.

2.4. Physical infrastructure impact

The Physical Infrastructure Impact module uses the outputs of the Seismic Hazard Modelling module to calculate earthquake-
induced physical damages to residential buildings and the associated asset losses. This module encompasses fragility relationships
and/or vulnerability relationships, which can either be pre-selected for the case-study physical infrastructure of interest or derived
using numerical/analytical or empirical approaches [36].

Specifically, given the outputs from the Seismic Hazard Modelling module, i.e., simulated ground-motion fields, the Physical
Infrastructure Impact module utilises fragility relationships to sample the damage state of each residential building [37]. It then
uses damage-to-loss ratios or consequence models [38,39] to compute the asset loss (i.e., repair costs) as a percentage of building
replacement cost. Alternatively, vulnerability relationships can be used to directly estimate the loss ratio (or some other loss
measurement) caused by a certain level of simulated ground-motion intensity. By repeating the loss estimation for all ground-motion
simulations, annual exceedance loss curves and expected annual losses of all residential buildings (𝐸𝐴𝐿𝑏𝑙𝑑,𝑏, building-level expected
annual losses for the 𝑏th residential building) as well as more aggregated losses can be obtained.

2.5. Social impact

The Social Impact module uses outputs from the Physical Infrastructure Impact module to compute household-level
earthquake financial impacts (e.g., 𝐸𝐴𝐿ℎℎ,𝑖, household-level expected annual losses for the 𝑖th household), also accounting for
pertinent social characteristics. More specifically, this module distinguishes household-level financial burdens on the basis of relevant
socioeconomic information (i.e., income), and can further disaggregate these impacts across other social groupings, e.g., age and
gender of household head, if necessary. Note that the calculations in the Social Impact module can be affected by the financial soft
policies imposed in the Policy Bundles module.

2.6. Computed impact metrics

The Computed Impact Metrics module uses outputs from the Computational Model, i.e., the Physical Infrastructure Impact
and Social Impact modules, to quantify the impacts of a Visioning Scenario via the lens of a pre-determined household-level
financial impact metric. The Computed Impact Metrics module calculates this impact metric for each household and then
translates it into a single-valued Poverty Bias Indicator (𝑃𝐵𝐼), which measures the extent to which low-income households are
disproportionately burdened in terms of the financial impact of interest. For a correct evaluation with the 𝑃𝐵𝐼 , the financial
impact metric used should involve an appropriate income-based normalisation (e.g., by replacement value). The 𝑃𝐵𝐼 was originally
introduced as the Poverty Exposure Bias Indicator in Winsemius et al. [40], and modified by Cremen et al. [27]. For a given
household-level financial impact metric, the 𝑃𝐵𝐼 adopted in this framework is expressed as follows:

𝑃𝐵𝐼 =
E(𝐼𝑙𝑜𝑤)
E(𝐼𝑝𝑜𝑟𝑡)

− 1 (1)

where E(𝐼𝑙𝑜𝑤) is the mean value of the household-level financial impact metric across all low-income households and E(𝐼𝑝𝑜𝑟𝑡) is
he average value across all households. A negative value of 𝑃𝐵𝐼 indicates that the set of financial soft policies contained in the
olicy Bundles module are pro-poor, i.e., the financial losses that result from their implementation do not disproportionately affect

ow-income households. The lower the negative-valued 𝑃𝐵𝐼 is, the more pro-poor the associated financial soft policy (and the
verall Visioning Scenario) is. We note that although the framework primarily aims to facilitate the selection of the Visioning
cenario with the lowest 𝑃𝐵𝐼 , it can also be leveraged to compare the extent to which one Visioning Scenario is more pro-poor
han another.
4
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3. Case-study description

We use the expanding hypothetical city (virtual urban testbed) ‘‘Tomorrowville’’ (see Mentese et al. [26]) as our case study to
emonstrate the proposed framework. Tomorrowville imitates a global-south urban setting in terms of its socioeconomic and physical
haracteristics [26]. In this case study, we design and assess eight compulsory financial soft policies related to Tomorrowville
esidential buildings (and their households) using the proposed framework. The candidate soft policies involve conventional
arthquake insurance strategies, as well as income-based financial relief tax schemes. To demonstrate the importance of focusing on
he future (and generally different temporal instances) of an urban context and its underlying dynamic exposure, we examine two
cenarios of urban layout in this case study: the current urban layout of Tomorrowville and a 50-year projection of its urban layout,
onsidering rapid future urban expansion. We account for both time-dependent and time-independent seismic hazard associated
ith three hypothetical strike-slip faults near Tomorrowville, as shown on the left panel of Fig. 2. Note that due to the synthetic
ature of the selected case study and the corresponding absence of some validated risk-related models, a number of simplified but
ecessary assumptions on certain inputs to the calculations (including seismic hazard information and the underlying details of the
eveloped financial soft policies) will be made in this instance. This implies that the results of the case study should be treated as
simple demonstration of the framework’s capabilities, rather than as being ready for implementation in any real-life setting.

.1. Urban planning

We examine two scenarios of urban layout (encompassed in the Urban Planning module) in this case study, namely ‘‘TV0’’
and ‘‘TV50_total’’. TV0 refers to the current urban layout of Tomorrowville, whereas TV50_total refers to a possible future urban
layout of Tomorrowville in 50 years. Note that TV50_total includes new buildings to be built in Tomorrowville in the next 50 years
(TV50_b2) and the existing buildings of TV0. Fig. 2 shows TV0 and TV50_total on its central and right panels, respectively. The main
constituents of each urban layout include a land use plan, a building portfolio (containing building information, such as building
location, structural type, code level, number of storeys, building area, and the households associated with each residential building),
and underlying household/individual databases (containing socioeconomic and demographic data of each person in each household,
such as income group, gender, and age). We specifically focus on residential buildings in this study, given the nature of the policies
under investigation. TV0 contains 3,423 residential buildings and 7,809 households whereas TV50_total contains 8,713 residential
buildings and 17,810 households. Households within the same polygon belong to the same income group. Residential polygons are
categorised into low-, middle-, and high-income social categories. There are 4,236, 1,705, and 1,868 low-, middle-, and high-income
households, respectively in TV0, while there are 6,766, 3,059, and 7,985 low-, middle-, and high-income households, respectively
in TV50_total.

Table 1 provides an exhaustive list of building typologies in Tomorrowville and the number of residential buildings of each
typology in TV0 and TV50_total. Low-code and low-rise (i.e., between one and four storeys) ‘‘Brick and mud walls’’ buildings
(typology No. 2) dominate the residential building portfolio of TV0, while high-code low-rise ‘‘Masonry-infilled reinforced concrete
frames’’ buildings (typology No. 7) dominate the residential building portfolio of TV50_total. Over 64% of low-income households
live in low-code and low-rise ‘‘Brick and mud walls’’ buildings (topology No. 2) in TV0, whereas most low-income households
live in buildings of topologies No. 2 (41%) and No. 7 (39%) in TV50_total. In TV0, about 48% of high-income households live in
buildings of typologies No. 7 and No. 10 – two of the most expensive and strongest building types – while this percentage increases
to 88% in TV50_total. Table 1 also provides the construction cost for each building type, which is adapted from Mesta et al. [41].
In this case study, we assume that households within a multi-family building equally share the total repair costs of their residential
building incurred in a given seismic event. The average total replacement costs for low-, middle-, and high-income households in
TV0 are e5,348, e8,511, and e11,902, respectively, while the average total replacement cost for low-, middle-, and high-income
ouseholds in TV50_total increase to e7,201, e11,450, and e23,809, respectively. Building typology No. 1 has the lowest average

total replacement cost per household of e3,521 in both TV0 and TV50_total, whereas building typology No. 7 has a much higher
average total replacement cost of e12,411 and e16,405 in TV0 and TV50_total, respectively (note that the larger average total
replacement cost for this typology in TV50_total is a result of increasing average building sizes).

3.2. Policy bundles

3.2.1. Financial soft policy
Eight financial soft policies are designed in this demonstration. We assume that Tomorrowville households are owner occupied,

such that a household’s financial seismic losses (and any household-specific required monetary input for a related financial soft
policy) are shouldered by its residents. The proposed policies include some adapted involvement of the main parameters in an
earthquake insurance contract, i.e., premium, deductible, limit, and coinsurance factor. Premium is the amount of money that the
insured pays to the insurer. Deductible (𝐷, the amount of money that the insured party needs to pay towards an insurance claim),
limit (𝐶, the highest amount of a claim covered by an insurance contract), and coinsurance factor (𝛾, the percentage of losses paid
by the insurer after the insured party pays the deductible) constitute a typical payout function [42] that determines the insurance
payout (𝐼𝑃 ), as follows:

𝐼𝑃 (𝐿) =

⎧

⎪

⎨

⎪

0 𝐿 ≤ 𝐷
𝛾 ⋅ (𝐿 −𝐷) 𝐷 ≥ 𝐿 ≤ 𝐶
𝛾 ⋅ (𝐶 −𝐷) 𝐿 ≥ 𝐶

(2)
5
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Fig. 2. The left panel shows the hypothetical seismic sources considered for Tomorrowville. All three faults are vertical strike-slip faults with a length of 24 km
and an annual rate of exceeding an 𝑀4.0 earthquake (𝜈0) of 0.09. The middle panel shows the residential buildings in today’s Tomorrowville (TV0), and the
right panel shows the residential buildings projected to be present in Tomorrowville in 50 years (TV50_total). Note that ground-motion fields are simulated on
a 200 m × 200 m grid (marked on red in the right and central panels) across the polygons of Tomorrowville.

Table 1
The building typologies present in each considered urban plan and their assumed construction costs. ‘Low-rise’ refers to buildings between one and four storeys
and ‘mid-rise’ refers to buildings between five and seven storeys.

Building
typology

Material + lateral
resisting system

Code
level

Height Construction cost
(×200 EUR/m2)

Count
(TV0)

Count
(TV50_total)

No. 1 Adobe Low Low-rise 0.40 81 81
No. 2 Brick and mud walls Low Low-rise 0.60 1907 1907
No. 3 Brick and cement walls

with flexible floor slabs
Low Low-rise 0.70 266 266

No. 4 Brick and cement walls
with rigid floor slabs

Low Low-rise 0.75 262 262

No. 5 Masonry-infilled reinforced
concrete frames

Low Low-rise 0.85 243 243

No. 6 Masonry-infilled reinforced
concrete frames

Moderate Low-rise 0.95 190 190

No. 7 Masonry-infilled reinforced
concrete frames

High Low-rise 1.00 234 4552

No. 8 Masonry-infilled reinforced
concrete frames

Low Mid-rise 0.95 7 7

No. 9 Masonry-infilled reinforced
concrete frames

Moderate Mid-rise 1.00 19 19

No. 10 Masonry-infilled reinforced
concrete frames

High Mid-rise 1.10 64 1036

No. 11 Stone and mud Low Low-rise 0.60 150 150

where 𝐿 refers to the total assessed seismic loss, i.e., ground-up loss, of a building, and all other variables are as previously defined.
For example, under an earthquake insurance contract with a deductible (𝐷) of e1,000, a limit (𝐶) of e40,000, a coinsurance
factor (𝛾) of 1.0, and a ground-up loss (𝐿) of e50,000, the insured homeowner needs to pay a deductible of e1,000 and bears an
additional e10,000 loss above the limit, whereas the insurer who underwrites the insurance policy covers the remaining amount,
i.e., the insurance payout (𝐼𝑃 ), of e39,000. While a typical earthquake insurance deductible rate ranges between 10 to 15% [43],
a pro-poor approach could be achieved by setting the value of 𝐷 based on household income (e.g., 𝐷 could equal zero for those of
the lowest income), alleviating or at least mitigating any financial difficulties experienced due to post-earthquake repairs. A payout
function translates the household’s expected annual loss (𝐸𝐴𝐿ℎℎ,𝑖) into the household’s expected annual financially protected loss
(𝐸𝐴𝐼𝐿ℎℎ,𝑖) and the household’s expected annual financially unprotected loss (𝐸𝐴𝑈𝐿ℎℎ,𝑖), which is analogous to expected annual
insured loss and expected annual uninsured loss, respectively, in a traditional earthquake insurance scheme (we adopt the former
6
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Fig. 3. Outline design of financial soft policies considered in this study, which consist of a payout function and a premium redistribution scheme. 𝐸𝐴𝐿ℎℎ,1,
𝐸𝐴𝐿ℎℎ,2 are the expected annual loss of households No. 1 and No. 2, respectively. 𝑁ℎℎ is the total number of households in Tomorrowville. 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 is the
expected annual financially protected loss of the residential building portfolio, 𝛼 is the premium loading factor of 1.25. 𝑃𝑝𝑜𝑟𝑡 is the total amount of premiums
collected from all households in the portfolio, whereas 𝑃ℎℎ,1 and 𝑃ℎℎ,2 are the individuals premiums payable by households No. 1 and No. 2, respectively.
Premiums are imposed on households as (mandatory) income taxes.

terminology herein, since the scope of considered financial soft policies extends beyond traditional earthquake insurance). Note that
𝐸𝐴𝐼𝐿ℎℎ,𝑖 is calculated by integrating the annual exceedance financially protected loss curve for the associated building and divided
by the number of households occupying it. 𝐸𝐴𝐼𝐿ℎℎ,𝑖 summarises information on a range of earthquake scenarios, occurrence rates,
and associated expected financially protected losses into a single average dollar loss, and is an effective means of communicating
seismic risk to building owners and insurers [44]. The summation of 𝐸𝐴𝐼𝐿ℎℎ,𝑖 across all households is the expected annual financially
protected loss of the residential building portfolio (𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡). Multiplying 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 by a premium loading factor 𝛼 gives the portfolio
premium (𝑃𝑝𝑜𝑟𝑡), i.e., the total premium that needs to be collected across all financially protected households. The premium loading
factor 𝛼 (> 1) covers uncertainty in the underlying policy risk models as well as business administration costs [8]. For this case study,
we adopt a premium loading factor of 1.25, in line with Gentile et al. [3]. Fig. 3 summarises the underlying design of financial soft
policies considered in this case study. Each candidate financial soft policy consists of a payout function and a premium redistribution
scheme, which alters the distribution of 𝑃𝑝𝑜𝑟𝑡 among households in various ways, in the form of (compulsory) income-based taxes.

3.2.2. Payout function
In this case study, we examine two representative payout functions as shown in Table 2. Note that we adopt a coinsurance

factor (𝛾) of 1.0 for all considered payout functions. Payout function No. 1 is uniform across all income groups; a deductible (𝐷)
of e1,000 and a limit (𝐶) of e40,000 are imposed on each household, regardless of its income. The 𝐶 of e40,000 fully covers the
total replacement cost of over 98% of residential buildings occupied by low-income households, which is likely to have far-reaching
positive consequences as these households can find it difficult to secure funds from private sources (e.g., private loans, insurance,
etc.) for post-earthquake housing recovery [45]. Note that the absolute values of 𝐶 should be considered as illustrative rather than
as being ready for immediate implementation in a real-life setting. Payout function No. 2 adopts different 𝐷’s for different income
groups. 𝐷 is e6,400, e4,800, and e1,600 for high-, middle-, and low-income households, respectively, which roughly correspond
to 5 to 20% of the average total replacement cost of residential buildings in TV0 and TV50_b2.

3.2.3. Premium redistribution scheme
As shown in Fig. 3, the redistribution scheme is used to compute the premium for each household as some proportion of the

portfolio premium (𝑃𝑝𝑜𝑟𝑡). The premium redistribution scheme allows the policymaker to flexibly determine the premiums payable by
different households, thereby creating opportunities to reduce the financial burden placed on low-income households in particular;
the premium imposed on a given household may be a function of its income bracket and its expected annual financially protected
7
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Table 2
Parameters of the payout functions considered in this study. The values for deductible and limit are in EUR.
Payout
function

Deductible
(high-income)

Deductible
(middle-income)

Deductible
(low-income)

Limit Coinsurance
factor

1 1,000 1,000 1,000 40,000 1.0
2 6,400 4,800 1,600 40,000 1.0

Table 3
Four premium redistribution schemes considered in this study. 𝐸𝐴𝐼𝐿ℎ, 𝐸𝐴𝐼𝐿𝑚, and 𝐸𝐴𝐼𝐿𝑙 are the total annual expected financially protected loss of the high-,

iddle-, and low-income groups, respectively, whereas 𝐸𝐴𝐼𝐿ℎℎ, 𝑖 refers to the expected annual financially protected loss of the 𝑖th household (𝑖 = 1, 2,… , 𝑁ℎℎ,
here 𝑁ℎℎ is total number of households). 𝑁ℎ, 𝑁𝑚, and 𝑁𝑙 are the number of high-, middle-, and low-income households respectively. 𝛼 refers to the premium

oading factor. 𝛼 = 1.25 is adopted for this study.
Premium
redistribution
scheme

Total premiums
(middle- and high-income)

Total premiums
(low-income)

Household-by-household distribution
within each income group

1 𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑙 + 𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ) ⋅
𝑁𝑚+𝑁ℎ

𝑁ℎℎ
𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑙 + 𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ) ⋅

𝑁𝑙

𝑁ℎℎ
Flat-rated

2 𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ) 𝛼 ⋅ 𝐸𝐴𝐼𝐿𝑙 Proportional to 𝐸𝐴𝐼𝐿ℎℎ,𝑖
3 𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ + 0.8 ⋅ 𝐸𝐴𝐼𝐿𝑙) 𝛼 ⋅ 0.2 ⋅ 𝐸𝐴𝐼𝐿𝑙 Proportional to 𝐸𝐴𝐼𝐿ℎℎ,𝑖
4 𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ + 0.8 ⋅ 𝐸𝐴𝐼𝐿𝑙) 𝛼 ⋅ 0.2 ⋅ 𝐸𝐴𝐼𝐿𝑙 Flat-rated

Table 4
Eight financial soft policies considered for this case study.
Soft policy Payout

function
Premium redistribution
scheme

1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4

loss (𝐸𝐴𝐼𝐿ℎℎ,𝑖), for instance. The premium for each household (e.g., 𝑃ℎℎ,𝑖), shown on the bottom of Fig. 3, is imposed in the form
of a mandatory tax.

Table 3 summarises the four premium redistribution schemes considered in this case study. Premium redistribution scheme No. 1
imposes a flat-rated (i.e., identical) premium on each household, regardless of its 𝐸𝐴𝐼𝐿ℎℎ,𝑖 and income group. This scheme reflects
earthquake insurance approaches in Taiwan and New Zealand [6,7]. Chile also adopts a flat-rated premium, charged as a uniform
percentage of the total replacement cost of a residential building [46]. Premium redistribution scheme No. 2 distributes premiums
based on 𝐸𝐴𝐼𝐿ℎℎ,𝑖 values, which broadly reflects the earthquake insurance programs of Turkey, California, and Japan [9]. Premium
redistribution schemes No. 3 and 4 transfer 80% of the expected annual financially protected loss of the low-income group (𝐸𝐴𝐼𝐿𝑙)
within the entire portfolio to middle- and high-income groups, thereby mitigating the financial burden on the low-income. This is a
novel, pro-poor approach to designing financial soft policies (to the best of our knowledge). Premium redistribution scheme No. 3
then specifies that the total premiums imposed on each income group are distributed to each associated household in proportion to
𝐸𝐴𝐼𝐿ℎℎ,𝑖 values, while premium redistribution scheme No. 4 imposes flat-rated premiums on each household within a given income
group. The permutation of two considered payout functions and four premium redistribution schemes leads to eight candidate soft
policies, as shown in Table 4. These soft policies, represented in the Policy Bundles module of Fig. 1, are evaluated one by one
using the proposed framework.

3.3. Seismic hazard modelling

We account for three hypothetical vertical strike-slip faults (all 24 km long) in the proximity of the case-study area. The left
panel of Fig. 2 shows the locations of these faults relative to Tomorrowville. We assume all faults are capable of generating both
non-characteristic and characteristic events. We assume that the moment magnitude (𝑀) of non-characteristic events follows the

utenberg–Richter magnitude frequency distribution [47] and their occurrence follows a Poisson distribution. We assume a slope
f occurrence 𝑏 = 1, a minimum magnitude of 𝑚0 = 4.0, and a maximum magnitude for non-characteristic events of 𝑚𝑢 = 6.5. We
ssume the magnitude of characteristic events follows a truncated normal distribution and that their occurrence follows a Weibull
istribution [48]. Note that the Weibull distribution is selected over other available (more sophisticated) time-dependent occurrence
odels, i.e., lognormal-distributed model [49] and Brownian passage time model [50], due to its simplicity [28], which is justified

n the basis of the hypothetical nature of the examined case study. We assume that the mean magnitude of characteristic events is
𝑐 = 7.0, and the standard deviation of the characteristic-event magnitude distribution is 𝜎𝑀𝑐 = 0.25. The magnitude of characteristic
vents is truncated such that 𝑚 − 2𝜎 < 𝑀 < 𝑚 + 2𝜎 , that is, 6.5 < 𝑀 < 7.5. We assume the mean and standard deviation
8
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Fig. 4. The distribution of earthquake magnitudes of events in the earthquake catalogues generated for TV0 (for which the time elapsed since the last characteristic
event is assumed to be 50 years) and TV50_total (for which the time elapsed since the last characteristic event is assumed to be 100 years). The magnitude of
non-characteristic events (4.0 < 𝑀 < 6.5) is assumed to follow a Gutenberg–Richter magnitude frequency distribution, whereas the magnitude of characteristic
events (6.5 < 𝑀 < 7.5) is assumed to follow a truncated normal distribution.

Table 5
Fragility relationships for each building typology in Tomorrowville. 𝜃𝐷𝑆1 to 𝜃𝐷𝑆4 are the medians of the fragility relationships for 𝐷𝑆 = 1 to 4, respectively.
𝛽𝐷𝑆1 to 𝛽𝐷𝑆4 are the dispersions of the fragility relationships for 𝐷𝑆 = 1 to 4, respectively.

Building typology Intensity measure 𝜃𝐷𝑆1 𝜃𝐷𝑆2 𝜃𝐷𝑆3 𝜃𝐷𝑆4 𝛽𝐷𝑆1 𝛽𝐷𝑆2 𝛽𝐷𝑆3 𝛽𝐷𝑆4

No. 1 SA(T = 0.3 s) 0.399 0.861 1.238 1.577 0.586 0.586 0.586 0.586
No. 2 PGA 0.057 0.098 0.147 0.223 0.406 0.404 0.358 0.310
No. 3 PGA 0.057 0.119 0.214 0.361 0.451 0.349 0.286 0.247
No. 4 PGA 0.124 0.175 0.295 0.445 0.326 0.300 0.254 0.254
No. 5 SA(T = 0.09 to 0.56 s) 0.109 0.255 0.578 0.689 0.228 0.228 0.218 0.217
No. 6 SA(T = 0.10 to 0.57 s) 0.137 0.633 1.577 2.016 0.223 0.223 0.223 0.223
No. 7 SA(T = 0.13 to 0.79 s) 0.180 0.677 4.915 5.773 0.223 0.223 0.223 0.223
No. 8 SA(T = 0.18 to 1.11 s) 0.048 0.203 0.313 0.314 0.301 0.276 0.252 0.253
No. 9 SA(T = 0.19 to 1.12 s) 0.031 0.268 0.793 1.036 0.268 0.268 0.268 0.268
No. 10 SA(T = 0.22 to 1.30 s) 0.039 0.322 4.027 5.352 0.259 0.259 0.259 0.259
No. 11 SA(T = 0.3 s) 0.057 0.098 0.147 0.223 0.406 0.404 0.358 0.310

of the inter-arrival time of characteristic events are 𝜇𝑇 = 200 years and 𝜎𝑇 = 50 years, respectively. We use Monte Carlo sampling
to simulate two sets of 10,000 one-year earthquake catalogues, considering the time elapsed since the last characteristic event is
50 years (corresponding to the TV0 scenario) and 100 years (corresponding to the TV50_total scenario), respectively. Fig. 4 shows
the distribution of the magnitudes of the earthquakes simulated for TV0 and TV50_total. Each set of catalogues comprises over 2,700
events, most of which are time-independent events. The longer it has been since the last characteristic event, the more frequently
characteristic events occur in a catalogue. Therefore, the earthquake catalogues for TV50_total include more characteristic events
than those for TV0, as shown in Fig. 4.

We simulate spatial cross-correlated ground-motion fields across the polygons of Tomorrowville, using the GMM in Campbell and
Bozorgnia [29] and the spatial and cross-IM correlation model in Markhvida et al. [32]. We use Monte Carlo sampling to simulate
100 sets of ground-motion fields for each event, on a 200 m × 200 m grid shown in Fig. 2 [51]. This number of simulations is
deemed appropriate, since it provides relatively stable physical infrastructure impact assessment results (see Section 4 for details).
We use the ground-motion intensity values simulated at each grid point as a proxy for these values at nearby building sites.

3.4. Physical infrastructure impact

Table 5 summarises the fragility relationships associated with each building typology in Tomorrowville. The new buildings added
in TV50_total are of building typologies No. 7 and No. 10, which are in general much stronger than buildings that already exist in
TV0, as shown in Table 5. Further details on the physical vulnerability of Tomorrowville can be found in Gentile et al. [36]. We
consider a deterministic damage-to-loss ratio for each damage state (𝐷𝑆): 0.07 for 𝐷𝑆 = 1, 0.15 for 𝐷𝑆 = 2, 0.50 for 𝐷𝑆 = 3, and
1.00 for 𝐷𝑆 = 4 [52]. In this case study, the outputs of this module include the annual exceedance loss curve, the annual expected
loss for each residential building in Tomorrowville (𝐸𝐴𝐿𝑏𝑙𝑑,𝑏), and the expected annual portfolio loss (𝐸𝐴𝐿𝑝𝑜𝑟𝑡; i.e., the summation
of 𝐸𝐴𝐿 ).
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Fig. 5. Expected annual losses of residential buildings (𝐸𝐴𝐿𝑏𝑙𝑑,𝑏) in TV0 (left panel) and TV50_total (right panel). TV0 includes 3,423 residential buildings,
whereas TV50_total contains an additional 5,290 new residential buildings as part of rapid urban expansion. 𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

is the average 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 of all residential
buildings.

3.5. Social impact

The module calculates the expected annual loss of each household (𝐸𝐴𝐿ℎℎ,𝑖) using outputs from the Physical Infrastructure
Impact module (i.e., 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏) and associated household information of each building. This module uses the payout and premium
redistribution functions (defined in Section 3.2) to calculate the expected annual financially protected loss of each household
(𝐸𝐴𝐼𝐿ℎℎ,𝑖), the total expected annual financially protected loss of low-, middle-, and high-income households, respectively (𝐸𝐴𝐼𝐿𝑙,
𝐸𝐴𝐼𝐿𝑚, 𝐸𝐴𝐼𝐿ℎ, respectively), the expected annual financially protected portfolio loss (𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡), the expected annual financially
unprotected loss of each household (𝐸𝐴𝑈𝐿ℎℎ,𝑖), the expected annual financially unprotected portfolio loss (𝐸𝐴𝑈𝐿𝑝𝑜𝑟𝑡), the premium
(i.e., tax) payable by each household (𝑃ℎℎ,𝑖), and the portfolio premium (𝑃𝑝𝑜𝑟𝑡).

3.6. Computed impact metrics

We propose a novel household-level financial impact metric, herein referred to as ‘‘unprotected loss ratio’’ (𝐼ℎℎ,𝑖), to quantify the
financial impact of the candidate soft policies on each household. This metric is a holistic measurement of the earthquake-related
financial burden on households. 𝐼ℎℎ,𝑖 can be mathematically formulated as follows:

𝐼ℎℎ,𝑖 =
𝐸𝐴𝑈𝐿ℎℎ,𝑖 + 𝑃ℎℎ,𝑖

𝑅𝑃𝐶ℎℎ,𝑖
(3)

where 𝑅𝑃𝐶ℎℎ,𝑖 refers to the total replacement cost of each household and all other variables are as previously defined. For multi-
family buildings, we assume the households equally share the building’s total replacement cost. The higher 𝐼ℎℎ,𝑖 is, the heavier the
earthquake-related financial burden on the household is. We then aggregate 𝐼ℎℎ,𝑖 to compute E(𝐼𝑙𝑜𝑤) and E(𝐼𝑝𝑜𝑟𝑡), for input to the
𝑃𝐵𝐼 calculation expressed in Eq. (1).

4. Results

Fig. 5 displays the spatial distribution of 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏, for TV0 (on the left) and TV50_total (on the right). It can be seen in the right
panel of Fig. 5 that pre-existing buildings from TV0 generally have higher 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 than those of TV50_b2. The average 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 of
buildings in TV50_total (𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

) is smaller than that of TV0, due to the relatively low vulnerabilities of the new buildings added as
part of TV50_b2. However, as seen in Fig. 6, the mean portfolio loss of TV50_total is approximately twice that of TV0 (for any given
annual rate of exceedance), because the total building value significantly increases as the urban area expands. By comparing the
10
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Fig. 6. Left panel: Mean portfolio loss curves for TV0 and TV50_total, averaged over the 100 Monte Carlo samples generated for each considered earthquake
event. Right panel: The ratio of the average portfolio loss curve for TV50_total to that of TV0.

Table 6
The average expected annual loss for each building type. 𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

is measured in
the unit of 200 EUR.
Building
typology

𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

(TV0)
𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

(TV50_total)

No. 1 0.212 0.276
No. 2 2.005 2.317
No. 3 2.317 2.726
No. 4 1.276 1.579
No. 5 1.685 2.114
No. 6 1.286 1.556
No. 7 0.608 0.578
No. 8 4.384 5.548
No. 9 3.614 4.406
No. 10 2.755 2.786
No. 11 2.117 2.340

two panels of Fig. 5, we can also see that the 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 of TV0 buildings increases in TV50_total, due to the time-dependent nature
of the seismic hazard. The longer it has been since the last characteristic event, the more likely the next characteristic event is to
occur, increasing the hazard and the expected annual losses. The effect of increasing seismic hazard is further reflected in Table 6,
which summarises the 𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

for each building topology in TV0 and TV50_total, respectively.
Fig. 7 displays the mean portfolio loss curves associated with payout functions No. 1. (left panel) and No. 2 (right panel); see

Table 2 for details. It can be seen that payout function No. 1 results in a greater value of 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 compared to payout function
No. 2.

The mean premiums payable by households of each income group under each financial soft policy are shown in Table 7. These
values are generally lower in TV50_total compared to TV0 because of a lower 𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

. Soft policies No. 1 to 4 that adopt payout
function No. 1 result in higher premiums compared to the other soft policies that adopt payout function No. 2, because of the
higher 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 associated with payout function No. 1. Because payout function No. 2 specifies lower deductibles for middle-
and low-income groups and buildings occupied by middle- and low-income people are in general less seismic-resistant compared
to those occupied by the high-income (because of their greater financial capacity to afford more seismically resistant buildings),
the average 𝐸𝐴𝐼𝐿ℎℎ,𝑖 is higher for low-income and middle-income than for high-income, despite the fact that low-income and
middle-income people occupy cheaper buildings. Thus, under financial soft policy No. 6 (consisting of payout function No. 2 and
premium redistribution scheme No. 2 that distributes premiums on the basis of 𝐸𝐴𝐼𝐿 ), low- and middle-income households pay,
11
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Fig. 7. Mean protected and unprotected portfolio loss curves for TV0 and TV50_total, under payout functions No. 1 (left panel) and No. 2 (right panel). The
expected annual portfolio loss (𝐸𝐴𝐿𝑝𝑜𝑟𝑡), expected annual financially protected portfolio loss (𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡) and expected annual financially unprotected portfolio
loss (𝐸𝐴𝑈𝐿𝑝𝑜𝑟𝑡) associated with each payout function are shown in EUR.

Table 7
Mean premiums (in EUR) paid by households per income group and the computed Poverty Bias Indicator (𝑃𝐵𝐼) under each
financial soft policy.
Scenario Financial

soft policy
Low
income

Middle
income

High
income

𝑃𝐵𝐼

TV0 1 144 144 144 0.343
2 145 140 147 0.284
3 29 273 288 −0.339
4 29 281 281 −0.280
5 101 101 101 0.263
6 122 84 69 0.304
7 24 210 172 −0.229
8 24 191 191 −0.163

TV50_total 1 124 124 124 0.679
2 116 118 134 0.642
3 23 169 193 −0.080
4 23 186 186 −0.081
5 61 61 61 0.508
6 96 64 30 0.684
7 19 140 66 0.024
8 19 86 86 0.154

on average, higher premiums than high-income households. As can be seen from the results in Table 7, soft policies No. 3, 4, 7,
and 8 that employ premium redistribution schemes No. 3 or No. 4 burden low-income group households with significantly lower
premiums compared to the other soft policies that adopt premium redistribution schemes No. 1 or No. 2.

Fig. 8 shows the mean, median, and 25th to 75th percentile range of 𝐼ℎℎ,𝑖, computed for households in each income group
under each financial soft policy for TV0 and TV50_total scenarios, respectively. Also shown are 𝑃𝐵𝐼 values for each financial soft
policy. The average unprotected loss ratio (E(𝐼ℎℎ,𝑖)) of TV50_total is lower than that of TV0 because of its relatively higher seismic
resistance. Soft policies No. 3 and No. 7 lead to the lowest value of E(𝐼ℎℎ,𝑖) in both TV0 and TV50_total. Soft policies No. 1, 2, 5,
and 6, which are not explicitly designed to be pro-poor, yield the highest values of 𝐼ℎℎ,𝑖 for low-income households as expected
(see Fig. 8). The positive values of 𝑃𝐵𝐼 obtained for these policies (as shown in Table 7) further indicate that they result in a
disproportional financial burden on low-income households. Soft policies No. 3, 4, 7, and 8, which are all explicitly designed to
lower financial burdens on low-income households, result in a negative (i.e., pro-poor) value of 𝑃𝐵𝐼 in TV0 as expected. However,
only soft policies No. 3 and 4 lead to a negative 𝑃𝐵𝐼 value in TV50_total. The positive 𝑃𝐵𝐼 of policies No. 7 and 8 in TV50_total can
be attributed to a combination of: (1) the fact that low-income households in TV50_total have higher values of 𝐼ℎℎ,𝑖 than in TV0 (due
to an elevated average valuation of the associated residential properties); and (2) the flat-rated nature of premium redistribution
scheme No. 4 in the case of policy No. 8, which results in some low-income households paying a much higher amount of the total
low-income premium than they would under a scheme that charges premiums in proportion to 𝐸𝐴𝐼𝐿ℎℎ,𝑖. The fact that policies No.
7 and 8 lead to negative 𝑃𝐵𝐼 values in TV0 but positive 𝑃𝐵𝐼 values in TV50_total highlights the need to adopt a future-focused
approach in the design of soft policies for cities under rapid urban expansion like Tomorrowville.
12
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Fig. 8. 𝐼ℎℎ,𝑖 calculated for each candidate financial soft policy, and both TV0 and TV50_total. The top panel shows the results for TV0 (time since the last
characteristic event = 50 years) and the bottom panel shows the results for TV50_total (time since the last characteristic event = 100 years). Corresponding
𝑃𝐵𝐼 values are also shown.

We can observe that policy No. 3 is the most pro-poor financial soft policy for TV0, whereas policy No. 4 is the most pro-poor
for TV50_total. We note that it is intuitive (and expected) that a financial soft policy with a premium redistribution scheme No. 3 or
No. 4 – which explicitly transfers losses from low-income households to wealthier ones – would produce the lowest 𝑃𝐵𝐼 . However,
the fact that the optimal financial soft policy changes between the conditional urban plans illustrates the importance of dynamically
assessing the extent to which financial soft policies are pro-poor, as urban areas expand and physical and social vulnerabilities
change.

5. Sensitivity to time since the last characteristic earthquake

The time-dependent seismic hazard analysis we perform in the Seismic Hazard Modelling module relies on specific (assumed)
constraints related to fault rupture history. In this section, we investigate the impacts of alternative assumptions regarding the time
since the last characteristic event (using only TV50_total). We specifically consider two additional times since the last characteristic
event for TV50_total (i.e., 50 years in the future): 150 years and 60 years.

Fig. 9 provides (left panel) the mean portfolio loss curves of residential buildings in TV50_total, for different assumed times since
the last characteristic event: 100 years, 150 years, and 60 years. It can be seen (as expected) that the longer it has been since the
last characteristic event, the larger the associated 𝐸𝐴𝐿𝑝𝑜𝑟𝑡 becomes. The right panel provides the ratio of each mean portfolio loss
curve to that of the curve for a 100-year period elapsed since the last characteristic event. For a 1% annual exceedance rate, it can
13
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Fig. 9. Left panel: mean portfolio loss curves of residential buildings in TV50_total, considering a time since the last characteristic event (in 50 years) of 150,
100, and 60 years. Right panel: Mean portfolio loss curves for TV50_total and different times since the last characteristic event, normalised by the corresponding
curve for a 100-year period since last characteristic event.

Table 8
Mean premiums (in EUR) paid by households per income group and the computed Poverty Bias Indicator (𝑃𝐵𝐼) under each financial soft policy in TV50_total
considering the time since last characteristic event being 60 years and 150 years, respectively.

Scenario Financial
soft policy

Low
income

Middle
income

High
income

𝑃𝐵𝐼

TV50_total (last characteristic event = 60 years) 1 106 106 106 0.684
2 99 100 115 0.651
3 20 143 165 −0.058
4 20 159 159 −0.059
5 51 51 51 0.515
6 81 53 24 0.692
7 16 118 54 0.043
8 16 72 72 0.181

TV50_total (last characteristic event = 150 years) 1 169 169 169 0.663
2 155 156 169 0.619
3 31 222 267 −0.134
4 31 254 254 −0.142
5 87 87 87 0.488
6 131 90 48 0.659
7 26 186 100 −0.026
8 26 124 124 0.087

be seen that the mean portfolio loss for a time since the last characteristic event of 60 years is 12% less than that for a time since
the last characteristic event of 100 years, whereas the mean portfolio loss for 150 years since the last characteristic event is 31%
higher. The ratios of mean portfolio loss curves approach unity as the annual exceedance rate decreases, indicating that variations
in the time since the last characteristic event have relatively lower impact on the right tail of the mean portfolio loss curve.

Table 8 summarises both the mean premiums payable by households of each income group and 𝑃𝐵𝐼 values, for each considered
financial soft policy and the two additional considered times since the last characteristic event. As expected, the premiums associated
with a 150-year time period since the last characteristic event are on average higher than those associated with a 100-year time gap
(see Table 7), whereas the premiums associated with 60-year lag since the last characteristic event are the lowest. Fig. 10 provides
both 𝐼ℎℎ,𝑖 values calculated for each income group and 𝑃𝐵𝐼 values under each considered soft policies, for the two alternative
seismic hazard scenarios. Soft policies No. 3 and No. 7 still result in the overall lowest E(𝐼 ) in both alternative scenarios. It can
14
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Fig. 10. 𝐼ℎℎ,𝑖 calculated for candidate soft policies applied to TV50_total, considering two alternative assumptions about the time since the last characteristic
event (in 50 years): 60 years (top panel) and 150 years (bottom panel). Corresponding 𝑃𝐵𝐼 values are also shown.

be observed that policy No. 4 remains the most pro-poor financial soft policy for TV50_total, regardless of the assumed time since
the last characteristic event, although there are variations in the absolute values of 𝑃𝐵𝐼 . This means that policy No. 7 is considered
sufficiently pro-poor if the time since the last characteristic event is 150 years (produces a negative 𝑃𝐵𝐼 value) but not so adequate
if we assume that the last characteristic event occurred 60 or 100 years ago (produces a positive 𝑃𝐵𝐼 value). These results highlight
the importance of considering the history of relevant faults in the proposed optimal policy selection process.

6. Conclusions and future work

We leverage the Tomorrow’s Cities Decision Support Environment [20] to propose a framework for designing and quantitatively
assessing compulsory, seismic-risk-related, people-centred, household-level financial soft policies for expanding cities. This frame-
work explicitly focuses on the disproportionate financial burdens often imposed on low-income people as a result of earthquake
disasters, using novel impact metrics that distinguish losses on the basis of pertinent socioeconomic information. Stakeholders such
as urban planning authorities, community representatives, and researchers can use the framework for informed decision making on
the design of pro-poor financial soft policies for implementation in future (as well as present) earthquake-prone urban communities.

We demonstrate the proposed framework, through designing and assessing a number of different compulsory financial soft
policies for the hypothetical expanding city of Tomorrowville [26]. We showcase the framework’s capacity to identify financial soft
15
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Table 9
Explanation of acronyms adopted in the paper.
Acronym
or symbol

Explanation

TCDSE Tomorrow’s Cities Decision Support Environment
𝐼ℎℎ,𝑖 Financial impact metric (unprotected loss ratio) of the 𝑖th household
ℎℎ Subscript denoting ‘‘household’’
𝑖 Household index
𝑃𝐵𝐼 Poverty bias indicator
GIS Geographic information system
IM Intensity measure
PGA Peak ground acceleration
PGD Peak ground displacement
PGV Peak ground velocity
SA Spectral accelerations
GMM Ground motion model
𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 Expected annual loss of the 𝑏th building
𝑏𝑙𝑑 Subscript denoting ‘‘building’’
𝑏 Building index or slope of earthquake occurrence
𝜇𝐸𝐴𝐿𝑏𝑙𝑑,𝑏

Average 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 of all residential buildings.
𝐸𝐴𝐿ℎℎ,𝑖 Expected annual loss of the 𝑖th household
𝐸𝐴𝐼𝐿ℎℎ,𝑖 Expected annual financially protected loss of the 𝑖th household
𝐸𝐴𝑈𝐿ℎℎ,𝑖 Expected annual financially unprotected loss of the 𝑖th household
𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 Expected annual financially protected loss of the residential building portfolio
𝐸𝐴𝑈𝐿𝑝𝑜𝑟𝑡 Expected annual financially unprotected loss of the residential building portfolio
E(𝐼𝑙𝑜𝑤) Mean value of the financial impact metric across low-income households
E(𝐼𝑝𝑜𝑟𝑡) Mean value of the financial impact metric across all households
𝑝𝑜𝑟𝑡 Subscript denoting ‘‘portfolio’’
E(𝐼ℎℎ,𝑖) The average unprotected loss ratio of all households
TV0 Current urban layout of Tomorrowville
TV50_total A possible future urban layout of Tomorrowville in 50 years
TV50_b2 New buildings to be built in Tomorrowville in the next 50 years
𝜈0 The annual rate of exceeding an 𝑀4.0 earthquake
𝑀 Moment magnitude of earthquake events
𝐼𝑃 Insurance payout
𝐿 Total assessed seismic loss
𝐷 Deductible
𝐶 Limit (the highest amount of a claim covered by an insurance contract)
𝛾 Coinsurance factor
𝑃𝑝𝑜𝑟𝑡 Portfolio premium
𝑃ℎℎ,𝑖 Premium payable by the 𝑖th household
𝑁ℎℎ Total number of households
𝛼 Premium loading factor
𝐸𝐴𝐼𝐿𝑙 The expected annual financially protected loss of the low-income group
𝐸𝐴𝐼𝐿𝑚 The expected annual financially protected loss of the middle-income group
𝐸𝐴𝐼𝐿ℎ The expected annual financially protected loss of the high-income group
𝑙 Subscript denoting ‘‘low-income’’ group
𝑚 Subscript denoting ‘‘middle-income’’ group
ℎ Subscript denoting ‘‘high-income’’ group
𝑅𝑃𝐶ℎℎ,𝑖 The total replacement cost of the 𝑖th household
𝑚0 Minimum magnitude for non-characteristic events
𝑚𝑢 Maximum magnitude for non-characteristic events
𝑚𝑐 Mean magnitude of characteristic events
𝜎𝑀𝑐

Standard deviation of the characteristic-event magnitude distribution
𝜇𝑇 Mean of the inter-arrival time of characteristic events
𝜎𝑇 Standard deviation of the inter-arrival time of characteristic events
𝐷𝑆 Damage state
𝜃𝐷𝑆1 to 𝜃𝐷𝑆4 Medians of the fragility relationships for 𝐷𝑆 = 1 to 4
𝛽𝐷𝑆1 to 𝛽𝐷𝑆4 Dispersion of the fragility relationships for 𝐷𝑆 = 1 to 4

policies that are adequately pro-poor in terms of the earthquake-related impacts experienced as a result of their implementation. We
also illustrate the framework’s usefulness in comparing the extent to which different soft policies are pro-poor in their approach. Our
case-study application of the framework highlights the importance of adopting a future-focused approach in the design of financial
soft policies, by revealing that the ‘‘optimal’’ (i.e., most pro-poor) financial soft policy may depend on the exact configuration of
the urban system (i.e., layout of the building portfolio as well as the underlying physical and social vulnerabilities) that evolves
in time. Policies deemed sufficiently pro-poor today do not necessarily remain pro-poor in the future. We further investigate the
impact of time-dependent seismic hazard on the pro-poorness of policies. We find that varied assumptions on the fault’s history (and
therefore different temporal instances in the fault’s cycle) can lead to different conclusions on the pro-poorness of a given financial
16
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soft policy, emphasising the importance of accounting for the dynamic (time-dependent) nature of risk in relevant policy-related
decision-making contexts.

The proposed framework exclusively focuses on compulsory financial soft policies for residential earthquake risk mitigation.
owever, most national or regional financial soft policies of this type (i.e., earthquake insurance schemes) are optional and do
ot have a high penetration rate for a variety of reasons, one of them being the myopia of insurance purchasers [53–56]. People
end to cancel their insurance policies after a disaster if they do not suffer damages in a certain timeframe. For example in
alifornia, earthquake insurance take-up rate spiked after the 1994 Northridge earthquake, whereas relatively few households
urchase insurance coverage in this state nowadays [55]. Considering this typical behaviour, our findings, which show an increase
n the price of insurance premiums as the time elapsed since the last characteristic event lengthens, underline the importance of
nsuring that financial soft policies are both compulsory but also pro-poor. Future work could focus instead on the design of non-
ompulsory seismic risk mitigation measures (e.g., optional earthquake insurance policies) and their effectiveness for various levels
f uptake.

Future work could also assess the long-term effects of earthquake-risk-related financial soft policies on post-earthquake housing
ecovery and population displacement. Many studies have identified financing as a critical driver of post-disaster housing recovery
nd a significant predictor of a homeowner’s post-disaster decision to rebuild or relocate [57,58]. Moreover, insurance is one of
he major funding sources for post-disaster housing recovery [45,59]. Our framework could be leveraged towards addressing this
esearch gap, for specific investigations into the extent to which the long-term recovery of low-income people can be improved as
result of certain financial soft policies [60–62].

. Acronyms and symbols

Table 9 summarises acronyms and symbols adopted in the paper.
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