
Mining and Searching App Reviews for Requirements
Engineering: Evaluation and Replication Studies

Jacek Dąbrowskia,b,∗, Emmanuel Letiera, Anna Perinib, Angelo Susib

aUniversity College London, London, UK
bFondazione Bruno Kessler, Trento, Italy

Abstract

App reviews provide a rich source of feature-related information that can

support requirement engineering activities. Analysing them manually to find

this information, however, is challenging due to their large quantity and noisy

nature. To overcome the problem, automated approaches have been proposed

for ‘feature-specific analysis’. Unfortunately, the effectiveness of these approaches

has been evaluated using different methods and datasets. Replicating these stud-

ies to confirm their results and to provide benchmarks of different approaches

is a challenging problem. We address the problem by extending previous eval-

uations and performing a comparison of these approaches. In this paper, we

present two empirical studies. In the first study, we evaluate opinion mining

approaches; the approaches extract features discussed in app reviews and iden-

tify their associated sentiments. In the second study, we evaluate approaches

searching for feature-related reviews. The approaches search for users’ feed-

back pertinent to a particular feature. The results of both studies show these

approaches achieve lower effectiveness than reported originally, and raise an

important question about their practical use.

Keywords: Mining User Reviews, Software Engineering, Feature Extraction,

Sentiment Analysis, Searching For Feature-Related Reviews, Empirical Study

∗Corresponding author
Email address: jacek.dabrowski.16@alumni.ucl.ac.uk (Jacek Dąbrowski)

Preprint submitted to Journal of Information Systems January 3, 2023

1. Introduction

App stores have become important distribution platforms of mobile apps [1].

In 2022, Apple Store and Google Play Store facilitate more than 5 million apps;

and are commonly used to discover, download and update software products [2].

These App Stores have made a substantial impact on software engineering prac-5

tices, in particular by bridging the gap between users and app developers [3].

App reviews are user-written comments enriched with a star rating that app

users can facilitate to other App Store users and app developers about their

experience of an app [3, 4, 5]. The majority of app reviews have length up

to 675 characters [6]; and are rich source of feature-related information such10

as user opinions about app features, description of usage scenarios as well as

different types of user requests [1, 3, 4, 5, 7].

This feedback can help developers to understand how users perceive their

app, as well as to identify the users’ requirements and preferences [3, 8, 4, 9].

Surveys of software developers have shown that identifying what users say about15

specific app features is an important concern for developers [5, 9, 10, 7]. This

information affects multiple software engineering activities, from requirements

engineering to testing and system maintenance and evolution [3, 8, 4, 7].

Analysing app reviews to find feature-related information, however, is chal-

lenging due to their large number and the difficulty in extracting actionable20

information from short informal texts [3, 11]. Popular apps like WhatsApp

Messenger can receive more than 5,000 reviews per day [6, 12]; moreover, the

review content can vary from informative and helpful one to content conveying

hate and spam [1, 6]. Consequently, the possibility of using this information to

support engineering activities is obstructed [3, 8].25

To address the problem, techniques have been proposed to searching for

feature-related reviews [13, 14, 15], and mining user opinions about these fea-

tures [15, 16, 17, 18, 19]. These approaches facilitate the analysis of a large

amount of online user feedback by performing one of the following tasks, or a

combination of them: searching for app reviews pertinent to a particular fea-30

2

ture, extracting features discussed in reviews and identifying their associated

users’ sentiments [16, 17].

In particular, two approaches have become adopted as a reference in the RE

community, i.a., GuMa1 [17] and SAFE [20], as they have been shown to achieve

promising accuracy for performing the task of opinion mining and searching for35

feature-related reviews [1, 7].

The empirical evaluations of these approaches are however hard to replicate

and to compare because they rely on different datasets and experiment designs.

In some cases, the unavailability of their annotated datasets and the lack of de-

tails about their evaluation procedures are further challenges to the replicability40

of the experiments [15, 17, 20, 21, 22].

The aim of this paper is to address the problem by extending previous eval-

uations and performing a comparison of these app review analysis approaches.

We consider the following research questions:

RQ1: What is the effectiveness of feature extraction approaches?45

RQ2: What is the effectiveness of feature-specific sentiment analysis approaches?

RQ3: What is the effectiveness of approaches in searching for app reviews per-

tinent to a particular feature?

To answer the first two questions, we conducted an empirical study in which

we evaluated three opinion mining approaches: GuMa [17], SAFE [20] and50

ReUS [18]. We evaluated them in performing two tasks: feature extraction and

sentiment analysis using a new annotated dataset we have constructed for this

experiment. This work was first presented at the 32nd International Conference

on Advanced Information Systems Engineering (CAiSE‘20) [19]

This journal paper extends the conference paper with a new study that55

addresses the third research question. In this study, we evaluate three can-

didate approaches searching for feature-related reviews, namely Lucene [23],

MARAM [14] and SAFE [15].

The main contributions presented in this article are: (i) two empirical studies

1We refer to the approach using abbreviations derived from their authors’ surnames.

3

expanding previous evaluations of opinion mining approaches and approaches60

searching for feature-related reviews; (ii) a comparison of these approaches in

performing the following three tasks: feature extraction, feature-specific sen-

timent analysis and searching for app reviews pertinent to a particular fea-

ture, and (iii) a replication package [24] containing two new datasets: the first

one consisting of 1,000 reviews annotated with 1,521 opinions, and the second65

one including 1,113 reviews annotated with 24 app features; as well as our re-

implementation of GuMa, MARAM and Lucene-based tools.

The paper is structured as follows: Section 2 introduces terminology, de-

fines the problems of opinion mining and searching for feature-related reviews,

presents the approaches we evaluate to address the problems. Section 3 presents70

scenarios motivating these approaches. Section 4 presents the empirical study

addressing RQ1 and RQ2, and Section 5 the study addressing RQ3. Section 6

discusses related works and Section 7 concludes the paper.

2. Background

This section introduces terminology and the formulation of the opinion min-75

ing and searching for feature-related reviews problems. It also outlines the

evaluated approaches. We refer to this information throughout the paper.

2.1. Terminology and Problem Formulation

We define a feature as a user-visible functional attribute of an app: a func-

tionality (e.g., send message), a module providing functional capabilities (e.g.,80

user account) or a design component that can be utilized to perform tasks

(e.g., UI). The software engineering literature is generally inconsistent about

the feature definition; a part of the literature pertains to features as functional

attributes (e.g., [25, 26]), while the other defines features as both functional and

non-functional attributes (e.g., [27]).85

In this work, the feature definition is focused on functional attributes as the

evaluated tools (see Sect. 2.2) are neither intended to analyse non-functional

4

Figure 1: Opinion Mining Task

attributes (e.g., [15]), nor the studies proposing the tools provide sufficient ev-

idence about their suitability for this purpose [17]; in fact, the surveyed lit-

erature [7] suggests that custom-built techniques need to be adopted for this90

purpose (e.g., [28, 29]).

App reviews can describe features seen at a different level of abstraction, at

a high-level (e.g., communicate with my friends) and at a low-level one (e.g.,

click send message button) [17]. A feature expression is a non-empty set of

words f = {w1, ..., wm} describing the actual feature in an app review; this95

definition uses a set of words rather than a multi-set for the feature description

as neither our manual analysis of app reviews nor the literature suggests features

are described using repeated words. Further on in the text, we will refer to a

feature expression as a feature for the sake of simplicity.

Like other types of on-line user feedback [30], app reviews can convey in-100

formation about user attitude towards features. We here define a sentiment s

as a user attitude which can be either positive, negative or neutral; and an

opinion as a tuple o = (f, s), where f is a feature in a review r, s is a sentiment

referencing to f in r.

The first empirical study (see Sect. 4) focuses on the opinion mining problem,105

where given a set of reviews R = {r} on an app a, the problem is to find a

multi-set of all the opinions O = {o} in a set of reviews R; this definition refers

to a multi-set of all the opinions as the same opinion can be given in many

5

Table 1: App review mining tools that we have evaluated in our two experiments.

Criterion GuMa [17] SAFE [15] ReUS [18] MARAM [14] Lucene [23]

F
u
n
ct

io
n
al

it
y

Feature Extraction (RQ1) X X X - -

Sentiment Analysis (RQ2) X - X - -

Feature-Related Search (RQ3) - X - X X

M
et

a-
d
at

a Availability - X X - X

Release Year 2014 2017 2019 2016 2010

Technology Python Python Java Python Java

reviews. Figure 1 illustrates the opinion mining problem. This problem can

be decomposed into two sub-problems, feature extraction and feature-specific110

sentiment analysis.

The feature extraction problem is to find a multi-set of all the features F =

{f} in a set of reviews R = {r} on an app a; whereas, in the feature-specific

sentiment analysis, given a set of pairs {(f, r)} where f is a feature in a review

r, the problem is to find a multi-set S = {s} where s is a sentiment referring to115

f in r; these definitions refer to a multi-set of features and a multi-set of feature-

specific sentiments as the same feature or the same feature-specific sentiment

can be given in many reviews.

The second empirical study (see Sect. 5) focuses on the problem of searching

for feature-related reviews, where given a set of reviews R = {r} on an app a120

and a feature, the problem is to find the subset of reviews in R that refer to this

feature (i.e., feature-related reviews).

2.2. Approaches For Mining Feature-Related Information

We have evaluated five app review mining tools in our two studies. Table 1

shows a comparison of the tools that we have considered in the studies. The125

tools are compared by different criteria, grouped into two overall categories:

Functionality and Meta-data information. The first category includes criteria

about the presence of a functionality in a tool that we aim to evaluate: feature

extraction (RQ1), sentiment analysis (RQ2) and feature-related search (RQ3).

6

The latter category includes meta-data information about the tools such as their130

availability, release year and technology in which the tools have been created.

A “X” in the table indicates that a tool satisfies a certain criteria, whereas “-”

denotes a tool which does not satisfy it.

In the first study (for RQ1 and RQ2), we selected three approaches: GuMa [17],

SAFE [15] and ReUS [18]. We selected GuMa and SAFE as they are state-of-the-135

art approaches widely known in RE community [1, 7, 21, 31]. We also selected

ReUS [18] as the approach achieves a competitive performance in the context

of opinion mining and sentiment analysis research [16, 18]. We also have its

original implementation. In the second study (for RQ3), we chose: SAFE [15],

MARAM [14] and Lucene [23]. We selected SAFE and MARAM as they are the140

only proposed approaches searching for feature-related reviews in the app store

community [1, 7] (except for our previous work [13]). We also include Lucene

which is a well-known general purpose search engine that is commonly used as

a baseline in the empirical evaluation of SE research [7].

We here provide detailed descriptions of the five tools that we have evaluated145

in our two studies:

1. GuMa performs feature extraction and feature-specific sentiment anal-

ysis. The tasks are performed independently of each other. To extract

features, the approach relies on a collocation finding algorithm; the algo-

rithm identifies expressions of multiple words which commonly co-occur in150

a set of documents [32]. For predicting sentiment, the approach uses the

SentiStrength tool [33]. First, the approach predicts the sentiment of a sen-

tence, then assigns sentiments to features in the sentence. Unfortunately,

GuMa’s source code and evaluation data set are not available. We have

therefore re-implemented GuMa’s tool in Python referring to their original155

description [24]. Like in the original study [17], we implemented feature

extraction using the collocation finding algorithm provided in the NLTK

toolkit [34]; and used the SentiStrength library to implement sentiment

analysis. We tested our implementation is a consistent approximation of

7

the GuMa’s original implementation on examples from the original paper160

and produces the same outputs.

2. SAFE supports feature extraction, feature-specific review searching, but

not sentiment analysis. The approach extracts features based on linguis-

tics patterns, including 18 part-of-speech patterns and 5 sentence patterns.

These patterns have been identified through manual analysis of app de-165

scriptions. The approach conducts two main steps to extract features from

a review: text preprocessing and the application of the patterns. Text pre-

processing includes tokenizing a review into sentences, filtering-out noisy

sentences, and removing unnecessary words. The final step concerns the

application of linguistic patterns to each sentence to extract app features.170

As for the searching task, SAFE compares queried features with those

extracted from reviews using semantic similarity. To improve the perfor-

mance, the tool uses query expansion using WordNet lexical database. We

used the original Python-written implementation of the tool in our study.

3. ReUS exploits linguistics rules comprised of part-of-speech patterns and175

semantic dependency relations. These rules are used to parse a sentence

and perform feature extraction and feature-specific sentiment analysis.

Both tasks are performed at the same time. Given a sentence, the ap-

proach extracts a feature and an opinion word conveying a feature-specific

sentiment. To determine the sentiment, the approach exploits lexical dic-180

tionaries. We used the original implementation of the Java-written tool,

and set up it to identify one out of three sentiment polarities.

4. MARAM supports the task of searching for feature-related reviews. To

this end, the approach exploits a simplistic model by representing both

query and reviews as the bags (sets) of their words. It then computes the185

similarity score between a given query and reviews using Jaccard Simi-

larity coefficient. The tool next outputs ranked reviews based on their

similarity score with the query. Neither MARAM tool nor their source

code are available. We have therefore re-implemented the tool rigorously

following their description in the original study [14]. We re-implemented190

8

the tool from scratch in Python using NLTK library [24]. We tested that

our implementation is consistent with MARAM’s original implementation;

and produces the same outputs as the original tools using examples in the

original paper.

5. Lucene is a free and open-source search engine software library suitable195

for any application requiring full-text indexing and searching capabil-

ity [23]. It is widely known for its usefulness in the implementation of

internet search engines and local, single-site searching. Lucene combines

Vector Space Model and the Boolean Model to determine how relevant a

given document is to a user’s query. We implemented a basic app review200

searching tool in Java that uses Lucene with its default setting [24]. We

followed the original Lucene documentation to implement the searching

capability [35].

3. Motivating Scenarios

We describe three use cases in which the use of approaches for opinion mining205

and searching for feature-related reviews provide benefits. They are inspired by

real-world scenarios, which previous research analysed [3, 4, 7, 8].

Use Case 1 (Validation by Users) Knowing what features users love

or dislike can give product managers an idea about user acceptance of these

features [3, 8, 9]; it can help them draw a conclusion whether invested effort was210

worth it [8]. Imagine the development team changed core features in WhatsApp

(e.g. video call). The team may want to know what users say about these

features so that they can fix any glitches and refine these features. Mining user

opinions could help them answer What are the most problematic features? or

How many users do report negative opinions about a concrete feature?215

Use Case 2 (Supporting Requirements Elicitation) Suppose What-

sApp receives negative reviews about a feature (e.g. group chat). Reading

thousands of reviews to analyse the problem can be infeasible. Using an opin-

ion mining tool, developers could discover the issue within minutes. The tool

9

could group reviews based on discussed features and associated user’s sentiment.220

Developers could then examine reviews talking negatively about a specific fea-

ture (e.g. group chat). This could help them understand user concerns about

a problematic feature, and potentially elicit new requirements. Similarly, the

development team might have been tasked to define requirements for one of

feature requests. Finding reviews referring to the feature will allow them to225

quickly identify What users have been saying about the feature. This cheap

elicitation technique might be insufficient in itself or it might be a starting

point for additional more expensive elicitation methods.

Use Case 3 (Supporting Requirements Prioritization) When added

with statistics, user opinions can help developers prioritize their work [3, 8, 9].230

Suppose the team is aware about problems with certain features which are

commented negatively. Finding negative opinions mentioning these features

could help them to compare how often these opinions appear, for how long

these opinions have been made, and whether their frequency is increasing or

decreasing. This information could provide evidence of their relative importance235

from a user perspective. Such information is not sufficient in itself to prioritize

change request because the perspective of other stakeholders must be also taken

into account, but it can provide useful evidence to partly inform such decisions.

For these scenarios having a tool that facilitates (i) opinion mining, (ii)

searching for feature-related reviews and (iii) provides their summary with sim-240

ple statistics could help the team to evolve their app.

4. Study I: Opinion Mining

The first empirical study evaluated and compared the approaches addressing

the problem of opinion mining (see Sect. 2.1). We here describe the design of

the study, report and discuss the results, together with threats to validity of245

this study.

10

4.1. Empirical Study Design

This section describes the empirical study design we used to evaluate the

selected approaches. We provide the research questions we aimed to answer,

the manually annotated dataset and evaluation metrics used to this end.250

4.1.1. Research Questions

The objective of the study was to evaluate and compare approaches mining

opinions from app reviews. To this end, we formulated two research questions:

RQ1: What is the effectiveness of feature extraction approaches?

RQ2: What is the effectiveness of feature-specific sentiment analysis approaches?255

In RQ1, we evaluated the capability of the approaches in correctly extracting

features from app reviews. In RQ2, we investigated the degree to which the

approaches can correctly predict sentiments associated with specific features. A

conclusive method of measuring the correctness of extracted features/predicted

sentiments is by relying on human judgment. We used our dataset in which260

opinions (feature-sentiment pairs) have been annotated by human-coders (see

Sect. 4.1.2). We compared extracted features/predicted sentiments to those

annotated in ground truth using automatic matching methods (see Sect. 4.1.3).

In answering the questions, we report precision and recall.

4.1.2. Manually Annotated Dataset265

This section describes the manually annotated dataset we created to answer

RQ1 and RQ2 [24]. To create this datatset, we collected reviews from previously

published datasets [36, 37] and asked human-coders to annotate selected samples

of these reviews.

A) Data Collection270

We have selected all the reviews from datasets used in previous review min-

ing studies [36, 37]. We selected these datasets because they include millions

of English reviews from two popular app stores (i.e., Google Play and Amazon)

for different apps, categories and period of times. We selected 8 apps from these

datasets, 4 apps from Google Play and 4 from Amazon app stores. For each275

11

Table 2: The overview of the subject apps

App Name Category Platform #Reviews

Evernote Productivity Amazon 4,832

Facebook Social Amazon 8,293

eBay Shopping Amazon 1,962

Netflix Movies & TV Amazon 14,310

Spotify Music Audio & Music Google Play 14,487

Photo Editor Pro Photography Google Play 7,690

Twitter News & Magazines Google Play 63,628

Whatsapp Communication Google Play 248,641

Figure 2: The Method for Ground Truth Creation

subject app, we also collected their description from the app store. Table 2

illustrates the summary of apps and their reviews we used in our study. We

selected subject apps from different categories to make our results more gener-

alizable. We believe that the selection of popular apps could help annotators to

understand their features, and to reduce their effort during the annotation.280

B) Annotation Procedure

The objective of the procedure was to produce an annotated dataset that

we use as ground truth to evaluate the quality of solutions produced by fea-

ture extraction and sentiment analysis approaches [38]. Figure 2 illustrates the

overview of the procedure. Given a sample of reviews, the task of human-coders285

was to label each review with features and their associated sentiments.

We started by elaborating a guideline describing the annotation procedure,

the definition of concepts and examples. We then asked two human-coders2 to

2The first author and an external coder who has no relationship with this research. Both

12

label a random sample of reviews using the guideline [24]. We evaluated the

reliability of their annotation using the inter-rater agreement metrics F1 and290

Fleiss’ Kappa [39, 40]. F1 is suitable for evaluating text spans’ annotations

such as feature expressions found in reviews; Fleiss’ kappa is suitable to assess

inter-rater reliability between two or more coders for categorical items’ anno-

tations such as users’ sentiment (positive, negative, or neutral). We evaluated

inter-rater agreement to ensure the annotation task was understandable, un-295

ambiguous, and could be replicated [38]. When disagreement was found, the

annotators discussed to adjudicate their differences and refined the annotation

guidelines. The process was performed iteratively, each time with a new ran-

dom sample of reviews until the quality of the annotation was at an acceptable

level [39]. Once this was achieved, annotators conducted a full-scale annotation300

on a new random sample of 1,000 reviews that resulted in our ground truth [24].

C) Ground truth

Table 3 reports statistics of our ground truth. These statistics concern sub-

ject app reviews, annotated opinions (feature-sentiment pairs) and inter-rater

reliability measures. The average length of reviews and sentences is measured in305

words. Statistics of opinions are reported separately for features and sentiments.

The number of features has been given for all the annotated features, distinct

ones, and with respect to their length (in words). The number of sentiments

has been described including their number per polarity.

The ground truth consists of 1,000 reviews for 8 subject apps. In total, 1,521310

opinions (i.e., feature-sentiment pairs) have been annotated. Their sentiment

distribution is unbalanced: most feature-sentiment pairs are neutral. Among

1,521 annotated features, 1,172 of them are distinct (i.e. mentioned only once).

The feature distribution in app reviews can be found in Figure 3a. A large

number of reviews do not refer to any specific feature. 75% of reviews refers to315

no feature or to only one or two features. Figure 3b provides the feature length

distribution. The median length for a feature is 2 words, 75% of features has

coders have an engineering background and programming experience.

13

Table 3: Statistics of the ground truth for 1,000 reviews for 8 subject apps.

App Name

E
ve
rn
ot
e

Fa
ce
bo

ok

eB
ay

N
et
fli
x

Sp
ot
ify

P
ho

to
E
di
to
r

T
w
it
te
r

W
ha

ts
A
pp

O
ve
ra
ll

R
ev

ie
w

s

No. reviews 125 125 125 125 125 125 125 125 1,000

Avg. review length 48.30 37.90 32.54 43.46 23.62 12.38 15.79 14.47 28.59

No. sentences 367 327 294 341 227 154 183 169 2,062

Avg. sentence length 16.45 14.49 13.84 15.93 13.00 10.05 10.79 10.70 13.85

Sentence per review 2.94 2.62 2.35 2.73 1.82 1.23 1.46 1.35 2.06

S
en

ti
m

en
t No. sentiments 295 242 206 262 180 96 122 118 1,521

No. positive 97 49 95 79 32 39 5 20 416

No. neutral 189 168 102 159 122 47 93 84 964

No. negative 9 25 9 24 26 10 24 14 141

F
ea

tu
re

s

No. features 295 242 206 262 180 96 122 118 1,521

No. distinct features 259 204 167 201 145 80 99 100 1,172

No. single-word features 82 80 78 94 69 39 39 49 530

No. multi-word features 213 162 128 168 111 57 83 69 991

Feature per review 2.36 1.94 1.65 2.10 1.44 0.77 0.98 0.94 1,52

A
gr

m
t. F1 measure 0.76 0.73 0.77 0.75 0.67 0.78 0.79 0.83 0.76

Fleiss’ Kappa 0.64 0.77 0.77 0.55 0.75 0.86 0.69 0.80 0.73

between 1 and 3 words, and nearly 5% has more than 5 words.

4.1.3. Evaluation Metrics

We used precision and recall metrics [39] to answer RQ1 and RQ2. We used320

them because feature extraction is an instance of information extraction prob-

lem [39], whereas sentiment analysis can be seen as a classification problem [16].

A) Evaluation Metrics For Feature Extraction

In answering RQ1, precision indicates the percentage of extracted features

that are true positives. Recall refers to the percentage of annotated features that325

were extracted. An extracted feature can be true or false positive. True positive

features correspond to features that were both extracted and annotated; False

positives are features that were extracted but not annotated; Annotated but not

14

(a) Feature distribution in app reviews. (b) Distribution of feature length.

Figure 3: Feature distribution in app reviews, and Feature length distribution.

extracted features are called false negative. To determine whether an extracted

feature is true or false positive, we compared them with annotated features in330

the ground truth. To this end, we used the following feature matching method :

Let Γ be the set of words in a review sentence and fi ⊆ Γ be the set of words

used to refer to feature i in that sentence. Two features f1, f2 ⊆ Γ match at

level n (with n ∈ N) if and only if (i) one of the feature is equal to or is a subset

of the other, i.e. f1 ⊆ f2 or f2 ⊆ f1, and (ii) the absolute length difference335

between the features is at most n, i.e. ||f1| − |f2|| ≤ n.

B) Evaluation Metrics For Feature-Specific Sentiment Analysis

In answering RQ2, precision indicates the percentage of predicted sentiments

that are correct. Recall refers to the percentage of annotated sentiments that

are predicted correctly. To determine whether predicted sentiments are correct,340

we compared them with annotated ones in the ground truth.

We measured precision and recall for each polarity category (i.e. positive,

neutral and negative). We also calculated the overall precision and recall of all

three sentiment polarities. To this end, we used the weighted average of precision

and recall of each polarity category. The weight of a given polarity category was345

determined by the number of annotated sentiments with the sentiment polarity.

4.2. Results

RQ1: What is the effectiveness of feature extraction approaches?

15

Table 4: RQ1. Results for feature extraction at varied levels of feature matching.

Exact Match (n=0) Partial Match 1 (n=1) Partial Match 2 (n=2)

App Name
GuMa SAFE ReUS GuMa SAFE ReUS GuMa SAFE ReUS
P R P R P R P R P R P R P R P R P R

Evernote 0.06 0.13 0.07 0.08 0.07 0.08 0.15 0.35 0.22 0.24 0.19 0.20 0.17 0.39 0.32 0.35 0.27 0.29
Facebook 0.03 0.07 0.03 0.03 0.09 0.09 0.10 0.28 0.15 0.17 0.15 0.14 0.13 0.36 0.23 0.26 0.20 0.19
eBay 0.04 0.07 0.04 0.05 0.06 0.06 0.14 0.26 0.22 0.26 0.14 0.14 0.17 0.32 0.34 0.39 0.22 0.21
Netflix 0.03 0.13 0.03 0.03 0.06 0.07 0.11 0.45 0.19 0.21 0.18 0.21 0.13 0.55 0.27 0.29 0.25 0.29
Spotify 0.05 0.10 0.05 0.04 0.15 0.13 0.18 0.37 0.24 0.23 0.23 0.20 0.21 0.43 0.36 0.34 0.29 0.26
Photo Editor 0.12 0.11 0.12 0.09 0.14 0.13 0.26 0.25 0.34 0.27 0.23 0.21 0.29 0.27 0.38 0.30 0.27 0.25
Twitter 0.06 0.19 0.06 0.07 0.02 0.02 0.16 0.49 0.23 0.24 0.11 0.11 0.18 0.58 0.35 0.36 0.27 0.26
WhatsApp 0.05 0.21 0.11 0.11 0.06 0.06 0.14 0.56 0.32 0.33 0.19 0.20 0.16 0.64 0.39 0.40 0.24 0.25
Mean 0.05 0.13 0.06 0.06 0.08 0.08 0.15 0.37 0.24 0.24 0.18 0.18 0.18 0.44 0.33 0.34 0.25 0.25

(a) SAFE (b) GuMa (c) ReUS

Figure 4: RQ1. No. TPs, FPs and FNs as the level of features matching changes.

To answer RQ1, we compared extracted features to our ground truth using

feature matching method at levels 0, 1 and 2 (see Sect. 4.1.3). We selected350

these levels as extracted and annotated features may differ by a few words

but still indicating the same app feature. We then computed precision and

recall at these levels. Table 4 reports precision and recall for each approach

at different matching levels (best in bold). The results show the approaches

achieved low precision, recall given Exact Match. For all three approaches,355

precision and recall increase when we loosen the matching criteria to partial

matching with n = 1 or 2. The growth can be attributed to the changed numbers

of true positives (TPs), false positives (FPs) and false negatives (FNs) when n

increases. Figure 4 shows their behavior as the matching level n increases;

∆TPs = −∆FPs = −∆FNs when n increases.360

RQ2: What is the effectiveness of feature-specific sentiment analysis

16

Table 5: RQ2. Dataset used for evaluating feature-specific sentiment analysis.

Dataset # opinions # positive # neutral # negative

Exact Match 122 56 52 14

Partial Match 1 271 97 149 25

Partial Match 2 384 120 226 38

All Annotated 1521 416 964 141

approaches?

In answering RQ2, we report the effectiveness of ReUS and GuMa in feature-

specific sentiment (see Sect. 4.1.3). To this end, we compared predicted and

annotated sentiments, and exploited a subset of the ground truth with opinions365

(feature-sentiment pairs) we used to answer RQ1. Indeed, since ReUS predicts

sentiments only for extracted features, we considered only true positive features

obtained in answering RQ1 and formed three datasets, each corresponding to

true positive features (and their sentiment) from Exact Match, Partial Match1

and Partial Match2. Table 5 reports for each dataset the total number of opin-370

ions, and their breakdown to polarity categories. We also evaluated GuMa with

these datasets and with all the annotated opinions in our ground truth.

The answer to RQ2 can be given at two levels of details, the overall effec-

tiveness of predicting a sentiment, and the effectiveness of predicting a specific

polarity (e.g., positive). We report our results at both levels of details.375

Overall effectiveness. Table 6 reports the number of correct predictions, and

weighted precision/recall for inferring overall sentiment (best in bold). We can

observe that ReUS achieves higher precision and recall than GuMa for Exact

Match dataset, whereas both approaches have similar performances on the Par-

tial Match1 and Partial Match2 datasets.380

Specific effectiveness. In Table 7, we report the metrics showing the effective-

ness of the approaches in predicting specific polarities (best in bold). The results

show that on positive opinions ReUS achieves higher precision while suffering

from lower recall. Conversely, on neutral opinions GuMa provides better preci-

sion but lower recall than ReUS. When looking at the approaches, the analysis385

17

Table 6: RQ2. Results for feature-specific sentiment analysis (overall).

Dataset Approach # correct
prediction Precision Recall

Exact Match
ReUS 85 0.74 0.70
GuMa 77 0.65 0.63

Partial Match 1
ReUS 184 0.69 0.68
GuMa 176 0.72 0.65

Partial Match 2
ReUS 265 0.69 0.69
GuMa 252 0.73 0.66

All Annotated
ReUS - - -
GuMa 958 0.73 0.63

Table 7: RQ2. Results for feature-specific sentiment analysis (per each polarity).

Positive Neutral Negative

Dataset Approach # correct
prediction Precision Recall # correct

prediction Precision Recall # correct
prediction Precision Recall

Exact Match
ReUS 35 0.90 0.62 45 0.60 0.87 5 0.62 0.36
GuMa 47 0.68 0.84 21 0.68 0.40 9 0.41 0.64

Partial Match 1
ReUS 47 0.80 0.48 131 0.66 0.88 6 0.43 0.24
GuMa 86 0.61 0.89 73 0.85 0.49 17 0.40 0.68

Partial Match 2
ReUS 53 0.80 0.44 205 0.68 0.91 7 0.41 0.18
GuMa 107 0.59 0.89 122 0.86 0.54 23 0.38 0.61

All Annotated
ReUS - - - - - - - - -
GuMa 355 0.52 0.85 510 0.87 0.53 93 0.36 0.66

of the results revealed that none of the approaches was able to reliably assess

the sentiment of negative options. Both approaches were good at discriminating

between positive and negative opinions. Most incorrect predictions were caused

by misclassifying positive/negative sentiment with neutral one and vice versa.

4.3. Discussion390

The results indicate that the approaches have limited effectiveness in mining

user opinions. Our findings bring into question their practical applications.

A) Feature Extraction

In our experiment, feature extraction methods have lower precision and re-

call than previously reported [15, 17, 18]. SAFE was reported with 0.71 re-395

call [15]. Our results show the approach achieves 0.34 recall for the least rigor-

ous evaluation strategy which can be attributed to several factors; SAFE uses

dataset-specific linguistics patterns to identify features. These patterns have

been defined in the original study [15]. The characteristic of our dataset is dif-

18

ferent than one used in the original evaluation in terms of apps we used, and400

the vocabulary of their reviews [6, 41]. We observed the tool frequently iden-

tifies a part of a feature expression (e.g., “organize list”) instead of detecting a

complete one (e.g., “keeping me organized with my lists”); and it does not iden-

tify features expressed using a single word (e.g., “synchronization”). This leads

to an increased number of false positive and false negative features, lowering405

both precision and recall. We also observed SAFE does not handle co-reference

resolution; and therefore it cannot detect features to which users refer using

pronouns [32].

The majority of features extracted by GuMa are incorrect. Although GuMa

initially reported precision and recall of 0.58 and 0.52 [17], our experiment found410

lower figures of 0.18 precision and 0.44 recall. Although the difference may be

due to our re-implementation of the GuMa method, we have taken great care in

re-implementing the method as described in the paper as rigorously as possible.

We tested that our implementation is a consistent approximation of the original

tool and produces the same outputs based on the examples reported in the415

paper. Unfortunately, the original GuMa implementation was not available for

comparison. We however argue the imprecision of GuMa comes from the tool’s

feature extraction algorithm. The collocation finding algorithm suffers from an

increased number of false positives as it frequently extracts collocations that are

not app features, but simply commonly mentioned expressions (e.g., “easy use”);420

and it consequently decreases the precision. On the other hand, the algorithm

only extracts frequently discussed expressions; GuMa thus is not able to detect

features that are not popularly discussed (e.g., mentioned once). Future works

can extend the tool with linguistic patterns describing the language structure in

which users express features. It would enable the tool to identify non-common425

features using such patters in addition to frequently appearing ones.

We believe ReUS suffered from low precision and recall because it was de-

signed to extract features from product reviews in an online commerce website

(Amazon) rather than from app reviews in app stores [16]. Not only the char-

acteristics of product reviews can be different than app reviews [16], but also430

19

the feature definition of non-software products may be varied [18]. For example,

app features are commonly expressed as a combination of verb and noun (e.g.,

“send messages”). However, ReUS only identifies features expressed as a noun

or consecutive nouns (e.g., “video camera”); moreover, such expressions must be

in a syntactic dependency relation with an opinion word like adjective or adverb435

(e.g. “video camera is great”); otherwise, features are not identified. App users

rarely discuss features in a such way; and thus, the tool does not perform well.

More importantly, our findings support a conjecture that the original eval-

uation procedures of SAFE and GuMa led to over-optimistic results. The lim-

itations of these procedures have been questioned recently [21, 22]. These pro-440

cedures did not define a feature matching strategy [22], relied on a subjective

judgment [15, 21], and used a biased dataset [17, 21, 22]. We hope our new

annotated dataset and description of our evaluation method will contribute to

improving the quality of feature extraction techniques and their evaluations.

B) Feature-Specific Sentiment Analysis445

Our investigation of results (RQ2) concludes that the overall effectiveness

of the approaches is promising (see Table 6). However, it reveals that their

precision and recall differ considerably by sentiment class (positive, negative,

or neutral). The approaches provide satisfactory performance for predicting

positive and neutral sentiments. But they suffer from inaccurate predictions for450

negative sentiments. Like previous studies [42, 43], we observed positive and

neutral opinions are expressed more directly and explicitly than negative ones.

Users tend to express negative opinions indirectly (e.g., “there are big time gaps

between the tweets that do load”), sarcastically (e.g., “search takes an eternity”)

and informally (e.g., “WTH....going on, I can’t see the photos”). Moreover,455

negative opinions are commonly expressed using jargon that is specific for the

software domain (e.g., “bug”, “crash”, or “please fix!”); Both ReUS and GuMa

cannot handle it. Their lexical dictionaries therefore should be expanded with

such vocabulary to enhance the sentiment analysis performance.

Overall, we are surprised by the comparable effectiveness of both approaches.460

We expected ReUS to outperform GuMa. ReUS exploits a sophisticated tech-

20

nique to detect an opinion word in a sentence that carries a feature-specific

sentiment; GuMa makes predictions based on a simplified premise that a feature-

specific sentiment corresponds to the overall sentiment of a sentence.

C) Implication on Requirement Engineering Practices465

Identifying what precision and recall app review mining techniques should have

to be useful for requirements engineers in practice is an important open ques-

tion [44]. In principle, a tool facilitating opinion mining should synthesize re-

views so that the effort for their further manual analysis would be negligible

or at least manageable. Clearly, this effort depends on a scenario the approach470

intends to support. Given a scenario of prioritizing problematic features, a de-

veloper may seek for information about the number of specific features that

received negative comments, for example to understand their relevance. To

this end, both information about extracted features and their predicted sen-

timents should be accurate and complete. Our results, however, show that475

feature extraction techniques generate many false positives. Given the large

number of extracted features, filtering out false positives manually may not be

cost-effective. We may imagine that the problem could be partially addressed

using a searching tool [13]; Requirements engineers could use the tool to filter

out uninteresting features (including false positives) and focus on those of their480

interest.

However, other issues remain unsolved. Feature extraction techniques fail

to identify many references to features (they have low recall), and sentiment

analysis techniques perform poorly for identifying feature-specific negative sen-

timents.485

4.4. Threats to Validity

Internal Validity. The main threat is that the annotation of reviews was

done manually with a certain level of subjectivity and reliability. To overcome

the risk we followed a systematic procedure to create our ground truth. We

prepared an annotation guideline with definitions and examples. We conducted490

several trial runs followed by resolutions of any conflicts. Finally, we evaluated

21

the quality of the annotation using inter-rater agreement metrics.

External Validity. To mitigate the threat, we selected reviews for popular

apps belonging to different categories and various app stores. These reviews are

written using varied vocabulary. We, however, admit that the eight apps in our495

study represent a tiny proportion of all the apps in the app market. Although

our dataset is comparable in size to datasets in previous studies [15, 17, 18], we

are also exposed to sampling bias.

Construct Validity. The main threat is the extent to which our operational-

ization of a feature, a sentiment and a user opinion reflects the actual con-500

structs under study [45]. To mitigate the threat, we first defined their con-

ceptual meaning referring to the requirement engineering and opinion mining

literature [16, 46]. We then chose standard variables to represent each concept

in a text document: a bounded textual phrase referring to a mentioned fea-

ture; the polarity of a review sentence where the phrase appears referring to the505

user’s associated sentiment; and their pair referring to a user opinion. To ensure

the conceptual meaning and the operational definitions are understandable, we

discussed them with an independent panel of researchers, including experts in

requirements engineering and natural language processing. To verify the re-

liability of the operationalization, we tasked two human-coders to annotate a510

sample of app reviews using the operational definitions, and then checked their

inter-rater agreement is of sufficient quality.

5. Study II: Searching For Feature-Related Reviews

The second empirical study evaluated and compared the approaches address-

ing the problem of searching for feature-related reviews (see Sect. 2.1). We here515

describe the design of the study, report and discuss the results, together with

threats to validity of this second study.

5.1. Empirical Study Design

In this section, the research question we aimed to answer is presented, to-

gether with the collected and manually annotated dataset, the evaluation pro-520

22

cedure as well as evaluation metrics we used in answering the question.

5.1.1. Research Questions

The objective of the study was to evaluate and compare approaches search-

ing for feature-related app reviews. To this end, we formulated the following

research question:525

RQ3: What is the effectiveness of approaches in searching for app reviews

pertinent to a particular feature?

For RQ3, we investigated the degree to which the selected approaches can

correctly search for app reviews pertinent to a particular feature. A conclusive

method of measuring the correctness of searching for feature-related reviews is530

by relying on a human judgment; we first tasked human-coders to formulate a

set of queries (i.e., app features) based on descriptions of selected apps. We

next fed the subject approaches with these queries and a set of reviews. The

human coders then evaluated the top-n reviews retrieved by the approaches for

the queries. In answering RQ3, we report precision@n, average precision and535

relative recall for each approach.

5.1.2. Manually Annotated Dataset

To create the dataset we used to answer RQ3, we collected reviews for se-

lected apps presented in the first study as well as their app descriptions. We

then asked human-coders to identify queries (i.e., app features) from these de-540

scriptions. We next fed the approaches with these queries; then tasked the

coders to annotate a samples of retrieved reviews with respect to the queries.

The resulting dataset is publicly available [24].

A) Collected Dataset

We used the same dataset we had collected in the first study, including re-545

views and descriptions for 8 popular apps from different categories (see Table 2).

We then randomly sampled 1,250 reviews per app (in total 10,000 reviews) as we

strove to obtain a representative review sample. Table 8 reports the summary

of our dataset, indicating the apps and the size of review samples we used.

23

Table 8: The overview of the selected apps and collected reviews.

App Name Category Platform #Reviews

Evernote Productivity Amazon 1,250

Facebook Social Amazon 1,250

eBay Shopping Amazon 1,250

Netflix Movies & TV Amazon 1,250

Spotify Music Audio & Music Google Play 1,250

Photo Editor Pro Photography Google Play 1,250

Twitter News & Magazines Google Play 1,250

Whatsapp Communication Google Play 1,250

B) Query Set550

We built a query set based on the collected app descriptions conveying in-

formation about an app and their features. We first tasked two human-coders3

to identify app features from the descriptions following a systematic procedure

analogous to the one used in the first experiment for feature identification from

app reviews (see Sect. 4.1.2). Since human-coders had experience with an an-555

notation process and a common understanding of ‘app feature’ from the first

study (see Sect. 4), they conducted the feature annotation without pre-training.

We however validated their inter-rater agreement to ensure their annotation was

reliable and sufficient quality [38]. We evaluated the inter-rater using agreement

F1 metric as it is suitable for evaluating text spans’ annotations such as feature560

expressions found in app descriptions [39, 40]. Table 9 reports the statistics of

the subject app descriptions, annotated features and inter-rater reliability mea-

sures. The complete list of the identified features can be found in the supple-

mentary materials [24]. In total, 124 app features (candidate queries) have been

annotated in the app descriptions. The average inter-rater agreement between565

coders was 0.78, indicating the substantial reliability of the annotation [39]. The

length of the identified features ranges between 1 and 5 words, with the average

3We tasked the same human-coders who had annotated the dataset in the first study.

24

Table 9: Statistics of the identified features from app descriptions for 8 subject apps.

App Name

E
ve
rn
ot
e

Fa
ce
bo

ok

eB
ay

N
et
fli
x

Sp
ot
ify

P
ho

to
E
di
to
r

T
w
it
te
r

W
ha

ts
A
pp

O
ve
ra
ll

D
es

cr
ip

ti
on

No. words 500 72 424 264 144 195 269 355 2,223

No. sentences 33 8 39 18 14 21 28 20 181

Avg. sentence length 15.15 9.00 10.87 14.67 10.29 9.29 9.61 17.75 12.08

No. paragraphs 8 2 13 6 6 7 9 12 63

F
ea

tu
re

s

No. features 18 7 24 10 10 19 21 15 124

Min. feature length 1 1 2 2 2 1 1 1 1

Max. feature length 4 4 5 3 5 4 4 5 5

Avg. feature length 2.06 2.14 2.50 2.50 3.00 2.11 2.33 2.40 2.07

No. single-word features 4 2 0 0 0 3 3 1 13

No. multi-word features 14 5 24 10 10 16 18 14 111

A
gr

.

Fleiss’ Kappa 0.82 0.88 0.75 0.68 0.67 0.84 0.70 0.89 0.78

of 2 words.

To form the evaluation query set for our experiment, we randomly selected

3 features for each app (in total 24 features). We selected this number as we570

wanted to obtain a broad and diverse set of queries for our evaluation [40].

Table 10 shows details of these queries. We used this query set in the review

annotation procedure. We fed the approaches with these queries, then the

human-coders assessed their outcomes.

C) Review Annotation Procedure575

We used the pooling method to evaluate the performance of the selected

approaches searching for feature-related reviews [40]. We opted for this method

as it is commonly used by researchers for evaluating approaches addressing the

information retrieval problem [40, 47]; in particular, when the assessment of

their results is limited due to the large size of evaluation dataset. The problem580

of searching for feature-related reviews can be seen as an instance of the general

information retrieval problem.

In this method, the top-n reviews (with n = 20) from the rankings obtained

25

Table 10: The set of query for the empirical evaluation.

App Name Id Query App Name Id Query

Evernote
1 Create shortcuts

Spotify
13 Play playlist on shuffle mode

2 Write notes 14 Create playlist of songs
3 Annotate documents 15 Offline listening

Facebook
4 Chat

Photo Editor
16 Edit a photo

5 Share 17 Photo filters
6 Watch videos 18 Build photo collage

eBay
7 Bid item

Twitter
19 Twitter Moment

8 Search for offer on item 20 Follow people on Twitter
9 List items for sale 21 Write a Tweet

Netflix
10 Rate movies

WhatsApp
22 Notifications

11 Search for titles 22 WhatsApp call
12 Watch movies 24 Send messages

Figure 5: The Method for Review Pool Creation.

by the evaluated approaches are merged into a pool, duplicates are removed,

and the reviews are presented in a random order to human-coders annotating585

their relevance with regards to input queries. We selected the top-20 reviews

as this level of the pool’s depth is recommended in the information retrieval

literature [47]; it reduces the number of documents that human-coders need

to annotate and enables to calculate stable values of evaluation metrics. Fig-

ure 5 illustrates the overview of the procedure. We first inputed the selected590

approaches with a query and a review sample. We then obtained ranked results

of top-n reviews from each evaluated approach (n=20 in our study). We merged

their results into a pool of unique reviews and removed duplicates. The review

pool was next presented in a random order to the coders who annotated it with

the query set. Each assessor judged the relevance of the reviews with respect595

to an input query; a review was classified as relevant if it refers to the queried

feature, and irrelevant otherwise. We measured their inter-rater agreement to

assess the task was understandable, unambiguous, and could be replicated. We

employed Fleiss’ Kappa to this end as it is suitable for evaluating inter-rater

reliability between two or more coders for categorical items’ annotations such as600

26

a review’s relevance [39, 40]. The quality of the annotation was always at least

at substantial level [39]. Therefore, the coders discussed the minor differences in

their annotations, adjudicated them and provided an annotated dataset, com-

prising of a query and a pool of respectively annotated reviews. We repeated

the method for each query and corresponding new review sample. Having the605

annotated reviews for all the queries, we obtained the ground truth that we used

to assess the performance of the approaches. Table 11 reports the statistics of

the ground truth. These statistics concern annotated reviews and inter-rater

reliability measures. The number of reviews is reported in relation to a concrete

query, indicating relevant reviews (query-related) and non-relevant (remaining).610

In total, 1,113 reviews have been annotated with respect to 24 queries. Among

1,113 annotated reviews, 512 of them are relevant and 601 are non-relevant. On

average, 46 reviews have been annotated per a query. The number of relevant

reviews ranges between 2 and 54, with the mean of 21 reviews; whereas the

number of non-relevant reviews pear query is between 4 and 49, with the mean615

of 25 reviews. The inter-rater agreement indicates the substantial reliability of

the dataset [39, 40].

5.1.3. Evaluation Metrics

We used precision@n, average precision and relative recall metrics [40, 47, 48]

to answer RQ3. We used them because searching for feature-related reviews is620

an instance of information retrieval problem [40]. Precision@n indicates the

percentage of the top-n retrieved reviews that are relevant [47]. The metric is

useful for assessing the searching task in finding the most relevant documents

at a given rank. Average precision summarizes the ranking of top-n retrieved

reviews by averaging the precision@n values from the rank positions where a625

relevant review was retrieved [40]. The metric is based on the ranking of all the

relevant reviews, but their value depends heavily on the highly ranked relevant

reviews. It is thus a suitable measure for evaluating the task of as many relevant

reviews as possible while still reflecting the intuition that the top-ranked reviews

are the most important. Relative recall is the proportion of known relevant630

27

Table 11: Statistics of the ground truth, indicating no. reviews in relation to concrete queries.

App Name

E
ve
rn
ot
e

Fa
ce
bo

ok

eB
ay

N
et
fli
x

Query Id 1 2 3 4 5 6 7 8 9 10 11 12

No. reviews 47 51 45 46 45 36 48 48 48 55 42 58

No. relevant 2 40 4 23 24 31 39 25 21 6 16 54

No. non-relevant 45 11 41 23 21 5 9 23 27 49 26 4

Fleiss’ Kappa 1.00 0.84 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 0.88 0.88

App Name

Sp
ot
ify

P
ho

to
E
di
to
r

T
w
it
te
r

W
ha

ts
A
pp

O
ve
ra
ll

Query Id 13 14 15 16 17 18 19 20 21 22 23 24 24

No. reviews 46 43 47 40 45 48 47 47 49 39 48 45 1,113

No. relevant 21 13 16 31 15 9 2 18 15 13 43 31 512

No. non-relevant 25 30 31 9 30 39 45 29 34 26 5 14 601

Fleiss’ Kappa 1.00 1.00 1.00 1.00 1.00 1.00 0.66 1.00 0.95 0.89 1.00 0.83 0.95

reviews that has been retrieved in top-n results [48]. The metrics provide partial

knowledge about the completeness of retrieved results. To determine whether

retrieved reviews are relevant, we compared them with the annotated ones in

the ground truth. We also used it to determine the known relevant reviews.

5.2. Results635

RQ3: What is the effectiveness of approaches in searching for app

reviews pertinent to a particular feature?

In answering RQ3, we report the effectiveness of Lucene, MARAM and SAFE

in searching for feature-related reviews. To this end, we compared the top-20

retrieved reviews to our ground truth. We selected this level of depth as it is640

typically recommended in the literature [40, 48]. Table 12 reports precision@20

(P@20), average precision (AP) and relative recall (RR) for each approach (best

in bold). The results show the approaches achieved substantially different per-

formance among each other. Lucene scored the best results given all three

28

Table 12: RQ3. Results of the evaluated approaches searching for feature-related reviews.

Lucene MARAM SAFE
App Name P@20 AP RR P@20 AP RR P@20 AP RR
Evernote 0.42 0.83 0.67 0.32 0.41 0.47 0.25 0.61 0.36
Facebook 0.97 0.99 0.75 0.85 0.98 0.66 0.32 0.51 0.22
eBay 0.73 0.82 0.52 0.82 0.90 0.59 0.37 0.62 0.25
Netflix 0.57 0.70 0.62 0.47 0.82 0.32 0.37 0.74 0.19
Spotify 0.58 0.85 0.70 0.42 0.45 0.49 0.23 0.32 0.29
Photo Editor 0.68 0.99 0.80 0.33 0.68 0.24 0.38 0.27 0.38
Twitter 0.47 0.66 0.70 0.32 0.77 0.39 0.12 0.44 0.29
Twitter 0.85 0.99 0.68 0.70 0.94 0.56 0.53 0.75 0.33
Mean 0.66 0.85 0.68 0.53 0.74 0.46 0.32 0.53 0.29

metrics, whereas MARAM achieved the second best results. Both Lucene and645

MARAM approaches achieved promising precision in returning relevant results

among the top-20 retrieved reviews. While looking at their average precision,

we can also observe the approaches showed good effectiveness in ranking most

relevant reviews in the top of their results. Whereas, relative recall suggests the

approaches retrieved a substantial portion of the relevant reviews. Conversely,650

we observe that SAFE achieved the lowest performance given all three metrics.

On average, one-third of the reviews returned by SAFE is relevant to queried

features; the average precision indicates these reviews were scattered over the

ranked results. In our experiment, SAFE’s relative recall ranges from 19% to

38%. This result can be attributed to the poor effectiveness of the tool in per-655

forming feature extraction (see Sect. 4.2); the outcome of this task affects the

input of the actual task of searching for feature-related reviews (see Sect. 2).

5.3. Discussion

The results shed a new light on the effectiveness of the evaluated approaches.

Our findings suggest the approaches can be useful for practical applications.660

A) Searching For Feature-Related Reviews

In our experiment, the three approaches achieved diverse effectiveness (see

Table 12). The results suggest SAFE achieves lower performance than previ-

ously reported. The approach was originally reported with 0.70 precision and

0.56 recall [15]. Our results show the approach achieves 0.32 precision@20, 0.53665

29

average precision and 0.29 recall rate. We argue the discrepancy between the

original results and ours cannot be attributed to the evaluation metrics. We

observed the tool exploits a simplistic rule and highly ranks reviews in which

a single word of a query appears; this leads to retrieving many false positive

reviews and decreased precision. In addition, the original evaluation of the670

tool was limited to a fraction of app reviews from which the tool could first

correctly extract features. Such a condition simplifies the overall evaluation

procedure, but it also eliminates possible matches between queried features and

misidentified ones from reviews. We therefore hypothesize the original evalua-

tion procedure led to over-optimistic results. The limitations of the procedure675

were questioned recently [21, 22, 19]. The procedures relied on a subjective

judgment [15, 21], biased and small evaluation dataset [17, 21, 22]. We have

taken great care to overcome the limitations in our study; we employed much

larger and diverse dataset; then followed a rigorous evaluation procedure. We

thus argue the strength of evidence is generally larger in our study.680

Our findings shed a new light on the usefulness of MARAM and Lucene.

Though they have never been empirically evaluated for searching for feature-

related reviews [7], the approaches achieved much better performance than

SAFE. We took great caution in re-implementing MARAM as described in the

original study as rigorously as possible; we tested that our approximation of the685

tool behaves similarly to the original one using examples in the original study.

Similarly, we implemented Lucene following their documentations to make the

most of it [23]. The most striking result to emerge from the data, however,

is that Lucene, a standard search engine library, achieved the best effective-

ness; No previous study tried to exploit the tool to searching for feature-related690

reviews, but rather focused on developing new techniques. Importantly, the

tool found relevant reviews within seconds. In contrast, it took between several

dozen minutes up to several hours for the other tools. In our opinion these

results provide useful evidence to researchers aiming at developing new mining

techniques about the opportunity to exploit existing searching techniques; and695

pay more attention to the efficiency of their approaches. We believe our new

30

annotated dataset and the evaluation procedure will help to improve the quality

of these techniques evaluation.

B) Implication on Requirement Engineering Practices

The results suggest Lucene tool can be useful for requirements engineering700

use cases. Supposing requirements engineers have been tasked to detail require-

ments about concrete features, the tool could help them to quickly identify what

users have been saying about the features. Though the engineers would need to

filter-out a few unrelated reviews, the results indicate most of them, in partic-

ular, those highly ranked one would be of their interest. This cheap elicitation705

technique might be not sufficient in itself, but can be of great value when used

in combination with other techniques e.g., for classifying user feedback [49].

Integrating the techniques could help the engineers to further distill reviews re-

porting problems about these features, requesting improvements or discussing

their quality attribute. As for the usefulness of the tool for requirements pri-710

oritization, the engineers would seek for the information about the concrete

number of feature-related comments that are negative or report a certain type

of requests. Future studies thus should investigate the tool’s performance for

outputting the set of reviews. It would require studying the cut-off value of the

tool’s similarity measure to discriminate feature-related reviews from unrelated715

ones.

5.4. Threats To Validity

Internal Validity. The main threat is that the annotation of both: app de-

scription and reviews was done manually with a certain level of subjectivity

and reliability. To mitigate the threat, we employed a systematic procedure to720

create our evaluation dataset. We prepared an annotation guideline with defini-

tions and examples. We then evaluated the quality of the annotation task using

standard inter-rater agreement metrics [39, 40]. Another limitation concerns

the lack of evaluation of ‘the absolute’ precision and recall. We only estimated

their ‘relative’ values using the annotated sample of app reviews that the tools725

had outputted; we did not annotate the complete set of collected app reviews

31

to prepare the evaluation dataset. Identifying relevant app reviews to a par-

ticular query from a collection of thousands or millions of app reviews, like in

our dataset, is a non-trivial task. A single human-coder, for instance, would

require 83 hours to judge the collection of 10,000 reviews for a single query730

(30 sec/review). Precision and recall can thus be estimated only. We used the

standard pooling method to prepare our annotated dataset and estimate the

metrics [47]. We admit the use of this method cannot provide the complete

knowledge about ‘the absolute’ precision and recall [40]; and their actual values

remain unknown. Estimating their ‘relative’ values is however still useful; it735

helps to benchmark the tools and to obtain the partial knowledge about their

performance.

External Validity. To mitigate the threat, we selected apps belonging to

diverse categories and different app stores. Their descriptions as well as user

feedback has diverse characteristics: different length, varied vocabulary and ref-740

ereed to different app features. We, however, admit that our dataset comprises

a tiny fraction of all the apps in the app market. Though its size is much greater

compared to previous studies [13, 15], we are also exposed to sampling bias [50].

Construct Validity. A potential threat to our study is the extent to which

our feature operationalization reflects the actual construct under study [45].745

To reduce this threat, we defined the conceptual meaning of the feature re-

ferring to the requirement engineering literature [16, 46]; we then chose the

standard variable representing the concept in a textual document: a bounded

textual phrase referring to a feature mentioned in an app review. We further

confirmed the meaning and the operationalization are understandable to ex-750

ternal requirements engineering and natural language processing scholars. To

ensure the operationalization was reliable, we checked the inter-rater agreement

of human-coders annotating sample reviews with the concept was of sufficient

quality.

32

Table 13: The differences between our study and previous evaluations for RQ1 and RQ2.

Criterion Our Study SAFE [15] GuMa [17] ReUS [18]
E
va

lu
at

io
n No. Approaches 3 2 1 1

Feature Extraction Yes Yes No Yes

Sentiment Analysis Yes - Yes Yes

Method Automatic Manual Manual Automatic

G
ro

u
n
d

T
ru

th

Released Yes No No No

No. Apps 8 5 7 -

No. Reviews 1000 80 2800 1000

No. App Stores 2 1 2 -

Dataset Analysis Yes No No Yes

6. Related Works755

We focus the discussion of related work in the light of previous studies on i)

Mining User Opinions and ii) Searching For Feature-Related Reviews.

6.1. Mining User Opinions

Previous works have proposed benchmarks for app review analytics (e.g. [22,

42]) but with objective different than ours. Table 13 shows the differences be-760

tween our study and previous works, pointing out the different criteria that

guided the evaluations, which are grouped into Evaluation and Ground Truth

categories. The first includes criteria such as the number of evaluated ap-

proaches, evaluated tasks and a method type used for their evaluation. The

latter includes characteristics of datasets.765

In our study, we evaluated three approaches: SAFE, GuMa and ReUS. We

assessed them in addressing problems of feature extraction and sentiment anal-

ysis. Johann et al [15] also compared SAFE to GuMa [17]. Our study extends

their evaluation by including ReUS [18]. Unlike the original study [17], we eval-

uated GuMa in performing a feature extraction rather than modeling feature770

topics. We also compared the approach to ReUS in inferring a feature-specific

sentiment.

33

We used a different methodology for evaluating SAFE and GuMa [15, 17];

The correctness of their solutions has been evaluated manually [15, 17]. The

judgement criteria, however, has not been defined. Such a procedure suffered775

from several threats to validity such as human error, authors’ bias and the lack

of repeatability [21]. To address the limitations, we adopted automatic matching

methods and defined explicit matching criteria. The ground truth in our study

differs from that used in previous works. Unlike Dragoni et al [18], we evaluated

ReUS using app reviews. The authors used a dataset composed of comments780

for restaurant and laptops. As Johann [15] and Guzman [17], we created an an-

notated dataset for the evaluation. We, however, used a systematic procedure

and assessed the quality of ground truth using acknowledged measures [16, 38].

Previous studies did not report a systematic annotation procedure [15] nor mea-

sured the quality of their annotation [17]. Their datasets were not analyzed nor785

made public [15, 17].

6.2. Searching For Feature-Related Reviews

More than 182 papers in the area of app review analysis have been published

in the last decade [7], but only three of them investigated the use of techniques

for task of searching for feature-related reviews [13, 14, 15]. Previous works790

however had different objective than in this study: they focused on developing

new approaches to searching for feature-related reviews, whereas this paper

focuses on a more extensive evaluation of these approaches and their comparison

to a general purpose searching technique [23]. We here discuss the difference

between our study and related works based on aspects concerning an empirical795

evaluation. Table 14 shows the differences between our study and the previous

works, pointing out the different criteria guiding this discussion.

Our empirical study evaluated and compared the effectiveness of three ap-

proaches: SAFE [15], Lucene [23] and MARAM [14]. The related works focused

only on proposing and/or evaluating their searching approaches without bench-800

marking them with the existing techniques (e.g., [23]). Similarly like SAFE’s

authors, we also released our data-set publicly. Most importantly, we elaborated

34

Table 14: Differences between our study and previous empirical evaluations for RQ3.

Criterion Our Study SAFE [15] MARAM [14] JaDa4 [13]

No. Approaches 3 1 0 1

Validation Yes Yes No Yes

Dataset Relased Yes Yes - No

Ground Truth Yes No - No

Np. Apps 8 5 - 1

No. Reviews 1,113 - - 200

No. Queries 20 178 - 20

and facilitated the first dataset, consisting of annotated reviews with queries.

Previous studies either evaluated their approach without such dataset [15], or

have not facilitated it for the public scrutiny [13]. The scale of the empirical805

evaluation also favours our study; in particular in terms of the number of app

reviews; In our previous work [13] we elaborated only 200 reviews for a single

app with 20 exemplary queries.

7. Conclusion

Mining feature-specific information from app reviews can be useful to guide810

requirement engineering activities such as user validation [3, 6, 5, 9], require-

ments elicitation [3, 9, 7], or requirement prioritization [3, 4]. However, the

performance of app review mining techniques and their ability to support these

tasks in practice are still unknown [7]. We have presented two empirical studies

aimed at evaluating techniques for opinion mining and searching for feature-815

related reviews.

In the first study, we have evaluated three approaches supporting opinion

mining task: SAFE [15] relying on part-of-speech parsing, GuMa [17] adopting a

collocation-based algorithm, and ReUS [18] exploiting a syntactic dependency-

based parser. We have created a new dataset of 1,000 reviews in which we820

manually annotated 1,521 pairs of features and users’ associated sentiment. We

35

then used this dataset to evaluate the feature identification capabilities of all

three approaches and the sentiment analysis capabilities of GuMa and ReUS.

The study indicates that feature extraction techniques are not yet effective

enough to be used in practice [22, 31] and that have lower precision and recall825

than reported in their initial studies. Our study also indicates that feature-

specific sentiment analysis techniques have limited precision and recall, partic-

ularly for negative sentiments.

In the second study, we have evaluated three approaches searching for feature-

related reviews: Lucene [23], a search engine library relying on vector space830

model and Okapi BM25 similarity; MARAM [14] adopting Jaccard Similar-

ity; and SAFE, exploiting part-of-speech parsing and semantic similarity mea-

sure [15]. With human-coders’ help, we elaborated a novel evaluation dataset,

including 1,113 annotated reviews with respect to 24 queries (app features).

We used the dataset to evaluate the approaches searching for feature-related835

reviews.

The findings showed Lucene, a standard searching tool, provides better per-

formance than state-of-the-art techniques developed for app review analysis. We

concluded the tool provides promising accuracy, and could be potentially used

to support requirements elicitation use cases. We suggest future studies focus840

on extending existing techniques; and pay more attention to the efficiency of

their approaches.

We hope our replication package [24] consisting of two novel annotated

datasets, the evaluation methods, and our reimplementation of tools mining

user opinions and searching for feature-related reviews will contribute to im-845

proving the quality of app review mining techniques.

References

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, M. Harman, A sur-

vey of app store analysis for software engineering, IEEE

36

Transactions on Software Engineering 43 (9) (2017) 817–847.850

doi:doi.ieeecomputersociety.org/10.1109/TSE.2016.2630689.

[2] L. Ceci, Number of apps available in leading app stores

as of 2021, https://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/, Accessed:

2021-01-20 (2021).855

[3] A. AlSubaihin, F. Sarro, S. Black, L. Capra, M. Harman, App store effects

on software engineering practices, IEEE Transactions on Software Engi-

neering (2019) 1–1doi:10.1109/TSE.2019.2891715.

[4] J. Dąbrowski, E. Letier, A. Perini, A. Susi, Mining user feedback for

software engineering: Use cases and reference architecture, in: 30th860

IEEE International Requirements Engineering Conference, RE 2022,

Melbourne, Australia, August 15-19, 2022, IEEE, 2022, pp. 114–126.

doi:10.1109/RE54965.2022.00017.

URL https://doi.org/10.1109/RE54965.2022.00017

[5] J. Dąbrowski, Mining app reviews to support software engineering, Ph.D.865

thesis, University College London (2022).

URL https://discovery.ucl.ac.uk/id/eprint/10149747/

[6] D. Pagano, W. Maalej, User feedback in the appstore: An empirical study,

in: 2013 21st IEEE International Requirements Engineering Conference

(RE), 2013, pp. 125–134.870

[7] J. Dąbrowski, E. Letier, A. Perini, A. Susi, Analysing app reviews for

software engineering: a systematic literature review, Empirical Software

Engineering 27 (2022) 43. doi:10.1007/s10664-021-10065-7.

URL https://doi.org/10.1007/s10664-021-10065-7

[8] J. O. Johanssen, A. Kleebaum, B. Bruegge, B. Paech, How do practitioners875

capture and utilize user feedback during continuous software engineering?,

2019 IEEE 27th International Requirements Engineering Conference, 2019.

37

[9] A. Begel, T. Zimmermann, Analyze this! 145 questions for data scientists

in software engineering, in: 36th International Conference on Software En-

gineering, 2014, pp. 12–13.880

[10] R. P. L. Buse, T. Zimmermann, Information needs for software development

analytics, in: 34th International Conference on Software Engineering, 2012,

pp. 987–996. doi:10.1109/ICSE.2012.6227122.

URL https://doi.org/10.1109/ICSE.2012.6227122

[11] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman, M. Hos-885

seini, J. Marco, M. Oriol, A. Perini, M. Stade, The crowd in requirements

engineering: The landscape and challenges, IEEE Softw. 34 (2) (2017) 44–

52. doi:10.1109/MS.2017.33.

URL https://doi.org/10.1109/MS.2017.33

[12] App Annie, https://www.appannie.com/, Accessed: 2022-01-20 (2020).890

[13] J. Dąbrowski, E. Letier, A. Perini, A. Susi, Finding and analyzing app

reviews related to specific features: A research preview, in: 25th Interna-

tional Working Conference, REFSQ 2019, Essen, Germany, March 18-21,

2019, Proceedings, 2019, pp. 183–189. doi:10.1007/978-3-030-15538-4_14.

URL https://doi.org/10.1007/978-3-030-15538-4_14895

[14] C. Iacob, S. Faily, R. Harrison, Maram: Tool support for mobile app review

management, in: Proceedings of the 8th EAI International Conference on

Mobile Computing, Applications and Services, MobiCASE’16, ICST (In-

stitute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 2016, p. 42–50.900

[15] T. Johann, C. Stanik, A. M. A. B., W. Maalej, Safe: A simple approach for

feature extraction from app descriptions and app reviews, in: 2017 IEEE

25th International Requirements Engineering Conference, 2017, pp. 21–30.

doi:10.1109/RE.2017.71.

38

[16] B. Liu, Sentiment Analysis and Opinion Mining, Synthesis Lectures on905

Human Language Technologies, Morgan & Claypool Publishers, 2012.

doi:10.2200/S00416ED1V01Y201204HLT016.

URL https://doi.org/10.2200/S00416ED1V01Y201204HLT016

[17] E. Guzman, W. Maalej, How do users like this feature? a fine grained

sentiment analysis of app reviews, in: 2014 IEEE 22nd International Re-910

quirements Engineering Conference (RE), 2014, pp. 153–162.

[18] M. Dragoni, M. Federici, A. Rexha, An unsupervised aspect extraction

strategy for monitoring real-time reviews stream, Inf. Process. Manage.

56 (3) (2019) 1103–1118. doi:10.1016/j.ipm.2018.04.010.

URL https://doi.org/10.1016/j.ipm.2018.04.010915

[19] J. Dąbrowski, E. Letier, A. Perini, A. Susi, Mining user opinions to sup-

port requirement engineering: An empirical study, in: S. Dustdar, E. Yu,

C. Salinesi, D. Rieu, V. Pant (Eds.), Advanced Information Systems Engi-

neering, Springer International Publishing, Cham, 2020, pp. 401–416.

[20] X. Gu, S. Kim, ”what parts of your apps are loved by users?” (t), in: 30th920

International Conference on Automated Software Engineering, 2015, pp.

760–770. doi:10.1109/ASE.2015.57.

[21] F. Shah, K. Sirts, D. Pfahl, Simulating the impact of annotation guidelines

and annotated data on extracting app features from app reviews, in: Pro-

ceedings of the 14th International Conference on Software Technologies,925

ICSOFT 2019, SCITEPRESS - Science and Technology Publications, Lda,

Setubal, PRT, 2019, p. 384–396. doi:10.5220/0007909703840396.

URL https://doi.org/10.5220/0007909703840396

[22] F. A. Shah, K. Sirts, D. Pfahl, Is the SAFE approach too simple for app

feature extraction? A replication study, in: 25th International Working930

Conference, REFSQ 2019, Essen, Germany, March 18-21, 2019, Proceed-

ings, 2019, pp. 21–36. doi:10.1007/978-3-030-15538-4_2.

URL https://doi.org/10.1007/978-3-030-15538-4_2

39

[23] M. McCandless, E. Hatcher, O. Gospodnetic, Lucene in Action, Second

Edition: Covers Apache Lucene 3.0, Manning Publications Co., USA, 2010.935

[24] J. Dąbrowski, Replication package for a journal paper in Information Sys-

tems - “Mining and Searching App Reviews for Requirements Engineering”,

https://github.com/jsdabrowski/IS-22/ (Dec. 2022).

[25] D. S. Batory, Feature models, grammars, and propositional formulas, in:

J. H. Obbink, K. Pohl (Eds.), Software Product Lines, 9th International940

Conference, SPLC 2005, Rennes, France, September 26-29, 2005, Proceed-

ings, Vol. 3714 of Lecture Notes in Computer Science, Springer, 2005, pp.

7–20. doi:10.1007/11554844_3.

URL https://doi.org/10.1007/11554844_3

[26] K. E. Wiegers, J. Beatty, Software Requirements 3, Microsoft Press, USA,945

2013.

[27] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented

Domain Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-

TR-021, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA (1990).950

URL http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=11231

[28] E. C. Groen, S. Kopczyńska, M. P. Hauer, T. D. Krafft, J. Doerr, Users

– the hidden software product quality experts?: A study on how app

users report quality aspects in online reviews, in: 2017 IEEE 25th In-955

ternational Requirements Engineering Conference (RE), 2017, pp. 80–89.

doi:10.1109/RE.2017.73.

[29] N. Jha, A. Mahmoud, Mining non-functional requirements from app store

reviews, Empirical Software Engineering 24 (6) (2019) 3659–3695.

[30] S. Lim, A. Henriksson, J. Zdravkovic, Data-driven requirements elicitation:960

A systematic literature review, SN Computer Science 2 (1) (2021) 16.

40

[31] F. Dalpiaz, M. Parente, RE-SWOT: from user feedback to requirements via

competitor analysis, in: 25th International Working Conference, REFSQ

2019, Essen, Germany, March 18-21, 2019, Proceedings, 2019, pp. 55–70.

doi:10.1007/978-3-030-15538-4_4.965

URL https://doi.org/10.1007/978-3-030-15538-4_4

[32] C. D. Manning, H. Schütze, Foundations of Statistical Natural Language

Processing, MIT Press, Cambridge, MA, USA, 1999.

[33] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, A. Kappas, Senti-

ment strength detection in short informal text, Journal of the Ameri-970

can Society for Information Science and Technology 61 (12) (2010) 2544–

2558. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.21416,

doi:10.1002/asi.21416.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.21416

[34] NLTK: Sample usage for collocations, https://www.nltk.org/howto/975

collocations.html (Jan. 2022).

[35] Apache Lucene 7.4.0 Documentation, https://lucene.apache.org/

core/7_4_0/index.html (Jan. 2022).

[36] P. M. Vu, T. T. Nguyen, H. V. Pham, T. T. Nguyen, Mining user opinions in

mobile app reviews: A keyword-based approach (t), in: Proceedings of the980

2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), ASE ’15, 2015, pp. 749–759. doi:10.1109/ASE.2015.85.

URL https://doi.org/10.1109/ASE.2015.85

[37] J. McAuley, C. Targett, Q. Shi, A. van den Hengel, Image-based recom-

mendations on styles and substitutes, in: 38th International Conference985

on Research and Development in Information Retrieval, ACM, 2015, pp.

43–52. doi:10.1145/2766462.2767755.

URL http://doi.acm.org/10.1145/2766462.2767755

41

[38] J. Pustejovsky, A. Stubbs, Natural Language Annotation for Machine

Learning - a Guide to Corpus-Building for Applications, O’Reilly, 2012.990

URL http://www.oreilly.de/catalog/9781449306663/index.html

[39] H. Cunningham, D. Maynard, V. Tablan, C. Ursu, K. Bontcheva, Devel-

oping Language Processing Components with GATE Version 8, University

of Sheffield Department of Computer Science, 2014.

[40] B. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval995

in Practice, 1st Edition, Addison-Wesley Publishing Company, USA, 2009.

[41] L. Hoon, R. Vasa, J.-G. Schneider, K. Mouzakis, A preliminary analysis

of vocabulary in mobile app user reviews, in: Proceedings of the 24th

Australian Computer-Human Interaction Conference, OzCHI ’12, ACM,

New York, NY, USA, 2012, pp. 245–248. doi:10.1145/2414536.2414578.1000

URL http://doi.acm.org/10.1145/2414536.2414578

[42] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, R. Oliveto,

Sentiment analysis for software engineering: How far can we go?, in:

40th International Conference on Software Engineering, 2018, pp. 94–104.

doi:10.1145/3180155.3180195.1005

[43] F. Calefato, F. Lanubile, F. Maiorano, N. Novielli, Sentiment polarity de-

tection for software development, Empirical Softw. Engg. 23 (3) (2018)

1352–1382. doi:10.1007/s10664-017-9546-9.

URL https://doi.org/10.1007/s10664-017-9546-9

[44] D. M. Berry, J. Cleland-Huang, A. Ferrari, W. Maalej, J. Mylopou-1010

los, D. Zowghi, Panel: Context-dependent evaluation of tools for nl re

tasks: Recall vs. precision, and beyond, in: 2017 IEEE 25th Interna-

tional Requirements Engineering Conference (RE), 2017, pp. 570–573.

doi:10.1109/RE.2017.64.

[45] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln,1015

42

Experimentation in Software Engineering, Springer Publishing Company,

Incorporated, 2012.

[46] A. A. Al-Subaihin, Software engineering in the age of app stores: Feature-

based analyses to guide mobile software engineers. doctoral thesis, Ph.D.

thesis, University College London (2019).1020

[47] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Re-

trieval, Cambridge University Press, USA, 2008.

[48] R. R. Korfhage, Information storage and retrieval, John Wiley & Sons,

1997.

[49] P. Achimugu, A. Selamat, R. Ibrahim, M. N. Mahrin, A systematic liter-1025

ature review of software requirements prioritization research, Inf. Softw.

Technol. 56 (6) (2014) 568–585. doi:10.1016/j.infsof.2014.02.001.

URL http://dx.doi.org/10.1016/j.infsof.2014.02.001

[50] W. Martin, M. Harman, Y. Jia, F. Sarro, Y. Zhang, The app sam-

pling problem for app store mining, in: 2015 IEEE/ACM 12th Work-1030

ing Conference on Mining Software Repositories, 2015, pp. 123–133.

doi:10.1109/MSR.2015.19.

43

