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Abstract

We present a forward-modeling framework for estimating galaxy redshift distributions from photometric surveys.
Our forward model is composed of: a detailed population model describing the intrinsic distribution of the physical
characteristics of galaxies, encoding galaxy evolution physics; a stellar population synthesis model connecting the
physical properties of galaxies to their photometry; a data model characterizing the observation and calibration
processes for a given survey; and explicit treatment of selection cuts, both into the main analysis sample and for the
subsequent sorting into tomographic redshift bins. This approach has the appeal that it does not rely on
spectroscopic calibration data, provides explicit control over modeling assumptions and builds a direct bridge
between photo-z inference and galaxy evolution physics. In addition to redshift distributions, forward modeling
provides a framework for drawing robust inferences about the statistical properties of the galaxy population more
generally. We demonstrate the utility of forward modeling by estimating the redshift distributions for the Galaxy
And Mass Assembly (GAMA) survey and the Vimos VLT Deep Survey (VVDS), validating against their
spectroscopic redshifts. Our baseline model is able to predict tomographic redshift distributions for GAMA and
VVDS with respective biases of Δz 0.003 and Δz; 0.01 on the mean redshift—comfortably accurate enough
for Stage III cosmological surveys—without any hyperparameter tuning (i.e., prior to doing any fitting to those
data). We anticipate that with additional hyperparameter fitting and modeling improvements, forward modeling
will provide a path to accurate redshift distribution inference for Stage IV surveys.

Unified Astronomy Thesaurus concepts: Redshift surveys (1378); Galaxy photometry (611); Galaxy stellar content
(621); Galaxy evolution (594); Cosmological parameters from large-scale structure (340); Gravitational lensing
(670); Weak gravitational lensing (1797)

1. Introduction

Accurate inferences of the redshift distributions of ensembles
of galaxies from their photometry are of central importance for
deriving cosmological constraints from weak-lensing surveys.
Ongoing and upcoming surveys—such as the Dark Energy
Survey (Flaugher 2005), the Kilo-Degree Survey (De Jong
et al. 2015), the Hyper Suprime-Cam (Aihara et al. 2018), the
Vera C. Rubin Observatory’s Legacy Survey of Space and
Time (Abell et al. 2009), and Euclid (Laureijs et al. 2011)—
will map large volumes of the universe, measuring the angular
positions, images, and photometry for billions of galaxies. The
unprecedented statistical power of these surveys will make
them increasingly sensitive to systematic biases, with the
systematics on the redshift distributions in particular being
expected to constitute the single largest contributor to the total
systematic error budget (see, e.g., Hildebrandt et al. 2017). In
order to reach the full potential of the upcoming Stage IV
surveys, the characterizations of the redshift distributions (e.g.,
their measured means and variances) will need to improve by

roughly an order of magnitude, compared to the current state of
the art (Newman & Gruen 2022).
Three main approaches exist for estimating cosmological

redshift distributions: cross correlation (Schneider et al. 2006;
Newman 2008; McQuinn & White 2013; Ménard et al. 2013;
Schmidt et al. 2013; Morrison et al. 2017; Davis et al. 2018),
direct calibration (Lima et al. 2008; Hildebrandt et al. 2016,
2020; Buchs et al. 2019; Wright et al. 2020), and template-
based methods (Benitez 2000; Ilbert et al. 2006; Brammer et al.
2008; Arnouts & Ilbert 2011; Hildebrandt et al. 2012; Leistedt
et al. 2016, 2019; Hoyle et al. 2018; Tanaka et al. 2018).
Cross correlation and direct calibration both rely on

spectroscopic redshift samples, to compare against the photo-
metric data, in order to calibrate their redshift distributions.
These approaches have the appeal that they leverage reliably
measured redshifts to calibrate the photo-z distributions, and
are relatively insensitive to modeling assumptions about the
photometric data. On the other hand, they are limited by the
lack of available spectroscopic redshifts at the depths probed by
ongoing and upcoming surveys, and are vulnerable to biases
due to spectroscopic selection effects that are not well
represented by reweighting in the (broadband) colors (Buchs
et al. 2019; Hartley et al. 2020), as well as the uncertainties in
galaxy bias modeling, in the case of cross-correlation methods
(Gatti et al. 2018).
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Template-based methods instead rely on building a statistical
model for the photometric observations, in order to constrain
the redshifts of individual galaxies, and the redshift distribu-
tions of ensembles, from their photometry alone. Template
approaches assert that galaxies belong to one of a finite set of
“types,” where each type has an associated (rest-frame) spectral
template that defines its colors as a function of redshift. These
templates can then be compared to the observed colors, to give
the redshift (and type) likelihoods for each galaxy, which can
then be combined in a hierarchical model to infer the redshift
distributions of ensembles of galaxies (Leistedt et al. 2016,
2019). However, template methods are limited by the inability
of template sets (and priors over galaxy types) to characterize
the galaxy population at the necessary level of realism. Finite
template sets tend to be overly restrictive, while methods that
allow for linear combinations of templates result in large
swathes of prior volumes being populated by unphysical galaxy
spectra. Further, by relying on models for the photometric data,
template-based models need to treat selection effects explicitly
in order to draw robust inferences at the population level (e.g.,
redshift distributions): this has so far not been done.

Physically, the redshift distributions of selected samples of
galaxies arise from a sequence of three main processes. The
statistical properties of the galaxy population (i.e., the intrinsic
distributions of physical characteristics and redshifts) define an
intrinsic distribution for galaxy colors, from which galaxies in
the universe are sampled. The colors (photometry) of those
galaxies in some patch of the sky then get observed by a
survey, resulting in a catalog of noisy (measured) photometry.
Selection cuts are then applied to those measurements, to
ensure a clean and high-quality galaxy sample and to sort the
galaxies into tomographic redshift bins. The redshift distribu-
tions of interest, then, are those of the galaxies that make it past
the selection cuts and into a given tomographic bin. Therefore,
if one is able to accurately characterize the galaxy population,
observational processes, and selection effects, one can predict
the redshift distributions of interest.

In this paper, we develop a forward-modeling framework for
estimating redshift distributions by explicitly modeling the
processes that give rise to them. We construct a population
model describing the joint distribution of the physical
characteristics (e.g., the stellar, dust, and gas contents) of
galaxies, encoding galaxy evolution physics in the relationships
between the physical properties of the galaxies. We use a stellar
population synthesis (SPS) model to connect those physical
parameters to the rest-frame spectra and, hence, the photometry
for each galaxy. The observation process is then characterized by
a data model that captures the measurement noise, heterogeneous
observing conditions and strategies, and photometric calibration.
Finally, we have a selection model specifying the selection cuts.
This parameterized forward model then forms the basis for the
Bayesian inference of cosmological redshift distributions, either
by hierarchical inference or by simulation-based inference (SBI).

This forward-modeling approach can be thought of as
resolving the current limitations of template-based methods, by
replacing template sets with a continuous SPS model, by
explicitly treating selection effects, and by inferring population
and data model parameters in a self-consistent fashion. In
particular, by replacing finite template sets with a continuous
model, we are able to better capture the diversity of real galaxy
spectra, while having full control over the priors describing the
statistical properties of the galaxy population. The use of SPS

models in analyzing large samples of galaxies has only recently
become feasible, thanks to fast neural emulators (e.g.,
speculator; Alsing et al. 2020). The use of physically
motivated priors (e.g., Tanaka 2015 and Ramachandra et al.
2022) and continuous physical models for galaxy spectra
(Ramachandra et al. 2022) has already led to promising
improvements in photometric redshift inferences for individual
galaxies.
The structure of this paper is as follows. In Section 2, we

describe the frameworks for forward-modeling photometric
surveys and estimating the redshift distributions in forward-
modeling contexts. In Section 3, we describe our SPS model,
galaxy population model, and data model assumptions. In
Sections 4 and 5, we show the ability of our baseline forward
model to recover tomographic redshift distributions for the
Galaxy And Mass Assembly (GAMA) survey and the Vimos
VLT Deep Survey (VVDS), respectively. We outline a
roadmap for future forward-modeling efforts and conclude in
Section 7.
In a companion paper (B. Leistedt et al. 2023, in preparation)

we validate the forward-modeling framework for inferring
individual galaxy redshifts, including the hierarchical calibra-
tion of hyperparameters.

2. Forward Modeling of Galaxy Surveys for Redshift
Inference

In this section, we describe our generative modeling
framework for photometric surveys. We frame the forward
model as a pipeline for simulating mock catalogs, which can
then be compared to the observed catalog in an SBI setting, and
either used to estimate the implied tomographic redshift
distributions for a given set of modeling and hyperparameter
choices or used as a basis for hierarchical inference, via
Markov Chain Monte Carlo (MCMC) sampling.
The notation is summarized in Section 2.1 and Table 1. We

describe the generative model in Section 2.2, and discuss how
to perform the inference of the model parameters in
Section 2.4.

2.1. Notation

Each galaxy is described by a set of SPS parameters j,
which describe the stellar, gas, and dust contents of the galaxy.
The rest-frame spectrum l(λ)≡ l(λ;j) is connected to the
parameters j via an SPS model, which computes a composite
spectrum from the stars in the population, given their initial
mass functions, ages, and metallicities, from their star
formation and metallicity histories, plus modifications due to
dust as well as nebular emission (see Conroy 2013 for a
review).
Combined with the redshifts z, the SPS parameters predict

the model photometry for each galaxy, i.e., the fluxes {fb} in
the bandpasses {Wb(λ)}, defined by
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where dL(z) is the luminosity distance for the redshift z and τ(z,
λ) is the optical depth of the intergalactic medium.
We denote the vector of the measured fluxes for each galaxy

with d, where the photometric data model specifies the
sampling distribution P(d|j, z, σ, η) of the measured fluxes,
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given the model fluxes and measurement uncertainties σ. The
data model is parameterized by the nuisance parameters η,
which characterize the properties of the noise distribution,
calibration (e.g., zero-point) parameters, and modeling error
terms.

The intrinsic distribution of the galaxy characteristics (the SPS
parameters and redshift) is described by a population model P(j,
z|ψ), with hyperparameters ψ. This describes the joint distribution
of the galaxy characteristics for the background galaxy population,
in the absence of any selection effects.

We assume that the selection cuts for the main galaxy sample
are made using observed photometry, with a selection probability
P(S|d, σ) equal to one or zero for selection or rejection., i.e.,
selection is deterministic, given the photometric data vector.

The subsequent sorting of galaxies into tomographic bins
introduces an additional selection S( k) (for the kth bin), based
on the measured galaxy colors (fluxes). Typically, tomographic
binning will be based on some estimator for the redshift, which
will be a deterministic function of the measured fluxes and their
uncertainties:

s s= < <⎧
⎨⎩

d dP S z z z z, 1 ,

0 otherwise
, 2k

k k
l u( ∣ˆ ( )) ˆ ( ) ( )( )
( ) ( )

where sdz ,ˆ ( ) is an estimator for the redshift, with z k
l
( ) and z k

u
( )

being estimators for the lower and upper limits for the kth
tomographic bin.

The measurement uncertainties on the photometry will
depend on the observing conditions (e.g., seeing) and strategy
(e.g., exposure time), which will typically vary to some extent
across the survey. The uncertainties will also scale with flux,

owing to the Poisson photon count contribution to the errors,
and have additional intrinsic scatter, due to the varying difficulty in
extracting fluxes from galaxy images with different morphologies.
We denote the distribution of the photometric uncertainties across
the survey (as a function of flux) with the uncertainty model
s jfP z, , ( ∣ ( ) ), where denotes the model assumptions (and

parameters) characterizing that distribution.

2.2. Generative Model

The forward model proceeds as follows:

1. Draw SPS parameters j and redshifts z from the
population model P(j, z|ψ);

2. Compute the model photometry, given the SPS para-
meters, using the SPS model, f≡ fSPS(j, z);

3. Draw uncertainties from the uncertainty model
s fP , ;( ∣ )

4. Draw noisy (calibrated) photometry d, given the model
fluxes and uncertainties, from the data model P(d|f(j, z),
σ, η);

5. Apply selection cuts on the noisy photometry, where P(S|
d, σ) equals one (zero) for passing (failing) selection; and

6. Assign a tomographic bin label, based on the photo-z
estimator, sdz ,ˆ ( ).

The result is a catalog of noisy photometry for selected
galaxies, with associated tomographic bin labels.
Repeating the above process until one obtains the same

number N of selected objects as in the observed catalog
provides a draw from the assumed generative model for the
data conditioned on N selected objects.8 This can therefore be
used as a generative model for inferring the hyperparameters
via SBI, or as the basis for Bayesian hierarchical inference, as
described below in Section 2.4.
Repeating this process in the limit of N→∞ selected

samples, then examining the redshift distributions of the
galaxies that make it into each bin, provides the tomographic
redshift distributions that are implied for a given set of
modeling and hyperparameter assumptions. Note that the target
redshift distributions are given by a (typically intractable)
integral over the population, data, and selection models. The
tomographic redshift distribution nk(z) for the galaxies passing
selection both into the analysis sample, and subsequently into
the kth tomographic bin, is given by:
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where S( k) denotes selection into both the analysis sample and
the kth tomographic bin. Forward simulating from the

Table 1
Notation for All the Model Parameters Included in the Forward Model

Parameter Description

Population Model Parameters
ψ Hyperparameters describing the galaxy population

model
Φ0 Present-day comoving volume density of galaxies
ρ(z; ψ) Evolution in the relative comoving number density of

galaxies (ρ(0; ψ) = 1)
Data Model Parameters

η Nuisance parameters determining the data model
 Parameters governing the distribution of photometric

uncertainties
Latent Parameters

j1:N Stellar population parameters describing the rest-
frame spectrum (per galaxy)

z1:N Redshift (per galaxy)
Derived Quantities

y h= FN N , , ,0 ¯ ¯ ( ) Expected number of selected galaxies, given the
population, selection, and data models

f1:N = f(j1:N, z1:N) Model fluxes determined by the SPS model (per
galaxy)
Data

d1:N Data vector of measured fluxes (per galaxy)
σ1:N Flux measurement uncertainties (per galaxy)
N Observed number of selected galaxies

Selection
S1:N Selection into the sample based on photometric cuts

(per galaxy)
S N

k
1:
( ) Color-based selection into tomographic bin k (per

galaxy)

8 Note that this is implicitly marginalized over the expected present-day
volume number density of the galaxies; see Appendix A.
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generative model described above provides a way of estimating
the target redshift distributions for a given set of hyperpara-
meters, without the need for direct integration.

2.3. Emulation of SPS Models

Any applications of this forward model—either simulations
of large mocks or MCMC sampling of the associated posterior
—will require a vast number of SPS model calls. This is only
made tractable by the neural emulation of SPS models (Alsing
et al. 2020), which speeds up SPS computations by a factor of
104 compared to FSPS (Conroy & Gunn 2010).

2.4. Inference

The inference of redshift distributions under the generative
model described in Section 2.2 requires inferring the popula-
tion and data model parameters ψ and η under the forward-
model assumptions, which, in turn, provide marginal posteriors
for the tomographic redshift distributions, via Equation (3).9

In this paper, we are focused on validating a baseline
forward model for predicting tomographic redshift distribu-
tions, without performing inference (or optimization) of the
forward-model parameters. Nonetheless, it is useful to consider
how inference works within our forward-modeling framework,
and to highlight the advantages of performing redshift
distribution inference in this fashion.

The joint posterior for the generative model described in
Section 2.2 is given by (see Appendix A for a derivation):


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This joint posterior can then be sampled (using MCMC) to
jointly infer the population and data model parameters, as well
as the SPS parameters and redshifts for each galaxy. The
marginal posterior over the hyperparameters and data model
parameters then provides a posterior over the target tomo-
graphic redshift distributions, via Equation (3).

Phrasing the redshift distribution inference task as a
hierarchical model in this way has a number of advantages.
First, note that, so far, this model contains only photometry: the
method does not explicitly require spectroscopic calibration
data. Where spec-zs (or other spectroscopically derived
constraints on SPS parameters) are available for some subsets
of the galaxies, they can be straightforwardly included by
simply appending additional (sharply peaked) likelihoods for
those galaxies. Importantly, the fact that any external spec-z
calibration data are not representative of the main sample is
unimportant in this approach, provided that selection cuts are
only performed with respect to the main survey data.

Similarly, the inclusion of additional data (e.g., additional
bands) from external surveys for subsets of galaxies is also
straightforwardly achieved, by simply appending additional

likelihood terms for those galaxies. Again, the fact that
auxiliary data is only available for biased (unrepresentative)
subsets of the galaxies is not important, provided that selection
is not performed with respect to those auxiliary data.
Note that the population model P(j, z|ψ) that appears in

Equation (4) is a “global” quantity: it describes the statistical
properties of the background galaxy population (without
selection effects), and is therefore the same for all tomographic
bins and across all surveys, regardless of their differing
selection functions. This opens up strong synergies with the
galaxy evolution community, who are concerned with
constraining (various aspects of) P(j, z|ψ): as our under-
standing of the statistical properties of the galaxy population
improves, this can be fed directly into improved photometric
redshift inferences, via improved priors on the hyperpara-
meters ψ.
Finally, since the population and data model parameters are

inferred from the photometric data in a self-consistent fashion,
the uncertainties in the population and data model parameters
will be fully propagated through to the final n(z) inferences.
However, MCMC sampling of the joint posterior in

Equation (4) requires computing the selection integral in
Equation (5) for every galaxy in the sample, in every likelihood
evaluation. This presents a severe computational bottleneck for
sampling-based methods. In practice, for such sampling to be
computationally tractable, the selection integral will require
replacement with a fast emulator (e.g., Talbot & Thrane 2022).
Alternatively, SBI (aka likelihood-free inference) provides a

framework for performing Bayesian inference under complex
forward models using only simulations, bypassing the need to
compute the likelihood (and selection integral) entirely (e.g.,
Alsing et al. 2018, 2019; Jeffrey & Wandelt 2020). For a recent
application of SBI to a population model with selection effects,
see Gerardi et al. (2021).

3. Baseline Forward Model

In this paper, we are focused on demonstrating the ability of
a baseline forward model to recover redshift distributions,
without performing additional inference or optimization of
population-level parameters. We lay out the baseline forward-
model assumptions for the SPS model in Section 3.1, for the
galaxy population model in Section 3.2, and for the data model
in Section 3.3.

3.1. SPS Model

We assume an SPS model with nine free parameters,
summarized in Table 2 and described below.
Star formation histories (SFHs; star formation rates, or SFRs,

as a function of time) are parameterized by a double power law:

a b t µ
+a b-* *

M t z
M

t t t t
; , , , , 6 ( )

( ) ( )
( )

where the transition time is defined as t*≡ τtuniv(z) for the
lookback time tuniv(z), and the SFH is normalized such that it

integrates to give the total stellar mass ò =Mdt M
t z

0

univ ( )
. We

define the SFR as the average of M over the past 100 Myr.
The gas-phase metallicity Zlog10 gas is a free parameter, and

the gas ionization parameter u is set so that it tracks the SFR,
assuming the Kaasinen et al. (2018) relation between gas
ionization and SFR.

9 In practice, the mapping between the hyperparameters and tomographic
redshift distributions will be done via simulating large mocks, following
Section 2.2.
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The metallicity history of the stellar population is assumed to
build up with the stellar mass production, such that the present-
day stellar and gas-phase metallicities are identical:

ò= - +Z t Z Z
M

M t dt Z
1

, 7
t

gas min
0

min( ) ( ) ( ) ( )

where Zmin is the minimum metallicity covered by the stellar
templates.

Dust attenuation is modeled with two components describing
the birth cloud (stars younger than 10 million years) and diffuse
dust screens, respectively, following Charlot & Fall (2000; see
Leja et al. 2017 for details). The birth cloud (τ1) and diffuse
(τ2) attenuation, and the power-law index n of the Calzetti et al.
(2000) attenuation curve for the diffuse component, are all free
model parameters.

We assume MIST stellar evolution tracks and isochrones
(Choi et al. 2016; Dotter 2016; based on MESA—Paxton et al.
2010, 2013, 2015). Nebular line and continuum emissions are
generated with CLOUDY (Ferland et al. 2013), using model
grids from Byler et al. (2017).

We emulate the photometry (apparent magnitudes) in all
relevant bands using speculator (Alsing et al. 2020). The
apparent magnitude in each band as a function of the SPS
parameters and redshift is parameterized by a dense neural
network with four hidden layers of 128 units each, and
activation functions as described in Alsing et al. (2020). Each
emulator is trained on 6.4× 106 training samples, with SPS
parameters and redshifts drawn from the population model (see
Section 3.2 below) and model photometry computed using
FSPS (Conroy & Gunn 2010). Training is performed following
the prescription in Alsing et al. (2020), and we ensure that the
99.9% intervals for the emulator error distributions are better
than 2% in all bands.

3.2. Galaxy Population Model

Specifying a population model for the SPS parameters and
redshift amounts to specifying the joint (prior) distribution that
characterizes the statistical properties of the galaxy population.
Galaxy formation and evolution physics result in complex
relationships between the stellar population parameters. In an
effort to capture as much of this phenomenology as possible,
we factorize the population prior into the following (generic)

structure:

=P P
P
P
P
P

SPS parameters, redshift mass, redshift
metallicity SFR, mass
SFR mass, redshift
dust SFR, mass, metallicity
age SFR, mass .

8

( ) ( )
( ∣ )
( ∣ )
( ∣ )
( ∣ )

( )

Factorized this way, the population model is decomposed into a
number of well-studied relations between galaxy character-
istics: P(mass, redshift) is given by the redshift-evolving mass
function; P(metallicity | SFR, mass) characterizes the funda-
mental metallicity relation (FMR); P(SFR | mass, redshift)
characterizes the star-forming sequence (SFS); P(dust | SFR,
mass, metallicity) specifies the relationship between dust and
the star formation and chemical enrichment histories; and
P(age | SFR, mass) specifies the empirical relationship between
ages and SFHs.
For the SPS model setup chosen for this study (summarized

in Table 2), the specific population model assumptions and
default parameters are taken as follows.

3.2.1. Mass Function

The joint distribution of mass and redshift is defined by

µ FP M z M z dV z, , , 9( ) ( ) ( ) ( )

where Φ(M, z) is the unnormalized mass function and dV(z) is
the differential comoving volume element. For the mass
function, we assume a mixture of two Schechter functions,
with default parameter values and redshift evolution taken from
Leja et al. (2020). We assume a Planck 2015 (Ade et al. 2016)
cosmology for the comoving volume element. The assumed
mass function and redshift prior is shown in Figure 1.

3.2.2. FMR

Galaxies undergo continuous chemical evolution, as heavier
elements are produced in stars and expelled into the interstellar
medium, and gas flows regulate the metal content, by either the
dilution or expulsion of enriched gas out of the galactic
potential. On global scales, this results in a tight relationship
between the gas-phase metallicity and the SFH of a galaxy
(e.g., mass and SFR)—the so-called FMR (Yates et al. 2012;
Andrews & Martini 2013; Nakajima & Ouchi 2014; Salim et al.
2014, 2015; Yabe et al. 2015; Kashino et al. 2016; Cresci et al.
2019; Curti et al. 2020). Qualitatively, galaxies on the FMR
tend toward lower metallicities for higher SFRs, and higher
metallicities for higher masses, but the overall shape is a
nonlinear function of both mass and SFR. The FMR is typically
considered to be independent of redshift, with galaxies moving
along the relation as they evolve (and preferentially occupying
different regions of the relation at different redshifts), but the
relation itself remains constant over cosmic history.10

We take the FMR parameterization and default parameter
values from Curti et al. (2020), where the FMR was measured
over the broad stellar mass and SFR ranges covered by the
Sloan Digital Sky Survey. The median gas-phase metallicity as

Table 2
SPS Model Parameters and Their Prior Ranges

Parameter Description Limits

M Mlog10 ( ) Stellar mass 7, 13[ ]
Zlog10 gas Gas-phase metallicity -1.98, 0.5[ ]
ulog10 Gas ionization parameter - -4, 1[ ]

τ1 Birth cloud (stars younger than 10 Myr) dust
attenuation

0, 2[ ]

τ2 Diffuse dust attenuation 0, 2[ ]
δ Negative offset from the Calzetti dust

attenuation index
0, 0.4[ ]

α, β Indices of double-power-law SFH -10 , 103 1[ ]
τ Transition time of double-power-law SFH, as

a fraction of lookback time
0.007, 1[ ]

z Redshift 0, 2.5[ ]

10 The physics governing chemical enrichment is assumed to be constant over
cosmic time.
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a function of mass and SFR is parameterized as
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where

= +M m mlog SFR log SFR , 1110 0 0 1 10( ) ( ) ( )

with default parameters ΔZ0= 0.09, γ= 0.3, m0= 10.1,
m1= 0.56, and β= 2.1. We assume a Student’s t-distribution
(hereafter, student-t; with 2 degrees of freedom) for
P Z Mlog , SFR10 gas( ∣ ), where the mean is given by
Equation (10) and the FWHM is equal to 0.05. The FMR is
shown in Figure 2.

The measurement of the FMR is sensitive to the way in
which the SFRs and metallicities are estimated (see, e.g.,
Telford et al. 2016 and Cresci et al. 2019), with the SFRs and
metallicities that are used to calibrate the FMR from spectra
and those arising in a given SPS model being subtly different
proxies for those quantities. Therefore, when fitting the FMR to
photometric data, as part of the population model, it would be
prudent to set reasonably broad priors on the FMR parameters,
in order to capture any biases relative to measurements based
on spectra.

While the majority of the galaxies are expected to live on the
FMR (since the same physics drives chemical enrichment for
most galaxies), those processes will be disrupted in merger
events. Merged galaxies are therefore not expected to follow
the same FMR relation (Bustamante et al. 2020). This can be
compensated for by adding heavy tails to the FMR (as we do
here, with the student-t distribution) or by deriving a separate
model for the metallicities of merged galaxies.

3.2.3. SFS

The SFS characterizes the (redshift-evolving) relationship
between the SFR and mass, with the vast majority of galaxies
forming most of their mass either on or when passing through
the SFS (Leitner 2012; Abramson et al. 2015). Qualitatively,
the SFS is characterized by star-forming and quiescent galaxies
with ongoing and negligible SFRs, respectively. The clustering
of galaxies into these two populations, with different
characteristic SFRs, results in a highly non-Gaussian—some-
times bimodal—distribution of SFRs (conditioned on mass and
redshift) in the galaxy population as a whole (Daddi et al. 2007;
Noeske et al. 2007; Karim et al. 2011; Rodighiero et al. 2011;

Whitaker et al. 2012, 2014; Speagle et al. 2014; Renzini &
Peng 2015; Schreiber et al. 2015; Tomczak et al. 2016; Leslie
et al. 2020; Leja et al. 2022).
In this work, we base our SFS model on the measured

relation from Leja et al. (2022), who fit a normalizing flow to
learn P(SFR | M, z) from three-dimensional Hubble Space
Telescope (HST) data. The galaxy sample used in Leja et al.
(2022) is mass-complete, down to around 109Me, over the
redshift range relevant for this study (z� 1.5). We note that
P(SFR | M, z) is a very smooth function of mass and redshift,
and to ensure sensible extrapolation below the mass limit, we
fit a surrogate model (with good extrapolation properties) to the
normalizing flow of Leja et al. (2022; see Figure 3, as well as
Appendix B for technical details).
Specifying a population model requires that we put a prior

on the SFH parameters (in this case, the three parameters of the
double-power-law SFH), but the SFS provides only a prior
constraint on a derived quantity: the SFR, SFR(α, β, τ, z).
Hence, we need to define our prior over the SFH parameters in
such a way that the target prior over the SFR is satisfied. One of
the problems with parametric SFH models, such as the double
power law, is that simple priors on the SFH parameters lead to
strong (and undesirable) implied priors on the derived
quantities, such as the SFR (e.g., Carnall et al. 2019). For
example, taking a baseline uniform prior in a b tlog , log ,10 10( )
over reasonable ranges (see Table 2) leads to the undesirable
implicit SFR prior P0(SFR | z) shown in Figure 4.
To ensure that our SFH priors only encode the SFS, without

spurious additional contributions from any baseline prior

Figure 1. Left: the redshift-evolving mass function from Leja et al. (2020). Right: the implied redshift distribution for the background galaxy population (without
selection) at M = 1010 Me.

Figure 2. FMR priors on gas-phase metallicity conditioned on mass and
specific SFR (in units of Gyr−1). The solid lines represent the mean, and the
bands show the FWHMs of the assumed student-t distribution.
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assumptions, we define the SFH priors as

a b t
p a b t

=P M z
P M z

P z
, , ,

, , SFR ,

SFR
, 120

0
( ∣ ) ( ) ( ∣ )

( ∣ )
( )

where π0(α, β, τ) is the baseline (uniform) prior on the SFH
parameters, P(SFR | M, z) is the target SFS prior, and P0(SFR |
z) is the implicit prior on the SFR implied by π0. The implicit
SFR prior is defined by the surface integral

ò p a b t=
=

P z dSSFR , , , 130
SFR const.

0( ∣ ) ( ) ( )

where dS is the surface element in the SFH parameter space (α,
β, τ).

Dividing out the implicit SFR prior in this way ensures that
the overall prior on the SFR is specified by the SFS only. To
avoid having to compute the surface integrals in Equation (13)
directly, we train a normalizing flow to learn the conditional
density P0(SFR | z), so that it can be conveniently divided out
(the technical details are given in Appendix C).

3.2.4. Dust

The amount of dust attenuation, and the shape of the
effective attenuation law, is governed by the total amount of
dust, the grain composition, the dust–star–gas geometry in the

galaxy, and its inclination relative to the observer. This can be
encoded as a relationship between dust attenuation parameters
and SFHs (SFR and mass), as well as, potentially, metallicity
and redshift (see Salim & Narayanan 2020 for a review).
We take a relatively simple dust prior model, where the dust

attenuation in the diffuse component is assumed to scale with
SFR according to (following Tanaka 2015)

tá ñ = + Q0.2 0.5 log SFR log SFR , 142 10 10( ) ( )

where Θ is the Heaviside step function. We assume a Gaussian
prior on the diffuse dust attenuation with the mean given above,
and a standard deviation of 0.2. The dust attenuation prior is
shown in Figure 5.
The index of the dust attenuation law (for the diffuse

component) is assumed to vary as a function of the total dust
attenuation, with a mean given by

d t tá ñ = - + -0.095 0.111 0.0066 , 152 2
2 ( )

where δ is the (negative) offset from the index of the Calzetti
attenuation curve (Calzetti et al. 2000). We take a Gaussian
prior on δ, with the mean given above and a standard deviation
of 0.4.
For the birth cloud component, we take a Gaussian prior on

the ratio τ1/τ2 of the birth cloud and the diffuse dust
components, with a mean equal to 1 and a standard deviation
of 0.3. This is consistent with previous findings that the dust
optical depth in nebular emission lines is roughly twice that of

Figure 3. SFS prior on the SFR (in units of Meyr
−1) conditioned on mass and redshift, based on the measurement from Leja et al. (2022; see Appendix B for details).

The vertical lines represent the mass-complete limit for the three-dimensional HST data on which the Leja et al. (2022) fit was performed; we extrapolate the SFS
below the mass limit, as shown in the images.

Figure 4. The prior on the SFR implied by taking uniform priors over the
double-power-law SFH parameters a b tlog , log ,10 10( ) over the ranges
specified in Table 2 is shown in blue, while the target prior (specified by the
SFS measurement of Leja et al. 2022) is shown in orange. The SFR prior
obtained by recalibrating the baseline prior with a normalizing flow (as
described in Section 3.2.3) is shown by the black dotted line, giving excellent
agreement with the target SFS prior.

Figure 5. Prior on the diffuse dust attenuation conditioned on SFR. The solid
line shows the mean and the bands show the 1σ and 2σ contours.
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the stellar component (Calzetti et al. 1994; Price et al. 2014;
Reddy et al. 2015).

We leave more sophisticated dust prior modeling, e.g., where
dust attenuation properties are conditioned on SFR, mass,
metallicity, and redshift (e.g., Nagaraj et al. 2022), to future
work.

3.2.5. Age

The double-power-law SFH parameterization and prior
implicitly links age and SFR, with older (younger) galaxies
having lower (higher) SFRs, qualitatively in line with
expectations. However, the assumed priors on the double-
power-law SFH parameters allow for a tail down to very low
ages; we therefore impose a lower cut of 1 Gyr on the galaxy
ages11 to eliminate spuriously young galaxies. We do not
impose any additional priors on age.

3.3. Data Model

The data model characterizes the sampling distribution of the
measured photometry, given the true (model) fluxes, encoding
both calibration (i.e., zero-points), modeling errors, and
measurement noise. We treat the sampling distribution of the
observed fluxes as a student-t distribution, with 2 degrees of
freedom:

s h
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where the total uncertainty Σ is given by

s b aS = + f . 17b b b b b
2 2

zp,
2( ) ( )

The data model parameters η= (αzp, β) characterize the zero-
points αzp and error floors β (encoding modeling errors,
emulator errors, and an effective noise floor on the measure-
ment uncertainties).

In the application to GAMA and VVDS data in
Sections 4–5, we fix the zero-points to the values published
by the respective survey collaborations, and assume a default
value of 0.03 for the (fractional flux) error floors in all bands.

We note that this data model is readily extendable to include
additional error terms for emission line modeling errors,
spectral energy distribution modeling errors as a function of
rest-frame wavelength, and the parameters describing the shape
(e.g., skewness or tail weight) of the data sampling distribution.
A more sophisticated error model (including the hierarchical
calibration of hyperparameters) is investigated in our compa-
nion paper (B. Leistedt et al. 2023, in preparation).

3.4. Uncertainty Model

The uncertainty model describes the distribution of photo-
metric measurement uncertainties over the survey, which will
vary from galaxy to galaxy, due to heterogeneous observing
conditions and strategies, as well as the varying difficulty of
extracting photometry from galaxy images with different
morphologies and geometries, and will also scale with the
(true) flux, owing to the Poisson photon count contribution to
the overall measurement error.

We take a data-driven approach to uncertainty modeling,
where we learn the distribution s fP , ( ∣ ) directly from the
data. This process proceeds in two steps. First, we fit each of
the galaxies under the SPS model, population prior, and data
model assumptions described above, by MCMC sampling their
individual posteriors (see Equation (4) with fixed hyperpara-
meters). For each galaxy, this provides a maximum a posteriori
(MAP) estimate of their true fluxes f. We then take the catalog
of MAP estimated fluxes and associated uncertainties

sf , N1:{ } , and train a mixture density network (MDN) to learn
s fP , ( ∣ ). The MDN parameterizes the uncertainty distribu-

tion as a Gaussian mixture:

ås m S=
=

f f w f w f wP r, ; ; , ; , 18
c

N

c c c
1

comp.

 ( ∣ ) ( ) [ ( ) ( )] ( )

where the component weights, means, and variances are
functions of flux, parameterized by a dense neural network
(whose weights and biases are denoted by w). The MDN is
trained by minimizing the total (negative) log-likelihood of the
data under the model with respect to the network weights:12

å s= -
=

w f wPln , . 19
i

N

i i
1

galaxies

( ) ( ∣ ) ( )

Throughout this paper, we take a default MDN with 12
components and a single hidden layer with 256 units and leaky
ReLU activation functions. Examples of trained MDNs for the
uncertainty distributions for GAMA and VVDS are shown in
Figures 6 and 7.

4. Case Study I: GAMA

The GAMA survey covers 250 square degrees, and has
obtained ∼230,000 spectroscopic redshifts over the past decade
(Driver et al. 2011). The survey was designed to have simple
target selection, based on photometry alone (discussed below),
making it an ideal data set for validating our forward model.
We take GAMA data release 4 (DR4; Driver et al. 2022), with
photometry in the KiDS ugri and VIKING ZYHJKs bands.
The main selection is performed on the KiDS r band, with

spectroscopic redshifts measured for all galaxies with
r< 19.65. An additional color cut of (J−Ks)> 0.025 is made
for star–galaxy separation. With these cuts, we are left with a
sample of 206,454 galaxies with 9-band photometry (ugri-
ZYHJKs) and measured spectroscopic redshifts (for validation).

4.1. Data Model

We assume student-t uncertainties on the fluxes, as described
in Section 3.3, and take the extinction and zero-point
corrections provided with GAMA DR4 (Driver et al. 2022).
We train an MDN to model the distribution of the

measurement uncertainties as a function of flux, using the
GAMA data, as described in Section 3.4. The uncertainty
distributions and corresponding trained models are shown side
by side in Figure 6.

11 We take age here to mean the mass-weighted age.

12 Note that this is equivalently a Monte Carlo estimate of the Kullback–
Leibler divergence between the model and the true distribution, up to an
additive constant.
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4.2. Tomographic Binning

For the purpose of tomographic binning, we train a simple
(dense) neural network estimator for the redshift, given the
measured KiDS and VIKING photometry. We take a dense
network with four hidden layers of 64 units each and leaky
ReLU activations, passing the measured magnitudes and
magnitude errors in the nine bands as inputs and the estimated
redshift as output. The network is trained to minimize the mean
square error on the redshift, using the GAMA photometry and
redshifts. Training is performed with Adam, using a batch size
of 1024, a training : validation split of 90 : 10, and by
triggering early stopping when the validation loss has ceased to

improve after 30 epochs. The resulting redshift estimator has an
overall accuracy of around σz; 0.06.
The GAMA galaxies are binned into two tomographic bins,

based on their estimated redshift: < <z0 0.2ˆ and >z 0.2ˆ for
the two bins, respectively.

4.3. Results

Forward-model predictions are obtained by generating a
large mock catalog, following the prescription in Section 2.2.
We MCMC sample the population model (imposing a prior
limit of r< 20.65), draw uncertainties and add noise according
to the uncertainty and data models described above, and apply

Figure 6. Magnitude uncertainties vs. magnitudes for the GAMA data (left panels) vs. the trained MDN model for the error distribution conditioned on flux (right
panels). Note that the magnitudes in both the left and right panels are MAP magnitudes, from an initial fit of the SPS model to the GAMA galaxies, as described in
Section 3.4.

Figure 7. Magnitude errors vs. magnitudes for the VVDS data (left panels) vs. the trained MDN model for the error distribution conditioned on flux (right panels).
Note that the magnitudes in both the left and right panels are MAP magnitudes, from an initial fit of the SPS model to the VVDS galaxies, as described in Section 3.4.
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selection cuts r< 19.65 and (J−Ks)> 0.025 to the simulated
noisy photometry. Tomographic bin labels are assigned based
on the redshift estimator described above. We continue
sampling until 5 · 105 selected samples are obtained.

The tomographic redshift distributions predicted by the
forward model are shown alongside the spec-z histograms in
Figure 8, and the corresponding biases on the means of the
redshift distributions are shown in Figure 9. The forward model
is able to predict the redshift distributions with biases of around
0.003 and 0.001 on the mean, for the two respective
tomographic bins. This is comfortably accurate enough for
ongoing Stage III surveys (e.g., Asgari et al. 2021), where the
statistical error on the mean redshift per tomographic bin is

0.01( ), and cosmological parameter constraints should be
insensitive to biases of0.04 (Hildebrandt et al. 2016). The
model predictions are very close to the accuracy requirements
for Stage IV surveys, where the bias on the mean should not
exceed13 Δz< 0.002(1+ z) (Mandelbaum et al. 2018).

We reiterate that these model predictions are obtained by
assuming (fixed) default parameters for the population model,
as described in Section 3.2; fitting the uncertainty distribution
to the GAMA data, to characterize the distribution of the
photometric errors (as a function of flux); and assuming the
zero-point calibration provided by the GAMA collaboration
(Driver et al. 2022).

5. Case Study II: VVDS

Similar to GAMA, VVDS (Le Fèvre et al. 2013) is a
spectroscopic survey designed to have simple photometric
target selection. We focus on VVDS-Wide, which covers 8.7
square degrees and has obtained spectra for 25,805 galaxies
down to I< 22.5.
We take photometric data in the BVRI bands from VVDS-

Wide, which were obtained with the CFH12K camera at
CFHT. The main selection is performed in the I band, with
spectra obtained for objects with 17.5< I< 22.5. The imaging
survey is sufficiently deep (a limiting magnitude of I= 24.8) to
ensure 100% completeness down to I= 22.5 for the spectro-
scopic sample. Star–galaxy separation was performed on the
spectra, so no other photometric cuts were performed. We
selected only galaxies with redshift quality flags of 3 or 4
(>95% probability of obtaining a correct redshift, according to
Le Fèvre et al. 2013). The relevant information for modeling
any correlations between the assessed reliability and redshift in
detail is not publicly available for this catalog, hence we make
no attempt to model this implicit selection effect. However,
Figure 13 in Le Fèvre et al. (2013), for a VVDS-Deep sample
in the same magnitude range, suggests that the spectroscopic
success rate for this sample is expected to be roughly uniform
up to z; 1, then drop thereafter. This only impacts∼1%–2%
of the sample, in a regime where photometric selection is
expected to strongly dominate in any case. Hence, we do not
expect a significant impact on our results from the redshift
dependence of the spectroscopic success rate.

Figure 8. Tomographic redshift distributions obtained by the forward model (blue) compared to histograms of the GAMA spectroscopic redshifts (orange). The model
predictions are in excellent agreement with the distributions of the spectroscopic redshifts.

Figure 9. The bias on the mean redshifts of the model redshift distributions vs. the data for GAMA, Δz = 〈zmodel〉 − 〈zdata〉. The distributions are obtained by
bootstrapping samples from the model n(z), taking a kernel density estimate of the bootstrapped sample means, then centering the kernel density estimate on the
difference between the sample mean of the spec-zs and the mean of the model n(z).

13 For the LSST year one analysis, the requirement on the mean bias per
tomographic bin is Δz < 0.002(1 + z), decreasing to Δz < 0.001(1 + z) by
year 10 (Mandelbaum et al. 2018).
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5.1. Data Model

We again assume student-t uncertainties on the fluxes, as
described in Section 3.3, and take the extinction and zero-point
corrections provided by the VVDS team (Le Fèvre et al. 2013).

We train an MDN to model the distribution of the measurement
uncertainties as a function of flux, using the VVDS data, as
described in Section 3.4. Unlike GAMA, the VVDS BVRI
photometry is patchy, with roughly a quarter of the objects
missing measurements in at least one band. We set the fractional
uncertainties for the missing values to 1000, and constrain one
component in the mixture model to be a delta function at 1000,
where the relative weight of that component in the MDN then
encodes the relative probability of having a missing value, as a
function of flux. The uncertainty distributions (for nonmissing
values) and corresponding trained models are shown side by side
in Figure 7. Note the multimodal structure in the uncertainty
distributions, owing to the varying depth of the photometry in all
but the I band. This makes for a more challenging test case for the
forward-modeling framework.

5.2. Tomographic Binning

For the purpose of tomographic binning, we train a simple
(dense) neural network estimator for the redshift, given the
measured BVRI photometry. We again take a dense network
with four hidden layers of 64 units each and leaky ReLU
activations, passing the measured magnitudes and magnitude
errors in the four bands as inputs and the estimated redshift as
output. The network is trained on the VVDS photometry and
spec-zs, as described in Section 4.2. The resulting redshift
estimator has an overall accuracy of around σz; 0.2. Note that

the redshift estimator is considerably less accurate in this case
as compared to GAMA, owing to the poorer constraining
power of the BVRI bands, the prevalence of missing values in
the VVDS photometry, and the smaller training set.
The VVDS galaxies are binned into three tomographic bins,

based on their estimated redshift: < z0 0.4ˆ , < z0.4 0.75ˆ ,
and < z0.75 2ˆ .

5.3. Results

As in Section 4.3, model predictions are obtained by MCMC
sampling the population model (imposing a prior limit of
I< 23.5), drawing uncertainties and adding noise according to
the uncertainty and data models described above, and applying
selection cuts 17.5< I< 22.5 to the simulated noisy I-band
magnitudes. Tomographic bin labels are assigned based on the
redshift estimator described above. Sampling is continued until
5 · 105 selected samples are obtained.
The tomographic redshift distributions predicted by the

forward model are shown alongside the spec-z histograms for
VVDS in Figure 10, and the corresponding biases on the means
of the redshift distributions are shown in Figure 11.
The forward model is able to predict the redshift distribu-

tions with a bias of Δz; 0.01 on the mean in all three bins.
This is comparable to the statistical error on the mean redshift
per tomographic bin for Stage III surveys (e.g., Asgari et al.
2021), and below the threshold where cosmological parameter
biases become significant (Δz 0.04; Hildebrandt et al. 2016).
The model predictions are within a factor of a few of the
requirements for Stage IV surveys (Δz< 0.002(1+ z);
Mandelbaum et al. 2018), and we note that the Stage IV

Figure 10. Tomographic redshift distributions obtained by the forward model (blue) compared to histograms of the VVDS spectroscopic redshifts (orange). The
widths of the histogram bars indicate the  N Poisson noise. The model predictions are in excellent agreement with the distributions of the spectroscopic redshifts.

Figure 11. The bias on the mean redshifts of the model redshift distributions vs. the data for VVDS, Δz = 〈zmodel〉 − 〈zdata〉. The distributions are obtained by
bootstrapping samples from the model n(z), taking a kernel density estimate of the bootstrapped sample means, then centering the kernel density estimate on the
difference between the sample mean of the spec-zs and the mean of the model n(z).
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requirements are contained within the error distribution on the
mean bias for VVDS, as shown in Figure 11.

We reiterate that these model predictions are obtained by
assuming (fixed) default parameters for the population model, as
described in Section 3.2; fitting the uncertainty distribution to the
VVDS data, to characterize the distribution of photometric errors
(as a function of flux); and assuming the zero-point calibration
provided by the VVDS collaboration (Le Fèvre et al. 2013).

We note that our data model for VVDS has residual
uncertainties that may be responsible for some of the redshift
bias. We have assumed standard Johnson BVRI filters, which
are approximately correct, but there are some differences in
detail (Le Fèvre et al. 2013). Zero-point calibration for VVDS
was also reported to be challenging, with large (and sometimes
differential) zero-points required in some bands to achieve
consistency between photometry and spectra (Vincent Le Brun,
private communication). We have not included calibration
uncertainties in our results.

6. Discussion

While our baseline model is able to accurately recover the
tomographic redshift distributions for GAMA and VVDS, a
number of improvements are possible.

The baseline SPS model assumes a simple double-power-law
SFH parameterization. Such a simple SFH parameterization is
not expected to capture the full diversity of real SFHs, and can
lead to overly restrictive correlations between important
derived quantities (such as SFR and age), which might not
be representative of real galaxies. These limitations can be
alleviated by nonparametric (binned) SFH models (e.g., Leja
et al. 2019) or more physical SFH parameterizations (e.g.,
Alarcon et al. 2023).

Regarding the population model, the largest modeling
uncertainties are expected to come from the dust attenuation
prior, where our baseline model assumed that dust attenuation
scales with SFR only. In reality, dust characteristics are
expected to be related to the detailed star formation and
metallicity enrichment histories, motivating a more sophisti-
cated dust prior model (e.g., Nagaraj et al. 2022).

The data model also has a number of simplifying assump-
tions. SPS modeling errors are expected to vary as a function of
rest-frame wavelength, with emission lines in particular being
subject to potentially significant modeling biases (B. Leistedt
et al. 2023, in preparation). In the context of inferring SPS
parameters for individual galaxies, photometric error floors
have often been used to capture both modeling and calibration
uncertainties, in order to increase the uncertainties on the
inferred SPS model parameters and reduce the biases. While
this strategy is fine for individual galaxies, increasing the
variances in order to cover the potential biases in this way can
lead to overdispersion of the population-level parameters.
Therefore, data modeling efforts should instead focus on
parameterizing and modeling such biases directly, rather than
treating them as extra variance terms. The shape of the noise
distribution also merits careful investigation, with (for
example) the skewness and tail weights of the photometric
measurement errors likely varying between bands, and as a
function of flux and background noise levels.

Regarding the selection modeling, we have so far considered
a scenario where selection is performed with respect to the
measured photometry alone. However, for weak-lensing
surveys, some additional selection cuts will typically be made

on the images, such as image quality cuts to ensure reliable
shear measurements, image-based star–galaxy separation,
deblending, surface brightness cuts, etc. Because galaxy image
characteristics correlate with SPS parameters and redshift,
image-based cuts will induce additional selection effects that
could modify the resulting redshift distributions.
In Appendix A, we show that the effects of image-based

selection cuts can be addressed by replacing the population
model with an effective population prior describing the
statistical properties of the galaxy population that passes the
image cuts (conditioned on the characteristics of the survey,
etc.). Hence, image-based selection can be incorporated into the
forward-modeling framework, by parameterizing the effects of
those image cuts on the population prior over SPS parameters
and redshift, and inferring those additional hyperparameters
alongside the other population and data model parameters.
Alternatively, if it can be demonstrated (or orchestrated) that
the photometric cuts are sufficiently stronger than any image-
based cuts, such that the image cuts have a negligible impact on
the analysis sample, then those unmodeled selection effects can
be safely ignored.
In addition to modeling improvements, the inference (or

optimization) of population and data model parameters from
the photometric data should lead to additional improvements in
accuracy. For robust inferences, the data model parameters
should be self-consistently calibrated using the photometric
data themselves, with the photometric redshifts expected to be
particularly sensitive to zero-point calibrations (but with all
data model parameters playing a role). Regarding the
population model, we note that different aspects of the model
are better constrained than others by external data. In particular,
the dust prior and FMRs are expected to be the least well
understood and constrained, meriting broader priors on their
parameters. The SFS is somewhat better constrained (e.g., Leja
et al. 2022), while the mass function is relatively tightly
constrained (e.g., Leja et al. 2020).

7. Conclusions

We have presented a forward-modeling framework for
photometric surveys, which is capable of accurately predicting
the tomographic redshift distributions required for cosmologi-
cal analyses. Scaling this forward-modeling approach to large
surveys is made possible by the neural emulation of SPS
models (Alsing et al. 2020).
Forward modeling has a number of advantages over existing

methods for estimating cosmological redshift distributions. In
contrast to direct calibration methods, forward modeling does
not require external spectroscopic data: it is therefore not
hampered by the (lack of) availability of spectroscopic redshifts
at the depths required for photometric surveys, and it is not
vulnerable to biases arising from spectroscopic selection effects
that cannot be well described by reweighting in broadband
color space. In contrast to cross-correlation-based estimators, it
is not sensitive to galaxy bias modeling assumptions. Our
forward-modeling framework also resolves a number of the
limitations of existing template-based methods, by replacing
template sets with a continuous physical model for galaxy
spectra (with associated physical priors), carefully treating
selection effects, and enabling the self-consistent inference of
model parameters describing the galaxy population and data
model.
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By explicitly modeling the processes that give rise to the
target redshift distributions, forward modeling allows for fine
control over the relevant modeling assumptions. In particular, it
creates synergies between galaxy evolution physics and
photometric redshift inference: as our constraints on the
statistical properties of the galaxy population improve, these
will lead directly to improved priors on the population model
parameters, and hence improved photometric redshift
inferences.

We have demonstrated the utility of our forward-modeling
framework by accurately recovering the redshift distributions
for the GAMA and VVDS surveys, validating them against
their spectroscopic redshifts. The model is able to predict the
tomographic redshifts for those two surveys, with biases of
Δz 0.003 for GAMA andΔz; 0.01 for VVDS, respectively,
without performing inference or optimization of the model
parameters describing the galaxy population and photometric
calibration. This accuracy is sufficient for the ongoing Stage III
surveys, and approaches the accuracy requirements for Stage IV
surveys. We anticipate that with additional modeling improve-
ments and the optimization of the model hyperparameters,
forward modeling can provide a path to accurate cosmological
redshift distribution inference for Stage IV surveys.

In a companion paper (B. Leistedt et al. 2023, in
preparation), we demonstrate the utility of this forward-
modeling framework for inferring individual redshifts, includ-
ing the hierarchical calibration of data model hyperparameters.
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Appendix A
Derivation of the Joint Posterior including Selection Effects

For the purpose of deriving the joint posterior for the forward
model described in Section 2.2, it is useful to consider the
generation of a selected sample directly, as follows (the
notation is summarized in Table 1).
The total number N of selected galaxies is drawn (assuming

Poisson statistics), given the expected number of selected
objects under the population model, data model, and selection
effects:

where j hP S z, , , ( ∣ ) is the selection probability for a given set
of galaxy parameters (and data model parameters η and) and A
is the survey area. The SPS parameters, redshifts, measurement
uncertainties, and data vectors for each (selected) galaxy are then
drawn from their respective distributions, conditioned on
selection. The generative model is hence given by

Taking a log-uniform prior for the present-day volume density,
P(Φ0)= 1/Φ0, and noting that µ FN 0¯ , we can marginalize out
Φ0 analytically and obtain


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The joint posterior is hence given by

where we have dropped the s y hfP S, , , ,i i i( ∣ ) term in the
posterior, since its sensitivity to the latent parameters and
hyperparameters is typically negligible compared to the like-
lihood and prior terms.

Written this way, the population model and likelihood terms are
conditioned on selection. This parameterization has the drawback
that a population model conditioned on selection is typically hard
to parameterize directly, and becomes a survey-specific quantity.
Also, if the selection cuts involve more than simple (independent)
flux or signal-to-noise ratio cuts in each band, then a data model
conditioned on selection is also hard to compute directly.

It is instead desirable to rewrite the model in terms of the
population model for the background galaxy population, and
the likelihood without selection. Using the chain rule, the
population model and likelihood terms can be rewritten as

j y s h j y j s h
y s h

j s h j s h s
j s h
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d d
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( ∣ )

( )

Inserting these into Equation (A4), we obtain (after cancellation
and dropping parameter-independent terms)

where the selection term in the denominator is given by

òy s h s j s h j y j=

A7

d d dP S P S P z P z d d dz, , , , , , , .

( )

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )

Note that the selection term only depends explicitly on the
hyperparameters and the data model parameters ψ and η. In a
special case where one is only interested in inferring the latent
parameters (j, z) for each galaxy, with the hyperparameters
and data model parameters being fixed, selection appears to
“drop out” of the problem, so that one should infer the latent
parameters under the population prior and data models without
selection. Note that in this case (although it might seem
counterintuitive), selection effects are still properly included:
they only enter implicitly via the ensemble of selected galaxies
that have made it into the analysis sample.

When inferring the hyperparameters and data model
parameters, though, the selection term is important: the high-
dimensional integral over the parameter and data space in
Equation (5) usually represents the computational bottleneck
for sampling Bayesian hierarchical models under selection
effects.

A.1. Selection Effects on Both Photometry and Images

In the model derived above, we have assumed that selection
was performed with respect to the photometric data vector only (
i.e., based on the measured fluxes and their uncertainties). In
reality, for weak-lensing surveys, some selection cuts will occur at
the level of images, such as image quality cuts to ensure robust
shear measurements, the removal of blended objects, surface
brightness cuts, etc. Therefore, it is useful to consider the impact
of image-based selection cuts on the generative model. To this
end, in this section, we derive the joint generative model for
galaxy photometry and images, and subsequently marginalize
over the images, to explore a typical case where one wants to
perform redshift inference with respect to photometry only, but
needs to account for image-based selection cuts.
We will assume that galaxy images are characterized by the

parameters ζ (in addition to the SPS parameters and redshift).
We denote galaxy image data vectors and uncertainties with D
and Σ, respectively, where D can be taken to mean either the
full pixelized image or some low-dimensional summary
statistics derived from the galaxy images on which the
selection is performed. For the purpose of this derivation, we
distinguish photometric and image-based selection cuts with Sd
and SD, respectively, and use S to denote combined selection.

Conceptually, the forward model proceeds as before. The
total number N of selected galaxies is drawn (assuming Poisson
statistics), given the expected number of selected objects:

ò

y h

y z j y

z j h z j

r

F

= F

´

N

A z
dV

dz
P z

P S z d d dz

, , ,

; , ,

, , , , . A8

0

0





¯ ( )

( ) ( ∣ )

( ∣ ) ( )

The parameters, redshifts, measurement uncertainties, and data
vectors for each (selected) galaxy are then drawn from their
respective sampling distributions, conditioned on selection.
The generative model is hence given by


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where we have assumed that the errors on the photometry and
images are uncorrelated. We note that while it is true that the
fluxes are also summary statistics extracted from the images,
the other summary statistics D extracted from the images on
which cuts are made (e.g., image quality flags) are likely to
characterize very different features of the raw pixelized galaxy
image, so the assumption that their errors are uncorrelated is
probably reasonable.

Taking a log-uniform prior for the present-day volume
density and marginalizing out Φ0 gives


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Using the chain rule, the population model and likelihood terms
can be rewritten as
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Inserting these into Equation (A10), we obtain (after cancellation)
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For the joint modeling of both photometry and images, the joint
posterior is hence given by

where the selection term in the denominator is given by
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and, as before, we have dropped the s y hP S, , ,i i( ∣ ) and
y hSP S, , ,i i( ∣ ) terms, based on the notion that their

parameter sensitivity will be negligible compared to the
likelihood and prior terms.
Now, in order to determine the effect of image-based cuts

when performing inference with respect to photometry alone,
we need to marginalize over the image parameters, image data
vectors, and their uncertainties. Taking the joint generative
model in Equation (A12) and marginalizing over the image
data vectors D1:N, one obtains
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We can then rewrite the selection term in the denominator as
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and absorb P(SD|ψ, Σ, η) and P(SD|ζ, Σ, η) into the
population prior term (again using the chain rule), to give
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Marginalizing over the image uncertainties Σ1:N and the
parameters governing the galaxy images ζ1:N then gives
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Dropping parameter-independent terms (and assuming that the
parameter sensitivity of s y hfP S, , , ,i i d i,( ∣ ) is negligible
relative to the prior and likelihood terms) then gives the posterior

where the selection term in the denominator is given by
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Crucially, note how this posterior has exactly the same form as in
Equation (A6), but the image-based selection cuts have been
completely absorbed into an effective population prior model for the
galaxies that pass the image-based selection cuts. Those selection
effects will not be well specified without assuming a detailed model
for the joint distribution of SPS parameters and galaxy images;
therefore, they will typically need parameterizing and inferring.

Appendix B
SFS Model

Leja et al. (2022) use a normalizing flow to model the SFS,
i.e., the distribution of the SFR conditioned on mass and

redshift. While their flow provides a state-of-the-art measure-
ment of the SFS, their model utilized a dummy variable that
needs integrating over in order to compute the log-probability

P(SFR | M, z), and it has no explicit constraints to ensure that it
extrapolates sensibly below the mass-complete limit for the
data that it is fitted to. To address these two issues, we construct
a surrogate model to approximate their normalizing flow. The
SFS is modeled as a mixture of a Gaussian, characterizing star-
forming galaxies, and a SinhArcSinh distribution, characteriz-
ing quiescent galaxies:
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where º Mlog10 ,  denotes the normal distribution and 
denotes the SinhArcSinh distribution, defined as a bijection of
the unit normal distribution: m s + +-x x ksinh sinh1( ( ) ).
The location and scale of the SinhArcSinh, the relative

weight of the two mixture components, and the location of the
Gaussian are functions of mass and redshift, defined by
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where the functions a(z) through f (z), as well as * zsf ( ) and
* zq ( ), are quadratic functions in redshift, defined as

a(z)= a0+ a1z+ a2z
2, etc.

We fit this parametric form to the normalizing flow of Leja
et al. (2022) by generating 106 samples from the flow and
maximizing the total log-likelihood of those samples under our
parametric model. Optimization is performed with Adam
(Kingma & Ba 2014), with a learning rate of 10−4, no
minibatching, and 104 epochs. The fitted parameters are given
in Table 3.

Appendix C
Setting Priors on Derived Quantities using Normalizing

Flows

As described in 3.2, we want to put a prior on the SFH
parameters, such that the resulting prior on the SFR is given by
our desired assumptions about the SFS. To recap from the main

text, we construct a prior over the SFH parameters as

a b t
p a b t

=P M z
P M z

P z
, , ,

, , SFR ,

SFR
, C10

0
( ∣ ) ( ) ( ∣ )

( ∣ )
( )

where π0(α, β, τ) is the baseline (uniform) prior on the SFH
parameters, P(SFR | M, z) is the target SFS prior, and P0(SFR |
z) is the implicit prior on the SFR implied by π0. The implicit
SFR prior is defined by the surface integral

ò p a b t=
=

P z dSSFR , , , C20
SFR const.

0( ∣ ) ( ) ( )

where dS is the surface element in the SFH parameter space (α,
β, τ). In order to circumvent having to compute those surface
integrals directly every time that we need to evaluate the prior
density, we train a normalizing flow to learn P0(SFR | z) as
follows. We construct a training set by drawing SFH
parameters from the baseline prior π0(α, β, τ), which we take
as log-uniform in α and β, and uniform in τ, over the prior
ranges given in Table 2 and redshifts drawn uniformly between
0 and 2. For each baseline prior (and redshift) sample, we
compute the specific SFR for those SFH and redshift
parameters, defined as the fractional mass formed in the last
100 Myr. This provides a training set of {sSFR, α, β, τ, z}, on
which we can train a conditional density estimator to learn
P0(sSFR | z).
We train a neural spline flow (Durkan et al. 2019) to learn

P zlog sSFR0 10( ∣ ), with 16 spline knots spaced between −15 and
−6 (in log sSFR10 ), a single hidden layer of 16 units and leaky
ReLU activation functions, and a base Gaussian density with
location −11 and scale 1. Training is performed using Adam,
with a learning rate of 1e− 2 for 1000 epochs, with no
batching on a training set of 106 samples (generated as
described above). The implicit prior P zlog sSFR0 10( ∣ ) and the
trained normalizing flow is shown in Figure 12, and the use of

Table 3
Fitted Values of the Surrogate SFS Model

Parameter Fitted Value

(a0, a1, a2) (−0.15040097, 0.9800668, −0.50802046)
(b0, b1, b2) (1.0515388, − 0.28611764, 0.02131329)
(c0, c1, c2) (0.05053138, 1.0766244, − 0.02015052)
(d0, d1, d2) (−0.13125503, 0.7205097, −0.18212801)
(e0, e1, e2) (1.5429502, − 1.5872463, −0.04843145)
( f0, f1, f2) (0.65359867, 0.92735046, −0.17695354)
(g, h, i, j) (10.442122, 0.56389964, 0.7500511, 2.0604856)

* * *, ,q0 q1 q2  ( ) (10.611108, 0.08009169, −0.06575003)
* * *, ,sf0 sf1 sf2  ( ) (10.335057, −0.3050156, 0.5491848)

(σq0, σq1, σq2, σq3) (0.54855245, 0.44964817, 11.159543, 0.11614972)
σsf 0.3912887
kq −1.5658572

Figure 12. Samples from the prior on the SFR implied by taking uniform priors over the double-power-law SFH parameters a b tlog , log ,10 10( ), over the ranges
specified in Table 2, are shown as the blue histograms, while the learned normalizing flow model for the implied distribution (as a function of redshift) is shown in
orange.
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the trained normalizing flow to divide out the implicit SFR
prior is shown in Figure 4.
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