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Abstract

Adverse effects to health and wellbeing from increased exposure to heat at home has

been repeatedly identified as a major climate change adaptation risk in the United

Kingdom by the Climate Change Committee and others. Despite recent progress,

policy gaps in the adaptation of the housing stock exist. The development of such

policies can be guided by housing stock models, that enable the assessment of the

impact of climate change adaptation and energy efficiency measures on building

performance under different climate scenarios. To ensure well-informed decision-

making, uncertainties in these models should be considered. Motivated by the lack of

work on this topic, this thesis aims to quantify and reduce uncertainties of archetype-

based housing stock models of summer indoor temperature through a Bayesian

calibration framework.

The framework includes the data-driven classification of dwellings into ho-

mogeneous groups, the characterisation of model input uncertainty in the form of

probability distributions – which can be used as calibration priors – and their reduc-

tion through Bayesian inference. The framework’s implementation was demonstrated

using the ‘UK Housing Stock Model’ (a bottom-up model based on EnergyPlus),

the 2011 English Housing Survey and Energy Follow-Up Survey (EHS-EFUS),

and the 2009 4M survey in Leicester. The model’s root-mean-square error reduced

from 2.5 ◦C (pre-calibration) to 0.6 ◦C (post-calibration), while input and structural

uncertainties were quantified.

This work offers several novel contributions, including a modular framework

that can be adapted for the improvement of other archetype-based housing stock

models, an open-source method for identifying model input probability distributions,
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and an alternative formulation of Gaussian processes that substantially reduces the

computational cost of Bayesian calibration. Learnings from this first calibration of

its type can inform future academic research. Finally, the analysis of 2011 EHS-

EFUS provides evidence to building designers and policymakers on the dwelling

and household characteristics associated with high summer indoor temperatures.



Impact Statement

This thesis describes the research carried out in response to the aim of quantifying and

reducing uncertainties in archetype-based housing stock models of summer indoor

temperature. The contributions of this study to academic research and knowledge are

manifold. A modular Bayesian calibration framework was developed, which can be

used to quantify and reduce uncertainties, and improve the predictive performance of

archetype-based models of summer indoor temperature. In addition, the framework

can be adapted for other archetype-based models, such as those of winter indoor

temperature, energy use, ventilation or indoor air quality. Through the framework’s

application on the bottom-up UK Housing Stock Model, the first Bayesian calibration

of an archetype-based housing stock model of summer indoor temperature, insights

were generated that can inform future research. Furthermore, a novel and open-

source method for identifying probability distributions that adequately describe

empirical data has been introduced, which can find multiple applications within the

field of building energy modelling. An alternative formulation of Gaussian processes,

proposed in this work, offers a substantial reduction in the computational cost of

Bayesian calibration.

The outcomes of this thesis also have implications for industry practitioners.

Findings from the statistical analysis of summer indoor temperatures, monitored

during the 2011 English Housing Survey Energy Follow-Up Survey (EHS-EFUS),

provide further evidence to building designers on the factors associated with indoor

overheating. The differences between stated thermal discomfort and quantified over-

heating for the 2011 EHS-EFUS, using metrics defined in the Chartered Institution of

Building Services Engineers (CIBSE) Technical Memorandum 59 (TM59), suggest
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a need to review and potentially refine overheating criteria. The discrepancy between

modelled and monitored indoor temperature, and its reduction through calibration,

highlight the importance of adopting uncertainty quantification and reduction tech-

niques within industry. This is especially pertinent given the use of Dynamic Thermal

Simulation (DTS) tools to demonstrate compliance with the building regulations

(Part O) and for assessing indoor overheating. The methodological advancements

offered by this thesis on surrogate modelling, uncertainty quantification and reduc-

tion, can be integrated in DTS tools, and enable such work to be undertaken at a

more manageable computational cost.

A direct impact on policymaking is the provision of evidence on the factors

associated with high summer indoor temperature, which can inform building reg-

ulations and national climate change adaptation plans. For example, households

with at least one occupant on means tested, or certain disability-related benefits were

associated with higher summer temperatures. Such findings should be taken into

consideration when devising an indoor overheating adaptation strategy. An indirect,

yet important, contribution to policy follows from the advancement of uncertainty

quantification and reduction methods and knowledge within the field of built en-

vironment research. The use of calibrated housing stock models of summer indoor

temperature that provide a quantified estimate of uncertainty encourages more robust

and better-informed decision making.
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Chapter 1

Introduction

1.1 Research Context

1.1.1 Anthropogenic Climate Change

In their latest contribution to the Intergovernmental Panel on Climate Change (IPCC)

Sixth Assessment Report (AR6), Working Group I (WGI) concluded that human

influence on warming the atmosphere, ocean and land is “unequivocal” (IPCC,

2021). The observed increase in well-mixed greenhouse gas (GHG) emissions since

the 1750s is caused by human activities, and it is the main driver behind a global

surface temperature increase of 1.09 [0.95 to 1.20]1 ◦C in 2011–2020 compared

to 1850–1900. The scale of recent climatic changes is unprecedented, over many

centuries to many thousands of years, with the increase in global surface temperature

being faster since 1970 than in any other 50-year period in the last 2000 years.

The changing climate has already caused widespread adverse impacts to nature and

people, including, but not limited to, human mortality and morbidity due to extreme

heat, increased flooding, climate-related food-borne and water-borne diseases, and

the increased incidence of vector borne diseases (IPCC, 2022). Unless decisive

mitigation and adaptation actions are taken now and in the near term (until 2040),

the mid to long-term (2041-2100) impacts are expected to be multiple times higher

than what has been observed (IPCC, 2022).

Mitigation actions aim to reduce emissions or enhance the sinks of GHG, while

190 % confidence interval
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adaptation is the process of adjustment to the changing climate and its effects in

order to moderate harm or exploit beneficial opportunities (IPCC, 2018). Global

negotiations on mitigation culminated at the 21st United Nations Climate Change

Conference of Parties (COP21) in the Paris Agreement, adopted by 195 nations

in December 2015, whose central aim is to limit global temperature rise to well

below 2 ◦C relative to pre-industrial levels and pursue efforts to limit warming to

1.5 ◦C (UNFCCC, 2015; IPCC, 2018). To track global action, the Paris Agreement

requests countries to submit their Nationally Determined Contributions (NDCs),

which outline each country’s mitigation efforts, to the United Nations Framework

Convention on Climate Change (UNFCCC) secretariat, and new or updated NDCs

should be submitted every five years (UNFCCC, 2015). The 26th Conference of

Parties (COP26) marked the end of the first five-year cycle. While a warming of just

under 2 ◦C might be achieved if all ambitions announced at COP26 are materialised,

climate policies at the time of writing would likely result in a temperature rise of

2.7 ◦C compared to pre-industrial levels (CCC, 2021a). Such a level of warming

is expected to have high to very high impacts on terrestrial, freshwater and ocean

ecosystems (IPCC, 2022).2 Further, under any emission scenario considered by WGI

in their AR6 contribution, global surface temperature is expected to continue increas-

ing until at least mid-century (IPCC, 2021). As adverse impacts of climate change

escalate with every increment of global warming (IPCC, 2022), and since further

warming is unavoidable (IPCC, 2021), it is imperative that ambitious mitigation

actions are coupled with strong adaptation efforts to minimise current and future

impacts of climate change.

1.1.2 Climate Change and the United Kingdom

The United Kingdom (UK) is also experiencing the effects of climate change. Av-

erage UK land temperature has risen by around 1 ◦C since 1850–1900, and the ten

warmest years since 1884 have all occurred since 2002 (Kendon et al., 2020; Met Of-

fice, 2021). 2020 was the third warmest, fifth wettest and eighth sunniest year on UK

record; the only year to be in the top-10 for all three variables (Kendon et al., 2021).

2Please see IPCC (2022) for a detailed description of these impacts at a global and regional level.
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The wettest February, April, June, November and December recorded in monthly

series from 1862, have all occurred since 2009 (Kendon et al., 2021). Climate change

is also increasing the frequency and severity of extreme events (IPCC, 2021). In

August 2020, southern England experienced one of the most significant heatwaves of

the last 60 years, while in February 2020 storms Ciara and Dennis, arriving a week

apart, caused severe and widespread flooding across the UK (Kendon et al., 2021).

In July 2022, a new record maximum temperature was recorded for Wales (37.1 ◦C),

Scotland (34.8 ◦C) and England (and UK, 40.3 ◦C) (Met Office, 2022a).

By the end of the 21st century, all areas of the UK are projected to be warmer,

with the level of warming depending on future emissions (Figure 1.1). The 50th

percentile annual mean temperature anomaly for 2080–2099, compared to 1981–

2000, is 1.4 ◦C for the lowest emissions Representative Concentration Pathway

(RCP2.6), but 3.9 ◦C for RCP8.5, the highest emissions scenario (Lowe et al., 2018).

The probability of observing summers as hot as 2018, which was the joint-warmest

summer in the UK (together with 1976, 2003 and 2006) and had severe implications

for several sectors, has already increased due to climate change and is projected to

reach approximately 50 % by mid-century (CCC, 2021b; Met Office, 2021). Further,

projections show a continued sea level rise until 2100 regardless of the emission

pathway, an increase in average winter precipitation and a significant increase in

hourly precipitation extremes (Met Office, 2021).

Recognising the need to decarbonise, the UK was the first major economy

to commit, through the The Climate Change Act 2008 (2050 Target Amendment)

Order 2019, to a legally-binding target of reaching net zero GHG emissions by

2050. The UK has also set an ambitious NDC target of reducing its GHG emissions

by at least 68 % on 1990 levels by 2030 (HMG, 2021c). In addition to the NDC

and in accordance to the 2008 Climate Change Act, the process of reducing GHG

emissions in the UK is also guided by the Carbon Budgets that restrict UK’s GHG

emissions over five-year periods (HMG, 2021c). The sixth carbon budget, set in law

by the UK government, requires that the UK GHG emissions should be reduced by

78 % compared to the 1990 levels by 2035 (HMG, 2021c). Achieving these targets
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Figure 1.1: Probabilistic 20-year mean temperature anomalies over land based on the 2018
UK Climate Projections, generated for four Representative Concentration Path-
ways (RCP2.6–8.5) using the Met Office web tool (Met Office, 2018a).
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requires action across all sectors, including housing, which was responsible for

around a fifth of UK territorial CO2 emissions in 2020 (BEIS, 2021a). Such actions

may translate to urgent and large-scale changes in the housing stock. According

to the UK government’s Heat and Building Strategy, new homes should be built

to a very high standard of thermal efficiency and airtightness, whereas in existing

homes that fall below the government’s energy standard a “fabric-first” approach

will prioritise building envelope improvements (HMG, 2021b). In conjunction with

improved thermal efficiency, the widespread adoption of heat pumps and the use of

heat networks and hydrogen, where appropriate, will be responsible for the majority

of GHG emissions reduction from homes (HMG, 2021c). While their contribution

to the UK’s mitigation efforts is important, especially for the near-term emissions

reduction, buildings in general and housing in particular, also play an important part

in adaptation.

1.2 Study Motivation

1.2.1 The Importance of Adaptation

In their Independent Assessment of UK Climate Risk, the Climate Change Com-

mittee (CCC) identified “risks to human health, wellbeing and productivity from

increased exposure to heat in homes and other buildings” as one of eight risks with

the highest priority for adaptation (CCC, 2021b). The UK’s relatively mild winters

and temperate summer conditions meant that indoor overheating, which qualitatively

describes the state at which occupants feel uncomfortably warm due to the indoor

environment (CIBSE, 2013), has not traditionally been a concern, and since 1965

efforts have instead focused on reducing heat loss in cold weather (Lomas and Por-

ritt, 2017). While the UK housing stock remains thermally inefficient compared to

neighbouring heating-dominated countries (ACE, 2015), increased levels of building

thermal insulation and airtightness, along with the use of better-performing boilers

facilitated the reduction of its GHG emissions by 22 % in 2015 compared to 1990s

levels, despite a 25 % increase in the number of homes (BEIS, 2017).

Despite the improvements in the housing stock’s thermal efficiency, fuel poverty
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and the health implications of low indoor winter temperatures remain a major concern

in the UK (Armstrong et al., 2018). At the time of writing, in 2022, the percentage

of homes in fuel poverty may increase for the first time in more than a decade

due to the steep increase in cost of fuel (Hinson and Bolton, 2022). However, a

“perfect storm of interacting factors” has resulted in indoor overheating also being

a major concern in the UK and other heat-dominated countries (Lomas and Porritt,

2017): a warming planet with more frequent and severe heatwaves, urbanization

and the associated urban heat island (UHI) effect, an ageing population with little

experience of warm weather and a housing stock adapted primarily to cold winter

conditions have culminated to a growing risk of indoor overheating with wide-

ranging implications. Cognitive performance, reduced productivity, sleep quality and

overall quality of life are all thought to be adversely affected by indoor overheating

(Lan et al., 2011; Okamoto-Mizuno and Mizuno, 2012), which is thought to occur

in approximately 19 %3 of existing homes (Lomas et al., 2021). Further, studies on

morbidity and mortality during periods of high outdoor temperature suggest that such

conditions contribute to significant excess mortality in England, and provide indirect

evidence on the importance of indoor overheating as determinant of heat-health

(Kovats and Brisley, 2021; WHO, 2018). A notable recent example was the summer

of 2020, where the total cumulative all-causes excess mortality (taking out the effects

of Covid-19) during its three heatwaves in England (2556 deaths) was comparable to

the heatwaves of 2003 (2234 deaths) and 2006 (2323 deaths) (Kovats and Brisley,

2021). In the absence of adaptation, Hajat et al. (2014) estimated a 257 % increase in

heat-related deaths by 2050, from an annual baseline of around 2000 excess deaths in

the 2000s. While such forecasts are not without uncertainties, the trend of increasing

heat-related mortality and other adverse consequences caused by the lack of adequate

adaptation to a warming planet is clear.

To limit the impact of indoor overheating on the occupants’ health and wellbeing,

clear and strong policy is required. However, as the CCC noted in June 2021,

“policies to address overheating risks in buildings are still missing despite it being

3Such estimates depend on multiple factors, including the method used to quantify indoor over-
heating risk.
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Figure 1.2: Historical (BEIS, 2021d; CCC, 2019) and projected (CCC, 2020) uptake of
Home Energy Efficiency (HEE) measures.

one of the top risks in all UK climate risk assessments published to date” (CCC,

2021b). This changed in December 2021, when Part O Overheating was introduced

as an amendment to the Building Regulations 2010 (The Building Regulations Etc.

(Amendment) (England) Regulations 2021). Part O, which came into force on the

15th June 2022, signals a step forward in tackling indoor overheating. It requires that

“reasonable provision” is made to limit unwanted solar gains in summer and provide

adequate means to remove heat from the indoor environment of any building that

contains at least one room for residential purposes, other than a room in a hotel4.

Compliance with Part O can be demonstrated through the use of one of two methods

described in Approved Document O (ADO) (HMG, 2021a): (1) a simplified method,

and (2) a dynamic thermal modelling method which is largely based on Technical

Memorandum 59 (TM59) released by the Chartered Institution of Building Services

Engineers (CIBSE) (CIBSE, 2017).

While the Part O amendment and the release of ADO are positive steps in the

effort to adapt against a warming climate (CCC, 2022), it is important to highlight that

4It is worth highlighting that Part O requires that in meeting this obligation, “account must be
taken of the safety of any occupant, and their reasonable enjoyment of the residence; and mechanical
cooling may only be used where insufficient heat is capable of being removed from the indoor
environment without it.” (The Building Regulations Etc. (Amendment) (England) Regulations 2021)
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Part O, and ADO, apply only to new residential buildings (HMG, 2021a). While new

homes are generally considered to be at a greater risk of indoor overheating, evidence

suggests that a significant percentage of the existing housing stock already overheats

(Lomas et al., 2021). Further, there are concerns that home energy efficiency (HEE)

measures can, in some circumstances, exacerbate the risk of indoor overheating

(Shrubsole et al., 2014; Taylor et al., 2021). Since the uptake of HEE measures is

expected to increase due to climate change mitigation actions (Figure 1.2), and hot

summers like 2018 are expected to further increase in frequency (Met Office, 2021),

policies should aim to reduce indoor overheating risk in the existing housing stock

whilst also reducing its environmental footprint.

1.2.2 Building Stock Models as Tools to Support Policymaking

Devising effective mitigation and adaptation policies is challenging. To identify

solutions that offer the greatest benefit for the smallest cost, it is important to quantify

each option’s effectiveness and investigate any unintended consequences. This may

be achieved through modelling; the process of creating an abstraction of a natural

system governed by certain (often mathematical) rules, used to estimate an output of

interest or as a way to understand the natural system better (Saltelli et al., 2008). As

Oraiopoulos and Howard (2022) describe, models have been used to guide energy

policy since the 1970s. Initially the capabilities of such models in representing

buildings was limited, however, research in the decades that followed has resulted

in their advancement and maturity. Building Performance Simulation (BPS) tools

enable a mathematical model of a building and its systems to be constructed and

simulated at a given level of abstraction (Mantesi et al., 2018). Several BPS tools

exist with different capabilities5, which often rely on a series of heat and mass

transfer processes linked through a heat balance equation (Crawley et al., 2008). To

construct and simulate a BPS model, numerous inputs must be provided, including:

the building’s geometry, thermophysical characteristics, electrical equipment, heating

ventilation and air conditioning (HVAC) system, occupant presence and actions, and

5The terms “Building Energy Model (BEM)” or “Dynamic Thermal Simulation (DTS)” are also
commonly used to describe BPS tools or models depending on their characteristics.
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information on the local weather. Outputs from such simulations can include heating,

cooling and electricity demand, indoor temperature and pollutant concentration.

As it is not uncommon for policies to target thousands to millions of homes, that

might share some similarities but will differ in many ways, there has been a growing

interest in building stock modelling over the last decade (Oraiopoulos and Howard,

2022; Reinhart and Cerezo Davila, 2016).

Building stock modelling (BSM) is the development and implementation of

mathematical representations of a group of buildings, used to investigate one or

multiple quantities of interest. What constitutes as a group will depend on the

application, and the scale typically ranges from buildings at a local or regional level

to that of a national level (Reinhart and Cerezo Davila, 2016). One approach to

BSM, referred to as “bottom-up engineering” or “bottom-up building physics”, relies

on the use of BPS tools to predict the quantity of interest for each member, or a

representative sample, of the selected group of buildings (Kavgic et al., 2010; Lim

and Zhai, 2017b). Thus, the same calculation engine (i.e. the BPS tool) might be

used to model a single building or a large group of buildings. However, in the case

of building stock modelling, a set of inputs must be defined for each building being

modelled, and appropriate techniques are needed to analyse the outputs. Therefore,

bottom-up buildings stock models require extensive databases of empirical data to

support the detailed modelling of each building (Kavgic et al., 2010). Compiling

these databases requires substantial time, effort, and financial investment, while it can

also take a considerable amount of time to construct and simulate the models (Lim

and Zhai, 2017b; Reinhart and Cerezo Davila, 2016). Since a complete dataset of

the inputs needed to model each building in a stock is not available, some inputs are

often inferred based on the building characteristics (e.g. typology and approximate

age of construction) that are available (Mavrogianni et al., 2012; Taylor et al., 2015).

Another commonly used simplification in building stock modelling relies on the

concept of archetypes; building definitions that represent a group of dwellings with

similar properties (Reinhart and Cerezo Davila, 2016). This method reduces the

amount of data and model simulations required. Generating archetypes requires
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the classification (or segmentation) of the building stock into homogeneous groups

(i.e. groups of dwellings with similar properties), and the characterisation of each

group, the specification of all model inputs associated with each group of dwellings

(Reinhart and Cerezo Davila, 2016). One such model is the archetype-based UK

Housing Stock Model (UK-HSM); a model developed by UCL researchers that uses

EnergyPlus, an open-source BPS tool developed by the United States Department

of Energy (DOE, 2016), as its calculation engine. A key aim of UK-HSM is to

guide heat-related adaptation efforts in UK homes, and has so far been used to

assess the impact of home energy efficiency retrofit and occupant actions on summer

indoor temperatures (Mavrogianni et al., 2012; Mavrogianni et al., 2014) and for

heat-related mortality modelling in London and the West Midlands (Taylor et al.,

2015; Taylor et al., 2018b).

Archetype-based building (or housing) stock models can be an asset to poli-

cymakers, allowing for the consideration of multiple policy options on groups of

dwellings representative of the building stock. However, the level of trust in their

results should be limited until they are validated against empirical data and the asso-

ciated uncertainties, which are at the core of any modelling process, are quantified

and reduced. Uncertainties may arise from multiple sources, including (Kennedy

and O’Hagan, 2001): a lack of knowledge about the true values of some model

inputs (parameter uncertainty), the inherent variability of the system being modelled

(residual variability), and the inadequacy of the model in fully representing the

real system (model inadequacy). All aforementioned sources of uncertainty are

expected to affect UK-HSM, and an empirical validation study by Symonds et al.

(2017) sought to quantify its predictive performance against the indoor temperatures

monitored in 823 dwellings during the 2011 Energy Follow-Up Survey (Hulme et al.,

2013a). The study revealed that predictions were generally better when comparing

aggregate groups of dwellings than in dwelling-by-dwelling comparison. For the

group of semi-detached dwellings, the most frequently occurring building typology

in England, the archetype-level Root Mean Square Error for the mean of daily max-

imum temperatures in the summer period ranged between 0.94 – 1.73 ◦C depending
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on location, with the differences deemed statistically significant. To improve the

predictive performance of UK-HSM, a method to quantify the different sources

of uncertainty and reduce parameter uncertainties in archetype-based models is

required; one such method that is popular within the building modelling community

relies on Bayesian inference (Hou et al., 2021; Oraiopoulos and Howard, 2022).

1.2.3 A Bayesian Solution to the Problem of Uncertainties

The use of Bayesian inference for the calibration of computer models, introduced

by Kennedy and O’Hagan (2001), has inspired the calibration of several archetype-

based building stock models (Hou et al., 2021; Oraiopoulos and Howard, 2022). The

key ingredients to this process are: (1) a model with at least one uncertain input and

an output of interest, (2) empirical (also referred to as field or monitored) data of

the output of interest, and (3) a set of probability distributions, referred to as priors,

representing the modeller’s assumptions of the possible values that the uncertain

model inputs might take. Through the use of Bayes’ Theorem, a set of updated

distributions of the uncertain model inputs, referred to as posteriors, can be obtained.

The main benefits of Bayesian calibration over other approaches relate to its

ability to not only improve predictive performance, but also quantify uncertainty

and apportion it to different sources (Booth et al., 2012). Many other calibration

procedures are deterministic, resulting in precise estimates of calibration parameters

that might be inaccurate if the empirical data used for the calibration are insufficient

or otherwise limited, and ignore uncertainties that naturally arise in modelling

procedures (Hou et al., 2021).

A review by Hou et al. (2021) revealed that Bayesian calibration of building

stock models has concentrated on energy-related outputs (for example, heat demand

or electricity consumption).6 An attempt at calibrating archetype-based models of

indoor temperature using Bayesian inference could not be identified, despite the

important contribution that such models can have in guiding adaptation policy. To

undertake Bayesian calibration on archetype-based models, a necessary prerequisite

6The only exception in the Hou et al. (2021) review was the work of Braulio-Gonzalo et al. (2016)
who looked at discomfort hours, in addition to energy demand. However, this work did not involve
any field data and relied only on simulation data.
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is the classification of the housing stock into homogeneous groups of dwellings in

order to accurately apportion uncertainty. Despite the importance of this step, it is

often not discussed in detail, nor is it clear how the classification performed takes

into consideration the calibration process (see Section 2.4.2). Another crucial step in

the Bayesian calibration process is the choice of priors, especially when field data are

limited. In some cases, priors are defined as uniform distributions, which are unlikely

to represent the existing knowledge about the model inputs (see Section 2.4.5.1).

Where non-uniform distributions are assigned, there is often little discussion as to

why these distributions were selected.

1.3 Research Aim, Objectives and Scope
As argued in Section 1.2, there is an urgent need to adapt the housing stock in ways

that safeguard occupants from the risks to health, wellbeing and productivity associ-

ated with elevated ambient temperature, and more frequent and severe heatwaves.

Archetype-based housing stock models of indoor temperature can support such

efforts, by enabling policymakers to evaluate and compare the impact of different

interventions. However, uncertainties are at the core of any modelling process, and it

is crucial for such uncertainties to be quantified and minimised in order to allow for

well-informed decision-making. Yet, efforts in calibrating such models are lacking.

This research gap has motivated this doctoral study, whose aim is:

to quantify and reduce uncertainties of archetype-based housing stock

models of summer indoor temperature.

To achieve this aim, and by examining published work on model calibration, three

research objectives have been identified:

1. To develop a Bayesian calibration framework for archetype-based housing

stock models of summer indoor temperature;

2. To quantify the uncertainty of the UK Housing Stock Model inputs with the

greatest influence on summer indoor temperature for a homogeneous group of

dwellings;



1.3. Research Aim, Objectives and Scope 55

3. To quantify the level of improvement in the predictive ability of the UK Hous-

ing Stock Model following application of the Bayesian calibration framework

and reduce model input uncertainty for a homogeneous group of dwellings.

In response to the first research objective, a Bayesian calibration for archetype-

based housing stock models of indoor temperature will be introduced. The focus on

an archetype approach is due to the lack of detailed model input data that make it chal-

lenging to model individual buildings within the housing stock. With increasing data

availability and computational resources, the prevalence of the individual building

modelling approach of BSM is expected to grow, yet the archetype-based approach

remains a key method within the field, with many recent examples utilising it (e.g.

Tardioli et al., 2020; Wang et al., 2020). Advancements made within this thesis are

expected to contribute to the Bayesian calibration of building stock models that take

an individual building and archetype-based approach. The multistep framework will

consider classification and characterisation in addition to model calibration. The

process will rely on a definition of homogeneity that will be provided together with

the proposed framework. It is expected that the framework could be easily adapted

for most archetype-based models of indoor temperature. For this thesis, however,

the framework’s application will focus on UK-HSM, which acts as a case study for

the proposed framework.

To achieve the second research objective, the framework’s classification and

characterisation steps will be applied to UK-HSM. Statistical analysis of the 2011

English Housing Survey and Energy Follow-Up Survey will be considered together

with the UK-HSM model structure to identify a homogeneous group of dwellings

(Hulme et al., 2013a). Model input uncertainty will be quantified using empirically-

based probability distributions, where possible. Sensitivity analysis will be used to

select the model inputs with the greatest influence on summer indoor temperature.

Having quantified UK-HSM model input uncertainty for a homogeneous group

of dwellings in the second research objective, the third research objective aims to

reduce this uncertainty using Bayesian calibration and quantify the improvement

in predictive ability. The process will be informed by the probability distributions
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of the most influential variables identified in the second research objective, and the

empirical data of summer indoor temperature collected during the 4M project in

Leicester in 2009 (Lomas and Kane, 2013). The data will be split into a training and

validation set, and the improvement in out-of-sample prediction will be quantified

using commonly used validation metrics.

1.4 Novel Contributions
The novel contributions of this thesis are:

1. A modular Bayesian calibration framework for archetype-based housing stock

models of summer indoor temperature that relies on a practical definition of

homogeneity. The framework explicitly describes the classification and prior

elicitation steps in detail.

2. The first application of Bayesian calibration on an archetype-based model of

summer indoor temperature. Lessons learned from this process, such as the

importance of outdoor temperature lag components, can inform research in

the field of indoor temperature modelling.

3. The study of associations between dwelling and household characteristics

and standardised summer indoor temperature using large-scale empirical data,

published as a paper (Petrou et al., 2019b). This provides further evidence

to the field of indoor overheating on the factors associated with high indoor

temperature.

4. The introduction of an innovative method for identifying suitable probability

distributions from empirical data. This technique can find many uses within

the building modelling field, including the characterisation of model inputs or

the analysis of model output, improving existing modelling practices. A paper

provides guidance on the method’s application, while publicly available R

code facilitates its adoption by the wider modelling community (Petrou et al.,

2021b).

5. An advancement in the implementation of Gaussian processes as surrogate
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models in the process of Bayesian calibration that can greatly reduce computa-

tional cost. This alternative approach can allow calibration to be implemented

even if computational resources are relatively limited. In addition, it may

improve current metamodelling practices by enabling the use of more training

data, where previously the processing time would have been prohibitive.

1.5 Structure of the Thesis
This thesis consists of eight main chapters, including this introductory chapter (Fig-

ure 1.3). Following the main body, appendices are available and provide supporting

information, a more detailed coverage of the relevant theory and additional results.

The following paragraphs provide an outline of each chapter.

Chapter 2 begins with a review on the topic of indoor overheating in residential

settings in temperate climates, placing emphasis on the UK. The review covers

the main causes of indoor overheating, its implications on occupants’ health and

wellbeing, along with ways for quantifying and reducing the overheating risk. The

chapter continues with an overview of building stock modelling, and explains why

uncertainties are an intrinsic component of the modelling process. Approaches to

model calibration are described and compared, and the theory of Bayesian inference

for model calibration is introduced. Published research on the Bayesian calibration

of archetype-based housing stock models is reviewed, and the chapter concludes

with a summary of the key research gaps.

In Chapter 3, the five-step Bayesian calibration framework is introduced, to-

gether with a definition of homogeneity specific to this work. This is in response to

the first research objective set out in Section 1.3 and relies on theory and literature

covered in Chapter 2. The purpose and importance of each step is explained, while

a more detailed description of the methods associated with each step is included

in Chapters 4–7. The two main datasets used within this study are described, and

modelling details regarding UK-HSM are provided.

In Chapter 4, a group of dwellings assumed to be homogeneous is identified

by applying Steps 1 and 2 of the Bayesian calibration framework – whether further
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segmentation of the group is required is assessed in Step 4 (described in Chapter 6).

Chapter 4 begins with a detailed description of the methods relating to the frame-

work’s first two steps, followed by the relevant results. In Step 1, a statistical analysis

of the 2011 EFUS is carried out and variables that are significantly associated with

summer indoor temperatures are identified. In Step 2, a subset of the statistically

significant variables are used as classifiers to select a group of dwellings from the

4M dataset suspected to be homogeneous. The chapter concludes with a discussion

on limitations and a summary.

Chapter 5 focuses on Step 3 of the Bayesian calibration framework. This step

requires the identification of appropriate probability distributions for each continuous

model input of UK-HSM. Methods for accomplishing this task are first detailed,

before their application is presented. The findings from this component of the work

and its limitations are discussed.

Chapter 6 covers Step 4 of the Bayesian calibration framework, the sensitivity

analysis, that aimed to identify influential model inputs to be calibrated. In addition,

through this process, it is determined whether the group of dwellings suspected to

be homogeneous following Step 2 (Chapter 4) should be further segmented. The

limitations associated with this process are discussed. Jointly, Chapters 4–6 address

the second research objective identified in Section 1.3.

Chapter 7 details the calibration of UK-HSM using the 4M data for a homogen-

eous group of dwellings. The chapter begins with a description of methods specific to

this component of the work. Details regarding the parametric calibration experiment

that was conducted are provided, and the findings are presented and discussed. The

results from this chapter include a quantified estimate of the improvement in out-

of-sample predictive performance, and the reduction of model input uncertainties;

thus, addressing the third research objective. The limitations of this work are also

discussed.

Chapter 8, begins by providing a summary of the key conclusions of this

work in Section 8.1. Section 8.2 revisits the research aim and objectives set out in

Section 1.3 and evaluates whether they have been achieved. The novel contributions
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and limitations of this thesis are discussed, and an outline of future work that could

follow on from this study is presented.

Further information that might be of interest to the readers on topics such as

the mathematical background of Gaussian Processes, floor plans and schedules of

the UK-HSM archetypes, or additional results are provided within the Appendices

(Chapters A–F).
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Figure 1.3: Flowchart depicting the text and information flow of the thesis. RO1-3 are
shortened versions of Research Objective 1-3. UK-HSM stands for UK Housing
Stock Model, QoI for Quantity of Interest, EFUS for Energy Follow-Up Survey
and EHS for English Housing Survey.



Chapter 2

Background Theory and Literature

Review

The previous chapter established the link between climate change, driven by the

anthropogenic increase in greenhouse gases (IPCC, 2021), and indoor overheating,

qualitatively defined as the state at which occupants feel uncomfortably warm due to

the indoor environment (CIBSE, 2013). The importance of indoor overheating as an

adaptation risk in the United Kingdom (UK) was highlighted (CCC, 2021b), and its

implications for occupant health and wellbeing were briefly discussed. As argued,

while the introduction of Approved Document O is a step in the right direction in

tackling indoor overheating in new homes, there is currently a gap in policy for

existing homes (CCC, 2022). A valuable tool for policymakers, that could inform

policies on the adaptation of existing homes and enhance policies on new homes, is

building stock modelling; an approach with a long history of guiding energy policy

(Oraiopoulos and Howard, 2022). An established model that has been used to assess

the impact of climate change, home energy efficiency and adaptation on indoor

overheating and health is the archetype-based UK Housing Stock Model (UK-HSM)

(Taylor et al., 2021). Validation work on UK-HSM, that recognised the need for

uncertainty quantification and calibration (Symonds et al., 2017), and the lack of

such work on archetype models of summer indoor temperature have motivated this

research (Section 1.2).

The purpose of this chapter is to provide the theoretical foundation that will
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Figure 2.1: Chapter 2 flowchart. This is an abridged version of Figure 1.3, listing the five
sections of Chapter 2. RO1 is a shortened version of Research Objective 1.

be used to address the research aim and objectives outlined in Section 1.3. This

will be achieved through a critical review of the relevant literature, and a detailed

consideration of the theory governing model uncertainties and calibration. It consists

of four core sections and concludes with a summary of the literature discussed, and

the key research gaps that this thesis aims to address (Figure 2.1).

In the first segment, the topic of indoor overheating is explored in more detail

(Section 2.1). The causes of indoor overheating, are first considered, followed by

a description of its implications on occupants and society. In the last part of this

segment, established approaches for assessing thermal discomfort and quantifying

excess heat-related mortality are discussed.

The second segment of this chapter focuses on building stock modelling (Sec-

tion 2.2). Following a brief introduction to the various approaches of building

stock modelling, the steps for archetype-based model development are discussed in

more detail. The segment concludes with a review of the literature describing the

development, application and validation of the archetype-based UK-HSM.

Building on the previous section, the third segment focuses on the topic of

modelling uncertainties (Section 2.3). The segment begins with a discussion on why

modelling and uncertainties are inseparable, before the various classes and sources

of uncertainty are defined. Examples of where uncertainties can arise during building

stock modelling are provided, and methods for quantifying and reducing them are

introduced. One such approach is model calibration. Following a brief description



2.1. Indoor Overheating 63

of the various approaches to calibration, emphasis is placed on statistical – more

specifically Bayesian – calibration, for reasons discussed in Sections 2.3.5–2.3.6.

The segment concludes with the key steps in Bayesian calibration.

In the fourth part of this chapter, a critical evaluation of published studies on

the Bayesian calibration of archetype-based housing stock models is presented (Sec-

tion 2.4). Eight studies are compared and contrasted according to thirteen categories,

with similarities, strengths and weaknesses discussed. A common denominator

across all studies is the focus on energy-related outputs.

For the first three parts, the literature was identified through an iterative process

and over several years that largely relied on the use of appropriate keywords in Google

Scholar to identify relevant studies (pearl growing), and examining publications

that were either cited in or cited by them (snowballing). To identify the studies on

the Bayesian calibration for archetype-based housing stock models discussed in the

fourth segment of this chapter, a review was carried out in April 2018. Boolean

searching was used in “ScienceDirect”, with the terms “Building AND Calibration

AND Simulation” in titles, abstracts and keywords. Following a review of titles and

abstracts, and the application of the snowballing technique, four relevant studies

were identified. Since then, another four studies were added based on monitoring of

the literature and the comprehensive reviews by Hou et al. (2021) and Oraiopoulos

and Howard (2022).

2.1 Indoor Overheating

Part of the challenge in mitigating indoor overheating is its complex nature; it is a

sociotechnical problem that may be influenced by several physical parameters, human

behaviour and the occupants’ perception of the thermal environment (Kougionis,

2018). Under the same conditions, satisfaction with the indoor environment can vary

between occupants (CIBSE, 2013), making it difficult to accurately quantify and

minimise overheating risk. Progress in tackling this challenge has been made, and

the following sections summarise the current state of knowledge with regard to the

causes, implications and approaches to quantifying indoor overheating risk.
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2.1.1 Causes of Indoor Overheating

While the increase in indoor overheating risk in UK homes is largely driven by

the warming effect of greenhouse gas emissions, many other factors are thought

to further exacerbate it. The naturally occurring spatial variation of the climate

contributes to a greater overheating risk potential for homes located in the southern

regions of the UK (Taylor et al., 2014). Another spatial variation in overheating risk

potential arises from the impact of the local urban form on a home’s microclimate.

Ambient temperatures are higher in urban areas than in suburban or rural areas due to

the use of materials that increase the absorption and retention of heat (e.g. concrete)

or the creation of dense urban street canyons that trap solar radiation and waste

heat from anthropogenic activities; a phenomenon referred to as the Urban Heat

Island (UHI) effect (Mavrogianni et al., 2010; Heaviside et al., 2017). A home’s

overheating risk potential can also be influenced by its interaction with neighbouring

buildings, trees and other vegetation that may provide shade from the sun but also

form a wind barrier (Pisello et al., 2018).

Beyond the impact of local environmental characteristics, building design itself

can increase or decrease the risk of indoor overheating; when heat gains from the

outdoor or indoor environment are greater than heat losses through the building

envelope, the accumulated heat results in a rise of indoor temperature. Building

characteristics can alter this heat balance, modifying the risk of indoor overheating.

The level of overheating risk is known to vary between building typologies, with top

floor flats, mid-terraced dwellings and bungalows shown to overheat more (Lomas

and Kane, 2013; Taylor et al., 2016). However, variations within a dwelling type

can be greater than between dwelling types and may be the result of factors such as

orientation, glazing ratio, fabric thermal resistance and thermal mass (Mavrogianni

et al., 2012).

Transmission of solar radiation through non-opaque surfaces can elevate indoor

overheating risk, especially for homes with highly-glazed and unshaded façades

facing south, south-west or west (ZCH, 2015). The heat conducted through opaque

surfaces can also be important, and may be reduced through increasing the albedo or
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thermal resistance of external surfaces. Evidence suggests that roof insulation can

reduce overheating risk, especially for the top floor rooms (Mavrogianni et al., 2012;

Taylor et al., 2014). The effect of wall insulation is less clear as studies suggest an

increase, decrease or no significant difference on indoor overheating risk, depending

on where the insulation is placed, on whether purge ventilation is used and on the

building’s location (Fosas et al., 2018; Lomas et al., 2021; Mavrogianni et al., 2012;

Peacock et al., 2010). Heavyweight constructions are associated with a lower risk

of indoor overheating, especially when accompanied by night cooling, due to the

dampening effect of thermal mass on the indoor temperature profile (Peacock et al.,

2010; Hacker et al., 2008).

Ventilation provision can also be crucial. For mechanically ventilated buildings

it is important to ensure that the design, installation and operation of ventilation

systems maintains good air quality but also reduces indoor temperatures where

necessary (McLeod and Swainson, 2017). For naturally ventilated homes, a building

design that can only provide single-sided ventilation or offers limited window open-

ing area will be more prone to indoor overheating (McLeod and Swainson, 2017;

Petrou et al., 2019a).

Occupant behaviour is fundamental to how a building performs, and it is crucial

to understand what factors may influence the occupants’ actions in order to design

and retrofit homes in a manner that limits indoor overheating risk. For example, even

where there is – in theory – capacity for effective ventilation, factors such as noise,

poor outdoor air quality, lack of mobility or security concerns can all result in a less

than optimal use of windows from an overheating risk perspective (Mavrogianni

et al., 2016). High levels of heat generated indoors (internal gains) can also have a

significant contribution to indoor overheating risk (McLeod and Swainson, 2017;

ZCH, 2015). Internal gains are generated from common activities such as cooking

or using electrical equipment (ZCH, 2015). In some cases, large internal gains may

arise from a poor building design, for instance as a by-product of poorly insulated

hot water pipes.
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2.1.2 Implications of Indoor Overheating

Physiologically, the human body tries to maintain a core body temperature of ap-

proximately 37 ◦C through the process of thermoregulation (Bouchama and Knochel,

2002; WHO, 2009). Heat is gained from the environment, produced by the meta-

bolism, and dissipated by radiation, convection, conduction and perspiration (WHO,

2009). When exposed to elevated temperature, the human body may experience heat

stress, defined as the “perceived discomfort and physiological strain associated with

exposure to a hot environment” (Bouchama and Knochel, 2002). If the level, or the

rate, of heat stress experienced is greater than the human body can adapt to during

the exposure period, then thermoregulatory failure can take place. Heat would no

longer be dissipated effectively, leading to heat exhaustion, mild-to-moderate illness

with numerous symptoms, and may eventually develop into a heat stroke (Bouchama

and Knochel, 2002). Heat stroke is characterised by a core body temperature greater

than 40 ◦C with possible impairments to the central nervous system that may be fatal

if left untreated. Since evidence suggests that people in several countries spend on

average 56-66 % of their time at home, and more than 90 % indoors (Schweizer et al.,

2007), exposure to heat indoors contributes a major part of overall exposure.

The relative risk of heat-related mortality has been shown to increase with ambi-

ent temperature above a threshold, and is thus greatest during periods of extreme heat

(Armstrong et al., 2010). An example where such deadly consequences occurred

at a large scale was the 2003 European heatwave, which resulted in 70,000 addi-

tional deaths compared to the reference period of 1998-2002 amongst 16 European

countries (Robine et al., 2008). Over a 10-day period, an excess of more than 2000

deaths were reported within England and Wales during the 2003 heatwave (Johnson

et al., 2005). During the same period, 15,000 excess deaths were reported in France

with roughly 50% resulting from the domestic sector as the mortality rate increased

by 74% in homes and 91% in care homes (Fouillet et al., 2006). Importantly, a

harvesting effect (where the mortality rate decreases following an event) that would

compensate for the increased mortality rate over summer was not observed in most

countries (Robine et al., 2008). Therefore, it is possible that preventable deaths
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occurred that might have been avoided if the right actions were taken. Since the

2003 heatwave, several other major episodes resulted in significant excess deaths in

England, including the heatwaves in 2006 (2323 deaths), 2018 (863 deaths), 2019

(892 deaths) and 2020 (2,556 deaths, taking out the effects of Covid-19) (Kovats

and Brisley, 2021). As may be noted, more excess deaths were recorded during

the 2020 heatwaves than in previous years, with the cumulative excess all-cause

mortality being the highest recorded since the introduction of the Heatwave Plan for

England in 2004 (Kovats and Brisley, 2021). Many factors might have contributed

to the comparatively high number of excess deaths, and it is unclear whether the

increased time spent at home due to the Covid-19 pandemic played a part. It is worth

highlighting that excess heat-related deaths are thought to occur even in periods

not classified as heatwaves,1 and their cumulative mortality burden might in some

cases be greater than that of the heatwave period (Hajat et al., 2006). Furthermore,

in the absence of adaptation and with the projected increase in global temperature,

the problem of heat-related mortality is expected to grow in magnitude. Hajat et al.

(2014) estimated a 257 % increase in heat-related deaths by 2050 compared to a

baseline of around 2000 deaths in the 2000s has been estimated.

When levels of heat stress are not life-threatening, the thermal discomfort res-

ulting from indoor overheating can still cause several adverse impacts to individuals

and society. Evidence of reduced cognitive performance due to thermal discomfort

suggests that domestic indoor overheating could impair productivity when working

from home (Lan et al., 2011). The thermal environment is also thought to be a

key determinant of nocturnal sleep quality, with deviations from the thermoneutral

temperature range impacting the duration and onset of Rapid-Eye Movement (REM)

and Slow-Wave Sleep (SWS) (Joshi et al., 2016).2 As the SWS and REM stages are

essential to physical recovery, memory consolidation and learning (Lan et al., 2017),

1A heatwave is defined by the Met Office as “an extended period of hot weather relative to the
expected conditions of the area at that time of year, which may be accompanied by high humidity”
(Met Office, 2022b). In London, the threshold is 28 ◦C, but the relative risk of heat-mortality is
thought to increase above a two-day mean max temperature of 24.7 ◦C (Armstrong et al., 2010).

2The thermoneutral temperature range was defined by Joshi et al. (2016) as the range of ambi-
ent temperatures over which the body is not required to make any effort (through the process of
thermoregulation) to maintain thermal homeostasis.
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poor sleep quality is believed to reduce productivity in the workplace regardless of its

thermal environment (AECOM, 2019). Poor sleep quality may also lead to increased

risk of accidents, poor mental and physical health – including cardiovascular disease

and reduced ability to maintain a healthy immune system – and overall poor quality

of life (ZCH, 2015).

Beyond the impact on individuals and their families, indoor overheating through

its increase in mortality, morbidity, risk of accidents and reduced productivity has

an economic cost to the society (AECOM, 2019). Policies that aim to mitigate

overheating risk could, thus, not only protect individuals but limit such costs. In

addition, the implementation of such policies will likely lessen the growth in cooling

demand that poses a threat to the UK’s net zero ambitions (BEIS, 2021b). An

important step in the process of devising and refining policies that may bring such

benefits is the evaluation of indoor overheating risk prevalence, at present and under

different future scenarios.

2.1.3 Quantifying Indoor Overheating

Within built environment research and practice, it is more common to determine

whether a building’s indoor environment is likely to result in thermal discomfort,

than if it is likely to increase the risk of mortality. Since the methods and theory

associated with each task are different, they are discussed separately in the following

sections.

2.1.3.1 Assessing Thermal Discomfort

A direct way to identify whether a building’s occupants are thermally comfortable is

to ask them (CIBSE, 2013). Post Occupancy Evaluation (POE) is an approach that

aims to evaluate the building’s performance through feedback from the occupants,

and may be used to investigate their experience of the thermal environment and

other relevant qualities (CIBSE, 2013; CIBSE, 2020). While the POE method can

offer invaluable insights, over the last few decades researchers have worked on

the development of thermal comfort models that may be used to quantify thermal
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discomfort using environmental parameters that may be monitored or modelled.3

For decades following its invention in 1970, the dominant model of thermal

comfort was Fanger’s Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied

(PPD) (de Dear et al., 2013). The PMV/PPD model, developed using measurements

from climate chamber experiments and relying on a thermal balance equation, aims to

predict the mean comfort vote that would be cast by a group of subjects given a set of

clothing level and environmental conditions, and the proportion of people that would

be dissatisfied (CIBSE, 2013). While still in use today for mechanically conditioned

buildings, de Dear et al. (2013) noted that a “paradigm shift” began around the

mid-1990s away from the physically-based PMV/PPD model and towards adaptive

comfort models, at least for naturally conditioned buildings. Such approaches utilise

field surveys of thermal comfort and concurrent monitoring of indoor and outdoor

environmental parameters to develop statistical relationships between the acceptable

indoor temperature and a variable derived from the outdoor temperature (CIBSE,

2013). An adaptive comfort model forms the basis for the assessment of thermal

comfort in naturally conditioned buildings both in ANSI/ASHRAE Standard 55, and

in BS EN 15251 (CIBSE, 2013).

As discussed by Lomas et al. (2021), the assessment of building overheating

in the 1990s and for the following two decades focused on the use of static criteria

which were also incorporated in CIBSE Guide A. With static criteria, the threshold

temperatures above which overheating is deemed to occur do not change with

ambient temperature (Lomas and Porritt, 2017). In 2013, CIBSE published Technical

Memorandum 52 (TM52) where it was argued that “the assumption that there is

a single indoor temperature limit irrespective of outdoor conditions is no longer

considered sufficient”, and proposed three criteria for assessing indoor overheating

in naturally conditioned buildings based on BS EN 15251 (CIBSE, 2013). The more

recent Technical Memorandum 59 (TM59) provides guidance on the assessment of

indoor overheating risk in new homes (CIBSE, 2017), and a method that is largely

3Contrary to the POE approach of identifying indoor overheating risk, thermal comfort models
enable the prediction of thermal discomfort using building physics models. With the advancement
and more widespread application of machine learning techniques, it might be possible to predict
indoor overheating risk using statistical models trained on POE data.
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based on TM59 is one of the two ways that compliance may be demonstrated with

Part O of the Building Regulations, according to Approved Document O (HMG,

2021a). For naturally ventilated homes, TM59 defines two criteria, and failure to

satisfy either of them indicates a high risk of indoor overheating (CIBSE, 2017).

The first criterion is based on the European standard BS EN 15251 (BSI, 2007),

which has now been superseded by 16798-1:2019 (BSI, 2019), and stems from the

adaptive principle (Nicol and Humphreys, 2002) that people react in ways which tend

to restore their comfort. The field data underpinning this equation were collected

in 26 European offices, under the EU Project Smart controls and Thermal Comfort

(SCATs) project (McCartney and Nicol, 2002; Nicol and Humphreys, 2010). The

applicability of a thermal comfort model derived from office based data in the

domestic context may be questioned, and it has been suggested that factors other than

temperature could also influence the level of comfort and tolerance to the thermal

environment (Brotas and Nicol, 2017). The second criterion is static in nature and

was derived from research on sleep quality, published in 1979 and discussed in

CIBSE in Guide A (CIBSE, 2015). A static criterion was likely preferred due to the

assumption that there is limited capacity to adapt overnight. Nicol and Humphreys

(2018) argued that adaptation can take place over a wide range of indoor temperature

through a change in duvet and sleepwear, and the threshold of 26 ◦C used by TM59

is potentially 3–5 ◦C lower than the maximum comfort temperature for nude sleeping

people. Therefore, a threshold of 29–32 ◦C may be more appropriate, although

further research is required to support this (Nicol and Humphreys, 2018).

2.1.3.2 Quantifying Excess Heat-Related Mortality

Several epidemiological studies have sought to examine and quantify the association

of high ambient temperatures with excess mortality (Basu and Samet, 2002), how this

relationship may vary within countries (Armstrong et al., 2010), between countries

(Gasparrini et al., 2015), and how it might be influenced by climate change (Vicedo-

Cabrera et al., 2021).

In one such study, Armstrong et al. (2010) used ecological time-series regression

between daily counts of all-cause mortality and predictors based on daily ambient
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temperature between the summers of 1993 to 2006 in 10 government regions in

England and Wales. The analysis quantified a threshold, the 93rd centile of the two-

day mean max ambient temperature, over which there is an increase in mortality with

increase in temperatures in all regions except the North-East. The thresholds ranged

from 21.6 ◦C in Wales to 24.7 ◦C in London, while the mean increase in relative

risks ranged from 1.3 %/°C in the North West to 3.8 %/°C in London. While this

large scale analysis of over 2.286 million deaths provides strong evidence for the

association of mortality with elevated summer temperatures, such clear and adequate

evidence of the association between indoor temperatures and health effects does not

exist (Anderson et al., 2013; WHO, 2018).

To link heat-related mortality with building characteristics in the absence of

empirical data, Taylor et al. (2015) assumed that on days which exceeded the external

temperature threshold, the temperature-mortality relationship was the same for indoor

temperatures as for outdoor temperatures. For example, if in London the threshold

was exceeded by 1 ◦C resulting in a heat-related increase in relative risk of 3.8 %,

under the same outdoor conditions, a change in the building characteristics that

would result in a 1 ◦C increase in the average maximum indoor temperature of

London homes would be associated with a further 3.8 % increase in relative risk.

Thus, the overall increase in relative risk of 7.6 %. Taylor et al. (2015) did not

have any empirical evidence for the use of indoor daily maximum temperature,

but in the absence of evidence this seems like a reasonable assumption. In other

epidemiological studies (e.g. Hajat et al., 2014), mortality was associated with

daily mean outdoor temperatures, therefore a case for the use of daily indoor mean

temperatures can equally be made.

2.2 Building Stock Modelling

Modelling, the process of creating an abstraction of a natural system, enables the

estimation of quantities that might have been hard, or impossible to otherwise

determine, and it can also be used as a way to understand the natural system better

(Saltelli et al., 2008). Since 2017, designers of new homes have been encouraged and
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guided by CIBSE TM59 to carry out indoor overheating risk modelling to identify

and avoid building designs likely to result in thermal discomfort (CIBSE, 2017).

The value of modelling in limiting indoor overheating risk is also recognised by

the English government’s guidance for compliance with the building regulations;

according to Approved Document O, modelling in the form of CIBSE TM59 is

one of the two ways that compliance with Part O of the 2021 amendment to the

building regulations may be demonstrated (HMG, 2021a). While Part O is limited to

new homes, the prevalence of indoor overheating is not; approximately 19 % of the

existing housing stock was found to overheat in 2018 (Lomas et al., 2021). Thus,

further policies that mitigate overheating risk in existing homes are required (CCC,

2022). The formulation of such policies can be supported by building stock models

whose value in guiding energy-related policies has been recognised (Kavgic et al.,

2010; Oraiopoulos and Howard, 2022).

2.2.1 Approaches to Building Stock Modelling

Building stock modelling often falls within one of two classes: (i) top-down and

(ii) bottom-up (Kavgic et al., 2010). A top-down approach will typically employ

statistical techniques on aggregate building stock data to try to infer relationships

between the quantity of interest (e.g. energy consumption or CO2 emissions) and

other variables. Bottom-up methods work at the disaggregated level, with data

combined from a hierarchy of individual components. Bottom-up approaches can

further be separated into statistical and engineering, depending on the modelling

methods used (Lim and Zhai, 2017b). Whereas a statistical approach would rely

purely on historical data to gain an understanding of the building being studied and

forecast future trends, engineering methods rely on established building physics

theory. An engineering method will require detailed input information that would

often necessitate several assumptions. On the contrary, statistical methods may be

employed faster, provided historical data are available, and will likely require less

assumptions. A key weakness of statistical methods is their inability to make accurate

predictions outside their training domain and to effectively assess the impact of new

technologies, building interventions and weather forecasts for which historical data
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does not exist. This limits their usefulness as policy design tools, with bottom-up

engineering models often preferred for such applications (Booth et al., 2012; Cerezo

et al., 2017; Lim and Zhai, 2017b).

Dynamic Thermal Simulation (DTS – also referred to as Building Perform-

ance Simulation or Building Energy Models) software are engineering (or building

physics) tools that have long been used to predict the energy demand of buildings,

assess their indoor environment and compare different retrofit options (Lim and

Zhai, 2017b). Typically, such tools require a large set of model inputs and can have

significant computational time. Applying the typical DTS approach to every single

dwelling within the housing stock would therefore require an almost prohibitive

amount of data and simulations.

A commonly used approach to overcome this difficulty is the use of archetypes

(Lim and Zhai, 2017b). A building archetype may be defined as a building definition

that represents a group of buildings with similar properties (Reinhart and Cerezo

Davila, 2016). Such a process can allow for significant reduction in the amount of

models and data required. The specification of archetype models requires two key

steps (Reinhart and Cerezo Davila, 2016):

1. Classification (or Segmentation or Clustering): The building stock under

investigation is divided into groups according to classifiers such as building

shape, age, use, occupancy, climate and systems.

2. Characterisation: A complete set of building geometry, thermal properties,

occupancy patterns and building systems have to be defined for the archetype

buildings representing the previously defined groups.

The following sections discuss in detail some of the most important approaches

to classification and characterisation.

2.2.1.1 Classification

Classification seeks to cluster a heterogeneous building stock into homogeneous

groups of buildings with similar characteristics, that may each be represented by an

archetype (Booth et al., 2012). While this process enables the treatment of some
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differences between archetypes, it does not eliminate heterogeneity, since some

differences within each group will remain. Thus, it might be more useful to treat

heterogeneity and homogeneity as the two ends of a spectrum, where increasing the

number of archetypes may result in increased modelling detail and reduced levels of

heterogeneity at the expense of a greater computational burden and data requirement

(Lim and Zhai, 2017b).4

In practice, the number of archetypes following classification can vary from less

than ten to several thousands (Reinhart and Cerezo Davila, 2016). In the absence

of data, this process has mostly been carried out on an ad hoc basis, with building

typology and age being common classifiers (Reinhart and Cerezo Davila, 2016).

Several examples of this approach exist within the literature (Filogamo et al., 2014;

Mata et al., 2014). When data are available, then a statistical approach may be

employed instead (Cerezo et al., 2017). Such an approach might involve, but is

not limited to, the use of multivariate regression analysis to determine influential

variables that could be used as classifiers (Famuyibo et al., 2012; Sokol et al., 2017),

or the use of clustering algorithms (Tardioli et al., 2018)

Following an ad hoc approach will not necessarily result in a set of inappropriate

classifiers, nor would a statistical approach ensure a better set of archetype models.

However, where adequate empirical data is available, a rigorous data-driven approach

may provide useful insights that could otherwise be missed, resulting in a potentially

more detailed classification process. In some cases, as demonstrated by Sokol et al.

(2017), a data-driven approach can result in archetype models with better predictive

performance.

2.2.1.2 Characterisation

Several methods of building characterisation have been used, from site audits to

detailed, high resolution data collection and intrusive testing methods (Coakley et al.,

2014). In the case of building stock models, modellers will often rely on national

building surveys, building codes and standards (Cerezo et al., 2017). National

4Depending on the quantity of interest, the spectrum is likely to be different. For example, the
heating system might induce heterogeneity for a modeller interested in heating demand or carbon
footprint but may be ignored if the focus is on illuminance levels.
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building surveys, an example of which is the English Housing Survey (EHS), may

often provide useful information relating to the dwelling’s physical characteristics

and occupancy for a nationally representative sample of the housing stock (DLUHC,

2021). Several model inputs could be read directly off the survey datasets, for

example floor-to-ceiling height or floor area. Despite the plethora of information

available in these datasets, they will not necessarily contain information relating to

all the required model inputs. In such cases, a modeller might either assume some

default values or try to infer values through the use of proxy variables, defined in this

thesis as: variables that can be measured, or otherwise quantified, more easily than

a variable of interest and are used to infer a value for the variable of interest. For

example, since the EHS does not contain any information on the building’s thermal

transmittance characteristics, dwelling age and wall construction may be used as

proxy variables, together with reference tables (e.g. Appendix S of the Standard

Assessment Procedure – RdSAP) to infer the desired model input (BRE, 2019).5

2.2.2 UK Housing Stock Model

In response to increasing concerns surrounding indoor overheating, researchers

of the Air pollution and WEather-related health impacts: methodological study

based on Spatio-temporally disaggregated multi-pollutant models for present-day

and future (AWESOME) and the Health Protection Research Unit (HPRU) projects

developed an archetype-based modelling framework for assessing the summer indoor

temperatures of the UK housing stock (UCL IEDE, 2016; UCL IEDE, 2017). The

following paragraphs outline some key applications of the UK Housing Stock Model

(UK-HSM), while modelling details are reserved for Section 3.5.

As illustrated in Figure 2.2, the first publications on UK-HSM introduced the

modelling framework and assessed the impact of retrofit under current and future

weather on summer indoor temperatures (Oikonomou et al., 2012; Mavrogianni et al.,

2012). The effect of occupancy patterns, window and shading operation – found to

be substantial – was later assessed (Mavrogianni et al., 2014), and the risk of indoor

5In the example presented in text, the U-value may be inferred in this way. This may then need to
be transformed into thickness and thermal conductivity of each layer of the construction element to
be used in common dynamic thermal models.
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Figure 2.2: Timeline of key publications associated with the UK Housing Stock Model.
Relevant papers: 1. Oikonomou et al. (2012), 2. Mavrogianni et al. (2012), 3.
Mavrogianni et al. (2014), 4. Symonds et al. (2016), 5. Taylor et al. (2016), 6.
Symonds et al. (2017), 7. Taylor et al. (2018b).

overheating was mapped across Great Britain (Taylor et al., 2016). The modelling

framework has also been used to provide estimates of heat-related mortality in

London (Taylor et al., 2015) and the West Midlands (Taylor et al., 2018b). To reduce

the substantial computational cost of UK-HSM, Symonds et al. (2016) developed a

set of Artificial Neural Network (ANN) models using the archetype-based modelling

framework, enabling the rapid assessment of indoor temperatures for a large number

of dwellings.

Through the different stages of model development, the number of classifiers

and archetypes varied. The choice of classifiers was largely informed by literature

available at the time, with UK-HSM also being used as an investigation tool to

identify and rank parameters of influence (Mavrogianni et al., 2012; Taylor et al.,

2014). For the London-centric version of the model, Mavrogianni et al. (2012)

used construction age and built form type to form 15 archetypes. By varying the

floor level of purpose-built flats (ground/mid/top), and running a parametric analysis
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Figure 2.3: Comparison of empirical and modelled mean of the daily max living room tem-
peratures (Symonds et al., 2017). The empirical measurements were collected
during the 2011 Energy Follow-Up Survey.

for the insulation level (as-built/retrofitted), orientation (four cardinal directions)

and external environment morphology (stand-alone/part of larger building structure),

3456 simulation were run. In later applications, the archetypes became more detailed,

allowing for parameters such as the wall type (solid/cavity wall), terrain (city/urb-

an/rural), floor area and floor-to-ceiling height to be specified (Taylor et al., 2015;

Taylor et al., 2016).

The floor area and ceiling height were often informed directly from survey data

(Taylor et al., 2016) and in some cases from GIS maps (Mavrogianni et al., 2012).

Model inputs of building thermal characteristics and air permeability were inferred

based on the dwellings’ construction age through the use of RdSAP in combination

with the EHS (Taylor et al., 2015; Taylor et al., 2018a) or EPC dataset (Taylor et al.,

2019). Empirical data to characterise the indoor temperature at which windows open,

an important model input for indoor overheating risk (Mavrogianni et al., 2014), were

and still are limited. Mavrogianni et al. (2012) used a threshold of 25 ◦C for the living

rooms and 23 ◦C for the bedroom based on the indoor temperatures recommended

by CIBSE Guide A 2006 as thermally comfortable in non-air conditioned dwellings

during the summer. The same rationale was used by Taylor et al. (2019), although
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based on CIBSE Guide A 2015, with daytime temperature of 23 ◦C for the living

room and night time temperature of 21 ◦C for the bedroom. Fixed values were used

for electrical gains based on previously published work (Symonds et al., 2016).

To evaluate the predictive performance of UK-HSM, Symonds et al. (2017)

undertook a detailed empirical validation study against the indoor temperatures

monitored in 823 dwellings during the 2010/2011 EFUS. The model inputs relating

to the dwellings’ thermal characteristics were inferred from their construction age

using RdSAP. For each dwelling, three different values were used for the internal

gains from electrical appliances and window opening threshold, corresponding to a

base case, an upward and downward variation. The comparison between modelled

and monitored daily maximum temperatures for the living room and bedroom showed

a better agreement at aggregate level (for each typology in each region) than at the

individual building level (see Figure 2.3 for a comparison of aggregated living

room temperatures). For the semi-detached typology, the most frequently occurring

building typology in England, the archetype-level Root Mean Square Error ranged

between 0.94 to 1.73 ◦C depending on location while for individual dwellings it

ranged from 2.34 to 2.89 ◦C.

2.3 Treatment of Modelling Uncertainties
Symonds et al. (2017) hypothesised that the differences observed could have been

due to several factors, including the lack of knowledge about certain model inputs,

simplifying modelling assumptions and biases in the monitored data. Following

from the results, crucial next steps in the model’s development are the quantification

of its uncertainties and the improvement of its predictive performance (Symonds

et al., 2017). To achieve this, there is value in reflecting on the relationship between

modelling and uncertainties, and identifying common sources of uncertainties before

discussing ways to characterise and minimise them.

2.3.1 The Nature of Modelling and its Uncertainties

Uncertainties are an integral part of the modelling practice and the scientific method

(Saltelli et al., 2008). To understand why, one has to first look at the nature of the
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Figure 2.4: Rosen’s modelling diagram, published in 1991 and reproduced from Saltelli
et al. (2008).

modelling process. A useful way of visualising the modelling process is provided by

Rosen’s diagram (fig. 2.4), published in 1991 and discussed by Saltelli et al. (2008).

For a Natural System (N) that we might observe, we can model it by hypothesising

its structure and encoding it into a Formal system (F). Through decoding, we can

then make inferences from F and compare them with our observations of N. While

both systems are entailed, following their own set of rules, there is no rule on how

to create F as to accurately reproduce the behaviour of N (the importance of this

insight by Rosen is highlighted by Saltelli et al. (2008)). In essence, F depends on

our observations of an arbitrary portion of N, our understanding of the causality rules

that N follows and our ability to capture this in a mathematical (or any other) manner.

Therefore, a model is derived from aspects of the real system and aspects from the

modeller’s perception of the system (Mulligan and Wainwright, 2013). Hence, the

term model may be defined as “an abstraction of a real system; it is a simplification

in which only those components that are seen to be significant to the problem at

hand are represented in the model” (Mulligan and Wainwright, 2013). Different

interpretations of the same N (i.e. different models), depending on the modeller, their

skills, knowledge and purpose may arise. And in the process of observing the natural

system, understanding its causality rules, encoding them into a formal system and

using it for prediction, uncertainties may arise due to our limited capacity to perform

all the aforementioned steps.
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2.3.2 Classes and Sources of Uncertainty

Uncertainties are often classified as (Kiureghian and Ditlevsen, 2009):

1. Aleatory uncertainties: The result of inherent randomness of the system

studied that may be described using a distribution. This definition derives from

the Latin word for dice player, aleator (McClarren, 2018).

2. Epistemic uncertainties: These uncertainties arise from the lack of knowledge

about the system studied. The term derives from the Greek word for knowledge

(Kiureghian and Ditlevsen, 2009).

The key distinction between aleatory and epistemic uncertainties is that the latter

could be reduced or eliminated if enough information becomes available. It has been

argued that this distinction is an artificial one; based on the modeller’s assumptions,

a source of uncertainty might be classified as epistemic if they wish to reduce it or

aleatory if not and between different models the same source of uncertainty might

be classified as reducible or not (Kiureghian and Ditlevsen, 2009).

The six sources of uncertainty expected to be common amongst most computer

models are (Kennedy and O’Hagan, 2001):

1. Parameter uncertainty: The result of lack of knowledge about the true values

of some model inputs. They may be context-specific or global parameters that

could be reduced if enough information was available, thus falling within the

class of epistemic uncertainties.

2. Residual variability: The process may not always take the same value for

the same known conditions, possibly due to the process being inherently

unpredictable and stochastic. This variation, even when the conditions are

fully specified, is referred to as residual variability.

3. Model inadequacy: If it is assumed that the true, real-world, values of the

model inputs are accurately known, differences between the mean of the real

process (i.e. averaging out residual variability) and the model output might still

exist since no model is perfect. This uncertainty might exist because there is
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lack of knowledge on how to model the true process (referred to as ignorance

by Booth et al. (2012)) or because simplifying assumptions were made during

the model construction.

4. Parametric Variability: Some model inputs might be allowed to vary because

the modeller does not want (or is unable) to fully specify them. By allowing

model inputs to vary, the output acquires this extra uncertainty.

5. Observation error: Any observation of the true system used as a model input

or for calibration purposes can have an associated uncertainty (or measurement

error) that might depend on the measuring process and the resolution of the

measuring instrument.

6. Code uncertainty: Given a set of inputs for a complex model, the outputs

are not known until a simulation is performed and thus may be considered

unknown. If the code is computationally expensive, it might be impractical to

run the code for all desired inputs, resulting in an associated uncertainty.

An important point to highlight from the discussion around model inadequacy is that,

in some cases, the model input values which result in the best agreement between

model output and real-world observations may not equal the real-world (true) values

of the physical parameters they represent (Kennedy and O’Hagan, 2001).

2.3.3 Uncertainties in Building Stock Modelling

Uncertainties are also integral to building modelling. Several papers have discussed

the topic of uncertainty within the built environment field, with a comprehensive

review on the topic provided by Tian et al. (2018). With regard to the uncertainties

associated with archetype-based modelling of summer indoor temperature, it is worth

revisiting the steps of classification and characterisation.

Since eliminating heterogeneity is – in practical terms – not possible, uncer-

tainties arise during the process of classification. Heterogeneity, as a source of

uncertainty in building stock modelling, was discussed by Booth et al. (2012) who

drew a parallel with research in the medical field and the heterogeneity between indi-

viduals. While a thorough classification process can reduce its effects, any remaining
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heterogeneity will result in an uncertainty that may fall under parameter uncertainty,

model inadequacy and residual variability (depending on the modelling viewpoint).

Uncertainties also arise during the characterisation process, especially when

model inputs have to be inferred using proxy variables. This may be demonstrated by

considering the fieldwork carried out by the Building Research Establishment (BRE)

that aimed to compare the thermal performance of walls in 300 English dwellings

against values assumed in RdSAP (Hulme and Doran, 2014). In-situ measurements

were taken using heat flux plates (Hukseflux HFP01) and surface temperature meas-

urements for a period of two weeks. In a subset of 10 cavity wall dwellings, inspected

in more detail since their measured U-value was in large disagreement with their

assumed value, nine were found to have been miss-classified as uninsulated within

the EHS. A comparison of the mean measured and corresponding RdSAP U-value for

each construction type revealed differences of up to 34 % (BRE, 2016). Finally, for

each construction type, a large spread of U-values was observed, with the standard

deviation ranging per category from 0.23 to 0.32 W/m2K (Hulme and Doran, 2014).

This spread is partly due to natural variability of wall constructions, with evidence

of varying quality and density of insulation when present. In combination, errors in

survey data (proxy variables) along with inaccurate reference tables that do not cap-

ture the possible spread in values, may all contribute to the poor selection of model

inputs and large parameter uncertainties. Uncertainties surrounding model inputs

also arise when the variable of interested is measured directly, since a difference

between the measured quantity and the true value (observational error) will exist.

2.3.4 Uncertainty Analysis

Uncertainty analysis aims at quantifying the uncertainty of a Quantity of Interest

(Saltelli, 2004), and generally falls under two broad categories (Tian et al., 2018):

1. Forward: Also known as uncertainty propagation, this process aims at quan-

tifying the uncertainty in the model outputs due to uncertain input variables.

2. Inverse: Also referred to as calibration, this process tries to determine un-

known input variables through mathematical models from measurement data.
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Figure 2.5: Illustration of the forward and inverse uncertainty quantification in building
energy analysis, as presented by Tian et al. (2018).

An example of how each process might be used in building energy analysis is

provided by Tian et al. (2018) and captured by Figure 2.5. Forward uncertainty

quantification can quantify the variation in energy use or carbon emissions predicted

by a building energy model given some input variations. Inverse uncertainty quan-

tification can quantify the variation of unknown input variations through building

energy models with the use of monitored energy data. Forward and inverse modelling

are often linked, and several methods exist for each category (Smith, 2013; Tian et al.,

2018). The following subsection will provide an overview of calibration methods.

2.3.5 Approaches to Calibration

Kennedy and O’Hagan (2001) defined calibration as the process of learning the

values of unknown model inputs using field observations of the model output. This

term is often used interchangeably with inverse uncertainty analysis (Tian et al.,

2018) or model tuning (Coakley et al., 2014), although their equivalence depends

on the calibration method chosen and its intended use. The following section will

discuss some of the calibration approaches implemented within the field of building

modelling and place emphasis on statistical techniques.

Coakley et al. (2014) conducted a thorough review of methods relating to the

development and calibration of building simulation models and categorised the

various approaches within two broad groups:
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1. Manual: Approaches that predominantly rely on iterative pragmatic inter-

vention by the modeller and do not make use of automation or mathematic-

al/statistical methods. The modeller’s interventions might vary from ad-hoc

parameter-tuning approaches based solely on their expertise to more systematic

efforts that might utilise advanced graphical or procedural methods.

2. Automated: Approaches that have some form of not-user-driven input and

may include mathematical/statistical methods such as penalty or objective

function optimisation and Bayesian inference.

A concern when calibrating complex models, such as BPS models, is that multiple

solutions might exist; this has been referred to as equifinality or model indeterminacy

(Coakley et al., 2014). An automated, statistical, approach can generally allow for a

more efficient and rigorous exploration of the possible solutions when compared to

manual methods. This led Coakley et al. (2014) to conclude that the papers reviewed

were at best using a method “based on an optimisation process used to identify

multiple solutions within a parameter space identified from a knowledge-base of

templates of influential parameters” and at worst “based on an ad-hoc approach

in which the analyst manually tunes the myriad of parameters until a solution is

obtained”.

Despite the potential strengths of automated techniques, Coakley et al. (2014)

discovered that manual methods were more popular, at least at the time of publication,

with 74 % of the papers reviewed having employed manual techniques. This could

be the result of the “Manual” category encompassing more approaches, approaches

that are more widely known, or that built environment researchers did not have the

expertise required to adopt more advanced, automated approaches. In addition, the

computational expense and in some cases the lack of data might have prevented the

use of some automated techniques. Nowadays, with the increase in computing power

and data availability, statistical (machine learning) techniques stemming from the

fields of computer science and applied statistics are on the rise and may be used to

solve various calibration problems.

To explain the framework that underpins statistical techniques of inverse model-
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ling, the general problem of computer model calibration from a statistical perspective

will be derived and the two general approaches to solving it will be discussed.

2.3.6 Theory of Statistical Calibration

For a physical (or natural) system, denoted as ζ (·), a set of n observations y (y =

yi=1, . . . ,yn) are made at conditions W (W = wi=1, . . . ,wn) (Kennedy and O’Hagan,

2001; Higdon et al., 2004):

yi = y(wi) = ζ (wi)+ εi, i = 1, ...,n (2.1)

where εi denotes the observation (or measurement) error. Within the built environ-

ment context, and for simplicity of this derivation, the physical system could be a

single-zone test house with the observations (captured by y) being the monitored

monthly mean indoor temperatures given some weather conditions (captured by W).6

All conditions that could influence the indoor temperature, other than the weather,

are assumed to be constant over the duration of monitoring. The observation error

captures the discrepancy between “true” indoor temperature and the value measured

by the monitoring equipment.7

To simulate the physical system, a computer model may be used that would

likely require several inputs that may fall into one of three groups:

1. Inputs thought to be known accurately and which vary between observations;

in this example, this refers to the weather variables.

2. Inputs considered to be accurately known and which do not vary (these can

effectively be ignored for the rest of the derivation).

3. Inputs that do not vary between observations, but whose value is unknown.

These variables are represented by t.8

6The weather conditions are represented by a matrix, instead of a vector, since each month is
associated with a few weather variables.

7A “true” value is one that would be obtained from a perfect measurement and is, by nature,
indeterminate (BIPM et al., 2008). In this example, a true value might refer to the mean indoor
temperature of the zone, if it could be measured without any measurement error. The use of the term
“true” in this derivation stems from the work of Kennedy and O’Hagan (2001).

8This simple derivation does not address inputs whose values are unknown and vary between
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Given a set of model inputs (W, t), the computer model can provide a set of

outputs η(W, t). When the right selection of calibration parameters is made (t = θθθ ),

the simulator (η(W,θθθ)) can effectively simulate the physical system (ζ (W)) and the

following statistical relationship between the observations of the physical process

and the model outputs may be established:

y(wi) = η(wi,θθθ)+ εi, i = 1, . . . ,n. (2.2)

Equation 2.2 captures the basic form of the calibration problem, where the aim

is “to determine θθθ given the noisy observations y” (Smith, 2013). As discussed in

Section 2.3.2, model form (or structural) uncertainty may arise from the computer

model’s simplifications and approximations. In some cases this might be negligible,

but often it has to be accounted for. This can be done by adding a model discrepancy

term to Equation 2.2, yielding the complete formulation of the calibration problem

(Kennedy and O’Hagan, 2001):

y(wi) = η(wi,θθθ)+δ (wi)+ εi, i = 1, . . . ,n, (2.3)

where δ (wi) captures the discrepancy between the computer model output η(wi,θθθ)

and true process ζ (wi) and prevents over-estimation of the calibration values (Higdon

et al., 2004; Li et al., 2016).

The calibration problem may be solved using a frequentist or Bayesian approach

(Smith, 2013; Tian et al., 2018). A thorough comparison of these two paradigms

can be found in Bolstad and Curran (2017) and Smith (2013). Briefly, a frequent-

ist approach treats parameters as unknown but fixed, and relies on observations

alone to estimate their value. On the other hand, a Bayesian approach considers

parameters to be associated with probability density functions and their inference

is informed both by data and by expert knowledge. In the Bayesian paradigm, the

probability density function associated with each unknown parameter following

calibration embodies the uncertainty surrounding its value. This uncertainty, within

observations.
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the Bayesian world, can be “naturally” propagated to the model output to quantify

the epistemic uncertainty that remains (Smith, 2013). Recognising that uncertainties

cannot simply be eliminated, due to the complexity of the natural and formal system,

and limitations in data availability, a calibration framework for housing stock models

that captures uncertainty in addition to improving predictive performance will likely

lead to better-informed decision-making (Booth et al., 2012). In practice, Bayesian

model calibration has been shown to perform well, with studies that employed such

techniques generally reporting lower errors than other methods, according to the

review of urban building energy modelling by Oraiopoulos and Howard (2022).

For these reasons, the following sections will focus on the theory and application

of Bayesian calibration. A critical evaluation of published work on the Bayesian

calibration of archetype-based housing stock models is offered in Section 2.4.

2.3.7 Theory of Bayesian Inference

At the core of Bayesian inference is Bayes’ theorem (McElreath, 2020):

Posterior =
Probability of the data×Prior
Average probability of the data

(2.4)

The components of Bayes’ theorem are:

• Prior (p(θθθ)): This captures how plausible each value of a parameter (e.g. θ1)

is, according to the modeller’s subjective opinion, before observing the data

(Bolstad and Curran, 2017).

• Probability of the data (Likelihood) (p(y|θθθ)): Represents the relative weights

of belief for the observed data (y), given a value for the unknown parameter

(Bolstad and Curran, 2017).

• Average probability of the data (p(y)): It is the probability of the data averaged

over the prior, and it acts to standardise the posterior so that it sums (or

integrates) to one (McElreath, 2020).

• Posterior (p(θθθ |y)): Represents the relative weights of belief for each parameter

value after analysing the data (Bolstad and Curran, 2017).
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Figure 2.6: Estimating the posteriors for the same likelihood assuming different priors.
Reproduced from McElreath (2020).

For a fixed set of observations, p(y) can be considered constant and the unnor-

malised posterior density is defined as (Gelman, 2014):

p(θθθ |y) ∝ p(θθθ)p(y|θθθ) (2.5)

The interaction of the likelihood and prior can be visualised in Figure 2.6, which

highlights the importance that the choice of prior can play in Bayesian inference.

2.3.8 Steps to Bayesian Calibration

The Bayesian calibration of DTS models is a multistep process. As Chong and

Menberg (2018) identified, guidance on carrying out this procedure within the

built environment field has been limited. In response, Chong and Menberg (2018)
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published guidelines on its implementation. Six key steps were identified, depicted

in Figure 2.7 and discussed below.

1. Collect field data. The collected field must be cleaned and potentially aggreg-

ated according to the desired temporal resolution. An investigation of the effect

of temporal resolution on the calibration process revealed a systematic trend of in-

creasing predictive accuracy with increased (district heating) training data resolution

(Kristensen et al., 2017b), although differences between models and data may exist.

2. Parameter screening. A key step in the Bayesian calibration process is the se-

lection of variables to calibrate. Selecting only the most influential parameters to

calibrate reduces the computational time – that can often be prohibitive – and can

also reduce the risk of non-identifiability: when a unique combination of calibration

parameters does not exist or cannot be determined, resulting in either weak (unin-

formative) posterior distributions or ones that mirror the priors (Kristensen et al.,

2018; Menberg et al., 2019). Chong and Menberg (2018) caution that concerns

regarding parameter identifiability must be balanced against that of over-fitting, as

reducing the number of parameters can result in unreasonably tight posterior distri-

butions with poor out-of-sample performance. When parameter screening is applied

carefully, calibrating only a subset of parameters can yield reliable posterior distribu-

tions and result in models with good predictive capabilities, as demonstrated by Heo

et al. (2015). A frequently used approach to selecting the calibration parameters is

the Morris method, as revealed by the review of Hou et al. (2021).

3. Create computer data. It is common practice in Bayesian calibration applications

to use a surrogate model (also known as metamodel or emulator) to reduce compu-

tational time. Briefly, a surrogate model is a statistical model trained to reproduce

the predictions of a computationally expensive model at a fraction of a time (for a

detailed example, please refer to Symonds et al., 2016). If this approach is chosen,

computer simulations are performed to generate the data needed to train a surrogate

model. The explanatory model inputs and calibration parameters must be varied

within the range of possible values. For the calibration parameters, this is often done

using a sampling approach such as the Latin Hypercube Sampling (LHS) method,
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Figure 2.7: Bayesian calibration procedure, reproduced from Chong and Menberg (2018).
GP stands for Gaussian process, MCMC for Markov Chain Monte Carlo.

attempts to maximise the coverage of the input space (Chong and Menberg, 2018).

4. Combine field and computer simulation data in GP model (Surrogate Model).

In the commonly used approach introduced by Higdon et al. (2004) and preferred

by Chong and Menberg (2018), a Gaussian Process (GP) is used as the surrogate

model which is trained on both the field and computer data at the same time as the

model parameters are calibrated. GP is a powerful and flexible surrogate model that

has often been used in the Bayesian calibration of building models (Lim and Zhai,

2017a). A more detailed, mathematical, description of GP is offered in Section A

of the appendices. Training a GP model concurrently with parameter calibration,

enables the uncertainty of the GP’s hyperparameters (parameters that define the GP

model) to be captured. The GP’s main limitation is its scalability with data; training

a GP model has a runtime complexity of O(N3) where N is the combined number of
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field data and computer data upon which the surrogate model is trained on (Chong

et al., 2017). Other surrogate models may be used, and their training can take place

ahead of the calibration (Lim and Zhai, 2017a; Tardioli et al., 2020).

5. Explore posterior distributions using MCMC. The most frequently used method

for estimating posteriors relies on the use of Markov Chain Monte Carlo (MCMC)

(Hou et al., 2021). This is a sampling-based approach, where Bayes’ theorem

(Equation: 2.5) is iteratively computed at different values of the calibrated parameters

until convergence (this is discussed in more detail in Section D.3 of the appendices).

In a study that compared the performance of MCMC algorithms in the Bayesian

calibration of building energy models, Chong et al. (2017) determined that the No-

U-Turn-Sampler (NUTS), an extension to the Hamiltonian Monte Carlo (HMC)

algorithm, performed better than other popular algorithms such as the Random Walk

Metropolis (RWM) or Gibbs sampling algorithm.9 Although not captured within

the flowchart of Chong and Menberg (2018), before the posterior exploration it is

necessary to decide on the priors and the likelihood function:

• Prior: Parameter priors are chosen based on best available knowledge sur-

rounding the possible parameter values. If justified, the use of informative

priors could help improve posterior identifiability (Smith, 2013). If a Bayesian

approach to training the surrogate model is followed, the priors for the sur-

rogate model’s hyperparameters must also be defined (Chong and Menberg,

2018). If a term for the model bias is also considered, priors associated with

that component must also be defined - this is also often treated as GP.

• Likelihood: It is common practice to assume a normal likelihood function

by treating the error term in eq. 2.3 as being independently and identically

distributed, following a normal distribution (Higdon et al., 2004). Other

likelihood functions can also be used (Cerezo et al., 2017).

9This is because HMC NUTS avoids random walk behaviour and is insensitive to correlated para-
meters, thus often resulting in faster convergence when dealing highly multi-dimensional problems
(Chong et al., 2017).
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6. Convergence checking and predictive inference. MCMC convergence is as-

sessed separately for each parameter by using trace plots of multiple Markov chains,

and by evaluating the potential scale reduction, also known as Gelman-Rubin statistic

(Chong and Menberg, 2018; Gelman, 2014). If a satisfactory level of convergence

has been achieved, the posterior distributions may be used for predictive inference.

This may be done directly from the surrogate model.

2.4 Bayesian Calibration of Housing Stock Models: A

Critical Evaluation
The first implementation of Bayesian calibration on archetype-based building stock

models was proposed by Booth et al. (2012). Since then, several other applications of

Bayesian inference for archetype model calibration have been published (see reviews

by Oraiopoulos and Howard (2022) and Hou et al. (2021)). In this section, the

studies that focused on archetype-based housing stock models are critically reviewed,

compared and discussed. A summary of each study’s key characteristics is provided

in Tables 2.1–2.4.

2.4.1 Location, Model, Data Resolution & Housing Stock

The housing stock’s location, the dwelling types and sample size used for the

calibration varied between application (Table 2.1). It was common for papers to

focus on a single dwelling type, or a small number of dwelling types. Dwelling

sample sizes varied from 35 flats located in West Salford (UK), in the work of Booth

et al. (2012), to 2972 Swiss multi-family buildings in the study by Tardioli et al.

(2020). EnergyPlus was the most commonly used Dynamic Thermal Simulation tool

and was used in three instances, while ISO-based models were used in four papers.

Wang et al. (2020) used CitySim, a dynamic urban energy model which treats each

building as single thermal zone and can aggregate heating demand to postcode level

(Robinson et al., 2009).

In all papers reviewed, the observations (field data) used for the calibration

related to energy use; no example of domestic archetype model calibration that relied
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on indoor environmental parameters could be found. The observations were in some

cases normalised against the floor area (Booth et al., 2012; Cerezo et al., 2017; Sokol

et al., 2017) and building (postcode) volume (Wang et al., 2020). The temporal

resolution of the observations ranged from hourly (Hedegaard et al., 2019) to annual

(Cerezo et al., 2017; Sokol et al., 2017; Tardioli et al., 2020; Wang et al., 2020).

2.4.2 Classification

The approach to, and level of discussion on, the classification of dwellings into

archetypes varied between papers (Table 2.2). Half of the authors used a single

archetype in their analysis, while at the upper end of the spectrum Wang et al.

(2020) used 18. A single archetype was assumed by Booth et al. (2012) since

the 35 ‘physically similar’ flats in the study were thought to form a homogeneous

cluster. Factors relating to occupant characteristics were not considered by Booth

et al. (2012), although they were mentioned in the paper’s discussion on ways to

extend their work. Kristensen et al. (2017a) also used a single archetype (detached

single-family dwellings constructed between 1979-1998) which was derived from

the TABULA project. The TABULA and EPISCOPE projects sought to develop

residential building typologies in 21 European countries that could be used in housing

stock models of energy consumption and guide policies (Loga et al., 2016; TABULA

Project Team, 2012; TABULA Project Team, 2017). Occupancy is not considered

in the classification process, with the main (and often only) classifiers being the

dwelling age and typology. Hedegaard et al. (2019) and Kristensen et al. (2018)

also used a single archetype in their analysis. Hedegaard et al. (2019) does not

discuss classification while Kristensen et al. (2018) mentions the classifiers used to

select their archetype, but does not explain the rationale behind this choice. The 18

archetypes used by Wang et al. (2020) were also informed by TABULA/ EPISCOPE,

together with the Dutch national reference home standard. Four archetypes were used

by Cerezo et al. (2017) with the only classifier being the construction or renovation

period, and with limited discussion on why this choice of classifiers was preferred.

Only two papers used data driven methods to inform their classification process.

Sokol et al. (2017) employed multivariate linear regression analysis to identify
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several variables that had a statistically significant association with energy use

intensity. Two such variables, effective year built and heating system efficiency,

were used as classifiers, while some of the remaining variables were modelled

explicitly. Tardioli et al. (2020) used 14 archetypes, derived through a process that

included the classification of dwellings using three categorical variables (building

typology, construction period and final use), the normalisation of continuous building

characteristics, and the further subdivision of the stock using a set of clustering

algorithms; the process is described in depth in Tardioli et al. (2018). The approach

followed by Tardioli et al. (2020) purposefully placed equal weight on continuous

building characteristics being considered, including the variable that corresponded

to the observations (e.g. energy use) used for the calibration.

2.4.3 Choice of Calibration Parameters

In all cases, only a subset of the model inputs were calibrated (Table 2.2). Sokol

et al. (2017) and Hedegaard et al. (2019) provided limited discussion regarding their

approach to selecting calibration parameters. Cerezo et al. (2017) cited modeller’s ex-

pertise and a simplified sensitivity analysis to explain their choice of four calibration

parameters, while Tardioli et al. (2020) selected six parameters based on literature.

Sobol’s method was used by Kristensen et al. (2017a) to select seven calibration para-

meters; a resource intensive approach that required 15,000 simulations. The Morris

method was used by Booth et al. (2012), Kristensen et al. (2018) and Wang et al.

(2020). Booth et al. (2012) were the only authors to have repeated the calibration for

a different number of variables (2, 4 and 6) and compared the associated posterior

distributions (but not the influence of this choice on predictive performance). This

parametric exercise demonstrated the “lumping” of uncertainties from uncalibrated

model parameters onto the calibrated ones, which prevents a modeller from inferring

a parameter’s real-world value from the posterior distribution.

2.4.4 Surrogate Modelling

In three out of the eight papers, surrogate modelling was used to speed up the calib-

ration process (Table 2.3). Kristensen et al. (2017a) used a Gaussian process, Sokol
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et al. (2017) used polynomial regression, while Tardioli et al. (2020) compared the

use of four techniques: Generalised linear models, artificial neural networks (ANN),

support vector machines and random forests. In addition, Tardioli et al. (2020)

also assessed the effects of the “surrogate strategy” by comparing the predictive

performance of using one emulator for each building (OEFEB), one emulator for

each cluster (OEFEC) and one emulator for a representative building (OEFRB).

OEFEB resulted in the best performing emulators, followed by OEFEC and OEFRB.

However, implementing the OEFEB requires rich data for each building in the cluster,

and was shown to not generalise as well as OEFEC and OEFRB when considering

out-of-sample buildings (Tardioli et al., 2020). Across the three surrogate strategies

and the 14 clusters, ANN was the emulator that performed best in most cases.

2.4.5 Bayesian framework

2.4.5.1 Choice of Priors for the Calibrated Parameter

Cerezo et al. (2017), Sokol et al. (2017) and Wang et al. (2020) utilised uniform

distributions for the priors of their calibration parameters (Table 2.3). All other

authors used non-uniform priors or a mixture of both. A uniform prior assumes

that any value within the feasible range is equally probable which rarely reflects the

modeller’s state of knowledge about a parameter. The rationale behind the use of

uniform distributions, sometimes, is to purposefully be non-informative and “to let

the data speak for themselves” (Gelman, 2014). However, through the choice of a

feasible range the modeller assumes two bounds where an infinitesimal change in

either direction changes the probability from 1 to 0. In some cases the choice of

upper or lower bound might relate to real constraints in the parameter values (e.g. a

system’s coefficient of performance), however in other cases the choice might not be

straightforward (e.g. the heating setpoint).

Regardless of the choice of priors, a common thread amongst most authors was

the limited discussion on the rationale behind their chosen priors. Exceptions to

the rule were Booth et al. (2012) and Hedegaard et al. (2019) who discussed their

choice of priors in more detail, and in both cases the choice was partly informed by

empirical data and partly by expert judgment. Yet, when considering the choice of
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non-uniform priors, clear examples of how a modeller might determine what prior

distribution to use (e.g. gamma or Normal) and with what distributional parameters

is missing.

2.4.5.2 Likelihood

A normal likelihood was the most common choice in the papers reviewed (Table 2.3).

The only exceptions were by Cerezo et al. (2017) and Sokol et al. (2017), who used

a binary likelihood. For each simulation run, the likelihood would equal 1 if the

difference between the model’s output and the field data was smaller than a predefined

threshold (accepting the vector of parameter values used for that simulation run as

feasible solutions) and 0 otherwise (rejecting the simulation run’s parameter values).

Since the prior distributions were assumed to be uniform, the posterior distributions

for each archetype were the result of combining all accepted vectors of calibrated

parameter values into a single multivariate joint probability distribution. The choice

of an arbitrary threshold, whose validity is not based on data or theory, can be

questioned. Kristensen et al. (2018) argued that a binary likelihood approach might

prove too simple to fully exploit the information available in high resolution data.

2.4.5.3 Data Aggregation

An important consideration when Bayesian calibration is applied to building stock

models is how observations from different buildings are treated (Table 2.3). Booth

et al. (2012) averaged the daily observations within the cluster before the calibration,

eliminating any inter-dwelling variability and enforcing the assumption of homo-

geneity. On the other hand, Kristensen et al. (2017a) combined the observations of

annual energy use for each dwelling into a single vector, and evaluated the likelihood

of this vector at the building level.10 Through this approach, the error term included

(and was likely dominated by) residual variability other than measurement error,

such as stochastic occupant behaviour and violations of the cluster homogeneity

assumption. Both approaches may be thought to be prone to bias from extreme values

due to the averaging that takes place before (Booth et al., 2012) or during (Kristensen

et al., 2017a) the calibration. Tardioli et al. (2020) also treated each observation as
10by assuming that each observation is independently and identically distributed.
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coming from the same archetype, similarly to Kristensen et al. (2017a), but the exact

implementation varied between the OEFEB surrogate strategy and the OEFEC and

OEFRB strategy.

In some cases, the authors chose to calibrate each building separately, resulting

in a separate set of posteriors for each dwelling (Hedegaard et al., 2019; Wang et al.,

2020; Cerezo et al., 2017; Sokol et al., 2017).11 Following calibration, Cerezo et al.

(2017) and Sokol et al. (2017) combined the posteriors for all dwellings classified

under the same archetype to form a single multivariate joint distribution.

A different approach was proposed by Kristensen et al. (2018), who employed

a hierarchical structure to infer archetype-parameters. According to the authors, a

calibration procedure based on “partially pooled” data would result in parameter

estimates that are less prone to outliers, compared to the other types of data aggrega-

tion (Kristensen et al., 2018). This does seem to be the case in some applications

within the statistics literature (Gelman and Hill, 2007), but it has yet to be shown

whether this approach results in better-performing archetype-based models following

calibration when compared to other approaches.

2.4.5.4 Model Bias

The Bayesian calibration framework proposed by Kennedy and O’Hagan (2001)

included a model bias (or discrepancy) term used to capture the inadequacy of a

model to represent the true process, even if the unknown (calibration) parameters

were accurately known (Table 2.3). This component was included in three of the

eight papers. In Booth et al. (2012), the model bias was determined to be negative

and increase in magnitude as the external temperatures decreased, suggesting an

inadequacy of the CEN-ISO model in predicting energy use at colder temperatures.

The model bias was found to be negligible in the case of Kristensen et al. (2017a),

while its magnitude was not explicitly discussed by Tardioli et al. (2020) despite

being used in the calibration. In all cases, a Gaussian process was used to represent

the model bias.

11To be exact, Wang et al. (2020) applied a separate calibration approach for each postcode,
corresponding to a group of buildings.
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Table 2.1: Comparison of the location, typology, sample size, simulation tool, observations and temporal resolution (Res.) in the studies reviewed.

Authors Location Typology Sample
Size

Simulation Tool Observations Res.

Booth et al.
(2012)

West Salford, UK F 35 CEN-ISO Energy use [kWh/m2/day] D

Cerezo et al.
(2017)

AlQadisyah district,
Kuwait City, Kuwait

V 336 EnergyPlus Energy use intensity [kWh/m2/year] A

Hedegaard et al.
(2019)

Aarhus, Denmark DSF 159 Modified hourly ISO
13790:2008

District heating energy use [kWh/hour] H

Kristensen et al.
(2017a)

Aarhus, Denmark DSF 600 Modified hourly ISO
13790:2008

Energy use [kWh/year] A

Kristensen et al.
(2018)

Aarhus, Denmark DSF 150 Modified hourly ISO
13790:2008

Energy use [kW/3hour] 3-H

Sokol et al.
(2017)

Cambridge, MA, USA LRB 2662 EnergyPlus Gas and electricity use intensity
[kWh/m2/year or kWh/m2/month]

A; M

Tardioli et al.
(2020)

Meyrin District, Geneva,
Switzerland

MFB 2972 EnergyPlus Heating demand and hot water use [kWh/year] A

Wang et al.
(2020)

Amsterdam, Netherlands SF; T; MF 84* CitySim Energy use intensity [kWh/m3/year] A

Disambiguation. Typology: F = Flats, V = Villas, DSF = Detached single-family, LRB = Low-rise buildings with 1-4 dwelling units, MFB = Multi-family
buildings, SF = Single-family, T = Terrace, MF = Multi-family; Resolution (Res.): D = Daily, A = Annual, H = Hourly, M = Monthly.
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Table 2.2: Comparison of the classification process, sensitivity analysis (SA) and number of calibration parameters (P) in the studies reviewed.

Authors Classification SA P
Archetypes Classifiers Rationale

Booth et al.
(2012)

1 N/A Flats from the same block Morris Method 2, 4, 6

Cerezo et al.
(2017)

4 construction (or renovation) period Limited discussion Modeller Expertise
and simplified SA

4

Hedegaard
et al. (2019)

1 Not discussed Not discussed Limited discussion 5

Kristensen
et al.
(2017a)

1 Not discussed TABULA Sobol’s Method 7

Kristensen
et al. (2018)

1 Usage/Type; Construction Period; Location; Stories;
Basement; Attic utilised for living; Heating source; Suppl.

heating

Limited discussion Morris Method 5

Sokol et al.
(2017)

8 Effective Year Built; Heating COP Multivariate linear
regression (for COP)

Limited discussion 6

Tardioli et al.
(2020)

14 Pre-clustering: Building typology; Construction Period; Final
use

Automated clustering
process (Tardioli et al.,
2018)

Literature 6

Wang et al.
(2020)

18 Dwelling type; Construction year Dutch Standard,
EPISCOPE and TABULA

Morris Method 2
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Table 2.3: Comparison of the surrogate approach and Bayesian calibration framework in the studies reviewed.

Authors Surrogate Bayesian Calibration Framework
Model Strategy Priors Likelihood Bias Posterior Estimation

Booth et al. (2012) Not used N/A N; B; F Normal
(Assumed)

Yes -
GP

Not discussed

Cerezo et al. (2017) Not used N/A U Binary No Parametric
Hedegaard et al.
(2019)

Not used N/A B; G; HC Normal No MCMC (Metropolis)

Kristensen et al.
(2017a)

GP OEFEB G; N; B; U Normal Yes -
GP

MCMC
(Metropolis-Hastings)

Kristensen et al.
(2018)

Not used N/A MVN; NIW; U;
HC

Normal No MCMC
(Metropolis-Hastings)

Sokol et al. (2017) PR OEFEB U Binary No Parametric
Tardioli et al.
(2020)

GLM; ANN;
SVM;RF

OEFEB; OEFEC;
OEFRB

Not-U Normal Yes -
GP

MCMC
(Metropolis-Hastings)

Wang et al. (2020) Not used N/A U Normal No Parametric
Disambiguation. Priors: N = Normal, B = Beta, F = Fréchet, U = Uniform, HC = Half-Cauchy, G = Gamma, MVN = Multivariate Normal, NIW =

Normal-Inverse-Wishart, Not-U = Not Uniform; Surrogate Strategy: OEFEC = One Emulator For Each Cluster, OEFEB = One Emulator For Each Building,
OEFRB = One Emulator For Representative Building; Surrogate Model: GP = Gaussian Process, PR = Polynomial Regression, GLM = Generalised Linear
Models, ANN = Artificial Neural Networks, SVM = Support Vector Machines, RF = Random Forests.
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Table 2.4: Comparison of the validation procedure, pre- and post-calibration performance for the studies reviewed.

Authors Validation Procedure Performance - Training Performance - Validation
Pre-calibration Post-calibration Pre-calibration Post-calibration

Booth et al. (2012) T & V on the same data PE: 17.6 % PE: 0.5 %. - -
Cerezo et al. (2017) For the same period,

• T: 164 homes (51 %)
• V: 159 homes (49 %)

PE: 4 % PE: < 1 % - PE: 3 %

Hedegaard et al. (2019) For the same homes,
• T: 1 month (Jan),
• V: 1 month (Feb).

- CVRMSE: 4.66 %
NMBE: 0.08 %

- CVRMSE: 5.58 %
NMBE: -1.39 %

Kristensen et al. (2017a) For the same period,
• T: 450 homes (75 %)
• V: 150 homes (25 %)

- NMBE: -0.3 %
MAPE: 20.0 %
CVRMSE: 24.1 %

- NMBE: 2.3 %
MAPE: 21.9 %
CVRMSE: 26.5 %

Kristensen et al. (2018) • T: 50 homes (25 %)
for 1 month (Jan)

• V: 150 homes (75 %)
for 1 month (Feb)

- NMBE: -3.0 %
CVRMSE: 7.2 %

- NMBE: 2.9 %
CVRMSE: 7.8 %

Sokol et al. (2017) For the same period,
• T: 399 homes (15 %)
• V: 2263 homes (85 %)

PE: 54.8 % Annual PE: 25.5 %
Monthly PE:
19.4 %

PE: 69 % Anual PE: 47 %
Month PE: 44 %

Tardioli et al. (2020) For the same period,
• T: 326 homes (11 %)
• V: 2646 homes (89 %)

- OEFEB PE: 0.75 %
OEFEC PE: 2.5 %
OERFB PE: 1.34 %

- OEFEB PE: 2.3 %
OEFEC PE: 8.2 %
OEFRB PE: 2 %

Wang et al. (2020) For the same homes,
• T: six years (75 %),
• V: two years (25 %).

- - 2016 PE: 25.0 %
2017 PE: 19.9 %

2016 PE: 8.3 %
2017 PE: 7.7 %

Disambiguation: T = Training, V = Validation, PE = Percentage Error, CVRMSE = Coefficient of Variation of Root Mean Square Error, NMBE =
Normalised Mean Bias Error, MAPE = Mean Absolute Percentage Error, OEFEB = One Emulator For Each Building, OEFEC = One Emulator For
Each Cluster, OEFRB = One Emulator For Representative Building.
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2.4.5.5 Posterior Estimation

In four out of the eight studies, a Metropolis or Metropolis-Hastings MCMC al-

gorithm was used to compute the posteriors (Table 2.3). A parametric approach

was used in three papers, where the posteriors were estimated at fixed parameter

values. Booth et al. (2012) did not explain how the posteriors were estimated in their

analysis.

2.4.6 Predictive Performance

With the exception of Booth et al. (2012), who used the same data for model

calibration and validation, all other authors used some of the data for training and

some for validation (although they often evaluated the performance for the training

data as well). Table 2.4 summarises the validation approach and results of the studies

under review. Cerezo et al. (2017), Kristensen et al. (2017a), Sokol et al. (2017)

and Tardioli et al. (2020) performed the calibration and validation over the same

period but on different dwellings. On the other hand, Hedegaard et al. (2019) and

Wang et al. (2020) carried out the calibration and validation on the same buildings

but for two different periods. The split of training/validation data ranged from 75 %

/ 25 % to 11 % / 89 %. Kristensen et al. (2018) were the only authors who used two

different groups of dwellings and periods for calibration and validation.

Where a comparison pre- and post-calibration was made, a clear improvement

in predictive performance is observed, although most authors did not carry out such

comparison. For many of the studies, the post-calibration error metrics were below

commonly used thresholds,12 deeming the models as “calibrated” (Ruiz and Bandera,

2017). While the errors reported by the authors vary significantly between studies, it

is not possible to contrast the efficacy of each study’s calibration method due to the

differences in data and models used.

12The ASHRAE Guideline 14 thresholds for hourly values are CV(RMSE) = 30 % and
NMBE = ±10 %, and for monthly values are CV(RMSE) = 15 % and NMBE = ±5 % (ASHRAE,
2002).
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2.5 Summary & Research Gaps

As described in Section 2.1, indoor overheating is a complex phenomenon driven

by warm weather, being intensified by climate change and substantially modified

by building and urban characteristics, along with occupant behaviour (Kougionis,

2018; Lomas and Porritt, 2017; Mavrogianni et al., 2014). Its implications for

individuals and society can be substantial (Section 2.1.2); these include reduced

enjoyment of the indoor space, sleep quality, productivity, and increased risk of

mortality (AECOM, 2019; Joshi et al., 2016; Lan et al., 2011). Mitigating the risk

posed to human health, wellbeing and productivity from increased exposure to heat

in homes and other buildings is one of the highest priorities for adaptation (CCC,

2021b). While positive steps have been taken to tackle such risks in new homes,

there is a policy gap in adapting the existing housing stock to the increasing risk of

indoor overheating (CCC, 2022).

Building stock models have long been used to guide energy policy (Kavgic et al.,

2010; Oraiopoulos and Howard, 2022). Similarly, models adapted to predict summer

indoor temperature, such as the bottom-up UK-HSM, can support the formulation

of policies to mitigate indoor overheating risk. Uncertainties are integral to the

modelling process (Saltelli et al., 2008), and their quantification and reduction can

result in better-informed decision-making. The importance of uncertainties was

recognised during the empirical validation of UK-HSM, with their quantification and

reduction considered essential future work (Symonds et al., 2017). The Bayesian

approach to model calibration has been shown to perform well and has gained traction

within the field of built environment (Hou et al., 2021; Oraiopoulos and Howard,

2022). Differences exist between the various implementations of this approach, and

in section 2.4, published examples of the Bayesian calibration of archetype-based

housing stock models were critically evaluated.

Through the review of literature on indoor overheating, building stock model-

ling and the calibration of archetype-based housing stock models using Bayesian

inference, several research gaps were identified. Pertinent to this thesis are the

following:
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1. All published examples of Bayesian calibration on archetype-based housing

stock models focused on energy. At the time of writing, no such application

on models of indoor temperature or overheating could be found. Given the

growing importance of indoor overheating, and the differences in the dynamics

of indoor temperature compared to energy use when used for calibration

purposes, this is a key research gap.

2. Classification, an important step in the Bayesian calibration of archetype-based

models, has often been done using an ad hoc basis. A data-driven approach has

the potential to result in a better-informed classification process. In the limited

examples where such an approach was implemented, household characteristics

were not considered, and it was unclear how this approach linked with the

subsequent calibration process.

3. The process of identifying probability distributions that represent available

evidence on the possible values of influential model inputs is important for un-

certainty quantification and Bayesian calibration. In the work reviewed, there

was very limited discussion of this process, with uniform distributions often

used despite the fact that they are unlikely to capture all available evidence.

The growing concerns surrounding indoor overheating adaptation and the afore-

mentioned research gaps have motivated this doctoral study. The aim of thesis is

to quantify and reduce uncertainties of archetype-based housing stock models of

summer indoor temperature, with a discussion surrounding the work’s scope and

research objectives offered in Section 1.3. In the following chapter, the methods used

to address the research aim and objectives are described. In addition, the datasets

that are instrumental to this work are discussed and modelling details regarding

UK-HSM are provided.



Chapter 3

Methods & Methodology

Chapter 2 presented a review of the theory and literature relevant to this work, fo-

cussing on indoor overheating, building stock modelling and model calibration. As

highlighted in Chapter 1 and Chapter 2, there is an urgent need to adapt the UK

housing stock to indoor overheating. A useful tool in supporting such efforts is

archetype-based building stock modelling, with one such example being the UK

Housing Stock Model (Section 2.2.2). Yet, as with any modelling endeavour, uncer-

tainties are present and their quantification and minimisation through a calibration

process is a necessary step in ensuring good predictive performance without an

unrealistic level of confidence. For this reason, a Bayesian approach was selected,

due to its ability to incorporate uncertainties within the calibration process. Several

frameworks of Bayesian calibration of housing stock models were reviewed (Sec-

tion 2.4), and several research gaps were identified (Section 2.5). Most importantly,

no published example that focused on the Bayesian calibration of housing stock

models of summer indoor temperature could be identified.

The purpose of this chapter is to describe the overall process through which the

aim and research objectives of this thesis, set out in Section 1.3, will be achieved

(Figure 3.1). In Section 3.1, the research objectives are revisited and an outline of the

steps required to address them is provided. Subsequently, Section 3.2 introduces the

Bayesian calibration framework developed in response to the first research objective

of this work. The quantity of interest for this study, and arguments for this choice, are

presented in Section 3.3. In Section 3.4, the key datasets used within this thesis are
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Figure 3.1: Chapter 3 flowchart. This is an abridged version of Figure 1.3, focusing on
Chapter 3. RO1 is a shortened version of Research Objective 1. UK-HSM stands
for UK Housing Stock Model.

described, while the modelling details of the UK-Housing Stock Model are provided

in Section 3.5. The chapter concludes with a summary in Section 3.6

3.1 Addressing the Research Objectives
In Section 1.3, three research objectives were identified that collectively address the

aim to quantify and reduce uncertainties of archetype-based housing stock models of

summer indoor temperature. The rest of this section outlines the steps required to

fulfil each research objective.

Research Objective 1: To develop a Bayesian calibration framework for

archetype-based housing stock models of summer indoor temperature. The following

steps are required:

1. Review theory and literature on the Bayesian calibration of archetype-based

housing stock models. This was presented in Sections 2.3.6–2.4.

2. Define what constitutes a homogeneous group of dwellings for this work.

3. Based on the chosen definition of homogeneity, propose a framework to:

• carry out a data-driven classification of dwellings into homogeneous

groups, and

• select and calibrate uncertain, influential model inputs
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Research Objective 2: To quantify the uncertainty of the UK Housing Stock

Model (UK-HSM) inputs with the greatest influence on summer indoor temperature

for a single homogeneous group of dwellings. Addressing this research objective

requires implementing the framework developed in response to the first object. In

particular, the steps that focus on classification and influential model input selection:

1. Select the model output of interest (also referred to as Quantity of Interest -

QoI).

2. Select a homogeneous group of dwellings following an analysis of empirical

observations of the QoI and linked dwelling and household characteristics.

3. For the UK-HSM archetype model that corresponds to the selected homogen-

eous group of dwellings, identify a probability distribution for each continuous

model input. This should be done using empirical data where possible, or based

on theoretical assumptions in their absence. These distributions represent the

uncertainty for each input.

4. Identify the model inputs, where given their uncertainty, have the greatest

influence on the QoI.

Research Objective 3: To quantify the level of improvement in the predictive

ability of the UK Housing Stock Model following application of the Bayesian cal-

ibration framework and reduce model input uncertainty for a single homogeneous

group of dwellings. The following steps are required:

1. Choose a method to aggregate the empirical observations to be used in the

Bayesian calibration process.

2. Select a surrogate model and a method to computationally implement the

Bayesian calibration.

3. Use a subset of the monitored data (train set) of the chosen homogeneous

cluster to calibrate the equivalent archetype UK-HSM model. The calibration

variables and their priors will be informed by the work carried out in addressing

the second research objective.
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4. The predictive performance of the calibrated model will be quantified using

the unseen part of the field data (test set).

3.2 The Bayesian Calibration Framework
In response to the first research objective, a Bayesian calibration framework for

archetype-based housing stock models of summer indoor temperature was developed.

The framework is modular and flexible; a modeller can choose what methods to use

for the different steps depending on the data available, their model and preference.

A high-level description of the framework is offered within this section. Details

regarding the framework’s implementation in this thesis are provided in the methods

sections of Chapters 4–7.

Figure 3.2: Distributions of wall U-value, before (top) and after (bottom) segmenting the
measurements based on the wall type. Data from Hulme and Doran (2014).

As with the studies reviewed in Section 2.4.2, a prerequisite to the Bayesian

calibration of archetype-based housing stock models is the classification (also re-

ferred to as segmentation or clustering) of dwellings into homogeneous groups. This
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step is necessary to reduce the effect of uncontrollable parameters on the calibration

process and the misattribution of uncertainty. Contrary to most papers reviewed,

a data driven approach to classification is preferred, which relies on a clear and

practical definition of homogeneity.

Figure 3.3: Workflow diagram for Bayesian calibration framework.

In this work, a group of dwellings is considered homogeneous if the variability

of influential building parameters could be described by unimodal distributions. Only

the most influential parameters are considered, to avoid an excessive segmentation

of the building stock based on parameters that would not largely influence the QoI.

In addition, it is advisable to calibrate only the most influential parameters to reduce

computational cost (since a greater number of parameters would require a greater

number of training points) but also to reduce the risk of parameter identifiability,
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as discussed in Section 2.3.8. If a building parameter within a group of dwellings

is described by a multimodal distribution, it is likely that one or more factors exist

that are responsible for the distinct modes. For example, the wall construction type

is the factor largely responsible for the multimodal distribution of wall U-values in

Figure 3.2. Segmenting the group of dwellings based on the identified factor and

carrying out the calibration separately for each group offers a few benefits:

1. It facilitates a comparison between groups of dwellings whose distinct charac-

teristics, such as those associated with different wall type construction, might

be the result of a change in building regulations or common industry practice.

A comparison of the posterior distributions of building parameters could reveal

to what extent a change in construction practice has had the desired effect on

the building parameter, for example, a reduction in wall U-value. This could be

particularly useful for building parameters that are hard to measure, although

caution should be used when interpreting such results from complex models

and with limited data (Booth et al., 2012; Kennedy and O’Hagan, 2001). In

addition, a comparison of QoI between groups could determine the effect of a

change in construction practice or building regulations on the QoI.

2. Furthermore, as argued by Booth et al. (2012), segmenting the housing stock

based on key factors also make the outcomes of a Bayesian calibration analysis

more informative to policymakers who might be interested in applying a

measure to a group of similar dwellings.

3. Finally, a practical consideration is that popular Markov Chain Monte Carlo

(MCMC) algorithms used in Bayesian model calibration, including Hamilto-

nian Monte Carlo discussed in Section 2.3.8, do not perform as well when

faced with multimodal posteriors (Pompe et al., 2020; Yun et al., 2020).1

Following from the definition of a homogeneous group, a Bayesian calibration

framework was developed and is visualised in Figure 3.3. Each step of this process

is described in more detail below:

1Although it is worth noting that MCMC algorithms are being developed to tackle multimodal
posteriors (Pompe et al., 2020; Yun et al., 2020).
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Step 1: Statistical analysis. The aim of this step is to determine which variables

have a statistically significant association with the QoI. This process relies on the use

of empirical observations of the QoI and matched metadata, such as dwelling and

household characteristics. The QoI might need to be estimated from raw observations.

For example, the daily maximum indoor temperature could be derived from hourly

observations of indoor temperature. The metadata, which in the statistical analysis

are treated as explanatory variables, could be continuous or categorical. Bivariate

and multivariate methods of analysis may be used to establish whether any such

associations exist.

Step 2: Categorical variable classification. Following the statistical analysis, the

housing stock is segmented based on statistically significant categorical variables

whose effect cannot be captured by a continuous model input. This step must take

into consideration the model being calibrated, and the empirical data available for

calibration. For example, assume dwelling type and floor area were both shown to be

associated with the QoI at a statistically significant level. In this example, floor area

can be specified in the archetype model as a continuous model input. Thus, even

if it was a categorical variable in Step 1, it does not need to be used as a classifier

and the housing stock data will not be segmented based on this model input. On the

other hand, the housing stock would need to be clustered based on the dwelling type,

since this is not modelled as a continuous model input. If the model has yet to be

developed, or further development is desired, Step 1 could inform this process.

Step 3: Stochastic characterisation. For each cluster, a probability distribution is

defined for each continuous model input. Where possible, the probability distribution

functions should be informed by empirical data; this process is not constrained to

the dataset used in Steps 1 and 2. Methods for identifying appropriate distributions

depending on the data available are described in Section 5.1.

Step 4: Sensitivity analysis. This step has two main aims: 1) To determine which

of the uncertain continuous model inputs should be calibrated, and 2) To determine

whether further segmentation of the housing stock is needed due to influential model

inputs being described by multimodal distributions. The first aim is common amongst
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Bayesian calibration studies in the built environment, as discussed in Section 2.3.8.

Several techniques exist that could accomplish this task, with the Morris method

most frequently used (Hou et al., 2021). The second aim is specific to this framework

and is based on the proposed definition of homogeneity. To implement this step, the

chosen method of sensitivity analysis should first be used to rank model inputs when

they are allowed to vary within their feasible range (e.g. their 95 % or 99 % percentile

interval); this will be informed by the work carried out in Step 3. Subsequently,

if any influential variables are described by multimodal distributions, the housing

stock is further segmented for each mode. A probability distribution will need to be

identified for each mode and the sensitivity analysis will be repeated for the newly

formed clusters. Influential model inputs characterised by a unimodal distribution

can be calibrated. Fixed values may be used to describe non-influential model inputs.

Step 5: Bayesian calibration. The aim of this step is to use Bayes’ theorem to

combine empirical observations of the QoI with any prior knowledge about the

distributional form of the uncertain calibration variables, and infer the posterior

distributions of calibration variables. The implementation will depend on a few

factors, such as, whether the model is computationally expensive, or what method is

used to compute the posteriors:

• For a computationally expensive model, a surrogate model would need to

be trained based on model simulations, which would subsequently (or con-

currently) be calibrated (Higdon et al., 2004). A fast computer model could

instead be calibrated directly.

• An MCMC is the most frequently used method for computing the posterior

distributions (Hou et al., 2021), and the Hamiltonian Monte Carlo algorithm

has been shown to be promising (Chong et al., 2017).

• Another important consideration in the calibration of archetype-based models

is the choice of aggregation of empirical observations of the QoI from different

dwellings (see Section 2.4.5.3). Related to this is also the choice of likelihood

model used (see Section 2.4.5.2.

• The choice of priors is also crucial; this could be informed by Step 3.
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By sampling from the posterior distributions, the computer or surrogate model can

be used for predictions under new settings that incorporate parameter and model

inadequacy uncertainties. To quantify the out-of-sample predictive ability of the

model following calibration, part of the empirical observations should be reserved

for validation. While the predictive performance post-calibration is expected to

improve, the posterior distributions of model inputs (e.g. the wall U-value) should

not be treated as direct estimates of the real-world physical quantities. As Kennedy

and O’Hagan (2001) argues, this is “inevitable in calibration when we do not believe

that the model can ever be a perfect fit”, which is the case when modelling a

complex system – such as an occupied building or groups of buildings – where

several simplifying assumptions are necessary. In addition, selecting only the most

influential model inputs for calibration can result in the lumping of uncertainty from

uncalibrated parameters into the posteriors, further diluting the physical meaning

of the calibrated parameters (Booth et al., 2012). The extent to which the posterior

distributions are representative of the physical quantities cannot be verified in most

applications, since a ground truth2 about the physical quantities does not exist, unless

a study is concerned with synthetic or test cell data.

Ideally, the dataset which informs the statistical analysis, classification and

calibration is large and representative of the building stock. The dataset would

be considered representative if the proportions and correlations of dwelling and

household parameters within the dataset (sample) are similar to those expected of the

housing stock (population). A sample would be sufficient in size if there is enough

data for each cluster to be calibrated. No guidance could be identified on what

number this should be, with Booth et al. (2012) having used 35 similar dwellings

in a single cluster while Kristensen et al. (2017a) used 450. Often, neither of the

aforementioned requirements will be met, which will require pragmatic decision-

making and caution when generalising from the results. For instance, in the first

stage of the classification, the influence of some categorical variables may not be

2Ground truth in this context refers to information provided by direct observation as opposed
to information provided by inference (Ground Truth Definition and Meaning — Collins English
Dictionary 2023)
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taken into account to ensure the clusters are large enough to conduct archetype-based

calibration. It should be noted that through the proposed classification procedure,

correlations between dwelling and household categorical variables and the QoI are

captured.

3.3 Quantity of Interest
To implement the Bayesian calibration framework, a quantity of interest must be

specified based on the calibrated model’s intended use. In this thesis, two such

quantities were selected for Step 1 of the calibration framework, but only one was

used for Steps 2-5. The choice of these quantities was based on previous and

planned use of UK-HSM in modelling the effects of home energy efficiency and

heat adaptation measures on heat-related mortality (Taylor et al., 2015; Taylor et al.,

2018a; Taylor et al., 2018b). The two quantities selected were:

• The Mean of the Daytime Living Room Temperature (MDLRT): The

mean of the hourly living room temperature was estimated per day between

08:00-22:00.

• The Mean of the Nighttime Bedroom Temperature (MNBT): The mean of

the hourly bedroom temperature was estimated per day between 22:00-08:00.

The use of these variables for heat-mortality modelling stems from the work of

Taylor et al. (2015). While several studies have derived epidemiological relationships

between excess heat-related mortality and ambient air temperature (Armstrong et al.,

2010; Hajat et al., 2014; Vicedo-Cabrera et al., 2021), a similar set of relationships

for indoor temperature do not currently exist. To account for the modifying effect of

building characteristics on excess heat-mortality, and as discussed in Section 2.1.3.2,

Taylor et al. (2015) assumed the relationship between daily maximum temperature

and excess mortality above the temperature-mortality threshold to be the same for the

living room as that suggested by Armstrong et al. (2010) for the ambient temperature.

Later heat-mortality work by Taylor et al. relied on the daytime (08:00-22:00) living

room temperature based on the UK-HSM metamodels developed Symonds et al.

(Symonds et al., 2016; Taylor et al., 2018b; Taylor et al., 2021).
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During Step 1, statistical analysis was carried out to identify dwelling and

household characteristics that have a statistically significant association with summer

indoor temperature. The analysis was conducted for both the living room (MDLRT)

and bedroom (MNBT) metrics, since outputs of this analysis would contribute to

current knowledge of indoor overheating risk and could potentially have implications

to industry or policy, in addition to informing the rest of the calibration procedure.

For Steps 2-5, only MDLRT was used for the calibration. The focus on living

room temperature is in line with previous heat-related mortality work based on

UK-HSM (Taylor et al., 2015; Taylor et al., 2018a; Taylor et al., 2018b). However,

contrary to these studies, the daily mean of the living room temperature was used

instead of the daily maximum. Even after data cleaning, it is still possible for the

daily maximum of hourly (or sub-hourly) indoor temperature observations to be

biased by the data logger’s exposure to brief yet substantial levels of heat (e.g. direct

sunlight). The daily mean is less sensitive to such exposure. Moreover, there is

no strong evidence to support the use of maximum instead of mean daily indoor

temperatures, and epidemiological relationships between ambient temperature and

excess mortality have been established for daily mean and maximum temperatures

(Armstrong et al., 2010; Hajat et al., 2014; Vicedo-Cabrera et al., 2021).

3.4 Datasets
To implement the proposed Bayesian calibration framework in this thesis, two

datasets of monitored indoor temperatures were used: (i) The 2011 Energy Follow-

Up Survey (EFUS) for Step 1 (statistical analysis) and (ii) The 4M dataset for Step 5

(Bayesian calibration). A summary of the datasets’ key characteristics is provided in

Table 3.1, with further information in Section 3.4.1 for EFUS and Section 3.4.3 for

4M. Section 3.4.2 explains why two datasets were used.

3.4.1 EFUS & EHS

The English Housing Survey (EHS) is a national survey, commissioned by the

Department for Levelling Up, Housing and Communities (previously Ministry of

Housing Communities and Local Government, and Department for Communities and
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Table 3.1: Key characteristics of the two datasets of monitored indoor temperature used
in this study, the Energy Follow-Up Survey (EFUS) and the 4M. For EFUS,
information is based on Hulme et al. (2013a), for 4M on Lomas and Kane (2013)
and Tempcon Instrumentation Ltd (2022).

EFUS 4M
Number of homes* 823 193
Start date Dec 2010 - April 2011 July 2009
End date April-May 2012 March 2010
Measuring frequency 20-min 60-min
Rooms monitored Living room; hallway; main

bedrooom
Living room; main
bedroom

Data Logger TinyTag Transit 2 Onset HOBO
UA-001-08

Data Logger’s
accuracy

±0.2 ◦C ± 0.4 ◦C**

Data Logger’s
resolution

0.01 ◦C 0.14 ◦C at 25 ◦C

Data Logger’s range −70 ◦C to 40°C −20 ◦C to 70 ◦C
* This is the number of homes for which data was available to use in this study
** The value ± 0.4 ◦C, quoted by Lomas and Kane (2013) is different to that suggested by
the manufacturer (Tempcon Instrumentation Ltd, 2022). Since the accuracy is temperature-
dependent, the value of ± 0.4 ◦C is possibly over a narrower temperature range than the value
offered by Tempcon Instrumentation Ltd (2022) (± 0.53 ◦C from 0 ◦C to 50 ◦C).

Local Government), that takes place every two years and consists of household inter-

views and physical surveys (DLUHC, 2021). The interviews typically cover topics

such as demography, employment and income while the surveys gather information

regarding the dwelling conditions and energy efficiency measures.

As a follow-up to the 2010-11 EHS, the Energy Follow-Up Survey conducted

further interviews and surveys in 2,616 dwellings with the purpose of updating

modelling assumptions regarding how energy is used at home (Hulme et al., 2013a).

For 943 dwellings, the indoor air temperature was monitored using TinyTag Transit 2

loggers at 20-minute intervals in the living room, bedroom and hallway from the time

of installation (December 2010 to April 2011) until they were returned (April/May

2012), with the data stored internally. As summarised in Table 3.1, the loggers had

an accuracy of ±0.2 ◦C, a resolution of 0.01 ◦C and a temperature range of −70 ◦C

to 40°C (Hulme et al., 2013a). Although the loggers were new and calibrated by

the manufacturer, BRE conducted additional tests on a sample of them, with their

performance being as expected. Occupants were provided with instructions on the



3.4. Datasets 117

Figure 3.4: Flowchart of the process used to upload and download information off the UK
Data Service server.

correct placement of the data loggers during the interview, on internal walls away

from direct sources of heat or sunlight and at a height that can be reached by adults

but not by children. Adequate data for at least one room were returned by 823

dwellings.

The monitored temperatures, interviews and survey data can be linked to the

data within the EHS through access to the UK Data Service (UKDS) (Building

Research Establishment and Department of Energy and Climate Change, 2016a;

Building Research Establishment and Department of Energy and Climate Change,

2016b; Department for Communities and Local Government, 2017).

3.4.1.1 Data Access

A key consideration is the process of accessing and using the matched EHS and

EFUS datasets (Figure 3.4). The two datasets, along with a matching file that allows

the two datasets to be linked, are stored by the UKDS. Secure access to the data for

the purpose of this research was obtained following successful training to become an

Economic and Social Research Council (ESRC) Accredited Researcher. The data is

stored on a remote server, which could only be accessed through a specific computer
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and desk within UCL that were approved by UKDS during the application process.

One could only use the software installed on the UKDS server for analysis, with

the software used shown in Figure 3.4. Exporting or importing has to be reviewed

and approved by UKDS staff. Exporting was particularly restrictive as only specific

formats are allowed (e.g. manuscripts) with the results being either qualitative or

aggregated quantitative statistics to satisfy a set of Statistical Disclosure Control

(SDC) checks in order to reduce the risk of identifying individuals within the study.

3.4.1.2 Data Cleaning

At the pre-processing stage, the monitored indoor temperatures of each dwelling

were analysed with the purpose of identifying extreme values that could be the result

of faulty or misplaced data loggers (e.g. positioned near heat sources). Given the

relatively cool conditions during the summer of 2011, individual recordings that

exceeded 40 ◦C were removed and the temperatures measured at 20-minute intervals

were averaged to give hourly values. In the case that multiple recordings exceeded

40 ◦C, that logger was removed from the dataset. Subsequently, for each region, the

temperature profiles of statistical outliers were qualitatively assessed to determine

whether further elimination was required (e.g. in case of year-long flat temperature

profiles). In the case of missing data from bedroom or living room loggers during the

period May-September (inclusive), the rooms of these dwellings were not included

in the overheating assessment. Following the pre-processing stage, the temperature

monitored in 795 living rooms and 799 bedrooms were considered adequate for

analysis, out of an initial sample of 823 dwellings.

3.4.2 The Impact of Covid-19 on Data Access

The intention at the start of this study was to use the 2011 EFUS dataset for both

classification and calibration. While the summer of 2011 was not particularly warm,

the level of detail provided by this dataset together with its representativeness of

the English housing stock were considered ideal. As explained in Section 3.4.1.1,

access to this dataset was obtained through UKDS, with several restrictions in place,

including the physical location of the computer being used to access the data on the
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remote server. On the 17th of March 2020, due to the increasing number of people

with SARS-CoV-2 within the UK, UCL requested its academic and research staff to

work from home; something that became official guidance from the UK government

a few days later. The building that houses the Bartlett School of Environment,

Energy and Resources remained shut for several months, with restricted access being

reinstated in September 2020.

Working from home meant that accessing the 2011 EFUS dataset or any analysis

stored on the UKDS server was no longer possible. Given the uncertain nature of the

pandemic, the author decided that the best course of action was to use a different

dataset for the calibration, the 4M study, for which the steps of data exploration

and cleaning had to be repeated. As detailed in Section 3.4.3, 4M was an empirical

study which focused on the city of Leicester and contained less information on the

monitored dwellings’ characteristics and occupancy than EFUS. Yet, the use of 4M

allowed for an effective application of the calibration framework developed and for

the research objectives outlined in Section 1.3 to be met.

3.4.3 The 4M dataset

The core aim of the 4M project was to determine the carbon footprint of Leicester

(Lomas and Kane, 2013). At the time, Leicester was the UK’s 15th largest city,

with households that covered a wide range of socio-economic categories. Face-to-

face questionnaires were completed by 575 homes, which were randomly selected

following stratification based on the percentage of detached homes and the percentage

of homes with no dependent children. The questionnaire was compiled by the 4M

team and was carried out on its behalf by the National Centre for Social Research

(NATCEN). The survey included questions regarding the dwelling type, number

of occupants, age of the oldest occupant and whether loft or wall insulation were

present.

As part of the survey, occupants of all 575 homes were asked to place temperat-

ure sensors in the living room and main bedroom, with guidance provided on their

correct installation; away from heat sources and not in direct sunlight. Out of the

575 households, 94 did not agree to the use of data loggers and only 321 returned
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(a) (b)

Figure 3.5: Reproduced from Lomas and Kane (2013), (a) is an image of the Hobo data
logger used to monitor indoor temperatures and (b) is a map of Leicester showing
the spatial distribution of homes that took part in 4M.

them at the end of the monitoring period (Figure 3.5(b)). A subset of the 4M dataset

(193 homes) with adequate metadata required for the calibration part of this doctoral

study were kindly provided in an anonymised format by Prof. Kevin Lomas and Dr.

David Allinson.

Table 3.1 offers a summary of the temperature monitoring. Onset HOBO

UA-001-08 pendant-type temperature sensors (Figure 3.5(a)) were used to monitor

internal temperatures over an eight-month period, beginning on the 1st of July 2009

(Lomas and Kane, 2013; Tempcon Instrumentation Ltd, 2022). Each hour, the

sensors took spot measurements of air temperature, but it is likely that they also

recorded part of the radiant component since they were not shielded (Lomas and

Kane, 2013). While it cannot be claimed that such observations are of air temperature

alone, it has been argued by Lomas and Porritt (2017) that temperature measurements

which are a function of air and radiant temperature may correspond better to the

temperature experienced by the occupants. The loggers were calibrated by the

manufacturer and were found to be accurate to ± 0.4 ◦C (Lomas and Kane, 2013).
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(a) Dwelling Type

(b) Wall Type (c) Glazing Type

Figure 3.6: Bar charts comparing the prevalence of different dwelling, wall and glazing
types within the entire 2012 English Housing Survey (EHS), the subset of EHS
dwellings located in East Midlands and the 4M dataset. Mixed glazing types
indicate the presence of single and double glazing.

3.4.3.1 Exploratory Data Analysis

Figures 3.6–3.8 compare the prevalence of different dwelling and household charac-

teristics within the 4M dataset, the entire 2012 English Housing Survey (EHS) and

the East Midlands subset of EHS (EHS-EM).

Figure 3.6(a) indicates a higher prevalence of mid-terrace and semi-detached

homes in 4M compared to EHS or EHS-EM, while there is a smaller prevalence

of bungalows and flats. Semi-detached is the most frequently occurring dwelling

type within the 4M dataset, with monitored temperatures and sufficient metadata
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(a) Loft Insulation

(b) Construction Age

Figure 3.7: Bar charts comparing the prevalence of different loft insulation levels and
construction age within the entire 2012 English Housing Survey (EHS), the
subset of EHS dwellings located in East Midlands and the 4M dataset.

available for 86 homes. The percentage of solid wall dwellings monitored by the 4M

project is higher than the equivalent percentage in the EHS and EHS-EM datasets

(Figure 3.6(b)). At the same time, cavity wall dwellings are less prevalent in the

4M dataset than in the EHS and EHS-EM datasets. The high prevalence of semi-

detached and mid-terrace dwellings, along with the high prevalence of solid wall

dwellings, are likely linked to the high percentage of pre-1944 dwellings within the

4M dataset (Figure 3.7(b)). While Figure 3.6(c) demonstrates that double glazing

is the dominant type of glazing for all three datasets, Figure 3.7(a) suggests large

discrepancies in the levels of loft insulation between the datasets. It is more common
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(a) Tenure

(b) Employment

Figure 3.8: Bar charts comparing the prevalence of different tenure and employment groups
within the entire 2012 English Housing Survey (EHS), the subset of EHS
dwellings located in East Midlands and the 4M dataset.

within the 4M dataset to have insulation thickness less than 100 mm but less common

to have insulation thickness of 200 mm or more than either of the EHS and EHS-EM

datasets. The percentage of occupants who own their household is higher within the

4M dataset than in EHS and EHS-EM (Figure 3.8(a)). Employment status is similar

amongst all three datasets (Figure 3.8(b)).

Following this comparison, it may be concluded that in many regards, the 4M

dataset is not representative of the national or the East Midlands housing stock.

Lomas and Kane (2013) considered the 4M dataset as largely representative of the

city of Leicester. However, it is assumed that the findings from the statistical analysis

of EFUS, described in Section 4.1, may still inform the classification process, even
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if 4M is used for the calibration.

3.4.3.2 Data Cleaning

(a) Temperature sensors placed in the same room.

(b) Heating is likely on at 21:00.

Figure 3.9: Examples of timeseries plots of temperature profiles used for data cleaning.

Since the raw 4M data were provided for this study, data cleaning had to

be carried out before being used. The data cleaning process was based on the

approach of Lomas and Kane (2013). For each semi-detached home, a set of

interactive, weekly timeseries plots of hourly indoor temperature for both rooms,

outdoor ambient temperature and Global Horizontal Irradiance (GHI) were generated
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using the R library plotly (Sievert, 2020). An example is shown in Figure 3.9. By

visually inspecting the plots of each home, data were rejected if any of the following

conditions were true:

• Sensors placed together: identical temperature profiles for the living room

and bedroom (Figure 3.9(a)).

• Sensors moved location: step changes in temperature profiles.

• Sensors placed outdoors: indoor temperature profiles closely matching the

outdoor ambient temperature.

• Sensors with direct solar radiation: indicated by extreme increases in indoor

temperature, correlated with measurements of GHI.

• Sensors placed in a container, cupboard or drawer: unresponsive (flat)

temperature profiles.

• Periodically unoccupied homes: indicated by periods of different indoor

temperature behaviour compared to the rest of the time. For example, this con-

dition might be indicated by a period of unresponsive and comparatively low

indoor temperatures, whereas a more dynamic indoor temperature behaviour

was observed during the rest of the time.

• Heated homes: indicated by periodic increase of indoor temperature that

diverged from the ambient outdoor temperature. An example is shown in

Figure 3.9(b), where indoor temperature increased in both rooms, every day,

at about 21:00.

Heated homes were excluded from the dataset used for calibration, since UK-

HSM assumes no heating during the summer period. While this is true for most

homes, a small percentage of occupants utilise heating during the summer and

future version of the housing stock model should account for that (Lomas and Kane,

2013). Only the period July–August was used for calibration, since the data cleaning

process revealed that a significant fraction of homes used heating in September. Data

cleaning was only carried out for the final three clusters of dwellings considered for

calibration, with its outcomes summarised in Figure 4.4 of Chapter 4.
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3.4.4 Weather Data

Weather data already available from a previous study that compared the UK-HSM

prediction to the EFUS dataset were used (Symonds et al., 2017). As described in

more detail by Symonds et al., the weather data were obtained from the Met Office

Integrated Data Archive System (MIDAS) database for the weather stations in the

six regions identified in Figure 3.10(a) (Met Office, 2018b). Since not all weather

stations had a complete dataset, a second weather station was sometimes used within

the same region to fill the gaps. A summary of the daily-mean temperature of each

region is provided in Figure 3.11. Depending on its Government Office Region

(GOR), each dwelling was associated with one of the six regions.

(a) (b)

Figure 3.10: Part (a), reproduced from Symonds et al. (2017), maps the location of the
weather stations used in the analysis of the EFUS dataset. Part (b) shows the
location of the weather stations used for the 4M analysis.

For the analysis of the 4M dataset, MIDAS data from three weather stations,

shown in Figure 3.10(b), were used to construct the weather file needed for the

UK-HSM simulations (Met Office, 2018b). The stations were selected based on data

availability and their proximity to the centre of Leicester (coordinates = 52.634444,
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Figure 3.11: Box plots of the daily mean temperature between May and September 2011 for
six English regions. The England box-plot represents the average daily mean
temperature across the six regions. Data provided by Symonds et al. (2017).

-1.131944). Hourly non-solar data were taken from the Cottesmore station. If a single

hourly observation was missing, the mean of the hour before and after was used.

There was one instance when data were missing for a continuous time period (13

consecutive hours). In that case, the hourly mean of same time period for the days

before and after were used. Hourly solar data were based on recordings from the

Sutton Bonington station. To replace missing solar data for 240 hours in December

2009, data recorded at the Church Lawford station were used. To estimate the solar

components needed for the simulation, an in-house tool developed for the work

described by Symonds et al. (2017) was used.

The period of interest is the 1st of July to 31st of August 2009 when indoor

temperature measurements were available, and heating was considered to be off

for most homes. As noted by Lomas and Kane (2013), the summer of 2009 was

relatively cool with average temperatures for July and August of 16.2 ◦C and 16.6 ◦C,

below the 10-year average. From the 28th of June until the 2nd of July, a heatwave

resulted in the average daily temperature exceeding 19 ◦C and peaking on the 1st

of July at 24.1 ◦C. There was one more occasion when the daily mean ambient

temperature exceeded 19 ◦C on the 19th of August.

3.5 UK Housing Stock Model
In Section 2.2.2, UK-HSM was introduced, and the timeline of its development and

applications was described. This section focuses the main modelling characteristics
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of UK-HSM, as used in this work. While this study sought to calibrate UK-HSM’s

continuous model inputs, it did not attempt to alter the model’s structure and hard-

coded assumptions. The main component of UK-HSM is a UCL IEDE in-house

parametric tool, EPGenerator 3 (EPG3), written in Python. While a thorough de-

scription of EPG3 and UK-HSM is provided by Mavrogianni et al. (2014), Symonds

et al. (2016), Taylor et al. (2016) and Taylor et al. (2019), the rest of this section will

provide a brief summary.

Figure 3.12: UK Housing Stock Model (UK-HSM) workflow diagram.

As illustrated in Figure 3.12, UK-HSM requires the specification of four cat-

egorical and twelve continuous model inputs. The possible values for the categorical

variables are summarised in Table 3.2. Following input specification, as a comma
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separated file (.csv) or directly in Python, EPG3 generates an EnergyPlus Input Data

File (.idf) for each unique combination of model inputs which are subsequently

simulated in EnergyPlus. EnergyPlus is a free, open-source and cross-platform

whole building energy simulation tool developed by the United States Department

of Energy (DOE), in collaboration with the National Energy Research Laboratory,

academic institutions and private firms (DOE, 2022). It has descended from two

legacy building simulation software, DOE-2 and BLAST, with its beta release in

December 1999 (Crawley et al., 2001). Since then, it has received regular updates,

currently at the rate of two releases per year, substantially expanding its capabilities

(DOE, 2022); this has been facilitated by its modular structure which enables the

easy integration of new features (Crawley et al., 2001). Another key characteristic

of EnergyPlus is its integrated solution manager, which through the simultaneous

evaluation of energy and moisture balance in the building, system and plant, enables

a more accurate prediction of space temperatures than its predecessors (Crawley

et al., 2001; DOE, 2016). For the present analysis, EnergyPlus version 8.8.0. was

used, with six timesteps per hour.

Table 3.2: Categorical model inputs of the UK Housing Stock Model.

Parameter Values
Dwelling Type End terrace; mid terrace; semi-detached; detached; bungalow;

converted flat; low-rise flat; high-rise flat
Wall Type Solid; cavity; filled cavity
Occupancy Type Pensioners; family
Terrain City; urban; rural

3.5.1 Building Characteristics

For the purposes of modelling the English housing stock, eight typologies (see

Table 3.2) were derived from EHS and are defined in EPG3 (Taylor et al., 2016).

These were the result of a statistical analysis of key dwelling characteristics within

the EHS, with the aim to identify the most representative typologies within the

housing stock (Oikonomou et al., 2018). Internal layouts were derived using typical

floor plans for the typologies of the corresponding age and form, and these are

included in Figures B.1–B.2 of the appendices. A summary of the number of rooms
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(inc. hallways), bedrooms, ground floor area and total volume (excl. roof) per

typology is provided in Table B.1, also in the appendices. By varying the floor area

factor, the model floor area varies in proportion to the mean floor area for each

typology. The model’s floor-to-ceiling height and orientation can also be varied. To

account for shading and wind exposure sheltering from nearby dwellings, replicates

of each model are created depending on the built form. For example, a mirrored

replicate of a semi-detached dwelling is created with a party wall separating them.

The terrain variable modifies the local wind speed near the modelled building by

varying the wind speed profile exponent and boundary layer thickness (DOE, 2016).

3.5.2 Building Fabric Characteristics

For each built form, the wall type is specified as one of the three (masonry) con-

struction types: solid, cavity and filled cavity (Symonds et al., 2016). The choice

of construction in UK-HSM accounts for differences in thermal mass, but related

characteristics such as thermal insulation, air tightness and albedo are controlled in-

dependently. EPG3 uses pre-defined material and construction libraries, and adjusts

their characteristics (e.g. thickness of insulation) depending on the Wall U-value

(only for external walls), Roof U-value, Window U-value and Floor U-value. For the

solid wall construction, internal wall insulation is assumed since this is considered

to perform worse with regard to overheating compared to external wall insulation,

resulting in the evaluation of the worst case scenario (Peacock et al., 2010; Symonds

et al., 2016). When the Window U-value is ≤ 2.0 W/m2K, the windows are assumed

to be post-2002 and are modelled with trickle vents installed (Symonds et al., 2016).

The fabric air permeability parameter determines the unintended airflow through the

fabric – this is modelled as crack air flow within EnergyPlus, where two (a high and a

low) cracks are modelled for each façade with their air mass flow coefficient adjusted

depending on the specified air permeability (see DOE (2016) for how EnergyPlus

models crack air flow). Solar absorptance is an input used to assess the impact of

changing the albedo level of external roofs and walls of the model, while the Glazing

Fraction controls the ratio of glazed area to external wall area.
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3.5.3 Occupant Characteristics

To account for diversity in occupant’s actions and presence, two types of occupancy

are defined within EPG3:

1. Pensioners: Assumes two pensioners spending all day at home.

2. Family: Assumes a family of five which is out during the day on weekdays

between 8 am and 6 pm.

For both occupancy types, windows can only be opened between May and September

(inclusive), during the hours specified in Table 3.3 and if the indoor temperature

exceeds a threshold temperature and is greater than the outdoor temperature. This

is a simplified way of modelling window operation. Fabi et al. (2012) identified a

number of factors that influence window opening behaviour, categorised into five

groups: physical environmental, contextual, psychological, physiological and social.

Indoor temperature was classified as an influencing physical environmental group,

but so were other factors, such as, perceived illumination, smoking behaviour, out-

door temperature and time of the day (Fabi et al., 2012). In addition, Meinke et al.

(2017) demonstrated through experiment that people perceive indoor temperatures

and act to change their thermal comfort differently, even under controlled conditions.

Furthermore, operating windows only when the internal temperature is greater than

the external temperature is most effective with regard to reducing indoor overheating

risk, but real-life occupancy is unlikely to be as consistent. Given the likely sub-

stantial influence that window operation will have on the two quantities of interest

(Section 3.3), this simplified modelling approach, and the scarce data to inform the

window opening threshold, are key sources of uncertainty; both of model inadequacy

and parameter (2.3.2). A Bayesian approach to model calibration could identify the

most likely value for the model input and quantify parameter uncertainties and model

bias.

Heating is also assumed to be seasonal (January–April and October–December),

differ between occupancy types and controlled by the Thermostat temperature

setting. Since this study focuses on summer indoor temperatures, assumptions
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Table 3.3: Hours during which windows were modelled as open between May and September
if the indoor temperature exceeded the threshold and outdoor temperature.

Bedrooms Other Rooms
Pensioners 22:00–08:00 08:00–22:00
Family 22:00–08:00 08:00–09:00; 18:00–22:00

relating to heating will not be considered. However, it is acknowledged that a

minority of occupants heat their homes during summer, potentially exacerbating

indoor overheating problems (Lomas and Kane, 2013). In some cases, this could be

due to the use of communal heating systems that do not always allow for occupant

control.

The use of electrical equipment (including for cooking) may also contribute to

indoor overheating through heat generated as a waste-product of their intended use.

The assumptions regarding the schedules of use and power for each appliance are

based on datasets available at the time of model development (Symonds et al., 2016).

A single model input, electrical gains factor, is used to linearly vary the power

level of electrical equipment, thus controlling the levels of internal gains. Given the

stochastic nature of energy and appliance use, and the changes in appliance energy

efficiency and practices over time, this component of the UK-HSM is also considered

to be simplified and associated with significant uncertainties. Metabolic gains are

also modelled and depend on whether the pensioners or the family occupancy profile

is selected.

3.5.4 Modelling Details for Chosen Archetype

As will be detailed in Section 4.2.6.2, following Step 2 of the Bayesian calibration

framework, the archetype model selected for calibration in this thesis was that of a

semi-detached typology, with filled cavity walls, double glazing and occupied by

pensioners. The pensioners occupancy profile was used due to the higher prevalence

of this occupancy type, compared to the family profile, in the cluster of 4M dwellings

identified following the classification process. For the brevity of this chapter, the

modelling details regarding this archetype model have been included in the appen-

dices: Table B.2 lists the key algorithms assumed, Tables B.3 and B.4 provides a
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summary of the construction and building characteristics, and Table B.5 details the

occupancy schedules.

3.6 Summary
This chapter set out a step-by-step process for addressing the aim and research

objectives of this work, subsequent chapters will present the implementation of these

steps. A modular and flexible Bayesian calibration framework for archetype-based

models of summer indoor temperature was proposed. It consists of five steps and

follows from the definition of homogeneity provided within the same section. The

framework is not prescriptive with the methods to be used in each step, instead,

it offers a flexible structure that can be adapted depending on the model and data

available; in-depth description of the methods used for the framework’s application

in this thesis is provided in the “Methods” sections of Chapters 4–7. The quantity

of interest for this work, the mean of the daytime living room temperature, was

introduced and the arguments for its selection were discussed. The datasets of

monitored summer indoor temperature, their associated metadata and weather data

were also detailed within this chapter, along with the UK-HSM modelling structure

and assumptions. The following chapter presents the implementation of Steps 1

and 2 of the proposed Bayesian calibration framework. The implementation of the

remaining steps is then discussed in Chapters 5–7.





Chapter 4

Statistical Analysis & Categorical

Variable Classification

The previous chapter introduced the Bayesian calibration framework for archetype-

based housing stock models of summer indoor temperature in Section 3.2. Step 1

of the framework requires the statistical analysis of an empirical dataset to identify

variables that are significantly associated with the quantity of interest. The outputs

of this process inform Step 2 of the framework, the categorical variable classifica-

tion, where the housing stock is clustered into groups of dwellings suspected to be

homogeneous. This chapter presents and discusses the methods of Step 1 and 2 in

Section 4.1, and the results in Section 4.2. The outcomes of this chapter will inform

Chapters 5 and 6, as illustrated in Figure 4.1.

To explore the potential associations between dwelling and household charac-

teristics with the summer indoor temperatures monitored during the 2011 Energy

Follow-Up Survey (Step 1), an approach similar to that used by Hamilton et al.

(2017) is followed. The summer indoor temperatures are standardised to account

for the inter-regional variation in local weather, a method similar to that introduced

by Oreszczyn et al. (2006) is used (Section 4.1.1). Subsequently, a set of statistical

tests are conducted to identify variables that are significantly associated with the

standardised indoor temperature, as detailed in Section 4.1.2. The prevalence of

indoor overheating risk within the housing stock based on the CIBSE TM59 metrics

is quantified, with the approach described in Section 4.1.3, while this is not a re-
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Figure 4.1: Chapter 4 flowchart. This is an abridged version of Figure 1.3, focusing on
Chapter 4 and its outputs. RO2 is a shortened version of Research Objective 2.
UK-HSM stands for UK Housing Stock Model, QoI for Quantity of Interest,
EFUS for Energy Follow-Up Survey and EHS for English Housing Survey.

quirement for the Bayesian calibration framework it is included for completeness of

this analysis. The results of the overheating and statistical analysis are summarised

and discussed in Sections 4.2.1, 4.2.2 and 4.2.3. This part of the thesis has been

published in a journal article (Petrou et al., 2019b).

Having identified variables that are significantly associated with summer indoor

temperatures, the process of categorical variable classification (Step 2) is implemen-

ted, with the procedure outlined in Section 4.1.4. The results from this process are

presented and discussed in Section 4.2.6. The limitations of the work presented

in this chapter are summarised in Section 4.3, and the chapter concludes with a

summary in Section 4.4.

4.1 Methods

4.1.1 Standardisation of Indoor Temperature

Both in the winter, and summer, the outdoor weather is a key determinant of indoor

temperature. To compare internal winter temperatures against dwelling character-

istics for homes monitored across the country, Hamilton et al. (2017) considered it

“necessary to create a common baseline”. They employed a method introduced by

Wilkinson et al. (2001) and expanded on by Oreszczyn et al. (2006) to standardise

the monitored indoor temperatures against external weather conditions and compare
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the standardised indoor temperature (SIT) for dwellings with different characteristics.

For each monitored home, a regression-based model was constructed using observa-

tions of indoor and outdoor temperature. The regression models were subsequently

used to predict a single SIT for each home for the same outdoor temperature. This

approach enables for outdoor temperature to be controlled, diminishing its effect

as a confounder when examining the association between indoor temperature and

dwelling characteristics. With the same rationale, the summer indoor temperature

may also be standardised against weather conditions to carry out a similar analysis

of association between SIT, dwelling and household characteristics. However, the

choice of temporal resolution, data points included in the analysis and standardised

weather conditions will depend on the purpose of the analysis.

Given the focus on periods when occupants would most likely be at home,

during cold conditions and when the heating system would most likely be used,

Hamilton et al. (2017) derived a regression function for each living room using

hourly observations between 07:00-09:59 and 19:00-21:59, and for each bedroom

between 20:00-07:59. In addition to estimating the SIT at an ambient temperature

of 5 ◦C, as was previously done by Wilkinson et al. (2001) and Oreszczyn et al.

(2006), Hamilton et al. (2017) also estimated the SIT at an ambient temperature of

0 ◦C and 10 ◦C to investigate whether their findings change at colder and warmer

outdoor conditions. This analysis revealed that the trends in the differences in SIT

for different building characteristics were broadly similar, but that the magnitudes

tended to be greater as outdoor conditions became colder.

In this thesis, twelve regression models were assessed in the standardisation of

the Mean Daytime Living Room Temperature (MDLRT) and the Mean Nighttime

Bedroom Temperature (MNBT), the quantities of interest for this thesis (Section 3.3).

The models were trained only for the period of May to September (inclusive), with the

explanatory variables being the outdoor temperature and global horizontal irradiance

(GHI); the choice of these weather variables was informed by the literature (Taylor

et al., 2014). The models varied in their combination of weather variables used,

and the temporal resolution of the predictors (see Section C of the appendices for



138 Chapter 4. Statistical Analysis & Categorical Variable Classification

more details). To evaluate each model’s performance, the adjusted coefficient-of-

determination (R2) was calculated for each home, and each model’s distribution of

adjusted R2 was visually assessed. R2 quantifies the proportion of total variation

of the dependent variable (in this case, MDLRT and MNBT) that can be explained

by the explanatory variables (Rencher and Christensen, 2012), with a value of 1

indicating a perfect fit. Adjusted R2 has a similar interpretation, but penalises the

number of explanatory variables to avoid overfitting (Reimann et al., 2008). While

weather variables are expected to have a major influence on indoor temperature, other

influential variables will also exist, thus a value of R2 equal to 1 was not expected.

Amongst the numerous models evaluated, a balance was struck between model

efficacy and simplicity for a model that was based on linear terms of daily-mean

outdoor temperature (Tout,mean) and Global Horizontal Irradiance (GHImean) as de-

scribed by equation:

SITroom = β0 +β1Tout,mean +β2GHImean (4.1)

SITroom is the mean day-time (08:00-22:00) indoor temperature estimated for the

living room or the mean nighttime (22:00-08-00) temperature for the bedroom. β0−2

are the linear regression coefficients. Different regression coefficients were estimated

for each room of each dwelling using the stats package of the programming language

R (R Core Team, 2018). The median of the adjusted R2 for the MDLRT and MNBT

was 0.48 and 0.64, respectively (see Section C of the appendices for the full set of

results).

Given the focus on warm summer conditions and excess heat-related mortality,

a relatively high outdoor temperature had to be chosen as the standardisation temper-

ature. Hajat et al. (2014) identified different thresholds over which heat-mortality

takes place for each region of England based on the daily mean temperature. These

thresholds ranged from 16.6 ◦C in the North East to 19.6 ◦C in London. To en-

sure that standardised temperature is considered warm across the entire of England,

a daily-mean temperature of 20 ◦C was used, since it exceeded all regional heat-

mortality thresholds. This value was considered an upper end of what might be
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used for the standardisation, given the relatively mild summer conditions of 2011

(see Figure 3.11) for which the models could be trained on. The GHImean value of

210 Wh/m2 was used, since it was the average daily-mean GHI across the days that

the daily-mean outdoor temperature exceeded 19 ◦C.

It should be noted that if the SIT was used to compare the severity of overheating

in different regions, with a standardised temperature at the upper extreme of summer

conditions in the north, then it would indicate overheating to be more severe than

what occupants experience. Similarly, using a standardised temperature at the lower

extreme of regions in the south would erroneously suggest overheating to be less

severe than what is experienced by occupants. However, SIT was not used in

this thesis to compare the extent of overheating in different regions, but only to

study the association of dwelling and household characteristics with summer indoor

temperature.

4.1.2 Statistical Analysis

The approach to statistical analysis is based on precedence, since it has been previ-

ously used in the analysis of (winter) indoor temperatures (Hamilton et al., 2017)

and allows for a thorough assessment of each explanatory variable.

To explore the association of household and dwelling characteristics with stand-

ardised indoor temperatures, 20 categorical variables were selected, which are

summarised in Tables 4.1-4.2. The selection of variables was based on a combination

of characteristics which have been associated with indoor overheating by published

modelling and empirical studies (Beizaee et al., 2013; Firth and Wright, 2008; Lo-

mas and Kane, 2013; Mavrogianni et al., 2012; Pathan et al., 2017), and variables

suspected to be influential but which have never been previously investigated. One

variable investigated was SAP 09. This refers to the SAP rating estimated using the

2009 version of the Standard Assessment Procedure (SAP), and it is a measure of

the floor area adjusted energy costs associated with space heating, water heating,

ventilation and lighting, minus cost savings from energy generation technologies

(BRE, 2011). It ranges from 1 (highest energy costs) to 100 (lowest energy costs).

A number of statistical techniques were used to investigate the differences in
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Table 4.1: Summary of the household variables analysed. HRP is the household reference
person, LA stands for Local Authority and RSL for Registered Social Landlord.

Variable names Value
Household
composition

couple, no dept. child(ren) < 60; couple, no dept.
child(ren) ≥ 60; couple with dept. child(ren); lone parent
with dept. child(ren); other multi-person households; one
person < 60; one person aged 60 or over

No of people in the
household

1; 2; 3; 4; 5; 6 or higher

Age band of youngest
person

0-4; 5-10; 11-15; 16-24; 25-59; 60-74; 75-84; 85 or more

Age band of oldest
person

16-34; 35-49; 50-59; 60-74; 75-84; 85 or more

Employment status of
HRP and partner

1 or more work full time; 1 or more work part-time; none
working, one or more retired; none working, and none
retired

Tenure own with mortgage; own outright; privately rent; rent
from LA; rent from RSL

Anyone illness or
disability

Yes; No

All households -
income in 5 bands

lowest 20 %; quintile 2; quintile 3; quintile 4; highest
20 %

Occupant on means
tested or certain
disability related
benefits

Yes; No

SIT associated with the selected dwelling and household characteristics, summarised

in Table 4.3. To assess whether statistically significant differences exist for the SIT

of each variable, the Kruskal-Wallis test was used. This test has been previously

used for a similar analysis by Hamilton et al. (2017), it does not assume normality,

and it is able to deal with extreme data. Whether a significant difference exists

was indicated by the p-value: a measure of how likely the observed data are under

the null hypothesis, between 0 for impossible and 1 for certain (Greenland et al.,

2016). The maximum acceptable p-value (significance level) was chosen in advance

to be 0.05, a common choice in statistical analysis (Reimann et al., 2008). If the

p-value ≤ 0.05 for any variable (e.g. dwelling type), there is enough evidence to

support a statistically significant difference between the median SIT of the variable’s

levels (e.g. bungalow, detached etc.). To compare the median SIT of each variable’s
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Table 4.2: Summary of the dwelling variables analysed. Total useable floor area represents
the entire area within the dwelling’s footprint, excluding the area occupied by
staircases, internal and external walls.

Variable names Values
Dwelling Type bungalow; converted flat; detached; end-terrace;

mid-terrace; purpose built flat; semi-detached
Dwelling Age pre-1850; 1850-1899; 1900-1918; 1919-1944;

1945-1964; 1965-1974; 1975-1980; 1981-1990;
post-1990

Total Useable Floor Area less than 50 sqm; 50 to 69 sqm; 70 to 89 sqm; 90 to
109 sqm; 110 sqm or more

No. of Storeys 1; 2; 3; 4; 5 or more
Construction solid masonry; cavity masonry; timber frame; steel

frame; concrete frame; concrete boxwall
Double Glazing no double glazing; less than half; more than half;

entire house
Nature of Area city centre; other urban centre; suburban residential;

rural residential; village centre
Traffic Problems Yes; No
Main Heating System boiler system with radiators; storage radiators; room

heater; communal
Loft Insulation none; less than 100mm; 100 up to 150mm; 150mm or

more
SAP 09 less than 30; 30 to 50; 51 to 70; more than 70

levels, their SIT variance and distribution must be similar (McDonald, 2014). If this

assumption is not satisfied, stochastic dominance could still be demonstrated; that

is, assessing whether it is likely that an observation from one level is greater than

an observation in the other (Mangiafico, 2016). In this situation, a p-value less or

equal to 0.05 would be interpreted as the distribution of SIT still being significantly

different, but it is not necessarily true that their median values are different.

As additional statistical measures to support this analysis, 95 % Confidence

Intervals (CI) were estimated and Pairwise Mann-Whitney U-tests were conducted

(Table 4.3). A CI provides a sense of how accurate the sample median is relative

to the population median (Mangiafico, 2016). In addition and for each level, the

Pairwise Mann-Whitney U-tests for multiple comparisons with the False Discovery

Rate (FDR) p-adjustment method were performed. A p-value smaller or equal to

0.05 indicates a statistically significant difference between that level’s SIT and that
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of the first level of each variable.

Table 4.3: Statistical tests and techniques used to compare the standardised indoor temperat-
ure between dwellings.

Test Null Hypothesis Explanation
Kruskal-Wallis (Mangi-
afico, 2016; McDonald,
2014)

Variance and distribution
similar: The median SIT
across the different levels
(sub-groups) of each explan-
atory variable is the same
at a significance level of
5 %

If the p-value ≤ 0.05 for
any variable (e.g. dwell-
ing type), there is enough
evidence to support a stat-
istically significant differ-
ence between the median
SIT of the variable’s levels
(e.g. bungalow, detached
etc.)

Otherwise: The probabil-
ity of a randomly selected
SIT in one sub-group being
greater than a randomly se-
lected SIT from the other
sub-group is 50 % at a sig-
nificance level of 5 %.

A p-value smaller or equal
to 0.05 indicates a statist-
ically significant difference
between an observation in
one group and that in the
other.

95 % Confidence Interval
(CI) (McDonald, 2014)

By estimating a 95 % CI, it
is assumed that if repeated
random samples were taken
from the population and the
median and confidence in-
tervals were estimated, the
confidence interval for 95 %
of the samples would in-
clude the population me-
dian.

Pairwise Mann-Whitney U-
tests for multiple com-
parisons with the False
Discovery Rate (FDR) p-
adjustment method (Divine
et al., 2018)

The probability of a ran-
domly selected SIT in one
sub-group being greater
than a randomly selected
SIT from the other sub-
group is 50 % at a signific-
ance level of 5 %.

A p-value smaller or equal
to 0.05 indicates a statist-
ically significant difference
between that level’s SIT and
that of the first level of each
variable.

Fisher’s exact test (McDon-
ald, 2014)

There is no statistical asso-
ciation between categorical
explanatory variables at a
significance level of 5 %.

If the p-value for any com-
bination of variables (e.g.
household composition and
dwelling type) was less or
equal to 0.05, a statistically
significant association was
assumed.

To determine whether the dwelling characteristics are correlated to the house-
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hold characteristics, Fisher’s exact test was used to explore whether the proportions

of a dwelling variable are different depending on the values of the household variable

(McDonald, 2014). For the above analysis, cases where the occupants did not provide

an answer or stated that the survey question is not applicable to them were excluded.

4.1.3 Indoor Overheating Assessment

To translate indoor temperatures into overheating risk, the two criteria defined in

TM59 for naturally ventilated dwellings were used (CIBSE, 2017). The validation

of TM59, which is a design stage guidance tool, is beyond the scope of this thesis. A

form of these criteria has been used in the past to assess overheating risk in previous

in-use studies (Lomas and Kane, 2013; Mavrogianni et al., 2016; Vellei et al., 2017).

According to TM59, there is a high risk of overheating if either of the following

thresholds is exceeded (CIBSE, 2017):

1. The percentage of occupied hours where the operative temperature Top exceeds

the maximum allowable temperature Tmax by 1 ◦C or more during the period

May to September, inclusive, exceeds 3%.

2. Bedroom operative temperature exceeds 26 ◦C for more than 1% of the as-

sumed sleeping hours (22:00-07:00) annually (equivalent to 32 hours – 33

hours or more above 26 ◦C are recorded as overheating hours).

Operative temperature (Top) is the weighted average of the room’s air (Tair) and mean

radiant (Trad) temperature, defined as:

Top = ATair +(1−A)Trad, (4.2)

where A is the ratio hc/(hc +hr), which depends on the surface heat transfer coeffi-

cient of the clothed body by convection (hc) and radiation (hr) (Nicol and Humphreys,

2010). According to CIBSE Guide A, the air temperature is the “temperature re-

gistered by a dry thermometer, shielded from radiation, suspended in the air”, while

the mean radiant temperature is defined as “uniform surface temperature of a radi-

antly black enclosure in which an occupant would exchange the same amount of
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radiant heat as in the actual non-uniform space” (CIBSE, 2015). Under the assump-

tion of low air flow speeds, it is reasonable to assume that (Nicol and Humphreys,

2010):

Top =
1
2
(Tair +Trad), (4.3)

Tmax is the estimated maximum acceptable temperature according to the adaptive

thermal comfort model (CIBSE, 2013; CIBSE, 2015):

Tmax = 0.33×Trm +21.8oC, (4.4)

where Trm is the exponentially weighted running mean of outdoor ambient temperat-

ure. For a series of days, Trm can be approximated using (CIBSE, 2013):

Trm = (1−α)Tod−1 +αTrm−1, (4.5)

where α is a constant commonly taken as 0.8 while Tod−1 and Trm−1 are the daily

mean and running mean temperatures, respectively, of the day previous to the day of

interest (Tod).

Local weather data were used to estimate a Tmax for each region using the

equations in CIBSE TM52 (CIBSE, 2013). The dwellings were assumed to be

predominantly naturally ventilated, with the living room being occupied between

09:00 and 22:00 and the bedroom being always occupied, as suggested in TM59

(CIBSE, 2017). The indoor temperatures monitored during the 2011 EFUS were used

in this analysis; although they are likely a function of air and radiant temperature,

they are not expected to correspond to the operative temperature as assumed by

TM59. However, given the data available, this limitation could not be overcome,

and it is common amongst empirical studies (Lomas and Porritt, 2017; Lomas et al.,

2021).

4.1.4 Categorical Variable Classification

Categorical variables identified as having a statistically significant association with

summer indoor temperatures were used to select a group of dwellings within the 4M
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dataset suspected to be homogeneous, in accordance with the Bayesian calibration

framework and definition of homogeneity provided in Section 3.2. Whether the group

is homogeneous will be determined following the sensitivity analysis in Chapter 6.

Since the model used for the calibration (UK-HSM) already exists, and model

development was not within the scope of this thesis, the classification process took

into account the model’s structure. This part of the analysis had two components.

In the first part, the outcomes of the statistical analysis were considered in

conjunction with the UK-HSM model structure to determine which variables would

be used as classifiers. The guidelines for this process were:

• If a statistically significant categorical variable was modelled explicitly (e.g.

dwelling type), it was used as a classifier and the appropriate modelling option

was used for each group. If the variable’s possible values are not all modelled,

only the empirical data associated with modelled variable values were used

for calibration.

• If a statistically significant categorical variable was modelled as a continuous

model input (e.g. floor area), it was not used as a classifier.

In the second part, the identified classifiers were used to select a homogeneous

group of dwellings within the 4M dataset. A pragmatic approach was followed,

where the classifiers considered to be the most important were used in order to avoid

excessive segmentation, given the relatively small number of homes monitored.

4.2 Results & Discussion
Following from a description of the methods used, the statistical and overheating

analysis results are presented and discussed in this section. Section 4.2.1, provides a

summary of the indoor overheating risk results, followed by the statistical analysis

results in Sections 4.2.2–4.2.3. In Section 4.2.4, the results of Fisher’s Exact test

looking at the correlations of dwelling and household characteristics are summarised.

Results from the categorical variable classification are presented and discussed in

Section 4.2.6. For clarity, the term “significant” is only used in the following sections

to mean “statistically significant”.
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4.2.1 Indoor Overheating Assessment

For the EFUS dataset, a total of 20 out of 795 (2.5 %) living rooms exceeded the

threshold of CIBSE TM59 Criterion 1 (defined in Section 4.1.3), while 178 (22.3 %)

living rooms recorded some overheating hours but less than 3 % of occupied hours. A

similarly small number of dwellings failed Criterion 1 for the bedroom (19 out of 799,

2.4 %), while a greater number (284, 35.5 %) experienced some hours of overheating.

The extent of indoor overheating appears to be different when Criterion 2 is used,

with 204 (25.5 %) bedrooms having exceeded the static threshold. A substantially

greater prevalence of indoor overheating according to Criterion 2 (69 %) relative

to Criterion 1 (19 %) was also observed by Lomas et al. (2021) in their analysis of

indoor temperatures collected during the warm summer of 2018.

Table 4.4: Summary of the TM59 assessment results for the bedroom (B) and living room
(LR) of each dwelling.

Number of dwellings with percentage
of Overheating Hours (% OH) by

range
Criterion Total sample size 0 0 < % OH ≤ 3 % OH > 3
Criterion 1: LR 795 597 178 20
Criterion 1: B 799 496 284 19

0 0 < % OH ≤ 1 % OH > 1
Criterion 2 799 377 218 204

The estimated prevalence of indoor overheating may be compared to data on

stated thermal discomfort collected during EFUS, with the occupants being asked

whether they find it difficult to keep the bedroom cool. From a total number of

61 who responded positively, 29 (47.5 %) were found to exceed the Criterion 2

threshold, 21 (34.4 %) had some hours of overheating recorded while 11 (18 %) had

no hours recorded. The agreement between predicted and stated indoor overheating

was lower when looking at Criterion 1 (the exact number is not provided to reduce

the chance of identification). On the contrary, Lomas et al. (2021) found a better

agreement between Criterion 1 and stated thermal discomfort than with Criterion 2.

The large (175) number of dwellings that failed Criterion 2 while their occupants

did not report thermal discomfort could also be further evidence of support to the
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ongoing discussion on the strictness of the 26 ◦C threshold (Nicol and Humphreys,

2018; Lomas et al., 2021).

4.2.2 Statistical Analysis of Household Characteristics

Tables 4.5–4.7 summarise the median and 95 % Confidence Intervals (CI) of the

SIT for each household characteristic. The associated p-values indicate whether a

statistically significant difference (if p-value ≤ 0.05) exists. An asterisk next to the p-

value indicates that while a statistically significant difference in the medians could not

be assessed, stochastic dominance was. Figure 4.2 presents a comparison of bedroom

and living room SIT for the following four variables: Household composition, main

heating system, income and tenure.

For household composition, there was no significant difference in the living

room, with the median SIT lying within a range of 0.2 ◦C. On the contrary, the

bedroom SIT deviated significantly, with the median SIT for a single occupant aged

60 or over being at 23 ◦C (CI: [22.7, 23.4] ◦C), 1.1 ◦C lower than the maximum

median bedroom SIT observed for this variable. For households with a single

occupant, the median bedroom SIT is 23.3 ◦C, 0.8–0.9 ◦C lower than households

with three or more occupants. The number of people in the household is significant

only in relation to the bedroom SIT, with the median bedroom SIT increasing when

the number of occupants increase from one to three, with small to zero differences for

further increases in the number of occupants. An association between the number of

occupants has been previously discovered in research in overcrowded homes, defined

as having five or more occupants, which indicated greater indoor temperatures in

both rooms compared to non-overcrowded homes (Vellei et al., 2017). A pattern of

increasing overheating risk in the bedroom as the number of occupants increased

was also observed by Lomas et al. (2021).

A statistically significant association was also observed between the bedroom

SIT and the age of the youngest and oldest occupants. Households whose youngest

occupant was in the 60-74 age band had the lowest median bedroom SIT (23.4 ◦C,

CI: [23.0, 23.5] ◦C), 0.5–0.8 ◦C lower than households with occupants younger than

24. Statistically significant differences were also observed based on the age band
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Figure 4.2: Box plots of standardised indoor bedroom and living room temperatures. The
whiskers represent the 5th and 95th percentile. Outliers were masked for data
privacy reasons. * on p-values indicates groups where the assumption of equal
variance was not met but where the stochastic dominance could be assessed.
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Table 4.5: Summary of the median standardised indoor temperatures (SIT), 95 % Confidence
Interval (CI) and significance test results. The p-values (p) associated with each
variable are the results the Kruskal-Wallis test and the p-values associated with
each level of the variable are the result of the Pairwise Mann-Whitney U-tests.
* indicates groups where the assumption of equal variance was not met but
stochastic dominance could be assessed. The bold font highlights cases where
the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

Household
composition

- - <0.01* - 0.98

couple, no dept.
child(ren) <60

124 23.8 (23.5, 24.2) - 23 (22.6, 23.3) -

couple, no dept.
child(ren) ≥ 60

182 23.8 (23.5, 24) 0.76 23 (22.7, 23.3) 0.99

couple with dept.
child(ren)

167 24.1 (23.8, 24.2) 0.48 23.1 (22.8, 23.4) 0.99

lone parent with
dept. child(ren)

43 24.1 (23.3, 24.5) 0.83 23.1 (22.5, 23.7) 0.99

other multi-person
hholds

37 23.7 (23.2, 24.2) 0.85 23 (22.3, 23.8) 0.99

one person <60 86 23.6 (23.2, 24.1) 0.66 23 (22.6, 23.5) 0.99
one person aged
60 or over

135 23 (22.7, 23.4) 0.01 22.9 (22.5, 23.5) 0.99

No of persons in
the household

- - <0.01* - 0.78

1 221 23.3 (23, 23.5) - 23 (22.7, 23.4) -
2 294 23.7 (23.5, 23.9) 0.03 23 (22.8, 23.3) 0.99
3 113 24.1 (23.5, 24.2) 0.01 22.7 (22.5, 23.2) 0.99
4 107 24.1 (23.8, 24.3) <0.01 23.2 (22.9, 23.4) 0.99
5 24 24.1 (22.8, 24.4) 0.33 22.6 (21.9, 23.7) 0.99
6 or higher 15 24.2 (23.5, 24.7) 0.12 23.4 (21.3, 24.1) 0.99
Age band of
youngest person

- - <0.01 - 0.17

0-4 71 24.1 (23.8, 24.3) - 22.9 (22.5, 23.4) -
5-10 68 24 (23.5, 24.3) 0.74 23.4 (22.5, 23.7) 0.86
11-15 50 23.9 (23.4, 24.3) 0.66 22.8 (22, 23.3) 0.77
16-24 73 24.2 (23.8, 24.6) 0.85 23 (22.6, 23.3) 0.95
25-59 233 23.7 (23.5, 24) 0.41 23 (22.8, 23.4) 0.86
60-74 213 23.4 (23, 23.5) <0.01 22.9 (22.6, 23.1) 0.95
75-84 54 23.5 (23.1, 24.2) 0.41 23.6 (23, 23.8) 0.25
85 or more 12 23.8 (22.6, 24.7) 0.66 22.9 (22, 24.1) 0.95
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Table 4.6: Summary of the median standardised indoor temperatures (SIT), 95 % Confidence
Interval (CI) and significance test results. The p-values (p) associated with each
variable are the results the Kruskal-Wallis test and the p-values associated with
each level of the variable are the result of the Pairwise Mann-Whitney U-tests.
HRP is the household reference person. * indicates groups where the assumption
of equal variance was not met but stochastic dominance could be assessed. The
bold font highlights cases where the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

Age band of
oldest person

- - <0.01 - 0.04

16-34 53 24.4 (24, 24.8) - 23.4 (22.9, 23.8) -
35-49 202 24 (23.7, 24.2) 0.13 23 (22.6, 23.4) 0.17
50-59 159 23.5 (23.3, 23.8) 0.01 22.8 (22.6, 23.2) 0.17
60-74 259 23.4 (23.2, 23.7) <0.01 22.9 (22.6, 23.3) 0.21
75-84 83 23.6 (23.4, 24) 0.02 23.4 (23, 23.7) 0.90
85 or more 18 23.6 (22.8, 24.3) 0.11 22.9 (22, 24) 0.69
Employment
status of HRP
and partner

- - <0.01 - 0.12

1 or more work
full time

351 24 (23.7, 24.1) - 23 (22.7, 23.2) -

1 or more work
part time

65 23.9 (23.5, 24.3) 0.91 22.9 (22.5, 23.5) 0.65

none working,
one or more
retired

268 23.4 (23.2, 23.6) <0.01 23 (22.8, 23.2) 0.33

none working
and none retired

90 23.7 (23.3, 24.2) 0.91 23.3 (22.8, 23.7) 0.08

Extended
tenure of
household

- - 0.02 - <0.01

own with
mortgage

230 23.8 (23.5, 24.1) - 22.7 (22.4, 23) -

own outright 270 23.5 (23.3, 23.7) 0.11 22.8 (22.6, 23) 0.31
privately rent 62 24.1 (23.8, 24.6) 0.42 23.4 (22.9, 23.8) 0.01
rent from LA 97 24 (23.6, 24.3) 0.70 23.7 (23.1, 23.9) <0.01
rent from RSL 115 23.5 (23.3, 23.8) 0.26 23.5 (23, 23.7) <0.01
Anyone illness
or disability

- - 0.40 - 0.02

Yes 286 23.5 (23.5, 23.8) - 23.1 (22.9, 23.5) -
No 482 23.8 (23.6, 24) 0.28 22.9 (22.7, 23.1) 0.01
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Table 4.7: Summary of the median standardised indoor temperatures (SIT), 95 % Confidence
Interval (CI) and significance test results. The p-values (p) associated with each
variable are the results the Kruskal-Wallis test and the p-values associated with
each level of the variable are the result of the Pairwise Mann-Whitney U-tests.
* indicates groups where the assumption of equal variance was not met but
stochastic dominance could be assessed. The bold font highlights cases where
the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

All households -
income in 5
bands

- - 0.02 - 0.02

lowest 20 % 156 23.5 (23.2, 23.8) - 23.1 (22.9, 23.5) -
quintile 2 165 23.4 (23.3, 23.8) 0.98 23.1 (22.8, 23.5) 0.52
quintile 3 162 23.7 (23.5, 24) 0.36 23 (22.7, 23.5) 0.53
quintile 4 159 23.9 (23.6, 24.2) 0.05 23.1 (22.8, 23.4) 0.48
highest 20 % 132 24 (23.6, 24.2) 0.22 22.6 (22.3, 23) 0.01
Occupant on
means tested or
certain disability
related benefits

- - 0.47 - <0.01

Yes 250 23.6 (23.4, 23.8) - 23.4 (23.1, 23.7) -
No 524 23.8 (23.5, 23.9) 0.49 22.9 (22.7, 23) <0.01

of the oldest person. Households where the oldest person was in the 50–59, 60–74

or 75–84 age band had a significantly lower bedroom SIT than homes with the

oldest person being in the 16–34 age band. With a p-value of 0.04 for the Kruskal

Wallis test of living room SIT and oldest person age band, a statistically significant

result was again observed. However, this should be treated with caution, as the

wide confidence intervals of the lowest and highest temperatures overlap. Related to

the age-band variables, the presence of one or more retirees was associated with a

significantly lower median bedroom SIT of 23.4 ◦C (CI: [23.2, 23.6] ◦C) compared

a median bedroom SIT of 24 ◦C (CI: [23.7, 24.1] ◦C) in households where one or

more are working full time. A similar result was not discovered for the living room

SIT.

A statistically significant effect is also observed for the household’s tenure with

regard to both the bedroom and living room SIT. The bedrooms of homes rented

privately (24.1 ◦C, CI: [23.8, 24.6] ◦C) or from a Local Authority (24.0 ◦C, CI:
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[23.6, 24.3] ◦C) were the warmest. The median living room SIT of all three groups

of rented homes were higher than homes owned with a mortgage or outright (see

Figure 4.2 for a comparison), in partial agreement with Hulme et al. (2013b) and

Lomas et al. (2021). Specifically, the median living room SIT for homes rented

from a Local Authority was 0.9 ◦C and 1.0 ◦C higher than that of homes owned with

mortgage and outright, respectively. There could be a few factors contributing to

such differences, including the higher prevalence of flats being rented compared to

being owner occupied (MHCLG, 2019). An important implication of this finding is

that occupants exposed to higher indoor temperature would, in many cases, not be

the owners and would thus largely depend on their landlond or local authority for

the installation of significant structural or engineering-based overheating adaptation

measures.

Households with occupants on means tested or certain disability benefits or

where someone suffers from an illness or disability (but does not necessarily receive

any benefits) had statistically higher median living room SIT. While for homes of

occupants with illness or disability the difference is only 0.2 ◦C and the confidence

intervals overlap, a clear difference is observed for households with occupants on

benefits with a difference of 0.5 ◦C. A statistically significant difference in the

prevalence of indoor overheating between households with occupants suffering from

illness or disability and those without were also observed by Lomas et al. (2021).

A significant result was observed for bedroom and living room SIT when

looking at household income, with opposite trends for each room. The bedroom

median SIT was highest for the top two quintiles while the living room median SIT

was lowest for the top quintile.

4.2.3 Statistical Analysis of Dwelling Characteristics

A summary of the median SIT and 95 % CI for the dwelling characteristics along

with the associated p-values is provided in Tables 4.8–4.10.

Dwelling type and age, floor area, the number of storeys, construction and main

heating system all appear to have a statistically significant association with the SIT in

both rooms. Bungalows (22.8 ◦C, CI: [22.6, 23.1] ◦C) and converted flats (22.0 ◦C,
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CI: [20.8, 23.2] ◦C) have the lowest median bedroom SIT, while mid-terraced had

the highest median SIT with 24.1 ◦C (CI: [23.8, 24.3] ◦C). The median bedroom SIT

for semi-detached, detached, end-terrace houses and purpose built flats are within

0.2 ◦C of each other. A different ranking is observed when looking at living room

SIT across the different dwelling types. Purpose-built flats have the highest median

living room SIT with 24.0 ◦C (CI: [23.6, 24.3] ◦C), followed by bungalows, with

a 0.6 ◦C difference. Converted flats and detached dwellings have the lowest living

room SIT with median values of 22.5 ◦C (CI: [21.7, 23] ◦C) and 22.6 ◦C (CI: [22.3,

22.9] ◦C), followed by the semi-detached 22.8 ◦C (CI: [22.6, 23.1] ◦C).1 In general,

these results are in agreement with previous work; Lomas and Kane (2013) and

Beizaee et al. (2013) found the living rooms in detached houses to be significantly

cooler than in other dwelling types, while for flats they were the warmest, a result

also supported by modelling work in London and across Great Britain (Mavrogianni

et al., 2012; Taylor et al., 2016).

For both rooms, pre-1900 dwellings are overall cooler than post-1900 homes.

For the bedroom, the median SIT for pre-1850 and 1850-1899 age bands was 23.0 ◦C

(CI: [21.6, 23.7] ◦C) and 23.1 ◦C (CI: [22.3, 23.5] ◦C). The age bands associated with

the highest bedroom median SIT were the 1919-1944 and post-1990 with 24.0 ◦C

(CI: [23.8, 24.3] ◦C) and 24.0 ◦C (CI: [23.6, 24.2] ◦C). The median bedroom SIT

for the remaining age bands fluctuates between 23.5 ◦C to 23.8 ◦C. Pre-1850 had a

median living room SIT of 21.2 ◦C (CI: [20.1, 22] ◦C), significantly lower than the

rest of the age bands, with the exception of 1850-1899 dwellings with a median SIT

of 21.8 ◦C (CI: [21.2, 22.5] ◦C). The median living room SIT of 23.7 ◦C (CI: [22.9,

24.0] ◦C) associated with 1975-1980 age band was the highest amongst all dwelling

ages.

The Kruskal Wallis analysis suggested a significant difference amongst the

floor area levels in both rooms. While a clear trend is seen for the living room, the

same is not true for the bedroom. For the living room, the median SIT is negatively

1In this comparison, the small sample size of converted flats may have influenced the representat-
iveness of the estimated median, and this uncertainty is reflected in the large confidence interval. In
addition, the converted flats in this study are likely to consist of diverse typologies (before conversion
they could have been semi-detached or mid-terrace).
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Table 4.8: Summary of the median standardised indoor temperatures (SIT), 95 % Confidence
Interval (CI) and significance test results. The p-values (p) associated with each
variable are the results of the Kruskal-Wallis test, and the p-values associated with
each level of the variable are the result of the Pairwise Mann-Whitney U-tests.
* indicates groups where the assumption of equal variance was not met, but
stochastic dominance could be assessed. The bold font highlights cases where
the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

Dwelling Type - - <0.01* - <0.01*
bungalow 97 22.8 (22.6, 23.1) - 23.4 (22.9, 23.7) -
converted flat 15 22.0 (20.8, 23.2) 0.04 22.5 (21.7, 23) 0.02
detached 137 23.8 (23.5, 24.1) <0.01 22.6 (22.3, 22.9) <0.01
end-terrace 76 23.8 (23.5, 24.4) <0.01 23.1 (22.5, 23.6) 0.08
mid-terrace 121 24.1 (23.8, 24.3) <0.01 22.9 (22.5, 23.3) 0.03
purpose built
flat

101 23.7 (23.3, 24.2) <0.01 24 (23.6, 24.3) 0.02

semi-detached 227 23.9 (23.7, 24.1) <0.01 22.8 (22.6, 23.1) <0.01
Dwelling Age - - <0.01 - <0.01
pre-1850 24 23.0 (21.6, 23.7) - 21.2 (20.1, 22.0) -
1850-1899 55 23.1 (22.3, 23.5) 0.85 21.8 (21.2, 22.5) 0.06
1900-1918 40 23.7 (23.1, 24.4) 0.05 22.5 (21.8, 22.9) <0.01
1919-1944 121 24.0 (23.8, 24.3) 0.01 23.3 (22.6, 23.5) <0.01
1945-1964 193 23.7 (23.4, 23.9) 0.02 23.1 (22.8, 23.3) <0.01
1965-1974 127 23.7 (23.5, 24.2) 0.02 23.4 (23.0, 23.6) <0.01
1975-1980 64 23.8 (23.4, 24.4) 0.02 23.7 (22.9, 24.0) <0.01
1981-1990 78 23.5 (23.3, 24.2) 0.03 23.0 (22.7, 23.6) <0.01
post-1990 72 24.0 (23.6, 24.2) 0.01 23.0 (22.8, 23.6) <0.01
Floor Area - - <0.01 - <0.01*
less than 50
sqm

80 23.5 (23.0, 24.2) - 23.9 (23.5, 24.4) -

50 to 69 sqm 186 23.7 (23.5, 24.1) 0.58 23.4 (23.0, 23.6) <0.01
70 to 89 sqm 202 23.9 (23.8, 24.2) 0.13 23.1 (22.8, 23.4) <0.01
90 to 109 sqm 112 23.9 (23.4, 24.2) 0.26 23.1 (22.7, 23.4) <0.01
110 sqm or
more

194 23.5 (23.2, 23.7) 0.58 22.4 (22.1, 22.5) <0.01

correlated with the floor area, with the highest value of 23.9 ◦C (CI: [23.5, 24.4] ◦C)

associated with the smallest floor area level and decreasing as the floor area increases

to the lowest median SIT of 22.4 ◦C (CI: [22.1, 22.5] ◦C).

Number of storeys is a significant factor for the bedroom and living room. The

lowest median bedroom SIT was 22.8 ◦C, 1.2 ◦C lower than the two-storey buildings.
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Table 4.9: Summary of the median standardised indoor temperatures (SIT), 95 % Confidence
Interval (CI) and significance test results. The p-values (p) associated with each
variable are the results of the Kruskal-Wallis test, and the p-values associated with
each level of the variable are the result of the Pairwise Mann-Whitney U-tests.
* indicates groups where the assumption of equal variance was not met, but
stochastic dominance could be assessed. The bold font highlights cases where
the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

No. of Storeys - - <0.01 - <0.01
1 97 22.8 (22.6, 23.1) - 23.4 (22.9, 23.7) -
2 577 24.0 (23.8, 24.1) <0.01 22.9 (22.8, 23.1) 0.01
3 73 23.3 (22.6, 23.8) 0.21 22.5 (21.9, 23.2) 0.01
4 13 23.7 (23.1, 25.8) 0.02 23.8 (23.4, 26.2) 0.05
5 or more 14 23.8 (21.5, 25.2) 0.18 24.5 (22.6, 25.5) 0.13
Traffic
Problems

- - 0.36 - 0.29

No 728 23.7 (23.5, 23.8) - 23.0 (22.9, 23.1) -
Yes 46 24.1 (23.3, 24.4) 0.41 23.4 (22.4, 24) 0.31
Construction - - 0.38 - <0.01*
solid masonry 156 23.8 (23.4, 24.1) - 22.5 (22.1, 23) -
cavity masonry 532 23.7 (23.5, 23.8) 0.87 23.0 (22.9, 23.3) <0.01
timber frame 30 24.1 (23.4, 24.8) 0.51 23.7 (22.8, 24.0) 0.02
steel frame 13 23.1 (22.5, 24.9) 0.87 23.7 (22.6, 24.6) 0.03
concrete frame 13 24.6 (21.2, 25.8) 0.51 24.6 (21.9, 26.8) 0.01
concrete
boxwall

17 23.7 (22.7, 24.4) 0.75 22.7 (21.4, 23.1) 0.89

Double Glazing - - 0.06 - <0.01
no double
glazing

47 23.5 (23.2, 24.3) - 22.8 (22.1, 23.1) -

less than half 43 23.1 (22.8, 23.9) 0.45 22.3 (21.8, 22.7) 0.26
more than half 81 23.8 (23.0, 24.2) 0.73 23.0 (22.3, 23.6) 0.72
entire house 603 23.8 (23.6, 23.9) 0.45 23.1 (22.9, 23.3) 0.26

The highest median living room SIT was 24.5 ◦C associated with 5th storey or higher

buildings, although due to the small number of such cases (14), the CI is wide [22.6,

25.5] ◦C.

The traffic problems variable was assumed to be a possible indication of local

noise or air pollution that could deter occupants from keeping their windows open.

However, it is also likely that dwellings whose occupants expressed issues traffic

problems are located near urban centres affected by the Urban Heat Island effect
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Table 4.10: Summary of the median standardised indoor temperatures (SIT), 95 % Confid-
ence Interval (CI) and significance test results. The p-values (p) associated with
each variable are the results of the Kruskal-Wallis test, and the p-values associ-
ated with each level of the variable are the result of the Pairwise Mann-Whitney
U-tests. * indicates groups where the assumption of equal variance was not
met, but stochastic dominance could be assessed. The bold font highlights cases
where the p-value ≤ 0.05.

Bedroom SIT (°C) Living Room SIT (°C)
N Med (CI 95%) p Med (CI 95%) p

Nature of Area - - <0.01 - <0.01
city centre 16 24.2 (23.2, 24.9) - 23.8 (21.9, 24.6) -
other urban
centre

77 24.1 (23.7, 24.6) 0.94 23.5 (23, 23.8) 0.72

suburban
residential

515 23.8 (23.6, 24.0) 0.39 23.0 (22.9, 23.2) 0.21

rural residential 102 23.4 (23.1, 23.8) 0.16 22.8 (22.5, 23.3) 0.21
village centre 42 23.1 (22.8, 23.5) 0.01 22.6 (21.7, 23.0) 0.12
rural 22 23.6 (21.9, 24.1) 0.16 22.5 (20.8, 23.5) 0.12
Main Heating
System

- - <0.01 - <0.01

boiler system
with radiators

692 23.7 (23.5, 23.8) - 23.0 (22.8, 23.1) -

storage radiators 53 23.5 (22.8, 24.1) 0.25 23.4 (22.6, 24.0) 0.11
room heater 11 24.3 (22.5, 25.8) 0.31 23.0 (20.2, 26.3) 0.92
communal 12 25.7 (24.4, 28.0) <0.01 25.8 (24.5, 27.5) <0.01
Loft Insulation - - 0.07 - 0.65
none 20 24.2 (23.7, 24.7) - 22.9 (21.8, 23.4) -
less than
100mm

132 24.0 (23.7, 24.2) 0.80 23.3 (22.8, 23.6) 0.89

100 up to
150mm

209 23.9 (23.7, 24.2) 0.67 23.1 (22.6, 23.4) 0.89

150mm or more 337 23.5 (23.4, 23.8) 0.44 22.9 (22.8, 23.0) 0.89
SAP 09 - - 0.50 - <0.01*
less than 30 19 23.8 (22.5, 24.3) - 22.5 (20.2, 23.3) -
30 to 50 176 23.8 (23.5, 24.1) 0.60 23.3 (22.8, 23.5) 0.05
51 to 70 516 23.7 (23.5, 23.8) 0.60 22.9 (22.7, 23.0) 0.08
more than 70 63 24.1 (23.3, 24.4) 0.60 23.8 (23.4, 24.5) <0.01

that is not captured by this analysis. Although a statistically significant result was

not observed, occupants that were influenced by traffic problems had a median

temperature 0.4 ◦C greater than the ones that did not experience traffic problems.

Although differences in the median bedroom SIT of different construction types
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were observed, they did not reach a statistically significant level. Regarding the

living room SIT, significant differences were observed with the lowest median SIT

of 22.5 ◦C (CI: [22.1, 23] ◦C) representing solid masonry construction. The median

SIT for cavity masonry is only 0.5 ◦C higher, although the difference is statistically

significant according to the Pairwise Mann-Whitney U-test, with a p-value < 0.01.

This difference may be partly explained by the greater level of exposed thermal mass

in solid wall dwellings, that has been shown to offer some protection against higher

daytime indoor temperatures in modelling (Peacock et al., 2010; Petrou et al., 2019a)

and monitoring (Lomas and Kane, 2013) studies, and the lower levels of airtightness

(since solid wall dwellings are likely older and more leaky).

The presence of double glazing, based on how much of the glazed area of the

house is double-glazed, was associated with a statistically significant difference in

SIT in the living room only. With an SIT of 23.1 ◦C and a narrow confidence interval

[22.9, 23.3] ◦C, double glazing across the entire house was the warmest group. The

group of dwellings with double glazing in less than half of the glazed area had the

lowest median SIT of 22.3 ◦C (CI: [21.8, 22.7] ◦C).

The type of local area also has a statistically significant association with the

bedroom and living room SIT. For both rooms, city centre and other urban centre were

associated with the highest median SIT. This might be due to the higher ambient

temperatures in urban areas associated with the Urban Heat Island (UHI) effect

(Heaviside et al., 2017), different proportions of dwelling types in urban compared

to other regions, and potentially greater barriers to natural ventilative cooling (e.g.

reduced wind speeds, greater noise levels or security concerns) in urban areas.

A significant difference was observed in the median SIT for both rooms accord-

ing to the type of main heating system used. Specifically, the greatest difference

was observed for the presence of communal heating. The median SIT of dwellings

with communal heating was 2.0 ◦C higher for the bedroom and 2.8 ◦C for the living

room (Figure 3) compared to the more common gas boiler. Even though the number

of dwellings with communal heating was small (12), resulting in wide confidence

intervals, there was still no overlap with the CI of the dwellings with a boiler. The
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difference was also supported with a p-value < 0.01 resulting from the Pairwise

Mann-Whitney U-test between the two types of heating system. This result is sup-

ported by previous work that studied the link between communal heating and indoor

overheating (McLeod and Swainson, 2017), and reinforces the importance of careful

planning when designing and implementing communal heating systems.

A pattern of decreasing median bedroom SIT is observed with increased levels

of loft insulation, although no such pattern exists for the living room. This is

likely due to bedrooms being more frequently located directly under the roof and

hence influenced more by the heat transfer through that surface. Thus, adding

thermal insulation to a dwelling’s loft may only reduce indoor overheating risk

for the top-floor rooms. For the bedroom, a difference of 0.7 ◦C can be observed

between dwellings with no loft insulation (median SIT of 24.2 ◦C) and dwellings

with loft insulation of 150 mm or more (23.5 ◦C), although it did not reach statistical

significance.

A statistically significant difference between SAP 09 ratings and SIT was only

observed for the living room, where a SAP rating greater than 70 was associated with

the highest median SIT (23.8 ◦C); this was 1.4 ◦C higher than dwellings with SAP

rating less than 30 and 0.9 ◦C greater than ones with rating between 51 and 70. The

median bedroom SIT for the dwellings with SAP rating greater than 70 was also the

highest amongst all levels, although the difference was not statistically significant. In

agreement with these findings, Lomas et al. (2021) identified a significantly greater

prevalence of indoor overheating risk in homes in more efficient dwellings (EPC

bands A to C, compared to D to F). The findings on the association, or the lack of,

between SIT and energy efficiency in this work contributes to the ongoing discussion

on the potential impact of energy efficiency on indoor overheating (Chappells and

Shove, 2005; Shrubsole et al., 2014).

4.2.4 Correlations Between Dwelling and Household

Characteristics

Through the use of Kruskal-Wallis and Pairwise Mann-Whitney U-tests, several asso-

ciations were revealed between household (Tables 4.5–4.7) and dwelling (Tables 4.8–
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Table 4.11: Summary of the p-values of the Fisher’s exact test that tests the significance of
association between categorical variables. A statistically significant association
is assumed for p-values ≤ 0.05.

AO AY Inc. Ill/dis Emp. Ten. HC Ben. NP
Const. 0.04 0.03 0.57 0.05 0.04 <0.01 0.02 <0.01 0.18
DG 0.60 0.82 0.37 0.71 0.03 <0.01 0.89 0.02 0.61
DA 0.05 0.09 0.53 0.02 0.08 <0.01 0.05 0.01 0.04
DT <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
FA <0.01 <0.01 <0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01
LI 0.04 0.04 0.26 0.45 0.01 0.01 0.24 <0.01 0.04
HS 0.02 <0.01 <0.01 0.10 <0.01 <0.01 <0.01 <0.01 <0.01
Area 0.53 0.92 0.12 0.68 0.09 <0.01 0.01 0.02 0.08
SAP 0.20 0.19 <0.01 0.45 0.27 <0.01 0.06 0.02 <0.01
Stor. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Tr. 0.90 0.74 0.29 0.40 0.83 0.68 0.01 0.43 <0.01

Row name disambiguation: Const. = Construction, DG = Double Glazing, DA = Dwelling Age, DT
= Dwelling Type, FA = Floor Area, LI = Loft Insulation, HS = Main Heating System, Area = Nature
of Area, SAP = SAP 09, Stor. = Storey, Tr. = Traffic.
Column name disambiguation: AO = Age band of Oldest occupant, AY = Age band of Youngest
occupant, Inc. = Income, Ill/dis = Illness or Disability, Emp. = Employment Status, Ten. = Tenure,
HC = Household Composition, Ben. = Means tested or certain disability related benefits, NP =
Number of People.

4.10) characteristics with the bedroom and living room SIT. Prior to any causation

being attributed to individual variables analysed, any correlation between variables

should be explored.

Table 4.11 provides a matrix of p-values resulting from the Fisher’s Exact test

with the null hypothesis of independent variables (see Table 4.3 for the null hypo-

thesis). By assessing the association of dwelling characteristics against household

characteristics, a statistically significant association is obtained for each variable with

at least one other variable. For the dwelling type (DT), floor area (FA) and storey

(Stor), a significant association was observed with every household variable. Tenure

(Ten.) was associated with every dwelling characteristic, with the exception of traffic

(Tr.). This was equally true for occupants on means tested or certain disability related

benefits (Ben.). A significant association between SAP 09 rating, income (Inc.)

and tenure (Ten.) was established, although the same was not true for employment

status (Emp.). The presence and level of loft insulation (LI) was associated with

both age-related categories (AO, AY), employment status, tenure, benefits and no of
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Figure 4.3: Bar plots of association between floor area and households on means tested or
certain disability benefits.

people in the dwellings (NP).

A further investigation of the relationship between household occupants on

means tested or certain disability benefits and floor area is displayed in Figure 4.3.2

With increased floor area, the percentage (and probability) of a dwelling’s occu-

pants being on means tested or certain disability benefits decreases. As described

in Sections 4.2.2–4.2.3, both variables were associated with the living room SIT.

Increased floor area was associated with a decrease in living room SIT (Table 4.9).

This might be expected, since given the same solar and internal gains, a smaller

room will reach a higher internal temperature. Table 4.7 showed that the median

living room SIT of households with occupants on means tested, or other disability

benefits was higher than that of households with no occupants on such benefits. A

plausible explanation for this association is that individuals with disabilities may

spend more time at home, resulting in increased internal gains, and their limited

mobility may lead to reduced window operation (Vellei et al., 2017). In addition,

for some disabilities, there might be emphasis in keeping the home warm (Snell

et al., 2015). Since the two explanatory variables are correlated (Figure 4.3), even if

only one of these variables has a causal effect on indoor temperature, an association

2Similar analysis could not be performed for most variables due to data protection restrictions
imposed by the data provider.
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between the SIT and other variable would be expected. Thus, it is not possible to

attribute causality without further investigation, that would likely necessitate the

collection of data on occupant behaviour.

4.2.5 On the Use of Standardised Indoor Temperature

The monitored indoor temperature was standardised prior to the investigation of its

association with dwelling and household variables to control for the confounding

effect of regional weather, an approach informed by previous studies (Hamilton

et al., 2017; Oreszczyn et al., 2006; Wilkinson et al., 2001). The standardisation

relied on a regression-based approach, whose use in controlling for confounding is

well-established. The efficacy of twelve regression models was evaluated using R2,

and a model was selected based on its performance and simplicity (Section 4.1.1). A

pertinent question to the use of this approach is: how can it be checked or validated?

The topic of validation has not been discussed in previous studies that utilised

this method. A metric may be used to quantify the predictive performance of the

regression model when evaluated against the empirical data. Such a metric, R2,

was used to compare the candidate regression models. However, a threshold that

indicates whether the model is valid, or good enough, does not exist. Developing

such a threshold would require a thorough investigation that might rely on detailed

empirical data where other factors that can influence the indoor temperature are

also monitored. This could enable a researcher to attribute the effects of different

variables on indoor temperature, and thus deduct the effect associated with the

ambient conditions. Collecting such a detailed dataset from in-situ measurements

in homes is challenging and expensive. Synthetic data that adequately represent

occupant behaviour could provide an alternative. Another form of validation is

the comparison of the results derived from this method with findings from other

empirical and modelling studies, and against established building physics theory.

Such a comparison was carried out within this chapter and findings from this work

were in good agreement with existing knowledge and published studies, providing

evidence in support of the selected statistical procedure.
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4.2.6 Categorical Variable Classification

The statistical analysis (Sections 4.2.2–4.2.3) revealed that whether a parameter was

associated with the SIT depended on the room being assessed. Therefore, the choice

of classifiers depends on the room being modelled.

In Section 4.2.6.1 a set of classifiers are identified and discussed for each room,

based on the method outlined in Section 4.1.4. Since the rest of this work will

focus on the living room, as discussed in Section 3.3, the living room classifiers are

used to select of a homogeneous group of 4M dwellings and complete Step 2 of the

calibration framework in Section 4.2.6.2.

4.2.6.1 Classifier Selection

For the living room, significant differences in SIT were discovered for the dwelling

type, dwelling age, floor area, storey, construction, presence of double glazing,

nature of area, main heating system and SAP 09. Differences in dwelling types,

wall construction and glazing type are modelled explicitly. Since all three variables

were found to be significantly associated with the living room SIT, they should

be considered as classifiers where each cluster consists of a single wall, glazing

and dwelling type. Differences in the nature of the area are partly represented

through the terrain model input, which assumes differences in local wind speed due

to the surrounding urban form. However, it does not capture differences in outdoor

temperature due to the Urban Heat Island (UHI) effect. This should again be used as

a classifier, and the appropriate local weather data should be used for each region to

capture variation due to UHI. The storeys of archetypes are fixed within UK-HSM to

the most common number of storeys for each dwelling type in the building stock.

Therefore, the use of different dwelling types partly captures differences in storeys

that vary between archetypes, but not within archetypes. This may be used as a

secondary classifier in calibration, together with the dwelling type. Dwelling age

and SAP 09 are not modelled explicitly, but their effects are partly represented by

the building fabric and air permeability properties. Differences might still remain,

especially in the case of dwelling age and this may also be used as a secondary

classifier, if enough data is available for the calibration. Differences in the main
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heating system are not modelled explicitly, and the heating system is assumed to be

inactive over summer. Given the significant differences in SIT of the various heating

systems, this should also be used as a classifier. The effect of varying floor area or

loft insulation thickness is modelled explicitly through the use of continuous model

inputs, thus further classification is not needed.

The same process of identifying classifiers applies for the bedroom. However,

the statistical analysis did not reveal a significant association between bedroom SIT

and the wall or glazing type. Following this process, one may choose not to use these

variables as classifiers when modelling the bedroom SIT. Alternatively and with an

abundance of caution, they may still be used as classifiers since the non-significant

result could be an artefact of the analysis; for example, the extent of double glazing

in the dwelling (Table 4.9) does not specify which rooms are double-glazed.

Similarly to the dwelling characteristics, several household characteristics were

found to be significantly associated with the living room or bedroom SIT (Tables 4.5–

4.7). While many dwelling characteristics are modelled explicitly, most household

characteristics are not. UK-HSM offers a choice between two occupancy types:

(i) A family of four and (ii) Two pensioners. Each option is associated with a

different set of assumptions regarding the number of occupants, their presence and

activity schedule, in the effort to represent some of the occupant diversity that

exists within the stock. However, it does not allow for the presence of just a single

pensioner or a family of three. Looking at household composition, the modelled

occupancy types match the two largest categories (assuming that people aged 60 or

over are pensioners); yet, these two categories only account for 45 % of the sample.

Classifying based on all household characteristics that were shown to be significantly

associated with summer indoor temperatures, given the current structure of UK-HSM,

would significantly reduce the empirical sample that can be used. On the other hand,

ignoring the household characteristics from the classification process would result in

some of this variation inappropriately falling under the electrical gains and window

operation uncertainty, while it is the result of structural assumptions of the model. As

an example of inappropriate uncertainty attribution, fewer occupants than assumed in
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the model will possibly result in less metabolic gains. Since this will not be captured

by the model assumptions, this uncertainty might be lumped on the electrical gains

model input.

4.2.6.2 4M Classification

The process of using the classifiers identified in the previous section to segment the

4M dwellings into potentially homogenous groups is visualised in Figure 4.4.

The first classifier was the dwelling type, shown to be a classifier for the bedroom

and living room, and a categorical model input in the UK Housing Stock Model (UK-

HSM). This results in four clusters with 22 detached, 29 end-terrace, 55 mid-terrace

and 87 semi-detached homes with temperature data in at least one of the two rooms.

Due to its larger sample size, the rest of the classification focused on the group of

semi-detached dwellings. While the exact location of the homes was not available,

they were scattered within the city of Leicester, as shown in Figure 3.5(b), and it

was assumed that the same terrain, Urban, applied to the entire sample. Another

potentially important classifier is the presence of communal heating, however, this

heating system was not present in any of the semi-detached dwellings. Due to the

differences revealed in the factors that may influence the living room and bedroom

temperatures, data from the two rooms were treated separately. For the rest of this

process, only classifiers relating to the living room were considered due to the focus

on MDLRT for the rest of this thesis (see Section 3.3 for a discussion on this choice).

The wall type and glazing type were both significantly associated with the living

room SIT and were thus used as classifiers, resulting in five clusters. Due to their

small sample size, the single glazing clusters were not considered further. The data

within each double glazing cluster were cleaned following the procedure described

in Section 3.4.3.2, resulting in the three final clusters: (i) Filled Cavity Wall (N =

26), (ii) Unfilled Cavity Wall (N = 8) and (iii) Solid Wall (N = 24). Two classifiers,

the number of storeys and dwelling age, identified to be potentially important in

Section 4.2.6.1 were not used. This was a pragmatic choice since further classification

would result in groups of dwellings that were too small, and where extreme values

within these groups could significantly influence the calibration process. The number
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Figure 4.4: Flowchart of the first stage of the classification process and the subsequent clean-
ing. In bold font is the cluster selected to be used for the Bayesian calibration
step.

of storeys was thought to have a small effect, since the calibration focused on living

rooms which in most cases are located on the ground floor. While it is possible that

a difference might exist between having one or two storeys above the living room, it

was not thought to be as significant as that of other variables considered. The effects
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of the dwellings’ age were partly captured through the wall and glazing type, and

further segmentation would reduce the number of dwellings per group, therefore, it

was not considered necessary.

Classification based on household variables was not performed. The only house-

hold variable that may be partly captured in UK-HSM is the household composition

which was not shown to be significantly associated with summer living room indoor

temperatures. As with the number of storeys and dwelling age, it was preferred to

not segment the clusters further due to their small size. From the final three clusters,

the rest of this thesis will concentrate on group of dwellings with filled cavity walls.

4.3 Limitations

To study the statistical associations between summer indoor temperature and key

dwelling and household characteristics, and subsequently segment the 4M dataset

in accordance with the Bayesian calibration framework proposed in Section 3.2,

this work has relied on established methods of statistical analysis and one of the

most comprehensive datasets available (2011 EFUS). Yet, this study has a number of

limitations.

Since the standardisation of indoor temperature focused on a single outdoor

temperature during the summertime, it is unclear whether the trends observed at a

daily-mean temperature of 20 ◦C would be similar for other standardisation temperat-

ures. This limitation can be addressed in future work and would be most informative

with datasets collected during summers warmer than that of 2011.

By design, the statistical analysis did not seek to identify causal relationships,

only associations. As highlighted in Section 4.2.4, correlations between explanatory

variables exist, and it is expected that some of the statistically significant association

revealed in this work are the result of confounding. Resolving confounding and

establishing causal relationships would have improved this work, and would have

resulted in better-informed classification. However, this would require a different set

of methods and data.

Another limitation, common amongst studies that utilise hypothesis testing, is
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the presence of Type I and II errors (Greenland et al., 2016). For example, performing

the Kruskal-Wallis test repeatedly at a significance level of 5 % suggests that the

null hypothesis may falsely be rejected (type I error) in 5 % of the cases. Thus,

statistically significant results should be treated with caution, and it is best that the

outcome of a hypothesis test is considered together with the associated median SIT

values and their confidence interval.

In carrying out the statistical analysis and overheating risk assessment, although

local weather data were used, they did not necessarily represent the ambient weather

conditions at the exact location of each dwelling. This is especially true for dwellings

located in urban areas, as the weather data may not effectively capture the influence

of the urban heat island effect or the local microclimate (Mavrogianni et al., 2009).

On the comparison carried out between stated thermal discomfort and predicted

overheating risk, it should be highlighted that for the dataset analysed in this thesis

(and the one analysed by Lomas et al. (2021) which was compared with the res-

ults of this work), data collection on stated thermal comfort was not carried out

systematically during the summer period and could, thus, be influenced by recall

bias. Within the field of epidemiology, recall bias can be defined as a “differential

misclassification bias and the risk estimate may be biased away from or towards the

null” (Coughlin, 1990). In the case of reported summer thermal comfort, occupants

might be more likely to underreport summer thermal discomfort if they were satisfied

with the thermal environment (or feeling cold) during or preceding the interviews.

The 2011 EFUS dataset was used for the statistical analysis, while the 4M

dataset was used for the remaining stages. Therefore, an assumption was made that

the findings of the statistical analysis also applied to the 4M dataset. Given that 2011

EFUS is considered to be a representative sample of the English housing stock with

approximately 800 dwellings, this assumption seemed reasonable.

Finally, as discussed in Sections 4.2.6.1-4.2.6.2, not all categorical variables

found to be associated with summer indoor temperatures were used for classification.

This was partly due to the UK-HSM model structure, and as a result of the limited

empirical data available for calibration in the 4M dataset.
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4.4 Summary
The statistical analysis of the 2011 Energy Follow-Up Survey, presented in this

chapter, revealed a statistically significant association between the standardised

summer indoor temperature and several of the dwelling and household characteristics

assessed (Sections 4.2.2–4.2.3). Whether variables exhibited such a relationship

depended on the room being assessed. For the living room, a significantly greater

indoor temperature was associated with purpose built flats, a high SAP 09 rating,

the presence of double glazing in more than half of the dwelling, and homes with at

least one occupant on means tested or certain disability benefits. Bedroom summer

indoor temperature was higher in mid-terrace dwellings, households with young

children, more than three occupants and where one or more occupants work full time.

The summer indoor temperature in both rooms was significantly higher for homes

rented from a local authority, located in the city centre or other urban centre, and

with communal heating. The correlation between household and dwelling variables

was explored, and its implications were discussed (Section 4.2.4).

The indoor overheating risk was also quantified based on the criteria defined in

CIBSE’s Technical Memorandum 59 (Section 4.2.1). It was demonstrated that for

the relatively cool summer of 2011, the prevalence of indoor overheating according

to Criterion 1 was 2.5 %. However, when considering Criterion 2 almost 26 % of

dwellings were found to overheat. These results were not in good agreement with the

occupants’ stated thermal discomfort, reinforcing concerns regarding the effective

quantification of indoor overheating risk (for example, the overheating threshold was

not exceeded in 32 out of 61 homes whose occupants reported thermal discomfort).

Beyond its contribution to the field of indoor overheating research, the statistical

analysis has also resulted in a set of classifiers (Section 4.2.6). The classifiers

(dwelling, wall, glazing type, terrain and main heating system) were used during the

categorical variable classification to segment the 4M dataset and select a single group

of potentially homogeneous dwellings; this outcome informs Steps 3 and 4 of the

Bayesian calibration framework, whose implementation is described in Chapters 5

and 6 respectively.



Chapter 5

Stochastic Characterisation

This chapter focuses on Step 3 of the Bayesian calibration framework, the stochastic

characterisation of the UK Housing Stock Model (UK-HSM) inputs. Its aim is to

identify probability distributions for all continuous model inputs of UK-HSM, spe-

cific to the group of semi-detached dwellings identified in Chapter 4. As visualised

in the Figure 5.1, the probability distributions will inform Chapters 6 and 7, and

contribute to the completion of the second research objective (Section 1.3).

Figure 5.1: Chapter 5 flowchart. This is an abridged version of Figure 1.3, focusing on
Chapter 5 and its outputs. RO2 is a shortened version of Research Objective 2.
UK-HSM stands for UK Housing Stock Model.

To carry out the stochastic characterisation, a set of novel methods for specify-

ing model input probability distributions are introduced in Section 5.1. The choice

of approach depends on whether empirical data that could inform the probability

distribution exist, and in what format (Figure 5.2). Where possible, the probabil-
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ity distributions were based on empirical evidence. A description of the dataset

and method used to identify a suitable distribution, along with a discussion on the

appropriateness of this distribution, is provided for each model input of UK-HSM

in Section 5.2. The twelve probability distributions are also summarised in Sec-

tion 5.2.13. The strengths and limitations of this work are discussed in Section 5.3,

while a summary of the chapter is offered in Section 5.4.

5.1 Methods

The flowchart in Figure 5.2 depicts the process of determining the method used for

distribution identification depending on the data available. To identify the probability

distribution that best describes an empirical dataset whose tabulated values are

available, a distribution-fitting method was implemented. This novel method, within

the field of building modelling, is described in Section 5.1.1 and formed the basis for

a publication (Petrou et al., 2021b). In the case that empirical data were available only

in a graphical form, the process described in Section 5.1.2 was used. If empirical data

is not available, the probability distributions had to be assumed based on judgement,

experience and the information known about the uncertain variable (Mun, 2012) as

summarised in Section 5.1.3.

In all cases where empirical data were available, they were selected using the

same classifiers identified in Section 4.2.6.2. This is to capture any associations that

might exist between the continuous and categorical model inputs. However, this was

not always possible, either because of the lack of metadata or because of the limited

sample size.

Categorical variables were used to inform the distribution of the continuous

model inputs in some cases. When this was the case, a weighted distribution

was constructed based on the prevalence of those categorical features within the

homogeneous group of dwellings. For example, the Roof U-value is a continuous

model input of UK-HSM. One categorical variable that informs the distribution of

Roof U-value is the loft insulation thickness. A question within the 4M household

survey asked occupants to state which of the following five categories describes
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Figure 5.2: Workflow diagram of the stochastic characterisation process.

their loft insulation level: (i) No insulation, (ii) Up to 50 mm, (iii) 50–100 mm, (iv)

100–200 mm and (v) greater than 200 mm. As will be discussed in more detail in

Section 5.2.3, a probability distribution was assigned to each category. A weighted

distribution was then constructed by sampling a large number of times (10,000)

from the five probability distributions in ratios equivalent to the relative ratios of loft

insulation thicknesses within the filled cavity wall dwellings in the 4M dataset.

5.1.1 Inferring Probability Distributions with Tabulated

Empirical Data

This section will discuss a novel method within the built environment developed

for the identification of appropriate distributions for model inputs when tabulated

empirical data are available. The code for implementation has been made publicly
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available (Petrou, 2021). The proposed method consists of four main steps:

1. Data visualisation and cleaning: A histogram is used to visualise the data

and inform the cleaning of the data. This is preferred over automated procedures

based on the data’s interquartile range or standard deviation when the data do not

appear to be normally distributed. It is easier to identify and reject outliers when

there is already an established model of the measured variable and its distributional

form is known. However, this is often not the case and automatic methods of outlier

detection, such as the Chauvenet’s Criterion1 that assumes a normal distribution

would be inappropriate (Hughes and Hase, 2014). Given that many of the model

parameters within the built environment field have a physical meaning, it might

be better to compare measured extreme values with their theoretical equivalents

derived from the understanding of the physical system being studied. For example,

the measured U-value of a wall may be compared to the U-value calculated based on

its construction and thickness.

2. Identify candidate distributions: Once outliers are removed, the data’s

empirical distribution, together with the “Cullen and Frey” graph of kurtosis against

the square of skewness are used to identify candidate distributions (Figure 5.4).

Skewness, is a measure of symmetry, with a value of zero indicating a fully symmetric

distribution (Reimann et al., 2008). Kurtosis, indicates how heavy the tails of a

distribution are (i.e. how flat or peaked the distribution is) with a value of three for

a normal distribution (Reimann et al., 2008).2 By plotting the kurtosis and square

skewness of the collected data on a graph and overlaying the values that common

distributions would take, one can infer the candidate distributions that may best

describe the data. Since skewness and kurtosis may easily be affected by extreme

values, one can employ a bootstrap technique of random sampling (at least 1000

samples) with replacement to plot multiple possible values on the Cullen and Frey

graph (Hesterberg, 2011; Delignette-Muller and Dutang, 2015). If none of the

1As described by Hughes and Hase (2014), Chauvenet’s Criterion relies on the assumption that the
data follow a normal distribution, and “a data point is rejected from a sample if the number of events
we expect to be farther from the mean than the suspect point, for the sample’s mean and standard
deviation, is less than half”.

2The normalised kurtosis of a normal distribution is 0, it takes a negative value for a “peaked” and
a positive value for a “flat” distribution (Reimann et al., 2008).
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distributions that appear on the Cullen and Frey Graph provide an adequate fit to

the data, other distributions could be explored. An alternative to this approach is to

fit multiple distributions (e.g. the ones typically included on the Cullen and Frey

Graph) and use step 4 to choose the most appropriate one.

3. Fit candidate distributions: The candidate distributions were fitted to the

data using the R package fitdistrplus (Delignette-Muller and Dutang, 2015). To

fit the candidate distributions to the data, several methods exist. In this work, the

commonly used Maximum Likelihood Estimation (MLE) method was used which is

the default option in the library fitdistrplus (Delignette-Muller and Dutang, 2015).3

A probability distribution function, specified as f (x1|φφφ), quantifies the probability

of observing data point x1, given the distribution parameters φφφ (i.e. assuming that

φφφ are known) (Portet, 2020). Fitting a distribution to a set of known data points

is the inverse problem, where the observations are known, and the parameters are

unknown. Assuming x = xi=1, . . . ,xN independent and identically distributed (i.i.d.)

observations, the likelihood function is a function of parameters φφφ defined as (Smith,

2013):

L(φφφ |x) =
N

∏
i=1

f (xi|φφφ). (5.1)

The likelihood function quantifies the probability of obtaining the observed data x, if

the parameters φφφ had a specific value (Portet, 2020). By employing an optimisation

algorithm, for any candidate distribution ( f (·|φφφ)) and observed data (x), parameters

φφφ are optimised in order to maximise the log of the likelihood function (Delignette-

Muller and Dutang, 2015). This process is repeated for all candidate functions

separately to identify the parameters and density function that best describes the

data.

4. Identify the candidate distribution with the best goodness-of-fit: Finally,

drawing from Information Theory, the Akaike Information Criterion (AIC) and its

derivates are used to identify the best fitting distribution (Burnham and Anderson,

3Other methods may be preferred under specific circumstances, such as when it is desirable to
place more weight on one of the tails of the distribution. One such case might be when the interest is
in the least energy efficient dwellings whose building characteristics (e.g. permeability) are described
by the tails of the distributions.
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2004). AIC is defined as (Burnham and Anderson, 2004):

AIC =−2log(L(φ̂φφ |x))+2K, (5.2)

where φ̂φφ is the maximum likelihood estimate of parameters φφφ , log(L(·|·)) is the

log likelihood and K is the number of distribution parameters (as an example, the

normal distribution has two parameters: the mean and the standard deviation).

For a collection of R candidate distributions (or models more generally), the best

distribution given the data x is the one with the minimum AIC value (Portet, 2020).

For a small number of observations, where K > (N/40), the corrected AIC may be

used instead (Portet, 2020):

AICc = AIC+
2K(K +1)
N −K −1

, (5.3)

with AICc approaching AIC as N approaches infinity. While Equations 5.2 – 5.3

enable the ranking of candidate distributions, the actual values AIC or AICc are

not themselves easily interpretable. However, some more interpretation is possible

through the manipulation of the estimated AIC values. Rescaling the AIC (or AICc)

of each candidate distribution j, with regard to the minimum AIC (AICmin) results

in an estimate (∆ j) of the information loss when distribution j is selected instead

of the best candidate distribution; effectively quantifying the strength of the AIC

differences (Burnham and Anderson, 2004):

∆ j = AIC j −AICmin. (5.4)

Burnham and Anderson, 2004 suggested that:

• Models with ∆ j < 2 have substantial support (evidence)

• Models with 4 < ∆ j < 7 have considerably less support

• Models with ∆ j > 10 have almost no support

Therefore, an alternative to the best candidate distribution (the one with the lowest

AIC) with a ∆ j less than 2 may be considered a good alternative while one with ∆ j



5.1. Methods 175

greater than 10 should not be used. Portet (2020) warns that these guidelines should

be treated with caution if, for example, a large number of candidate distributions are

assessed. Instead, one can go further and estimate the Akaike weights (or “weight of

evidence”) (Burnham and Anderson, 2004; Portet, 2020):

w j =
exp(−∆ j/2)

∑
R
j=1 exp(−∆ j/2)

, (5.5)

where exp(−∆ j/2) is the distribution likelihood. The quantity, w j is the probability

that distribution j is best amongst the candidate distributions given the observations

x. Finally, a direct comparison between two candidate distributions can be carried

out by computing their evidence ratio w j/wk, quantifying the strength of evidence of

model j over model k.

While the AIC and its derivatives can help a modeller determine which distribu-

tion (or model) is best amongst the candidates, they do not provide any information

on whether a distribution’s fit is sufficient for its intended purpose. This may be

decided by visualising the theoretical data (originating from the best distribution)

against the empirical data in four plots (for an example see Figure 5.5):

1. Histogram with theoretical densities

2. Quantile-Quantile plot (Q-Q plot)

3. Empirical and theoretical Cumulative Distribution Function (CDF) plots

4. Percentile-Percentile plot (P-P plot)

A histogram of the data superimposed by the theoretical densities provides a quick

and comprehensive check of the distribution fit. In a Q-Q plot, the theoretical

quantiles from the assumed distribution are plotted against the empirical quantiles

and a straight line would provide support for the assumed distribution. A P-P plot,

will instead have the probabilities of the hypothetical distribution plotted against the

probabilities of the empirical data at fixed quantiles. While a Q-Q plot is useful for

exposing discrepancies in the tails of the distributions, a P-P plot is more focused

on the main body (Reimann et al., 2008). The empirical CDF is a step function,

where as the number of data points increase it should approximate the underlying

distribution function (Reimann et al., 2008).
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5.1.2 Inferring Probability Distributions with Graphical

Empirical Data

In some cases, tabulated empirical data may not be available, but a visualisation is

available (e.g. bar plot or density plot). One can extract useful information from

such a graphical representation of the empirical data, and this was required in a few

instances within the stochastic characterisation stage.

The general process required overlaying the visualisation onto a set of axes

within the R package ggplot2 (Wickham, 2016). The axes’ scale was set to match that

of the visualisation. In the case of trying to extract the parameters of a distribution, a

set of distributions were trialled and their goodness-of-fit was visually assessed (see

Section 5.2.11). If instead the aim was to extract the values from a bar plot, a digital

“ruler” was used to estimate the number of counts for each bar (see Section 5.2.12).

While this is arguably an approximate method, in the absence of tabulated

empirical data the use of graphical information in this manner was considered a

more thorough and accurate method than ignoring their presence and postulating a

distribution in the manner described in Section 5.1.3.

5.1.3 Inferring Probability Distributions without Empirical Data

As Mun (2012) suggests, to choose the appropriate probability distribution for an

uncertain variable (in this case model input), one must first list important known

information about it, review the descriptions of probability distributions and select

one that characterises the variable based on their best understanding of it. In the last

step, both the distributional form and parameters need to be chosen. In doing so, a

series of questions may need to be answered:

1. Is the variable continuous or discrete?

2. Is some value of the uncertain variable most likely?

3. Is the value of the uncertain variable equally likely to be above or below the

most likely value?

4. Is the uncertain variable more likely to be in the vicinity of the mean than

further away?
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5. Is value of the uncertain variable equally probable within a fixed range?

Once the form of the probability distribution is chosen, the parameters that define

it must be selected. For example, if the answer to (1) is “continuous” and the

answers to (2), (3), (4) are “Yes”, a normal distribution is likely to be a good option.

Based on any available information, a mean and standard deviation are chosen as the

distributional parameters. On the other hand, for a “continuous” variable where only

(5) is true, a uniform distribution would be a better choice and based on the values

that define the uncertain variable’s fixed range, the distributional parameters can be

specified.

Identifying probability distributions in such a way is far from perfect, and

hence the empirical route was preferred where possible. However, whether the

chosen distribution will have a significant impact on the QoI will be revealed by the

sensitivity analysis and important model inputs will subsequently be calibrated.

5.2 Results
The following sections present the outcomes of identifying a probability distribution

function for each model input of UK-HSM. Where possible, the characterisation was

based on data collected from groups of dwellings that adhered to the same set of

classifiers used in Section 4.2.6.2. To demonstrate the novel method of identifying

probability distributions when tabulated data are available, the entire process (as

described in Section 5.1.1) was implemented for the wall U-value, with outcomes of

each step presented and discussed in Section 5.2.1. For other model inputs where

this method was applied, the histograms used to visualise and clean the data were

placed in the appendices (Section H) for brevity. In addition, since the computational

burden of fitting multiple distributions in this analysis was relatively small, Weibull,

gamma, normal and lognormal distributions were fitted in all model inputs, without

consulting the Cullen and Frey graph.

5.2.1 Wall U-value

During 2012-2013, fieldwork commissioned by the UK Department of Energy and

Climate Change (which in 2016 became part of the Department for Business, Energy
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and Industrial Strategy (BEIS)) aimed to provide an assessment of the thermal

performance of walls in English dwellings and compare it to the theoretical values

(Hulme and Doran, 2014). The Building Research Establishment (BRE) led the

Table 5.1: Summary statistics, mean and percentiles, of wall U-value measurements (Hulme
and Doran, 2014). Other (or non-standard) solid walls are solid brick walls with
thickness ≥ 330 mm or non-brick solid walls, whereas standard solid walls are
brick walls with thickness less than 330 mm (Hulme and Doran, 2014).

Wall Type No. Wall U-value (W/m2K)
2.5 % 25 % 50 % 75 % 97.5 %

1 Filled cavity 109 0.3 0.6 0.7 0.8 1.2
2 Other solid 33 0.6 1.1 1.4 1.6 2.1
3 Standard solid 85 1.0 1.4 1.7 1.9 2.2
4 Unfilled cavity 50 0.8 1.3 1.5 1.7 2.0

data collection. For approximately 300 dwellings, in-situ measurements were taken

using heat flux plates (Hukseflux HFP01) and surface temperature measurements

for a period of two weeks. The homes were a sub-sample of the 2010/11 English

Housing Survey (EHS). Two measurements were taken for each dwelling as far away

as possible from any thermal bridges. For this work, a 6 % adjustment was applied to

the raw data, since following the publication of the original report it was discovered

that the heat flux plates read 4-8 % lower than intended (BRE, 2016). Table 5.1

provides a summary of the data, where the U-value is the arithmetic mean of the two

measurements taken at each dwelling and following the 6 % correction.

The corrected arithmetic mean of the measured filled cavity wall U-values is

visualised in Figure 5.3. The solid vertical line represents the empirical median based

on the data collected, while the dashed line is the theoretical value based on Appendix

S (RdSAP) of SAP 2012 (BRE, 2014). In an update specifically to Appendix S of

SAP 2012 (BRE, 2019), the theoretical value has now been changed to reflect the

findings of Hulme and Doran (2014). However, the theoretical value prior to the

update was included in Figure 5.3 to highlight the magnitude of differences between

theoretical and empirical values for commonly used model inputs. Differences were

even greater for the solid wall U-value (see Petrou et al. (2021a) and Appendix

Section H.1).
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Figure 5.3: Histograms and density lines of the measured wall U-value, following a 6 %
correction. Data from Hulme and Doran (2014). The theoretical line is based on
RdSAP of SAP 2012 (BRE, 2014).

By simply inspecting the filled cavity wall histogram, the data distribution seems

to be positively skewed, as the right tail is longer than the left. The lowest measured

value is 0.2 W/(m2K) while the largest value is 1.5 W/(m2K). While a value of

0.2 W/(m2K) is well within the expected theoretical values of well-insulated cavity

walls (BRE, 2014), a value of 1.5 W/(m2K) is rather high (BRE, 2014; BRE, 2016).

This high value could be the result of surveyors incorrectly classifying the wall as

filled-cavity or placing the heat flux over a thermal bridge. However, lower than

nominal levels of insulation and poor workmanship could also lead to a worse than

intended thermal performance.

To determine which distribution should be fit, the skewness and kurtosis of the

filled cavity wall sample was estimated and plotted in a Cullen and Frey graph shown

in Figure 5.4. The sample’s values, indicated by the blue dot, suggest that the gamma,

Weibull and lognormal distributions are likely to provide a good description of the

collected data (this will be determined by the results associated with goodness-of-fit

in Step 4 of the distribution fitting process). To account for the uncertainty in the

sample skewness and kurtosis, a non-parametric bootstrap analysis was run 1000

times, with the results shown as yellow rings in Figure 5.4. Many of the points lie
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Figure 5.4: Cullen and Frey graph of kurtosis against square of skewness.

within the shaded area that represents possible kurtosis and squared skewness values

the beta distribution can take. However, as the beta distribution is bound within the

[0, 1] interval it was not chosen as a candidate distribution. A few bootstrap points

concentrated close to the kurtosis of three and squared skewness of zero, encouraging

the inclusion of the normal in the candidate distributions.

Table 5.2: Distributions for wall U-value ranked in decreasing order of goodness of fit based
on the Akaike Information Criterion (AIC), difference in AIC (∆ j) and Akaike
weights (w j). P1 and P2 represent the parameters of the fitted distribution, stated
to two significant figures.

Wall Type Distr. AIC ∆ j w j P1 P2

Filled cavity

gamma -16.07 0.00 0.75 shape = 9.5 rate = 13
lnorm -13.72 2.34 0.23 meanlog = -0.4 sdlog = 0.33
norm -8.04 8.03 0.01 mean = 0.71 sd = 0.23
weibull -7.59 8.47 0.01 shape = 3.2 scale = 0.79

A summary of the AIC derivatives for all the fitted distributions is provided in
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Figure 5.5: Goodness of fit plots for the BRE dataset of filled cavity wall U-values, assuming
a gamma(9.5, 13).

Table 5.2. The gamma distribution has the lowest AIC value (−16.07), indicating

that it can best represent the data amongst the candidate distributions. It is followed

by the lognormal with an AIC of −13.72, the normal (AIC = −8.04) and Weibull

(AIC = −7.59). To enable some further interpretation of the results, equations 5.4-

5.5 were used to determine the AIC differences (∆ j), and the Akaike weights (w j).

Based on the suggestions by Burnham and Anderson, 2004, with a ∆ j = 2.34 there

is some support for the lognormal as an alternative to the gamma, with considerably

less support for the normal and Weibull distributions. This is further supported by

the Akaike weights, with a 0.75 probability that the gamma distribution is the best

distribution among the candidates given the observed wall U-values. A significantly

lower probability of 0.23 is assigned to the lognormal while an almost negligible

probability of 0.01 was assigned to the normal and Weibull distributions.
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While the AIC-based statistics provided by Table 5.2 enable the modeller to

choose the best fitting distribution amongst the candidates, the goodness of fit plots

provided in Figure 5.5 are necessary to determine whether the best-fitting distribution

is good enough for its intended use. The goodness of fit plots for the filled cavity

wall construction are shown in Figure 5.5 where a gamma distribution was assumed.

The empirical and theoretical densities and CDFs seem to align well while the points

on the Q-Q and P-P plots align with the diagonal well. The diagonal is the line

that indicates a perfect agreement between empirical and theoretical values. The

Q-Q plots enables a closer inspection of the extremes. At the lower end, the point

lies below the diagonal, suggesting the theoretical prediction is not as low as the

empirical evidence, while at the upper end the theoretical value is not as high as the

empirical. With the P-P plot, more attention is given to the body of the curve. There

is small variation around the diagonal, yet no sizeable deviation is observed. Given

these results, the gamma distribution is considered to describe the data adequately.

Although small deviations were observed, especially in the Q-Q plot, this was at the

extremes and differences were not large. The gamma distribution may therefore be

considered a good approximation of empirical data of filled cavity wall U-values.

5.2.2 Window U-value

For the windows, no large-scale dataset with U-value measurements could be identi-

fied. Thus, the distribution of double-glazed window U-values had to be assumed.

Based on the most recent RdSAP (BRE, 2019), the U-value of double glazing is

expected to vary between 2.0–3.1 W/(m2K) as shown in Table 5.3.

Table 5.3: Assumed window U-value and probability distributions. The left-hand side is
based on Table S14 in BRE (2019). The right-hand side lists the model input
distributions assumed for window U-value in this work.

Glazing Installed Glazing gap U-value
(W/(m2K))

Distribution

Double Pre-2002 6 mm in PVC frame, or
any in non-PVC frame

3.1

normal(2.5, 0.3)
12 mm in PVC frame 2.8
16 mm or more in PVC
frame

2.6

Double 2002 or later Any 2.0
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The distribution will depend on the frequency of different double glazing types

within the stock, along with how much the U-value of each double glazing type can

vary. Information on the prevalence of each double glazing type, or the variation

of U-value per window type, was not available. While building construction age

can be a proxy of the double glazing type, it is likely an unreliable one, especially

for older dwellings that may have been refurbished. Since the only information

available were the theoretical U-values (Table 5.3), a normal distribution with a

mean of 2.5 W/(m2K) was assumed and a standard deviation of 0.3 W/(m2K). The

assumption of a normal distribution suggests an equal probability of being above or

below the mean value. This is likely a simplifying assumption, and the true empirical

distribution may be multimodal. However, the lack of information on the prevalence

of each window type prevented a more detailed specification.

5.2.3 Roof U-value

The roof U-value for a single house will depend on the roof type, the extent and

quality of roof insulation. Similar to windows, no large-scale resource of measured

roof U-values could be identified. Therefore, the distributions and distributional

parameters were once again informed by RdSAP (BRE, 2019), with a summary

of roof U-values provided by Table 5.4. A question within the 4M household

survey asked occupants to state which of the following five categories describes

their loft insulation level: (i) No insulation, (ii) Up to 50 mm, (iii) 50–100 mm, (iv)

100–200 mm and (v) greater than 200 mm. For the purposes of archetype-based

stochastic modelling, these categories may be used to cluster dwellings into separate

groups during the Categorical Variable Classification step and assign each group

with a distinct probability distribution. However, if the key factor that varies with

each category is the roof U-value then it might be possible to merge some of these

categories into larger groups and represent them with a distribution weighted based

on each group’s frequency. If roof U-value has no significant impact on the QoI,

then all the groups can be merged together and the central value can be used.

For each category where roof insulation was present, most probability density

was within the U-values associated with the insulation thickness. For example, in
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(a) No insulation (b) Less than 50 mm

(c) 50–100 mm (d) 100–200 mm

(e) 200 mm or more

Insulation Level Distribution
No Insulation normal(2.3, 0.2)
Less than 50 mm gamma(9.5, 7.7)
50-100 mm gamma(22.6, 39.6)
100-200 mm gamma(7.8, 22.4)
200 mm or more gamma(17.8, 93.8)

(f) Assumed distributions

Figure 5.6: Probability density functions of roof U-value assumed for each group of loft
insulation thickness provided in the 4M dataset. The theoretical values were
informed by RdSAP (BRE, 2019).
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Table 5.4: Assumed insulation level and U-values based on dwellings age band in England
and Wales. Adapted from Table S10 in BRE (2019).

Age Band Assumed
Insulation

Pitched, slates or tiles, insulation
between joists or unknown (W/(m2K))

Before 1900, 1900-1929,
1930-1949, 1950-1966

None 2.3

1967-1975 12 mm 1.5
1976-1982 50 mm 0.68
1983-1990 100 mm 0.40
1991-1995 150 mm 0.30
1996-2002 150 mm 0.26
2003-2006 270 mm 0.16
2007-2011 270 mm 0.16
2012 onwards 270 mm 0.16

Figure 5.7: Weighted distribution of roof U-values based on the prevalence of loft insulation
levels within the group of semi-detached dwellings with filled cavity wall in the
4M dataset.

the group with loft insulation thickness ranging between 50–100 mm, most of the

probability density will be within the range of 0.40–0.68 W/(m2K). A peak was

expected to exist within this range, representing the average loft insulation thickness.

The probability density would decrease in both directions from the peak. A non-zero

probability will exist beyond the reference values, especially in the case of a U-value
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greater than 0.40 W/(m2K); as with filled cavity walls, factors such workmanship

and performance degradation over time will likely result in U-values greater than

those quoted in Table 5.4. Therefore, a positively-skewed probability distribution

may capture the possibility of a subgroup of dwellings performing significantly

worse than expected. One distribution that satisfies the requirements is the gamma,

which was also the probability distribution that provided the best-described U-values

of the filled cavity wall construction in Section 5.2.1. For roofs without any loft

insulation, the key feature assumed to characterise their distribution is the existence

of a central value. Workmanship might have some effect, and some variability in

roof construction will likely exist, yet the impact on U-value is not expected to

be as significant as for the insulated lofts. A normal distribution was assumed,

suggesting that values above the mean are equally likely as below and that most of

the probability density is around the mean.

Following this reasoning and using the RdSAP values in Table 5.4, a set of

probability density functions were defined, visualised in Figure 5.6. For the “No

Insulation” group, a normal distribution was assumed with a mean = 2.3 and standard

deviation = 0.2. For the “Less than 50 mm”, a gamma(9.5, 7.7) distribution was

assumed. This distribution places most of the probability density (0.71) between a U-

value of 0.68 W/(m2K) and 1.50 W/(m2K), and only allows for a small probability

(0.01) of performing similarly to having no insulation at all. Similarly, the sub-groups

50–100 mm and 100–200 mm had most of their probability density within the range

of associated reference values and with a long right tail. For the group representing

dwellings with loft thickness greater or equal to 200 mm, a U-value of 0.1 W/(m2K)

in Figure 5.6(e) was used to represent a typical Passivhaus standard roof U-value

(McLeod et al., 2013). It is possible to have a U-value greater than this, but it would

be quite uncommon, hence the distribution assumed allows a probability of 0.01 for

U-values less than 0.1 W/(m2K). In all four cases where insulation was present, the

upper reference value was more probable than the lower reference value, capturing

the assumption of worse than ideal performance.

To determine how the U-value varies within the group of semi-detached dwell-



5.2. Results 187

ings identified within Section 4.2.6.2, a weighted distribution was constructed which

is visualised in Figure 5.7. To construct this distribution, a large number (10,000)

of samples were drawn from the five distribution (Figure 5.6(f)) in proportion with

the prevalence of each insulation type within the chosen cluster of dwellings. This

resulted in a multimodal distribution that may need to be segmented further (Step 4 of

the framework described in Section 3.2) if this model input is shown to be significant

in the sensitivity analysis.

5.2.4 Floor U-value

Figure 5.8: Floor U-values estimated using the RdSAP S5.5 guidance for semi-detached
dwellings in the 2012 English Housing Survey.

The floor U-value will predominantly depend on the floor construction type

and the presence of floor insulation. A strong association is expected between

floor construction type and construction date, while the presence of floor insulation

will likely be influenced by construction and refurbishment age. Since empirical

measurements of floor U-value could not be identified, RdSAP was used to estimate

plausible values. RdSAP (Section S5.5) provides an analytical method based on BS

EN ISO 13370 to estimate floor U-values depending on the type of floor construction

and the presence of insulation. In addition, it requires a few parameters to be known

(although many default values are provided) including the dwelling’s floor area and



188 Chapter 5. Stochastic Characterisation

exposed perimeter. Neither the EHS nor the 4M had information on the type of floor

construction. Based on Table S11 from RdSAP (BRE, 2019), it was assumed that

dwellings constructed until 1929 had suspended timber floors, dwellings built after

1929 had solid floors, with insulation present for dwellings constructed after 1995.

While 4M included estimates of floor area, it did not include any information on the

exposed perimeter. The EHS was thus preferred to inform this distribution. Other

parameters required for this calculation, such as the soil conductivity, were taken to

be the defaults provided by RdSAP.

A histogram of the estimated floor U-values per floor type according to the Rd-

SAP methodology is shown in Figure 5.8. Solid floor is the most common floor type.

The distributions of U-values for uninsulated solid floors (median = 0.70 W/(m2K))

and suspended timber (median = 0.72 W/(m2K)) floors have similar central values.

In contrast, the median U-value for insulated solid floors is 0.26 W/(m2K). Since

this distribution appears to be multimodal, and a unimodal distribution would not

describe the data well, a theoretical distribution was not fitted to the dataset. Whether

a distribution should be fitted for a subset of this dataset will be determined at Step 4

of the Bayesian calibration framework, described in Chapter 6.

5.2.5 Fabric Air Permeability

Approved Document L1 (ADL1) describes air permeability as the physical property

used to measure the building fabric’s airtightness and defines it as the “air leakage rate

per hour per square metre of envelope area at the test reference pressure differential

of 50 pascals” (HMG, 2016). A typical method of quantifying this is through

pressure testing, also referred to as a “blower-door test” or “fan pressurisation test”;

a fan fitted in the doorway of a house supplies or extracts air at steady pressure

differences with the aim of evaluating the dwelling’s air leakage characteristics

(Stephen, 2000). During the pressurisation test, internal doors are kept open while

windows are closed, chimneys, flues and all purpose-provided ventilation inlets are

sealed, and mechanical ventilation is switched off. Air permeability is a model input

of UK-HSM and a distribution must therefore be defined based on the best available

evidence.
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The largest and most comprehensive dataset of airtightness measurements in

English dwellings constructed before 1995 is held by BRE (Perera and Parkins

(1992), Stephen (1998) and Stephen (2000)). It consists of measurements of air

leakage rate for 471 dwellings, of which 384 had enough information to estimate

their air permeability. The mean air leakage rate was 13.1 ACH at 50 Pa, with an

approximate range of 2–30 ACH. This large variability, with the greatest leakage

rate being an order of magnitude larger than the smallest measurement, led Stephen

(1998) to conclude that it was “impossible to make a realistic estimate of airtightness

of a dwelling, newly built or otherwise, by simple inspection alone; some form

of measurement being required”. To explore the factors influencing airtightness,

Stephen (2000) compared the mean leakage rate (ACH at 50 Pa) of different sub-

groups of the dataset. For brevity, this section will focus on construction age.

Other key findings and limitations of the Stephen (2000) analysis are discussed in

Section H.3 of the appendices.

Construction age can be a useful proxy of typical construction practices, ma-

terials used and the designed air permeability that may be dictated by building

regulations and standards. With the caveat that chimneys were closed during the

pressurisation tests, Stephen (2000) discovered that the mean leakage rate of dwell-

ings pre-1920 was lower than for dwellings constructed between 1920–1980; this

was contrary to a belief at the time that older dwellings are more draughty and

less airtight. Dwellings built after the 1980s were more airtight with a mean air

leakage rate of approximately 10 ACH at 50 Pa, although a large variability was still

observed.

An overall trend of improved airtightness for post-1995 homes might be ex-

pected, since building regulations have been striving to reduce infiltration for a few

years via approved document L (ADL). In 1995, ADL1 stated the aim of limiting

leakage in dwellings and provided a list of measures to achieve this by reducing

unintentional air paths HMSO (1995). The guidance in 2002 maintained the same

aim and supplemented the list of measures that may be taken to reduce air leakage

with an alternative method of demonstrating compliance; the use of pressure testing
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Table 5.5: Datasets used to inform the model. input for air permeability

Dwelling age Sample size Dataset
Pre-1995 384 Stephen (2000)
2002–2006 63 BRE (2004)
Post-2006 110 Pan (2010)

to show that the dwelling’s air permeability does not exceed 10 m3/h/m2 at 50 Pa

(HMG, 2002). In the 2006 version of ADL1, new dwellings had to be designed with

a permeability of 10 m3/h/m2 at 50 Pa and pressure testing had to be carried out to

demonstrate its compliance (although not every dwelling has to be pressure tested in

a development of identical dwellings) (HMG, 2006). The target of 10 m3/h/m2 at

50 Pa remained in ADL1 2016 (HMG, 2016), with pressure testing continuing to be

used.

Given the association between construction age and air permeability, three

datasets that cover different construction periods were used to inform this model

input, summarised in Table 5.5. A few points are worth discussing regarding this

choice. Firstly, although on average dwellings with different floor and wall type

are expected to have different air permeabilities, they are not treated differently

in this analysis. Although Stephen (2000) provided measured means of solid and

cavity walls, and solid and suspended timber floors, there was no information

about their distributional form. In addition, there was no discussion about the

presence of insulation, which will likely have an impact on the building’s air tightness.

Furthermore, this dataset likely paints an outdated picture of the housing stock, since

a proportion of dwellings will likely have received some retrofit measures that

have changed their air leakage characteristics. However, this dataset is the most

comprehensive dataset of blower-door measurements for pre-1995 dwellings and

thus provides the best indication of air permeability for this group of dwellings.

Another point to note is that no suitable dataset could be identified for dwellings built

between 1995–2002. These were assumed to be represented by the BRE dataset of

dwellings constructed between 2002–2006, since similar instructions were given to

reduce air leakage in the 1995 and 2002 ADL1 version (HMSO, 1995; HMG, 2002).

Although the 2002 version of ADL1 explicitly mentioned the target of 10 m3/h/m2
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at 50 Pa while the 1995 did not, dwellings constructed between 1980–1994 and

2002–2004 had mean permeabilities close to 10 m3/h/m2 at 50 Pa. It is therefore

assumed that similar values would be observed for dwellings constructed between

1995–2002.

5.2.5.1 Pre-1995

Table 5.6: Distributions for each construction period ranked in decreasing order of goodness
of fit based on the Akaike Information Criterion (AIC), difference in AIC (∆ j) and
Akaike weights (w j). P1 and P2 represent the parameters of the fitted distribution,
stated to two significant figures.

Const. Period Distributions AIC ∆ j w j P1 P2

Pre-1995

weibull 2298 0 0.98 shape = 2.5 scale = 13
gamma 2305 8 0.02 shape = 4.8 rate = 0.42
norm 2320 22 0.00 mean = 11 sd = 4.9
lnorm 2334 37 0.00 meanlog = 2.3 sdlog = 0.49

1995–2006

lnorm 309 0 0.53 meanlog = 2.3 sdlog = 0.28
gamma 310 1 0.41 shape = 13 rate = 1.3
norm 314 5 0.04 mean = 10 sd = 2.8
weibull 316 6 0.02 shape = 3.8 scale = 11

The permeability measurements of pre-1995 dwellings included in the BRE

dataset are shown in Figure 5.9 (and in Figure H.4 of the appendices). These include

cavity and solid wall constructions, along with solid and suspended floor types. By

inspecting the histogram, the only extreme values are on the right tail with a cluster

of dwellings with permeabilities ranging from 26–29 m3/h/m2. Although these

values are approximately 2.5 times greater than the mean, the rest of the distributions

seems to have a longer right tail which this cluster could be part of. Indeed, looking

at the leakage rates (ACH at 50 Pa, n = 471) in Figure 2 of Stephen (2000) which the

data in Figure 5.9 are a sub-sample of, there is a long right tail. The entire dataset

was thus used to fit a set of candidate distributions, with the AIC and its derivatives

summarised in Table 5.6. The best fitting distribution was Weibull, with shape = 2.5

and scale = 13. The goodness of fit plots in Figure 5.9 suggest that Weibull provides

a satisfactory fit, as it describes the vast majority of data points well.
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Figure 5.9: Goodness of fit plots for air permeability. The Pre-1995 dataset (Stephen, 2000)
was fitted with a weibull(2.5, 13) while the 1995–2006 dataset (BRE, 2004) was
fitted with a lognormal(2.3, 0.28).

5.2.5.2 1995–2006

The Energy Saving Trust, motivated by an earlier and smaller study that showed

2 in 3 dwellings failed to achieve air permeabilities of 10 m3/h/m2, contracted

BRE and the National Energy Services (NES) to examine the extent and effect of

non-compliance with air permeability goals in dwellings constructed to the 2002

edition of ADL1 (BRE, 2004). Pressure testing was conducted in 99 dwellings, with

the measurements presented as histograms for the entire sample, and separately for

houses (66) and flats (36). Only the sub-sample of houses was used, as this was
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deemed to be more representative of the semi-detached dwellings modelled in this

study. No extreme values were observed (Figure H.5 in the appendices) and a set of

candidate distributions were fitted. The best fitting distribution according to Table 5.6

was a lognormal with a meanlog = 2.3 and a sdlog = 0.28. This distribution was

shown to describe the dataset well in the goodness of fit plots in Figure 5.9.

5.2.5.3 Post-2006

Pan (2010) analysed the air permeability tests of 287 post-2006 dwellings, comprised

of 110 houses and 177 flats. A comparison of typologies revealed a statistically

significant difference in the air permeability of houses and flats (lower and mid-

ground), but no significant differences for different housing typologies.

From this study, it was not possible to extract tabular data but distributional

parameters were provided by the author. The overall dataset was determined to

be described well by a normal distribution with a mean of 5.97 m3/h/m2, with a

standard deviation of 2.29 m3/h/m2 (Pan, 2010). While it would be possible to use

the distributional information provided by Pan (2010) for the entire dataset, this

would bias the model input towards the more prevalent and airtight flats’ subgroup.

Since the focus in this case is semi-detached dwellings, it was preferred to use

only the houses’ subgroup information. However, the appropriate distribution and

its parameters were not provided for subgroups, nor were any histograms. Only

bar plots with a mean and 95 % confidence interval of the air permeability were

presented (Figures 2–5 in Pan (2010)). However, it was possible to estimate each

subgroup’s standard deviation given its mean and 95 % confidence interval by a

normal distribution, and using the following equations:

(x̄−95LB)×
√

n/(1.96) = σLB, (5.6)

(x̄+95UB)×
√

n/(1.96) = σUB, (5.7)

σ = (σLB +σUB)/2, (5.8)

where σUB and σLB are the standard deviations estimated using the upper (95UB) and

lower (95LB) bounds of the 95 % confidence interval, respectively. n is the number
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of dwellings within each sample and σ is the mean standard deviation. Note that

σUB and σLB may slightly differ due to rounding errors of the confidence intervals

provided by Pan (2010). Using this method, the distributions of houses and flats are

normal(7.14, 2.01) and normal(5.25, 2.21), respectively. Although a subgroup was

provided for semi-detached dwellings, this was not used due to its small sample size

of 19 and since there was no statistically significant difference between different

typologies within the house subgroup.

A possible criticism of this method is the assumption that each subgroup is

described by a normal distribution. To demonstrate that this is indeed a reasonable

assumption, the following procedure was being used: by assuming that the house

and flat subgroups are described by normal distributions, the entire dataset should

also be described by a mixture distribution whose mean and variance can be estim-

ated analytically given each subgroup’s distributional parameters and prevalence as

detailed by Behboodian (1970). Following this method, the estimated distributional

parameters for the entire dataset are normal(5.97, 2.32) which are similar to the

normal(5.97, 2.29) distribution identified by Pan (2010).

5.2.5.4 Weighted Distribution

The cluster of semi-detached homes being assessed includes dwellings constructed

in all three constructions periods that permeability distributions were identified

for. Depending on their prevalence, 10,000 samples were drawn from the three

distributions to construct a weighted distribution that would be representative of the

cluster’s overall permeability levels. This is visualised in Figure 5.10. The weighted

distribution is a positively-skewed unimodal, dominated by the Pre-1995 samples

since they were more prevalent than the 2002-2006 and Post-2006 categories.

As before, a set of distributions were fitted with a summary of the AIC metrics,

summarised in Table 5.7. A Weibull with shape = 2.6 and scale = 13 was identified to

best describe the weighted distribution, with its fit supported by the goodness-of-fit

plots in (Appendix Figure H.6).
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Figure 5.10: Weighted distribution of air permeability comprised of 10,000 samples drawn
from the three distributions previously identified, depending on the prevalence
of dwellings with different construction periods within the cluster.

Table 5.7: Distributions fitted to the weighted air permeability of a cluster of semi-detached
dwellings. They are ranked in decreasing order of goodness of fit based on the
Akaike Information Criterion (AIC), difference in AIC (∆ j) and Akaike weights
(w j).

Distributions AIC ∆ j w j P1 P2
weibull 58847 0 1.00 shape = 2.6 scale = 13
gamma 59114 266 0.00 shape = 5.2 rate = 0.46
norm 59253 406 0.00 mean = 11 sd = 4.7
lnorm 60235 1387 0.00 meanlog = 2.3 sdlog = 0.48

5.2.6 Solar Absorptivity

Solar absorptivity of roof and external walls will depend on the material used for

the building envelope, its colour and the presence of any reflective coating. Without

any tabulated or empirical data on the prevalence of solar absorptivity values within

the Leicester housing stock, a distribution had to be assumed. Since this material

property is bound between 0 and 1, a beta distribution was deemed an appropriate

choice since it is a flexible model used to represent probability over a fixed range,

often 0–1 (Mun, 2012).
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Table 5.8: Absorptivity and emissivity of frequently used construction material. Adapted
from CIBSE (2015).

Material Condition/Type Absorptivity Emissivity

Brick
Glazed/light 0.25–0.36 0.85–0.95
Light 0.36–0.62 0.85–0.95
Dark 0.63–0.89 0.85–0.95

Cement Mortar, screed - 0.73 0.93

Clay tiles
Red, brown 0.60-0.69 0.85-0.95
Purple/dark 0.81-0.82 0.85-0.95

Concrete
Tile 0.65–0.80 0.85–0.95
Block 0.56–0.69 0.94

Figure 5.11: Density plot of the chosen probability density function for solar absorptance.
The shaded areas mark the probability regions assigned to theoretical absorptiv-
ity values of different brick types.

The most common wall construction is masonry-based, while typical roof con-

structions of semi-detached dwellings have used concrete tiles (NHBC Foundation,

2019). The solar absorptivity of these materials can thus inform distributional para-

meters. Ranges of absorptivity and emissivity, adapted from CIBSE (2015), are

shown in Table 5.8. The range of absorptivity is between 0.25–0.89, although a value

less than 0.36 only refers to glazed/light brick. It is assumed that light and dark bricks

have been more commonly used in the UK than glazed bricks, therefore a greater

probability will be assigned in the interval 0.36–0.89. A smaller probability density
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is expected between 0.25–0.36, and even smaller for below 0.25 and above 0.89. The

absorptivity of concrete tiles, ranging between 0.65–0.80, providing further support

for a high probability region in the range of 0.5–0.8. Other factors, such as dirt,

might also influence the absorptivity, but they are not considered in this analysis.

A distribution that satisfies the above assumptions is a beta with shape 1 = 4

and shape 2 = 2.5 (beta(4, 2.5)). A visualisation of this probability density is shown

in Figure 5.11. With this choice of distributional parameters, the probability of

solar absorptance being below 0.26 is 0.03, while a value above 0.89 is assigned a

probability less than 0.05. The probability assigned to glazed, light and dark bricks

were 0.07, 0.40 and 0.45, respectively.

5.2.7 Glazing Fraction

Glazing fraction is a UK-HSM model input that controls the ratio of glazed area to

external wall area. It was not possible to inform this model input based on the 4M

dataset. However, there was enough information within the EHS to obtain a set of

empirically-derived probability distributions based on the glazed and wall area of the

front and back façade. Histograms of glazing fraction, separated by wall type (solid,

cavity, filled cavity), can be found in the appendices (Figure H.7). The median value

was similar between the three wall construction types, ranging from 0.26 to 0.27. In

all three cases the distributions are positively skewed with a long right tail and no

clear extremes.

A set of probability distributions were fitted to each group of dwellings, with the

summary of AIC-based measures of fit for the filled cavity wall group summarised

in Table 5.9. For all three wall types, the distribution that best describes the glazing

fraction is a gamma, although the shape and rate differ. The goodness of fit plots

(Appendix Figure H.8) suggest that the gamma distribution provides a satisfactory

fit.

5.2.8 Orientation

The orientation of a dwelling can have a significant impact on the indoor environment.

Since the 4M dataset did not include any information on the orientation of the
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Table 5.9: Distributions fitted to the glazing fraction of semi-detached dwellings in the
English Housing Survey, with filled cavity wall (FCW) construction. They are
ranked in decreasing order of goodness of fit based on the Akaike Information
Criterion (AIC), difference in AIC (∆ j) and Akaike weights (w j).

Wall Dist. AIC ∆ j w j P1 P2

FCW

gamma -3401 0 1.00 shape = 14 rate = 53
lnorm -3388 13 0.00 meanlog = -1.4 sdlog = 0.27
norm -3303 98 0.00 mean = 0.26 sd = 0.072
weibull -3220 181 0.00 shape = 3.7 scale = 0.29

buildings monitored, this model input was informed by the EHS. Only dwellings

that satisfied the classifiers defined in Section 4.2.6.2 were used.

(a) EHS Dataset (b) EHS Dataset - East Midlands

(c) Proposed Probability Distribution

Figure 5.12: Barplots (a) and (b) visualise the prevalence of different orientation within the
EHS 2012 dataset at the national and East Midlands level, respectively. The
density plot in (c) shows the proposed probability distribution used for the
orientation model input of UK-HSM.

Figures 5.12(a)–5.12(b), show the prevalence of front façade orientations of

semi-detached dwellings at the national and East Midlands level. In both cases, there
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is a more frequent occurrence of the four cardinal directions than the intercardinal

directions. It is unclear whether this is indeed the result of common building

practices or an indication that surveyors are more likely to assign a cardinal than an

intercardinal direction. No single peak exists and plotted over a continuous range, it

is expected that the frequency of angles will be quite small. This relationship is likely

approximated to a satisfactory degree by a uniform probability distribution, shown

in Figure 5.12(c). This was chosen to range between 0-330◦, since simulations at an

angle greater than 330◦ would likely have a similar effect to that of 0◦.

5.2.9 Floor-to-ceiling Height

The 4M dataset did not include measurements of the floor-to-ceiling height of

each dwelling. To inform this model input the EHS was used, which provides

measurements within the living room and main bedroom. These two measurements

were averaged since UK-HSM assumes the two rooms to have the same height and

specified by a single input. EnergyPlus, UK-HSM’s calculation engine, assumes

surfaces to be infinitely thin plates and thus the use of interior measurements of room

dimensions results in smaller wall surface area than in the real building (DOE, 2020).

While the differences might be small, EnergyPlus guidance suggests the use of

outside dimensions for exterior surfaces and the midpoint for interior surfaces (DOE,

2020). To implement this advice, all floors above ground level were assumed to be

0.25 m thick which was modelled by adding 0.125 m to the averaged measurements

of bedroom and living room height from the EHS.

From Figure 5.13, the floor-to-ceiling height of semi-detached dwellings within

EHS is mostly between 2–3 m, although there is a long right tail. Only two dwellings

had a value greater than 3.5 m, which is less than 0.04 % of the dataset. These were

removed as they might have been the result of surveyor error or simply extreme

values. The density plot appears multimodal; this is the result of the measurement

resolution at 0.05 m.

To accommodate the data’s long right tails and in addition to the four probability

distribution fitted for other model inputs (normal, lognormal, Weibull and gamma),

the inverse Weibull distribution was also fitted to the data. Inverse Weibull belongs
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Figure 5.13: Histogram of the floor-to-ceiling height measurements for semi-detached dwell-
ings in the EHS. This is the average of the main bedroom and living room
measurement plus 0.125 m.

Table 5.10: Distributions fitted to floor-to-ceiling height measurements from 2012 English
Housing Survey. The measurements were augmented with 0.125 m. They are
ranked in decreasing order of goodness of fit based on the Akaike Information
Criterion (AIC), difference in AIC (∆ j) and Akaike weights (w j).

Wall Distributions AIC ∆ j w j P1 P2

FCW

lnorm -2777 0 0.96 meanlog = 0.93 sdlog = 0.034
gamma -2771 7 0.04 shape = 840 rate = 330
norm -2755 22 0.00 mean = 2.5 sd = 0.087
invweibull -2525 252 0.00 shape = 27 scale = 2.5
weibull -2251 526 0.00 shape = 24 scale = 2.6

to the family of generalised extreme value distributions and is able to capture long

tails well (de Gusmão et al., 2011).

Table 5.10 provides a summary of the AIC and its derivatives for every distri-

bution fitted. The best fitting distribution for semi-detached dwellings with filled

cavity walls is a lognormal, with a meanlog = 0.93 and a sdlog = 0.034. Based on the

GOF plots in Figure 5.14, the theoretical model deviates from the empirical data for

values greater than 2.7 m and less than 2.3 m. Since the range of 2.3–2.7 m includes

98.7 % of the data, it was considered an adequate description. The gaps between

points on the P-P plot are the result of the measurement resolution.
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Figure 5.14: Goodness of fit plots for a lognormal distribution fitted to the floor-to-ceiling
height measurements from the 2012 English Housing Survey. The measure-
ments were augmented with 0.125 m.

Table 5.11: Distributions fitted to the floor area factor dataset. These are ranked in decreasing
order of goodness of fit based on the Akaike Information Criterion (AIC),
difference in AIC (∆ j) and Akaike weights (w j). The corrected AIC was used
for both groups. P1 and P2 represent the parameters of the fitted distribution,
stated to two significant figures.

Wall Dist. AIC ∆ j w j P1 P2

FCW

invweibull -17.00 0.00 0.94 shape = 5.5 scale = 0.74
lnorm -11.00 6.00 0.05 meanlog = -0.2 sdlog = 0.23
gamma -8.00 9.00 0.01 shape = 17 rate = 20
norm 0.00 17.00 0.00 mean = 0.84 sd = 0.23
weibull 3.00 20.00 0.00 shape = 3.5 scale = 0.93

5.2.10 Floor Area Factor

The floor area in UK-HSM is set by the floor area factor. For a semi-detached

model, a floor area factor of 1 is equivalent to a ground floor area of 51.6 m2. By
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Figure 5.15: Goodness of fit plots of floor area factor, estimated using the semi-detached
homes with filled cavity wall in 4M. An inverse Weibull distribution was
assumed.

varying this model input, the floor area varies linearly. The 4M dataset included

estimates of ground floor area for 87 semi-detached dwellings obtained using the OS

MasterMap analysis with Google Imagery. These estimates should be considered

approximate, given the challenges in accurately inferring a home’s floor area using

such a technique; it can be difficult to know where the partition of different homes in

the same building is, features such as balconies and overhangs may be included in

the building footprint, and differences in floor area for different levels could be hard

to differentiate.

The floor area was transformed to floor area factor and five candidate distribu-

tions were fitted for the group with a filled cavity wall constructions (see Appendix

Section H.6 for other construction types). The AIC and its derivatives for each fitted
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distribution is summarised in Table 5.11. The best fitting distribution is the inverse

Weibull. The goodness of fit plots (Figure 5.15) suggest that the inverse Weibull

provides a good fit for all but one data point.

5.2.11 Window Opening Threshold

The model input that controls window operation is the indoor temperature at which

the windows would fully open within a specified availability schedule (Section 3.5.3).

Any value specified for this model input will be fixed for the entire simulation

period, therefore the distribution of long-term average window-opening threshold

temperatures is of interest. As discussed in Section 3.5, window opening behaviour

depends on several factors (including, smoking behaviour, noise levels, and security

concerns) and varies between and within households (Fabi et al., 2012; Mavrogianni

et al., 2016). Thus, the UK-HSM approach to modelling window opening is a

simplification of a complex phenomenon.

No large-scale datasets of window opening behaviours in UK homes could

be identified. To inform the probability distribution of this model input, the data

collected by Rijal et al. (2007) were used. Rijal et al. (2007) conducted field surveys

in 15 UK office buildings between March 1996 - Sep 1997. The findings from

their longitudinal survey were used, where the indoor temperature was recorded

close to 219 subjects. The subjects were asked to record their thermal satisfaction,

clothing and activity level along with their use of building controls four times a day,

with a total of 35,764 thermal satisfaction records collected. A strong correlation

between the window state and the thermal environment was noted. From the data

collected, logistic regression models were developed to predict the probability of

the window being open given indoor and outdoor temperatures as predictors. A

scatterplot of proportion of windows open at different globe temperatures is shown

in Figure 5.16(a). The “uncorrected logit” is the result of a logistic regression model

fitted to the data described by the following equation (Rijal et al., 2007):

logit(p) = 0.354Tg −8.53, (5.9)
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(a) (b)

(c) (d)

Figure 5.16: Sub-figure (a) shows the proportion of windows stated to be open at different
globe temperatures by Rijal et al. (2007). In sub-figure (b), this plot was
overlaid in R with best fit lines. Sub-figures (c) and (d) show the probability
density functions for corrected and uncorrected logit fits, respectively.

where p is the proportion of windows being open and Tg was the globe temperature.

According to Rijal et al. (2007), Tg could be considered equivalent to the operative

temperature for all practical purposes. While this is an unbiased estimator of window

opening, it does not describe the cloud of observations well and it does not take into

account the “deadband” of temperatures; the range of temperatures over which the

proportion of open windows remains unchanged (Rijal et al., 2007). For this reason,

Rijal et al. (2007) fitted a “corrected logit” model, with 83 % of the data being within

±2K of the regression line.

For both models in Figure 5.16(a), as Tg increases, the proportion of windows

opened or the probability of any single window opening increases until a saturation

level. An analogy may be made with the cumulative distribution function of the

window opening threshold input of UK-HSM when treated probabilistically. Based
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on Figure 5.16(a), probability distributions of temperatures at which windows would

be opened were derived. Since the full dataset was not made available, Figure 5a

of Rijal et al. (2007) was overlaid on an axis within the ggplot2 library of the

programming language R. Subsequently, a set of logistic distributions were fitted and

the goodness of fit was visually assessed. A good fit was identified with the logistic

distribution parameters of: mean = 23.6 and scale = 1.85 for the corrected logit and

mean = 24 and scale = 2.8 for the uncorrected logit, visualised in Figure 5.16(b).

The probability density functions for the corrected and uncorrected logit can be seen

in Figures 5.16(c)–5.16(d). The corrected logit has 95 % of its probability density

within the interval 16.8–30.4 ◦C, narrower than the equivalent probability interval

of the uncorrected logit which lies between 13.7–34.3 ◦C. Since the aim with this

model input was to identify a distribution of average window opening thresholds, the

corrected logit was deemed more appropriate. This model better describes the cloud

of data points and appears less extreme than the uncorrected logit which suggests

that on a regular basis 2.5 % of occupants will open their windows when the indoor

temperature is less than 13.7 ◦C.

5.2.12 Electrical Gains Factor

As discussed in Section 3.5, a single model input is used to define the intensity of

electrical equipment usage, including showering and cooking. To inform this model

input, the 2010-2011 Household Electricity Survey (HES) was used. Electrical power

demand and energy consumption were monitored in 251 English Households, 26

for a calendar year and the rest for periods of one month through different intervals

of the year (Intertek, 2012). This dataset was selected since it contained detailed

information on electricity usage, collected at around the same time as the 4M survey.

Thus, it was assumed to be representative of typical usage at that time. Of interest

is a subset of 55 semi-detached dwellings without electric heating whose annual

consumption is visualised in Figure 66 of Intertek (2012) and is reproduced in

Figure 5.17(a).

While the data collected were analysed and presented in useful ways within

the HES report, the raw data were not available. To infer this dataset, bar chart was
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(a)

(b) (c)

Figure 5.17: Figure (a) shows the annual consumption of electricity in semi-detached dwell-
ings without electric heating, reproduced from Intertek (2012) and overlaid
in R. Figures (b) and (c) show the distributions of annual consumption and
electrical gains factor derived from (b).

Table 5.12: Distributions fitted to the inferred electrical gains factor. They are ranked in
decreasing order of goodness of fit based on the Akaike Information Criterion
(AIC), difference in AIC (∆ j) and Akaike weights (w j).

Distributions AIC ∆ j w j P1 P2
gamma -15.76 0.00 0.44 shape = 4.3 rate = 9.5
weibull -15.71 0.05 0.43 shape = 2.3 scale = 0.52
lnorm -12.68 3.08 0.09 meanlog = -0.9 sdlog = 0.51
norm -10.80 4.96 0.04 mean = 0.46 sd = 0.21

overlaid on a graph in R with the axes being aligned (Figure 5.17(a)). Then, one

by one the values of annual consumption were measured using a digital “ruler”;

a horizontal line specified within the R package ggplot2. Each blue vertical line

indicates the inferred annual consumption per dwelling. An upper estimate of this
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Figure 5.18: Goodness of fit plots when assuming a gamma distribution as the statistical
model of electrical gains factor derived from the Household Electricity Survey.

process’ uncertainty is ±100 kWh/year, although it’s likely less than that. Following

this process, the mean of the inferred annual consumption was 3846 kWh/year which

only differs by 0.03 % from the stated mean annual consumption of 3847 kWh/year.

Figure 5.17(b) visualises the inferred distribution of annual consumption. This was

converted to electrical gains factor, shown in Figure 5.17(c), by dividing it with

the number of kWh associated with an electrical gains factor of 1 (8431 kWh). No

extreme values appear and a long right tail is observed. Four candidate distributions

were fitted to the inferred dataset, with a summary of the AIC-based measures of

goodness of fit provided in Table 5.12. The best-fitting distribution was gamma with

shape = 4.3 and rate = 9.5. The goodness of fit plots in Figure 5.18 suggest that

gamma provides a good description of the dataset. From the Q-Q plot, only one

extreme point appears while the P-P plot indicates very small difference between



208 Chapter 5. Stochastic Characterisation

empirical and theoretical probabilities.

It is notable that the average consumption of 3.847 kWh/year is less than half

of the value assumed by an electrical gains factor of one. Some of this difference

may be explained by the fact that not all homes in the dataset had an electric oven,

stove and shower as assumed in UK-HSM. However, part of this discrepancy is likely

due to the assumed power and schedules of cooking appliances being at the upper

end of the spectrum. For example, the average annual consumption of oven use for

multiple pensioner households was reported by Intertek (2012) to be 211 kWh, while

UK-HSM assumed a value of 2.792 kWh. Following from this result, future work

aims to review the schedules of UK-HSM, although this was not within the scope of

this thesis.

5.2.13 UK-HSM Distributions

A summary of the distributions identified for the cluster of filled cavity wall dwellings

with double glazing is shown in Table 5.13. Ten data sources were used, with eight

of the twelve model inputs informed by empirical data. Two model inputs could not

be described adequately with a unimodal distribution, the Roof and Floor U-value.

For these model inputs, a distribution was not fitted. As described in Section 3.2, if

either of these model inputs are found to be influential during the sensitivity analysis,

they would be used as classifiers and the group would be further segmented.

5.3 Discussion
This chapter described in detail the process of identifying probability distributions for

UK-HSM model inputs based on the best available evidence. Contrary to published

literature reviewed in Section 2.4.5.1, the distributions were not constrained to

be uniform (Cerezo et al., 2017; Sokol et al., 2017; Wang et al., 2020), since

the use of detailed distributions is thought to offer important benefits to building

stock modelling. Well-informed probability distributions used as priors in Bayesian

calibration can improve posterior parameter identifiability (Smith, 2013), and are

likely to result in better predictions. Even if the model input distributions are not

used for calibration purposes, they can inform the model sensitivity and forward
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Table 5.13: Model input distributions identified for the group of semi-detached dwellings with
filled cavity wall in the 4M dataset. The empirical distributions of Roof and Floor
U-value were multimodal, and theoretical distributions were not identified for
either model input.

Parameter Distribution Resources
Wall U-value gamma(shape = 9.5, rate = 13) [1]
Window U-value norm(mean = 2.5, sd = 0.3) [2]
Roof U-value Multimodal [2, 3]
Floor U-value Multimodal [2, 4]
Permeability weibull(shape = 2.6, scale = 13) [3, 5, 6, 7]
Solar Absorptivity beta(shape1 = 4, shape2 = 2.5) [8]
Glazing Fraction gamma(shape = 14, rate = 53) [4]
Orientation unif(min = 0, max = 330) [4]
Floor-to-Ceiling Height lnorm(meanlog = 0.93, sdlog = 0.034) [4]
Floor Area Factor invweibull(shape = 5.5, scale = 0.74) [3]
Window Opening Threshold logis(location = 23.6, scale = 1.85) [9]
Electrical Gains Factor gamma(shape = 4.3, rate = 9.5) [10]

Resources: [1] Hulme and Doran (2014); [2] BRE (2019); [3] 4M; [4] EHS; [5] Stephen
(2000); [6] BRE (2004); [7] Pan (2010); [8] CIBSE (2015); [9] Rijal et al. (2007); [10] Intertek
(2012)

uncertainty analysis (Tian and Choudhary, 2012; Tian et al., 2018). When empirical

data are available, then more trust can be placed in the model input distributions,

and their use instead of theoretical values can result in substantial differences in

the model output (Petrou et al., 2021a). In the absence of empirical observations, a

distribution that captures the assumed uncertainty around a theory-based value is

better than the use of a single, fixed, value. A thorough description of the approach

taken was provided for increased transparency and to enable other researchers to

define appropriate distributions for their modelling work

To characterise the model inputs using the available empirical data, the distribu-

tion fitting method introduced in Section 5.1.1 was applied several times. Based on

this experience, the method is flexible, quick and easy to implement. The greatest

difficulty is finding alternatives to the commonly used distributions when they do not

provide an adequate description of the empirical data. This could be addressed by

reviewing the properties of different distributions and selecting candidates according

to their characteristics, similarly to how the Fréchet was identified for this application.

Alternatively, one can leverage the great number of distributions already provided
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by R and fit several (or all) of them in a “brute-force” approach (see Petrou (2021)

for a demonstration). In either case, a careful evaluation of the goodness-of-fit must

follow

It is also important to reflect on what stochastic characterisation achieves. It

enables modellers to identify theoretical distributions, in the form of parametric

probability models, which appropriately describe the empirical distributions available

or the modeller’s best understanding if empirical data is not available (see Wild (2006)

for a broader discussion around distributions). Even if empirical data are available, it

is not possible to claim that a mathematical definition of the data generating process

has been identified but merely a satisfactory description of the best indication we have

of the data generating process, the empirical distribution. Taking the example of wall

U-values, the data generating process is the mechanism behind the distribution of

true filled cavity wall U-values within the English housing stock. This process would

have multiple components, such as the effect of using different insulation materials,

the change of building practices and regulations over time and workmanship. Since

it is infeasible to accurately model this mathematically, a snapshot of this process’

output is used by taking measurements for a sample of filled cavity walls. This results

in the empirical distribution of true wall U-values augmented with measurement

and sampling errors shown in Figure 5.3. By following the procedure described in

Section 5.1.1, a theoretical distribution was identified that adequately describes the

dataset. The appropriateness of the assumed distribution will vary depending on the

application and the potential impact that a misrepresentation of the data might have

on the model output.

5.3.1 Limitations

Despite the efforts to identify detailed, empirically-informed distributions for each

UK-HSM model input, data availability, quality and limitations with the approach

followed have influenced the results.

For inputs relating to the archetype’s spatial characteristics, such as the Floor-

to-Ceiling Height or the Glazing Fraction, distributions could be informed by the

EHS. Due to the relatively large and representative sample of homes within the EHS,
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well-informed distributions were developed. Floor Area Factor was directly informed

by the 4M dataset, and could potentially be used as an explanatory variable in the

calibration if the influence of its measurement error is not large; this is explored

in Chapter 6. For model inputs where there was a lack of large-scale empirical

datasets (such as, Solar Absorptivity, Floor, Window and Roof U-value) probability

distributions had to be assumed based on information from RdSAP and CIBSE Guide

A (BRE, 2019; CIBSE, 2015). In some cases, observations were used to inform the

model input distributions, yet the confidence in them is limited.

A noteworthy example is the probability distribution selected for the Window

Opening Threshold. This distribution was chosen by identifying a best fit line on a

graph of empirical data through visual inspection (Section 5.2.11). Such an approach

is not without uncertainties, and the quality of the fit partly depends on the figure

resolution. Nevertheless, the major limitation in this case is expected to be the

data used. Measurements were made in offices, which are thought to offer less

adaptive potential to the indoor thermal environment than homes (Oseland, 1995;

Pathan et al., 2017; Rupp et al., 2015). Thus, a distribution based on measurements

from homes could differ. Another limitation, likely of lesser importance, is that

measurements were based on globe (or operative) temperature, while the model

operates the windows based on air temperature.

A further limitation of this work is that model input correlations were not

quantified. Several building characteristics, and thus UK-HSM model inputs, are

expected to be correlated. One such example is likely the wall U-value and fabric air

permeability. As a result of building regulations prescribing both parameters (HMG,

2016), and due to the fact that wall insulation tends to reduce infiltration (Hong et al.,

2004), homes with a lower wall U-value are more likely to have a lower than average

fabric air permeability. Since such relationships were not explored, the distributions

identified will be used in later chapters while assuming no correlation. This is a

common limitation amongst building stock modelling studies (Booth et al., 2012;

Sokol et al., 2017). The main challenge in addressing this limitation is the lack of

large-scale unified datasets of building parameters from which correlations could
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be established. A workaround, at least for the subset of calibration variables, is the

quantification of correlations in the posterior distributions (Kristensen et al., 2018).

5.4 Summary
A novel approach for identifying appropriate probability distributions for building

energy model inputs was introduced. The method, which can be adapted depending

on the format and availability of empirical data, was used to characterise the UK-

HSM continuous model inputs (Section 5.2.13). Empirical data from ten sources

were used to inform eight out of the twelve model inputs, although the sample sizes

and associated assumptions varied. With the exception of Floor and Roof U-value,

all other model inputs were adequately described by unimodal distributions. The

only model input where sufficient data were available to be informed by the 4M

survey was Floor Area Factor.

The outcomes of this chapter inform the later chapters. The following chapter

will identify which model inputs have the greatest influence on the model output,

given their distribution. Subsequently, in Chapter 7, the uncertain and influential

model inputs will be calibrated with their prior based on the distributions identified

in this chapter.



Chapter 6

Sensitivity Analysis

One of the main outputs of Chapter 4 was the selection of a potentially homogeneous

group of 26 semi-detached dwellings, monitored during the 4M survey. Determining

whether they are indeed homogeneous, according to the definition introduced in Sec-

tion 3.2, firstly required a probability distribution to be defined for each continuous

model input of the UK Housing Stock Model (UK-HSM); this was accomplished in

Chapter 5. To complete the last part of work needed to address the second research

objective (Section 3.1), and inform the fifth and final step of the Bayesian calibration

framework (Section 3.2), two key tasks must be completed: (1) determine whether

any model inputs described by multimodal distributions have a large influence on

the model output, thus, requiring further segmentation to identify a homogeneous

group of dwellings, and (2) select the UK-HSM inputs with the greatest influence on

summer indoor temperature of the homogeneous group. As depicted in Figure 6.1,

this chapter describes the use of sensitivity analysis to achieve these tasks.

The Morris method (also known as the method of elementary effects) was

used to carry out the sensitivity analysis. The theory underpinning this approach is

summarised in Section 6.1.1, while details about its implementation are provided

in Section 6.1.2. A way of determining whether the Floor Area Factor, the only

UK-HSM input that could be informed by the 4M survey, should be used as an

explanatory variable in the calibration is described within the same section. The

results from this work are presented in Section 6.2 and discussed in Section 6.3. A

summary is offered in Section 6.4.
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Figure 6.1: Chapter 6 flowchart. This is an abridged version of Figure 1.3, focusing on
Chapter 6 and its outputs. RO2 is a shortened version of Research Objective 2.
UK-HSM stands for UK Housing Stock Model.

6.1 Methods
The Morris method is a screening technique whose use in selecting building energy

model inputs to be calibrated using Bayesian inference was first suggested by Heo

et al. (2012), and since then it has been the most frequently used method for such

purposes according to the review by Hou et al. (2021). For this chapter’s brevity, and

since the theory of the Morris method has been discussed at length within the built

environment literature (e.g. Kristensen and Petersen, 2016; Petersen et al., 2019), the

following section will provide a short summary of this technique, while an in-depth

description is provided in Section G of the appendices.

6.1.1 The Morris Method

The Morris method is a global sensitivity analysis technique1 with a low computa-

tional cost compared to other global approaches (Tian, 2013). This technique relies

on repeated one-at-a-time sampling from a p-level grid of the input space, where the

baseline set of inputs changes with each repetition (Morris, 1991; Tian, 2013; Saltelli

et al., 2008). For each trajectory, an elementary effect is estimated for each model

input, which is the difference in the model output due to a change in the model input,

1Tian (2013) defines global sensitivity analysis as “interested in the influences of uncertain inputs
over the whole input space”
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divided by the change in model input (Equation G.1 in the appendices). By repeating

this process for r trajectories, a distribution of r elementary effects is generated per

model input (Kristensen and Petersen, 2016). The original method suggested using

the mean (µ) of the elementary effects to assess the overall influence of the factor on

the output. As an improvement, Campolongo et al. (2007) proposed the use of the

mean (µ∗) of the absolute elementary effects, defined as:

µ
∗
i =

1
r

r

∑
t=1

|EEit | , (6.1)

where, |EEit | is the absolute value of the elementary effect for model input i in

trajectory t. Contrary to µ , µ∗ is not sensitive to sign of the elementary effects and

provides a reliable ranking of parameters (Campolongo et al., 2007). The standard

deviation of elementary effects (σ ) was proposed as a quantity indicative of the

model inputs’ non-linear effect, or interaction with other inputs (Morris, 1991).

Building on this idea, Garcia Sanchez et al. (2014) used the σ/µ∗ ratio to identify

non-linear and interaction effect based on the following categories: (i) Almost

linear effects are identified in the region of σ/µ∗ < 0.1, (ii) monotonic effects at

0.1<σ/µ∗ < 0.5, (iii) almost monotonic at 0.5<σ/µ∗ < 1 and (iv) non-monotonic

or with interactions at σ/µ∗ > 1.

A limitation of the Morris method is that it does not take into consideration the

distributional form of the model inputs, only their upper and lower bound (Kristensen

and Petersen, 2016). The impact of this limitation was assessed by Kristensen and

Petersen (2016) where the more computationally expensive Sobol’s method was used

as a reference point for two ISO 13790 models. While the ranking of model inputs

was near-identical when uniform distributions were assumed for the Sobol’s method,

the ranking differed when non-uniform distributions were used. However, the Morris

method was able to identify the group of six most influential model inputs at roughly

2 % of the computational cost. Furthermore, in an investigation of high-fidelity

models (including EnergyPlus-based models), it was demonstrated that the ranking

of variables according to the Sobol’s technique had not converged after 260,000

simulations (Petersen et al., 2019), but groups of high and low influence on the model
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output could be identified, and they were largely in agreement with those offered by

the Morris method. Given these findings, the use of the Morris method is considered

reasonable if the purpose is to identify groups of influential model inputs, since it

has been shown to achieve similar results as the Sobol’s method, at a fraction of the

computation cost, and the exact ranking of model inputs using the Sobol’s method

may not converge even after hundreds of thousands of simulations.

Two important considerations when implementing the Morris method are the

number of levels (p) and trajectories (r) used. This was investigated by Petersen

et al. (2019), who concluded that for high fidelity models, and when the aim is to

identify a group of important input factors, p values equal or greater than 4 and r

values ranging from 100 to 1000 may be needed (Petersen et al., 2019). However,

a higher number of levels, closer to 12, was thought to be beneficial when cooling

energy was the output of interest.

6.1.2 Implementation

Following the recommendation of Petersen et al. (2019), the experiment design was

based on a trajectory number (r) of 500, but the simulations were run in batches

of r = 25. With every batch, the absolute mean of the elementary effects was

qualitatively assessed for convergence. The batches are smaller than Petersen et al.

(2019) recommended in the effort of reducing computational cost. With no prior

information regarding the appropriate level number (p) for this study, p was set to

12 since this was the value that Petersen et al. (2019) determined to be best when

modelling cooling energy. While it cannot be assumed that the same value of p

would be best for both models, p = 12 was the upper limit assessed by Petersen

et al. (2019) and it results in a relatively large sampling resolution, albeit at a higher

computational cost for the same value of r. The Python package SALib (Herman and

Usher, 2017; Iwanaga et al., 2022) was used to sample the model inputs according

to the Morris method and analyse the results following the simulations.

All continuous model inputs were sampled, with their upper and lower bounds

summarised in Table 6.1. For each input, the upper and lower bound was defined to be

the 0.5th and 99.5th percentile of the corresponding distributions listed in Table 5.13,
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Table 6.1: Lower and upper bounds used for the two stages of sensitivity analysis.

Parameter Parameter Name Stage 1 Range Stage 2 Range
P1 Wall U-value 0.26-1.48 0.26-1.48
P2 Window U-value 1.70-3.27 1.70-3.27
P3 Roof U-value 0.10-2.53 0.10-2.53
P4 Floor U-value 0.22-0.90 0.22-0.90
P5 Permeability 1.7-24.7 1.7-24.7
P6 Solar Absorptivity 0.16-0.96 0.16-0.96
P7 Glazing Fraction 0.12-0.48 0.12-0.48
P8 Orientation 0.0-330.0 0.0-330.0
P9 Floor-to-Ceiling Height 2.32-2.77 2.32-2.77
P10 Floor Area Factor 0.55-1.94 0.9-1.1
P11 Window Opening Threshold 18.0-32.0 18.0-32.0
P12 Electrical Gains Factor 0.08-1.21 0.08-1.21

with only two exceptions: the window opening threshold and the orientation. For

the window opening threshold, the 0.5th and 99.5th percentiles corresponded to

13.8 ◦C and 33.4 ◦C, respectively. Since this model input represents the temperature

at which occupants will always open their windows if the schedule allows and the

indoor temperature is greater than the outdoor, both values were considered extreme,

especially the lower bound. Instead, the window opening threshold was sampled

within the range of 18–32 ◦C. For the orientation, the lower and upper bounds of the

specified uniform distribution (0–330◦) were used to capture the impact of dwellings

with a front façade facing south. For the rest of the continuous model inputs, a

99 % interval was used since it was considered to provide a reasonable coverage

of the input space. It was not possible to use the maximum range because some

input distributions were unbound in one or both directions (i.e. extending with a

non-zero probability to infinity). For the two multimodal distributions (Roof and

Floor U-value), the 99 % interval was estimated using their empirical distribution.

As explained in Section 3.2, the cluster of dwellings might have been further

segmented and a second stage of the sensitivity analysis would have been carried

out if any of the multimodal model inputs were found to have a significant influence

on the model output. As will be discussed in Section 6.2, this was not considered

necessary for this application of the framework. However, a second stage of the

sensitivity analysis was implemented in order to determine whether the Floor Area
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Factor (FAF), the only continuous model input for which data from the 4M survey

were available, should be calibrated or used as an explanatory variable. While in

the first stage of the sensitivity analysis FAF was allowed to vary within the 99 %

interval (0.55–1.94) of its distribution, in the second stage it was constrained to the

interval of 0.9–1.1. The Stage 2 interval captures the idea that the FAF of a typical

house (FAF = 1) has a measurement error of 10 %. If FAF had a relatively small

influence in Stage 1, it would be kept fixed in the calibration. If FAF had a relatively

large influence in Stage 1, but a small influence in Stage 2, it could be used as an

explanatory variable since its effect on the model output is substantial but the impact

of its measurement error is not. Finally, if the influence of FAF in Stage 2 is large,

relative to other model inputs, the uncertainty surrounding this model input would

be considered substantial, and the model input would have been calibrated.

Table 6.2: Model inputs kept fixed during the sensitivity analysis

Parameter Value
Dwelling Type Semi-detached
Wall Type Filled cavity
Occupancy Type Pensioners
Terrain Urban

Simulations were carried out using the 2009 weather data obtained for Leicester;

further information on the weather file was provided in Section 3.4.4. The model

output of interest was the summer-averaged Mean of the Daytime Living Room

Temperature (MDLRT). The choice of MDLRT, largely based on the significance of

this model output for heat-mortality estimation, was explained in Section 3.3. Since

the Morris method requires a single output per simulation, the summer-averaged

MDLRT was considered a reasonable choice. The summer period in this case was

assumed to be July–August 2009, since this was the period with sufficient monitored

temperature data for the calibration stage. The values for the categorical model

inputs of UK-HSM are summarised in Table 6.2. The dwelling type, wall type and

terrain were based on the classifiers used to select the cluster of 4M dwellings

(Section 4.2.6.2). The occupancy type was informed by the most frequent household

composition in the same cluster.
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6.2 Results

The convergence plots for the two stages of sensitivity analysis are displayed Fig-

ure 6.2. The absolute mean (µ∗) was quantified after 325, 650, 975 and 1300

simulations, corresponding to 25, 50, 75 and 100 trajectories. The relative change in

µ∗ depending on trajectory number, visualised by the trend lines, allows the evalu-

ation of convergence for each parameter. Note that for both stages, a “broken axis”

approach to plotting was used where a discontinuity exists on the y-axis. This en-

abled the visualisation of convergence for all parameters on the same plot, despite the

large range of µ∗ values. Fluctuations of µ∗ were observed in both stages, although

distinct groups could be identified. Given the level of fluctuations, the within-group

order may change if more simulations were carried out, but the between-group

order is expected to remain unchanged. Since convergence cannot be guaranteed

at a specific trajectory number, and a specific µ∗ value cannot guarantee whether a

parameter should be used for calibration or kept fixed, running further simulations

was deemed unnecessary.

In Stage 1, the Window Opening Threshold is in the first group with µ∗ = 7.20

after 1300 simulations, making it the most influential parameter. Glazing Fraction,

Orientation, Electrical Gains Factor, Floor Area Factor, Permeability, Wall U-value,

Window U-value and Solar Absorptivity are part of the second group. Although

this group includes eight model inputs, and their exact order varies depending on

the trajectory number, a few useful distinctions can still be made. The Glazing

Fraction and Orientation, with a µ∗ of 1.40 and 1.21 after 1300 simulations, are

always more influential than Permeability, Wall U-value, Window U-value and

Solar Absorptivity with a µ∗ < 0.9 regardless of the trajectory number. The Floor

Area Factor, Permeability, Solar Absorptivity, Window and Wall U-value follow

in the same group, ranging in values between µ∗ = 0.8 and µ∗ = 0.5. The final

group includes the Floor U-value, Floor-to-Ceiling Height and Roof U-value, which

have largely converged with a µ∗ ranging between 0.08–0.11. Given their relative

importance, all parameters in the last group can be considered non-influential and

will be kept fixed in the calibration stage. This group includes both multimodal
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(a) Stage 1

(b) Stage 2

Figure 6.2: Convergence plots for the two stages of sensitivity analysis for the living room.
Disambiguation: WallU = Wall U-value; WinU = Window U-value; RoofU
= Roof U-value; FloorU = Floor U-value; Perm. = Permeability; SA = Solar
Absorptivity; GF = Glazing Fraction; Orien. = Orientation; FtCH = Floor-to-
Ceiling Height; FAF = Floor Area Factor; WOT = Window Opening Threshold;
EGF = Electrical Gains Factor.
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parameters (Roof and Floor U-value), hence further classification is not necessary.

The second stage of sensitivity analysis aims to quantify the relative importance

of measurement uncertainty in the Floor Area Factor model input. Similarly to

Stage 1, fluctuations are observed for most parameters. As expected, the Floor Area

Factor µ∗ has reduced (from µ∗ = 0.91 to µ∗ = 0.16), with an influence comparable

to that of the third group of model inputs. While it was only the sampling range of

the Floor Area Factor that differed between the two stages, the relative importance

of some other parameters has also changed in Stage 2. As an example, although

the relative importance of Glazing Fraction remains high compared to other model

inputs, its µ∗ had decreased from µ∗ = 1.40 to µ∗ = 0.97.

While the sampling process could have contributed to the differences in µ∗

between the two stages for parameters other than the Floor Area Factor, another po-

tentially important factor is parameter interaction. Figure 6.3 visualises the standard

deviation (σ ) and µ∗ of each parameter for the two stages of sensitivity analysis for

a trajectory number of 100. With the exception of the Window Opening Threshold

which falls within the area of “monotonic” behaviour, all other parameters are either

“almost monotonic” or “non-linear and non-monotonic”. The latter category is also

an indication of potential parameter interaction (Garcia Sanchez et al., 2014). It is

therefore likely that an interaction exists between the Floor Area Factor and one

or more other parameters. By reducing the range of Floor Area Factor in Stage 2

compared to Stage 1, it is likely that the relative importance of other parameters also

changes since their influence might depend on the floor area. Further investigation

of these interactions were out of the scope of this research.

A summary of the relative importance of each model input and its categorisation

in regard to the calibration stage is provided in Table 6.3. Floor U-value, Roof

U-value and Floor-to-Ceiling Height are all classified as non-influential and will

be kept fixed at the calibration stage. Assuming an uncertainty of ±10% around

the Floor Area Factor value resulted in a comparatively small µ∗ = 0.16, almost

2.5 times smaller than the next largest µ∗ and 43.5 times smaller than the most

influential parameter. Therefore, variation within this bound is considered to be
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Figure 6.3: Scatter plots of the standard deviation (σ ) of elementary effects for each para-
meter against their absolute mean (µ∗) for the two stages of sensitivity analysis
for the living room. The metrics are based on 100 trajectories, equivalent to
1300 simulations.

relatively unimportant and this parameter may be used as an explanatory variable. In

both stages of the sensitivity analysis, Window Opening Threshold was the dominant

model input and will be calibrated, together with the Orientation, Glazing Fraction
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Table 6.3: Summary of the rank and absolute mean of elementary effects (µ∗) for each
parameter, ordered in ascending order of Stage 2 rank. Type corresponds to how
each parameter will be treated at the calibration stage, with variables that will be
calibrated in bold font.

Parameter Name Stage 1
Rank (µ∗)

Stage 2
Rank (µ∗)

Type

Window Opening Threshold 1 (7.20) 1 (6.96) Calib.
Orientation 3 (1.21) 2 (1.10) Calib.
Glazing Fraction 2 (1.40) 3 (0.97) Calib.
Electrical Gains Factor 4 (1.14) 4 (0.86) Calib.
Permeability 6 (0.74) 5 (0.71) Calib./Fixed
Wall U-value 7 (0.68) 6 (0.63) Calib./Fixed
Window U-value 8 (0.57) 7 (0.58) Calib./Fixed
Solar Absorptivity 9 (0.46) 8 (0.37) Fixed
Floor Area Factor 5 (0.91) 9 (0.16) Explan
Roof U-value 10 (0.11) 10 (0.08) Fixed
Floor U-value 11 (0.09) 11 (0.08) Fixed
Floor-to-Ceiling Height 12 (0.08) 12 (0.08) Fixed

and Electrical Gains Factor. Whether other parameters will be calibrated or kept

fixed will depend on whether their addition results in over-parametrisation, in line

with the advice of Chong and Menberg (2018).

6.3 Discussion
The application of the Morris method in Step 4 of the Bayesian calibration framework

(Section 3.2) led to several important outcomes. It has demonstrated that the relative

influence of the two UK-HSM model inputs described by multimodal distributions

(Roof U-value and Floor U-value) on the summer-averaged MDLRT is small, when

compared to that of other model inputs. Thus, further segmenting the group of 26

semi-detached dwellings identified in Section 4.2.6.2 is not necessary, and this group

can be considered homogeneous according to the definition provided in Section 3.2.

A further outcome was the selection of calibration variables to be used in the

fifth and final step of the calibration framework. For the assumed upper and lower

bounds, informed by the findings of Chapter 5, the Window Opening Threshold was

the dominant model input. While the importance of window opening in determining

summer indoor temperature has been previously suggested (Mavrogianni et al., 2014;
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Taylor et al., 2018b), this is the first time its impact was demonstrated through

a simultaneous assessment of all other UK-HSM continuous model inputs (when

varying through extreme values). Following from this result, it is expected that

window opening behaviour will have a critical effect on summer indoor temperature,

at least in semi-detached homes. In cases where window opening is restricted, the

influence of other building or occupant characteristics is likely to be secondary.

Furthermore, this finding also highlights the need to carefully specify this model

input in UK-HSM, and window opening specification more generally in models of

naturally ventilated homes. Given the scarce empirical data available to inform this

modelling input, model calibration of this variable would be especially beneficial.

Also in agreement with previous studies, building orientation was shown to be

important (Taylor et al., 2014). Glazing Fraction, which impacts both the level of

solar gains and the ventilative potential of the modelled homes, was also shown to

be influential. Of comparable importance was the Electrical Gains Factor, followed

by Permeability, Wall and Window U-value. Roof U-value was shown to have little

influence on the model output, likely due to the analysis focusing on the living room

temperature, and in agreement with the findings in Chapter 4.

There are several examples of the use of the Morris method for selecting the

inputs of building energy models to be calibrated using Bayesian inference, as

highlighted in the review of Hou et al. (2021). A novelty introduced in this work

is the two-stage application of the Morris method to determine whether a model

input, in this case Floor Area Factor, should be treated as an explanatory, fixed or

calibration variable. It was determined that the Floor Area Factor should be treated

as an explanatory variable, since the uncertainty surrounding individual values due

to measurement error is small compared to its influence when considering the overall

variation within the homogeneous group of dwellings.

Finally, the two-stage sensitivity analysis suggested an interaction between

Floor Area Factor and other model inputs (for example, Glazing Fraction), and a non-

linear relationship between most model inputs and the summer-averaged MDLRT.

Due to such interactions, it is expected that the ranking obtained for most model
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inputs will partly depend on the upper and lower bounds chosen for other variables.

This would be the case for any model where interaction between inputs exists, and

thus, it is important to carefully consider the bounds of all variables assessed in the

sensitivity analysis.

6.3.1 Limitations

Although this chapter describes the successful implementation of Step 4 of the

Bayesian calibration framework (Section 3.2), and the last component of work

needed to address the second research objective (Section 3.1), limitations exist.

One such limitation relates to the use of the Morris method in determining

whether a model input should be treated as explanatory in the calibration. In Bayesian

calibration studies of building energy models, where the Morris method is frequently

used, it is common practice to use weather variables as explanatory variables in the

calibration process (Chong and Menberg, 2018; Kristensen et al., 2018; Menberg

et al., 2019). Weather variables were also used as explanatory variables in this study,

as will be discussed in Section 7.1.4. Since the Morris method requires a sampling

procedure before the simulations are run, it is not possible to determine the influence

of a time-dependent input, such as the hourly dry bulb temperature, contrary to a

static model input (e.g. floor area). Thus, while the procedure introduced in this

chapter informed the use of FAF as an explanatory variable, it did not enable the

simultaneous investigation of weather-based variables as explanatory variables.

Through the two-stage sensitivity analysis, and the consideration of σ/µ∗,

this study revealed the interaction and non-linear behaviour of some UK-HSM

model inputs. While informative, this investigation is not complete, since only

the interaction of FAF with other model inputs was investigated. Studying these

behaviours was not required for the current research, but extending this analysis to

study and quantify the most important model interactions and non-linearities could

be instructive to future modelling applications of UK-HSM.
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6.4 Summary
Through the two-stage application of the Morris method, it was determined that the

influence of the Floor and Roof U-value on the model output of interest was small

compared to that of other UK-HSM model inputs. Thus, further segmenting the

group of 26 semi-detached dwellings selected in Section 4.2.6.2 is not necessary. In

addition, this work revealed that the Floor Area Factor, the only model input that

could be informed by the 4M survey, could be used as an explanatory variable in

the calibration stage. The Window Opening Threshold was shown to be the most

dominant model input and was selected to be calibrated together with the Orientation,

Glazing Fraction and Electrical Gains Factor. The analysis also suggested that model

input interactions exist, and it is likely that several model inputs exhibit a non-linear

relationship with the model output.

Informed by the outcomes of Chapters 4–6, the following chapter will describe

the Bayesian calibration of UK-HSM for the homogeneous group of 4M dwellings.
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Bayesian Calibration

For each input of the UK Housing stock Model (UK-HSM), a probability distribution

was identified in Chapter 5, and its influence on the model output was ranked in

Chapter 6. In addition, Chapter 6 confirmed that the group of 26 semi-detached

dwellings, selected from within the 4M dataset in Section 4.2.6.2, can be considered

homogeneous, according to the definition offered in Section 3.2. In response to the

third research objective, and building on these outcomes, this chapter presents the im-

provement in UK-HSM’s predictive ability following the application of the Bayesian

calibration framework, and the reduction in model input uncertainty (Figure 7.1).

Figure 7.1: Chapter 7 flowchart. This is an abridged version of Figure 1.3, focusing on
Chapter 7 and its outputs. RO3 is a shortened version of Research Objective 3.
UK-HSM stands for UK Housing Stock Model.

In Section 7.1, the methods behind the calibration procedure are described

in detail. Section 7.1.1 discusses the monitored and simulated data used for the
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calibration, including the choice of temporal resolution and the method for data

standardisation. Informed by the review of archetype-based Bayesian calibration

studies (Section 2.4), which all focused on building energy performance, a statistical

formulation was selected. This is detailed in Section 7.1.2, while the priors are

summarised in Section 7.1.3. To quantify the impact that the choice of weather and

calibration variables has on the calibration, a parametric experiment was performed,

whose details are summarised in Section 7.1.4. A novel method for implementing

Bayesian calibration is introduced in Section 7.1.6.

The results from this chapter are presented in Section 7.2. Following an initial

exploratory analysis (Section 7.2.1) of the monitored and simulated data carried

out prior to the calibration, the results of the parametric calibration experiment are

presented (Section 7.2.2). A single instance of the parametric analysis is explored in

more detail in Section 7.2.3, while the performance of the alternative implementation

is quantified in Section 7.2.4. The results and the limitations of this chapter are

discussed in Section 7.3. The chapter concludes with a summary in Section 7.4.

7.1 Methods
A detailed description of the methods used in this chapter is offered in the following

sections, with a summary provided in Figure 7.2.

7.1.1 Data

7.1.1.1 Monitored Data

The monitored data consisted of hourly measurements of indoor temperature, col-

lected as part of the 4M survey in Leicester, for the 26 semi-detached dwellings

assigned to the same homogeneous cluster (Section 4.2.6.2). More information on

the 4M survey is provided in Section 3.4.3. Following the data cleaning process

described in Section 3.4.3.2, only the subset of homes whose indoor temperature

was thought to be free-floating during the summer period was used, since UK-HSM

assumes no heating or cooling between May and September. For each monitored

dwelling, the Floor Area Factor was estimated using floor area data included in the

4M dataset.
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Figure 7.2: Workflow diagram for the Bayesian calibration.

7.1.1.2 Simulated Data

To generate the simulation data, 50 simulations of the semi-detached archetype in

UK-HSM were run (i.e. S = 50) using inputs sampled with the commonly used

Latin Hypercube Sampling (LHS) procedure (Tian et al., 2018), and following the

suggestion of having at least ten samples per variable (Chong and Menberg, 2018).

Only the selected calibration (Window Opening Threshold, Orientation, Glazing

Fraction and Electrical Gains Factor) and explanatory variables (Floor Area Factor)

were sampled. The samples were drawn from uniform distributions whose lower

and upper bounds were the same as those used in the screening procedure, with
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a summary offered in Table 7.1. Sampling uniformly ensured that the surrogate

model was able to represent the computer model well across the entire range of input

values. All other continuous model inputs, shown in Section 6.2 to have a smaller

influence on the living room temperatures, were kept fixed at the median value of

their respective distributions. Categorical model inputs were specified as the most

frequent value in the cluster. Simulations were run using the 2009 Leicester weather

file, developed from data made available by the Met Office Integrated Data Archive

System (MIDAS), as described in Section 3.4.4.

Table 7.1: Lower and upper bounds of model inputs sampled to train the surrogate model,
and values of model inputs kept fixed.

Model input Type Sampling range or Value
Window Opening Threshold Calib. 18.0-32.0
Orientation Calib. 0.0-330.0
Glazing Fraction Calib. 0.12-0.48
Electrical Gains Factor Calib. 0.08-1.21
Permeability Fixed 11.29
Wall U-value Fixed 0.71
Window U-value Fixed 2.5
Solar Absorptivity Fixed 0.63
Floor Area Factor Explan 0.55-1.94
Roof U-value Fixed 0.51
Floor U-value Fixed 0.70
Floor-to-Ceiling Height Fixed 2.53
Dwelling Type Fixed Semi-detached
Wall Type Fixed Filled cavity
Occupancy Type Fixed Pensioners
Terrain Fixed Urban

7.1.1.3 Data Resolution for UK-HSM Calibration

The calibration of UK-HSM was based on observations of the mean of the daytime

living room temperature (MDLRT). The monitored and simulated hourly data points

between 08:00-22:00 were averaged for each day of the month in July and August.

As explained in Section 3.3, the MDLRT was chosen due to the use of a compar-

able metric in previous applications of UK-HSM where changes in heat-related

mortality, associated with installation of energy efficiency measures or overheating

interventions, were quantified (Taylor et al., 2015; Taylor et al., 2018b).
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7.1.1.4 Data Transformation

As it is common practice in Bayesian calibration procedures, the calibration and

explanatory variables were standardised to be within the range [0, 1], while the

observations (monitored and simulated MDLRT) were transformed to have a mean

of 0 and variance of 1 (Higdon et al., 2004; Chong et al., 2017; Menberg et al., 2019).

To normalise a vector v′ to be in the range [0, 1], the following equation was used

(Chong and Menberg, 2018):

v =
v′−min(v′)

max(v′)−min(v′)
. (7.1)

To standardise a vector v′ to have a mean of 0 and variance of 1, the following

equation was used (Chong and Menberg, 2018):

v =
v′−mean(v′)

sd(v′)
. (7.2)

7.1.2 Statistical Framework

The calibration approach employed within this work relies on the framework intro-

duced by Kennedy and O’Hagan (2001). The adaptation of this framework for the

problem of calibrating archetype-based building stock models of indoor temperature

was inspired by the work of Booth et al. (2012) and Kristensen et al. (2017a). A

“complete pooling” approach was selected which assumes that all observations of

daily indoor temperature, come from a single distribution, the archetype distribution.

Thus, all dwellings have an equal contribution to the estimation of the calibration

parameters and model hyperparameters. The use of this method is supported by

the idea that a homogeneous cluster has been identified and influential calibration

variables are modelled explicitly. Contrary to Booth et al. (2012), the monitored

data within the homogeneous cluster were not averaged across dwellings prior to

the calibration, in order to quantify the level of unexplained variance that remained

following the calibration. In addition, this implementation does not require the

choice of an arbitrary cut-off point, as per the Cerezo et al. (2017) approach. It

includes a model discrepancy term which could potentially reveal shortcomings of
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UK-HSM. It also allows for the straightforward specification of non-normal priors

for the calibration parameters, and the findings from Chapter 5 suggest that many

such parameters are best described by non-normal distributions.

Given the large computational cost of UK-HSM (EnergyPlus) simulations, a

Gaussian process (GP) is trained as a surrogate model on EnergyPlus simulations

(y(S)c ) and monitored data (y(M)
c ), as suggested by Higdon et al. (2004). Each mon-

itored or simulated home is associated with D values of MDLRT. A subset of these

days was used for the calibration (Dc = 10 days), while the remaining was used for

validation (Dv = 52 days). If within the cluster there are M monitored dwellings, the

total number of monitored data points used for the calibration are N(M)
c = M×Dc.

Similarly, if S computer simulations were run to train the emulator, the total number

of simulated data points used for calibration were N(S)
c = S×Dc. With regard to the

statistical formulation, what differentiates each day is a set of weather variables. Day

1 (d = 1), is associated with weather variables w1, day 2 (d = 2) is associated with

weather variables w2 and so on. What differentiates dwellings on the same day is

the set of explanatory variables, which in this case only includes the floor area as

other explanatory variables (e.g. window to wall ratio) were not accurately known.

Thus, monitored dwelling m = 1 is associated with explanatory variable x(M)
m=1, while

simulated dwelling s = 1 is associated with explanatory variable x(S)s=1. Note that

x(M)
m=1 and x(S)s=1 are not equivalent; x(M)

m=1 came from measurements associated with the

monitored dwelling m = 1 while x(S)s=1 was sampled probabilistically, as explained in

Section 7.1.1.2.

For the N(M)
c monitored data points used for the model calibration, the following

statistical relationship was established:

y(M)
md = y(x(M)

m ,wd) = η(x(M)
m ,wd,θθθ)+δ (x(M)

m ,wd)+ ε
(M)
md , (7.3)

where:

• y(M)
md is the MDLRT for monitored home m on day d,

• η(·) is the surrogate model represented by a Gaussian process,

• δ (·) is the discrepancy term (or model bias) represented by a Gaussian process,
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• wd are the weather-related variables corresponding to day d,

• x(M)
m are all other explanatory variables associated with monitored dwelling m,

• θθθ are the calibration parameters, and

• ε
(M)
md is the associated error term.

The error term, ε
(M)
md , allows for different observations, y(x(M)

m ,wd), to exist for the

same conditions and captures the measurement error and any residual variation

(Kennedy and O’Hagan, 2001); this might include stochastic occupant behaviour and

violations of the cluster homogeneity assumption (Kristensen et al., 2017a). This

is assumed to be normally distributed, with a mean of zero and a variance of 1/λε ,

as per Chong and Menberg (2018). For the N(S)
c model data points, the following

statistical relationship was defined:

y(S)sd = y(x(S)s ,wd, ts) = η(x(S)s ,wd, ts)+ ε
(S)
sd , (7.4)

where:

• y(S)sd is the MDLRT for simulated home s on day d,

• x(S)s are explanatory variables associated with simulated dwelling s,

• ts are sampled values of the calibration parameters used in the UK-HSM

simulations and

• ε
(S)
sd is a simulation error (or noise) term.

The simulation error term ε
(S)
sd has been added for three reasons: (i) It ensures the

numerical stability of the covariance function (Higdon et al., 2004), (ii) it allows for

different values of y(x(S)s ,wd, ts) for the same combination of [x(S)s ,wd, ts], which in

theory could occur due to the aggregation process, (iii) it allowed the same set of

UK-HSM simulations to be used in the parametric analysis discussed in Section 7.1.4,

reducing the computational cost. The noise term is also assumed to be normally

distributed, with a mean of zero and a variance of 1/λsim For both relationships

defined in Equations 7.3–7.4, the measurement error of x(M)
m and wd was assumed to

be negligible and was ignored.

As per Higdon et al. (2004), a single combined vector of monitored and simula-
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tion data (of length N(M)
c +N(S)

c ) was constructed z = [y(M)
c ,y(S)c ]1. By making the

commonly used assumption that the error terms are independently and identically

distributed (iid) – they come from the same distribution and are mutually independ-

ent (Smith, 2013) – the resulting likelihood function was defined as (Higdon et al.,

2004):

L(z|θθθ ,µµµ,ξξξ ) ∝ |Kz|−
1
2 exp

{
−1

2
(z−µµµ)T K−1

z (z−µµµ)

}
, (7.5)

where Kz is the combined covariance matrix, µµµ is the mean function defined as

a vector of zeros, and ξξξ represents the hyperparameters of the surrogate model,

model bias and error terms (please refer to Chapter E.1 of the appendices for further

information). |Kz| and K−1
z represent the determinant and inverse of the combined

covariance matrix, respectively.

The posteriors were computed using the Markov Chain Monte Carlo (MCMC)

approach, introduced in Section 2.3.8, which is most frequently used in Bayesian

calibration studies (Hou et al., 2021). A short summary of the MCMC theory is

provided in Section D.3. The No-U-Turn Sampler (NUTS) algorithm, an extension

of Hamiltonian Monte Carlo, was used due to its superior performance compared to

other commonly used MCMC algorithms (Chong et al., 2017).

7.1.3 The Choice of Priors

In Chapter 5, a probability distribution was identified for each model input based

on the best available evidence. These may be used as the priors of the calibration

parameters. However, since the calibration parameters were standardised to be in the

interval [0, 1], the prior distributions had to be reparametrised to be on the same scale.

This is trivial for a normal or uniform distribution, where a linear transformation can

be analytically performed, but this is not the case for many other distributions. To

transform such distributions, the following steps were taken:

1. A large number of samples is drawn from the probability distribution of each

model input. In this case, a sample size of 100,000 was considered adequate.

1The combined vector z is a subset of the combined vector of all observations, [y(M),y(S)], which
has been normalised to have a mean of 0 and variance of 1 (Section 7.1.1.4).
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2. The min-max transformation (equation 7.1) is applied to the sampled data,

using the same minimum and maximum values as those used to standardise the

model input data. This may result in some transformed priors extending below

zero and above one, but places them on the same scale as the standardised

model data.

3. In case the distribution is zero-bound, data points below zero are removed.

This enables distributions to be fitted which do not have support for a value

less or equal to zero.

4. The same probability distribution (e.g. Weibull(shape, scale)) as the one

used to generate the data is fitted to the standardised data, and a new set of

distribution parameters are identified (Weibull(shapestd, scalestd)).

While Steps 3–4 of the prior transformation process may introduce some bias, this

is believed to be small. The standardised distributions for the four calibration

parameters are listed in Table 7.2.

Table 7.2: Prior distributions used in the Bayesian calibration.

Parameter Distribution
Glazing Fraction gamma(shape = 3.43, rate = 8.58)
Orientation unif(min = 0, max = 1)
Window Opening Threshold logis(location = 0.4, scale = 0.13)
Electrical Gains Factor gamma(shape = 2.35, rate = 7.18)

The choice of hyperparameter priors used within the Bayesian calibration is

also important for the calibration process. The hyperparameter priors were defined

based on the suggestions of Chong and Menberg (2018) and Menberg et al. (2019).

For the parameters that define the two error terms, the following priors were used:

• λε ∼ Gamma(shape = 10, rate = 0.03): This prior represents the belief that

the influence of measurement errors (and the overall variance not explained

by calibrated model and model bias) will be approximately 0.3 %. This is

because the observations were standardised to have a variance of 1, and with

an expectation value for λε of approximately 333, the variance of εmd (σ2
md) is

≈ 0.003 (since the variance of εmd is equal to 1/λε ).
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• λsim ∼ Gamma(shape = 10, rate = 0.001): With an expectation value for

λsim of approximately 10,000, contribution of εsd to the simulation variance is

expected to be small, roughly 0.01 %.

Other hyperparameter priors are summarised in Section E.2 of the appendices.

7.1.4 The Choice of Variables: Parametric Calibration

The calibration process assumes that the error terms, εmd , are independently and

identically distributed (iid); they come from the same distribution and are mutually

independent (Smith, 2013). Intuitively, the daily mean indoor temperatures in a

Figure 7.3: AutoCorrelation Function (ACF) plot of the daily-mean living room temperature,
mean-averaged for all semi-detached dwellings of the homogeneous cluster.

free-floating building are not expected to be independent; the indoor temperature

observed on day d (y(M)
m,d ) is more likely to be similar to the value of the previous

day y(M)
m,d−1, than that of the previous week y(M)

m,d−7. This is demonstrated through

the AutoCorrelation Function (ACF) plot in Figure 7.3, where the monitored indoor

temperatures for the homogeneous cluster are autocorrelated for up to a lag of four

days. For the purposes of statistical modelling and calibration, while y(M)
md (and

ε
(M)
md ) are not independent variables, they can be conditionally independent given

the right selection of predictors x(M)
m and wd . The explanatory parameters (x(M)

m ) do

not have an effect on the autocorrelation observed in Figure 7.3 since they do not

vary between days. Therefore, it is the choice of weather variables that is crucial
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to ensure that ε
(M)
md are conditionally independent. To address this, in addition to

the use of daily mean outdoor temperature and global horizontal irradiance, the use

of lag components of the daily mean outdoor temperature was explored, with the

rationale that the indoor temperature will be affected from the ambient conditions of

the previous days as a result of the building’s and surrounding environment’s thermal

mass. For day d, with indoor temperature y(M)
m,d and associated weather variable wd ,

the one-day lag components are the weather observations of the previous day (wd−1),

the two-day lag components are the weather observations of two days before (wd−2),

and so on.

Table 7.3: Summary of weather, explanatory and calibration variable combinations assessed
as part of the parametric calibration analysis.

Experiment Weather Explanatory Calibration
EXP1 OT, GHI FAF WOT, Orien., GF, EGF
EXP2 OT, GHI FAF WOT, Orien., GF
EXP3 OT, GHI FAF WOT, Orien., EGF
EXP4 OT, GHI FAF WOT, GF, EGF
EXP5 OT, GHI FAF WOT, GF
EXP6 OT, GHI FAF WOT, EGF
EXP7 OT, GHI FAF WOT, Orien.
EXP8 OT, GHI FAF WOT
EXP1L1 OT, GHI, OTL1 FAF WOT, Orien., GF, EGF
EXP2L1 OT, GHI, OTL1 FAF WOT, Orien., GF
EXP3L1 OT, GHI, OTL1 FAF WOT, Orien., EGF
EXP4L1 OT, GHI, OTL1 FAF WOT, GF, EGF
EXP5L1 OT, GHI, OTL1 FAF WOT, GF
EXP6L1 OT, GHI, OTL1 FAF WOT, EGF
EXP7L1 OT, GHI, OTL1 FAF WOT, Orien.
EXP8L1 OT, GHI, OTL1 FAF WOT
EXP1L2 OT, GHI, OTL1, OTL2 FAF WOT, Orien., GF, EGF
EXP2L2 OT, GHI, OTL1, OTL2 FAF WOT, Orien., GF
EXP3L2 OT, GHI, OTL1, OTL2 FAF WOT, Orien., EGF
EXP4L2 OT, GHI, OTL1, OTL2 FAF WOT, GF, EGF
EXP5L2 OT, GHI, OTL1, OTL2 FAF WOT, GF
EXP6L2 OT, GHI, OTL1, OTL2 FAF WOT, EGF
EXP7L2 OT, GHI, OTL1, OTL2 FAF WOT, Orien.
EXP8L2 OT, GHI, OTL1, OTL2 FAF WOT

Disambiguation: OT = Outdoor Temperature; GHI = Global Horizontal Irradiance, OTL1
= Outdoor Temperature with Lag of 1 day; OTL2 = Outdoor Temperature with Lag of 2
days; GF = Glazing Fraction; Orien. = Orientation; FAF = Floor Area Factor; WOT =
Window Opening Threshold; EGF = Electrical Gains Factor.
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While the calibration variables were selected using the Morris method, it was

not possible to know whether parameter identifiability issues would arise prior to

the calibration (Chong and Menberg, 2018), nor what their effect would be on

the model’s predictive performance. To determine this and the effect of using one

or two lag components of outdoor temperature, a parametric calibration analysis

was conducted. For the same set of simulated and monitored data described in

Section 7.1.1.2, the calibration process was carried out 24 times for a combination

of weather and calibration parameters, as summarised in Table 7.3. The decision

to only include lag components of the outdoor temperature, and not of the GHI,

was informed by the exploratory analysis presented in Section 7.2.1. Due to its

dominance during the sensitivity analysis, the Window Opening Threshold was

included in all calibration runs. The calibrations were each run for 500 MCMC

iterations.

7.1.5 Training & Validation

While LHS sampling allows an effective exploration of the input space for the cal-

ibration and explanatory variables, the same method could not be applied for the

weather variables. The weather variables are based on the empirical data collected

during July and August 2009 (see Section 3.4.4), and sampling in a way that provides

effective coverage for one of them (e.g. Outdoor Temperature) may not necessarily

result in an equally effective coverage for the other (e.g. Global Horizontal Irradi-

ance). Performing the calibration during any specific period may result in fairly good

predictive performance for an unseen period with similar weather conditions, but a

poor performance if the weather conditions are different. This was apparent in the

initial stages of this calibration work, where the calibration over the second week of

July resulted in excellent predictions for the third week of the same month (due to

their similarity in weather conditions), but relatively poor for other periods with less

similar weather conditions.

To establish the model’s performance, the 62-day period when field data was

available was split into a 10-day (16.1 %) training period and a 52-day (83.9 %)

validation period. The choice of a relatively short training period allowed for a
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manageable computational cost and the undertaking of the calibration experiment

outlined in the previous section. The 10 days of the training period were selected

with the aim to cover as wide a range of Outdoor Temperature as possible. This was

due to Outdoor Temperature being identified as likely the most influential weather

variable in the exploratory analysis summarised in Section 7.2. The coverage of the

other weather variables was not necessarily as good.

Following the calibration, the indoor temperature for the Dv = 52 unseen days

of the validation period were predicted. To incorporate the uncertainty represented

by the posterior distributions, L = 500 posterior samples were drawn and used for

the prediction of the unseen period, resulting in a matrix of outputs:

Y(P)
v =


y(P)1,1 y(P)1,2 · · · y(P)1,Dv

y(P)2,1 y(P)2,2 · · · y(P)2,Dv
...

...
...

...

y(P)L,1 y(P)L,2 · · · y(P)L,Dv

 , (7.6)

where Y(P)
v is an L×Dv matrix of posterior predictions. Each row of the mat-

rix is associated with a posterior sample, each column with a day. Thus, y(P)1,1

is the MDLRT predicted for day d = 1 from sample l = 1. For validation pur-

poses, the predictions were mean-averaged for each day resulting in a vector of

predictions y(P)v = [y(P)1 ,y(P)2 , · · · ,y(P)Dv
]. The averaged predictions were compared

against the daily mean values of the monitored data during the same unseen period

(y(M)
v = [y(M)

1 ,y(M)
2 , · · · ,y(M)

Dv
]) using a set of validation metrics described in Sec-

tion 7.1.5.1. The monitored data were also compared against the daily mean values

of computer simulations used to train the surrogate model, providing a baseline for

the improvement in predictive performance following the calibration.

7.1.5.1 Validation Statistics

To quantify the differences between predictions and monitored data, a combination

of metrics commonly used for the empirical validation of building models were

employed (Ruiz and Bandera, 2017). The normalised mean bias error (NMBE), is



240 Chapter 7. Bayesian Calibration

an indicator of the overall behaviour of the model and is defined as:

NMBE =
1

y(M)
v

· 1
Dv

Dv

∑
d=1

(y(M)
d − y(P)d )×100% (7.7)

where y(M)
v is the mean of y(M)

v . NMBE is an estimate of the normalised mean

of errors. It is subject to cancellation errors, and its sign indicates whether the

model under or over-predicts compared to the monitored data. Together with NMBE,

the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) is also

commonly used as a measure of the errors’ variability within the building modelling

community, and is defined as:

CV(RMSE) =
1

y(M)
v

√√√√√ Dv

∑
d=1

(y(M)
d − y(P)d )2

Dv −1
×100%. (7.8)

For both the NMBE and CV(RMSE), the closer their value to zero, the better. If

NMBE and CV(RMSE) are assumed to be of equal importance, a way of charac-

terising the model’s performance according to both metrics is the Goodness-of-Fit

estimate (Ruiz and Bandera, 2017):

GOF =

√
2

2

√
CV(RMSE)2 +NMBE2. (7.9)

Another commonly used metric that represents agreement in the patterns of the

monitored and simulated data is the coefficient of determination (R2):

R2 =


Dv ·

Dv

∑
d=1

y(M)
d · y(P)d −

Dv

∑
d=1

y(M)
d ·

Dv

∑
d=1

y(P)d√
(Dv ·

Dv

∑
d=1

(y(M)
d )2 − (

Dv

∑
d=1

y(M)
d )2) · (Dv ·

Dv

∑
d=1

(y(P)d )2 − (
Dv

∑
d=1

y(P)d )2)


2

.

(7.10)

R2 ranges between 0 and 1, with a value of 1 suggesting a perfect agreement. While

all aforementioned validation metrics quantify the performance in relative terms, a

metric in the same unit as the model output can enhance the interpretation of results.
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One such metric is the RMSE:

RMSE =

√√√√ 1
Dv

Dv

∑
d=1

(y(M)
d − y(P)d )2. (7.11)

7.1.6 Kronecker Product

A well-known limitation of Gaussian processes is their computational cost which

rapidly increases with the number of data points. This large computational burden

is the result of having to invert large covariance matrices – one of the two key

components of a Gaussian process – potentially thousands of times.2 It is sometimes

possible to take advantage of the data’s regular structure, if there is one, to reduce

the computational cost of using a Gaussian process.

For the calibration application described in this chapter, the matrix of weather

data (Wc = [w1,w2, . . . ,wDc ]) is the same across the simulated and monitored build-

ings, resulting in a regular structure within the input space. Due to this structure,

one could define the covariance matrix as the Kronecker product of two smaller

covariance matrices (see Appendix Section F.1 and Pollock (2013) for an explanation

of the Kronecker product). Doing so may result in a reduction in computational

cost, because it is computationally faster to invert two small matrices than a single

big one. An in-depth explanation of this process can be found in Section F.2 of the

appendices.

A small number of examples of Bayesian calibration that have employed this

alternative formulation exist, but not within the field of building modelling (Bayarri

et al., 2009; Bilionis et al., 2013; Hung et al., 2015; Williams et al., 2006). To

investigate the potential benefits and drawback of this method in the Bayesian

calibration of archetype-based housing stock models of summer indoor temperature,

the Kronecker formulation outlined by Bayarri et al. (2009) was compared against the

“traditional” approach described by Chong and Menberg (2018). The programmatic

specifications of the “Kronecker” method were informed by Flaxman et al. (2015).

2Please see Appendix Section A for more information on covariance matrices. The inversion may
need to take place thousands of times for the Markov Chain Monte Carlo process to converge.
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7.2 Results

7.2.1 Exploratory Analysis

Figure 7.4: Timeseries plot of the daily monitored living room temperatures (LR Temp.)
within the homogeneous group, the outdoor temperature and the global hori-
zontal irradiance (GHI).

A timeseries plot of the MDLRT is presented in Figure 7.4. The outdoor

temperature and global horizontal irradiance (GHI) are plotted in the same figure.

The warmest period was observed during the first week of July, when the highest

indoor temperature (group mean of 28.8 ◦C) was also recorded. That same week was

also associated with high outdoor temperature and GHI levels. While there were
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Figure 7.5: Timeseries plot of the daily-mean living room temperature for the monitored
homes and uncalibrated computer simulations. The central line represents the
mean-average across monitored homes and simulations, while the shaded area
indicates the corresponding 95th percentile interval.

a few other days with high outdoor temperature, for example the 19th or 23rd of

August, they were isolated incidents resulting in local peaks in indoor temperature

that did not reach the levels of the first week of July.

A comparison of monitored (field) data and uncalibrated model simulations

of living room temperatures is shown in Figure 7.5. The mean of the computer

simulation predictions is consistently higher than that of the monitored data, except

for the first week of July, where the monitored indoor temperatures were on average

warmer than predicted. While a discrepancy between monitored and simulated data

is clearly visible, the patterns of daily variation appear similar. At this stage, it is

not possible to determine to what extent the differences between monitored and

simulated data are due to model inadequacy or the incorrect specification of model

inputs.

Figure 7.6 provides a matrix of scatterplots for a selection of weather and

explanatory variables. The top row of plots visualises the relationship of MDLRT
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Figure 7.6: Scatterplots of the mean daytime living room temperature (MDLRT) monitored
in 26 semi-detached dwellings over 62 days, the associated floor area factor
(FAF), daily mean global horizontal irradiance (GHI), daily mean outdoor
temperature (OT) and one and two day lag components (L1-2). The lower left
panel provides the Pearson correlation coefficients. The diagonal offers the axes
labels for each plot. Scatterplots of only weather variables have fewer points
than those that include a dwelling variable (MDLRT and FAF) since weather
variables do not vary between dwellings.

with each weather and explanatory variable. For all plots, there is large variance that

cannot be explained by any single variable. A fairly strong positive relationship is

observed between MDLRT and the daily mean outdoor temperature (OT), with a

Pearson correlation coefficient (r) of 0.6. Stronger correlations (r = 0.91-0.95) have

been reported in studies from other countries, possibly due to differences in dwelling

characteristics and the use of the daily (24-hour) mean indoor temperature instead

of MDLRT (Lee and Lee, 2015; Nguyen et al., 2014). The same level of linear
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Figure 7.7: Scatterplot of the mean daytime living room temperature, averaged across
the dwellings of the homogeneous cluster, against the daily-mean outdoor
temperature. The colour and size of each marker is associated with the outdoor
temperature lag component and global horizontal irradiance (GHI), respectively.

correlation as with OT is observed between MDLRT and the one-day lag component

of the outdoor temperature (OTL1), with a slightly weaker correlation (r = 0.47)

between the MDLRT and the two-day lag component (OTL2). As might be expected,

the outdoor temperature components are themselves correlated, with a level of

r = 0.58 for one-day lag and r = 0.25 for a two-day lag. The association of MDLRT

with global horizontal irradiance (GHI) is lower than any outdoor temperature

component included in Figure 7.6 (r = 0.27), with an even weaker relationship

between the lag component of GHI (GHIL1) and MDLRT (r = 0.15). The scatterplot

of the MDLRT against floor area factor shows no clear trend, with a very weak and

positive correlation coefficient of r = 0.09. This goes against the expectation of a

negative association suggested in Section 4.2. This suggests that the floor area has a

relatively small effect on MDLRT, in comparison to other variables and within this

homogeneous cluster of dwellings. Due to weak correlation between MDLRT and

GHIL1, and to limit the computational cost of carrying out the calibration experiment,

GHIL1 was not considered in the calibration

The moderately strong association between the lag components of the outdoor
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temperature and the MDLRT supports their inclusion in the calibration process.

However, it is not clear whether this is an artefact of the similarly strong correlation

between the weather variables themselves. To explore this further, the mean MDLRT

– averaged across the group of dwellings – was plotted against the daily mean outdoor

temperature in Figure 7.7. In this plot, the colour and size of each marker also varies

depending on the first lag component of the outdoor temperature and the GHI. As

with Figure 7.6, there is a trend of increasing indoor temperature as the outdoor

temperature increases. The two days with the highest indoor temperature (07/01

and 07/02) were associated with the highest recorded outdoor temperatures and

high levels of GHI. The day with the third warmest indoor temperature (07/03) is

associated with the 10th highest outdoor temperature and relatively low levels of GHI

(119 Wh/m2). However, the lag-component of the outdoor temperature associated

with that day is one of the highest recorded, thus potentially providing an explanation

of the high indoor temperature. Further evidence in support of the effect that lag

components might have is provided by examining the conditions on 19th of August.

On this day, the daily mean outdoor temperature (20 ◦C) was higher than on the 3rd

(18 ◦C) and 4th (18.7 ◦C) of July, while the GHI (234 Wh/m2) was comparable to

that on the 4th of July (252 Wh/m2) and higher than on the 3rd of July (119 Wh/m2).

Yet, the mean MDLRT was lower on the 19th of August (24.2 ◦C) than on the 3rd

(25.9 ◦C) or 4th (25.3 ◦C) of July. This is likely associated with weather conditions

on the previous days. The one-day lag component on the 19th of August (16.9 ◦C)

was lower than on either of the other two days (20.4 ◦C on the 3rd and 18.0 ◦C on

the 4th of July). Overall, the five days with the highest recorded indoor temperatures

were the first five days of July.

7.2.2 Parametric Analysis

In the parametric analysis, the daily mean MDLRT (y(M)
v ) was compared against the

uncalibrated and bias-corrected calibrated model (η(x,w, t)+δ (x,w)) predictions,

as described in Section 7.1.5. The results of the parametric analysis are summarised

in Table 7.4.

For the first set of parametric calibration experiments (EXP1–8), the outdoor
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Table 7.4: Summary of out-of-sample validation metrics calculated over a 52-day period
for the parametric calibration experiments. Time refers to the calibration time,
hence a value was not provided for the uncalibrated model. Experiments EXP3,
EXP1L1, EXP3L1, EXP7L1, EXP1L2 and EXP7L2 did not converge. Bold font
indicates the best performing models.

Exp CV(RMSE)
[%]

NMBE
[%]

GOF
[%]

RMSE
[◦C]

R2 Time
[hrs]

Uncalib. 11.51 -11.20 11.36 2.53 0.79 -
EXP1 4.47 -0.73 3.20 0.98 0.43 1.77
EXP2 4.53 -0.75 3.25 1.00 0.41 1.02
EXP3 - - - - - -
EXP4 4.55 -0.68 3.25 1.00 0.41 1.14
EXP5 4.39 -0.69 3.14 0.96 0.43 0.99
EXP6 4.36 -0.75 3.13 0.96 0.44 1.20
EXP7 4.34 -0.77 3.12 0.95 0.44 1.32
EXP8 4.33 -0.76 3.11 0.95 0.45 0.73
EXP1L1 - - - - - -
EXP2L1 2.93 0.22 2.08 0.64 0.73 1.35
EXP3L1 - - - - - -
EXP4L1 2.97 0.20 2.10 0.65 0.73 1.25
EXP5L1 3.17 0.22 2.25 0.70 0.70 1.36
EXP6L1 2.90 0.12 2.05 0.64 0.74 1.29
EXP7L1 - - - - - -
EXP8L1 2.97 0.12 2.10 0.65 0.72 1.20
EXP1L2 - - - - - -
EXP2L2 2.70 -0.08 1.91 0.59 0.77 1.53
EXP3L2 2.65 -0.20 1.88 0.58 0.77 1.95
EXP4L2 2.74 -0.21 1.95 0.60 0.76 2.13
EXP5L2 2.92 -0.20 2.07 0.64 0.74 1.68
EXP6L2 2.67 -0.22 1.89 0.59 0.77 1.67
EXP7L2 - - - - - -
EXP8L2 2.71 -0.19 1.92 0.60 0.77 1.66

Disambiguation: RMSE = Root-mean-square error, CV(RMSE) = coefficient of variation
of RMSE, NMBE = normalised mean bias error, GOF = goodness of fit and R2 = coefficient
of determination.

temperature and GHI were the only weather variables used. Except for EXP3,

all other experiments converged within 500 MCMC iterations. The predictive

performance improved following calibration according to CV(RMSE), NMBE, GOF

and RMSE, but dropped according to R2. Specifically, CV(RMSE) and NMBE

reduced from 11.5 % and -11.2 % for the uncalibrated EnergyPlus model to 4.3–

4.5 % and 0.1–0.2 %, respectively. However, R2 reduced from 0.79 to 0.41–0.45.
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Therefore, while all calibrated models are able to make more accurate predictions

than the uncalibrated model, their ability to represent day-to-day fluctuations of

indoor temperatures is worse.

In the second set of calibration experiments, following the addition of a one-

day lag component of the outdoor temperature, five out of the eight experiments

converged within 500 iterations. Looking at the out-of-sample prediction of ex-

periments that converged (EXP2L1, EXP4L1, EXP5L1, EXP6L1, EXP8L1), the

performance is comparable across all five experiments and better than of the first

set of experiments (EXP1–8). In all cases, the CV(RMSE) and NMBE reduced

from 11.5 % and -11.2 % for the uncalibrated EnergyPlus model to about 3 % and

0.1–0.2 %, respectively. The value of NMBE close to zero following the calibration

suggests that the calibrated models do not, on average, over-predict the daily indoor

temperature contrary to the EnergyPlus model. In terms of degrees Celsius, the

RMSE improved from 2.53 ◦C to 0.64–0.70 ◦C. The calibrated model’s performance

as assessed by R2 is lower (0.70–0.74) than that of the uncalibrated model (0.79),

but higher than for the first set of calibrations (0.41–0.45). By using GOF, where

CV(RMSE) and NMBE are combined, together with R2 to rank the models, the

best performing model is EXP6L1 (GOF = 2.05 %, R2 = 0.74), where the only two

calibration variables were the Window Opening Threshold and the Electrical Gains

Factor.

The addition of a second outdoor temperature lag component (EXP1L2–

EXP8L2) resulted in further improvement in predictive performance across most

metrics. In general, CV(RMSE) is slightly lower for the second set (2.65–2.92 %

compared to 2.79–3.11 %), while the magnitude of NMBE is comparable between

the two sets of parametric experiments. Since the GOF values and RMSE are lower

for this set of experiments, while the R2 is higher (0.74–0.76 compared to 0.70–0.74),

the addition of a second lag component has resulted in the best overall out-of-sample

prediction. The best performing model is EXP3L2, with a marginally lower GOF

(1.88 %) than EXP6L2 (1.89 %). Two experiments did not converge within 500

iterations.
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A common characteristic amongst all experiments that did not converge (EXP3,

EXP1L1, EXP3L1, EXP7L1, EXP1L2, EXP7L2) was the use of Orientation and

Window Opening Threshold (WOT) as calibration parameters. Given that other

calibration experiments that included WOT did converge, including EXP8, EXP8L1

and EXP8L2 where WOT was the only calibration parameter, it is suspected that

the Orientation is responsible for the lack of convergence. This could be due to

Orientation not being adequately described by a unimodal distribution, resulting

in poor MCMC sampling. While it is not unlikely that there are more than one

orientations that are frequently occurring in the group of monitored dwellings,

whether this is the reason for poor convergence is unclear.

From Table 7.4 it may also be observed that the calibration time varied between

experiments, generally increased as more weather variables were added, but did not

always decrease as the number of calibration parameters reduced.

The model EXP3L2 included Window Opening Threshold, Orientation and

Electrical gains factor as calibration parameters, while EXP6L2 did not include

orientation. Given the lack of convergence in other models that included orienta-

tion, and the small difference in predictive performance between the two models,

subsequent analysis will concentrate EXP6L2.

7.2.3 Detailed Analysis

Figure 7.8 presents a visual comparison of the mean MDLRT (averaged across

the cluster’s dwellings), uncalibrated model (averaged across simulations), bias-

corrected calibrated model (η(x,w, t)+δ (x,w)) and calibrated model without bias

correction (η(x, t)) for experiment EXP6L2. The comparison is for the 52 days of

the validation period. For the calibrated model predictions, the central line represents

the mean of the posterior realisations, used to summarise the results since they

are approximately normally distributed. The shaded region captures uncertainty

around the mean estimate, equivalent to ±1.96 standard deviations (or a roughly

95 % interval).

For most days of the validation period, the bias-corrected model performs

best, as it has the smallest discrepancies from the monitored data. For 34 out of
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Figure 7.8: Timeseries plot of the mean daytime living room temperature for the: (i)
Field data, mean-averaged across the cluster’s dwellings, (ii) uncalibrated
(EnergyPlus) model predictions mean-averaged across simulations, (iii) the
bias-corrected calibrated model predictions (η(x,w, t)+δ (x,w)), and (iv) the
calibrated model predictions without model bias (η(x,w, t)). For the calibrated
model predictions, the shaded area represents an uncertainty region of ±1.96σ

around the mean (central line).

the 52 days, the absolute difference between monitored data and calibrated model

predictions is less than 0.5 ◦C, while for 18 days the differences are less than 0.2 ◦C.

The discrepancies between the calibrated model predictions without bias-correction

are overall smaller than the uncalibrated model (RMSE of 0.96 ◦C compared to

2.53 ◦C), but greater than for the bias-corrected model (RMSE = 0.59 ◦C)

A way of visually assessing the model performance is through the use of

individual prediction error plots, similar in nature to the standardised residual plots.

A form of these plots has been previously used for the analysis of Gaussian processes

as emulators by Bastos and O’Hagan (2009). The modification here is that instead

of comparing the emulator predictions to the simulator output, the bias-corrected

model predictions were compared against the monitored data. As the error terms are

expected to be normally distributed, approximately 95 % of individual (standardised)



7.2. Results 251

Figure 7.9: Diagnostic plots used to assess the calibrated model prediction against empirical
data during the validation period. Each point represents a prediction error (or
residual) for a particular validation day.

prediction errors are expected to be within the range of ±2 and 99.7 % with a range

of ±3. In addition, for a well-performing model there should be no clear patterns

and the sample and theoretical points should lie approximately on the diagonal in

the QQ-plot. The scatterplots in Figure 7.9 did not reveal any clear patterns, with

90 % and 98 % of the individual prediction errors with an absolute value less than

2 and 3 respectively. In addition, most points lie close to or on the diagonal line of
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the QQ-plot, suggesting that the normality assumption is reasonable. Only one data

point lies outside the region of ±3 which corresponds to the 3rd of July, when the

mean calibrated prediction deviated by 2.6 ◦C as shown in Figure 7.8. On the three

days following the 3rd of July (4th-6th of July), the absolute discrepancies were

within 0.3 ◦C. According to Bastos and O’Hagan (2009), if a single extreme point

exists it could be ignored, or it might indicate a local problem relating to those input

values and investigated further with the addition of more data points.

Combining the analysis offered in the previous paragraph, and by visually

assessing the performance of the calibrated, bias-corrected, predictions against the

monitored data, it seems that 3rd of July measurement is largely responsible for the

marginally lower R2 of the calibrated model (0.77) compared to the uncalibrated

model (0.79). If R2 were to be recalculated after excluding that point, the R2 would

improve as a result of the calibration from 0.81 to 0.86.3 Thus, the calibrated model

is better able to represent day-to-day fluctuations, compared to the uncalibrated

model, for most days.

7.2.3.1 Model Bias

For EXP6L2, the posterior predictions of the model bias, averaged across posterior

predictions and the dwellings for each day, were plotted against the weather variables

in Figure 7.10 to examine whether any systematic model deficiencies exist. To

examine whether the model bias differed between the training and validation period,

both periods were included in Figure 7.10.

A visual inspection of Figure 7.10 suggests that the behaviour of model bias

is broadly consistent for the training and validation period. Hence, the rest of

this analysis considers all data points together. The mean model bias ranges from

−1.26 ◦C to 1.05 ◦C, suggesting that the simulator may both under- and over-predict

the living room temperatures. However, with a median of −0.5 ◦C and mean of

−0.38 ◦C despite the use of a prior with a mean of zero, the computer model is more

likely to over-predict even after the model inputs have been calibrated.

3The R2 of the uncalibrated model would also improve if this point was excluded in the validation
procedure.
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Figure 7.10: Scatterplots and lineplots of model bias, averaged across the dwellings of the
homogeneous cluster, plotted against the weather variables for the training and
validation period for EXP6L2. Individual points represent the model bias on
different days, the central line represents the smoothed mean model bias, while
the dashed lines represent an uncertainty of one standard deviation around the
mean. r is the Pearson correlation coefficient.

The scatterplot of mean model bias against the global horizontal irradiance

reveals no clear pattern, and the Pearson correlation coefficient is approximately zero.

In addition, a zero-value in model bias is consistently within the uncertainty bound

visualised by the dashed lines. On the contrary, clear patterns of association are

observed between the model bias and all three outdoor temperature components. The

association is strongest for the first lag component of the outdoor temperature, with

an almost linear trend and a correlation coefficient of 0.95, followed by the second

lag component with r = 0.8. An association between the Outdoor Temperature and
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model bias may also be observed, albeit weaker with an r = 0.5. In addition and

similarly to the GHI, a zero-value is consistently within the uncertainty bounds of

this variable. Given that the outdoor temperature variables are themselves correlated

(r = 0.58 in Figure 7.6), the association observed between model bias and outdoor

temperature in Figure 7.10 might be an artefact of the relationship between model

bias and the first lag component of outdoor temperature.

Based on the smoothed central line, the model bias tends to be negative when

the mean outdoor temperature of the previous day is below 17.3 ◦C (0.50 on the

standardised scale), and positive above, although uncertainties exist. The implication

is that even if the model inputs were specified as the best possible values, there would

be an under or over-prediction of indoor temperatures that seems to vary with the

outdoor temperature on consecutive days and could impact UK-HSM’s applications.

Since the lag components were used to capture the effects of thermal mass, the

relationship observed between lag components and model bias could suggest that

the thermal mass modelling in UK-HSM may be limited. However, other possible

explanations might exist and this deserves further investigations.

7.2.3.2 Parameter posteriors

Figure 7.11 compares the prior and posterior distributions of two calibration paramet-

ers, the Window Opening Threshold (WOT) and the Electrical Gains Factor (EGF).

The prior is visualised as a density plot line, with its median indicated by a solid line.

The posterior is represented by a histogram which consists of the MCMC draws for

this parameter, and the dashed line represents the median value.

The spread in the posterior of the WOT is smaller than of its corresponding prior

(Figure 7.11(a)). The posterior median is 21.8 ◦C, with a 90 % credible interval of

20.7–22.9 ◦C. A credible interval contains a specified amount of posterior probability,

in this case the central 90 % probability. Therefore, the WOT value lies within 20.7–

22.9 ◦C, with a probability of 0.9. In the case of EGF, the posterior distribution is

similar to the prior, with a small shift in the median being observed (Figure 7.11(b)).

This might be the result of identifiability problems, and more data could potentially

resolve this. Nevertheless, the potential lack of identifiability for EGF has a relatively
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(a) (b)

Figure 7.11: Density plot lines and histograms for the prior and posterior distributions of the
calibration parameters, respectively. The vertical solid (dashed) line indicates
the median of the prior (posterior) distribution.

small impact on model performance, given its improved out of sample predictive

ability. The posterior median of EGF is 0.46 (3878 kWh/year) with a 90 % credible

interval of 0.19–0.93 (1602–7841 kWh/year).

7.2.3.3 Hyperparameter posteriors

The prior and posterior distributions of the hyperparameters that define the error

terms (see Appendix Sections 7.1.2 and E.1 for further information about these

hyperparameters) are visualised in Figure 7.12. The posterior distributions are the

result of the calibration experiment EXP6L2. Large shifts, in relation to their prior

distribution (defined in Section 7.1.3) are observed for both terms.

The expectation value of the prior distribution of λsim was ≈ 10,000, thus as-

suming that only 0.01 % of the simulation data variance would be associated with εsd .

The expectation values of the posterior distribution for the same parameter is ≈ 57,

resulting in approximately 1.75 % of the simulation data variance represented by εsd .

A contributor to the simulation data variance is the sampling of EnergyPlus model

inputs at the simulation stage that were subsequently not used for calibration(e.g.

Orientation). Comparing to experiment EXP3L2, where the orientation was included

as a calibration parameter, the expectation value of λsim was ≈ 303, thus resulting in
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Figure 7.12: Box plots representing the prior and posterior distributions of the precision
hyperparameters used to define the field and simulation data error terms.

a smaller simulation data variance (0.33 %) that could not be accounted for by the

calibrated model or the model bias.

The expectation value of the prior distribution of λε was ≈ 333, thus assuming

that only 0.3 % of the monitored data variance would not be resolved by the calibrated

model or the model bias. The expectation values of the posterior distribution for the

same parameter is ≈ 5, resulting in approximately 20 % of the variance considered

as unresolved. Factors expected to contribute to this unresolved variance include:

the measurement observation errors, influential parameters not calibrated, the uncer-

tainty of weather and explanatory variables, in addition to occupant variability and

unresolved heterogeneity (Kristensen et al., 2017a).

7.2.4 Kronecker

A comparison of the out-of-sample predictive performance of the Kronecker product

implementation of Bayesian calibration against the uncalibrated model and the

traditional method is presented in Table 7.5. The Kronecker product method is

an adaptation of the implementation proposed by Bayarri et al. (2009), while the

traditional method is based on the commonly used approach described by Chong and

Menberg (2018). The out-of-sample predictive performance following the Kronecker
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calibration improved across all metrics, except for R2. Specifically, while both the

GOF and RMSE improved with pre- and post-calibration values of 11.36 % to 2.43 %

and 2.53 ◦C to 0.74 ◦C, respectively, R2 reduced from 0.79 to 0.64. Comparatively,

the predictive performance of the traditional method is better than of the Kronecker

product implementation, with a smaller GOF and RMSE, and a higher R2.

Where the Kronecker method excels is the computational cost. Both calibration

approaches converged within the same number of MCMC iterations (500). The

traditional method took 1.67 hours, roughly 5.5 times longer than the Kronecker

method that converged within 0.3 hours.

Table 7.5: Comparison of the out-of-sample predictive performance and computational cost
of the traditional and Kronecker product method of calibration. The Kronecker
product method is an adaptation of the implementation proposed by Bayarri
et al. (2009), while the traditional method is summarised by Chong and Menberg
(2018).

Method CV(RMSE)
[%]

NMBE
[%]

GOF
[%]

RMSE
[◦C]

R2 Cost
[hours]

Uncalib. 11.51 -11.20 11.36 2.53 0.79 -
Traditional 2.67 -0.22 1.89 0.59 0.77 1.67
Bayarri 3.38 -0.61 2.43 0.74 0.64 0.30

7.3 Discussion
For the preferred method of Bayesian calibration, a parametric experiment was

run and the out-of-sample predictions of the archetype-mean daytime living room

temperature were compared against those measured within the homogeneous cluster

of dwellings for the summer period. The inclusion of at least one lag component

of outdoor temperature led to substantial improvements in predictive performance

compared to a calibration with no lag components; the addition of a second lag com-

ponent further improved out-of-sample predictions. Some parametric experiments

did not converge, all of which included orientation as a calibration parameter. A

possible reason for the lack of convergence in these models could be multi-modality

in that parameter. For all calibrations that converged, there was a reduction in RMSE

of the out-of-sample prediction, compared to pre-calibration, from 2.53 ◦C to 0.58–

0.70 ◦C. The detailed investigation of one of the best performing models revealed
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parameter identifiability problems for EGF. The improvement in out-of-sample pre-

diction despite the lack of identifiability for a parameter is not surprising, and it has

been noted in the past that predictive performance can be improved even if parameter

identifiability problems exist (Arendt et al., 2012).

7.3.1 Comparison with Other Studies

Since this is the first example of Bayesian calibration on an archetype-based model

of summer indoor temperature, it is not possible to compare its post-calibration

predictive accuracy against similar work. However, useful insights can be generated

by revisiting the outcomes of other calibration studies.

From the review of studies on Bayesian calibration of housing stock models

of energy performance, presented in Section 2.4, three papers used CV(RMSE)

and NMBE to quantify their model’s performance and bias in the validation period

(Hedegaard et al., 2019; Kristensen et al., 2017b; Kristensen et al., 2018). All three

studies used the ISO:13790:2008 model, but the temporal resolution of observations

varied from hourly (Hedegaard et al., 2019) to annual (Kristensen et al., 2017b),

while the train/validation split ranged from 75 %/ 25 % (Kristensen et al., 2017b) to

25 %/ 75 % (Kristensen et al., 2018). In all three studies, the CV(RMSE) was higher

(5.6 % to 26.5 %), and the lowest model bias was worse (NMBE = -1.39 %) than

what was achieved in this study (CV(RMSE) = 2.67 %, NMBE = -0.22 %). Since the

variability of errors (CV(RMSE), closer to 0 is better) and the extent to which the

calibrated model under- or over-predicts (NMBE, closer to 0 is better) are smaller

in this work than in the studies reviewed, the relative performance of the calibrated

UK-HSM is better. However, this is does not suggest that the calibration procedure

employed in this work is superior, since a different model, output type and data were

used.

While the use of daily mean indoor temperature has limited the influence of

stochastic occupant behaviour in this thesis (compared to hourly temperature, for

example), the same could be argued for the calibration of annual energy use by

Kristensen et al. (2017b). The classification process or the priors used may be partly

responsible for differences in the post-calibration accuracy, as would the model
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being calibrated. However, the most important factor is expected to be the modelled

quantity, its dynamics and causal influences.

7.3.2 Is the model calibrated?

Calibration was defined in Section 2.3.5 as the process of learning the values of

unknown model inputs using field observations of the model output (Kennedy and

O’Hagan, 2001). While the predictive performance of UK-HSM following the

calibration has substantially improved, it is not perfect, as indicated by the non-zero

CV(RMSE) and NMBE. Given these results, a pertinent question to ask is whether

the model input values have been learned, and if the model can be considered

calibrated.

One could approach this by questioning whether the model’s predictive perform-

ance could be further improved. In most cases, further improvements are possible,

especially for models of real-world complex systems. In the case of UK-HSM,

model refinement along with the use of more training data and lag components could

potentially improve predictive performance further. However, validation errors will

still exist as demonstrated by Calama-González et al. (2021): for the well-defined

conditions of a test cell, Bayesian calibration of an indoor temperature model resulted

in CV(RMSE) = 0.81 %, NMBE = -0.22 % and R2 = 0.98.

A more practical way of evaluating the level of model calibration is by estab-

lishing whether the model’s predictive performance is sufficient for its intended use.

As Ruiz and Bandera (2017) discussed, guidelines that prescribe acceptable levels

of discrepancy have been developed for models of energy use. One such example

is ASHRAE Guideline 14, with thresholds for hourly values of CV(RMSE) = 30 %

and NMBE = ±10 % (ASHRAE, 2002). In the absence of equivalent guidelines

for indoor temperatures, the same thresholds have been adopted (O’ Donovan et al.,

2019). However, as argued by Jain et al. (2020), the use of these acceptance limits

is problematic since CV(RMSE) and NMBE are scale-dependent and, thus, allow

for a high variation in temperatures that can exceed comfort bands. For example,

assuming an average indoor temperature of 20 ◦C, the CV(RMSE) threshold of 30 %

translates to an RMSE of 6 ◦C.
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Developing a set of appropriate thresholds for models of summer indoor temper-

ature is beyond the scope of this work, however it merits some discussion. Defining

such thresholds would largely depend on the magnitude of deviations in the quantity

of interest that would be acceptable, although factors such as measurement error

might also need to be taken into consideration. For example, if the model’s purpose

is to estimate heat-related mortality, what level of under or over-estimation would

be tolerable, and how does that relate to indoor temperatures? It is likely that this

threshold will be different if the model’s purpose was to quantify hourly thermal

comfort.

Since there are no established thresholds on the calibration of indoor temperature

models for heat mortality calculation purposes, a direct answer to this question

is not provided. The reduction in RMSE from roughly 2.5 ◦C, to approximately

0.6 ◦C is promising. Such RMSE is smaller than the 0.94 - 1.73 ◦C RMSE reported

in the empirical validation of the semi-detached UK-HSM archetype (Symonds

et al., 2017).4 Even more encouraging is the fact that NMBE for the calibrated

models ranges between -0.22–0.22 %, similar to the NMBE obtained for the test cell

calibration of Calama-González et al. (2021), suggesting that the calibrated model

does not have a tendency to under- or over-predict. Therefore, if using the model

to estimate heat mortality over several days, for example, differences on individual

days would tend to cancel out. The use of more training data would likely further

improve the calibrated model’s predictive performance, however, the improvement

already observed is significant. Note that for simplicity, throughout this chapter, the

model that had undergone calibration was referred to as calibrated.

7.3.3 Posterior Analysis Interpretation

The main outcome of any Bayesian analysis is the posterior distribution(s). This

remains true even when improved model prediction following Bayesian calibration

is the research aim; it is through the estimation of posterior distributions for the

calibration parameters and model hyperparameters that predictive performance may

4Although Symonds et al. (2017) used the daily maximum instead of the daily mean living room
temperature.
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improve. Thus, it is important to reflect on the generalisability and interpretability of

the posterior distributions.

The posterior distributions resulting from this work are specific to the Bayesian

analysis undertaken, one that combined archetype-level data and appropriate priors.

The posterior distribution of calibration parameters represents the set of plausible

values, and their associated probability, that may be used to model the archetype

mean. By sampling from the posterior distributions, it is possible to estimate a

distribution of archetype mean predictions for each daily value.5 Using the derived

posteriors in predicting the archetype-mean of daily indoor temperature for a group of

dwellings that do not share the same characteristics as those used for the calibration

(e.g. detached homes), may not result in accurate predictions and is not advisable.

However, the use of these posteriors in the analysis of a different group of dwellings

that shares the same characteristics as those of the homogeneous cluster used in the

calibration, would be appropriate. If a calibration was to be performed for such a

group of dwellings, the posteriors obtained in this PhD study could be used as the

priors. The use of different weather conditions, but within the same range as those

used for calibration, should result in predictions with similar deviation from reality

as those presented in Figure 7.8.

In developing a model of a physical system, the aim is to try to represent

reality as closely as possible. Since model inputs have a physical interpretation,

it is worth considering whether the posterior distributions can inform modellers

about the real, yet unknown, values of these quantities. For example, can something

be inferred about real-life window-opening behaviour given the WOT posterior?

With the introduction of this calibration framework, Kennedy and O’Hagan (2001)

warned that it is dangerous to interpret the posteriors of the calibration parameters as

direct estimates of physical values, especially when it is not expected that the model

could provide a perfect fit to the observations even if the physical quantities were

accurately known. UK-HSM tries to represent an inherently stochastic system in

5Note that the spread in predicted daily archetype mean temperatures is different to the (non-
averaged) spread of indoor temperatures expected to be observed within the homogeneous group on
any given day.
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a deterministic fashion with multiple hard-coded assumptions and simplifications,

including those relating to occupancy. With regard to window operation, UK-HSM

assumes that windows can only open during specific times of the day if the indoor

temperature exceeds a threshold and is higher than the outdoor temperature. The

calibration of UK-HSM can inform the choice of the threshold, resulting in better

predictions, but it is not possible to claim that something has been learned about

the real-life window-opening behaviour of occupants; in reality the probability of

window opening – not the certainty offered by the deterministic specification of

UK-HSM – varies during the day, between occupants and is influenced by several

factors such as indoor CO2 concentration, solar radiation, noise levels, occupant

preferences, activities and security concerns (Fabi et al., 2012; Mavrogianni et al.,

2016). The inclusion of a model bias term aims to capture discrepancies between

monitored data and model predictions when the “true” calibration parameter values

are used, however, its effectiveness may depend on the application, and it has been

demonstrated that its inclusion may itself be a reason for parameter identifiability

issues (Arendt et al., 2012). Thus, it is unlikely that this term is able to completely

capture uncertainties arising from limitations in the model’s structure. A final point

regarding the interpretability of posterior distribution regards the use of sensitivity

analysis to select the calibration parameters. Even if it could be assumed that the

model is capable of providing perfect predictions, the uncertainty of parameters

that are not calibrated may be partly lumped onto the posteriors of the calibrated

parameters (Booth et al., 2012). Previous work that investigated this effect has shown

that its magnitude can be small (Heo et al., 2015), yet it is likely to differ between

applications.

7.3.4 Kronecker Product

Implementing a Kronecker product specification for the Bayesian calibration process,

inspired by Bayarri et al. (2009), was shown to have advantages and disadvantages.

The predictive performance improved following the calibration according to most

but not all metrics, and the improvement was smaller compared to the traditional

method. A clear benefit of this alternative implementation is the computational cost,
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as the traditional method took 5.5 times longer under the same settings.

Following from these results, choosing the traditional method over the Kro-

necker product implementation may depend on the application. If minimising com-

putational cost is crucial, and minimising RMSE is more important than maximising

the R2, then the Kronecker product may be preferred. This decision will also depend

on the size of the data. By considering the theoretical estimates of computational cost

(see Chong et al. (2017) and Appendix Section F.2), doubling the data used for the

traditional method would result in an eight-fold increase in computational cost (since

it scales proportionally to the cubic power of the total number of observations used in

the calibration (Nc), ∝ O(N3
c )). In comparison, the increase in computational cost for

the Kronecker product method will depend on which quantity is doubled: the number

of homes (monitored (M) and simulated (S)) or the number of observations per home

(Dc). If the contribution to the computational cost is equal for the two quantities (i.e.

the number of homes is equal to the number of observations), doubling one of the

two would theoretically result in a 4.5 increase in computational cost (since the cost

for the two quantities may be approximated as O((M+S)3 +D3
c), based on Hung

et al. (2015)). Therefore, in most cases, the relative benefit of using the Kronecker

product method increases with an increase in the amount of data.

What remains unknown is how the performance of the Kronecker product

method compares to the traditional approach under different scenarios. The dif-

ferences between the two calibration approaches are likely due to the simplifying

assumptions made for the model bias hyperparameters (see Appendix Section F.2).

It is possible that the impact of these assumptions may be altered if more data were

used or if a different model was being calibrated.

7.3.5 Limitations

This chapter has focused on the calibration of the free-floating, daytime, mean living

room temperature of a single homogeneous cluster of semi-detached dwellings. It

would be of interest to apply this approach to other clusters and for the nighttime

bedroom temperature and quantify the improvement in predictive performance. Since

the aim of this work was to demonstrate the application of the Bayesian calibration
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framework, the use of a single cluster was considered sufficient.

Data were only available for a relatively small number of homes and for only

part of the 2009 summer. The availability of data over a longer time period, and

preferably over several summers, would have allowed the model to be calibrated

and validated against a wide range of weather conditions. Nevertheless, the summer

of 2009 included both a heatwave which was partly captured by the monitoring

campaign and a few cool days with daily-mean ambient temperatures below 15 ◦C.

This calibration focused on free-floating indoor temperatures, since UK-HSM

assumes no heating or air conditioning during the summer period. Air conditioning

was not present in the homes monitored during the 2009 4M survey, and the penet-

ration of such technologies remained low (2 %) in 2017 based on the most recent

Energy Follow Up Survey (BEIS, 2021c). The prevalence of heating during the

summer period is higher, with 18.4 % showing signs of heating between July-August

according to Lomas and Kane (2013). Since the calibration did not consider heating

or cooling, it is not possible to extend the prediction of the calibrated model to

conditioned homes.

While informative, the parametric experiment did not exhaust all possible

combinations of calibration variables and weather variables. As an example, the

inclusion of a third outdoor temperature lag component could have resulted in better

out-of-sample prediction. It would also be interesting to determine the effect of

including the Floor Area Factor on the model’s predictive ability. However, due to

computational cost of the calibration, ranging from one to two hours per calibration

and generally increasing with the number of variables considered, it was determined

that limiting the parametric experiment to the permutations outlined in Table 7.3

would suffice for this work.

An important simplification within this work is the assumption that the values

of explanatory and weather variables are known exactly (i.e. there is no uncertainty

associated with these values or any uncertainty that exists has a negligible influence).

This is a commonly used assumption (Booth et al., 2012; Chong and Menberg, 2018),

yet the extent to which it is appropriate has not been investigated.
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The hyperparameter priors were based on the recommendations of Chong and

Menberg (2018) and Menberg et al. (2019). It is possible that other priors may have

been more appropriate, especially for the variance hyperparameters, yet this was not

investigated. While Chong and Menberg (2018) provides some explanation on the

choice of these hyperparameters, the field of Bayesian calibration modelling would

likely benefit from a more in-depth analysis of these choices and how they would

differ for different applications.

7.4 Summary

In response to the third research objective, this chapter sought to quantify the im-

provement in predictive performance of UK-HSM following the application of the

Bayesian calibration framework, and to reduce model input uncertainty for a homo-

geneous group of dwellings. The homogeneous group consisted of 26 semi-detached

dwellings, monitored during the 4M project. A 10-day period was used for the

calibration, and a 52-day unseen period was used for validation. The calibration was

repeated 24 times for a different combination of weather and calibration parameters.

An improvement in out-of-sample predictive performance was observed for all

calibration experiments. The Root Mean Square Error (RMSE) reduced from 2.53 ◦C

to 0.58–0.70 ◦C depending on the choice of parameters. The inclusion of a second

outdoor temperature lag component resulted in a marginally better performance for

all models compared to those with just one. The detailed analysis of one calibration

experiment revealed a strong positive relationship between model bias and the lag

components of the outdoor temperature, indicating a potential model inadequacy.

The posterior distribution of the Electrical Gains Factor was similar to the prior,

suggesting a lack of identifiability. This was not the case for the Window Opening

Threshold, with a posterior distribution centred around 21.8 ◦C and 90 % credible

interval of 20.7–22.9 ◦C, compared to a prior centred around 23.6 ◦C. An alternative

formulation for the Bayesian calibration, novel within the field of built environment

research, was proposed and tested; it resulted in a reduction of 82 % in computational

cost, albeit with a smaller improvement in predictive performance compared to the
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traditional implementation.

The next chapter provides the overarching discussion of this doctoral study. It

reflects on how the aim and research objectives set out in Section 1.3 have been

achieved, discusses the overall limitations of this work, and suggests future work

that may be motivated by this study.



Chapter 8

Discussion & Conclusions

Over the next two decades, decisive action must be taken to reduce global greenhouse

gas (GHG) emissions and adapt to a changing climate; failure to do so may result

in impacts that are multiple times higher than those already experienced (IPCC,

2022). Effective climate change mitigation and adaptation requires actions in several

sectors, including the housing sector, both globally and within the UK (CCC, 2021b;

HMG, 2021b; IEA, 2021; IPCC, 2022). While policies to future-proof the UK

housing stock and reduce its GHG emissions have been introduced, clear gaps

remain (CCC, 2022). One such gap relates to the adaptation of the existing housing

stock to high temperatures in order to safeguard the occupants’ health and wellbeing

against indoor overheating (CCC, 2022). Clear and strong policies coupled with

rapid and effective implementation are required to address this adaptation gap, in

conjunction with policies that guide the reduction of the housing stock’s carbon

footprint. Building stock models for energy consumption are thought to be a key tool

for “assisting with the efficient and rational implementation of policy” (Kavgic et al.,

2010). Similarly, building stock models that evaluate the impact of climate change,

mitigation and adaptation policies on indoor overheating can also provide crucial

support to policymakers, and one such model is the archetype-based UK Housing

Stock Model (UK-HSM) (Taylor et al., 2015). Yet, as with any modelling approach

that aims to mathematically represent a complex natural system, uncertainties are

unavoidable (Mulligan and Wainwright, 2013; Saltelli et al., 2008). To confidently

use model predictions to guide policymakers, modelling uncertainties should be
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quantified and reduced, something that can be achieved using Bayesian calibration

(Booth et al., 2012).

Literature reviews by Hou et al. (2021) and Oraiopoulos and Howard (2022)

revealed that model calibration based on Bayesian inference has found several uses

within the field of building modelling, including several calibration examples of

archetype-based building stock models of energy use. Fewer examples of Bayesian

calibration for building models of indoor temperature exist, and no published work

could be identified where such methods were applied to archetype-based models of

summer indoor temperature (Hou et al., 2021). Undertaking Bayesian calibration for

archetype-based housing stock models requires that the housing stock is classified

into homogeneous groups of dwellings. This process is often not discussed in great

detail in published examples of Bayesian calibration, with a clear definition of

homogeneity not being provided, and the process described in published work is

often disjointed from the calibration (see Section 2.4.2). Further, a clear and rigorous

process of identifying appropriate prior probability distributions for archetype-based

models could not be identified.

Motivated by these gaps in the published literature, and the importance of

using models whose uncertainties have been quantified and reduced to support

policymaking, this thesis introduced a new Bayesian calibration framework for

archetype-based models of summer indoor temperature. The framework addresses

the classification of dwellings into homogeneous groups, and the characterisation

of model input distributions that may be used for forward uncertainty propagation

or as priors in the calibration. Chapter 3 outlined the proposed framework, while

Chapters 4–7 described and discussed the findings and limitations from its application

to UK-HSM. This chapter evaluates the achievements, contributions, limitations and

implications of this work. Section 8.1 provides a summary of the key conclusions of

this work. Section 8.2 reflects on whether the research aim and objectives set out at

the start of this thesis have been achieved. The novel contributions of this study –

which include methodological advancements in building modelling and Bayesian

calibration, and empirically-based advice regarding indoor overheating to industry
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practitioners and policymakers – are detailed in Section 8.3, grouped into three

categories based on the target actors: academia, industry and policy. In Section 8.4, a

discussion regarding the limitations of this work’s scope is provided (methodological

limitations specific to each set of results can be found in Chapters 4–7). Finally,

Section 8.5 outlines the future work that may follow on from this thesis.

8.1 Conclusions
Several key conclusions arise from this PhD thesis, and these are summarised below:

1. In Chapter 4, several dwelling and household variables were shown to have

a statistically significant association with the summer indoor temperature

monitored in approximately 800 dwellings during the 2011 English Housing

Survey Energy Follow-Up Survey (EHS-EFUS) and standardised against

regional weather conditions. These findings contribute to the existing body of

knowledge, and can inform the design and adaptation of homes to reduce their

propensity for overheating. However, the statistically significant correlation

found to exist between explanatory variables (Section 4.2.4) highlights the

difficulty in drawing causal conclusions from these results.

2. In Section 4.2.1, the indoor overheating risk was quantified based on the

criteria defined in CIBSE’s Technical Memorandum 59 (CIBSE, 2017). For

the relatively cool summer of 2011, the prevalence of indoor overheating

according to Criterion 1 was 2.5 %. However, when considering Criterion 2

almost 26 % of dwellings were found to overheat. These results were not in

good agreement with the occupants’ stated thermal discomfort, reinforcing

concerns regarding the effective quantification of indoor overheating risk using

these criteria.

3. The analysis carried out in Chapter 5 revealed that distributions informed by

empirical data can be derived for several building characteristics of English

homes modelled by UK-HSM, and a method for identifying an appropriate

distribution for a given dataset was introduced. However, detailed empirical



270 Chapter 8. Discussion & Conclusions

data from English homes were not available for all UK-HSM inputs, including

the building’s solar absorptivity and window opening threshold. The lack of

such data can compromise the accuracy of model predictions, as highlighted

in Section 7.2.1.

4. The sensitivity analysis described in Chapter 6 revealed that Window Opening

Threshold was the dominant UK-HSM model input, followed by the Glazing

Fraction, Orientation and Electrical Gains Factor (this ranking depends on

the range of values assessed for each model input, which were informed by

the best available evidence). This result provides further evidence to the

importance of window opening in determining summer indoor temperature.

The sensitivity analysis also suggested that several model inputs may exhibit a

non-linear relationship with summer indoor temperature or an interaction with

other inputs.

5. The application of the Bayesian calibration framework introduced in Sec-

tion 3.2 was demonstrated using UK-HSM, the 2011 EHS-EFUS, and the

2009 4M survey in Leicester. The calibration was successful in reducing

the model’s out of sample root-mean-square error from approximately 2.5 ◦C

to roughly 0.6 ◦C, and in quantifying and reducing model input uncertainty

(Sections 7.2.2-7.2.3).

6. The post-calibration improvement in predictive performance depended on

the choice of calibration and explanatory variables, as was revealed by the

parametric experiment described in Section 7.2.2. Of particular significance to

this specific application was the use of lag components of outdoor temperature.

7. The use of an alternative formulation for Gaussian processes, that takes ad-

vantage of the regular structure in building simulation data and the properties

of the Kronecker product, can substantially reduce computational cost (Sec-

tion 7.2.4). However, a trade-off may exist between computational complexity

and the calibrated model’s predictive accuracy. While further investigation

of this trade-off is required, the alternative formulation may enable the use
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of Bayesian calibration using Gaussian processes in cases where it would

otherwise be computationally prohibitive.

8.2 Research Aim and Objectives
The aim of this work, as set out in Section 1.3, was to quantify and reduce uncertain-

ties of archetype-based housing stock models of indoor temperature. Following from

this aim, three objectives were specified to guide this research.

8.2.1 Research Objective 1

The first research objective was:

1. To develop a Bayesian calibration framework for archetype-based housing

stock models of summer indoor temperature

In response to this objective, a framework was successfully developed and

introduced in Section 3.2. The framework consists of five steps and relies on a clear

and practical definition of homogeneity. It covers the classification of the housing

stock into homogeneous groups of dwellings (Steps 1–2 and 4), the stochastic

characterisation of model inputs (Step 3) for each group, the identification of the

most influential model inputs (Step 4) and the Bayesian calibration of each group

(Step 5).

8.2.2 Research Objective 2

The second research objective was:

2. To quantify the uncertainty of the UK Housing Stock Model inputs with the

greatest influence on summer indoor temperature for a single homogeneous

group of dwellings.

This objective was successfully achieved via classification, stochastic charac-

terisation and sensitivity analysis work as described in Steps 1–4 of the Bayesian

calibration framework (Section 3.2). In Step 1, the association of nine household and

eleven dwelling characteristics with the standardised summer indoor temperature

(SIT), monitored as part of the 2011 EHS-EFUS (Hulme et al., 2013a), was analysed
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using Kruskal Wallis and Pairwise Mann-Whitney U-tests (Section 4.2). Based on

the variables identified to be statistically associated with SIT, Categorical Variable

Classification (Step 2) was used to identify a single group of dwellings suspected to

be homogeneous (Section 4.2.6.2). In Step 3, a probability distribution was identified

for each continuous model input of UK-HSM (Section 5.2). Where empirical data

were available, a novel technique for fitting probability distributions was used to

identify evidence-based distributions. In the absence of empirical data, probability

distributions were defined based on the expected distributional form of that model

input. A two-stage sensitivity analysis (Step 4) revealed that all influential continuous

model inputs of UK-HSM are described by unimodal distributions (Section 6.2).

Thus, the cluster of dwellings identified in Step 2 can be considered homogeneous,

and the uncertainty of the most influential model inputs (identified in Step 4) is

described by the probability distributions defined in Step 3.

8.2.3 Research Objective 3

The third and final research objective was:

3. To quantify the level of improvement in the predictive ability of the UK Hous-

ing Stock Model following application of the Bayesian calibration framework

and reduce model input uncertainty for a homogeneous group of dwellings.

The final research objective was also successfully achieved – it relied on Step 5

of the Bayesian calibration framework, but also drew on Steps 1–4; the group was

identified based on Steps 1, 2 and 4 (as per the 2nd research objective), while the

probability distributions identified in Step 3, and the outcomes of the sensitivity

analysis in Step 4 fed into Step 5, the Bayesian Calibration. Empirical data of summer

indoor temperature, collected during the 4M project (Lomas and Kane, 2013) and

aggregated to a daily resolution, were used in the calibration. Data were split into

a training set, a 10-day period used to calibrate UK-HSM, and a validation set,

consisting of 52 days and used to quantify the out-of-sample predictive performance

post-calibration (Section 7.1.5). The calibration procedure was applied on twenty-

four combinations of calibration and weather variables, in a type of parametric
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experiment (Section 7.1.4). All experiments were assessed using five metrics, and

all showed an improvement compared to the uncalibrated model across all metrics

except R2 (Section 7.2.2). For the best performing experiment, the Root Mean Square

Error (RMSE) for the unseen validation period reduced from approximately 2.5 ◦C

to roughly 0.6 ◦C. The model input uncertainty for Window Opening Threshold,

the most influential model input, was reduced following the calibration from 90 %

credible interval of 10.9 ◦C to 2.2 ◦C (Section 7.2.3.2).

8.3 Novel Contributions
The contributions of this doctoral study are summarised in the following sections,

grouped under three categories: academia, industry and policy.

8.3.1 Academia

With its focus on capturing and reducing uncertainties in housing stock models

of summer indoor temperature, this thesis has made a number of contributions to

built environment research, especially relevant for modellers working in the area of

climate change adaptation.

The first contribution is a modular framework for the classification of a build-

ing stock into homogeneous groups of dwellings, and the Bayesian calibration of

archetype-based building stock models of summer indoor temperature (Section 3.2).

While developed with models of summer indoor temperature in mind, it is expected

that the framework can also be used in the calibration of other types of archetype-

based building stock models, such as those of winter indoor temperature, energy use,

ventilation or indoor air quality. The framework is flexible in that the methods used

at each step can be modified depending on the application, the data available and the

modeller’s preference.

A further contribution to academia is the set of learnings derived from the

first application of Bayesian calibration on archetype-based models of free-floating

summer indoor temperature. One such learning relates to the importance of outdoor

temperature lag components, which have not been previously used or discussed in

published work on archetype-based Bayesian calibration. Calibration with a single
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lag component resulted in substantial improvement in the model’s performance com-

pared to the use of no lag components, the addition of a second lag component further

improved out-of-sample predictive performance (Section 7.2.2). Further, results

suggest a strong correlation between model discrepancy and outdoor temperature

lag components, possibly relating to the modelling of thermal mass (Section 7.2.3),

which merits further investigation. Moreover, the posterior distributions identified

through the calibration of a group of semi-detached dwellings could be used for the

prediction of indoor temperature in a group of dwellings with similar characteristics,

and as priors if further calibration of this UK-HSM archetype were carried out.

As part of Step 1 of the framework, the statistical association of summer indoor

temperatures with dwelling and household characteristics was examined for approx-

imately 800 dwellings monitored during the 2011 EHS-EFUS (Section 4.2.2–4.2.3).

In addition, the indoor overheating risk was quantified for the same sample of homes

according to the two indoor overheating risk criteria defined within TM59 (Sec-

tion 4.2.1). The findings from this analysis, published as a journal paper, contributed

to the pool of knowledge regarding summer overheating in the English housing stock

(Petrou et al., 2019b).

An open-source method, novel within the field of building modelling, for

identifying model input distributions based on empirical data was developed (Sec-

tion 5.1.1). As demonstrated within this work, the method may be used to inform

the prior distributions in archetype-based Bayesian model calibration. It may also

be used to identify distributions of model inputs for individual buildings if repeated

measurements may need to be taken, especially when the measurement method is

associated with large uncertainties. In addition, the approach detailed in this thesis

may be applicable to modelling parameters that vary over the simulation period in a

single building, as might be the case for occupancy-related inputs. Certain model

outputs may also be represented as distributions, and an appropriate distribution may

be identified using the same procedure. A further contribution to knowledge within

the building modelling field is the discussion surrounding the interpretation of fitted

theoretical distributions in Section 5.3.
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An alternative implementation to Bayesian calibration that relies on Gaussian

Processes (GP) for surrogate modelling has been proposed (Section 7.1.6). The GP

is defined using a Kronecker product formulation, taking advantage of the structure

of the data. This approach has the potential to significantly reduce computational

cost, one of the key obstacles to GP-based Bayesian calibration. Compared to the

traditional method, the Kronecker product approach took a fraction of the time

(≈18 %) and resulted in similar, albeit slightly worse, performance (Section 7.2.4).

It is expected that gains in computational efficiency will increase together with

dataset size. Within academia, this method may allow calibration and emulation

to be implemented using Gaussian Processes where previously the processing time

would have been prohibitive, even for research purposes.

8.3.2 Industry

Outcomes from the empirical and modelling work of this thesis provide insights to

industry practitioners, such as architects or building engineers, regarding factors as-

sociated with high summer indoor temperature. In turn, such knowledge encourages

building design and retrofit practices that are less prone to indoor overheating.

The analysis of the 2011 EHS-EFUS of indoor temperature revealed that dwell-

ings which are purpose-built flats, are relatively small, are located in the city, have

communal heating or have little-to-no loft insulation are likely to experience higher

summer indoor temperatures (see Section 4.2 for all such results). Further, outcomes

from the modelling component of this work reinforce the importance of ventilation

in minimising indoor overheating in the UK (Section 6.2). Window operation was

shown to be far more dominant than any other building- or occupancy-related model

input in regulating mean daily indoor temperature. Following from these results,

homes with high levels of loft insulation, designed in a way that allows effective

ventilation while limiting internal gains during the summer – that could in some

cases arise from poorly installed hot water and heating systems – are expected to be

less likely to overheat. It is likely that such factors are especially important in small,

purpose-built flats located in urban areas.

Findings from this thesis may also contribute to the improvement of indoor
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overheating assessment at the building design stage. A relevant methodology is

described by Technical Memorandum 59 (TM59), released by the Chartered Institu-

tion of Building Services Engineers (CIBSE) (CIBSE, 2017). This method, which

relies on the use of Building Performance Simulation (BPS) tools and the overheat-

ing criteria used in Chapter 4, has been adopted by Approved Document O as a

means to demonstrate compliance with Part O of the Building Regulations (HMG,

2021a). A pertinent finding is the relatively large disagreement observed in Sec-

tion 4.2.1 between the empirical assessment of indoor overheating, using the TM59

overheating criteria, and the stated thermal discomfort, especially for the bedroom

overnight criterion. Such disagreement could be evidence of the partial inability of

the overheating criteria to effectively detect thermal discomfort. A second finding

of relevance to the current and future use of TM59 and ADO is the discrepancy

observed between modelled and monitored indoor temperatures pre-calibration, and

the relative increase in agreement post-calibration (Section 7.2.1–7.2.2). While this

work is not the first to demonstrate that such differences exist (e.g. Roberts et al.,

2019; Symonds et al., 2017), it has highlighted the importance of parametric uncer-

tainty, model discrepancy and calibration for models of summer indoor temperatures.

Given these findings, it is important that industry practitioners critically evaluate

the outcomes of their overheating assessment, and where possible, collect empirical

data post-construction that may be used to refine overheating criteria, calibrate their

models and improve future iterations of TM59. While this may be a challenging un-

dertaking for many practitioners, especially for smaller firms with limited experience

in using BPS tools, it should be pursued where possible. To enable and encourage

this, software developers should make it easy for industry practitioners to carry out

uncertainty quantification, model optimisation, and calibration. Thus, it is promising

to see that widely used commercial software, such as DesignBuilder (DesignBuilder,

2021), have incorporated such capabilities. The consideration of such factors within

the wider modelling community could reduce the performance gap (Jain et al., 2020)

and result in better performing buildings.

The methodological outcomes of this thesis, such as the distribution fitting
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method or the alternative Bayesian calibration implementation, may also contribute

to the advancement of existing BPS tools. Software developers can advance their

existing uncertainty quantification method, if present, using the distribution fitting

method, which can also be used to summarise model outputs. The Kronecker

product implementation proposed within this work could also be implemented within

BPS tools to enable Bayesian calibration at a more manageable computational

cost. Finally, the distributions identified in Section 5.2.13, and potentially the

posterior distributions in Section 7.2.3.2, could form the basis for a library of default

distributions in such tools, with the caveat that they are updated as data becomes

available.

8.3.3 Policy

As with industry professionals, findings from the statistical analysis in Chapter 4 can

also inform policymakers on aspects relating to indoor overheating. Households with

children, rented (privately, from local authority or registered social landlords), or

with at least one occupant on means tested or certain disability related benefits were

characteristics associated with a higher indoor temperature in the bedroom and/or

living room (Section 4.2). Thus, policies that prioritise such groups, while also

taking into account their vulnerability, will likely be the most effective in reducing

thermal discomfort in homes and the adverse impacts associated with it. Moreover,

the design of homes which, due to their physical characteristics, are more likely to

overheat (e.g. small, top-floor flats with little loft insulation and limited ventilation

capacity) should be discouraged, and the inclusion of overheating interventions

should be strongly encouraged.

A further contribution of this doctoral work to policymakers is indirect, but may

be substantial. Building stock models, can be used to inform policy (Oraiopoulos and

Howard, 2022). Furthermore, building models are now considered a viable option

to demonstrate compliance with the requirement for overheating assessment in the

Building Regulations. As argued in Section 2.3.1 through Rosen’s diagram, it is not

possible to avoid modelling uncertainties, and efforts should instead concentrate on

their quantification and reduction. Through the application of the Bayesian calibra-



278 Chapter 8. Discussion & Conclusions

tion framework, described in Chapter 7, the out-of-sample predictive performance of

UK-HSM improved, its predictive uncertainty was quantified and possible reasons

for model discrepancy were identified. Thus, more trust may be placed in the future

use of UK-HSM in advising policy. Such practice should become commonplace in

all models, and policymakers should expect and require modelling uncertainties to

be quantified and reduced where possible. To enable this, emphasis must be placed

on the large-scale and frequent collection of data, including detailed household and

dwelling characteristics, thermal comfort surveys and high spatio-temporal resolu-

tion indoor temperatures. A good example is the Energy Follow-Up Survey, which

may be improved if it takes place at regular and frequent intervals, covers a larger

sub-sample of the English Housing Survey, and if the data becomes available to the

wider research community as soon as possible to facilitate timely research. Making

anonymised data Open Access, where possible, would likely accelerate research in

the field.

8.4 Limitations

The previous sections in this chapter discussed how each of the research objectives

in Section 1.3 have been met, and summarised the accomplishments and novel

contributions of this work. Despite these achievements, limitations exist, of course,

as the following paragraphs discuss.

The first limitation relates to the focus on the example of UK-HSM, despite

the fact the aim is not bound to a specific archetype-based model. It would not

have been possible to apply this framework on multiple such models within this

thesis, nor it is thought to be necessary, since the process of quantifying and reducing

uncertainties should apply to similar models. The development of a framework for

the calibration of such models, and the insights generated through its application to

UK-HSM have addressed the aim of this research. Yet, it should be acknowledged

that application of this framework to other models might result in a different set of

influential model inputs being calibrated, and a different level of post-calibration

improvement – these will depend on factors such as the model’s structure, choices



8.4. Limitations 279

about temporal resolution and the empirical data available.

Another limitation relates to the choice of UK-HSM output used in the calibra-

tion: the mean of the daytime living room temperature during the summer period.

The choice of a daily resolution was largely motivated by the recent and planned ap-

plications of UK-HSM in estimating the impact of home energy efficiency measures

or overheating interventions on heat-related mortality (Taylor et al., 2018b; Taylor

et al., 2021). This work did not explore the improvements in hourly performance

that may be associated with a calibration at a daily resolution, nor did it attempt to

calibrate UK-HSM at an hourly resolution. This is a limitation of this work, given the

importance of hourly indoor temperature in indoor overheating assessment. Further,

since the empirical data available for calibration did not include mechanically-cooled

homes, and UK-HSM only models free-floating summer indoor temperatures, the

calibration does not extend to homes with any kind of thermal conditioning in the

summer. This modelling scenario was considered appropriate given the limited

penetration of air-conditioning in the UK currently (BEIS, 2021b), yet there is merit

in future work carrying out a calibration for air-conditioned homes.

The calibration carried out in this thesis was limited to the living room temperat-

ures of a single group of semi-detached dwellings. This decision was mainly driven

by the limited empirical data available for calibration, and the fact that the purpose of

the second and third objective was to demonstrate the framework’s application. It is

important to determine the level of improvement that may be achieved for bedroom

temperatures and for different group of dwellings. However, as with the case of

applying this framework to a single archetype-model, the purpose was to validate

the proposed framework, and it is expected that the calibration on other groups of

dwellings and for other rooms would also result in an improvement in predictive

performance.

A final limitation might be considered the choice of methods used for each step

of the calibration framework. The framework is considered modular since each step

is associated with multiple options, and a modeller could choose one option over

another without impacting the rest of the workflow. In the calibration of UK-HSM,
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while all options were informed by literature, only one of them was implemented in

each step and the differences that might arise from the use of alternative methods in

this case study were not investigated. Implementing several options for each step to

compare and contrast their benefits and shortcomings was out of scope for this work.

8.5 Future Work

In future work being planned by the author, the framework will be used to calib-

rate the UK-HSM using the daily indoor living room and bedroom temperatures

monitored during the 2011 EHS-EFUS (Hulme et al., 2013a), and the more recent

EHS-EFUS 2017 (BEIS, 2021c). Through this approach, there are likely to be

sufficient data for the calibration of several homogenous groups, and over a wide

range of indoor temperature. In addition, any differences in posterior distributions

for the same groups calibrated using the two EHS-EFUS datasets would be explored.

Further future work will aim to calibrate UK-HSM using data of hourly resolution to

enable its use for higher temporal resolution analysis than the daily frequency used

in this work.

Furthermore, the author is planning to investigate the benefits and drawbacks

of different data aggregation methods described in Section 2.4.5.3. In particular,

the author would like to examine the implementation of a hierarchical approach,

as suggested by Kristensen et al. (2018), but with the addition of a model bias

component. Such an approach is thought to result in a calibrated model that is less

biased by extreme values, yet its benefits compared to the method used in this work

have not been quantified.

The statistical analysis presented in Chapter 4 revealed several dwelling and

household characteristics that had a statistically significant association with summer

indoor temperatures. However, it was not possible to confidently determine whether

some of these associations were an artefact of correlations between variables. In

addition, due to the lack of data on factors known to influence indoor temperatures,

such as shading or window operation, confounding factors are likely to exist. Future

work should aim to disentangle such correlations and quantify the causal effect
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that dwelling and household variables have on summer indoor temperatures. This

will likely require the use of causal inference techniques designed to extract such

effects, and account for confounders, in observational studies. Of great benefit to

the understanding of indoor overheating would be the systematic and large-scale

collection of detailed empirical data of indoor temperature, dwelling and household

characteristics, occupant actions and expressed thermal comfort. This would not be

a small or inexpensive undertaking, but it would facilitate research that could make

significant advancements in the prediction and mitigation of indoor overheating.

In addition, despite the few examples of using regression to standardise indoor

temperature against ambient conditions (Hamilton et al., 2017; Oreszczyn et al.,

2006; Wilkinson et al., 2001), a clear set of guidelines for how to carry out the

standardisation procedure and determine its efficacy does not currently exist. Future

work could try and develop such a set of guidelines with the use of detailed empirical

or synthetic data, as described in Section 4.2.5.

In Section 6.2, the two-stage sensitivity analysis informed the use of the Floor

Area Factor as an explanatory variable in the calibration. However, as discussed

in Section 6.3, this approach did not examine its importance in conjunction with

that of the weather variables. Future work could evaluate the use of other methods

of sensitivity analysis that could assess the influence of model inputs and weather

variables concurrently.

An important component in the calibration described in Chapter 7 was the use

of lag components of outdoor temperature. The use of a single component resulted

in improved predictive performance compared to the absence of a lag component

and the uncalibrated model; further improvement was observed with the addition of

a second lag component. It is possible that the inclusion of further lag components,

or other variables derived from hourly outdoor temperature (e.g. daily maximum

outdoor temperature) could result in further improvements. However, as the number

of predictors increases, so does the number of hyperparameters that need to be tuned

and the computational complexity of the calibration process. Thus, the inclusion

of more variables may require the use of more data, inevitably leading to a larger
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computational cost. Future work could investigate the effects of including further

weather variables, but also replacing some of them with ones carrying a similar level

of information. This may be achieved by the use of weighted weather variables, for

example an exponentially weighted outdoor temperature variable (CIBSE, 2013).

Given the moderate level of correlation observed between lag components in this

work, an alternative could be variables derived by Principal Component Analysis

(PCA) (Reimann et al., 2008).

An assumption made during the Bayesian calibration was that explanatory

and weather variables have a negligible level of uncertainty. This is a significant

assumption, yet it is far from uncommon (all papers reviewed in Section 2.4 made the

same assumption). Future work should strive to quantify the impact that uncertainty

in explanatory and weather variables has on the calibration of models of indoor

temperature and energy use. This could be taken a step further if the calibration

procedure is adapted to account for the fact that some predictors may be uncertain

(Huard and Mailhot, 2006).

This work has revealed some shortcomings of UK-HSM that should be further

investigated and addressed. One limitation identified in Chapter 5 was that the

collection of occupant profiles should be further expanded. In addition, in Chapter 7

the median and mean values of the model bias were found to be non-zero, and a

strong trend was identified between the model bias and the first lag component of

the outdoor temperature. It is currently unclear whether this is a shortcoming of the

intrinsic assumptions of EnergyPlus, or some of the hard-coded specifications of

UK-HSM, and further work is needed to understand and correct this.

Finally, the application of the Kronecker product formulation is promising.

However, further work is required to explore the advantages and limitations of

this implementation compared to the traditional approaches for different modelling

applications and dataset sizes.
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Appendix A

Theory of Gaussian Processes

A Gaussian Process (GP) may be formally defined as a collection of random vari-

ables, any finite number of which have a joint Gaussian distribution and may be

written as (Rasmussen and Williams, 2006):

f (x)∼ GP(m(x),k(x,x′)). (A.1)

From A.1, a GP is fully defined by its mean (m(x)) and covariance function (k(x,x′)).

The random variable corresponds to the value of function f (x) at location x. x′ is

another realisation of x.

The mean function may take any form that is appropriate for the problem,

often that of a linear function, or even more commonly that of a function that

returns a vector of constants, such as zeros (Higdon et al., 2004; O’Hagan, 2006;

Higdon et al., 2008). Similarly, the covariance function should also be selected

based on the characteristics of the problem being studied and several options exist.

A frequently used option, is the squared exponential (may also be referred to as

Gaussian correlation function or Radial Basis Function) (Rasmussen and Williams,

2006):

cov( f (xp), f (xq)) = k(xp,xq) = σ
2
f exp(− 1

2l2 |xp − xq|2), (A.2)

where σ2
f is the signal variance and l is the length-scale. Parameters that are free

to be varied and are used to define the Gaussian Process, such as σ2
f and l, may be

collectively referred to as hyperparameters (Rasmussen and Williams, 2006). It
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should be highlighted that the covariance between outputs is written as function of

the inputs.

The most commonly used covariance function within the field of Bayesian

calibration of computer models is the following (Arendt et al., 2012; Chong and

Menberg, 2018):

cov( f (xp), f (xq)) = k(xp,xq) =
1
λ

exp(−β |xp − xq|α), (A.3)

where 1
λ

is the precision hyperparameter, β is the correlation hyperparameter and α

is the smoothness hyperparameter. By fixing α = 2, it is assumed that the function

modelled by the GP is smooth and infinitely differentiable. Doing so is common

practice in Bayesian calibration applications (Chong and Menberg, 2018; Kristensen

et al., 2017b; Menberg et al., 2019), and this results in a covariance function that is

equivalent to Equation A.2.

A.1 Prediction with Noise-free Observations

Assuming a set of noise-free observations {(xi, fi)|i = 1, . . . ,n}, it is possible to

make predictions about the joint distribution of the training data f and test outputs f∗

according to the following GP prior (Rasmussen and Williams, 2006): f (x)

f (x∗)

∼N

0,

K(x,x) K(x,x∗)

K(x∗,x) K(x∗,x∗)

 (A.4)

For n training points (x) and n∗ test points (x∗), K(x,x∗) is the n× n∗ matrix of

covariances for all pairs of training and testing. By conditioning the joint GP on the

observations, the posterior distribution contains only functions which agree with the

observations. This results in posterior prediction provided by the following equation

(Rasmussen and Williams, 2006):

f (x∗)|x∗,x, f (x)∼N (K(x∗,x)K(x,x)−1 f (x),

K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗))
(A.5)
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A.2 Prediction with Noisy Observations
It is more realistic to assume that observations in real-world application are noisy:

y = f (x)+ εεε. (A.6)

By assuming independent and identically distributed Gaussian noise εεε with variance

σ2
n , the matrix of covariances for all noisy observations becomes (Rasmussen and

Williams, 2006):

cov(y) = K(x,x)+σ
2
n I (A.7)

Because of the independence assumption, the noise is only added to the diagonal

of the matrix. For notational simplification, let’s assume that K(x,x)+σ2
n I = Ky,

K(x,x∗) = K∗, K(x∗,x) = KT
∗ and K(x∗,x∗) = K∗∗. The joint distribution is written

as:  y

f (x∗)

∼N

0 ,

Ky K∗

KT
∗ K∗∗

 (A.8)

To posterior predictive distribution now becomes (Rasmussen and Williams, 2006):

f (x∗)|x,y,x∗ ∼N ( f̄ (x∗),cov( f (x∗))) (A.9)

where

f̄ (x∗) = KT
∗ K−1

y y (A.10)

cov( f (x∗)) = K∗∗−KT
∗ K−1

y K∗ (A.11)

f̄ (x∗) is the mean of f (x∗).





Appendix B

UK Housing Stock Model

Table B.1: Summary of the number of rooms (inc. hallways), bedrooms, ground floor area
and total volume (excl. roof) per typology used in UK-HSM. Adapted from the
supplementary materials of Symonds et al. (2016).

Rooms Bedrooms Ground Floor Area (m2) Total Volume (m3)
End Terrace 8 3 45.0 216.0
Mid Terrace 8 3 45.0 216.0
Semi Detached 8 3 51.6 268.3
Detached 14 4 71.0 340.8
Bungalow 7 2 70.0 168.0
Converted Flat 6 2 72.3 187.9
Low-Rise Flat 5 1 51.8 134.7
High-Rise Flat 6 2 65.3 156.5

Table B.2: Algorithms assumed in UK-HSM. V signifies a UK-HSM model input that can
be varied.

Algorithm/Setting Value
Surface Convection Algorithm: Outside TARP
Surface Convection Algorithm: Outside TARP
Heat Balance Algorithm ConductionTransferFunction
Zone Air Heat Balance Algorithm ThirdOrderBackwardDifference
Timestep 6
Terrain V
Solar Distribution Full Exterior



312 Appendix B. UK Housing Stock Model

Figure B.1: Floor plans of end terrace, mid-terrace, semi-detached and detached typolo-
gies specified within UK-HSM. Adapted from the supplementary materials of
Symonds et al. (2016).
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Figure B.2: Floor plans of bungalow, converted flat, low-rise flat and high-rise flat typolo-
gies specified within UK-HSM. Adapted from the supplementary materials of
Symonds et al. (2016).
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Table B.3: Double glazing construction details assumed in the model. V signifies a UK-
HSM model input that can be varied.

Construc-
tion

Thick-
ness

Solar Trans. at
Normal Inc.

Visible Trans. at
Normal Inc.

Conductivity

Double
Glazing

Glass 0.01 0.775 0.881 0.9

Gas (Air) V - - 0.02485
Glass 0.01 0.775 0.881 0.9
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Table B.4: Construction and material characteristics used to model a semi-detached dwelling with filled cavity walls and double glazing. V signifies a
UK-HSM model input that can be varied. For each construction, the materials are ordered from external to internal.

Construction Material Roughness Thickness
(m)

Conductivity
(W/(mK))

Density
(kg/m3)

Specific Heat
(J/(kgK))

Thermal
Abs

Solar
Abs

Visible
Abs

Filled Cavity Wall Brick Rough 0.11 0.6 1712 850 V V V
Cellulose Rough V 0.04 55 1880 0.9 0.7 0.7
Brick Rough 0.11 0.6 1712 850 V V V
Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7

Internal Wall Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7
Brick Rough 0.1 0.6 1712 850 V V V
Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7

Floor Concrete Rough 0.5 1.6 2300 850 V V V
Fiberglass Rough V 0.04 80 840 0.9 0.7 0.7
Gypsum Rough 0.1 0.2 850 850 0.9 0.7 0.7

Roof Concrete Rough 0.04 1.6 2300 850 V V V
Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7

Suspended Wooden Floor Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7
Air gap Rough 0.1 0.2485 1.204 1004 0.9 0.7 0.7
Spruce Rough 0.05 0.09 455 1500 0.9 0.7 0.7

Loft Concrete Rough 0.01 1.6 2300 850 V V V
Spruce Rough 0.0125 0.09 455 1500 0.9 0.7 0.7
Air gap Rough V 0.02485 1.204 1004 0.9 0.7 0.7
Gypsum Rough 0.01 0.2 850 850 0.9 0.6 0.7

Door Spruce Rough 0.04 0.09 455 1500 0.9 0.7 0.7
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Table B.5: Internal gain schedule for pensioners occupancy in UK-HSM. Adapted from the supplementary materials of Symonds et al. (2016).

Hourly Multiplier
Zone Internal Gain Load (W) Fraction Useful Fraction Latent Source 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Liv.

People 100 1 0 0 0 0 0 0 0 0 1 2 2 2 0 2 2 2 2 2 2 0 2 2 0 0
Lighting 100 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0
TV 62.2 0.734 0.16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0
TV Standby 20 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1
Laptop 36.9 0.734 0.16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Wireless Router 24 0.734 0.16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Kit.

People 100 1 0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0
Lighting 100 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
Hob 3600 0.4 0.3 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
Oven 5100 0.4 0.3 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
Fridge 46 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Washing Machine 500 0.8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
Dishwasher 1090 0.6 0.15 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Bed.
People 100 1 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
Lighting 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Mobile Phones 17.72 0.734 0.16 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 CIBSE (2006)
2 Kneifel (2012)
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Standardisation of Indoor

Temperature: Supplementary

Material

To standardise the summer Mean Daytime Living Room Temperature (MDLRT) and

the Mean Nighttime Bedroom Temperature (MNBT), 12 regression models were

evaluated whose performance was compared using the adjusted R2. In addition, 12

regression models for a different temporal resolution of summer living room and

bedroom temperature were also evaluated for the purpose of comparison.

The six combinations of explanatory variables tested were:

1. Tin = β0 +β1Text

2. Tin = β0 +β1Text +β2T 2
ext

3. Tin = β0 +β1Text +β2GHI

4. Tin = β0 +β1Text +β2GHI +β3T 2
ext

5. Tin = β0 +β1Text +β2GHI +β3T 2
ext +β4GHI2

6. Tin = β0 +β1Text +β2GHI +β3Text ∗GHI +β5T 2
ext +β6GHI2

where Tin is the indoor temperature, Text is the external temperature and GHI is the

global horizontal irradiance. β0−6 are the regression coefficients. For each of the

above models, four temporal resolutions were assessed:

a Hourly mean Tin, Text , GHI

b Daily mean Tin, Text , GHI
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Figure C.1: Boxplots of adjusted R2 for the 24 regression models fitted to the monitored
2011 Energy Follow-Up Survey bedroom temperature.

Figure C.2: Boxplots of adjusted R2 for the 24 regression models fitted to the monitored
2011 Energy Follow-Up Survey living room temperature.

c MDLRT & MNBT with daily mean Text , GHI

d MDLRT & MNBT with daytime/nighttime mean Text , GHI

where daytime is 08:00-22:00 and nighttime is 22:00-08:00. Daytime Tin only refers

to the living room, while nighttime Tin refers to the bedroom. The boxplot of adjusted

R2 for each model is plot in Figure C.1 for the bedroom and Figure C.2 for the living

room.



Appendix D

Bayesian Inference & Calibration

D.1 Bayesian Inference

To capture the relationship between any observable variables y and the unobservable

parameters θθθ , we start by defining a joint probability distribution for θθθ and y

(Gelman, 2014):

p(θθθ ,y) = p(θθθ)p(y|θθθ) , (D.1)

where p(θθθ) is the prior distribution and p(y|θθθ) is the sampling (or data) distribution.

The prior distribution, p(θθθ), captures any prior knowledge we might have regarding

the unobservable parameters θθθ , while the sampling distribution, p(y|θθθ), describes

the probability of observing y for a given value of θθθ . If observations of y have been

made, p(y|θθθ) can be regarded as a function of θθθ , for fixed y, and is referred to as

the likelihood function.

Through the conditional probability known as Bayes’ rule (or Bayes’ Theorem),

the observations y, may inform our knowledge of the parameters θθθ (Gelman, 2014):

p(θθθ |y) = p(θθθ ,y)
p(y)

=
p(θθθ)p(y|θθθ)∫

p(θθθ)p(y|θθθ)dθθθ
, (D.2)

where p(θθθ |y) is the posterior density, which represents the relative weights of belief

for each parameter value after considering the prior and likelihood function (Bolstad

and Curran, 2017).
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D.2 Theory of Bayesian Calibration

Note that in the equations that will follow, superscripts in brackets are used as

qualifiers. Subscripts may be used as qualifiers or to index variables, and their

purpose will be made clear in the text.

D.2.1 Computationally cheap computer model

Following the Bayesian perspective to statistical calibration and given eq. 2.2, the

aim is to identify the appropriate likelihood function and parameter prior distribu-

tions to compute the posterior distribution, as per eq. D.2. The likelihood function

will depend on the assumption made about the distribution of error terms (εi). A

commonly used assumption is that εi is an independently and identically distributed

(iid) variable (Higdon et al., 2004; Smith, 2013; Gelman, 2014), following a normal

distribution with a mean of 0 and variance of σ2
ε . Based on the iid assumption, the

likelihood function, L(y|ηηη), takes the form (Higdon et al., 2004; Smith, 2013):

L(y|ηηη) ∝ exp{−1
2
(y−ηηη)T K−1

y (y−ηηη)}, (D.3)

where y = (y(www1), . . . ,y(wwwn))
T and ηηη = (η(www1,θ), . . . ,η(wwwn,θ))

T . Ky = σ2
ε · In×n

is the observation covariance matrix, with In×n being the identity matrix of size n×n.

Assuming a priori that θθθ follows a distribution p(θθθ), the unnormalised posterior

density is then defined as:

p(θθθ |y) ∝ L(y|ηηη))× p(θθθ). (D.4)

If the computer model is non-linear, which is often the case for building simulation

software, it is not possible to analytically estimate the posterior density p(θθθ |y), as

often the numerator of Equation. D.2 may be hard or impossible to compute (Higdon

et al., 2004; McClarren, 2018). An approach commonly used to overcome this

problem is based on Markov Chain Monte Carlo (MCMC) (Higdon et al., 2004).

MCMC is described in more detail in Section D.3.
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D.2.2 Computationally expensive computer model

Often, the computational demands of the simulator prevent it from being used

directly in the Bayesian calibration process. In such cases, a surrogate model may

be used. The computer model is only run for a fixed number of simulation runs

(m), upon which the surrogate model is trained on. For pairs of (w, t) that the

computer model was not evaluated at, the η(w, t) output is treated as unknown. A

commonly used surrogate model for Bayesian calibration is the Gaussian Processes

(GP) (Kennedy and O’Hagan, 2001; Higdon et al., 2004; Bayarri et al., 2007). A

GP can be fully defined by its mean, µ(·), and covariance function, (cov(·, ·)). It

has often been used as a surrogate model since it can capture strong non-linearities

and multivariable interactions (Heo and Zavala, 2012). It is common practice to

define the mean function as to return zero, in which case the covariance function

completely defines the GP model (Chong and Menberg, 2018; McClarren, 2018).

Multiple options for covariance functions exist (Rasmussen and Williams, 2006),

with the most commonly used option in calibration applications being the squared

exponential (Kennedy and O’Hagan, 2001; Higdon et al., 2004):

kη ,i j =
1

λη

exp

{
−

p

∑
h=1

β
(η)
h |wih −w jh|α −

l

∑
h′=1

β
(η)
p+h′|tih′ − t jh′|α

}
, (D.5)

where λη is the variance hyperparameter that controls the reciprocal of the marginal

variance of η(· , ·), β (η) are the correlation hyperparameters and α is the smoothness

hyperparameter of η(· , ·). p and l refer to the number of explanatory and calibration

parameters, respectively. Equation D.5 may often be supplemented with a white

noise component to ensure numerical stability and to account for small numerical

fluctuations in the simulation (Higdon et al., 2004).

To define the likelihood function required for the calibration process, a joint

n+m vector z = (yT ,ηηηT ) is defined with the first n components relating to the obser-

vations y= (y(w1), . . . ,y(wn))
T and the final m components relating to the simulation

outputs ηηη =(η(w∗
1, t

∗
1), ...,η(w∗

m, t
∗
m))

T . The associated training points for the surrog-

ate model are (w1,θ), ...,(wn,θ) for the first n components and (w∗
1, t

∗
1), ...,(w

∗
m, t

∗
m)
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for the final m components. A likelihood function can now be defined as follows:

L(z|θθθ ,µµµ,βββ (η),λη ,λε) ∝ |Kz|−
1
2 exp

{
−1

2
(z−µµµ)T K−1

z (z−µµµ)

}
(D.6)

where:

Kz = Kη +

Ky 0

0 0

 , Ky = In/λε . (D.7)

Kη is the result of applying D.5 to the n+m group of training points and Ky is an

n× n covariance matrix accounting for observation errors. In the next step, prior

distributions should be defined for θθθ ,µµµ , λη and β (η). By assuming independence

and based on Bayes theorem the posterior distribution is (Higdon et al., 2004):

p(θθθ ,µµµ,βββ (η),λη ,λε |z) ∝ L(z|θθθ ,µµµ,βββ (η),λη ,λε)p(θθθ)p(µµµ)p(βββ (η))p(λη)p(λε)

(D.8)

To explore the posterior distribution, MCMC may once again be used. In the

approach described, the surrogate model is trained at the same time as the model

calibration is performed. An alternative would be to train the surrogate model first

only on the m simulation points and then perform the calibration – an approach

referred to as modularisation (Bayarri et al., 2007; Liu et al., 2009).

The discrepancy in eq. 2.3 may be modelled with another GP model for δ (w),

with a mean function of 0 and covariance function specified as (Higdon et al., 2004):

kδ ,i j =
1

λδ

exp{−
p

∑
h=1

β
(δ )
h |wih −w jh|αδ } (D.9)

The likelihood function defined by eq D.6 remains unchanged with the exception of

the definition of Kz which is now defined as:

Kz = Kη +

Ky +Kδ 0

0 0

 (D.10)

where Kδ is an n×n matrix obtained by applying D.9 to each pair of the n input

settings wi that correspond to the monitored data y.
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D.3 MCMC Algorithm and Convergence.
MCMC involves the sequential sampling of θθθ from approximate distributions and

then correcting these draws to obtain a better approximation of the target (posterior)

distribution. This process requires the estimation of the ratios of posterior density at

different values of θθθ , and since the intractable term p(y) is a constant, it cancels out

(Higdon et al., 2004; McClarren, 2018). The draws form a Markov Chain, defined

as a sequence of random variables (θ1,θ2, . . . ) for which at index i, the distribution

of θ i depends only on the value of θi−1. The effectiveness of the MCMC method

depends on the fact that the approximate distribution is improved at every iteration

by converging to the target distribution, and Gelman (2014) provides a simple proof

as to why that is the case. MCMC methods can handle a large dimensional θθθ , deal

with many nuisance parameters and multivariate output (Higdon et al., 2004).

MCMC convergence is assessed separately for each parameter by evaluating

the level mixing and stationarity for each markov chain, but all must have converged

before the distribution posteriors can be used for inference (Gelman, 2014). A chain

may be considered well-mixed if it explores the full-probability region and is sta-

tionary if it remains within the same probability region. At least two chains initiated

at different starting points are required to assess the mixing and stationarity of the

distribution. Once a stationary distribution has been reached, the early iterations

often discarded as they might be heavily influenced by the starting points. While the

convergence can be assessed qualitatively by plotting the generated chains, a useful

measure of convergence is the potential scale reduction, defined as (Gelman, 2014):

R̂ =

√
v̂ar+(ψ|y)

W
(D.11)

where v̂ar+(ψ|y) is the marginal posterior variance of the estimated quantity and

W is the within-sequence variance. If R̂ is high, then continuing the simulation is

expected to improve the parameter inference. Generally, a value of R̂ = 1± 0.1

indicates convergence.





Appendix E

Archetype-based Bayesian calibration

Section E.1 outlines the statistical formulation employed for the Bayesian calibra-

tion of archetype-based building stock models of summer indoor temperature. In

section E.2, the prior probability distributions assumed for the hyperparameters are

defined. Note that in the equations that will follow, superscripts in brackets are used

as qualifiers. They are used, for example, to differentiate variables associated with

monitored (M) and simulated (S) homes, where this was deemed necessary. They

are, in some cases, omitted to ease the mathematical notation. Subscripts may be

used as qualifiers or to index variables, and their purpose will be made clear in the

text.

E.1 Statistical Formulation

The calibration approach employed within this work relies on the statistical formula-

tion introduced by Kennedy and O’Hagan (2001). Given the large computational

cost of UK-HSM (EnergyPlus) simulations, a Gaussian Process (GP) is used as a

surrogate model (η(·)) that is trained on EnergyPlus simulations (y(S)c ) and monitored

data (y(M)
c ), as suggested by Higdon et al. (2004). A GP is also used to represent

the discrepancy term (δ (·)), as has often been the case in previous calibration work

(Menberg et al., 2019). To clarify the use of explanatory and weather variables,

Equation 2.3 is re-written as follows:

y(M)
md = y(x(M)

m ,wd) = η(x(M)
m ,wd,θθθ)+δ (x(M)

m ,wd)+ ε
(M)
md , (E.1)
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where wd are the weather-related variables for day d, x(M)
m are all other explanatory

variables for house m and ε
(M)
md is an error term associated with house m and day d.

The set of calibration variables whose values are unknown and are the same between

homes are denoted by θθθ . Both x(M)
m and wd are assumed to be known accurately

(i.e. measurement error is negligible). For the computer simulations, the following

relationship is established:

y(S)sd = y(x(S)s ,wd, ts) = η(x(S)s ,wd, ts)+ ε
(S)
sd . (E.2)

As per Higdon et al. (2004), a single combined vector of monitored and simula-

tion data was constructed z = [y(M)
c ,y(S)c ]:

z =



y(M)
m=1,d=1

...

y(M)
m=1,d=Dc

y(M)
m=2,d=1

...

y(M)
m=2,d=Dc

y(M)
m=M,d=1

...

y(M)
m=M,d=Dc

y(S)s=1,d=1
...

y(S)s=1,d=Dc

y(S)s=2,d=1
...

y(S)s=2,d=Dc

y(S)s=S,d=1
...

y(S)s=S,d=Dc



=



η(x(M)
1 ,w1,θθθ)+δ (x(M)

1 ,w1)+ ε
(M)
11

...

η(x(M)
1 ,wDc,θθθ)+δ (x(M)

1 ,wDc)+ ε
(M)
1Dc

η(x(M)
2 ,w1,θθθ)+δ (x(M)

2 ,w1)+ ε
(M)
21

...

η(x(M)
2 ,wDc,θθθ)+δ (x(M)

2 ,wDc)+ ε
(M)
2Dc

η(x(M)
M ,w1,θθθ)+δ (x(M)

M ,w1)+ ε
(M)
M1

...

η(x(M)
M ,wDc,θθθ)+δ (x(M)

M ,wDc)+ ε
(M)
MDc

η(x(S)1 ,w1, t1)+ ε
(S)
11

...

η(x(S)1 ,wDc , t1)+ ε
(S)
1Dc

η(x(S)2 ,w1, t2)+ ε
(S)
21

...

η(x(S)2 ,wDc, t2)+ ε
(S)
2Dc

η(x(S)S ,w1, tS)+ ε
(S)
S1

...

η(x(S)S ,wDc , tS)+ ε
(S)
SDc



. (E.3)
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The surrogate model was defined as a zero-mean GP, with the squared exponen-

tial kernel used for its covariance function:

kη ,i j =
1

λη

exp

{
−

p

∑
h=1

β
(η)
h |xih − x jh|2

−
q

∑
h′=1

β
(η)
p+h′|wih′ −w jh′|2 −

r

∑
h′′=1

β
(η)
p+q+h′′ |tih′′ − t jh′′ |2

}
,

(E.4)

The discrepancy term was also specified as a zero-mean GP with a squared exponen-

tial kernel:

kδ ,i j =
1

λδ

exp

{
−

p

∑
h=1

β
(δ )
h |xih − x′jh|2 −

q

∑
h′=1

β
(δ )
p+h′|wih′ −w jh′|2

}
, (E.5)

The use of a zero-mean discrepancy term translates to a prior belief that there is no

systematic model bias.

Following from the assumption of independently and identically distributed

errors, the resulting likelihood function is defined as:

L(z|θθθ ,µµµ,ξξξ ) ∝ |Kz|−
1
2 exp

{
−1

2
(z−µµµ)T K−1

z (z−µµµ)

}
(E.6)

where µµµ is a vector of zeros, ξξξ = [βββ (η),βββ (δ ),λη ,λδ ,λε ,λsim] and:

Kz = Kη +

Ky +Kδ 0

0 Ksim

 , Ky = I(M)/λε , Ksim = I(S)/λsim. (E.7)

Kη is the result of applying E.4 to the Nc group of training points, Kδ results from

applying E.5 to the N(M)
c monitored data, Ky is an N(M)

c ×N(M)
c covariance matrix of

accounting for observation errors and Ksim is an N(S)
c ×N(S)

c covariance matrix of

accounting for numerical errors. I(M) is an N(M)
c ×N(M)

c identity matrix, I(S) is an

N(S)
c ×N(S)

c identity matrix.
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E.2 Hyperparameter priors
As with any Bayesian analysis, it is crucial to identify and list all priors used. The

hyperparameter priors were defined based on the suggestions of Chong and Menberg

(2018) and Menberg et al. (2019). In summary, the priors used were:

• ρ
(η)
1 , . . . ,ρ

(η)
p+q ∼ Beta(shape1 = 1, shape2 = 0.3): Reparametrisations of the

correlation hyperparameters β
(η)
1 , . . . ,β

(η)
p+q (see Equation D.5) used to define

the emulator’s GP, where ρ
(η)
i = exp(β (η)

i /4), i, . . . ,(p+q).

• ρ
(δ )
1 , . . . ,ρ

(δ )
p+q ∼ Beta(shape1 = 1, shape2 = 0.3) Reparametrisations of the

correlation hyperparameters used to define the discrepancy term’s GP.

• λη ∼ Gamma(shape = 10, rate = 10): Following the standardisation of the

model output to have unit variance, this precision parameter is expected to

have a value close to one – this prior specification result in an expectation

value of 1.

• λδ ∼ Gamma(shape = 10, rate = 0.3): This prior captures the assumption

that a small model bias is expected, and is also used to avoid confounding

between the calibrating the model parameters and tuning the discrepancy term.
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Kronecker Product

F.1 Kronecker Product Definition

Assume two 2×2 matrices A and B:

A =

a11 a12

a21 a22

 , B =

b11 b12

b21 b22

 (F.1)

The Kronecker product of these matrices is (Pollock, 2013):

A⊗B =


a11

b11 b12

b21 b22

 a12

b11 b12

b21 b22


a21

b11 b12

b21 b22

 a22

b11 b12

b21 b22



 (F.2)

=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 (F.3)

More generally, the Kronecker product of an m×n matrix A and a p×q matrix B is
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defined as:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB

. . . . . .
. . . . . .

a11B a12B · · · a1nB

 (F.4)

=



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

... . . . ...
...

... . . . ...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

... . . . ...
...

... . . . ...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq


(F.5)

Assuming that A and B are invertible, the following is true (Pollock, 2013):

(A⊗B)−1 = (A−1 ⊗B−1) (F.6)

F.2 Kronecker Product Implementation

Focusing only on the emulation component of the Bayesian calibration using the

combined monitored and simulated data, if the vector of data points is of length

Nc = (M+S)×Dc, the covariance matrix Kη will be of size Nc ×Nc. The regular

structure of the data discussed in Section 7.1.6 allows for the covariance matrix to be

reformulated as follows:

Kη = K(M+S)
η ⊗K(Dc)

η , (F.7)
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where K(M+S)
η is a covariance matrix estimated using only the (xm,xs, ts), K(Dc)

η a

covariance matrix estimated using only the (wd), and ⊗ is the Kronecker product.

Since it is true that K−1
η = (K(M+S)

η )−1 ⊗ (K(Dc)
η )−1 (Equation F.6), the reduction

in computational cost is achieved by the fact that inverting (M + S) and (Dc) -

dimensional matrices and estimating their Kronecker product is faster than inverting

a single (M+S)×Dc - dimensional matrix; the computational cost is reduced from

O(N3
c ) to approximately O((M+S)3 +D3

c) (Hung et al., 2015).

Implementing the above formulation for emulation purposes can be relatively

straightforward. However, a greater challenge exists when the entire calibration

framework is considered and in particular when trying to account for model discrep-

ancy. One potential approach of implementing the Kronecker product for Bayesian

calibration was offered by Bayarri et al. (2009), who investigated vehicle crashwor-

thiness and where the data structure was the result of the model’s time-dependent

functional output. It requires the key assumption that the GP correlation parameters

of the weather variables are the same for the emulator, discrepancy and measurement

error terms (i.e. βββ
(η)
w = βββ

(δ )
w = βββ

(ε)
w ). This does not assume that the variations of

the three functions with regard to the weather are the same, only that they have the

same correlation structure (Bayarri et al., 2009). If this is a reasonable assumption to

make, a Kronecker product implementation for the entire calibration problem may

be implemented by defining the covariance matrix for the non-weather variables as

follows (adapted for this application from Bayarri et al. (2009)):

K(M,S) =

K(M,S)
11 K(M,S)

12

K(M,S)
21 K(M,S)

22

 , (F.8)

K(M,S)
11 =

1
λη

C(η)(D(M),D(M))+
1

λδ

C(δ )(D(M),D(M))+
1
λε

IM×M , (F.9)

K(M,S)
12 =

1
λη

C(η)(D(M),D(S)) , (F.10)

K(M,S)
21 =

1
λη

C(η)(D(S),D(M)) , (F.11)

K(M,S)
22 =

1
λη

C(η)(D(S),D(S))+
1

λsim
IS×S , (F.12)
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where D(M) is a data matrix of length M associated with the monitored homes

and D(S) is a data of matrix of length S associated with the simulated homes.

C(η)(D(M),D(M)), signifies the application of the squared exponential covariance

function on data D(M), with an equivalent meaning for other C(·, ·) terms. IM×M and

IS×S are identity matrices of size M ×M and S× S, respectively. The covariance

matrix for the weather variables is defined as:

K(W ) =C(W )(Wc,Wc) (F.13)

where Wc is the weather data matrix used for the calibration of length Dc. The

overall covariance matrix for the calibration problem becomes:

K(z,kron) = K(M,S)⊗K(W ). (F.14)
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The Morris Method

To define what an elementary effect is, a model (Y ) is assumed with k independent

inputs xxx = x1,x2, ...xk that may take a value between 0 and 1 depending on the chosen

number of levels (p) (Saltelli et al., 2008). For a given starting point, the elementary

effect for the ith input factor is defined as (Morris, 1991; Saltelli et al., 2008):

EEi =
Y (x1,x2, ...,xi +∆, ...,xk)−Y (x1,x2, ...,xk)

∆
, (G.1)

where ∆ is a predefined jump on the p-level grid Ω. For each trajectory, one ele-

mentary effect can be computed for each parameter i resulting in k+1 simulations.

Repeating this process for r trajectories results in a distribution of elementary effects

for the computational cost of r(k+ 1) simulations. A visualisation of the Morris

method for two parameters is shown in Figure G.1. From the distribution of element-

ary effects, the mean (µ) and the standard deviation (σ ) are often used to describe the

influence of the input parameter’s uncertainty on the model output and are defined as

(Saltelli et al., 2008):

µi =
1
r

r

∑
t=1

EEit , (G.2)

σi =

√
1

r−1

r

∑
t=1

(EEit −µi)2, (G.3)

where t is the index of each trajectory. The mean assesses the overall influence of
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Figure G.1: A visualisation of the Elementary Effects method for two variables, Wall U-
value (x1) and Permeability (x2). The true values of each variable’s parameter
range, shown in the brackets, have been scaled to the range of 0 to 1. In the first
trajectory, from a starting point of (x1,x2) = (0,0), the value of x1 changes by
∆ = 1/3. At the next step, x1 remains constant while x2 changes by 1/3. For
any number of new trajectories, a new starting point would be selected and each
parameter would change by ∆, one parameter at a time.

the factor on the output while the standard deviation is a measure of the spread of

elementary effects and indicates the level of dependence and interaction of the ith

factor on other factors, along with any non-linearities.

As an improvement, Campolongo et al. (2007) suggested the use of the mean of

absolute elementary effects (µ∗), defined below (Saltelli et al., 2008):

µ
∗
i =

1
r

r

∑
t=1

|EEit | (G.4)

It is considered to be a good proxy of the overall effect of a factor on the model

output and should be preferred to the initially proposed arithmetic mean (µ) which is

vulnerable to type II errors (i.e. failure to identify factors with a significant influence

on the output) (Saltelli et al., 2008). Based on the tenets of normality, Garcia Sanchez

et al. (2014) used the σ/µ∗ ratio to identify non-linear and higher-order effect based
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on the following categories: (i) Almost linear effects are identified in the region of

σ/µ∗ < 0.1, (ii) monotonic effects at 0.1 < σ/µ∗ < 0.5, (iii) almost monotonic at

0.5 < σ/µ∗ < 1 and (iv) non-monotonic or with interactions at σ/µ∗ > 1. Further

study of the parameter interactions was also proposed at a computational cost of kr2.





Appendix H

Additional Results from Stochastic

Characterisation

H.1 Wall U-value

The corrected arithmetic mean of the measured wall U-values per wall type are

visualised in Figure H.1. The solid vertical lines represent the empirical median

based on the data collected while the dashed lines are the theoretical values based on

Appendix S (RdSAP) of SAP 2012 (BRE, 2014)

The histogram of filled cavity walls was discussed in Section 5.2.1. For non-

standard solid walls, there is large spread from 0.4 W/(m2K) to 2.3 W/(m2K). The

small sample size (33) makes it difficult to identify outliers by simply inspecting the

histogram. The wide range of wall types that might fall under this construction might

explain the wide variability (Hulme and Doran, 2014). For standard solid walls, 95 %

of measured values are between 1.1 W/(m2K) and 2.2 W/(m2K). Values concen-

trated around 0.6 W/(m2K) were partly attributed to an older wall construction (pre

1850s) which however appeared to be standard solid wall upon inspection. Although

these older wall constructions are uncommon, they were kept in the data. Based

on the density plot, the distribution of unfilled cavity walls is likely the result of

two clusters. This is supported by Hulme and Doran (2014), with the two clusters

assumed to be a brick only cavity construction and a brick-block construction.

Based on the analysis of the Cullen and Frey graph presented in Section 5.2.1,
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Figure H.1: Histograms and density lines of the measured wall U-value, following a 6 %
correction. Data from Hulme and Doran (2014). The theoretical line is based
on RdSAP of SAP 2012 (BRE, 2014).

four distributions were fitted to the filled cavity wall U-values: normal, Weibull,

lognormal and gamma. Due to the small computational burden of fitting multiple

distributions, all four candidate distributions were also fitted for the unfilled cavity

wall and standard solid wall construction. Due to the small number of non-standard

solid walls, a distribution for this wall type was not fitted. The results for all three

wall types are presented in Table H.1. As discussed in Section 5.2.1, the gamma



H.1. Wall U-value 339

Table H.1: Distributions for each wall type ranked in decreasing order of goodness of fit
based on the Akaike Information Criterion (AIC), difference in AIC (∆ j) and
Akaike weights (w j). Corrected AIC was used for unfilled cavity wall. P1 and
P2 represent the parameters of the fitted distribution, stated to two significant
figures.

Wall Type Distr. AIC ∆ j w j P1 P2

Filled cavity

gamma -16.07 0.00 0.75 shape = 9.5 rate = 13
lnorm -13.72 2.34 0.23 meanlog = -0.4 sdlog = 0.33
norm -8.04 8.03 0.01 mean = 0.71 sd = 0.23
weibull -7.59 8.47 0.01 shape = 3.2 scale = 0.79

Unfilled cavity

weibull 23.41 0.00 0.82 shape = 5.8 scale = 1.6
norm 26.60 3.19 0.17 mean = 1.5 sd = 0.3
gamma 31.64 8.24 0.01 shape = 20 rate = 14
lnorm 35.25 11.84 0.00 meanlog = 0.35 sdlog = 0.23

Standard solid

weibull 51.61 0.00 0.87 shape = 6.0 scale = 1.8
norm 55.44 3.83 0.13 mean = 1.7 sd = 0.33
gamma 68.27 16.66 0.00 shape = 21 rate = 13
lnorm 77.94 26.33 0.00 meanlog = 0.48 sdlog = 0.23

distribution best described the filled cavity wall U-values, which also provided a

good fit based on the goodness-of-fit plot.

For the unfilled cavity wall, the Weibull distribution had the lowest AIC (23.41)

and 0.82 probability of being the best fit amongst the candidate distributions. The

normal provides the second-best fit (AIC = 26.60), followed by the gamma (AIC =

31.64) and lognormal (AIC = 35.25). The same order of fit is seen for the standard

solid wall, with the 0.87 probability suggesting that the Weibull provides the best

description of the data.

A good fit is observed for the Weibull distribution fitted to the standard solid

wall U-value as seen in Figure H.2. All data points follow the P-P plot diagonal

wall. The same is true for the Q-Q plot with the exception of two points from the left

tail of the U-value distribution. These are the same data points identified earlier as

lying away from the empirical distribution whose construction was also questioned

by Hulme and Doran, 2014. The fitted distribution will be unable to represent these

comparatively low U-values well, however the overall effect of this when modelling

the stock will likely be small since they are infrequent.

The goodness of fit plots for the cavity wall construction when fitted with a
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Figure H.2: Goodness of fit plots for the BRE dataset of wall U-values. A Gamma(9.5, 13)
was assumed for the filled cavity, Weibull(5.8, 1.6) for the unfilled cavity and a
Weibull(6.0, 1.8) for the solid wall.

Weibull distribution is also visualised in Figure H.2. Based on the Q-Q plot the

extremes are represented fairly well, while the P-P plots suggests the probability

of obtaining values around 1.3–1.4 W/(m2K) is greater than what the empirical

evidence indicate. Since all the distributions fitted here are unimodal, the possible

bi-modality due the presence of two different types of cavity wall construction is

not captured. With the raw data of cavity walls not being separated into different
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types, fitting a multimodal distribution (most commonly done as the combination

of two unimodal distributions) would require artificially grouping data points into

categories based on their values – an error-prone method since the values that each

group should take (or what the groups are) is not accurately known.

H.2 Floor U-value

Figure H.3: Floor U-values estimated using the RdSAP S5.5 guidance for semi-detached
dwellings in the 2012 English Housing Survey.

Solid floor is the most common floor type for all three wall types (Figure H.3).

Suspended timber floor is uncommon for cavity wall dwellings, but fairly typical

for solid wall dwellings. The distributions of U-values for uninsulated solid floors

and suspended timber floors have similar central values with their median ranging
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within 0.69–0.72 W/(m2K) depending on the wall type. These medians differ from

those of insulated solid floor U-values with median values of 0.26 W/(m2K) and

0.45 W/(m2K). A single unimodal distribution might be able to describe the floor

U-values of the solid wall group, but not the filled or unfilled cavity groups due to

the clear multi-modality seen in Figure H.3. Multiple distributions would therefore

be required to describe these datasets, or individual distributions that describe well

the majority but not all data points.

H.3 Fabric Air Permeability

To explore the factors influencing airtightness, Stephen (2000) compared the mean

leakage rate (ACH at 50 Pa) of different sub-groups of the dataset. Cavity masonry

was more leaky (≈ 15 ACH at 50 Pa, n = 205) than solid masonry (≈ 11.5 ACH

at 50 Pa, n = 108), while suspended timber floors were more leaky (≈ 16 ACH at

50 Pa, n = 202) than solid concrete floors (≈ 11.5 ACH at 50 Pa, n = 189). Other

factors were studied through reductive sealing of air leakage paths but were found to

have a smaller effect than wall or floor type (Stephen, 2000). For example, windows

and doors were found to be responsible for 16 % of air leakage, contrary to 71 %

attributed to the “myriad crack and openings” on the floor and walls (Stephen, 2000).

While informative, the analysis by Stephen (2000) could be expanded further.

For example Stephen (1998) suggested that the choice of wall construction “does

not guarantee a particular level of air tightness because there is still a range of

airtightness for each wall type and the ranges greatly overlap”. Yet, the comparison

presented to readers omits the shape and range of air tightness and focuses only on

the mean values. In addition, while comparing the different possible values of a

factor is useful (e.g. cavity vs solid wall construction), a study of the interaction

of different factors (e.g. cavity wall with suspended timber floors) would also be

informative. This would be especially useful when looking at the association of

construction age with other factors. Furthermore, Stephen (1998) discussed in their

literature review that insulation may have an effect on airtightness, yet there was no

description of the prevalence of insulation within the dataset analysed. Finally, it
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is unclear how representative the dataset is of the English housing stock since the

sampling of homes was not discussed.

Figure H.4: Permeability measurements of pre-1995 from the BRE dataset, reproduced
from Stephen (2000).

Figure H.5: Permeability measurements of 2002–2006 houses based on the dataset from
BRE (2004).
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Figure H.6: Goodness of fit plots for the distribution of air permeability weighted by cluster
dwelling age and assuming a Weibull distribution.

H.3.1 Mixture of Normal Distributions

The mean (µ(m)) of a mixture of normal distributions is defined as (Behboodian,

1970):

µ
(m) =

k

∑
j=1

p jµ j, (H.1)

where p j is the weight for distribution j, and k is the total number of normal

distributions. The variance (σ2(m)) of a mixture of normal distributions is defined as

(Behboodian, 1970):

σ
2(m) =

k

∑
j=1

p j
(
σ

2
j +µ

2
j
)
−

(
k

∑
j=1

p jµ j

)2

, (H.2)

where σ2
j is the variance for distribution j.
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H.4 Glazing Fraction

For all three wall types, the distribution that best describes the glazing fraction is a

gamma although the shape and rate differ. The goodness of fit plots in Figure H.8

suggest that the gamma distribution provides a satisfactory fit.

Figure H.7: Histograms of glazing fraction estimates of semi-detached dwellings in the
English Housing Survey. The solid vertical line indicates the median.
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Table H.2: Distributions fitted to the glazing fraction of semi-detached dwellings in the Eng-
lish Housing Survey, grouped by wall type. They are ranked in decreasing order
of goodness of fit based on the Akaike Information Criterion (AIC), difference
in AIC (∆ j) and Akaike weights (w j). Wall types are: FCW = Filled Cavity Wall,
UCW = Unfilled Cavity Wall and SW = Solid Wall.

Wall Dist. AIC ∆ j w j P1 P2

FCW

gamma -3401 0 1.00 shape = 14 rate = 53
lnorm -3388 13 0.00 meanlog = -1.4 sdlog = 0.27
norm -3303 98 0.00 mean = 0.26 sd = 0.072
weibull -3220 181 0.00 shape = 3.7 scale = 0.29

UCW

gamma -1604 0 1.00 shape = 13 rate = 47
norm -1591 12 0.00 mean = 0.27 sd = 0.074
lnorm -1581 22 0.00 meanlog = -1.4 sdlog = 0.29
weibull -1577 26 0.00 shape = 3.8 scale = 0.29

SW

gamma -798 0 1.00 shape = 12 rate = 45
norm -783 15 0.00 mean = 0.27 sd = 0.077
lnorm -783 15 0.00 meanlog = -1.3 sdlog = 0.3
weibull -765 33 0.00 shape = 3.6 scale = 0.3

H.5 Floor-to-ceiling height
Figure H.9 provides histograms with density plots of the floor-to-ceiling height,

grouped by wall construction and following the removal dwellings with values

greater than 3.5 m. Both types of cavity wall construction are characterised by the

same median value of 2.62 m, which differs by 0.1 m from the solid wall median of

2.52 m.

A lognormal describes the floor-to-ceiling height of dwellings with solid wall

construction best, with a meanlog = 0.96 and sdlog = 0.054. Based on the Q-Q plot

in Figure H.10, the theoretical and empirical quantiles are in good agreement for

values up to 3.0 m, or 98 % of the dataset. The Fréchet provided the best description

of the data originating from homes with unfilled cavity walls, with a shape = 27 and

a scale = 2.5. This goodness of fit is supported by the GOF plots in Figure H.10,

with close agreement between theoretical and empirical quantiles and probability

throughout. A lognormal provided the second-best description for this subset of

homes.
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Figure H.8: Goodness of fit plots when a gamma distribution is fitted to the glazing fraction
of semi-detached homes in the English Housing Survey.

H.6 Floor area factor
Five candidate distributions were fitted for the filled cavity and the solid wall con-

structions; distributions were not fitted to unfilled cavity wall data due to the small

sample size (13 homes) and possible bimodality (Figure H.11).

The best fitting distribution for either construction type is the inverse Weibull.

The goodness of fit plots for the fitted distribution of the filled cavity and solid wall

are shown in Figure H.12. In the case of the filled cavity wall, the fitted distribution
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Figure H.9: Histogram of the Floor-to-Ceiling Height measurements for semi-detached
dwellings in the EHS, separated by wall construction. This is the average of the
main bedroom and living room measurement plus 0.125 m. The solid vertical
line indicates the median.

provides a good description for all but one data point. For the solid wall, a few more

points deviate away within the Q-Q plot and P-P plot, yet the distribution provides a

good description of most data points.
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Table H.3: Distributions fitted to floor-to-ceiling height data categorised per wall type. They
are ranked in decreasing order of goodness of fit based on the Akaike Information
Criterion (AIC), difference in AIC (∆ j) and Akaike weights (w j).

Wall Distributions AIC ∆ j w j P1 P2

FCW

lnorm -2777 0 0.96 meanlog = 0.93 sdlog = 0.034
gamma -2771 7 0.04 shape = 840 rate = 330
norm -2755 22 0.00 mean = 2.5 sd = 0.087
invweibull -2525 252 0.00 shape = 27 scale = 2.5
weibull -2251 526 0.00 shape = 24 scale = 2.6

UCW

invweibull -1108 0 1.00 shape = 27 scale = 2.5
lnorm -1059 48 0.00 meanlog = 0.93 sdlog = 0.043
gamma -1047 60 0.00 shape = 520 rate = 210
norm -1021 87 0.00 mean = 2.5 sd = 0.11
weibull -599 509 0.00 shape = 15 scale = 2.6

SW

lnorm -363 0 0.62 meanlog = 0.96 sdlog = 0.054
gamma -361 1 0.34 shape = 340 rate = 130
norm -357 5 0.04 mean = 2.6 sd = 0.14
invweibull -261 102 0.00 shape = 16 scale = 2.5
weibull -256 107 0.00 shape = 16 scale = 2.7

Table H.4: Distributions fitted to the floor area factor dataset grouped by wall type. These
are ranked in decreasing order of goodness of fit based on the Akaike Information
Criterion (AIC), difference in AIC (∆ j) and Akaike weights (w j). The corrected
AIC was used for both groups. P1 and P2 represent the parameters of the fitted
distribution, stated to two significant figures.

Wall Dist. AIC ∆ j w j P1 P2

FCW

invweibull -17.00 0.00 0.94 shape = 5.5 scale = 0.74
lnorm -11.00 6.00 0.05 meanlog = -0.2 sdlog = 0.23
gamma -8.00 9.00 0.01 shape = 17 rate = 20
norm 0.00 17.00 0.00 mean = 0.84 sd = 0.23
weibull 3.00 20.00 0.00 shape = 3.5 scale = 0.93

SW

invweibull -13.00 0.00 0.89 shape = 5 scale = 0.76
lnorm -9.00 4.00 0.10 meanlog = -0.17 sdlog = 0.24
gamma -4.00 9.00 0.01 shape = 16 rate = 18
norm 8.00 21.00 0.00 mean = 0.88 sd = 0.25
weibull 12.00 25.00 0.00 shape = 3.2 scale = 0.97
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Figure H.10: Goodness of fit plots the floor-to-ceiling height of semi-detached homes within
the 2011 English Housing Survey. A lognormal was fitted to the filled cavity
and solid wall subgroup, while an inverse Weibull was fitted to the unfilled
cavity wall subgroup.
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Figure H.11: Histogram of the floor area measurements for semi-detached dwellings in the
4M dataset, separated by wall construction. The solid vertical line indicates
the median.
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Figure H.12: Goodness of fit plots floor area factor of semi-detached homes in 4M. The
filled cavity and solid wall groups were both fitted with an inverse Weibull
distribution.
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