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ABSTRACT
Audio quality degradation can have many causes. For musical ap-
plications, this fragmentation may lead to highly unpleasant expe-
riences. Restoration algorithms may be employed to reconstruct
missing parts of the audio in a similar way as for image reconstruc-
tion — in an approach called audio inpainting. Current state-of-the
art methods for audio inpainting cover limited scenarios, with well-
defined gap windows and little variety of musical genres. In this
work, we propose a Deep-Learning-based (DL-based) method for
audio inpainting accompanied by a dataset with random fragmen-
tation conditions that approximate real impairment situations. The
dataset was collected using tracks from different music genres to
provide a good signal variability. Our best model improved the qual-
ity of all musical genres, obtaining an average of 12.9 dB of PSNR,
although it worked better for musical genres in which acoustic
instruments are predominant.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Audio quality enhancement, Audio reconstruction, Neural Net-
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1 INTRODUCTION
Audio quality degradation can have many causes. Signals can be
disturbed by noise, or information can be corrupted by packet losses
during transmission (e.g. voice-over-IP transmission), audio capture
devices may exhibit many kinds of malfunctioning as well physical
media may sometimes be partially damaged [? ]. While for some
applications short gaps in audio might be acceptable, for music
applications this fragmentation may lead to highly unpleasant ex-
periences. Restoration algorithms may be employed to reconstruct
missing parts of the audio in a similar way as for image reconstruc-
tion. Adler et. al.[? ] were the first to address this problem as an
analogous to the image inpainting task — an approach called audio
inpainting.

State-of-the-art methods for audio inpainting are usually based
on Deep Learning (DL). Some of these methods are applied to the

task of speech [? ? ? ] or music [? ? ? ] quality enhancement. How-
ever, such works cover limited scenarios, with well-defined gap
windows and little variety of musical genres. This work investigates
the application of benchmarking DL models for audio inpainting
accompanied by a music dataset with random fragmentation condi-
tions that approximate real impairment situations.

Given a fragmented audio signal, our model can predict the audio
frequencies that were lost. Unlike in other methods, in our approach,
we can predict frequencies in gaps of variable-sized windows and
in random positions. Another contribution of this work is the con-
struction of a dataset for the music quality enhancement task with
many advantages over existing ones, as it has a more significant
amount of music (13,583 tracks), and exhibits a greater variety of
musical genres. Additionally, we analyzed the performance of DL
models in each of the musical genres.

The remainder of this paper is organized as follows. Section 2
summarizes how recent work has been successfully applying DL-
based methods in order to increase audio quality. Next, Section 3
describes the construction of our dataset. In Section 4 we intro-
duce our proposal that incorporates the DL model to recover lost
frequencies from fragmented audio signals, followed by Section 5
where we describe the experiments conducted to evaluate the effec-
tiveness of our proposal. Section 6 is devoted to our final remarks
and conclusions.

2 RELATEDWORK
Adler et al. [? ] were the first to define the audio reconstruction task
as an audio inpainting problem, analogous to the image inpaint-
ing task. They define the reconstruction as the inverse problem of
overlapping time-domain frames. Each inverse problem is solved
using a sparse representation with the Orthogonal Matching Pursuit
algorithm and the discrete cosine or Garbor dictionary. Although
they only use linear methods for reconstruction, their work has
brought a significant contribution by defining a previously unex-
plored problem.

Recent work investigating audio enhancement employs deep-
learning-based such as Autoencoders [? ], Generative Adversarial
Networks (GANs) [? ], and Long-Short Term Memory (LSTM) [? ].

Lim et al. [? ] present a super-resolution method for spectrogram
band quality enhancement. They considered that the autoencoder
strategy could achieve a satisfactory result using the frequency
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and time domain representations. The autoencoder, called Time-
Frequency Network (TFNet), has a branch for each representation,
which in the last layer are merged into a high-resolution signal.

Marafioti et al. [? ] focuses on temporal gaps reconstructions
of audio with a fixed duration of 64 milliseconds. They built a
controlled environment to demonstrate that the context associated
with the lost signal facilitates the reconstruction process. Their
dataset was composed exclusively of instrumental genre music,
and the approach consisted of extracting features, such as linear
prediction coding (LPC) and spectrogram. For each 320 ms, they
applied a 64 ms gap in the center of the interval. Thereafter, a deep
convolutional neural network acts as a context encoder to complete
the produced central gaps. Finally, the reconstructed tracks were
evaluated using the Objective Difference Grades (ODG) metric [? ]
that measures the human perception of the reconstruction.

Subsequently, Marafioti et al. [? ] presented a GAN-based audio
painting strategy for restoring long temporal gaps in music tracks.
Their solution, called GACELA, considers two main aspects for
reconstruction. Firstly, it determines five parallel discriminators to
evaluate the reconstruction at five different context scales of the
central gap. Secondly, it evaluates each context to determine the
latent variables of the conditional GAN. They performed tests with
gaps ranging from 320 ms to 1,500 ms, still centrally positioned in a
larger context. However, they conclude that the artifacts generated
during the reconstruction process remain noticeable.

Ebner et al. [? ] presented a GAN-based reconstruction strategy
for working with long gaps up to 500 ms. In their approach, gaps
need to be centered in a specific period larger than the region
to be repaired. They propose a Wasserstein GAN [? ] with two
discriminators, to evaluate a short and a long context prediction
respectively. Then, these short and long context predictions are
merged in an attempt to generate as little noise as possible for the
listener. To demonstrate their results, they used instrumental music
tracks from popular datasets such as MAESTRO [? ] and evaluate
the reconstruction using the ODG perception metric.

Morrone et al. [? ] showed that audio inpainting tasks can also
be performed in a multimodal way. They use both audio and video
features concatenated frame-by-frame as inputs to a stacked Bi-
directional LSTM (BLSTM). Their dataset contains a controlled
content of an actor speaking to a camera positioned in front of
him. Although the gaps to be filled in this strategy were randomly
positioned, it is essential to point out that during the reconstruction
process, the positions were known. They showed that when the
gaps are too long, audio features are not enough for reconstruction,
requiring the injection of visual features.

Unlike previous work, we propose an audio inpainting strategy
that does not know gap positions. Moreover, by using autoencoders,
our approach aims to generalize the inpainting process across dif-
ferent music genres.

3 DATASET
In this work, we use a part of the Free Music Archive (FMA)
dataset [? ] and adapt it for the audio reconstruction task. FMA is a
large-scale dataset for evaluating several tasks in Music Informa-
tion Retrieval (MIR). It provides full-length and high-quality audio,
permissive license, pre-computed features, together with track- and

user-level metadata, tags, and free-form text such as biographies.
It consists of 343 days of audio from 106,574 tracks from 16,341
artists and 14,854 albums arranged in a hierarchical taxonomy of
161 genres.

To compose our dataset, we selected an FMA subset with 13,583
tracks distributed across 16 musical genres. Following the study
done in [? ], we selected the eight most representative musical
genres to compose the training, validation, and part of the test set:
Electronic, Experimental, Rock, Hip-Hop, Folk, Instrumental, Pop,
and International. Additionally, we selected eight music genres
in order to measure the model’s generability: Classical, Historic,
Jazz, Country, Soul-RnB, Spoken, Blues, and Easy Listening. Table
1 describes the distribution of each musical genre in the training,
validation, and test sets.

Table 1: Distribution of musical genres in the training, vali-
dation and test sets.

Genre Audio Qtdy Train. Valid. Test
Electronic 1637 800 200 637

Experimental 1624 800 200 624
Rock 1608 800 200 608

Hip-Hop 1585 800 200 585
Folk 1518 800 200 518

Instrumental 1349 800 200 349
Pop 1186 800 200 186

International 1018 800 200 18
Classical 619 0 0 619
Historic 510 0 0 510
Jazz 384 0 0 384

Country 178 0 0 178
Soul-RnB 154 0 0 154
Spoken 118 0 0 118
Blues 74 0 0 74

Easy Listening 21 0 0 21

We have reduced the audio sampling rate to facilitate the task
of predicting frequencies. Originally, FMA dataset provides the
audios in the MP3 stereo format of 44 kHz and bitrate 320 kbps. We
converted the selected audio to the WAV mono format of 16 kHz
and bitrate of 256 kbps. Next, we extracted the spectrogram from
each audio using the Short-Time Fast Fourier (STFT) algorithm of
the Tensorflow library.1 This process generates spectrograms with
dimensions of 7500 × 128 for each audio. The computational power
to train any model with these input dimensions is very high. So, we
have split each spectrogram into patches of size 128 × 128, which
represent 512 ms of the original audio. Finally, to generate the input
for the prediction models, we perform a process to create random
gaps, illustrated in Figure 1.

To create the gaps, we delete audio frequencies in windows of
random sizes between 10% and 70% of the size of each patch. It
was done in three steps: (1) The spectrogram is extracted from the
audio using the STFT; (2) The spectrogram is split into patches of
common size, these patches correspond to the set Y (ground truth);

1https://www.tensorflow.org/api_docs/python/tf/signal/stft
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Figure 1: Process of creating our dataset.

(3) Set X (input) is generated with the process of deleting audio
frequencies in windows of different positions and sizes.

Our dataset has some advantages over the previously published
ones, such as: (a) the amount of data, with 13,583 tracks; (b) the
variety of musical genres; (c) the multiple gaps with windows in dif-
ferent positions and sizes; (d) dimensional time patches equivalent
to 520 ms.

4 METHOD
Our proposal relies on a DL model that learns how to recover lost
frequencies from fragmented audio waves. Figure 2 illustrates the
workflow of our method. Given a fragmented audio wave, the STFT
is used to extract the corresponding spectrogram. Next, a DL model
is used to predict the lost frequencies and restore the spectrogram.
Finally, the Griffin-Lim [? ] algorithm is used to convert the restored
spectrogram back to the audio wave format.

Figure 2: Audio reconstruction method.

At the heart of our method lies the DL-Model, over which we
have focused much of our efforts. In the remainder of this section,
we detail the different DL networks we tested as possible backbones
to our DL-based method. Among so many other DL models in the
literature, these were the ones that worked particularly well in our
experiments described in Section 5.

4.1 U-Net
Figure 3 illustrates the U-Net [? ] version used in this work. It is
structured in 11 layers of convolutional blocks, where each block is
a sequence of a convolution layer, with kernel size 3×3, a batch nor-
malization, and a rectified linear units (ReLU) activation function.
In the first five layers, the downsample process occurs, in which
convolutional blocks are interleaved with max-pooling layers, such
as kernel size 3×3 and stride 2. The upsampling process starts from
the seventh convolutional block, and relies on a transposed convo-
lution (deconvolution) layer, with kernel size 3×3 and stride 2. Each
transposed convolution is concatenated with the corresponding
downsample block output before moving on to the next upsample
block. In addition, we also experimented with a variant of U-Net,
called U-Net V2, which uses convolution layers with stride 2 in
place of the max-pooling layer.

Figure 3: U-Net architecture

4.2 Res-U-Net
Figure 4 illustrates the Res-U-Net [? ] architecture, in which the
authors have extended the plain U-Net with the addition of a Global
Residual Connection (GRC). The GRC mechanism is a trend in deep
learning models for several image-to-image tasks, such as super-
resolution, denoising, and artifacts removal [? ? ]. The output of
the U-net is connected to a last convolutional layer with three
filters, kernel size 3×3, and linear activation to produce the resid-
ual features. Then, it is subtracted from the input by the GRC to
reconstruct the output. We also experimented with a version of
Res-U-Net that uses U-Net V2 as a backbone.

Figure 4: Res-U-Net architecture.
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4.3 Attention U-Net
Figure 5 illustrates the Attention-U-Net [? ] architecture, a variation
of U-Net combined with a spatial attention mechanism. The atten-
tion block has two inputs, a feature map coming from the previous
layer (Skip) and the other from the upsampling (Up) operation by
deconvolution. Convolutional layers use both feature maps with
𝑁 filters, kernel size 1 × 1, and linear activation, where 𝑁 is the
number of channels of the input map features. Then, they are added
together and activated by the ReLU function. Finally, the output
of a convolutional layer with sigmoid activation is multiplied with
the result of the convolution of the skip connection to generate the
output of the attention block.

Figure 5: Attention U-Net architecture.

5 EXPERIMENT
In this section, we describe our models and evaluate their effective-
ness in restoring spectrograms. It is worth pointing out that our
implementations of the networks, training module, saved models,
and datasets can be obtained in our public git repository.2.

The remainder of this session is structured as follows. Subsec-
tion 5.1 presents the metrics to measure the effectiveness of the
models. Next, Subsection 5.2 presents the setup of the experiment.
Finally, Subsection 5.3 contains our empirical findings.

5.1 Metrics
We evaluate our models using three different metrics: the PSNR
(Peak Signal-to-Noise Ratio), the NRMSE (Normalized Root Mean
Square Error), and the ODG (Objective Difference Grade). We use
2https://github.com/TeleMidia/audio_reconstruction

these metrics to evaluate two different aspects; more precisely,
we use the PSNR and the NRMSE to measure the quality of the
spectrogram restoration, while we use the ODG to measure the
human-perceivable noise.

5.1.1 PSNR. The PSNR is a popular metric used to measure the
quality of signal restoration [? ]. It is a logarithmic measure (in
decibels) of the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of
its representation. More formally, given two images 𝑥 and 𝑦 of size
𝑚 × 𝑛, the PSNR is calculated by:

𝑃𝑆𝑁𝑅(𝑥,𝑦) = 10 log10 (
𝑀𝐴𝑋 2

𝑀𝑆𝐸 (𝑥,𝑦) ) (1)

where𝑀𝐴𝑋 is the maximum possible pixel value of the image, and

𝑀𝑆𝐸 (𝑥,𝑦) = 1
𝑚𝑛

𝑚−1∑
𝑖=0

𝑛−1∑
𝑗=0

[𝑥 (𝑖, 𝑗) − 𝑦 (𝑖, 𝑗)]2 (2)

5.1.2 NRMSE. The NRMSE is another popular metric to measure
the quality of signal reconstruction. This metric consists of the
square root of MSE normalized by the range (defined as the maxi-
mum value minus the minimum value) of the measured data. Given
two images 𝑥 and 𝑦 of a common size, the NRMSE is defined as

𝑁𝑅𝑀𝑆𝐸 (𝑥,𝑦) =
√
𝑀𝑆𝐸 (𝑥,𝑦)

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
(3)

with the𝑀𝑆𝐸 defined by (2).

5.1.3 ODG. The Perceptual Evaluation of Audio Quality (PEAQ)
is a standardized algorithm to measure audio reconstruction qual-
ity objectively. Its output is the Objective Difference Grade (ODG).
The algorithm calculates various Model Output Variables (MOV),
consisting of a vector with 11 features based on the human psycho-
acoustic model. We use the model created by Kabal et al. [? ], which
is based on the ITU-R BS.1387 standard.3

Figure 6 illustrates the PEAQ algorithm, given the reference and
test signals, the psycho-acoustic model generates the MOV. Next,
the cognitive model aggregates the MOV features to predict the
distortion index 𝐷𝐼 .

Figure 6: Stages of PEAQ.

Finally, the ODG is calculated by the following equation:

𝑂𝐷𝐺 = 𝑏𝑚𝑖𝑛 + (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛)𝑠𝑖𝑔(𝐷𝐼 ) (4)

where 𝑠𝑖𝑔 represents the sigmoid function, parameters𝑏𝑚𝑖𝑛 = −3.98
and 𝑏𝑚𝑎𝑥 = 0.22.

Table 4 shows how to interpret the ODG values. The scale goes
from -4 to 0. The closer to 0, the smaller the difference in perception
between the reference signal and the signal under test.

3https://www.itu.int/rec/R-REC-BS.1387

https://github.com/TeleMidia/audio_reconstruction
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Table 2: PSNR Results of models on validation set. ▲

Genre U-Net Attention U-Net U-Net V2 Res-U-Net Attention Res-U-Net Res-U-Net V2
Instrumental 59.0135 59.0354 59.5594 59.1736 59.1364 59.7195

Folk 58.0909 58.1038 58.6509 58.2547 58.2277 58.8289
International 57.5399 57.5298 58.0458 57.7538 57.7006 58.1821
Experimental 57.3531 57.3476 57.7869 57.5243 57.4582 57.8991

Pop 54.9014 54.8721 55.3386 54.9985 54.9390 55.4537
Electronic 53.6760 53.6068 54.1059 53.7744 53.6746 54.2169
Hip-Hop 52.9716 52.8735 53.3412 53.0586 52.9872 53.4567
Rock 52.6030 52.5724 52.9829 52.6776 52.5934 53.0700
Mean 55.7687 55.7427 56.2264 55.9020 55.8396 56.3534

Table 3: NRMSE Results of models on validation set. ▼

Genre U-Net Attenion U-Net U-Net V2 Res-U-Net Attention Res-U-Net Res-U-Net V2
Folk 0.1395 0.1398 0.1326 0.1378 0.1387 0.1313

International 0.1420 0.1430 0.1361 0.1403 0.1416 0.1356
Instrumental 0.1454 0.1456 0.1386 0.1438 0.1449 0.1374
Electronic 0.1540 0.1560 0.1488 0.1534 0.1556 0.1486
Hip-Hop 0.1531 0.1556 0.1485 0.1527 0.1548 0.1486

Pop 0.1556 0.1566 0.1499 0.1547 0.1561 0.1495
Experimental 0.1579 0.1586 0.1524 0.1563 0.1579 0.1520

Rock 0.1705 0.1717 0.1651 0.1697 0.1718 0.1650
Mean 0.1523 0.1534 0.1465 0.1511 0.1527 0.1460

Table 4: ODG interpretation.

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very Annoying

5.2 Setup
Our networks were trained using an octa-core i7 3.40 GHz CPUwith
a NVIDIA TESLA K80 GPU. The training was based on the Adam [?
] optimization with the momentum of 0.999, exponential decay of
0.9 and epsilon of 1e-07, batch normalization with the decay of
0.9997 and epsilon of 0.001 with a fixed learning rate of 0.001, and
MSE (Mean Square Error) as the loss function. The network weights
were initialized with Glorot [? ] and seed zero. We normalized our
dataset and ran our experiments for a maximum of 100 epochs.

5.3 Results
5.3.1 Validation. Tables 2 and 3 show the results according to the
metrics PSNR and NRMSE for the experiment on the validation set.
For all musical genres, the best result was achieved by the Res-U-
Net V2, which produced a mean PSNR of 56.3534 dB and a mean
NRMSE of 0.1460, followed by the U-Net V2, Res-U-Net, Attention
Res-U-Net, U-Net, and Attention U-Net models. Among the musical
genres chosen to compose the dataset, some genres have a higher
correlation with others in our dataset. The Instrumental genre, for
example, has characteristics similar to the Folk and International

genres, as they are genres with a more significant presence of notes
made by acoustic instruments. On the other hand, Electronic, Hip-
Hop, and Rock have a large number of notes produced by electronic
instruments and sound synthesizers. Acoustic instruments produce
more uniform audio waves, while electronic instruments tend to
produce more variable audio waves. We observed that our model
better predicts uniform wave frequencies. Therefore, the quality
of the reconstructed audio is better in the genres that have notes
produced by acoustic instruments. Table 2 shows that the model
produced by Res-U-Net V2 has better performance in the Instru-
mental, Folk, and International genres and the worst result in the
Pop, Electronic, Hip-Hop, and Rock genres.

Figure 7 shows the training convergence curve of the top-3
models. Note that their curves are close. When analyzing the con-
vergence curve of the PSNR metric, the Res-U-Net V2 network
converged faster and remained above the others during all training
epochs. The best model produced by the Res-U-Net network was
obtained at epoch 92. Another point that is worth mentioning is that
the convergence curve of the Res-U-Net network is more unstable
than the others. From the perspective of deep learning engineering,
among the mechanisms used to extend the U-Net vanilla, the ones
that increased performance were the GRC and the replacement
of max-pooling by the convolutional layer with stride 2. The Res-
U-Net V2, which uses both mechanisms, achieved better results
than Res-U-Net (using only GRC) and U-Net v2 (using only the
convolutional layer with stride 2).

Although the spatial attention mechanism is a trend in the
deep learning field, networks extended with a spatial-attention
mechanism obtained poor performance in this experiment. Spatial-
attention convolutions rely on dense information, but the nature of
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the spectrogram information is sparse. Zheng et al. [? ] solved this
problem by combining temporal self-attention and frequency-wise
self-attention parallelly for capturing global dependency along tem-
poral and frequency dimensions in a separable way. In the future,
we will experiment with this method of attention mechanism to
attest if it is effective in the context of this work.

5.3.2 Test. The results of the best model for the test sets are sum-
marized in Table 5. In detail, for each musical genre, is described the
PSNR, NRMSE, and ODG corresponding to the before, after of the
restoration of its spectrograms. On average, the model produced
by the Res-U-Net V2 network achieved gains of approximately 12.9
dB of PSNR, -0.42 of NRMSE, and 1.56 of ODG. The result shows
that the genres that are only in the test set (Classical, Historic,
Jazz, Country, Soul-RnB, Spoken, Blues, and Easy Listening) had
a similar gain to the other musical genres that were used only for
testing, attesting to the generability power of the model. The full
demonstration of our model is available on Youtube4 (temporary
URL due to blind-review).

6 FINAL REMARKS
In this work, we proposed aDL-basedmethod to enhance the quality
of highly degraded music files. The core of our method consists of
an autoencoder that learns how to recover lost frequencies from
fragmented audio waves. For that, we first created a dataset based
on the FMA. Our dataset has advantages over the existing and

previously published ones, mainly due to the number of tracks, the
variety of musical genres, the variety in the position and size of the
gap windows. Next, we experimented with the produced datasets
to choose the best model based on the ODG, PSNR, and NRMSE
metrics. Among the 7 DL networks analyzed, the Res-U-Net V2
network obtained the best performance.

Our model improved the quality of all musical genres, obtaining
an average of 12.9 dB of PSNR. As noted in the experiments, our
model works a little better for musical genres in which acoustic
instruments are predominant than for genres where electronic
instruments are more present.

Although our model improves the quality of songs, residual noise
is still noticeable. Aiming for ODG results closer to 0 for all musical
genres, in the future, we plan to experiment with others methods,
such as double stage models based on cascade models [? ], WaveNet
vocoder [? ], and sparse transformers [? ].

We also observed that networks extendedwith a spatial-attention
mechanisms obtained poor performance in our experiment. We
plan to combine temporal self-attention and frequency-wise self-
attention in parallel for capturing global dependency along tempo-
ral and frequency dimensions in a separable way [? ].
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Figure 7: Convergence curve of the top-3 models.

Table 5: Results of Res-U-Net V2 on test set

Before After Gain
Genre PSNR▲ NRMSE▼ ODG▲ PSNR▲ NRMSE▼ ODG▲ PSNR▲ NRMSE▼ ODG▲

International 48.7529 0.5300 -3 61.9354 0.1239 -1 +13.1825 -0.4061 +2
Blues 45.2932 0.5611 -3 58.2071 0.1403 -1 +12.9138 -0.4208 +2

Easy Listening 44.3598 0.5655 -3 57.4870 0.1386 -1 +13.1272 -0.4269 +2
Pop 43.3860 0.5770 -3 55.9381 0.1511 -1 +12.5520 -0.4258 +2

Country 42.9498 0.5784 -3 55.5137 0.1500 -1 +12.5638 -0.4284 +2
Electronic 41.4648 0.5845 -3 54.3265 0.1512 -1 +12.8617 -0.4333 +2
Hip-Hop 40.8066 0.5846 -3 53.7808 0.1489 -1 +12.9741 -0.4357 +2
Rock 41.8011 0.5831 -3 53.5114 0.1660 -1 +11.7103 -0.4170 +2

Soul-RnB 40.7757 0.5883 -3 53.4086 0.1552 -1 +12.6329 -0.4331 +2
Classical 55.1747 0.4930 -3 68.5498 0.1112 -2 +13.3751 -0.3818 +1
Spoken 52.3546 0.5097 -3 65.0444 0.1231 -2 +12.6897 -0.3866 +1
Historic 49.4550 0.5548 -3 64.1591 0.1146 -2 +14.7040 -0.4402 +1
Jazz 46.9471 0.5584 -3 60.3281 0.1329 -2 +13.3810 -0.4255 +1
Folk 45.7114 0.5702 -3 59.4140 0.1306 -2 +13.7026 -0.4396 +1

Instrumental 45.6390 0.5687 -3 58.6380 0.1430 -2 +12.9989 -0.4256 +1
Experimental 46.1910 0.5540 -3 58.3694 0.1521 -2 +12.1783 -0.4019 +1

Mean 45.6914 0.5601 -3 58.6632 0.1395 -1.47 +12.9717 -0.4205 +1.56
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