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A Cluster-Based Method for Action Segmentation Using
Spatio-Temporal and Positional Encoded Embeddings

Anonymous Author(s)

ABSTRACT
A crucial task to overall video understanding is the recognition and
localisation in time of different actions or events that are present
along the scenes. To address this problem, action segmentationmust
be achieved. Action segmentation consists of temporally segment-
ing a video by labeling each frame with a specific action. In this
work, we propose a novel action segmentation method that requires
no prior video analysis and no annotated data. Our method involves
extracting spatio-temporal features from videos in samples of 0.5s
using a pre-trained deep network. Data is then transformed using
a positional encoder and finally a clustering algorithm is applied
with the use of a silhouette score to find the optimal number of
clusters where each cluster presumably corresponds to a different
single and distinguishable action. In experiments, we show that
our method produces competitive results on Breakfast and Inria
Instructional Videos dataset benchmarks.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Cost-sensitive
learning.

KEYWORDS
Action segmentation, Action recognition, Positional encoding
ACM Reference Format:
Anonymous Author(s). 2018. A Cluster-Based Method for Action Segmenta-
tion Using Spatio-Temporal and Positional Encoded Embeddings. In Wood-
stock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018,
Woodstock, NY . ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
In recent years, video streaming platforms and services have been
growing immensely. A Cisco report1 suggests that by 2021 ap-
proximately 80% of the Internet’s traffic would be made by video.
To effectively extract information from this massive amount of
data, better video understanding methods are needed. In particu-
lar, a crucial task of video understanding is the recognition and
localisation in time of different actions or events that are present
along the scenes [26, 32] in the so called action recognition task,
1https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html
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which has attracted much of the researchers attention nowadays.
Initial efforts focused on the classification of trimmed videos with
a single action [5, 11, 36, 41]. Early methods were primarily based
on the extraction of hand-crafted features [41] but, more recently,
deep learning methods became end-to-end learning models with
automatic feature extraction [5, 11, 36], achieving state-of-the-art
results.

Since in real-life situations, videos are not always trimmed, the
research community started to address the complex problem of
action segmentation. Action segmentation consists of temporally
segmenting a video by labeling each frame with a specific action.
The performance achieved by fully supervised methods for this task
is encouraging. Nevertheless, these solutions require frame-level
or scene-level annotations that are incredibly laborious. For this
reason, researchers started focusing on methods with less super-
vision, such as weakly-supervised [4, 22, 29, 37] and unsupervised
methods [23, 33, 40].

Nevertheless, with the exception of the recent work from Sarfraz
et al. [33], in which they view temporal action segmentation as
a grouping problem and propose a new clustering algorithm that
can generate segmentation for a single video, most unsupervised
or weakly-supervised methods for action segmentation rely on
datasets with many examples of the selected activities.

In this work, we propose a novel segmentation method that
requires no prior video analysis and no annotated data. Our method
involves extracting spatio-temporal features from videos in samples
of 0.5 s, using a pre-trained deep network. Data is then transformed
using a positional encoder and finally, a clustering algorithm is
applied with the use of a silhouette score to find the optimal number
of clusters. On the final result, each produced cluster presumably
corresponds to a different single and distinguishable action. In
experiments, we show that ourmethod produces competitive results
on Breakfast2 and Inria Instructional Videos3 datasets benchmark.

This remainder of this paper is organized as follows. Section 2
summarizes how some recent related works have been successfully
applying DL-based methods for action recognition and segmenta-
tion. In Section 3 we introduce our unsupervised method for action
segmentation, followed by Section 4 where we describe the ex-
periments conducted to evaluate the effectiveness of our proposal.
Section 5 is devoted to our final remarks and conclusions.

2 RELATEDWORK
The action recognition methods strongly rely on feature extraction.
Therefore, we first summarize modern methods for video feature
extraction in section 2.1). Then, we present works with focus on
the action recognition task in section 2.2) followed by works on
temporal action segmentation in section 2.3).

2https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset
3https://hal.inria.fr/hal-01171193
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2.1 Video feature extraction
Unlike images, videos have not only visual but also audible and
temporal information. Current methods for video classification
are generally divided into two stages: (1) Convolutional Neural
Networks (CNNs) (that within this context are called backbones) are
used to extract the audio-visual features from the video content; (2)
after the feature-extraction, sophisticated models for aggregation,
such as NetVLAD [3] and NetFV [27], can be applied to undermine
audio-visual features and perform classification.

To extract the visual features from video, CNNs (e.g. Incep-
tion [38], ResNet [13]) pre-trained in the dataset ImageNet [8]
can be used. Analogously, for extracting features from audio, CNNs
adapted for the audio domain, such as AudioVGG [14] or WaveNet
[28] pre-trained in dataset AudioSet [12] can be used. In addition,
other models are focused on classifying video at the segment level.
Deep recurrent models such as LSTMs [15] and GRUs [7] are com-
monly used for video segment classification as they are well suited
to extract temporal features across time.

2.2 Action recognition
Action recognition on trimmed videos has been widely studied.
First, methods were based on hand-crafted features such as the
work proposed by Wang and Schmid [41], in which they present
one of the most used hand-crafted feature descriptors, the Improved
Dense Trajectories (IDT). However, following the impressive results
of deep convolutional neural networks proposed by Krizhevsky et
al. [16] at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [31], deep learning methods started to flourish for video
classification. For instance, Simonyan et al. [36] were the first to
propose a two-way stream for action recognition where one stream
aims to incorporate spatial information and the other temporal
information.

Carreira et al. [5] proposed a two-stream architecture, but now
with inflated 3D ConvNets. By inflating 2D ConvNets into 3D they
were able to extract better Spatio-temporal features. Besides that,
they also bootstrapped the parameters of the 3D filters and layers
with inflated 2D parameters from pre-trained ImageNet models.
Moreover, they also learned that feeding RGB to one stream and
optical flow to the other would also greatly improve results. Fe-
ichtenhofer et al. [11] proposed a two-pathway model, where one
pathway is designed to capture semantic and spatial information by
operating at low frame rates and a second pathway operating at a
high temporal rate designed to capture motion information. By han-
dling input video with different temporal rates, their method with
two pathways, each with their own expertise on video modeling,
achieved state-of-the-art results.

2.3 Temporal Action Segmentation
Temporal action segmentation has been getting increasing attention
in recent years. Fully supervised methods have achieved impressive
results but at the cost of widely annotated data that is prohibitive
for many real-case scenarios. Therefore, our focus is on weakly
supervised and unsupervised setups.

Methods for weakly supervised action segmentation use the
actions ordering, termed as transcripts, and the video-level activity
as weak supervision. One of the first works from Bojanowski et

al. [4] proposed a method where they use the information on the
ordering of actions to train a discriminative clustering approach
for action alignment to perform segmentation. Richard et al. [30]
proposed a learning algorithmwith a Viterbi-based loss that directly
leverages transcripts allowing online and incremental learning.

A recent proposal by Li et al. [22] contributed with a constrained
discriminative forward loss (CDFL) to train an HMM and GRU net-
work under weak supervision considering all paths, where each
path is a candidate for labeling frames. Kuehne et al. [20] con-
tributed with a method where an RNN is used to recognize and
classify small temporal clips, this way learning local temporal in-
formation. By classifying these small clips, they model complex
action classes with subactions. These subactions allow their model
to learn fine-grained movements but still capture mid and long-
range temporal information frames. Another very recent proposal,
by Souri et al. [37], utilizes a two-branch network where both try
to predict the segmentation and to train it. They propose a novel
mutual consistency loss (MuCon) to enforce consistency between
the two predictions.

3 METHOD
Our proposal consists of a clustering-based method. We consider
a video as a sequence 𝑉 = {𝑓𝑖 }𝑁𝑖=1 of 𝑁 samples. First, we extract
spatio-temporal embeddings for each sample 𝑓𝑖 ∈ 𝑉 . This results in
a matrix𝑀𝑁×𝑑𝑚𝑜𝑑𝑒𝑙

where 𝑑𝑚𝑜𝑑𝑒𝑙 is the embeddings’s dimension-
ality.

Since clustering algorithms do not use temporal frame order-
ing information, following the approach proposed by Vaswani et
al. [39], we use the positional encoding approach to inject posi-
tional information into the model. Then, we apply the cluster-based
heuristic proposed by Mendes et al. [25] to find the optimal number
of clusters in which each cluster is expected to represent a different
action. Figure 1 illustrates the method overview. In the remainder
of this section, we detail each step involved in our proposal.

3.1 Video Embeddings Extraction
The first step in our method is the feature-descriptors generation
for tiny clips of a video. We use the I3D [5] pre-trained model in the
Kinetics4004 dataset with RGB and optical flow inputs to generate
the spatio-temporal embeddings. Each embedding is in the R2048
feature space. The extraction is performed in video snippets of 0.5 s
frames, the minimum temporal window possible to input in the
I3D architecture. We slide this 10 frames window for every frame,
generating a video with 𝑁 frames, 𝑁 − 10 feature vectors. To fill
the matrix with the same number of feature vectors and frames, we
simply repeat the last feature vector until the dimensionality of our
feature vector matrix𝑀 is 𝑁 × 𝑑𝑚𝑜𝑑𝑒𝑙 where 𝑑𝑚𝑜𝑑𝑒𝑙 = 2048.

3.2 Positional Encoding
In our method, we aim to segment a video by clustering frame
embeddings. However, common clustering algorithms make no use
of the temporal frame ordering, which is important for temporally
segmenting a video. This temporal information is crucial to establish
the sub-actions that form more complex actions, which of course
are close to each other in the time dimension; the same happens
4https://deepmind.com/research/open-source/kinetics
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Figure 1: Method Overview.

with frames of the same action. To address this problem, some
previous works included frame-wise feature vectors into a temporal
embedding. For instance, VidalMata et al.[40] trained a temporal
embedding model as a Multilayer Perceptron with the learning goal
of predicting the relative timestamp 𝑡 of a given frame.

Despite of this trend in the literature, we propose a simpler
way that requires no training to store temporal information in
the frame embeddings. We opted to use the positional encoding
method proposed by Vaswani et al.[39] in which we produce an
encoding matrix, 𝑃𝐸𝑁×𝑑𝑚𝑜𝑑𝑒𝑙

, where 𝑁 is the number of frames
in the input video and 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimensionality of each frame
feature descriptor. Likewise, we use the positional encoding with
the sine and cosine functions:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛( 𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 ( 𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)

After constructing 𝑃𝐸 we sum it to the video representation
in the feature space resulting in a representation with positional
information.

3.3 Action Clustering
For this step, we considered two clustering algorithms: (1) k-Means
[24] a centroid-based method and one of the most used unsuper-
vised learning algorithms, and (2) FINCH [34] a state-of-the-art
hierarchical agglomerative clustering method, also used in [33].

Combined with k-Means, we apply the method proposed by
Mendes et al. that uses the Silhouette Score to find the optimal
number of clusters. The Silhouette Score corresponds to the mean
of the Silhouette Coefficient of all samples, which is calculated by
the following equation:

𝑆 =
𝑏 − 𝑎

𝑚𝑎𝑥 (𝑎, 𝑏) (1)

where 𝑎 is the mean distance from a sample to all other samples in

the same cluster, and 𝑏 is the mean distance from a sample to all
other samples in the closest cluster to that sample.

That way, the best value is 1, and the worst is -1. Values close
to 0 indicate overlapping clusters, whereas negative values usually
indicate that a sample has been assigned to the wrong cluster since
a different cluster is more similar. In this strategy, we try to increase
the number of clusters until the maximum Silhouette Score does
not increase for more than 𝑡 times in a row or until it reaches the
maximum number of clusters, which is the number of data points.
When it stops, we return the clustering configuration with the
highest Silhouette Score. Each cluster corresponds to a different
action.

While with KMeans, we used the Silhouette Score to propose an
automatic way of finding the optimal number of clusters, FINCH
does not need that. Most clustering methods are based on the direct
distance between samples. However, in high dimensional spaces,
distances are less informative. For this reason, Sarfraz et al.[34]
proposed FINCH, a clustering method based on the intuition that
semantic relations are indirect relations that are not sensitive for
high dimensional spaces. They observed that the first neighbor of
each data point is sufficient to discover linking chains in the data. So
with a recursive approach, they generate a first neighbors adjacency
matrix, representing the clusters for the first partition. For each
new partition, they use mean vectors of the previous partitions to
generate the next one. At the end of this process, they generate a
hierarchical structure where each successive partition is a superset
of all previous partitions.

4 EXPERIMENTS
This section evaluates the effectiveness of our method by com-
paring it with state-of-the-art models in two benchmark datasets.
Since our proposal consists of an unsupervised method, we restrict
the model list in both benchmarks only to models of the unsuper-
vised or weakly supervised type for a fair comparison. It is worth
pointing out that our implementations of the networks, training
module, saved models, and datasets can be obtained in our public
git repository.5

5blind-review
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Figure 2: Samples from the "Tea" and "Coffee" activities from
the Breakfast Dataset

Figure 3: Samples from "Change car tire" action in INRIA
Dataset

The remainder of this Section is structured as follows. First, in
section 4.1 describes the two datasets used in the experiment, fol-
lowed by section 4.2, where we describe our experimental setup.
The selected metrics used in our evaluation are discussed in sec-
tion 4.3 and, finally, our empirical findings and results are registered
in section 4.4.

4.1 Datasets
We evaluate our method using two benchmark datasets: the Break-
fast [18], and Inria Instructional Videos [2]. The Breakfast is a large-
scale dataset with 1,712 videos comprising ten different complex
cooking activities with, on average, six actions per video. Moreover,
video duration can vary significantly, ranging from 30 seconds to a
few minutes; The Inria Instructional Videos (INRIA) dataset com-
prises 150 videos with 2 minutes of duration on average, containing
nine actions per video on average, and has a very high ratio of
background frames. Figures [? ] and [? ] illustrate examples of the
Breakfast and INRIA datasets, respectively.

4.2 Setup
Our method was tested with a 6 cores i7 2.60 GHz CPU and a RTX-
2070 Max-Q Design GPU. We had to set only 2 hyperparameters:
the number of times, 𝑡 , that the Silhoutte Score does not increase
which we used 𝑡 = 2; the maximum number of clusters, 𝐶 that the
Silhoute Score heuristic could reach we set it to 𝐶 = 15.

4.3 Metrics
In order to evaluate the temporal segmentation, we need a one-to-
one mapping between the method’s output and the ground-truth
labels. To generate such a mapping, following [21][35][33], we use
the Hungarian method. After generating such a mapping for each
video, we report the accuracy as the mean over frames (MoF) metric
for both datasets.

4.4 Results
As can be seen from Table 1, our proposed approach outperforms
almost all unsupervised and weakly supervised methods in the
Breakfast dataset. By comparing our method with the baselines
established by Sarfraz et al.[33] we can see that the positional
encoding is very helpful to generate better segmentation. However,
as mentioned by [33] one of the limitations that greatly affects this
method is that the same actions occurring in temporally distant
moments are always assigned to different clusters. This is especially
true to our method as well, due to the effect of positional encoding.
For instance, two frames are injected with positional information
that is increasingly different as their temporal distance increases.
This effect can cause over-segmentation, which may be especially
detrimental for datasets that have actions which appear multiple
times in distant temporal instants. This over-segmentation effect
can be seen in the results of table 2. The Inria dataset has a very high
percentage of background frames, so multiple segments that should
be assigned to the same cluster are instead assigned to different
clusters.

Despite of achieving competitive results, TW-FINCH is still very
much ahead when it comes to accuracy. We believe this is true due
to the way they encode temporal information while building the
clusters. As briefly explained in Subsection 3.3, FINCH utilizes a
one nearest neighbor graph to generate clusters recursively, and
TW-FINCH is very similar. The difference is that when TW-FINCH
builds its graph, it does by computing the spatio-temporal feature
space distance and modulating the frame’s features with their re-
spective temporal position.

Another interesting observation we make is that K-Means com-
bined with Silhouette Score is performing better than FINCH. We
think that this is because FINCH does not use the feature space
the same way as k-Means does, as it focus on semantic relations
rather than on distances. Therefore, we believe that the positional
information injection is altering the semantic structure of the spatio-
temporal embeddings, causing this performance deterioration in
FINCH.

Figure 4 illustrates examples of predictions made by our best
model. The bars represents the entire video timeline, while each
color represents the video segments. On the top bar are the predicted
actions, and on the bottom bar are the ground truth actions.

5 FINAL REMARKS
In this work, we proposed a novel unsupervised method for action
recognition. Our method consists of extracting spatio-temporal fea-
tures from videos in samples of 0.5 s, using the I3D model. Then the
data is transformed using the positional encoder. Finally, we apply
the k-Means algorithm combined with the Silhouette Score to find
the optimal number of clusters in which each cluster corresponds to

4
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Figure 4: Action predictions produced by the I3D+KMeans+SS+PE model.

Table 1: Comparison on the Breakfast dataset

# Method Type MoF
01 TW-FINCH [33] Unsupervised 62.7
02 I3D+KMeans+SS+PE (Ours) Unsupervised 58.6
03 I3D+FINCH+PE (Ours) Unsupervised 55.6
04 VTE-UNET [40] Unsupervised 52.2
05 CDFL [22] Weakly Sup. 50.2
06 MuCon [37] Weakly Sup. 49.7
07 D3TW [6] Weakly Sup. 45.7
08 NN-vit [30] Weakly Sup. 43.0
09 LSTM+AL [1] Unsupervised 42.9
10 CTE [21] Unsupervised 41.8
11 TCFPN [9] Weakly Sup. 38.4
12 RNN+HMM [20] Weakly Sup. 36.7
13 Mallow [35] Unsupervised 34.6
14 RNN-FC [29] Weakly Sup. 33.3
15 SCT [10] Weakly Sup. 30.4
16 GMM+CNN [19] Weakly Sup. 28.2

Table 2: Comparison on the Inria Instructional Videos
dataset

# Method Type MoF
01 TW-FINCH [33] Unsupervised 58.6
02 I3D+KMeans+SS+PE (Ours) Unsupervised 52.1
03 CTE [21] Unsupervised 39.0
04 I3D+FINCH+PE (Ours) Unsupervised 33.8
05 Mallow [35] Unsupervised 27.8

a different action. We evaluated our method using two well-know
benchmark datasets and obtained results that were competitive
with the state-of-the-art.

We must highlight that, despite our competitive results, TW-
FINCH is still ahead when it comes to accuracy. We believe it is due
to the way TW-FINCH encode temporal information while building
the clusters. To overcome this disadvantage we think that utilizing
more advanced models to extract the clips features such as [11]
could be helpful. Moreover, we could use other modalities present in
videos like audio and use models such as [42]. Another future work
we pretend to make is to attack the problem of over-segmentation.
We believe by interpreting each segment as a time-series data point
and applying a post-processing method to cluster these segments
generated with some time-series focused clustering method like
Dynamic Time Warping (DTW) proposed by [17] could be helpful.
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