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ABSTRACT  58 

Tropical forests are some of the most biodiverse ecosystems in the world, yet their 59 
functioning is threatened by anthropogenic disturbances and climate change. Global actions 60 
to conserve tropical forests could be enhanced by having local knowledge on the forests 61 
functional diversity and functional redundancy as proxies for their capacity to respond to 62 
global environmental change. Here, we create estimates of plant functional diversity and 63 
redundancy across the tropics by combining a dataset of 16 morphological, chemical and 64 
photosynthetic plant traits sampled from 2461 individual trees from 74 sites distributed 65 
across four continents, together with local climate data for the last half century. Our findings 66 
suggest a strong link between climate and functional diversity and redundancy with the three 67 
trait groups responding similarly across the tropics and climate gradient. We show that drier 68 
tropical forests are overall less functionally diverse than wetter forests and that functional 69 
redundancy declines with increasing soil water and vapour pressure deficits. Areas with high 70 
functional diversity and high functional redundancy tend to better maintain ecosystem 71 
functioning, such as aboveground biomass, after extreme weather events. Our predictions 72 
suggest that the lower functional diversity and lower functional redundancy of drier tropical 73 
forests, in comparison to wetter forests, may leave them more at risk of shifting towards 74 
alternative states in face of further declines in water availability across tropical regions. 75 

MAIN TEXT 76 

Tropical forests are amongst the most biodiverse ecosystems on the planet 1, they harbour 77 
more than 50% of global biodiversity including between 67-88% of all tree species and are 78 
responsible for more than 30% of terrestrial productivity 2, 3. Given the large distribution of 79 
tropical forests on earth, small but widespread changes in their tree community composition 80 
can have global impacts in the removal of CO2 from the atmosphere 4. Tropical forests are 81 
also essential to help mitigate the effects of climate change, as intact tropical forests are 82 
carbon sinks of around 1.26 Pg C yr−1 5. However, carbon storage can be negatively impacted 83 
by changes in water availability 6. For example, the Amazon forest, which contains close to 84 
123 Pg C of above and belowground biomass7 lost 1.2-1.6 Pg C 8 – the equivalent of 1% of its 85 
total carbon stocks 9 – during the extreme drought of 2005 and it is now suggested to be a 86 
carbon source 10. Besides impacting the carbon storage capacity of forests, changes in climate 87 
mean states and variability are key potential drivers of biodiversity declines around the world 88 
11, 12. Understanding how climate may affect tropical forests’ capacity to store carbon thereby 89 
requires evaluation of how plants respond to drought stress. To do so, the Maximum Climatic 90 
Water Deficit (MCWD) and Vapour Pressure Deficit (VPD) are two fundamental proxies of 91 
hydric stress for plants 13, 14, with increases in VPD leading to greater plant transpiration stress 92 
15, 16 (but see Costa et al.17 for a review on the water table depth as another highly relevant 93 
metric under drought). Although it has been generally expected that communities historically 94 
adapted to high MCWD and VPD should be better adapted to increasing drier conditions, it 95 
could also be that such communities might already be at their climatic physiological limits and 96 
thus further droughts may increase water stress to such an extent that they are driven 97 
towards alternative states 18, 19. To disentangle these two possibilities, evaluating functional 98 
trait composition may provide clues on their possible historical adaptations to water stress 99 
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conditions 20, 21. Although changes in MCWD and VPD are prominent features of climate 100 
change across tropical forests, detailed analyses that show their relationship with plant 101 
morphology/structure, leaf chemistry and photosynthesis related traits across climatic and 102 
elevation gradients at a pantropical scale remain scarce. Thus, understanding the functional-103 
climatic gradients relationship is key to disentangling the long-term role of tropical forests for 104 
mitigating climate change and is crucial for deciphering the resilience of key ecosystem 105 
properties such as diversity and carbon stocks under a changing climate. 106 

Ecosystem resilience may increase through different pathways, for example, by 107 
species having the same traits that affect a given ecosystem process, such as carbon capture, 108 
but different traits to respond to environmental changes, such as droughts. Arguably 109 
functional traits may respond differently to diverse drivers of change (e.g. temperature or 110 
precipitation change) which may be reflected in trait diversity but not necessarily in species 111 
richness 22 given that there is not always a tight relation between species richness and 112 
functional trait diversity 23, 24. According to the biodiversity-ecosystem functioning insurance 113 
hypothesis 25, ecosystem functions should be less affected by a changing environment when 114 
1) the ecosystem possesses both high functional diversity (e.g. large range of trait values; FD), 115 
2) but also a wide set of species with similar functional characteristics 23 conferring the system 116 
with high functional redundancy (FRed) 26, 27. Thus, in communities with high functional 117 
diversity and high functional redundancy, the loss of a given species is less likely to result in 118 
the disruption of the ecosystem function 28, as other species will probably continue carrying 119 
out the same functions, compensating the lost species 29, 30. High FD and high FRed may 120 
enhance the temporal stability of ecosystem functions (e.g., biomass productivity) 31 and thus 121 
provide a buffering effect against environmental changes 25, conferring higher resilience. 122 
Nonetheless, these hypotheses have never been tested across the tropics, and the role of FD 123 
and FRed for maintaining the tropical forests ability to capture and store carbon remains to 124 
be tested and quantified at this global scale. Quantifying the FD and FRed is crucial to 125 
advancing our understanding of the resilience of these forests  in the Anthropocene. 126 

Here, we address this knowledge gap by combining a new pantropical dataset of 16 127 
plant traits related to morphology/structure (leaf area, leaf dry and fresh mass, leaf dry 128 
matter content, leaf water content, specific leaf area, leaf thickness, wood density), foliar 129 
nutrients (leaf calcium, potassium, magnesium, nitrogen and phosphorus content) and 130 
photosynthesis (photosynthetic rate, dark respiration). These plant traits are hypothesised to 131 
be of importance for tropical forests to adapt or respond to a drying climate (see Table S1 for 132 
a description of their hypothesised importance). The importance of such traits relies on their 133 
influence on the capacity of species to capture energy for growth and conserve resources (e.g. 134 
water) for survival under stressful environmental conditions, such as droughts, and have been 135 
shown to change in response to a changing climate 32, 33, 34. The plant traits were collected 136 
from 2461 individual trees belonging to 1611 species distributed across 74 plots that 137 
contained 32,464 individual trees equal to or greater than 10 cm diameter at breast height 138 
from 2497 species (Extended Data Figure 1, Table S2, See Methods). The vegetation plots are 139 
free of obvious local anthropogenic disturbance (i.e., far from forest edges, and no evidence 140 
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of logging or fires) and cover a wide range of the climatic conditions found across tropical and 141 
subtropical dry and moist broadleaf forests (Extended Data Figure 2; Extended Data Figure 3). 142 
This dataset was combined with estimates of MCWD and VPD from 1958-2017 and of soil 143 
chemistry (cation exchange capacity) and texture (clay content) (Extended Data Figure 3).  144 

We address three fundamental questions: 1) Does the long-term mean ambient water 145 
stress environment (MCWD and VPD) or its changes (ΔMCWD and ΔVPD) over the last half-146 
century determine current functional diversity (Extended Data Figure 3)? First, we examine 147 
the relationship between the functional diversity (here calculated as functional dispersion 35) 148 
and redundancy levels across tropical regions. The relationship between changes in climate and 149 
long-term FD and FRed can be understood as a proxies of the effects of climate change on the 150 
functional diversity levels  of the ecosystem given that we do not quantify their direct effect on 151 
changes in FD and FRed.  2) What is the spatial distribution of functional diversity and 152 
redundancy across tropical forests? 3) Is there a relationship between functional diversity or 153 
functional redundancy and one metric of ecosystem functioning (above ground biomass) 154 
during extreme drought events?  We expect that: 1) Communities that are found in drier 155 
climate conditions and that have experienced stronger decreases in water availability across 156 
the last half century will be less functionally diverse but may be more functionally redundant 157 
as a result of climate filtering for better adapted traits than communities in less extreme 158 
conditions such as wetter forests; 2) Across the full spatial distribution of tropical forests, 159 
tropical wet forests communities, which are more species-rich than drier tropical forests, 160 
have higher functional diversity given a broader set of ecological strategies available as a 161 
result of more stable and favourable climate; 3) There is a positive relationship between 162 
functional diversity, functional redundancy and ecosystem functioning (i.e. above ground 163 
biomass) as more functionally diverse and redundant communities may attenuate the 164 
negative effects of a changing climate and may be therefore be considered to be more 165 
resilient.  166 

Results 167 

Functional diversity, redundancy  and forest susceptibility 168 

Fundamental knowledge on the climate-FD and climate-FRed relationships across tropical 169 
forest ecosystems has been missing. To fill this knowledge gap, we calculated, for vegetation 170 
plots distributed across the tropics, the FD and FRed for morphological/structural, leaf 171 
chemistry and photosynthetic traits that are hypothesised to be of importance for tropical 172 
forests to respond to a drying climate. The selected traits play a role in plant establishment, 173 
growth and/or survival 20, 21, 36 (Table S1). Then, we investigated variation in FD and FRed 174 
across tropical forests by modelling their relation with MCWD, VPD and their interaction, 175 
the ΔMCWD and ΔVPD and their interaction (see Methods section), where more positive 176 
values in MCWD and VPD reflect stronger water deficits. In our models, we also accounted 177 
for soil characteristics (see Methods) such as texture (Clay %) and chemistry (cation 178 
exchange capacity, CEC). Soils high in clay content may have high water holding capacity 179 
over longer periods of time which is important for vegetation under drought conditions 32. 180 
Moreover, it is widely acknowledged that tropical forests in drier regions are generally 181 
associated with soils that are richer in nutrients in comparison to wet tropical forests 37. The 182 
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feedbacks between soil–rainfall and their effects on plant distributions could be disrupted 183 
under a changing climate and therefore have adverse effects on the functioning of tropical 184 
forest ecosystems. A principal component analysis (PCA) of climate conditions (long-term 185 
trends and recent changes) indicated that the first two axes explained 71.3% of the variation 186 
among plots (Extended Data Figure 4a) and the first two axes of the soil-based PCA (with soil 187 
chemistry and texture) account for 83% of the variation among plots (Extended Data Figure 188 
4b).  189 

Based on the long-term mean MCWD, our results show that drier tropical forests are 190 
clearly morphologically less diverse (slope= -0.18 [-0.31, -0.05], median and 90% highest 191 
density intervals) than wet forests (Table S2). The effect of MCWD on morphological FD was 192 
modulated by atmospheric VPD, where the FD of communities with low VPD (blue fitted line 193 
in Fig. 1a) strongly decreased as MCWD increased, but FD tended to increase with MCWD in 194 
communities where VPD was high (red fitted line in Fig. 1a). Morphological/structural FD 195 
increased linearly with increases in clay content (slope= 0.08 [0.01, 0.16]; Fig. 1b). Foliar 196 
nutrients FD also tended to decrease towards drier forests (slope= -0.15 [-0.24, -0.05]; Fig. 197 
1c). Overall, foliar nutrients FD increased towards communities with higher soil CEC (slope= 198 
0.17 [0.12, 0.22]; Fig. 1d), while photosynthetic FD also increased towards areas that 199 
experienced stronger increases in MCWD (slope= 0.14 [0.02, 0.25]; Fig. 1e) but did not 200 
respond to the long-term mean MCWD. For the trait groups (morphology, nutrients, 201 
photosynthesis) for which a clear relationship with climate and soil was found (90% Highest 202 
Density Interval, HDI, of the posterior distribution does not overlap 0; Table S3), the models 203 
explained (R2) 44%, 75% and 75% of the variation in morphology/structure, nutrients and 204 
photosynthetic FD, respectively.  205 

The models of FRed as a function of climate and soil explained 53%, 73% and 33% of 206 
the variation in morphology/structure, nutrients and photosynthetic functional redundancy 207 
respectively across the tropical forest. The FRed models (Table S3) showed that redundancy 208 
of morphological/structural (slope= -0.06 [-0.11, -0.01]) traits declines with higher long-term 209 
mean MCWD and that photosynthetic FRed declines as long-term VPD increases (slope= -0.11 210 
[-0.23, -0.01]; Fig. 2a and Fig. 2e respectively). While redundancy of morphological/structural 211 
and foliar nutrients traits decreased with increases in MCWD through time (ΔMCWD) in areas 212 
that also increased the most in VPD (ΔVPD; Fig. 2b and Fig. 2d red fitted line) the opposite 213 
was predicted for areas that experienced larger increases in MCWD but smallest increases in 214 
VPD (Fig. 2b and Fig. 2d blue fitted line). FRed of morphological/structural traits also tended 215 
to decrease with increases in soil clay content (slope= -0.04 [-0.07, -0.003]; Fig. 2c). 216 

Mapping functional diversity and functional redundancy 217 

Based on our understanding of the relation of FD and FRed of morphological/structural, leaf 218 
nutrients and photosynthetic trait groups with climate and soil (Fig. 1 and Fig. 2), and to fill 219 
the knowledge gap on the pantropical distribution of functional diversity and redundancy  we 220 
created pantropical maps of both FD (Fig. 3) and FRed (Fig. 4) distribution. With our map 221 
predictions we aim to uncover the locations of forests with potentially higher and lower 222 
resilience to a changing climate. To this end, we used the statistical models built above (Table 223 
S3) to predict FD and FRed across the pantropical dry and moist broadleaf forests, for which 224 
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our field sampling locations have a wide representation of the climatic conditions across those 225 
tropical forests (Extended Data Figure 2; Extended Data Figure 5 and Extended Data Figure 6). 226 
Based on the FD and FRed predictions, we calculated the percent area that had ‘low’, 227 
‘intermediate’ and ‘high’ diversity and redundancy for each trait group (see methods). We 228 
also created bivariate maps that combine the FD and FRed scores in a single map to visualise 229 
where FD and FRed are both maximized and minimized across the tropics (Fig. 5). We further 230 
developed the same statistical models as described above but by removing from the analysis 231 
all plots from each continent (Asia and Australia out at the same time) to determine which 232 
regions have higher contribution to determining the observed spatial predictions (those of 233 
Fig. 5). For morphology/structure, foliar nutrients and photosynthesis we found high 234 
correlations between the bivariate maps developed with the full dataset and when Asia and 235 
Australia were left out (r= 0.96, 0.82 and 0.94; Extended Data Figure 7, Extended Data Figure 236 
8, and Extended Data Figure 9 respectively; Also Supplementary Figure 1). For 237 
morphology/structure and photosynthesis there were also high correlations between the 238 
patterns based on the full dataset and those based on the one where Africa was removed (r= 239 
0.92 and 0.93 respectively; Extended Data Figure 7 and Extended Data Figure 9 respectively). 240 
Low correlations between the maps generated with the full dataset and those based on 241 
smaller datasets depict those regions contributed significantly for the full model predictions 242 
(Supplementary Figure 1), which is also correlated to the number of observations available 243 
for each continent (Table S2 and Table S4). 244 

As predicted, our results show that wetter tropical forests tend to be more 245 
functionally diverse than drier tropical forests, especially for morphological/ structural traits 246 
and foliar nutrients traits, but also more functionally redundant for foliar nutrients and 247 
photosynthetic traits than drier tropical forests (Fig. 3 and Fig. 4). While FD levels across our 248 
sampling locations are not significantly related to their taxonomic diversity (number of 249 
species, genera and families; P-val > 0.05),  FRedNU appears to be positively correlated to 250 
taxonomic diversity (P-val < 0.05; Table S5). Our results suggest that given the lower FD (Fig. 251 
3) and FRed (Fig. 4) of drier tropical forests for most of the analysed trait groups, these forests 252 
may be more at risk in the face of further water availability reductions. 253 

The bivariate predictions maps combining FD and FRed (Fig. 5) highlight how wet 254 
tropical regions, such as the Western Amazon, Central Africa, and several regions in South 255 
East Asia maintain high functional diversity and high functional redundancy of 256 
morphological/structural (FDMO max=3.5, FRedMO max=1.5) and leaf nutrients traits (FDNU 257 
max=2.5, FRedNU max=1.5), and also in several wet regions for  leaf photosynthetic traits 258 
(FDPHO max=2.5, FRedPHO max=1.5). We expect these wet tropical regions to be more resilient 259 
to a changing climate given their large combined FD (Fig. 3) and FRed (Fig. 4). To evaluate 260 
which are the different levels FD and FRed across tropical and subtropical dry and moist 261 
broadleaf forests, we distinguished low, intermediate and high scores based on the range of 262 
the spatial predictions (Table S6; see methods section). We predicted that only 2.4% of the 263 
tropical and subtropical dry and moist broadleaf forests have high morphological FD and 2.3% 264 
high morphological FRed. In contrast, the drier tropical forests show a functional diversity of 265 
morphological/structural traits that reach only about half of that in the wet tropics (FDMO 266 
min=~1.5) and some of the lowest FRed (<0.6). From the total area of tropical and subtropical 267 
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dry and moist broadleaf forests, 30.4% shows low morphological/structural FD and 5.5% have 268 
low morphological/structural FRed. Moreover, FD and FRed of leaf nutrients traits are lowest 269 
to intermediate across the tropical dry forest regions, such as the southernmost parts of the 270 
forests in Brazil, in parts of Mexico, and West Africa (Fig. 3 and Fig. 4).  271 

While 14.8% of the forest area has low foliar nutrients FD and 3.7% low FRed, 14.1% 272 
shows high nutrients FD and 7% high FRed. Drier tropical forests in Western Mexico, the 273 
southern forest portion of Brazil and parts of central and West Africa show intermediate to 274 
high photosynthetic FD (max=2.5) but they also tend to show intermediate to low levels of 275 
FRed (FRedPho min=0.3). However, photosynthesis FD and FRed do not seem to have a clear 276 
difference between wetter and drier forests. About 36.8% of the tropical and subtropical dry 277 
and moist broadleaf forest area is predicted to have low photosynthetic FD and 16.9% to have 278 
low photosynthetic FRed, while only 2.4% is expected to have high photosynthetic FD and 279 
6.8% high photosynthetic FRed. Overall, a large amount of forest area has intermediate 280 
photosynthetic FD and/or FRed levels (60.7% and 76.3% respectively). The bivariate FD-FRed 281 
predictions show that most tropical forests across West Amazon and Central Africa reach 282 
some of the highest predicted morphological and photosynthesis FD and FRed, while a smaller 283 
area of western South America reaches some of the highest predicted nutrients FD and FRed 284 
(Fig. 5). In general forests in drier areas show lower FD and FRed combined scores (grey 285 
colour; Fig. 5 bottom panel) for the three functional groups (morphology/structure, nutrients 286 
and photosynthesis) but this is more evident for the photosynthesis traits (Fig. 5).  287 

Linking functional diversity, redundancy and resilience 288 

We tested to what extent the long-term FD and FRed model predictions (Fig. 3 and Fig. 4), 289 
could capture the functioning of tropical forests after climatic disturbances such as El Niño 290 
events. By obtaining the above ground biomass data (AGB) from a set of 86 vegetation plots 291 
in tropical Africa before and after the 2015 El Niño event 38, we calculated the change in 292 
aboveground biomass (ΔAGB) and modelled it as a function of the predicted long-term FD 293 
and FRed map scores. Bennett et al. 38 did not detect a strong decline in AGB for most forests 294 
they analysed after the 2015 El Niño event. We show that, on average, smaller decreases or 295 
larger increases in AGB  (Fig. 6; Table S7) can be found at locations that are predicted to have 296 
higher long-term FD and FRed of morphology/structure (slope= 1.97, [0.28, 3.65]; Fig. 6a) and 297 
nutrients traits (slope= 2.94, [0.25, 5.69]; Fig. 6b) and also higher FRed of photosynthesis traits 298 
(slope= 2.96, [0.94, 5.13]; Fig. 6d) (Table S9). The effect of FDNU on ΔAGB was mediated by  299 
recent changes in MCWD (ΔMCWD), with positive FDNU effects found in areas that 300 
experienced larger increases in mean MCWD (Fig. 6b). There was no strong effect of FDPHO in 301 
areas where ΔVPD was smaller (blue fitted line in Fig. 6c) but the effect became negative for 302 
areas where ΔVPD was larger (becoming drier, red fitted line in Fig. 6c). The effect of FRedNU 303 
on ΔAGB was mediated by ΔMCWD with a positive effect only in regions that experienced 304 
increases in water availability (Fig. 6e blue fitted line;  slope= 2.94 [0.25, 5.69]).  305 

Discussion 306 

Changes in forest cover affect the local surface temperature by means of the exchanges of 307 
water and energy 39. At the same time climate change is altering land conditions affecting the 308 
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regional climate and in the near future global warming is likely to cause the emergence of 309 
unprecedented climatic conditions in tropical regions 39. Therefore, determining the 310 
distribution of more and less resilient tropical forests (e.g. regarding the maintenance of their 311 
functioning) to a changing climate and understanding the mechanisms causing such changes 312 
in resilience is pivotal for the conservation of biodiversity and ecosystem functioning. Here 313 
we provide spatially explicit models of forest functional diversity and functional redundancy 314 
that may aid on this endeavour. However, such predictions may not directly reflect the actual 315 
resilience of forest towards climate change as other biological (e.g. competition, dispersal) 316 
and climatic (e.g. ground water depth, microclimate) may also play a pivotal role on the 317 
responses of tropical forests to a changing environment. 318 

Theory on niche complementarity predicts that more diverse systems make more 319 
efficient use of ecosystem properties given the complementarity of species in the use of 320 
resources available 40, 41. High functional complementarity and functional redundancy may be 321 
more easily achieved in areas with high taxonomic richness. Such complementarity may also 322 
increase the performance of diverse communities in the face of more stressful environments 323 
given facilitative interaction between species 42. It can be therefore expected that more 324 
functionally diverse and more functionally redundant communities would experience lower 325 
change in performance (e.g. lower mortality, lower biomass decrease) with changes in 326 
environmental conditions (e.g. ΔMCWD, ΔVPD). In our study we observed that the functional 327 
diversity levels are not significantly related to the taxonomic diversity found in the study sites 328 
across the tropics but that functional redundancy tends to be, especially for redundancy in 329 
morphological/structure and foliar nutrients traits. This points to the role of taxonomic 330 
diversity on the possible resilience of tropical ecosystems. We show that forest communities 331 
located in areas with lower soil and atmospheric water stress are generally more functionally 332 
diverse and more functionally redundant in morphological/structural, nutrients and 333 
photosynthetic traits than communities in drier areas. Such higher functional diversity and 334 
higher functional redundancy may be one reason why such forests have experienced weaker 335 
compositional and ecosystem functioning changes (e.g. carbon capture) as a result of a drying 336 
climate in comparison to forests in drier areas, as shown for forests across water availability 337 
gradients in West Africa 32, 33 and the Amazon 25, 34. The higher functional diversity in these 338 
wetter forests can be the result of their high water availability (low MCWD and VPD, Table 339 
S2) 43, 44. These conditions facilitate the adaptation, by means of a varied species morphology 340 
and structure 45, to a diverse set of light and moisture conditions under and at the canopy. 341 
Overall, our results support our expectation of lower functional diversity in the sites with 342 
lower long-term water availability, and are in agreement with what has been recently found 343 
not only for functional diversity but also for taxonomic and phylogenetic diversity in some 344 
local forests 32, 46. Higher diversity and higher redundancy in functional traits may enhance 345 
ecosystem functioning, such as the ability of plant communities for carbon capture 47, 48, and 346 
thus show smaller reductions in biomass and lower mortality 49 under changes in climatic 347 
conditions. Our results are consistent with recent studies carried out in temperate forests 48 348 
and with few tree taxa 26, which suggest a positive functional diversity-productivity 349 
relationship.  350 
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Tropical forests that experienced the largest decreases in soil water availability across 351 
the last half century, which corresponds to intermediate to high long-term average MCWD 352 
(e.g. some forests in Panama, Peru and southern Mexico), tend to have high 353 
morphology/structure and nutrients FD and FRed and high photosynthetic FD. The high 354 
functional diversity and high functional redundancy potentially points to the capabilities of 355 
such forests to better withstand the effects of a drying environment than other locations with 356 
low FD and FRed levels. Our findings show that atmospheric water availability (VPD) and its 357 
changes in the last decades mediate the FD and FRed levels across tropical forest ecosystems. 358 
Forests that experienced larger decreases in VPD over the last half century tend to be 359 
functionally redundant in morphological and nutrients traits even with increases in soil water 360 
availability (here the MCWD). However, such forests are not necessarily redundant in 361 
photosynthesis traits. One explanation for this pattern of higher redundancy of forests that 362 
experienced larger increases in MCWD and VPD is that such increases in water stress occurred 363 
in a variety of forests which are located all across the long-term mean MCWD and VPD 364 
spectrum (See Table S2). That means that these forests may well be composed of species with 365 
a wide range of functional adaptations to local conditions, adaptations that could have a 366 
possible mechanistic link via leaf phenology 50, some adapted to long periods of droughts but 367 
also others adapted to high water availability across the year. As tropical forests that 368 
increased the most in soil and atmospheric water availability are located across the long-term 369 
water availability gradient, these forests might be composed of species that have evolved 370 
with different leaf strategies ranging from evergreen to sclerophyllous and deciduous 21. Leaf 371 
adaptations to different environments may thus also explain the pattern of increasing 372 
diversity and redundancy of leaf nutrients and photosynthesis traits in these forests that 373 
experienced larger decreases in water availability. An important further step in future 374 
analyses will be to include as much information as possible not only on the changes in climate 375 
but also on the contemporary changes in functional diversity and functional redundancy. This 376 
would allow establishing a more direct link between the effects of a changing climate on 377 
forest functioning. Moreover, while our study showed clear relations with proxies of water 378 
availability at a pantropical scale (MCWD and VPD), other environmental variables at fine 379 
scale including local topography and ground water availability may also contribute for 380 
determining local FD and FRed levels. 381 

Forests with larger functional diversity and larger functional redundancy pools may be 382 
more resilient to further climate change. Extreme El Niño events bring about higher 383 
temperatures and droughts across tropical forests which can impact the establishment, 384 
survival and persistence of tropical forest vegetation, thus also impacting their functioning 38. 385 
The 2015-2016 El Niño event did not seem to strongly reduce carbon gains in African tropical 386 
forests. Although we did not measure the functional composition of those tropical forests in 387 
Africa before and after the El Niño event, our modelling framework provides a general 388 
understanding of the functional diversity and functional redundancy of such forest given long-389 
term climate conditions. Our results show that areas with higher long-term functional 390 
diversity and functional redundancy tended to show smaller decreases or larger increases in 391 
AGB, thus being more resilient to changes in environmental conditions caused by the 2015-392 
2016 El Niño event. Overall, our results highlight that tropical dry forests, such as those in 393 
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drier parts of Mexico, Colombia, south-eastern Amazonia and much of West Africa, which 394 
have experienced high long-term soil water and atmospheric water stress over the last half 395 
century, could be at higher risk than wetter forests of further functional declines given the 396 
projected changes in climatic conditions for the coming decades 51. Further droughts may 397 
increase the water stress of drier tropical forests, which may already be at their climatic 398 
physiological limits, and could potentially drive them towards alternative stable states 19. This 399 
is in agreement with recent findings for West African 32 and South American drier tropical 400 
forests 6, 50, where large and consistent changes in functional diversity 34 and functioning 6 401 
have been observed. It has been hypothesised that low functional diversity and low functional 402 
redundancy may pinpoint areas that could be less resilient to further changes in 403 
environmental conditions 52. Recent work in the wet tropics of Australia shows that tree 404 
growth has been reduced the most by positive anomalies in atmospheric water deficits in 405 
drier forests and for species growing faster in drier conditions than in wetter ones 36. The net 406 
carbon sink of tropical seasonal forests in Brazil has decreased by 0.13 Mg C ha-1 year-1 407 
amounting to carbon losses of 3.4% per year (on average over a 15 year period) 6, highlighting 408 
how the driest and warmest sites are experiencing some of the largest carbon sink declines 409 
and becoming carbon sources. Moreover, the effects of a changing climate on drier tropical 410 
forest ecosystems may not only affect tree growth and survival but also strongly decrease 411 
their functional trait space available, possibly also affecting their functioning 50. Both the 412 
species-level and forest-level differential demographic sensitivities to a drying climate 413 
support this hypothesis of potentially less resilience in already-drier environments.  414 

We also highlight the need for measuring more widely other plant functional traits 415 
that have a more direct link to the availability, accessibility and transport of water resources 416 
and to adaptations to a drying climate such as plant hydraulic traits (e.g. vessel density, P50, 417 
hydraulic safety margin, hydraulic conductivity, osmotic potential, root size and depth) which 418 
are seldom available for most tropical plant species but that may shed more light into the 419 
possible responses of tropical forest to a changing climate 53, 54.  However, recent work has 420 
shown there is strong correlation between plant hydraulics  and economic traits. For instance 421 
wood density may serve as a proxy for hydraulic traits 55 and has been shown to corelated 422 
with vessel diameter, branch and tree leaf specific conductivity 56, 57, 58, resistance to 423 
embolism 57, 59, sapwood capacitance 60, 61, minimum leaf water potential 62 and leaf water 424 
potential at turgor loss 60. Also, significant relationships between SLA and conduit diameter, 425 
seasonal change in pre-dawn leaf water potential and stomatal conductance have been found 426 
62, together with significant correlation between leaf P50 and leaf mass per area (LMA) and 427 
leaf hydraulic conductivity and LMA 63. Moreover, the leaf osmotic potential at full turgor and 428 
leaf nitrogen content have been shown to be largely correlated 64. Given that within the 429 
hydraulics traits, and thus their leaf and wood economics correlates, and in face of a changing 430 
environment,  there is a trade-off involving drought avoidance and hydraulic safety. Such 431 
trade-off forms an important axis of variation across tropical forests where it is expected that 432 
fast-growing species have lower hydraulic safety compared to slow-growing species 54. Across 433 
the tropics species that can quickly transport water resources would tend to be the ones with 434 
low wood density, short leaf life span and high rates of resources acquisition 53. We expect 435 
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this relationship to scale up from the individual to the ecosystem level and that this is thus 436 
reflected in ecosystem characteristics such as above ground biomass. 437 

In summary, this study addresses the need to understand and monitor the responses 438 
of tropical forest ecosystems to climate change, such as the negative impacts of a drying 439 
climate on the capacity of tropical forests to sequester and store carbon. Current models of 440 
ecosystem contribution to climate mitigation lack information on earth systems feedbacks. 441 
Our results show how contemporary climate shapes the functional diversity and functional 442 
redundancy of tropical forest communities. Across the tropics a diverse set of environmental 443 
conditions support a myriad of tropical tree communities with diverse combinations of plant 444 
functional traits and different functional diversity and functional redundancy levels. Tropical 445 
communities more at risk of shifting towards alternative states could be expected to be 446 
currently the ones where lower functional diversity and redundancy is found and that are 447 
under already high water stress, such as in the drier tropical forests. From the ecosystems 448 
conservation point of view, it is of critical importance to inform decisions by mapping tropical 449 
regions in terms of their resilience to future changes in the environment. Conservation efforts 450 
need to prioritise and manage ecosystems accordingly, especially including drier tropical 451 
forests in the conservation agenda, but also considering that wet tropical forests with higher 452 
functional diversity and higher functional redundancy are likely to continue to be long term 453 
carbon stores and be more resilient in the face of climate extremes and pathogens. 454 

Methods 455 

Vegetation plots. We collected vegetation census data from 74 permanent vegetation plots 456 
that are part of the Global Ecosystems Monitoring network (GEM; 457 
www.gem.tropicalforests.ox.ac.uk) 65. These plots are located in wet tropical forests, 458 
seasonally dry tropical forests, and tropical forest-savanna transitional vegetation. The 459 
sampled vegetation plots ranged in area from 0.1 to 1 ha, with most (67%) being 1 ha and 460 
only one of them being 0.1 ha (Table S2). The plots are located in Australia, Brazil, Colombia, 461 
Gabon, Ghana, Malaysian Borneo, Mexico and Peru across the four tropical continents (Table 462 
S2). In each plot, all woody plant individuals with a diameter ≥ 10 cm at breast height (DBH) 463 
or above buttress roots were measured. In the plots NXV-01 and NXV-10 in Nova Xavantina, 464 
here onwards referred to as Brazil-NX, the diameter was measured at 30 cm from the ground 465 
level as is standard in drier shorter vegetation monitoring protocols. 466 

Plant functional traits. We directly collected plant functional trait measurements from the 467 
most abundant species that would cover at least 70% of plot basal area and that were located 468 
in most of the 74 vegetation plots mentioned above (Extended Data Figure 1; Table S1). All 469 
traits were collected following the GEM network standardised methodology across plots. 470 
Forest inventory data were used to stratify tree species by basal area dominance. The tree 471 
species that contributed most to basal area abundance were sampled with 3–5 replicate 472 
individuals per species. Eighty percent or more of basal area was often achieved in low 473 
diversity sites (e.g., montane or dry forests). For each selected tree a sun and a shade branch 474 
were sampled and in each branch 3–5 leaves were used for trait measurements. This 475 
represented a total sample of 2461 individual trees across the tropics (Extended Data Figure 476 
1). We collected plant functional traits related to photosynthetic capacity Amax (μmol m−2 s−1): 477 
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light-saturated maximum rates of net photosynthesis at saturated CO2 (2000 ppm CO2), Asat 478 
(μmol m−2 s−1): light-saturated rates of net photosynthesis at ambient CO2 concentration 479 
(400 ppm CO2), RDark (μmol m−2 s−1): dark respiration. Leaf nutrient concentration traits (%) of 480 
Ca: leaf calcium, K: leaf potassium, Mg: leaf magnesium, N: leaf nitrogen and P: leaf 481 
phosphorus. Plant morphological and structural traits, A (cm2): leaf area, DM (g): leaf dry 482 
mass, FM (g): leaf fresh mass, LDMC (mg/g): leaf dry matter content, LWC (%): leaf water 483 
content, SLA (g/m2): specific leaf area, T (mm): leaf thickness and WD (g/cm3): wood density. 484 
Further details of measurements for the Peruvian Andes campaign are given in Martin et al. 485 
66 and Enquist et al. 67, for the Malaysian campaign in Both et al. 68, and for the Ghana and 486 
Brazil campaigns in Oliveras et al. 69,, Gvozdevaite et al. 70 and  for Colombia campaigns in 487 
González-M. et al. 50. For the specific dates of plant functional traits collection see ref. 71. For 488 
the FD and FRed calculations, as both only accept one trait value per species, from the 489 
individual level plant functional traits, we averaged the values at species level and when the 490 
species had no trait values available, we filled the gaps by averaging the trait values at the 491 
genus level. This protocol allowed us to have at least 70% of the plot’s basal area covered by 492 
traits but often more. Thus, in our analysis the inclusion of plots is trait dependent in the 493 
sense that only plots with at least 70% of the BA covered by the focus trait were included in 494 
the analysis (see Table S2). 495 

Community level functional diversity and redundancy 496 

We calculated the functional diversity and functional redundancy of morphological/structural 497 
traits, leaf chemistry and photosynthetic traits, which are hypothesised to be of importance 498 
for tropical forests to respond to a drying climate (Table S1) 14, 21,  based on data for species 499 
covering at least 70% of the plot basal area (Table S2) and following equations from refs. 35, 500 
72, 73, 74. The morphological/structural and nutrient related traits used for this analysis are A, 501 
FM, DM, LDMC, T, LWC, SLA, WD, Ca, K, Mg, N, P; and Asat, Amax and RDark for photosynthesis. 502 
We did not build an index including all functional traits together as this would make their 503 
interpretation rather difficult as they point to different axes of the global spectrum of plant 504 
form and function 75 and also because of the difference in number of records available for 505 
each trait group. Plant functional trait diversity (FD) was calculated at the plot level using the 506 
functional dispersion metric, which is closely related to the RaoQ and which represents the 507 
mean distance, in trait space, of each single species to the weighted centroid of all species 35. 508 
We used the FD as it can handle any number and type of traits, because it is unaffected by 509 
species richness, it weighs the values based on the abundance of species, it is not influenced 510 
by outliers and is relatively insensitive to the effects of undersampling 76. To calculate FD we 511 
applied the equation presented by Laliberté and Legendre 35: 512 

eq. 1               𝐹𝐷 = ∑"#!"	%!"
∑"#!"

			 513 

where BAip reflects the total plot level basal area of species i in plot p and zip is the distance 514 
of species i in plot p to the weighted centroid of the n species in trait space. The plant traits 515 
were weighted by the relative basal area (in m2) of each of the species in the plot. Therefore, 516 
FD summarises the trait diversity and represents the mean distance in trait space of each 517 
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species to the centroid of all species in a given community. All numeric traits were 518 
standardised during the FD calculation.  519 

We calculated the functional trait redundancy in the community (vegetation plots), 520 
FRed, as in Pavoine and Ricotta 73 and Ricotta et al. (‘Rstar’) 74 and as developed in the 521 
‘uniqueness’ function of the R ‘adiv’ package 72. ‘Rstar’ quantifies how redundant a plant 522 
community is compared to a scenario where all species would have the most distinct trait 523 
values possible. As in the case of FD, ‘Rstar’ as calculated in Ricotta et al. 72, 73 works with 524 
multiple traits and takes into account species abundances. The ‘Rstar’ index is complementary 525 
to the community-level functional uniqueness index Ustar described by Ricotta et al. 73 which 526 
is the ratio of the Rao quadratic diversity index Q 77, 78, that accounts for species trait 527 
dissimilarities and the Simpson index D, which considers the species in the community as 528 
equally and maximally dissimilar. Thus Ustar measures the uniqueness of the community in 529 
functional space which is obtained by including interspecies dissimilarities in the calculations 530 
of the index. Rstar, which is the complement of Ustar, represents thus a measure of 531 
community-level functional redundancy and is quantified as: 532 

eq. 2               𝑈𝑠𝑡𝑎𝑟 = &'(
&')

				533 

eq. 3               𝑅𝑠𝑡𝑎𝑟 = 1 − 𝑈𝑠𝑡𝑎𝑟				534 

For an in-depth description of the functional redundancy index see refs. 72, 73, 74. 535 

All above-mentioned analyses were carried in the R statistical environment 79 with the 536 
‘FD’ and ‘adiv’ packages.  537 

Climatic and soil data 538 

In order to investigate the role that long-term climate plays on determining the community 539 
trait composition and functional diversity and redundancy across tropical forests we gathered 540 
climatic data on the potential evapotranspiration (PET in mm), precipitation accumulation 541 
(mm) and VPD (kPa) from the TerraClimate project 80 at a spatial resolution of ~4 × 4 km. The 542 
data were obtained for the period from 1958 to 2017. Using the full-term climatic dataset 543 
(1958-2017) we calculated the mean annual VPD, PET, precipitation coefficient of variation 544 
(CV; as a measure of seasonality in water availability) and the maximum climatological water 545 
deficit (MCWD). The MCWD is a metric for drought intensity and severity and is defined as 546 
the most negative value of the climatological water deficit (CWD) over each calendar year. 547 
The VPD is an indicator of plant transpiration and water loss 14. CWD is defined as precipitation 548 
(P) (mm/month) – PET (mm/month) with a minimum deficit of 0. The MCWD was calculated 549 
as in Malhi et al.13 where MCWD=min(CWD1…CWD12). As a final step we converted the 550 
MCWD so that positive values indicate increases in water stress. We also calculated the 551 
change in the climatic variables (ΔMCWD, ΔVPD and ΔCV) between a first period 552 
corresponding to a climatology of 30 years encompassing 1958-1987 and a second period 553 
encompassing the years 1988-2017. The climatology of 30 years to calculate the different 554 
time periods climate was selected as recommended by the World Meteorological 555 
Organization in order to characterise the average weather conditions for a given area 556 
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(www.wmo.int/pages/prog/wcp/ccl/faqs.php). There are other possibly relevant predictors 557 
of water stress for plants in tropical forests such as the water table depth 17,81. It has been 558 
hypothesised that water table depth drives the distribution of plant species and functional 559 
composition, and where it is expected that forest in shallow water table areas show higher 560 
mortality during strong drought events (e.g. El Niño) given the presence of species with 561 
shallower roots and less adapted traits 17,81. However, we did not include the water table 562 
depth in our analysis given the lack of spatially explicit predictions across the tropics. 563 

We also obtained soil texture (percent clay and sand) and chemistry (soil pH and cation 564 
exchange capacity, CEC) gridded data from the SoilGrids project (www.soilgrids.org) and used 565 
this as extra covariates in our modelling framework. Although the CEC includes the acid 566 
aluminium, which is not a plant nutrient and may be toxic to plants, this is one of the best 567 
estimates of the overall potential of the soil to exchange cations (Ca, Mg, and K) that is 568 
available at a pantropical extent 82. 569 

We then tested the correlation between all pairs of climatic variables (full-term and 570 
their changes) and also between the soil variables. We observed that MCWD and CV had 571 
Pearson's correlation coefficients |>0.70| and also CEC and pH and Clay and Sand had 572 
correlation coefficients |>0.70| (Supplementary Figure 2) and we thus dropped CV and its 573 
change, Sand and pH from the analyses as to avoid distorting model coefficients in the 574 
modelling stage 83. We then carried out a principal component analysis (PCA) using the MCWD 575 
and VPD climatic variables (average of full-term and their changes) and another with the soil 576 
variables to investigate the distribution of the vegetation plots in climate and soil space and 577 
to describe how much of this distribution can be explained by each of these. For the PCA 578 
analysis we used the ‘stats’ package in R. 579 

Statistical analysis 580 

Functional diversity and redundancy statistical analysis 581 

We investigated the variation in morphological/structural, leaf chemistry and photosynthetic 582 
FD and FRed across tropical forests by modelling their relation with mean MCWD, VPD for the 583 
period 1958-2017 and their interaction, the ΔMCWD and ΔVPD between the first and second 584 
periods and their interaction and soil chemistry (CEC) and texture (Clay%). For the 585 
photosynthesis statistical models, given their lower sample size (n=22; Table S2), interaction 586 
terms were not included and to avoid overfitting we first tested by means of leave-one-out 587 
cross-validation (LOO) 84  if the soil covariates improved or not the models with only climate 588 
information. We found soil data did not improve our models (Table S8) and thus left CEC and 589 
Clay out of the photosynthesis models. We also calculated the relative change (%) in climatic 590 
conditions but this did not improve model predictions and thus we only present results that 591 
include the absolute changes in MCWD and VPD. We included the change in MCWD and VPD 592 
as we wanted to understand if areas that have experienced stronger changes in climate 593 
showed lower or higher functional diversity and functional redundancy than others that have 594 
experienced milder climate changes. In the same way we included the interaction between 595 
MCWD and VPD (and also between ΔMCWD and ΔVPD) as there may be regions where high 596 
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values of one of these variables may not be related to the values of the other, e.g. high MCWD 597 
may not be related to high VPD. Prior to the statistical modelling we centred and standardised 598 
(generated z-scores) all climatic and soil variables.  599 

We tested for spatial autocorrelation effects in the FD and FRed model residuals using 600 
the Moran’s I test and found a significant effect for the photosynthesis and nutrients FD 601 
models and for the FRed nutrients model (Table S9). Thus, for those data we calculated the 602 
spatial distance at which such spatial effect decreased and found that a distance of 2 km was 603 
sufficient. We then generated an ID for each group of plots (group ID) that were at most 2 km 604 
away from each other and included such group ID as a random factor in those statistical 605 
models. As some plots were smaller than 1 ha (Table S2) we included the z-scores of plot size 606 
as a covariate in all statistical models to account for its possible effect. We log transformed 607 
the FD and FRed indices to improve the normality of the data and applied linear mixed-effects 608 
models with a Gaussian error structure accounting for difference in plot size and spatial 609 
autocorrelation as described above under a Bayesian framework. The mixed-effects models 610 
were run with normal diffuse priors with mean 0 and 2.5 standard deviation to adjust the 611 
scale of coefficients and 10 standard deviations to adjust the scale of the intercept, three 612 
chains and 10000 iterations to avoid issues with model convergence. We computed the 613 
highest density intervals (HDI) rendering the range containing the 90% most probable effect 614 
values and calculated the ROPE values using such HDI as suggested in Makowski et al. 85. The 615 
95% HDI was not used as this range has been shown to be unstable with ESS < 10,000 616 
(effective sample size) 86. We considered a climatic variable had an important (significant) 617 
effect on the response variable if the 90% HDI did not overlap 0. Posterior density 618 
distributions for all models and covariates included in the models are shown in 619 
Supplementary Figure 3 and Supplementary Figure 4. 620 

Based on the statistical models described above we created spatial predictions of 621 
Functional Diversity (FD) and Functional Redundancy (FRed) at a pantropical scale. We 622 
defined the ‘low’, ‘intermediate’ and ‘high’ FD and FRed groups by defining the range in FD 623 
and FRed values and dividing that range between three in order to allocate the FD and FRed 624 
predicted values to each of these groups and be able to state what is the predicted percent 625 
area of tropical and subtropical dry and moist broadleaf forests with low, medium and high 626 
FD and FRed. We also tested the robustness of the spatial predictions of FD and FRed by also 627 
developing the models by leaving out the data from one continent (South East Asia and 628 
Australia together), fitting the model again, and comparing the resulting spatial predictions 629 
to the full model prediction maps by means of Spearman correlations. In Extended Data Figure 630 
10 we also highlight locations across the tropics with climate and soil conditions outside of 631 
our climatic and soil calibration space, thus not covered by the range in our sampling 632 
locations, which may represent locations where our models are extrapolating the 633 
relationships found. 634 

Relating functional diversity, redundancy and biomass  635 
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We obtained the above ground biomass data (AGB) from an independent set of 100 636 
vegetation plots in Africa before (AGBpre) and after (AGBpost) the 2015 El Niño event from 637 
Bennett et al. 38 . The plots from Bennet et al. include censuses from 2000 onward where the 638 
median plot size is 1 ha, the mean initial census was May 2008, with the mean pre-El Niño 639 
census in April 2014, and mean post-El Niño census in February 2017. The plots have a mean 640 
monitoring length pre-El Niño of 8.3 years, with a mean length of the El Niño interval being 641 
2.7 years. To calculate AGB Bennet et al. 38 used the BiomasaFP R package, including the 642 
calculation of the census interval corrections for AGB where Pre-El Niño means of these 643 
variables are time weighted using the census interval lengths. For a full description of the AGB 644 
data see Bennett et al. 38. We calculated the ΔAGB as:  645 

eq. 4 ΔAGB= (AGBpost - AGBpre)  646 

Before modelling we eliminated statistical outliers in the AGB values, this is values more 647 
than 1.5 the interquartile range above the third quartile or below the first quartile. We 648 
therefore only used 86 plots in our analysis. We modelled the ΔAGB as a function of the 649 
predicted (see methods above) FD and FRed maps scores from each functional group 650 
(morphology/structure, nutrients and photosynthesis; Fig. 3 and Fig. 4), one model was built 651 
per functional group. Each model included the FD and FRed index (e.g. FD and FRed of 652 
nutrients) and their interaction with ΔMCWD and ΔVPD as to test the effect of a changing 653 
climate on the effects of FD and FRed on above ground biomass change. We accounted for 654 
plot size by including as a covariate in the models and used a Gaussian error structure model 655 
under a Bayesian framework. The ΔAGB statistical models were run with normal diffuse priors 656 
with three chains and 5000 iterations. 657 

We carried out all statistical analysis in the R statistical environment 79 using the, ‘rstanarm’, 658 
‘loo’, ‘bayestestR’, ‘egg’ and ‘BEST’ packages. 659 

Data availability 660 

The vegetation census and plant functional traits data that support the findings of this study are 661 
available from their sources (www.ForestPlots.net and gem.tropicalforests.ox.ac.uk/). To comply 662 
with the original data owners the processed community-level data used in this study can be 663 
accessed through the corresponding author upon request. 664 
 665 
Code availability 666 

All relevant R-functions and code used in this study are referred to in the Method section and can be 667 
accessed through the DOI 10.5281/zenodo.6367982.  668 
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Figure legends 725 
 726 
Figure 1.  Long-term water availability and its recent changes  and soil conditions drive functional diversity of 727 
plant traits across the tropics. Model results for functional diversity of morphological (a, b), leaf nutrients (c-d) 728 
and photosynthetic (e) traits are shown. Only climatic variables (X-axis) with a clearly important relationship (90% 729 
Highest Density Interval, HDI, of the posterior distribution does not overlap 0) with functional diversity (FD) are 730 
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shown. Models for each group (morphology/structure, leaf nutrients, photosynthetic) were fitted as a function of 731 
long-term and recent changes in climate and of soil chemistry (CEC) and texture (Clay).  Thick black lines show 732 
the average response and shaded lines show 300 random draws from the model posterior distribution 733 
representing variability of the expected model fit. The blue fitted line in a) shows the effect of MCWD at the 734 
lowest value of VPD and the red fitted line at the highest values of VPD. Larger positive values in MCWD and VPD 735 
reflect stronger water deficits. MCWD: maximum climatic water deficit, VPD: vapour pressure deficit, CEC: cation 736 
exchange capacity. Δ: change. The Y-axis shows the FD of morphology/structure (FDMO), leaf nutrients (FDNU) 737 
and photosynthetic (FDPHO) traits. For details about the single traits that form each of the groups 738 
(morphology/structure, leaf nutrients, photosynthetic) see Table S1. For full statistical results see Table S3.  739 
 740 
Figure 2. Long-term water availability and its recent changes  and soil texture drive functional redundancy of 741 
plant traits across the tropics. Model results for functional redundancy of morphological (a-c), leaf nutrients (d) 742 
and photosynthetic (e) traits are shown. Only climatic variables (X-axis) with a clearly important relationship  (90% 743 
Highest Density Interval, HDI, of the posterior distribution does not overlap 0) with functional redundancy are shown 744 
but in e) where the effect of VPD on FRedPHO is marginal. Models for each group (morphology/structure, leaf 745 
nutrients, photosynthetic) were fitted as a function of long-term and changes in climate and of soil chemistry (CEC) 746 
and texture (Clay).  Thick black lines show the average response and shaded lines show 300 random draws from 747 
the model posterior distribution representing variability of the expected model fit. The blue fitted line in b) and d) 748 
shows the effect of ΔMCWD at the largest decrease in ΔVPD and the red fitted line at the larger increase in ΔVPD. 749 
Larger positive values in MCWD reflect stronger water deficits. MCWD: maximum climatic water deficit, VPD: 750 
vapour pressure deficit, Δ: change. The Y-axis shows the FRed of morphology/structure (FRedMO), leaf nutrients 751 
(FRedNU) and photosynthetic (FRedPHO) traits. For details about the single traits that form each of the groups 752 
(morphology/structure, leaf nutrients, photosynthetic) see Table S1. For full statistical results see Table S3. 753 
  754 
Figure 3. Global predictions of functional diversity (FD) across the tropical and subtropical dry and moist broadleaf forests. 755 
FD predictions for morphological/structural (top panel), leaf nutrients (middle panel) and photosynthetic (bottom panel) 756 
traits are shown. Dark brown colours depict areas where FD is lowest, light brown and light blue where FD is intermediate 757 
and dark blue where FD is predicted to be highest. Functional diversity predictions across the tropics were made using the 758 
statistical models for which details are shown in  Table S3. The location of field sites whose data informed this analysis is 759 
shown in Figure S5. 760 

Figure 4. Global predictions of functional redundancy (FRed) across the tropical and subtropical dry and moist broadleaf 761 
forests.  FRed predictions for morphological/structural (top panel), leaf nutrients (middle panel) and photosynthetic (bottom 762 
panel) traits are shown. Dark brown colours depict areas where FRed is lowest, light brown and light blue where FRed is 763 
intermediate and dark blue where FRed is predicted to be highest. Functional redundancy predictions across the tropics were 764 
made using the statistical models for which details are shown in  Table S3. 765 

Figure 5. Global bivariate maps combining the scores of the Functional Diversity (FD) and Functional Redundancy (FRed) 766 
across the tropical and subtropical dry and moist broadleaf forests. Bivariate maps for morphological/structural (top panel), 767 
leaf nutrients (second panel) and photosynthetic (third panel) traits are shown. The bottom panel shows the combination of 768 
the morphological/structural, nutrient and photosynthesis bivariate maps, after standardizing (with values 0 to 1) and 769 
summing them to obtain a general bivariate map of global functional diversity and functional redundancy. Purple-red colours 770 
depict areas where both FD and FRed are highest, while yellow points to areas with higher FD and blue to areas with higher 771 
FRed. Gray colours show areas where both FD and FRed are predicted to be lowest. See full details of the statistical models 772 
underlying these predictions in Table S3. 773 

Figure 6. The strength of changes in aboveground biomass (ΔAGB) after extreme events such as the 2015 El Niño (from 774 
Bennett et al. 38) are related to the local functional diversity (FD) and functional redundancy (FRed) for sites in Africa. The 775 
relation between ΔAGB and FD are shown in a-c and between ΔAGB and FRed in d-e. The x axis shows the FD or FRed scores 776 
for the morphological/structural (MO), nutrients (NU) and photosynthetic (PHO) traits as extracted from the predictions 777 
shown in Fig. 3 and Fig. 4 and the Y axis shows the relation with ΔAGB. The  ΔAGB shows a clear relation (90% Highest Density 778 
Interval, HDI, does not overlap 0) with the diversity indices (Table S7). Thick black lines show the average response and grey 779 
shaded lines show 700 random draws from the posterior distribution representing variability of the expected model fit. The 780 
blue fitted line in b) shows the effect of FDNU at the largest decrease in ΔMCWD and the red fitted line at the larger increase 781 
in ΔMCWD. The blue fitted line in c) shows the effect of FDPHO at the largest decrease in ΔVPD and the red fitted line at the 782 
larger increase in ΔVPD. In e) the effect of FRedNU is shown for the largest decrease in ΔMCWD with the blue fitted line, and 783 
the red fitted line shows the effect at the largest increase in ΔMCWD. In b, c and e the thick blue and red fitted lines represent 784 
the slopes of the interaction between the variable in the X axis and the moderator (i.e. ΔMCWD or ΔVPD). The FD and FRed 785 
scores for each trait group (i.e. morphology/structure, nutrients and photosynthetic) are predictions extracted from Fig. 3 786 
and Fig. 4 for the vegetation plots where the ΔAGB was collected. Only model covariates with a clear relationship with the 787 
ΔAGB are shown. For full statistical results see Table S7. 788 
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