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Abstract

Fairness in software systems aims to provide algorithms that operate in a non-
discriminatory manner, with respect to protected attributes such as gender, race,
or age. Ensuring fairness is a crucial non-functional property of data-driven Ma-
chine Learning systems. Several approaches (i.e., bias mitigation methods) have
been proposed in the literature to reduce bias of Machine Learning systems. How-
ever, this often comes hand in hand with performance deterioration. Therefore, this
thesis addresses trade-offs that practitioners face when debiasing Machine Learning
systems.

At first, we perform a literature review to investigate the current state of the
art for debiasing Machine Learning systems. This includes an overview of existing
debiasing techniques and how they are evaluated (e.g., how is bias measured).

As a second contribution, we propose a benchmarking approach that allows for
an evaluation and comparison of bias mitigation methods and their trade-offs (i.e.,
how much performance is sacrificed for improving fairness).

Afterwards, we propose a debiasing method ourselves, which modifies already
trained Machine Learning models, with the goal to improve both, their fairness and
accuracy.

Moreover, this thesis addresses the challenge of how to deal with fairness with
regards to age. This question is answered with an empirical evaluation on real-world

datasets.
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Introduction

You strive for your justice, and I strive for mine.

_ N4y

Software Engineering (SE) research is concerned with designing, implementing,
maintaining and testing software in a systematic manner. While software systems
do not explicitly incorporate discrimination, they are not spared from biased deci-
sions and unfairness. Social discrimination occurs when a decision about a person
is unfairly biased with regards to sensitive attributes such as race or gender. This
suppresses opportunities of deprived groups or individuals (e.g., in education, or
finance) [14, 15]. For example, Machine Learning (ML) software, which nowadays
is widely used in critical decision-making software such as software for loan appli-
cant [16] and justice risk assessment [17, 18], has shown to exhibit discriminatory
behaviours [19]. The decisions made by ML software can cause discrimination on
two levels: individual and group-level. Individual discrimination occurs when a de-
cision making software makes different predictions for two individuals with a high
degree of similarity (e.g., a ML system making different predictions if the gender
of an individual would change). Discrimination on a group-level describes situ-
ations in which one population group receives favourable treatment over another
(e.g., white defendants have been found less likely to be labelled as future criminal
by risk assessment software than non-white defendants [17]). Such discriminatory
behaviours can be highly detrimental, affecting human rights [20], profit and rev-

enue [21], and can also fall under regulatory control [19,22,23].
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Fairness is an important non-functional property of software [24] and has been
widely studied in the past few years in both software engineering [24,25,26,27,28]
and machine learning literature [14,29,30,31]. Generally speaking, software fair-
ness aims to provide algorithms that operate in a non-discriminatory manner [32].
Some approaches adapt the training data to reduce data bias [28, 33, 34, 35],
some create classification models that consider fairness during the training pro-
cess [29, 36,37, 38, 39], others apply changes to the model prediction outcomes to
reduce bias [15, 31, 40,41, 42]. In particular, this thesis focuses on bias mitiga-
tion methods that aim to improve the fairness of ML systems with respect to two
population groups in binary decision systems (e.g., when applying for a credit at a
bank, male and female applicants should be approved with an equal probability).
While bias mitigation methods are able to increase the fairness of decision making
software, the improvement often comes at the cost of a lower performance or accu-

racy [29]. This circumstance is called the “fairness-accuracy” trade-off [34,35,43].

1.1 Problem Statement

This thesis addresses the problem of trade-offs when applying bias mitigation meth-
ods for improving the fairness of ML systems and associated performance deterio-
ration with respect to other objectives, such as accuracy. This problem is addressed
in three stages: assessing the state-of-the-art methods for bias mitigation as well as
empirical configurations for evaluating their performance; identifying and measur-
ing their performance with regards to their fairness-accuracy trade-off; creating an

approach to achieve fairness and accuracy improvements.

To assess state-of-the-art bias mitigation methods, a literature survey is per-
formed that collects and investigates fairness measurements, datasets and bench-
marking practices. The performance of existing bias mitigation methods is eval-
uated in an empirical study with a baseline approach, which represents a naive
bias mitigation behaviour and is more competitive than existing baselines. Lastly,
modifications of two ML classifiers (Logistic Regression and Decision Trees) are

performed, guided by a multi-objective search procedure. The goal of this multi-



1.2. Objectives 20

objective search is simultaneously improve fairness and accuracy, challenging the

notion of fairness-accuracy trade-offs.

1.2 Objectives

The purpose of this thesis is to provide insights and guidelines for software engi-
neers and practitioners on how to address fairness in software systems and potential
harms to performance accuracy that come along with it. The objectives can be sum-

marized as follows:

1. Analyze state-of-the-art methods for bias reduction.

2. Measure and compare the quality of bias mitigation methods.

3. Improve the accuracy and fairness of Machine Learning software.
1.3 Contributions
The contributions of this thesis are:

1. A comprehensive literature review on existing bias mitigation methods

(Chapter 3).

2. Fairea, a baseline approach for evaluating fairness-accuracy trade-offs (Chap-

ter 4).

3. An empirical study on the fairness-accuracy trade-offs of existing bias miti-

gation methods with Fairea.

4. A novel post-processing methods for modifying Logistic Regression and De-

cision Tree classifiers (Chapter 5).

5. An empirical investigation of different age bias with regards to different age

thresholds to determine young and old population groups (Chapter 6).
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1.4 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 provides background in-
formation and positions this thesis within the field of software fairness. Moreover,
it presents details and fairness measurements, datasets and methods that are utilized
by later chapters (Chapter 4-5).

Chapter 3 presents a literature review on existing bias mitigation methods as
well as details on their empirical evaluation, such as datasets investigated and met-
rics used to measure fairness. In Chapter 4, Fairea, a benchmarking approach for
bias mitigation methods is proposed. Fairea is able to compare bias mitigation
methods that sacrifice accuracy for fairness improvements with a single quantitative
measure. While Chapter 4 presents a categorization and benchmarking approach for
bias mitigation methods, Chapter 5 introduces a novel post-processing methods for
ML classifiers with the goal to simultaneously improve accuracy and fairness. Fol-
lowing, Chapter 6 considers the task of choosing population groups when dealing
with the sensitive attribute “age” (e.g., at what age do young and old people sepa-

rate). Lastly, Chapter 7 summarizes and discusses the results.



Background

This chapter provides details on how to measure and improve the fairness of ML
model, as well as existing works on fairness in the Software Engineering domain.
It also presents fairness metrics, bias mitigation methods and datasets used in later
chapters of this thesis.

First, Section 2.1 outlines definitions of fairness and describes how bias and
subsequent fairness improvements can be measured. Afterwards, Section 2.2
presents the field of Software Engineering (SE) with regards to fairness considera-
tions. The different stages of the software development lifecycle are addressed, to
position this thesis within fair SE. Section 2.3 provides further details on bias miti-
gation methods, which enable a repair of biased software. Afterwards, Section 2.4
presents datasets, on which bias mitigation methods can be evaluated on. This re-
sembles a subset of the information collected in the literature review (Chapter 3).
Lastly, we outline the Al Fairness 360 toolkit (Section 2.5), which provides imple-
mentations of the bias mitigation methods, fairness metrics and datasets addressed

in this chapter.

2.1 Measuring Fairness

Fairness metrics are designed to define and quantitatively measure ML fairness.
There are two primary types of fairness as indicated by Speicher et al. [44]: in-
dividual fairness and group fairness. Individual fairness is satisfied when similar

individuals receive the same treatment [45]. To determine the degree of similar-



2.1. Measuring Fairness 23

ity between to individuals, distance metrics are used, which compare their attribute
values. Frequently, individual fairness is determined by assessing whether individ-
uals who only differ in sensitive attributes receive the same treatment (e.g., “If the

gender of a person would change, does the outcome remain the same?”) [46,47].

Group fairness requires that the predictive performance of a classification
model is equal across different groups [48], which are divided by the values of
protected attributes (i.e., race, age, sex). Groups are either privileged (more likely
to get an advantageous outcome), or unprivileged (more likely to get a disadvanta-

geous outcome).

For proceeding experiments, we consider group fairness metrics to measure
bias, as these are widely adopted in the literature [28, 30,43, 48]; second, most bias
mitigation methods are designed to optimize for group fairness. Not only can group
fairness metrics be used to quantify the bias of model predictions, but also the bias
in underlying datasets that are used for training. These are called dataset metrics

(Section 2.1.1) and classification metrics (Section 2.1.2).

In the following, we use y to denote the predictions of a classification model.
We use D to denote a group (privileged or unprivileged). We use Pr to denote
probability. Section 2.1.1 and Section 2.1.2 define the metrics considered in our

experiments.

2.1.1 Dataset Metrics

Dataset metrics are used to determine bias in the instances of a dataset. Mean
Difference (MD) is a dataset metric which computes differences between privileged
and unprivileged group in regards to how likely it is that they receive a favourable

treatment (i.e., a positive label).!

MD = Pr(y = 1|D = unprivileged)
2.1
—Pr(y=1|D = privileged)

'Mean Difference can also be called Statistical Parity Difference. We choose to call it Mean
Difference to not confuse it with the classification metric which is also called Statistical Parity Dif-
ference.
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2.1.2 Classification Metrics

Classification metrics are used to determine the bias of predictions made by clas-
sification models. We consider three popular classification metrics: Statistical Par-
ity Difference (SPD) [45], Equal Opportunity Difference (EOD) [41] and Average
Odds Difference (AOD) [41].

SPD is a fairness metric requiring that decisions are made independently of
protected attributes [39]. Positive and negative classifications for each demographic

group should be identical over the whole population [45]:

SPD = Pr(y = 1|D = unprivileged)
(2.2)
—Pr(§ = 1|D = privileged)

2.2 Fairness in Software Engineering

Software fairness is a growing concern of software engineers, and, as highlighted in
Brun and Meliou’s FSE’ 18 vision paper [25], novel strategies need to be conceived
to achieve fairness during the software development life cycle of both traditional and
ML-based software systems. Recent surveys by Soremekun et al. [49] and Chen et
al. [5] address developments of fairness research in the software development life
cycle, and fairness testing in particular [5]. Here we outline fairness considerations

for each respective stage of the software development life cycle.

2.2.1 Requirements

Requirements in the software development life cycle describe how a software sys-
tem should behave and what components should be implemented [50]. In this re-
gard, fairness is a non-functional requirement that describes an unbiased behaviour
of a software system [24].

To understand the importance of fairness requirements, it can be helpful
to investigate current practice employed in industry [51, 52]. Habibullah and
Horkoff [51] interviewed ten practitioners to gain an understanding of the non-
functional requirements that are considered in practice and guide future practices.
Among other non-functional requirements, fairness is becoming more prominent.

Balasubramaniam et al. [52] analyzed the ethical guidelines employed by three
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companies. Their results indicate that ethical properties, such as transparency, ex-

plainability, fairness, and privacy can be critical when developing Al systems.

Finkelstein et al. [53] addressed fairness requirements form a multi-objective
perspective when prioritising multiple requirements with competing interests. For
example, some customers may wish to receive equal spend from the developers,
while others may prefer to receive an equal number of their desired requirements

compared to other customers.

2.2.2 Architecture and Design

Software architecture and design describes the components of a software system

and their interaction [54].

To combat the risk of incorporating biases in software systems and potential
negative impacts on in software quality, ethical values, such as fairness, should be
incorporated early in the design process. For this purpose, Shu et al. [55] proposed
a tool, “Fairness in Design”, to support practitioners in designing fairness-aware

systems and highlight potential fairness concerns.

To include users in the design process, Stumpf et al. [S6] proposed CoFAIR, a
method for designing user interfaces in a co-design fashion. In particular, a small
numbers of users is involved in each stage of the design process, with equal say as

researchers and designers.

2.2.3 Verification

Verification is used to certify that given criteria are met. In the fairness context, this

could entail verifying that anti-discrimination laws are followed [48].

To verify a fair treatment of population groups, Albarghouthi et al. [57] pro-
posed FairSquare for automatically verifying fairness properties. While FairSquare
can be used for verifying fairness properties when dealing with multiple population
groups, John et al. [58] considered fairness verification when dealing with individ-

uals.
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2.2.4 Testing

Fairness testing is used to reveal fairness bugs that reside in software systems. Fair-
ness bugs refer to conflicts between. required and existing fairness requirements. A
detailed survey on fairness testing techniques and trends is provided Chen et al. [5].
Here we outline a subset of popular fairness testing works.

Burnett et al. [59] proposed GenderMag, an approach to identify gender bias in
software interfaces and respective workflows. Several tools have been proposed to
test for software fairness [24] and identify instances on which systems exhibit bias
(e.g., a different behaviour for individuals only differing in sensitive attributes). For
example, Themis [60,61] and AEQUITAS [62] can be used to automatically gen-
erate test suites in order to examine the extent to which individual discrimination is
present in a ML model. Whereas, Aggarwal et al. [63] propose a black box approach
to generate test inputs to detect individual discrimination. FairTest [64] considers
multiple fairness metrics and tests outcomes based on sensitive user attributes. A
different approach to fairness testing is the adaptation and changes of user profiles
to test web services. One example is the work of Datta et al. [65], which tests the be-
haviour of Google ads by changing profile information. Another is that of Hannak
et al. [66], which evaluated pricing behaviour of e-commerce sites while simulating

different user features.

2.2.5 Debugging and Repair

After detecting fairness bugs in software systems with testing, debugging tools are
required to repair and remove causes of bias [25]. Such a repair can also be called
“bias mitigation”, as stated by Chen et al. [5].

This thesis belongs to the stage of debugging and fairness repair. Proceeding,
we provide further details on approaches for repairing biased software systems and

achieving fairness improvements (i.e, applying bias mitigation methods).

2.3 Bias Mitigation Methods

Bias can occur at any stage of the machine learning system development process.

To repair bias, researchers have applied bias mitigation methods in three differ-
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ent stages: pre-processing, in-processing and post-processing [32]. Pre-processing
methods aim at processing the training data to reduce bias in the data. In-processing
methods aim to mitigate bias during training by directly optimising algorithms.
Post-processing methods change the prediction outcomes of a model to mitigate
bias after the model has been trained. Following, we present methods for each of

the three categories that are used for benchmarking in our experiments.

2.3.1 Pre-Processing Bias Mitigation Methods

Reweighing (RW) is a pre-processing method that applies weights to different
groups in the training data to achieve fairness [35, 67]. Instances in the training
data are weighted according the frequency of their label and protected attribute (e.g.,
less frequent combinations receive a higher weight). Learning Fair Representations
(LFR) encodes data into an intermediate representation with the aim of obfuscating
protected attribute information, while minimising the overall information disrup-
tion [68]. Calmon et al. [33] formulated the learning of fair representations as an
optimization problem as well, which is called Optimized Pre-processing. Labels
and features are transformed with three objectives in mind: decreasing bias, reduc-

ing changes to data samples, retaining utility.

2.3.2 In-Processing Bias Mitigation Methods

Zhang et al. [36] proposed a debiasing approach based on adversarial learning. They
trained a Logistic Regression model to predict the label Y while preventing an ad-
versary from predicting the protected attribute under consideration of three fairness
metrics: Demographic Parity, Equality of Odds, and Equality of Opportunity. Both,
predictor and adversary, are implemented as Logistic regression models. This tech-

nique is called Adversarial Debiasing (AD).

Kamishima et al. [30] proposed Prejudice Remover (PR), a regularisation ap-
proach for learning fair classification models. While classification models are or-
dinarily optimized for accuracy, PR includes a fairness regularisation term in the

training objective.
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2.3.3 Post-Processing Bias Mitigation Methods

Kamiran et al. [14, 15] introduced the notion of reject option which modifies the
prediction of individuals close to the decision boundary (Reject Option Classifi-
cation). In particular, individuals belonging to the unprivileged group receive a
positive outcome and privileged individuals an unfavourable outcome. Hardt et
al. [41] proposed the modification of classifiers to achieve fairness with respect to
True Positive and False Positive rates. Given an unfair classifier IA/, the classifier
Y is derived by solving an optimization problem under consideration of fairness
loss terms. Similarly, this procedure has been adapted for calibrated True Positive
and False Positive rates [40]. The two methods are called Equalized Odds Post-
processing and Calibrated Equalized Odds Post-processing, respectively.

AOD is a group fairness metric that averages the differences in True Posi-
tive Rate (TPR) and True Negative Rate (TNR) among privileged and unprivileged
groups [41]:

1
AOD = 5((FPRD:merivileged - FPRD:PriVil€8€d)

(2.3)
+(TPRD:unprivileged - TPRD:privileged))
EOD corresponds to the TPR difference [41]:
EOD = TPRD:unprivileged - TPRD:privileged (24)

Following previous work [2, 28], we are interested in the absolute values of
these metrics, thus a minimal value of zero indicates no bias detected by the corre-

sponding metric. Larger metric values correspond to a degree of bias.

2.4 Datasets

This section presents five popular, publicly available datasets, that are used for pro-
ceeding empirical evaluations.

The Adult Census Income (Adult) [69] contains financial and demographic
information about individuals from the 1994 U.S. census. The privileged and un-
privileged groups are distinguished by whether their income is above 50 thousand

dollars a year.
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Table 2.1: Dataset information.

Dataset Size Attributes Favourable Label Majority Label Protected Privileged - Unprivi-
leged
Adult 48,842 14 1 (income >50k) 0 (75%) Sex Male - female
Race White - non white
COMPAS | 7,214 28 0 (No recid) 0 (54%) Sex Female - male
Race Caucasian - not Cau-
casian
Bank ‘ 41,188 20 1 (yes) 0 (87%) Age >25-<25
German ‘ 1,000 20 1 (good credit) 1 (70%) Age >25-<25
MEPS19 ‘ 15,830 138 1 (> 10 visits) 0 (83%) Race White - non-white

The Bank Marketing (Bank) [70] dataset contains details of a direct marketing
campaign performed by a Portuguese banking institution. Predictions are made to
determine whether potential clients are likely to subscribe to a term deposit after
receiving a phone call. The dataset also includes information on the education and

type of job of individuals.

The German Credit Data (German) [69] dataset contains the credit informa-
tion of 1,000 individuals. A classification is made, whether individuals have a good
or bad credit risk. Among others, the dataset contains additional information about

the credit purpose, credit history and employment status.

The Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) [17] dataset contains the criminal history and demographic information
of offenders in Broward County, Florida. To indicate whether a previous offender

is likely to re-offend, they receive a recidivism label.

The Medical Expenditure Panel Survey (MEPS19) [71] represents a large scale
survey of families and individuals, their medical providers, and employers across
the United States. The favourable label is determined by “Utilization” (i.e., how

frequently individuals frequented medical providers).

In Table 2.1, we provide the following information about the five datasets:
number of rows and features, the favourable label and majority class. In addition,
we list the protected attributes for each dataset and the respective privileged and

unprivileged groups for each protected attribute.
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2.5 Al Fairness 360 Toolkit

The Al Fairness 360 Toolkit (AIF360) is a popular open-source framework for fair-
ness research, proposed by Bellamy et al. [72]. The AIF360 toolkit implements and
makes available a diverse set of bias mitigation methods, datasets and fairness met-
rics for research and industrial settings. The design of the the AIF360 toolkit allows
for an easy use and extensibility with new functionalities, such as the inclusion of
additional metrics or bias mitigation methods. To this end, AIF360 is available via
a Python library or online demo.?

In the experiments of following chapters, we use AIF360 implementations for
datasets, metrics and existing bias mitigation methods for benchmarking. For exam-
ple, the configuration of protected attributes and their privileged and unprivileged

groups displayed in Section 2.4, are in accordance with the choices provided by the

AIF360 toolkit.

Zhttps://aif360.mybluemix.net/



Literature Review

Science is organized knowledge; and before knowledge can be organized,
some of it must first be possessed.

— Herbert Spencer

Machine Learning (ML) has been increasingly popular in recent years, both in the
diversity and importance of applications [73]. ML is used in a variety of critical
decision-making applications including justice risk assessments [17, 18] and job
recommendations [74].

While ML systems have the advantage to relieve humans from tedious tasks
and are able to perform complex calculations at a higher speed [75], they are only
as good as the data on which they are trained [76]. ML algorithms, which are never
designed to intentionally incorporate bias, run the risk of replicating or even ampli-
fying bias present in real-world data [19,76,77]. This may cause unfair treatment in
which some individuals or groups of people are privileged (i.e., receive a favourable
treatment) and others are unprivileged (i.e., receive an unfavourable treatment). In
this context, a fair treatment of individuals constitutes that decisions are made in-
dependent of sensitive attributes such as gender or race, such that individuals are
treated based on merit [14, 15,20]. For example, one can aim for an equal proba-
bility of population groups to receive a positive treatment, or an equal treatment of
individuals that only differ in sensitive attributes.

Human bias has been transferred to various real-word systems relying on ML.

There are many examples of this in the literature. For instance, bias has been found
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in advertisement and recruitment processes [74, 78], affecting university admis-
sions [79] and human rights [20]. Not only is such a biased behaviour undesired,
but it can fall under regulatory control and risk the violation of anti-discrimination
laws [19,22,23], as sensitive attributes such as age, disability, gender identity, race
are protected by US law in the Fair Housing Act and Equal Credit Opportunity
Act [80].

Another example for a biased treatment of population groups can be found in
the COMPAS (Correctional Offender Management Profiling for Alternative Sanc-
tions) software, used by courts in US to determine the risks of an individual to reof-
fend. These scores are used to motivate decisions on whether and when defendants
are to be set free, in different stages of the justice system. Problematically, this
software falsely labelled non-white defendants with higher risk scores than white
defendants [17].

To reduce the degree of bias that such systems exhibit, practitioners use three

types of bias mitigation methods [32]:

* Pre-processing: bias mitigation in the training data, to prevent it from reach-

ing ML models;

* In-processing: bias mitigation while training ML models;

 Post-processing: bias mitigation on trained ML models.

There has been a growing interest in fairness research, including definitions, mea-
surements, and improvements of ML models [2, 73,75, 81, 82]. In particular, a
variety of recent work addresses the mitigation of bias in binary classification mod-
els: given a collection of observations (training data) are labelled with a binary label
(testing data) [83].

Despite the large amount of existing bias mitigation methods and surveys on
fairness research, as Pessach and Shmueli [75] pointed out, there remain open chal-
lenges that practitioners face when designing new bias mitigation methods: “It is

not clear how newly proposed mechanisms should be evaluated, and in particular
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which measures should be considered? which datasets should be used? and which
mechanisms should be used for comparison?” [75]

To combat this challenge, we set out to perform a comprehensive survey of ex-
isting research on bias mitigation for ML models. We analyse 341 publications to
identify practices applied in fairness research when creating bias mitigation meth-
ods. In particular, we consider the datasets to which bias mitigation methods are
applied, the metrics used to determine the degree of bias, and the approaches used
for benchmarking the effectiveness of bias mitigation methods. By doing so, we al-
low practitioners to focus their effort on creating bias mitigation methods rather than
requiring a lot of time to determine their experimental setup (e.g., which datasets to
test on, which benchmark to consider).

To the best of our knowledge, this is the first survey to systematically and com-
prehensively cover bias mitigation methods and their evaluation. To summarize, the

contribution of this survey are:

1. we provide a comprehensive overview of the research on bias mitigation

methods for ML classifiers;

2. we introduce the experimental design details for evaluating existing bias mit-

igation methods;

3. we identify challenges and opportunities for future research on bias mitigation

methods.

4. we make the collected paper repository public, to allow for future replication

and manual investigation of our results [84].

The rest of this chapter is structured as follows. Section 3.1 presents an
overview of related surveys. The search methodology is described in Section 3.2.
Sections 3.3-3.6 describe research on bias mitigation methods. Challenges that the
field of fairness research and bias mitigation methods face are discussed in Section

3.7. Section 3.8 concludes this survey.
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3.1 Related Surveys

In this section, we provide an overview on existing surveys in the fairness literature

and their contents. This allows us to identify the knowledge gap filled by our survey.

Mehrabi et al. [20] and Pessach and Shmueli [75] provided an overview of bias
and discrimination types, fairness definitions and metrics, bias mitigation methods,
and existing datasets. For example, Pessach and Shmueli [75,85] listed the datasets
and metrics used by 27 bias mitigation methods. A similar focus has been pursued
by Dunkelau and Leuschel [81], who provided an extensive overview on fairness
notions, available frameworks, and bias mitigation methods for classification prob-
lems. They moreover provided a classification of approaches for each type (i.e.,
pre-, in-, and post-processing). The most exhaustive categorization of bias miti-
gation methods, to date, has been conducted by Caton and Haas [86], who also

presented fairness metrics and fairness platforms.

A detailed collection of prominent fairness definitions for classification prob-
lems is provided by Verma and Rubin [83]. Similarly, Zliobaite [87] surveyed mea-

sures for indirect discrimination for ML.

In addition to the surveys on fairness metrics, Le Quy et al. [88] provided a
survey with 15 frequently used datasets in fairness research. For each dataset, they

described the available features and their relationships with sensitive attributes.

Other surveys are concerned with fairness and consider the following per-
spectives: learning-based sequential decision algorithms [89], criminal justice [18],
graph representations [90], ML testing [24], Software Engineering [5,49], or Natu-
ral Language Processing [91,92].

While previous surveys focus on ML classification, and some mention bias
mitigation methods, none has yet systematically covered the evaluation bias miti-
gation methods (e.g., how are methods benchmarked, what dataset are used). The
surveys related closest to our focus are provided by Dunkelau and Leuschel [81],

and Pessach and Shmueli [75, 85].

Dunkelau and Leuschel [81] provided an overview of bias mitigation methods,

with a focus on their implementation and underlying algorithms. However, further
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evaluation details of these methods, such as dataset and metric usage, were not ad-
dressed. While Pessach and Shmueli [75, 85] listed the datasets and metrics used
by 27 bias mitigation methods, they do not provide actionable insights to support
developers. In addition to combining aspects of both surveys (i.e., extensive collec-
tion of bias mitigation methods like Dunkelau and Leuschel [81], and information
on datasets and metrics similar to Pessach and Shmueli [75]), we aim to analyze the

findings of a comprehensive literature search to devise recommendations.

3.2 Survey Methodology

The purpose of this survey is to gather and categorize research work, that mitigates
bias in ML models. Given that the existing literature focuses on classification for
tabular data, this survey also focuses on bias mitigation methods for such classifi-

cation tasks.

3.2.1 Search Methodology

This section outlines our search procedure. We start with a preliminary search,

followed by a repository search and snowballing.

Preliminary Search. Prior to systematically searching online repositories, we con-
duct a preliminary search. The goal of the preliminary search is to gain a deeper
understanding of the field and assess whether there is a sufficient number of pub-
lications to allow for subsequent analysis. In particular, we collect bias mitigation

publications from four existing surveys (see Section 3.1):
* Mehrabi et al. [20] : 24 bias mitigation methods;
* Pessach and Shmueli [75, 85]: 30 bias mitigation methods;
* Dunkelau and Leuschel [81]: 40 bias mitigation methods;
* Caton and Haas [86]: 70 bias mitigation methods.

In total, we collect 100 unique bias mitigation methods from these four surveys.
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Repository Search. After the preliminary search, we conduct a search of six estab-
lished online repositories (IEEE, ACM, ScienceDirect, Scopus, arXiv, and Google
Scholar).

The search procedure is guided by two groups of keywords:

* Domain: machine learning, deep learning, artificial intelligence;

* Bias Mitigation: fairness-aware, discrimination-aware, bias mitigation, de-

bias*, unbias*;

In this context, Domain keywords ensure that the bias discussed in the publica-
tion affects machine learning systems. Bias Mitigation ensures that the publication
addresses bias reduction via the use of bias mitigation methods. For the six repos-
itories, we collected publications that contain at least one Domain and one Bias
mitigation keyword (i.e., we check each possible combination of keywords for the

two categories).

Selection To ensure that the publications included in this survey are relevant to the
context of bias mitigation for ML models, we consider the following inclusion cri-
teria: 1) describe human biases; 2) address classification problems; 3) use tabular
data (e.g., do not make decisions based on images or text alone).

To ensure that irrelevant publications are excluded from the search results, we

manually check publications in three filtration stages [93]:

1. Title: Publications with irrelevant titles to the survey are excluded;

2. Abstract: The abstract of every publication is checked. Publications that
show to be irrelevant to the survey at this step are excluded (e.g. not about

ML, do not apply debiasing);

3. Body: For publications that passed the previous two steps, we check the entire
publication to determine whether they satisfy the inclusion criteria. If not,

they are excluded.
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Table 3.1: Publications found at each stage of the search procedure.

Stage Publications
Preliminary search 100
Repository search Oct’21 75
Repository search Jul’22 56
Snowballing 78
Author feedback 32
Total 341

Snowballing After conducting the repository search, we apply backward snow-
balling (i.e., finding new publications that are cited by publications we already se-
lected) for each publication retained after the “Body” stage [94]. This snowballing
step is repeated for every new publication found. The goal of snowballing is to find
missing related work with regards to the collected publications. This is in particular

useful if undiscovered bias mitigation methods are used for benchmarking.

3.2.2 Selected Publications

In total, we gathered 341 publications over the different stages of our search proce-
dure. Table 3.2 summarizes the results of two repository searches. The first search
was conducted from the 7th of October to 10th of October 2021, and the second
search was conducted on the 21st of July 2022. The purpose of the second search
is to collect publications from the year 2022 (i.e., we filtered search results for the
publication year 2022). In October 2021, Google Scholar provided 8,738 publica-
tions that were in line with the search keywords. We restricted our search to the first
1,000 entries as prioritized by Google Scholar based on relevance. Similarly, the

second search yielded 1,995 results and we focused on the first 1,000 publications.

To ensure that our survey is comprehensive and accurate, we contacted the
corresponding authors of the 309 publications collected via the preliminary search,
the two repository searches and snowballing. We asked them to check whether
our description about their work is correct. Based on their feedback, we included
additional 31 publications. The amount of publications found for each step of the

search is listed in Table 3.1.
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Table 3.2: Results of the repository search. For each of the six search repositories, we show
the number of publications retained after each filtration stage, where the “Body”
column shows the number of publications included in this survey.

Repository Initial Title Abstract Body
ACM 118 26 16 13
ScienceDirect 166 9 5 3
IEEE 401 18 9 9
arXiv 650 69 48 38
Scopus 1063 44 28 21
Google Scholar | 8738 119 90 77

Search results October’21.

Repository Initial Title Abstract Body
ACM 468 17 14 8
ScienceDirect 88 6 3 2
IEEE 90 8 1 1
arXiv 465 42 23 17
Scopus 356 13 9 5
Google Scholar | 1995 62 51 35

Search results July’22.
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(a) Pre-processing. (b) In-processing. (c) Post-processing.

Figure 3.1: Categorization of bias mitigation methods. Categories are grouped based on
their type (i.e., pre-processing, in-processing, post-processing) and the number
of publications of each category is shown.
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3.3 Algorithms

In this section, we present the bias mitigation methods found in our literature search.
We distinguished bias mitigation methods based on their type (i.e., in which stage
of the ML process are they applied): pre-processing (Section 3.3.1), in-processing
(Section 3.3.2) and post-processing (Section 3.3.3) methods [32]. Moreover, we
organize methods in categories (i.e., the bias mitigation approach). For this, we
follow taxonomies devised by Dunkelau and Leuschel [81], as well as Caton and
Haas [86]. Figure 3.1 illustrates the 13 categories we use.

A single publication may reside in multiple categories, for example if their
approach applies pre-processing before adapting the training procedure during an
in-processing stage. This is the case for 70 publications, for which we provide more
information in Section 3.3.4.

Among the 341 publications, 123 used pre-processing (Section 3.3.1), 212
used in-processing (Section 3.3.2) and 56 used post-processing methods (Section

3.3.3).

3.3.1 Pre-processing Bias Mitigation Methods

In this section, we present bias mitigation methods that combat bias by applying
changes to the training data. Table 3.3 and Table 3.4 list the 123 publications we

found, according to the type of pre-processing method used.

3.3.1.1 Relabelling and Perturbation

This section presents bias mitigation methods that apply changes to the values of
the training data. Changes have been applied to the ground truth labels (relabelling)
or the remaining features (perturbation).

A popular approach for relabelling the dataset is “massaging”, proposed by
Kamiran and Calders [95] in 2009. In the first stage, “massaging” uses a ranker
to determine the best candidates for relabelling. In particular, instances close to
the decision boundary are selected, to minimize the negative impact of relabelling
on accuracy. Afterwards, an equal amount of instances with positive and negative

labels are typically selected, according to their rank. For selected instances, their
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Category Authors [Ref] Year Venue
Kamiran and Calders [95] 2009 ICCCC
Calders et al. [67] 2009 ICDMW
Loung et al. [96] 2011 KDD
Zliobaite et al. [97] 2011 ICDM

E Hajian et al. [98] 2012 IEEE Trans Knowl Data Eng

% Kamiran and Calders [35] 2012 KAIS

~ Zhang et al. [99] 2018 1JCAI
Tosifidis et al. [100] 2019 DEXA
Sun et al. [101] 2022 EuroS&P
Seker et al. [102] 2022 Stud. Health Technol. Inform
Alabdulmohsin et al. [103] 2022 arXiv
Hajian et al. [98] 2012 IEEE Trans Knowl Data Eng

- Feldman et al. [34] 2015 KDD

S Lum and Johndrow [104] 2016 arXiv

g Wang et al. [105] 2018 NeurIPS

g Wang et al. [106] 2019 ICML

£ Johndrow and Lum [107] 2019 Ann Appl Stat
Lietal. [108] 2022 SSRN
Lietal. [109] 2022 ICSE
Calders et al. [67] 2009 ICDMW
Kamiran and Calders [110] 2010 BNAIC
Zliobaite et al. [97] 2011 ICDM
Kamiran and Calders [35] 2012 KAIS
Zhang et al. [111] 2017 TJCAI
Krasanakits et al. [112] 2018 TheWebConf
Xuetal. [113] 2018 Big Data
Chen et al. [114] 2018 NeurIPS
Tosifidis and Ntoutsi [115] 2018  report
Salimi et al. [116] 2019 MOD
Tosifidis et al. [100] 2019 DEXA
Zelayaet al. [117] 2019 KDD
Xuetal. [118] 2019 WCAI
Xuetal. [119] 2019 Big Data
Tosifidis et al. [120] 2019 Big Data
Abusitta et al. [121] 2019 arXiv
Sharma et al. [122] 2020 AIES
Chakraborty et al. [28] 2020 FSE
Jiang and Nachum [123] 2020 AISTATS
Hu et al. [124] 2020 DS
Morano [125] 2020 Thesis

o Yan et al. [126] 2020 CIKM

g Celis et al. [127] 2020 ICML

g‘ Abay et al. [128] 2020 arXiv

3 Salazar et al. [129] 2021 IEEE Access
Zhang et al. [130] 2021 PAKDD
Chuang and Mroueh [131] 2021 ICLR
Amend and Spurlock [132] 2021 JCSC
Verma et al. [133] 2021 arXiv
Cruz et al. [134] 2021 ICDM
Chakraborty et al. [135] 2021 FSE
Jang et al. [136] 2021 AAAI
Du and Wu [137] 2021 CIKM
Roh et al. [138] 2021 NeurIPS
Tofinova et al. [139] 2021 arXiv
Yu [140] 2021 arXiv
Singh et al. [141] 2021 Mach. learn. knowl. Extr.
Sun et al. [101] 2022 EuroS&P
Pentyala et al. [142] 2022 arXiv
Rajabi et al. [143] 2022 Mach. learn. knowl. Extr.
Dablain et al. [144] 2022 arXiv
Chen et al. [145] 2022 FSE
Li et al. [146] 2022 PMLR
Chakraborty et al. [147] 2022 FairWARE
Wang et al. [148] 2022 ICML
Almuzaini et al. [149] 2022 FAccT
Chai and Wang [150] 2022 ICML
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Table 3.4: Publications on Pre-processing bias mitigation methods - Part 2.

Category Authors [Ref] Year Venue
Zemel et al. [68] 2013 ICML
Edwards and Storkey [151] 2015  arXiv
Louizos et al. [152] 2016 ICLR
Xie et al. [153] 2017 NeurIPS
Hacker and Wiedemann [154] 2017 arXiv
McNamara et al. [155] 2017 arXiv
Pérez-Suay et al. [156] 2017 ECML PKDD
Calmon et al. [33] 2017 NeurIPS
Komiyama and Shimao [157] 2017 arXiv
Samadi et al. [158] 2018 NeurIPS
Madras et al. [159] 2018 ICML
du Pin Calmon et al. [160] 2018 IEEEJ Sel
Moyer et al. [161] 2018 NeurIPS
Quadrianto et al. [162] 2018 arXiv
Grgi¢-Hlaca et al. [163] 2018 AAAI
Song et al. [164] 2019 AISTATS
Wang and Huang [165] 2019  arXiv
Lahoti et al. [166] 2019 VLDB
Feng et al. [167] 2019 arXiv
Lahoti et al. [168] 2019 ICDE
Creager et al. [169] 2019 ICML
Gordaliza et al. [170] 2019 ICML

8 Quadrianto et al. [171] 2019 CVPR

é Zhao et al. [172] 2020 ICLR

9 Zehlike et al. [173] 2020 Data Min. Knowl. Discov

E Sarhan et al. [174] 2020 ECCV

I~ Tanu et al. [175] 2020 AISTATS
Jaiswal et al. [176] 2020 AAAI
Madhavan and Wadhwa [177] 2020 CIKM
Ruoss et al. [178] 2020 NeurIPS
Kim and Cho [179] 2020 AAAI
Fong et al. [180] 2021 arXiv
Salazar et al. [181] 2021 VLDB
Gupta et al. [182] 2021 AAAI
Grari et al. [183] 2021 ECML PKDD
Zhu et al. [47] 2021 ICCV
Ohetal. [184] 2022  arXiv
Agarwal and Deshpande [185] 2022 FAccT
Wu et al. [186] 2022 arXiv
Shui et al. [187] 2022 arXiv
Qietal. [188] 2022  arXiv
Balunovi¢ et al. [189] 2022 ICLR
Kairouz et al. [190] 2022 IEEE Trans. Inf. Forensics Secur
Liuetal. [191] 2022 Neural Process. Lett.
Cerrato et al. [192] 2022 arXiv
Kamani et al. [193] 2022 Mach. Learn.
Rateike et al. [194] 2022 FAccT
Galhotra et al. [195] 2022 SIGMOD
Kim and Cho [196] 2022 Neurocomputing
Calders and Verwer [31] 2010 Data Min. Knowl. Discov
Kilbertus et al. [197] 2017 NeurIPS
Gupta et al. [198] 2018 arXiv
Madras et al. [199] 2019 FAccT
Oneto et al. [200] 2019 AIES
Wei et al. [201] 2020 PMLR

2 Kehrenberg et al. [202] 2020 Front. Artif. Intell.

% Gerari et al. [203] 2021 arXiv

~ Chen et al. [204] 2022  arXiv
Liang et al. [205] 2022  arXiv
Jung et al. [206] 2022 CVPR
Diana et al. [207] 2022 FAccT
Chakraborty et al. [147] 2022 FairWARE
Wu et al. [208] 2022 CLeaR

Suriyakumar et al. [209] 2022 arXiv
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labels are switched.

Massaging has later been extended by Kamiran and Calders [35], and Calders
et al. [67]. Moreover, Zliobaite et al. [97] created a related method called “local
massaging”. “Massaging” has also been applied by other work [99, 100].

Another relabelling approach was proposed by Loung et al. [96], who rela-
belled instances based on their k-nearest neighbours, such that similar individuals
receive similar labels.

Feldman et al. [34] used perturbation to modify non-protected attributes, such
that their values for privileged and unprivileged groups are comparable. In particu-
lar, the values are adjusted to bring their distributions closer together while preserv-
ing the respective ranks within a group (e.g., the highest values of attribute a for the
privileged group remains highest after perturbation). Lum and Johndrow [104,107]
used conditional models for perturbation, which allowed for modification of mul-
tiple variables (continuous or discrete). Li et al. [108] proposed an iterative ap-
proach for perturbation. At each step, the most bias-prone attribute is selected and
transformed, until the degree of bias exhibited by a classification model is below a
specified threshold.

Other than perturbing the underlying data for all groups to move them
closer [34,104,107], Wang et al. [105, 106] considered only the unprivileged group
for perturbation seeking to resolve disparity by improving the performance of the
unprivileged group. Hajian et al. [98] applied both relabeling and perturbation (i.e.,

changes to the sensitive attribute).

3.3.1.2 Sampling

Sampling methods change the training data by changing the distribution of samples
(e.g., adding, removing samples) or adapting their impact on training. Similarly,
the impact of training data instances can be achieved by reweighing their impor-
tance [35,67,100, 127,128,137, 140, 142, 146, 149, 150].

Reweighing was first introduced by Calders et al. [67]. Each instance receives
a weight according to its label and protected attribute (e.g., instances in the unpriv-

ileged group and positive label receive a higher weight as this is less likely). In
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the training process of classification models, a higher instance weight causes higher
losses when misclassified. Weighted instances are sampled with replacement ac-
cording to their weights. If the classification model is able to process weighted
instances, the dataset can be used for training without resampling [35].

Jiang and Nachum [123] and Krasanakits et al. [112] used reweighing to com-
bat biased labels in the original training data.

Instead of assigning equal weights to data instances of the same population
subgroup, Li et al. [146] assigned individual weights to instances of the training
data.

Other sampling strategies include the removal of data points (downsam-
pling) [28,116, 130, 133, 134, 138, 139, 145, 148] or the addition of new data points
(upsampling). Popular methods for upsamplig are oversampling for duplicating in-
stances of the minority group [115, 117, 125, 132] and the use of SMOTE [210].
SMOTE does not duplicate instances but generates synthetic ones in the neighbor-
hood of the minority group [115,117,125,126,129, 135,141, 144, 147].

To sample datapoints, uniform [35] and preferential [35,97, 110, 117, 124]
strategies have been followed, where preferential sampling changes the distribution
of instances close to the decision boundary.

Xuetal. [113,118,119] used a generative approach to generate discrimination-
free data for training [121, 136, 143]. Zhang et al. [111] used causal networks to
create a new dataset. The initial dataset is used to create a causal network, which
is then modified to reduce discrimination. The debiased causal network is used to
generate a new dataset.

Sharma et al. [122] created additional data for augmentation by duplicating
existing datasets and swapping the protected attribute of each instance. The newly-

created data is successively added to the existing dataset.

3.3.1.3 Latent variables

Latent variable describes the augmentation of the training data with additional fea-
tures that are preferably unbiased. In previous work, latent variables have been used

to represent labels [201,202] and group memberships (i.e., protected or unprotected
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group) [147,198,200,203,204,205,206,207,209].

For instance, Calders and Verwer [31] clustered the instances to detect those
that should receive a positive latent label and those that should receive a negative
one. For this purpose, they used an expectation maximization algorithm.

Gupta et al. [198] tackled the problem of bias mitigation for situations where
group labels are missing in the datasets. To combat this issue, they created a la-
tent “proxy” variable for the group membership and incorporated constraints for
achieving fairness for such proxy groups in the training procedure.

Frequently, latent variables are considered when dealing with causal

graphs [197,199,203].

3.3.1.4 Representation
Representation learning aims at learning a transformation of training data such that
bias is reduced while maintaining as much information as possible.

The first bias mitigation approach for learning fair representations was Learn-
ing Fair Representations (LFR), proposed by Zemel et al. [68]. LFR translates
representation learning into an optimization problem with two objectives: 1) re-
moving information about the protected attribute; 2) minimizing the information
loss of non-sensitive attributes.

A popular used approach for generating fair representations is optimiza-
tion [33, 154, 155, 160, 161, 164, 166, 168, 170, 173, 187]. Other used techniques

are:
* adversarial learning [47,151,153,159,167,172,176,178,179, 183,188, 190];
 variational autoencoders [152, 169,184,191, 194];
* adversarial variational autoencoder [186];
* normalizing flows [189, 192];
* dimensionality reduction [156, 158,175, 193];

e residuals [157];
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* contrastive learning [182];
* neural style transfer [162,171].

Another method for improving the fairness of the data representation is the re-
moval [163,165,177] or addition of features [180,181,195]. Grgi¢-Hlaca et al. [163]
investigated fairness while using different sets of features, thereby making training
features choices. Madhavan and Wadhwa [177] removed discriminating features
from the training data. Salazar et al. [181] applied feature creation techniques,

which apply nonlinear transformation, and then drop biased features.

3.3.2 In-processing Bias Mitigation Methods

This section presents in-processing methods; methods that mitigate bias during the
training procedure of the algorithm. Overall, we found a total of 212 publications
(see Table 3.5, Table 3.6 and Table 3.7 for more details) that apply in-processing
methods. For more details on in-processing methods, we refer to the survey by Wan
et al. [384], which provides information on 38 in-processing approaches developed

for various ML tasks.

3.3.2.1 Regularization and Constraints

Regularization and constraints are both approaches that apply changes to the learn-
ing algorithm’s loss function. Regularization adds a term to the loss function. While
the original loss function is based on accuracy metrics, the purpose of regulariza-
tion term is to penalize discrimination (i.e., discrimination leads to a higher loss
of the ML algorithm. Constraints on the other hand determine specific bias levels
(according to loss functions) that cannot be breached during training.

To widen the range of fairness definitions that can be considered when applying
constraints, Celis et al. [38] proposed a Meta-algorithm. This Meta-algorithm takes
a fairness constraint as input.

When applied to Decision Trees, regularization can be used to modify the split-
ting criteria [42,221,224,236,237,246,249]. Traditionally, leaves are iteratively

split to achieve an improvement in accuracy. To improve fairness while training,



Table 3.5: Publications on In-processing bias mitigation methods.
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Category Authors [Ref] Year Venue
Kamiran et al. [42] 2010 ICDM
Kamishima et al. [211] 2011 ICDMW
Kamishima et al. [30] 2012 ECML PKDD
Ristanoski et al. [212] 2013 CIKM
Fishetal. [213] 2015 FATML
Berk et al. [29] 2017  arXiv
Pérez-Suay et al. [156] 2017 ECML PKDD
Bechavod and Ligett [214] 2017  arXiv
Quadrianto and Sharmanska [215] 2017 NeurIPS
Raff et al. [216] 2018 AIES
Goel et al. [217] 2018 AAAI
Enni and Assent [218] 2018 ICDM
Mary et al. [219] 2019 ICML
Beutel et al. [220] 2019 AIES
Zhang et al. [221] 2019 ICDMW
Aghaei et a 1. [222] 2019 AAAI
Huang and Vishnoi [223] 2019 ICML
Zhang and Ntoutsi [224] 2019 1ICAI
Tavakol [225] 2020 SIGIR
Baharlouei et al. [226] 2020 ICLR
Di Stefano et al. [227] 2020 arXiv
Kim et al. [228] 2020 ICML
Jiang et al. [229] 2020 UAI

E Romano et al. [230] 2020 NeurIPS

ﬁ Ravichandran et al. [231] 2020 arXiv

E Liu et al. [232] 2020 Preprint

5 Keya et al. [233] 2020 arXiv

& Hickey et al. [234] 2020 ECML PKDD
Kamani [235] 2020 Thesis
Abay et al. [128] 2020 arXiv
Chuang and Mroueh [131] 2021 ICLR
Zhang and Weiss [236] 2021 ICDM
Ranzato et al. [237] 2021 CIKM
Kang et al. [238] 2021 arXiv
Grari et al. [239] 2021 IICAI
Wang et al. [240] 2021 SIGKDD
Mishler and Kennedy [241] 2021 arXiv
Lowy et al. [242] 2021 arXiv
Zhao et al. [243] 2021 arXiv
Yurochkin and Sun [244] 2021 ICLR
Sun et al. [101] 2022 EuroS&P
Zhao et al. [245] 2022 WSDM
Wang et al. [246] 2022 CAV
Deng et al. [247] 2022  arXiv
Lee et al. [248] 2022 Entropy
Zhang and Weiss [249] 2022 AAAI
Jiang et al. [250] 2022 ICLR
Lee et al. [251] 2022 ICASSP
Do et al. [252] 2022 ICML
Patil and Purcell [253] 2022 Future Internet
Kim and Cho [196] 2022 Neurocomputing
Beutel et al. [254] 2017  arXiv
Gillen et al. [255] 2018 NeurIPS
Kearns et al. [37] 2018 ICML
‘Wadsworth et al. [256] 2018 arXiv
Agarwal et al. [257] 2018 ICML
Raff and Sylvester [258] 2018 DSAA
Zhang et al. [36] 2018 AIES
Sadeghi et al. [259] 2019 ICCV
Adel et al. [260] 2019 AAAI
Zhao and Gordon [261] 2019 NeurIPS
Celis and Keswani [262] 2019 nan
Beutel et al. [220] 2019 AIES
Grari et al. [263] 2019 ICDM

= Xuetal. [119] 2019 Big Data

g Yurochkin et al. [264] 2020 ICLR

g Garcia de Alford et al. [265] 2020 SMU DSR

< Roh et al. [266] 2020 ICML
Delobelle et al. [267] 2020 ASE
Rezaei et al. [268] 2020 AAAI
Lahoti et al. [269] 2020 NeurIPS
Amend and Spurlock [132] 2021 JCSC
Rezaei et al. [270] 2021 AAAI
Grari et al. [239] 2021 IICAI
Grari et al. [203] 2021 arXiv
Liang et al. [205] 2022  arXiv
Chen et al. [204] 2022  arXiv
Tao et al. [271] 2022 FSE
Petrovic¢ et al. [272] 2022 Neurocomputing
Yang et al. [273] 2022 medRxiv
Yazdani-Jahromi et al. [274] 2022  arXiv
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Table 3.6: Publications on In-processing bias mitigation methods - Part 2.

Category Authors [Ref] Year Venue
Dwork et al. [45] 2012 ITCS
Calders et al. [275] 2013 ICDM
Fukuchi and Sakuma [276] 2015 arXiv
Fukuchi et al. [277] 2015 1EICE Trans. Inf.& Syst.
Goh et al. [278] 2016 NeurIPS
Zafar et al. [279] 2017 AISTATS
Russel et al. [280] 2017 NeurIPS
Corbett-Davies et al. [43] 2017 KDD
Quadrianto and Sharmanska [215] 2017 NeurIPS
Zafar et al. [39] 2017 TheWebConf
Komiyama and Shimao [157] 2017  arXiv
Woodworth et al. [281] 2017 COLT
Kilbertus et al. [197] 2017 NeurIPS
Zafar et al. [282] 2017 NeurIPS
Gillen et al. [255] 2018 NeurIPS
Olfat and Aswani [283] 2018 AISTATS
Narasimhan [284] 2018 AISTATS
Kearns et al. [37] 2018 ICML
Zhang and Bareinboim [285] 2018 AAAI
Heidari et al. [286] 2018 NeurIPS
Kim et al. [287] 2018 NeurIPS
Gupta et al. [198] 2018 arXiv
Agarwal et al. [257] 2018 ICML
Farnadi et al. [288] 2018 AIES
Goel et al. [217] 2018 AAAI
Nabi and Shpitser [289] 2018 AAAI
Wau et al. [290] 2018 arXiv
Zhang and Bareinboim [291] 2018 NeurIPS
Grgic-Hlaca et al. [163] 2018 AAAI
Komiyama et al. [292] 2018 ICML
Donini et al. [293] 2018 NeurIPS
Balashankar et al. [294] 2019  arXiv
Zafar et al. [295] 2019 JMLR
Lamy et al. [296] 2019 NeurIPS
Cotter et al. [297] 2019 ALT

£ Jung et al. [298] 2019  arXiv

'g Oneto et al. [200] 2019 AIES

g Cotter et al. [299] 2019 J. Mach. Learn. Res.

O Wick et al. [300] 2019 NeurIPS
Cotter et al. [301] 2019 ICML
Nabi et al. [302] 2019 ICML
Xu et al. [303] 2019 TheWebConf
Celis et al. [38] 2019 FAccT
Agarwal et al. [304] 2019 ICML
Kilbertus et al. [305] 2020 AISTATS
Lohaus et al. [306] 2020 ICML
Ding et al. [307] 2020 AAAI
Chzhen et al. [308] 2020 NeurIPS
Wang et al. [309] 2020 NeurIPS
Cho et al. [310] 2020 NeurIPS
Oneto et al. [311] 2020 IJCNN
Maity et al. [312] 2020 arXiv
Chzhen and Schreuder [313] 2020 arxiv
Manisha and Gujar [314] 2020 1JCAI
Scutari et al. [315] 2021 arXiv
Celis et al. [316] 2021 NeurIPS
Celis et al. [317] 2021 PMLR
Petrovié et al. [318] 2021 Eng. Appl. Artif. Intell.
Padh et al. [319] 2021 Uncertainty artif. intell.
Zhao et al. [320] 2021 KDD
Zhang et al. [321] 2021 MOD
Li et al. [322] 2021 LAK
Du and Wu [137] 2021 CIKM
Perrone et al. [323] 2021 AIES
Stowik and Bottou [324] 2021 arXiv
Mishler and Kennedy [241] 2021 arXiv
Lawless et al. [325] 2021 arXiv
Choi et al. [326] 2021 AAAI
Park et al. [327] 2022 WWW
Wang et al. [246] 2022 CAV
Zhao et al. [328] 2022 KDD
Boulitsakis-Logothetis [329] 2022  arXiv
Hu et al. [330] 2022 arXiv

Wau et al. [208] 2022 CLeaR
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Table 3.7: Publications on In-processing bias mitigation methods - Part 3.

Category  Authors [Ref] Year Venue
Luo et al. [331] 2015 DaWaK
Joseph et al. [332] 2016 NeurIPS
Johnson et al. [333] 2016 Stat Sci
Kusner et al. [334] 2017 NeurIPS
Joseph et al. [335] 2018 AIES
Hashimoto et al. [336] 2018 ICML
Hébert-Johnson et al. [337] 2018 ICML
Chiappa and Isaac [338] 2018 IFIP
Alabi et al. [339] 2018 COLT
Madras et al. [340] 2018 NeurlIPS
Kamishima et al. [341] 2018 Data Min Knowl Discov
Kilbertus et al. [342] 2018 ICML
Dimitrakakis et al. [343] 2019 AAAI
Chakraborty et al. [344] 2019 arXiv
Noriega-Campero et al. [345] 2019 AIES
Chiappa [346] 2019 AAAI
Madras et al. [199] 2019 FAccT
Tosifidis and Ntoutsi [347] 2019 CIKM
Kilbertus et al. [305] 2020 AISTATS
Zhang and Ramesh [348] 2020 arXiv
Chakraborty et al. [28] 2020 FSE
Mandal et al. [349] 2020 NeurIPS
Hu et al. [124] 2020 DS
Liu et al. [232] 2020 Preprint
da Cruz [350] 2020 Thesis
Tosifidis and Ntoutsi [351] 2020 DS
Kamani [235] 2020 Thesis
Martinez et al. [352] 2020 ICML

2 Ignatiev et al. [353] 2020 CP

§ Ezzeldin et al. [354] 2021 arXiv

= Zhang et al. [130] 2021 PAKDD

< Wang et al. [355] 2021 FAccT
Ozdayi et al. [356] 2021 arXiv
Islam et al. [357] 2021 AIES
Sharma et al. [358] 2021 AIES
Cruz et al. [134] 2021 ICDM
Lee et al. [359] 2021 ICML
Hort and Sarro [13] 2021 ASE
Perrone et al. [323] 2021 AIES
Roh et al. [360] 2021 ICLR
Valdivia et al. [361] 2021 Int. J. Intell. Syst.
Wang et al. [362] 2022  arXiv
Roy and Ntoutsi [363] 2022 ECML PKDD
Sikdar et al. [364] 2022 FAccT
Agarwal and Deshpande [185] 2022 FAccT
Park et al. [327] 2022 WWW
Djebrouni [365] 2022 Eurosys
Short and Mohler [366] 2022 Int. J. Forecast.
Maheshwari and Perrot [367] 2022  arXiv
Zhao et al. [328] 2022 KDD
Tizpaz-Niari et al. [368] 2022 ICSE
Roy et al. [369] 2022 DS
Mohammadi et al. [370] 2022  arXiv
Gao et al. [371] 2022 ICSE
Huang et al. [372] 2022 Expert Syst. Appl.
Candelieri et al. [373] 2022 arXiv
Anahideh et al. [374] 2022 Expert Syst. Appl.
Rateike et al. [194] 2022 FAccT
Li et al. [375] 2022  arXiv
Tosifidis et al. [376] 2022 KAIS
Calders and Verwer [31] 2010 Data Min. Knowl. Discov
Pleiss et al. [40] 2017 NeurIPS
Dwork et al. [377] 2018 FAccT
Ustun et al. [378] 2019 ICML
Oneto et al. [200] 2019 AIES
Tosifidis et al. [120] 2019 Big Data

§ Monteiro and Reynoso-Meza [379] 2021 PLM

:.% Ranzato et al. [237] 2021 CIKM

é Mishler and Kennedy [241] 2021 arXiv

£ Kobayashi and Nakao [380] 2021 DiTTEt

S Jin et al. [381] 2022 ICML
Chen et al. [145] 2022 FSE
Roy et al. [369] 2022 DS
Liu and Vicente [382] 2022 CMS
Blanzeisky and Cunningham [383] 2022 Knowl Eng Rev
Boulitsakis-Logothetis [329] 2022  arXiv

Suriyakumar et al. [209] 2022  arXiv
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Kamiran et al. [42] considered fairness in addition to accuracy when leaf splitting.

They applied three splitting strategies:
1. only allow non-discriminatory splits;
2. choose best split according to Succuracy/ Odiscrimination’
3. choose best split according to Succuracy + Odiscrimination-

While constraints and regularization usually utilize group fairness definitions,
they have also been applied for achieving individual fairness [45, 255, 287, 298].
Moreover, they can be applied to achieve fairness for multiple sensitive attributes
and fairness definitions [37,225,238,292,319], or extend existing adjustments, such
as adding fairness regularization in addition to the L2 norm, which is used to avoid

overfitting [30,211].

3.3.2.2 Adversarial Learning

Adversarial learning simultaneously trains classification models and their adver-
saries [385]. While the classification model is trained to predict ground truth values,
the adversary is trained to exploit fairness issues. Both models then perform against
each other, to improve their performance.

Zhang et al. [36] trained a Logistic Regression model to predict the label ¥
while preventing an adversary from predicting the protected attribute under con-
sideration of three fairness metrics: Demographic Parity, Equality of Odds, and
Equality of Opportunity. Both, predictor and adversary, are implemented as Logis-
tic regression models.

Similarly, Beutel et al. [254] trained a neural network to predict two outputs:
labels and sensitive attributes. While a high overall accuracy is desired, the adver-
sarial setting optimizes a low ability to predict sensitive information. The network
is designed to share layers between the two output, such that only one model is
trained [220, 258,259,260, 267].

Lahoti et al. [269] proposed Adversarially Reweighted Learning (ARL) in

which a learner is trained to optimize performance on a classification task while the
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adversary adjusts the weights of computationally-identifiable regions in the input
space with high training loss. By so-doing, the learner can then improve perfor-
mance in these regions.

Other than using adversaries to prevent the ability to predict sensitive attributes
(e.g., for reducing bias according to population groups), it has also been used to im-
prove robustness to data poisoning [266], to improve individual fairness [264], and
to reweigh training data [272]. In particular, Petrovi¢ et al. [272] used adversarial
training to learn a reweighing function for training data instances as an in-processing

procedure (contrary to applying reweighing as pre-processing, see Section 3.3.1.2).

3.3.2.3 Compositional

Compositional approaches combat bias by training multiple classification models.
Predictions can then be made by a specific classification model for each popula-
tion group (e.g., privileged and unprivileged) [31, 40, 200,209, 329,378, 381] or in
an ensemble fashion (i.e., a voting of multiple classification models at the same
time) [120, 145,237,241,369,380,382,386].

While decoupled classification models for privileged and unprivileged groups
can achieve improved accuracy for each group, the amount training data for each
classifier is reduced. To reduce the impact of small training data sizes Dwork
et al. [377] utilized transfer training. With their transfer learning approach, they
trained classifiers on data for the respective group and data from the other groups
with reduced weight. Ustun et al. [378] built upon the work of Dwork et al. [377]
and incorporates “preference guarantees”, which states that each group prefers their
decoupled classifier over a classifier trained on all training data and any classifier of
the other groups. Similarly, Suriyakumar et al. [209] followed the concept of “fair
use”, which states that if a classification uses sensitive group information, it should
improve performance for every group.

Training multiple classification models with different fairness goals allows for
the creation of a pareto-front of solutions [241,361, 369, 382, 383]. Practitioners
can then choose which fairness-accuracy trade-off best suits their need. For exam-

ple, Liu and Vicente [382] treated bias mitigation as multi-objective optimization
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problem that explores fairness-accuracy trade-offs under consideration of multiple
fairness metrics. Mishler and Kennedy [241] proposed an ensemble method that
builds classification models based on a weighted combination of metrics chosen by

users.

3.3.2.4 Adjusted Learning

Adjusted learning methods mitigate the bias via changing the learning procedure of
algorithms or the creation of novel algorithms [81].

Changes have been suggested for a variety of classification models, including
Bayesian models [343,387], Markov Random Fields [348], Neural Networks [124,
258, 352], Decision Trees, bandits [332, 335, 388], boosting [337, 347, 351, 369],
Logistic Regression [360]. We outline a selection of publications in the following,
to provide insight on techniques applied to different classification models.

Noriega-Campero et al. [345] proposed an active learning framework for train-
ing Decision Trees. During the training, a decision maker is able to collect more
information about individuals to achieve fairness in predictions. In this context, not
all information about individuals is available. There is an information budget that
determines how many enquiries can be performed. Similarly, Anahideh et al. [374]
used an active learning framework to balance accuracy and fairness by selecting
instances to be labelled.

Madras et al. [340] proposed a rejection learning approach for joint decision-
making with classification models and external decision makers. In particular, the
classification model learns when to defer from making prediction (i.e., when it is
more useful to have predictions from external decision makers). If the coverage of
classification can be reduced (i.e., the classification model abstains from making
some of the predictions), selective classification approaches can be used [359].

Martinez et al. [352] proposed the algorithm Approximate Projection onto Star
Sets (APStar) to train Deep Neural Networks to minimize the maximum risk among
all population groups. This procedure ensures that the final classifier is part of the
Pareto Front [389]. Hu et al. [124] incorporated representation learning into the

training procedure of Neural Networks to learn them jointly the classifier.
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Hébert-Johnson et al. [337] proposed Multicalibration, a learning procedure
similar to boosting. A classifier is trained iteratively. At each iteration, the pre-
dictions of the most biased subgroup are corrected until the classifier is adequately
calibrated.

Hashimoto et al. [336] found fairness issues with the use of empirical risk min-
imization and proposed the use of distributionally robust optimization (DRO) when
training classifiers such as Logistic Regression. During training, DRO optimizes
the worst-case risk over all groups present.

Kilbertus et al. [342] adjusted the training procedure for Logistic Regression
to take privacy into account. Sensitive user information is encrypted such that it
cannot be used for classification tasks while retaining the ability to verify fairness
issues. By doing so, users can provide sensitive information without the fear that
someone can read them.

The learning procedure of existing classification models has also been adjusted

by tuning their hyper-parameters [13,28, 134,323,344,350,357,361,368].

3.3.3 Post-processing Bias Mitigation Methods

Post-processing bias mitigation methods are applied once a classification model has
been successfully trained. With 56 publications that apply post-processing meth-
ods (Table 3.8), post-processing methods are the least frequently applied of those

covered in this survey.

3.3.3.1 Input Correction

Input correction approaches apply a modification step to the testing data. This is
comparable to pre-processing approaches (Section 3.3.1) [81], which conduct mod-
ifications to training data (e.g., relabelling, perturbation and representation learn-
ing).

We found only two publications that apply input corrections to testing data,
both of which use perturbations. While Adler et al. [390] used perturbation in a
post-processing stage, Li et al. [109] first performed perturbation in a pre-processing

stage and then applied an identical procedure for post-processing.



3.3. Algorithms

Table 3.8: Publications on Post-processing bias mitigation methods.

Category Authors [Ref] Year Venue

Input Adler et al. [390] 2018 KAIS
Lietal. [109] 2022 ICSE
Calders and Verwer [31] 2010 Data Min. Knowl. Discov
Kamiran et al. [42] 2010 ICDM
Hardt et al. [41] 2016 NeurIPS
Woodworth et al. [281] 2017 COLT
Pleiss et al. [40] 2017 NeurIPS
Gupta et al. [198] 2018 arXiv
Morina et al. [391] 2019 arXiv
Noriega-Campero et al. [345] 2019 AIES
Kim et al. [392] 2019 AIES
Kanamori and Arimura [393] 2019 JSAI
Kim et al. [228] 2020 ICML
Jiang et al. [229] 2020 UAI

5 Savani et al. [394] 2020 NeurIPS

b= Chzhen et al. [395] 2020 NeurIPS

ke Chzhen et al. [308] 2020 NeurIPS

© Awasthi et al. [396] 2020 PMLR

Chzhen and Schreuder [313] 2020 arxiv
Schreuder and Chzhen [397] 2021 UAI
Kanamori and Arimura [398] 2021 JSAI

Mishler et al. [399] 2021 FAccT
Mishler and Kennedy [241] 2021 arXiv
Du et al. [400] 2021 NeurIPS
Grabowicz et al. [401] 2022 FAccT
Zhang et al. [402] 2022 FairWARE
Mehrabi et al. [403] 2022 TrustNLP
Wu and He [404] 2022 FAccT
Marcinkevics et al. [405] 2022 MLHC
Tosifidis et al. [376] 2022 KAIS
Pedreschi et al. [406] 2009 SDM
Kamiran et al. [14] 2012 ICDM
Fish et al. [213] 2015 FATML
Fish et al. [407] 2016 SDM
Kim et al. [287] 2018 NeurIPS
Zhang et al. [99] 2018 1JCAI
Menon and Williamson [408] 2018 FAccT
Liu et al. [409] 2018 arXiv
Kamiran et al. [15] 2018 J.Inf. Sci.
Chiappa [346] 2019 AAAI
Chzhen et al. [410] 2019 NeurIPS
= Tosifidis et al. [120] 2019 Big Data
2 Lohia et al. [46] 2019 ICASSP
3 Wei et al. [201] 2020 PMLR
Alabdulmohsin [411] 2020 arXiv
Alabdulmohsin and Lucic [412] 2021 NeurIPS
Nguyen et al. [413] 2021 J. Inf. Sci.
Kobayashi and Nakao [380] 2021 DiTTEt
Lohia [414] 2021 arXiv
Jang et al. [415] 2022 AAAI
Pentyala et al. [142] 2022 arXiv
Snel and van Otterloo [416] 2022 Com. Soc. Res. J.
Alghamdi et al. [417] 2022  arXiv
Mohammadi et al. [370] 2022  arXiv
Zeng et al. [418] 2022 arXiv

Zeng et al. [419] 2022 arXiv
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3.3.3.2 Classifier Correction

Post-processing approaches can also directly be applied to classification models,
which Savani et al. [394] called intra-processing. A successfully trained classifica-
tion model is adapted to obtain a fairer one. Such modification have been applied to
Naive Bayes [31], Logistic Regression [229], Decision Trees [42,398,402], Neural
Networks [394,400,403,405] and Regression Models [308].

Hardt et al. [41] proposed the modification of classifiers to achieve fairness
with respect to Equalized Odds and Equality of Opportunity. Given an unfair clas-
sifier ¥, the classifier Y is derived by solving an optimization problem under con-
sideration of fairness loss terms. This approach has been adapted and extended by

further publications [198,391,396,399].

Woodworth et al. [281] showed that this kind of modification can lead to a poor
accuracy, for example when the loss function is not strictly convex. In addition to
constraints during training, they proposed an adaptation of the approach by Hardt

et al. [41].

Pleiss et al. [40] split a classifier in two (hg, hj, for the privileged and un-
privileged group). To balance the false positive and false negative rate of the two
classifiers, h; is adjusted such that with a probability of a the class mean is re-
turned rather than the actual predication.Noriega-Campero et al. [345] followed the

calibration approach of Pleiss et al. [40].

Kamiran et al. [42] modified Decision Tree classifiers by relabeling leaf nodes.
The goal of relabeling was to reduce bias while sacrificing as little accuracy as
possible. A greedy procedure was followed which iteratively selects the best leaf to
relabel (i.e., highest ratio of fairness improvement per accuracy loss). Kanamori and
Arimura [398] formulated the modification of branching thresholds for Decision

Trees as a mixed integer program.

Kim et al. [392] proposed Multiaccuracy Boost, a post-processing approach
similar to boosting for training classifiers. Given a black-box classifier and a learn-
ing algorithm, Multiaccuracy Boost iteratively adapts the current classifier based on

its predictive performance.
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3.3.3.3 Output Correction

The latest stage of applying bias mitigation methods is the correction of the output.

In particular, the predicted labels are modified.

Pedreschi et al. [406] considered the correction of rule based classifiers, such
as CPAR [420]. For each individual, the k rules with highest confidence are selected
to determine the probability for each output label. Given that some of the rules can

be discriminatory, their confidence level is adjusted to reduce biased labels.

Menon and Williamson [408] proposed a plugin approach for thresholding pre-
dictions. To determine the thresholds to use, the class probabilities are estimated

using logistic regression.

Kamiran et al. [14,15] introduced the notion of reject option which modifies the
prediction of individuals close to the decision boundary. In particular, individuals
belonging to the unprivileged group receive a positive outcome and privileged indi-
viduals an unfavourable outcome. Similarly, Lohia et al. [46] relabeled individuals
that are likely to receive biased outcomes, but rather than considering the decision
boundary, they used an “individual bias detector” to find predictions that are likely
suffer from individual discrimination. This work was extended in 2021, where in-
dividuals were ranked based on their “Unfairness Quotient” (i.e., the difference
between regular prediction and with perturbed protected attribute). Fish et al. [407]
proposed a confidence-based approach which returns a positive label for each pre-
diction above a given threshold. This has also been applied to AdaBoost [213].
Other than using a general threshold for all instances, group dependent thresholds

can be used [120, 142,380,410,411,415,418,419].

Chiappa [346] addressed the fairness of causal models under consideration of
a counterfactual world in which individuals belong to a different population group.
The impact of the protected attribute on the prediction outcome is corrected to en-
sure that it coincides with counterfactual predictions. This way, sensitive informa-

tion is removed while other information remains unchanged.
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3.3.4 Combined Approaches

While most publications propose the use of a single type of bias mitigation method,
we found 70 that applied multiple techniques at the same time (e.g., two pre-
processing methods, one in-processing and one post-processing methods). Table 3.9

summarizes these approaches.

Among these 70 publications, 86% (60 out of 70) applied in-processing,
54% (38 out of 70) applied pre-processing, and 31% (22 out of 70) applied post-

processing methods.

Additionally, 26 out of 70 publications applied multiple types of bias miti-
gation methods but at the same stage of the development process (e.g., two pre-
processing approaches). In particular, the are 7 publications which applied multiple
pre-processing methods. Among these 7 publications, 5 applied sampling and re-
labeling [35, 67,97, 100, 101]. The remaining 19 out of 26 publications applied

multiple in-processing methods, 17 of which include regularization or constraints.

47 publications applied at least two methods at different stages of the devel-
opment process for ML models (e.g. one pre-processing and one in-processing
method). This illustrates that bias mitigation methods can be used in conjunc-
tion [421]. Moreover, there are three publications that addressed bias mitigation

at each stage: pre-processing, in-processing and post-processing [31, 120, 198].

Calders and Verwer [31] proposed three approaches for achieving discrimination-
free classification of naive bayes models. At first, a latent variable is added to
represent unbiased labels. The data is then used to train a model for each possible
sensitive attribute value. Lastly, the probabilities output by the model are modified
to account for unfavourable treatment (i.e., increasing the probability of positive

outcomes for the unprivileged group and reducing it for the privileged group).

Gupta et al. [198] tackled the problem of bias mitigation for situation where
group labels are missing in the datasets. To combat this issue, they created a la-
tent “proxy” variable for the group membership and incorporated constraints for
achieving fairness for such proxy groups in the training procedure. Lastly, they fol-

lowed the approach of Hardt et al. [41] to debias and existing classifier by adding
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an additional variable to the prediction problem (see Section 3.3.3.2).

Tosifidis et al. [120] followed an ensemble approach of multiple AdaBoost clas-
sifiers. In particular, each classifier is trained on an equal amount of instances from
each population group and label by sampling. Predictions are then modified by

applying group-dependent thresholds.

3.3.5 C(lassification Models

Here we outline the classification models on which the three types of bias mitigation
methods (pre-, in-, post-processing) have been applied on. Table 3.10 shows the
frequency with which each type of classification model has been applied.

Currently, the most frequently used classification model is Logistic Regression,
for each method type (pre-, in-, post-processing), with a total of 140 unique publi-
cations using it for their experiments. The next most frequently used classification
models are Neural Networks (NN). A total of 102 publication used NNs for their
experiments, with the majority being in-processing methods. Linear Regression
models have been used in 22 publications.

Decision Trees (36 publications) and Random Forests (45 publications) are
also frequently used. Moreover, different Decision Tree variants have been used,
such as Hoeffding trees, C4.5, J48 and Bayesian random forests.

While the range of classification models is diverse, some of them are similar

to one another:

* Boosting: AdaBoost, XGBoost, SMOTEBoost, Boosting, LightGBM, OS-

Boost, Gradient Tree Boosting, CatBoost;
e Rule-based: RIPPER, PART, CBA, Decision Set, Rule Sets, Decision Rules.

Figure 3.2 illustrates the number of different classification models considered
during experiments. It is clear to see that the majority of publications (70%) ap-
plied their bias mitigation method to only one classification model. While in-
processing methods are model specific and directly modify the training procedure,
pre-processing and most post-processing bias mitigation methods can be developed

independently from the classification models they are used for. Therefore, they can
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Table 3.9: Publications with multiple bias mitigation methods. “X” indicates that the pub-
lication applies a bias mitigation approach of the corresponding category (i.e.,

pre-, in-, or post-processing).

Authors [Ref]

Processing Method
Pre‘ In ‘ Post

Sun et al. [101]

Calders et al. [67]

Zliobaite et al. [97]

Hajian et al. [98]

Kamiran and Calders [35]
Tosifidis et al. [100]
Chakraborty et al. [147]
Oneto et al. [200]

Calders and Verwer [31]
Gupta et al. [198]

Tosifidis et al. [120]
Pérez-Suay et al. [156]
Komiyama and Shimao [157]
Kilbertus et al. [197]
Grgi¢-Hlaca et al. [163]
Madras et al. [199]
Xuetal. [119]

Abay et al. [128]

Hu et al. [124]

Chakraborty et al. [28]
Chuang and Mroueh [131]
Zhang et al. [130]

Grari et al. [203]

Du and Wu [137]

Amend and Spurlock [132]
Cruz et al. [134]

Chen et al. [204]

Liang et al. [205]

Agarwal and Deshpande [185]
Chen et al. [145]

Wu et al. [208]

Rateike et al. [194]

Kim and Cho [196]
Suriyakumar et al. [209]
Zhang et al. [99]

Wei et al. [201]

Pentyala et al. [142]

Li et al. [109]

Mishler and Kennedy [241]
Quadrianto and Sharmanska [215]
Agarwal et al. [257]

Gillen et al. [255]

Kearns et al. [37]

Goel et al. [217]

Beutel et al. [220]
Kilbertus et al. [305]

Liu et al. [232]

Kamani [235]

Perrone et al. [323]

Grari et al. [239]

Ranzato et al. [237]

Park et al. [327]

Wang et al. [246]

Zhao et al. [328]

Roy et al. [369]
Boulitsakis-Logothetis [329]
Kamiran et al. [42]

Fish et al. [213]
Woodworth et al. [281]
Pleiss et al. [40]

Kim et al. [287]

Chiappa [346]
Noriega-Campero et al. [345]
Chzhen and Schreuder [313]
Kim et al. [228]

Jiang et al. [229]

Chzhen et al. [308]
Kobayashi and Nakao [380]
Tosifidis et al. [376]
Mohammadi et al. [370]

XX X
XX
XX
XX
XX
XX
XX
X XX
X X X
X X X
X X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
XXX X
XX
XX
XX
XX
XX
XX
XX
XX
X X
XX
XX
XX
XX
XX
XX
XX
XX
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
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Table 3.10: Frequency of classification model usage for evaluating bias mitigation meth-
ods. Amounts are provided for each category and as a unique measure to avoid
counting publications with multiple approaches double.

Processing Method
Model Unique | Pre ‘ In ‘ Post

Logistic Regression 140 | 58 | 80 19
NN 102 | 34 | 65 17
Random Forest 45| 20 | 22 14
SVM 37| 15| 18
Decision Tree 36| 14| 16
Naive Bayes 24| 12 | 11
Linear Regression
AdaBoost

XGBoost

Nearest Neighbour

Causal

Nearest Neighbor
LightGBM

Bandit

Boosting

J48

Bayesian

Hoeffding Tree

Gaussian Process

CPAR

RIPPER

PART

C4.5

CBA

Lattice

Lasso

PSL

BART

RTL

Tree Ensemble

AUE

CART

SMOTEBoost

Gradient boosted trees
Cox model

Decision Rules

Gradient Tree Boosting
Kmeans

OSBoost

POEM

Markov random filed
SMSGDA

Probabilistic circuits

Rule Sets

Ridge Regression
Extreme Random Forest
Factorization Machine
Discriminant analysis
Generalized Linear Model
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Figure 3.2: Number of classification models (cIf) used for evaluation.

be devised once and applied to multiple classification models for evaluating their
performance. Our observations confirm this intuition: only 24% of publications
with in-processing methods consider more than one classification model, while 35%

and 43% of pre- and post-processing methods consider more than one respectively.

3.4 Datasets

In this section, we investigate the use of datasets for evaluating bias mitigation
methods. Among these datasets, some have been divided into multiple subsets (e.g.,
risk of recidivism or violent recidivism, medical data for different time periods). For
clarity, we treat data from the same source as a single dataset.

Following this procedure, we gathered a total of 81 unique datasets. We discuss
these datasets in Section 3.4.1 (e.g., what is the most frequently used dataset?) and
Section 3.4.2 (e.g., how many datasets do experiments consider?). Additionally,
56 publications created synthetic or semi-synthetic datasets for their experiments.
Section 3.4.3 provides information on the creation of such synthetic data.

For further details on datasets, we refer to Le Quy et al. [88] who surveyed
15 datasets and provided detailed information on the features and dataset charac-
teristics. Additionally, Kuhlman et al. [80] gathered 22 datasets from publications

published in the ACM Fairness, Accountability, and Transparency (FAT) Confer-
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ence and 2019 AAAI/ACM conference on Articial Intelligence, Ethics and Society
(AIES).

3.4.1 Dataset Usage

In this section, we investigate the frequency with which each dataset set has been
used. The purpose of this analysis is to highlight the importance of each dataset
and recommend the most important datasets to use for evaluating bias mitigation
methods.

Among the 81 datasets, two are concerned with synthetic data (i.e., “synthetic”
and “semi-synthetic”’) which we address in Section 3.4.3. Therefore, we are left
with 81 datasets. 59% of the datasets (48 out of 81) are used by only one publication
during their experiments. Another 14% of the datasets (11 out of 81) are only used
twice. Thereby, 73% of the datasets (59 out of 81) are used rarely (by one or two
publications).

Table 3.11 list the frequency of the remaining 22 datasets (used in three or more
publications). In addition to the frequency, a percentage is provided (i.e., how many
of the 324 publications use this datasets). Among all datasets, the Adult dataset is
used most frequently (by 77% of the publications). While the Adult dataset contains
information from the 1994 US census, Ding et al. [422] derived new datasets from
the US census from 2014 to 2018.

Five other datasets are used by 10% or more of the publications (COMPAS,
German Communities and Crime, Bank, Law School). This shows that in order
to enable a simple comparison with existing work, one should consider at least
the Adult and COMPAS dataset. A list of all datasets can be found in our online

repository [84].

3.4.2 Dataset Count

In addition to detecting the most popular datasets for evaluating bias mitigation
methods, we investigate the number of different datasets used, as this impacts the
diversity of the performance evaluation [80].

Figure 3.3 visualizes the number of datasets used for each of the 324 publica-
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Table 3.11: Frequency of widely used datasets (i.e., used in at least three publications).

Dataset Name ‘ Frequency ‘ Percentage
Adult [69] 249 77%
COMPAS [17] 166 51%
German [69] 97 30%
Communities and Crime [423] 42 13%
Bank [70] 38 12%
Law School [424] 33 10%
Default [425] 24 7%
Dutch Census [426] 16 5%
Health [427] 14 4%
MEPS [71] 14 4%
Drug [428] 9 3%
Student [429] 8 2%
Heart disease [69] 7 2%
National Longitudinal Survey of Youth [430] 6 2%
SQF [431] 5 2%
Arrhythmia [69] 5 2%
Wine [432] 4 1%
Ricci [433] 4 1%
University Anonymous (UNIV) 3 1%
Home credit [434] 3 1%
ACS [422] 3 1%
MIMICIII [435] 3 1%

100 +

(o]
o
|

Frequency

1 2 3 4 5 6 7 8 9 10 11

Datasets used

Figure 3.3: Number of datasets used per publication.
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tions.

The most commonly used number of datasets considered for experiments is
two, which has been observed in 104 out 324 of the publications. Over all, it can
be seen that the number of considered datasets is relatively small (90% of the publi-
cations use four or fewer datasets), with an average of 2.7 datasets per publication.
Two publications stand out in particular, with 9 datasets (Chakraborty et al. [135]),
and 11 datasets (Do et al. [252]) respectively. In accordance with existing work,
new publications should evaluate their bias mitigation methods on three datasets,

and if possible more.

3.4.3 Synthetic Data

In addition to the 81 existing datasets for experiments, 54 publications created syn-
thetic datasets to evaluate their bias mitigation method. Moreover, we found 3 pub-
lications that use semi-synthetic data (i.e., modify existing datasets to be applicable
for evaluating bias mitigation methods) in their experiments [199,305,377].

The created datasets range from hundreds of data points [166, 283, 336, 343]
to 100,000 and above [100, 173,227,234]. While the sampling procedures are well
described, some publications do not state the dataset size used for experiments [36,
228,239,294,312,326,401,403].

As exemplary data creation procedure, we briefly outline the data generation
approach applied by Zafar et al. [279], as it is the most frequently adapted ap-
proach by other publications [138, 228,266, 282,327,342,360, 382]. In particular,
Zafar et al. [279] generated 4,000 binary class labels. These are augmented with
2-dimensional user features which are drawn from different Gaussian distributions.

Lastly, the sensitive attribute is then drawn from a Bernoulli distribution.

3.4.4 Data-split

In this section we analyze whether existing publications provided information on
the data splits, in particular what sizing has been chosen. Moreover, we investigate
how often experiments have been repeated with such data splits, to account for

training instability [32]. Our focus lies on the data-splits used when evaluating the
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bias mitigation methods (e.g., we are not interested in data-splits that are applied
prior for hyperparameter tuning of classification models [126, 146, 166,297, 311,
364,372,373,436]).

Among the 324 publications that carry out experiments, 232 provide infor-
mation on the data-split used and 143 provide information on the number of runs
(different splits) performed. The high amount of publications that do not provide
information on the data-split sizes could be explained by the fact that some of the
81 datasets provided default splits. For example. the Adult dataset has a pre-defined
train-test split of 70%-30%, and Cotter et al. [301] used designated data splits for
four datasets.

A widely adopted approach for addressing data-splits for applying bias miti-
gation methods is k-fold cross validation. Such methods divide the data in k par-
titions and use each part once for testing and the remaining k — 1 partitions for
training. Overall, 47 publication applied cross validation: 10-fold (23 times), 5-fold
(21 times), 3-fold (twice), 20-fold (once), and once without specification of k [217].

If the data-splits are not derived from k-folds, the most popular sizes (i.e., train

split size - test split size) are:

e 80%-20% (39 times);

70%-30% (35 times);

67%-33% (16 times);

50%-50% (11 times);

60%-40% (5 times);

75%-25% (5 times).

In addition to these regular sized datasplits, there are 23 publication which divide
the data into very “specific” splits. For example, Quadrianto et al. [162] divided the
Adult dataset into 28,222 training, 15,000 and 2,000 validation instance. Another
example are Liu and Vicente [382], who chose 5.000 training instances at random,

using the remaining 40,222 instances for testing.
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Table 3.12: Popular fairness metrics. At least one metric for each category is provided.

Name ‘ Section ‘ # ‘ Description

Statistical Parity Difference 352 137 | Difference of positive predictions per group

Equality of Opportunity 353 90 | Equal TPR per population groups

Disparate Impact, P-rule 352 59 | Ratio of positive predictions per group

Equalized Odds 353 52 | Equal TPR and FPR per population groups

False Positive Rate 353 38 | False positive rate difference per group

Accuracy Rate Difference 353 29 | Difference of prediction accuracy per group

Causal Discrimination 355 7 | Different predictions for identical individuals except for protected attribute
Mean Difference 35.1 6 | Difference of positive labels per group in the datasets

Mutual information 3.5.6 4 | Mutual information between protected attributes and predictions
Strong Demographic Disparity | 3.5.4 1 | Demographic parity difference over various decision thresholds

Once the data is split in training and testing data, experiments are repeated 10
times in 54 out of 143 and 5 times in 42 out of 143 cases. The most repetitions
are performed by da Cruz [350], who trained 48,000 models per dataset to evaluate
different hyperparameter settings.

We have found 16 publications that use different train and test splits for exper-
iments on multiple datasets. Reasons for that can be found in the stability of bias
mitigation methods when dealing with a large amount of training data [214].

While most publications split the data in two parts (i.e., training and test split),
there are 36 publication that use validation splits as well. The sizes for valida-
tion splits range from 5% to 30%, whereas the most common split uses 60% train-
ing data, 20% testing data, and 20% validation data. Furthermore, Mishler and
Kennedy [241] allow for a division of the data in up to five different splits for eval-
uating their ensemble learning procedure.

Bias mitigation methods that process data in a streaming [100, 130, 224, 351,
366], federated learning [128, 142, 188, 330, 354], multi-source [139], sequen-
tial [149, 194,320, 328] fashion need to be addressed differently, as they use small

subsets of the training data instead of using all at once.

3.5 Fairness Metrics

Fairness metrics play an integral part in the bias mitigation process. First they are
used to determine the degree of bias a classification model exhibits before applying

bias mitigation methods. Afterwards, the effectiveness of bias mitigation methods
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can be determined by measuring the same metrics after the mitigation procedure.
Recent fairness literature has introduced a variety of different fairness metrics,
that each emphasize different aspect of classification performance.
To provide a structured overview of such a large amount of metrics, we devise
metric categories, and take into account the classifications by Catan and Haas [86],
and Verma and Rubin [83]. Overall we categorize the metrics used in the 341 pub-

lications in six categories:

e Definitions based on labels in dataset;

* Definitions based on predicted outcome;

Definitions based on predicted and actual outcomes;

* Definitions based on predicted probabilities and actual outcome;

* Definitions based on similarity;

* Definitions based on causal reasoning;

In the following, we provide information on how these metric types have been
used. In total, we found 111 unique metrics that have been used by the 324 pub-
lications that performed experiments. Most publications consider a binary setting
(i.e., two populations groups and two class labels for prediction), whereas fairness
has also been measured for non-binary sensitive attributes [103,316,317,358,418],
and multi-class predictions [103,417].

While some of the categories only contain few different metrics (Definitions
based on labels in dataset, Definitions Based on Predicted Probabilities and Ac-
tual Outcome and Definitions Based on Similarity all have 13 or fewer different
metrics); Definitions Based on Predicted Outcome have 22, Definitions Based on
Predicted and Actual Outcomes have 33, and Definitions Based on Causal Reason-
ing 26 different metrics. Therefore, we outline the most frequently used metrics
for Definitions Based on Predicted and Actual Outcomes and Definitions Based on

Causal Reasoning.
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On average, publications consider two fairness metrics when evaluating bias
mitigation methods, with 45% of the publications only using one fairness metric.
The most frequently used metrics are outlined in Table 3.12, while listing at least
one metric per category. For detailed explanations of fairness metrics, we refer to
Verma and Rubin [83].

In addition to quantifying the bias according to prediction tasks, we found
metrics that determined fairness in accordance with feature usage (e.g., do users
think this feature is fair [163]) and quality of representations [155, 158, 164] (see
Section 3.3.1.4).

3.5.1 Definitions Based on Labels in Dataset

Fairness definition based on the dataset labels, also known as ‘“dataset metrics”,
are used to determine the degree of bias in an underlying dataset [72]. One pur-
pose of datasets metrics is determine whether there is a balanced representation of
privileged and unprivileged groups in the dataset. This is in particular useful for pre-
processing bias mitigation methods, as they are able to impact the data distribution
of the training dataset.

Most frequently, datasets metrics are used to measure the disparity in positive
labels for population groups, such as Mean Difference, slift or elift [391]. Hereby,
Mean Difference is the most popular, used in 6 publications.

Another metric based on dataset labels is Balanced Error Rate (BER) [119].
Xuetal. [119] trained an SVM to compare the error rates when predicting protected

attributes for both groups.

3.5.2 Definitions Based on Predicted QOutcome

Definitions based on predicted outcome, or “Parity-based” metrics, are used to de-
termine whether different population groups receive the same degree of favour. For
this purpose, only the predicted outcome of the classification needs to be known.
The most popular approach for measuring fairness according to predicted out-
come is the concept of Demographic parity, which states that privileged and un-

privileged groups should receive an equal proportion of positive labels. This can be
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done as by computing their difference (Statistical Parity Difference) or their ratio
(Disparate Impact). Similar to Disparate Impact, the p-rule compares two ratios of
positive labels (group) /group,, group, /group;) and Among those two ratios, the
minimum value is chosen. In addition to numeric bias scores, the disparity of group
treatment can also be seen visually [41,104,125,282,302,311].

If the direction of bias is of no interest (i.e., it is not important which group
receives a favourable treatment), then the absolute bias values can be consid-
ered [258,267,272,318]. While it is possible to compute fairness metrics based
on differences as well as ratios between two groups, both which have been applied
in the past, Zliobaite [87] advised against ratios as they are more challenging to

interpret.

3.5.3 Definitions Based on Predicted and Actual Outcomes

Definitions based on predicted and actual outcomes are used to evaluate the predic-
tion performance of privileged and unprivileged groups (e.g., is the classification
model more likely to make errors when dealing with unprivileged groups?). Similar
to definitions based on predicted outcomes, the rates for privileged and unprivileged
groups are compared.

The most popular metric of this type is Equality of Opportunity (used 90 times),
followed by Equalized odds (used 52 times). While Equality of Opportunity is
satisfied when populations groups have equal TPR, Equalized odds is satisfied if
population groups have equal TPR and FPR. In addition to evaluating fairness in
according to the confusion matrix (FPR - 38 times, TNR - 8 times), the accuracy
rate, difference in accuracy for both groups, has been used 29 times. Moreover,

conditional TNR and TPR have been evaluated [116, 181].

3.5.4 Definitions Based on Predicted Probabilities and Actual

Outcome

While Section 3.5.3 detailed metrics based on actual outcomes and predicted labels,
this Section outlines metrics that consider predicted probabilities instead.

Jiang et al. [229] proposed strong demographic disparity (SDD) and SPDD,
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which are parity metrics computed over a variety of thresholds (i.e., prediction tasks
apply a threshold of 0.5 by default). Chzhen et al. [308] also varied thresholds, to
compute the Kolmogorov-Smirnov distance. Heidari et al. [286] measured fairness
based on positive and negative residual differences. Agarwal et al. [304] computed
a Bounded Group Loss (BGL) to minimize the worst loss of any group, according

to least squares.

3.5.5 Definitions Based on Similarity

Definitions based on similarity are concerned with the fair treatment individuals. In
particular, it is desired that individuals that exhibit a certain degree of similarity re-
ceive the same prediction outcome. For this purpose, different similarity measures
have been applied. The most popular similarity metric used is consistency or in-
consistency (used in 4 and 1 publications respectively) [68]. Consistency compares
the prediction of an individual with the k-nearest-neighbors according the input
space [68]. Loung et al. [96] also utilized k-nearest-neighbors, to investigate the
difference in predictions for different values of k.

Similarities between individuals have been computed according to {..-distance
[178], and euclidean distance with weights for features [68]. Individuals have also
been treated as similar if they have equal labels [29], are equal except for non-
sensitive feature or based on predicted label [133]. If similarity of individuals is
determined solely by differences in sensitive features, one is speaking of “causal
discrimination” [46,47].!

In contrast to determining similarity computationally, Jung et al. [298] allowed
stakeholders to judge whether two individuals should receive the same treatment.

Moreover, Ranzato et al. [237] considered four types of similarity relations
(NOISE, CAT, NOISE-CAT, CONDITIONAL-ATTRIBUTE), when dealing with nu-
merical and categorical features. Verma et al. [133] considered two types of sim-
ilarities: input space (identical on non-sensitive features), output space (identical

prediction). Lahoti et al. [166] built a similarity graph to detect similar individu-

1Some publications refer to this as “Counterfactual fairness’ [244,264,386], but we follow the
guidelines of Verma and Rubin [83] and treat counterfactual fairness as a Causal metric.
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als. This graph is built based on pairwise information on individuals that should be

treated equally with respect to a given task.

3.5.6 Causal Reasoning

Fairness definitions based on causal reasoning take causal graphs in account to eval-
uate relationships between sensitive attributes and outcomes [83].

For example, Counterfactual fairness states that a causal graph is fair, if the
prediction does not depend on descendants of the protected attribute [334]. This
definition has been adopted by four publications. Moreover, the impact of protected
attributes on the decision has been observed in two ways: direct and indirect prej-
udice [111]. Direct discrimination occurs when the treatment is based on sensitive
attributes. Indirect discrimination results in biased decision for population groups
based on non-sensitive attributes, which might appear to be neutrals. This could oc-
cur due to statistical dependencies between protected and non-protected attributes.

Direct and indirect discrimination can be modelled based on the causal ef-
fect along paths taken in causal graphs [111]. To measure indirect discrimination,
Prejudice Index (PI) or Normalized Prejudice Index (NPI) haven been applied four
times [30]. NPI quantifies the mutual information between protected attributes and
predictions. Mutual information has also been used to determine the fairness of
representations [161,164]. Similar to determining the degree of mutual information
between sensitive attributes and labels, the ability to predict sensitive information

based on representations has been used in eight publications.

3.6 Benchmarking

After establishing on which datasets bias mitigation methods are applied, and which
metrics are used to measure their performance (Section 3.5), we investigate how
they have been benchmarked.

Benchmarking is important for ensuring the performance of bias mitigation
methods. Nonetheless, we found 15 out of 324 publications that perform experi-
ments but do not compare results with any type of benchmarking. Therefore, the

remaining section addresses 308 publications which: 1) perform experiments; 2)
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Table 3.13: Benchmarking against bias mitigation method types. For each bias mitigation
category (i.e., pre-, in-, or post-processing), we count the type of benchmarking
methods.

Type

# | None | Pre In Post
Pre | 114 50| 55 37 16

Type In 184 66 | 56 108 51
Post | 52 16 | 17 25 27

apply benchmarking.

3.6.1 Baseline

To determine whether bias mitigation methods are able to reduce effectively, differ-
ent types of baselines have been used.

The most general baseline is to compare the fairness achieved by classifica-
tion models after applying a bias mitigation method with the fairness of a fairness-
agnostic Original Model. 1f a method is not able to exhibit an improved fairness
over a fairness agnostic classification model, then it is not applicable for bias miti-
gation. Given that this is the minimum requirement for bias mitigation methods, it
is the most frequently used baseline (used in 254 out of 308 experiments).

Another baseline method is suppressing, which performs a naive attempt of
mitigating bias by removing the protected attribute from the training data. How-
ever, it has been found that solely removing protected attributes does not remove
unfairness [19,67], as the remaining features are often correlated with the protected
attribute. To combat this risk, Kamiran et al. [42] suppressed not only the sensitive
feature but also the k-most correlated ones. Suppressing has been used in 30 out of
308 experiments.

Random baselines constitute more competitive baselines than solely suppress-
ing the protected attribute. Bias mitigation methods that outperform random base-
lines show that they are not only able to improve fairness but also able to perform
better than naive methods. Random baselines have been used in 13 out of 308 ex-
periments.

Moreover, we found four publications that considered a constant classifier for
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benchmarking (i.e., a classifier that returns the same label for every instance) [161,
228,309,370]. This serves as a fairness-aware baseline, as every individual and

population group receive the same treatment.

3.6.2 Benchmarking Against Bias Mitigation Methods

In addition to baselines, we investigate how methods are benchmarked against other,
existing bias mitigation methods. In particular, we are interested in which methods
are popular, how many bias mitigation methods are used for benchmarking, and to
what category these methods belong.

At first, we investigate what type of bias mitigation method are considered for
benchmarking (e.g., are pre-processing methods more likely to benchmark against
other pre-processing methods or in-/post-processing methods). Table 3.13 illus-
trates the results. In particular, # shows how many unique publications propose
a given type of bias mitigation method (i.e., there are 114 publications with pre-
processing methods). For each of these methods we determine whether they bench-
mark against pre-, in- or post-processing methods. If no benchmarking against other
bias mitigation methods is performed, we count this as “None”.

We find that pre-processing methods are the most likely to not benchmark
against other bias mitigation methods at 44% (50 out of 114). 36% (66 out of
184) of in-processing methods and 31% (16 out of 52) of post-processing methods
do not benchmark against other bias mitigation methods. Furthermore, we can see
that each bias mitigation type is more likely to benchmark against methods of the
same type.

In addition to detecting the type of bias mitigation methods for benchmark-
ing, we are interested in what approaches in particular are used for benchmarking.
Therefore, we count how often each of the 341 bias mitigation methods we gathered
have been used for benchmarking.

Overall, 137 bias mitigation methods have been used as a benchmark by at
least one other publication. Figure 3.4 illustrates the most frequently used bias mit-
igation methods for benchmarking. Among the 18 listed methods, all of which

are used for benchmarking by at least eight other publications, eight are pre-
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Louizosetal. [152] [ 8
Kamiran and Calders [95] [ ] 8
Kamiranetal. [14] [ ]9
Pleissetal. [40] [ 110
Doninietal. [293] [ 110
Kamiranetal. [42] [ 111
Calders and Verwer [31]1 [ 112

Madrasetal. [159] [ 113
Calmon et al. [33] | | 15

Kamishima et al. [30] | | 19
Zemel et al. [68] | | 21
Feldman et al. [34] | | 23
Agarwal et al. [257] | | 25
Zafar et al. [39] | | 26

Zafar et al. [279] | | 34

Zhang et al. [36] | | 36
Kamiran and Calders [35] | | 37

Hardt et al. [41] | | 43

Figure 3.4: Most frequently benchmarked publications. For each publication, the number
of times it has been used for benchmarking is shown.

processing, nine in-processing, and four post-processing. Notably, the five most-
frequently used methods include each of the three types: sampling and relabelling
for pre-processing [35], constraints [39,279] and adversarial learning [36] for in-

processing, and classifier modification for post-processing [41].

3.6.3 Benchmarking Against Fairness-Unaware Methods

In addition to benchmarking against existing bias mitigation methods, practition-
ers can use other methods for benchmarking, which are not designed for taking
fairness into consideration. Overall, we found 51 publications that use fairness-
unaware methods for benchmarking (i.e., using a general data augmentation method
to benchmarking fairness-aware resampling).

Table 3.14 shows the publications that benchmark their proposed method
against at least one fairness-unaware methods, according to the type of approach
applied. Among the 13 types of approaches, as shown in Section 3.3.1 - 3.3.3,

seven can be found to benchmark against fairness-unaware methods. This occurs
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Table 3.14: Publications that benchmark against at least one fairness-unaware method.

Type | Category | Section | References

Pre Sampling 3.3.1.2 | [118,119,121,126,127,130,134,137,138, 142, 144]
Representation | 3.3.1.4 | [152,168,169,174,176,181,182,184,187,188,189, 195]
Regularization | 3.3.2.1 | [232,236,246,249,250]

In Constraints 3.3.2.1 | [137,246,277,284,307,320,321,328]
Adversarial 3.3.2.2 | [119,259,266,269,270,274]
Adjusted 3.3.24 | [130,134,232,328,331,351,358,359,362,367,373]
Input 3.3.3.1 | [390]

Post | Classifier 3.3.3.2 | [403,404]
Output 3.3.3.3 | [15,142,412]

rarely for post-processing methods, six publications in total, with at least one per
approach type. 23 and 27 publications for pre-processing and in-processing meth-

ods respectively, benchmark against fairness-unaware methods.

3.7 Challenges

Research on bias mitigation is fairly young and does therefore enable challenges and
opportunities for future research. In this section, we highlight five challenges that
we extracted from the collected publications, that call for future action or extension

of current work.

3.7.1 Fairness Definitions

A variety of different metrics have been proposed and used in practice (see Sec-
tion 3.5), which can be applied to different use cases. However, with such a variety
of metrics it is difficult to evaluate bias mitigation on all and ensure their applica-
bility. Synthesizing or selecting a fixed set of metrics to use is still an open chal-
lenge [20, 144,265], as can be seen by the 111 different fairness metrics obtained in
Section 3.5.

While synthesising existing fairness notions is one problem, it is also relevant
to ensure that the used metrics are representative for the problem at hand. Often,
this means evaluating fairness in a binary classification problem for two population
groups. While this can be the correct way to model fairness scenarios, it is not
sufficient to handle all cases, such that future work should focus on multi-class

problems [35, 262, 372, 386, 391] and non-binary sensitive attributes, which was
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mentioned by 15 publications.

Other challenges regarding metrics include the trade-offs when dealing with
accuracy and/or multiple fairness metrics [75,86,257,437], as well as the allowance
of some degree of discrimination as long it as explainable (e.g., enforcing a fairness

criteria completely could lead to unfairness in another) [31, 35,68, 110].

3.7.2 Fairness Guarantees

Guarantees are of particular importance when dealing with domains that fall under
legislation and regulatory controls [30,34]. Therefore, it is not always sufficient to
establish the effectiveness of a bias mitigation method based on the performance on
the test set without any guarantees.

In particular, Dunkelau and Leuschel [81] pointed out that most bias mitigation
methods are evaluated on test sets and their applicability to real-world tasks depends
on whether the test set reliably represents reality. If that is not the case, fairness
guarantees could ensure that bias mitigation methods are able to perform well with
regards to unknown data distributions. Therefore, eight publications considered
fairness guarantees as a relevant avenue of future work. Similarly, allowing for

interpretable and explainable methods can aid in this regard [30, 107, 162,281].

3.7.3 Datasets

Another challenge that arises when applying bias mitigation methods is the avail-
ability and use of datasets. The most pressing concern is the reliability and access to
protected attributes, which was mentioned in nine publications, as this information
is often not available in practice [438].

Moreover, it is not guaranteed that the annotation process of the training data
is bias free [41]. If possible an unbiased data collection should be enforced [215].
Other options are the debiasing of ground truth labels [47, 140] or use of expert
opinions to annotate data [400]. If feasible, more data can be collected [107, 114],
which is difficult from a research perspective, as commonly, existing and public
datasets are used without the chance to manually collect new samples.

Furthermore, the variety of protected attributes addressed in experiments, as
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found by Kuhlman et al. [80], is lacking diversity, with the majority of cases con-
sidering race and gender only. In practice, “collecting more training data” is the
most common approach for debiasing, according to interviews conducted by Hol-

stein et al. [438].

3.7.4 Real-world Applications

While the experiments are conducted on existing, public datasets, it is not clear
whether they can be transferred to real-world applications without any adjustments.
For example, Hacker and Wiedemann [154] see the challenge of data distributions
changing over time, which would require continuous implementations of bias miti-
gation methods.

Moreover, developers might struggle to detect the relevant population groups
to consider when measuring and mitigating bias [438], whereas the datasets in-
vestigated in Section 3.4 often simplify the problem and already provide bina-
rized protected attributes (e.g., in the COMPAS, six “demographic” categories are
transformed to “Caucasian” and “not Caucasian” [72]). Therefore, Martinez et
al. [352] stated that automatically identifying sub-populations with high-risk dur-
ing the learning procedure as a field of future work.

Given the multitude of fairness metrics (as seen in Section 3.5), real world ap-
plications could even suffer further unfairness after applying bias mitigation meth-
ods due to choosing incorrect criteria [248]. Similarly, showing low bias scores does
not necessarily lead to a fair application, as the choice of metrics could be used for
“Fairwashing” (i.e., using fake explanations to justify unfair decisions) [403,439].
Nonetheless, Sylvester and Raff [440] argue that considering fairness criteria while
developing ML models is better than considering none, even if the metric is not
optimal.

Sharma et al. [122] show the potential of user studies to not only provide bias
mitigation methods that work well in a theoretical setting, but to make sure prac-
titioners are willing to use them. In particular, the are interesting in finding how
comfortable developers and policy makers are with regards to training data aug-

mentation.
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To facilitate the use and implementation of existing bias mitigation methods,
metrics and datasets, popular toolkits such as AIF360 [72] and Fairlearn [441] can

be used.

3.7.5 Extension of Experiments

Lastly, a challenge and field of future research is the extension of conducted exper-
iments to allow for more meaningful results.

The most frequently discussed aspect of extending experiments is the consid-
eration of further metrics (in 40 publications). Moreover, the usefulness of bias
mitigation methods can be investigated when applied to additional classification
models. This was pointed out by 12 publications. Given the 81 datasets that were
used at least once, and on average 2.7 datasets used per publication, only eight
publications see the consideration of further datasets as a useful consideration for
extending their experiments [13,28, 112, 126,344,350, 355, 373].

While the consideration of additional metrics, classification models and
datasets does not lead to changes in the training procedure and experimental de-
sign, there are also intentions to apply bias mitigation methods to other tasks and
contexts, such as recommendations [238, 279], ranking [30, 223,279] and cluster-

ing [30].

3.8 Conclusion

In this literature survey, we have focused on the adoption of bias mitigation meth-
ods to achieve fairness in classification problems and provided an overview of 341
publications. Our survey first categories bias mitigation methods according to their
type (i.e., pre-processing, in-processing, post-processing) and illustrates their pro-
cedures. We found 123 pre-processing, 212 in-processing, and 56 post-processing
methods, showing that in-processing methods are the most commonly used. We
devised 13 categories for the three method types, based on their approach (e.g.,
pre-processing methods can perform sampling). The most frequently applied ap-
proaches perform changes to the loss function in an in-processing stage (51 pub-

lications applying regularization and 74 applying constraints). Other approaches
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are less frequently used, with input correction in a post-processing stage only being
used twice.

We further provided insights on the evaluation of bias mitigation methods ac-
cording to three aspects: datasets, metrics, and benchmarking. We found a total of
81 datasets that have been used at least once by one of the 341 publications, among
which the Adult dataset is the most popular (used by 77% of publications). Even
though 81 datasets are available for evaluating bias mitigation methods, only 2.7
datasets are considered on average.

Similarly, we found a large number of fairness metrics that have been used
at least once (111 unique metrics), which we divide in six categories. The most
frequently used metrics belong to two categories: 1) Definitions based on predicted
outcome; 2) Definitions based on predicted and actual outcomes.

When it comes to benchmarking bias mitigation methods, they can be com-
pared against baselines, other bias mitigation methods, or non-bias mitigation ap-
proaches. Among the three baselines we found (original model, suppressing, ran-
dom), the 82% of bias mitigation methods consider the original model (i.e., the
classification model without any bias mitigation applied) as a baseline. However,
the three baselines are not competitive and it can be expected for bias mitigation
methods to outperform them. Moreover, benchmarking increases in complexity
when multiple metrics are considered (i.e., fairness and accuracy metrics). There-
fore, we set out to propose a competitive benchmarking approach in the following

Chapter, for evaluating the quality of achieved fairness-accuracy trade-offs.



Benchmarking Bias Mitigation

Methods with Fairea

If you can not measure it, you can not improve it.

— Lord Kelvin

The previous literature survey showed that there exist a multitude of methods that
seek to improve the fairness of ML software. While these bias mitigation methods
are able to reduce bias in light of a given fairness metric, the improvement in fairness
often comes at the cost of a lower prediction accuracy [29]. In other words, there
is a software engineering trade-off between accuracy and fairness for ML software,
as revealed by many previous theoretical and empirical studies [34,35,43].

The existence of such trade-offs brings challenges for judging the effectiveness
of bias mitigation methods. Previous work presented the trade-offs in a qualitative
manner. They either report and analyse the bias mitigation effectiveness by plotting
the accuracy and fairness for a visual comparison [15, 35,40], or display accuracy
and fairness separately [28, 30, 68,97] (in tables or bar charts). As far as we know,
there is no trade-off baseline, nor is there any quantitative approach that can au-
tomatically evaluate and compare the fairness-accuracy trade-offs of software bias
mitigation methods.

This chapter introduces Fairea. Fairea is a novel model behaviour mutation
approach to automatically benchmarking and quantifying the fairness-accuracy

trade-off achieved by bias mitigation methods for ML software. With Fairea, we
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conduct a large-scale empirical study to benchmark and compare the effectiveness
of 8 widely-studied bias mitigation methods that are publicly available in the pop-
ular IBM AI Fairness 360 library (AIF360) [72]. Fairea is the first quantitative
approach to benchmarking the fairness-accuracy trade-off for bias mitigation meth-
ods. Our empirical study is also the first large-scale systematic study to evaluate the
effectiveness of existing bias mitigation methods.

Our results reveal that, surprisingly, in 49% of the cases, bias mitigation meth-
ods have a poor bias mitigation effectiveness. In particular, 15% which reduce bias
exhibit worse trade-offs than the baseline provided by Fairea, while 34% lead to
a decrease in accuracy and an increase in bias. Furthermore, our observations re-
veal the following limitations among the existing bias mitigation methods: 1) it is
challenging to achieve a good trade-off between fairness and accuracy; 2) methods
designed to optimize one fairness metric often decrease the values of other fairness
metrics; 3) the effectiveness of a method is often dataset- and model-dependent.
Only rarely does an approach work well on all datasets and ML models.

To conclude, this chapter makes the following primary contributions:

* A baseline approach that enables evaluating the fairness-accuracy trade-off

of ML bias mitigation methods through model behaviour mutation.

* A quantitative measurement for comparing different ML bias mitigation

methods and trade-off parameters.

* A large-scale study on widely-studied bias mitigation methods in regards to
their bias mitigation effectiveness as well as their achieved fairness-accuracy

trade-offs.

* An open-source implementation of Fairea that has been made publicly avail-
able [442] for ML software developers and researchers to evaluating their bias

mitigation methods.

The rest of the chapter is organized as follows. Section 4.1 provides informa-

tion on the “fairness-accuracy” trade-off and existing practices for benchmarking



4.1. Fairness-Accuracy Trade-off 81

bias mitigation performance. Section 4.2 introduces our approach. The experimen-
tal design is described in Section 4.3. Experiments and results are presented in

Section 4.4. Section 4.5 concludes.

4.1 Fairness-Accuracy Trade-off

There have been numerous works studying the fairness-accuracy trade-off of bias
mitigation methods [95]. Kamishima et al. [30] proposed a regularisation approach
that adjusts the fairness-accuracy trade-off based on parameter 1. Larger values of
N improve fairness, but also cause a higher loss in accuracy. Berk et al. [29] nor-
malized the loss of accuracy to study the severity of the fairness-accuracy trade-off.
They call the decrease of accuracy brought by bias mitigation “Price of Fairness”.
Corbett-Davies et al. [43] analysed the trade-off of public safety and racial dispar-
ities. Similar to Berk et al. [29], they showed that trade-offs can be very common
in practice. Kamiran and Calders [35] gave a theoretical analysis of the trade-off.
A classifier achieves an optimal trade-off if it is not dominated by another classifier

(i.e., with larger accuracy and less bias).

To compare the fairness-accuracy trade-off achieved by bias mitigation meth-
ods, practitioners either observe the fairness and accuracy changes in separate
graphs, or visualize them in a 2-dimensional graph (one dimension is accuracy,
the other dimension is fairness) [15, 31,33, 34, 35,37,38,40,42,67,279,443]. The
proposed mitigation methods are often compared with previous methods [14,15,28,
30, 37,38,40,42, 68,97], different configurations [14, 15, 30, 31, 34, 67], the origi-
nal non-optimized classifier [33,35,36,67,68], or a classifier trained without using

protected attributes [33,35,67,97].

In all of these works, the loss of accuracy and improvement of fairness are
measured and visualized separately. It is unclear whether the improved fairness is
simply the consequence of the loss in accuracy. There is no unified baseline or
quantitative measurement to evaluate and compare the fairness-accuracy trade-off

throughout different studies.

Fairea aims to provide a unified standard to evaluate bias mitigation methods.
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The baseline Fairea provides enables developers to classify the fairness-accuracy
trade-offs of a bias mitigation method into good or poor. The quantitative measure-
ment Fairea provides enables developers to compare different mitigation methods

in a more fine-grained way, and help tune fairness penalty parameters.

4.2 The Fairea Approach

There are three primary steps in Fairea to benchmarking and quantitatively evalu-
ating bias mitigation methods.

Stepl: Baseline Creation with Model Behaviour Mutation. First, Fairea builds
the baseline by simulating the behaviours of a series of naive bias mitigation models.
Fairea does this via model behaviour mutation. The accuracy and fairness of these
simulated models, together with the original classification model, are adopted to
construct the fairness-accuracy trade-off baseline.

Step2: Bias mitigation effectiveness region division. Second, Fairea maps the
effectiveness of a bias mitigation method into five mitigation regions with the Fairea
baseline constructed in the first step. The division of such regions helps to classify
bias mitigation effectiveness into different levels, providing an intuitive overview of
the changes in accuracy and fairness of a mitigation method.

Step3: Quantitative Evaluation of Trade-off Effectiveness. Third, Fairea quan-
tifies the effectiveness of fairness-accuracy trade-off by measuring the gap between
its effectiveness and the Fairea baseline. This step focuses on the bias mitigation
methods that improve fairness but decrease accuracy, and enables the quantitative
comparison among their trade-offs.

The details for each step are explained below.

4.2.1 Baseline Creation

When presenting the fairness and accuracy of a bias mitigation method in a two-
dimensional coordinate system, the baseline that Fairea provides can be viewed as
a line, as shown by Figure 4.1. The line is constructed by connecting the fairness-
accuracy points of the original model (i.e., the model obtained by using the original

classifier without applying any mitigation method) and a series of naive mitigation
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Figure 4.1: The Fairea fairness-accuracy trade-off baseline is represented by the Fpy, trade-
off point and the Fig...Fioo points obtained by model behaviour mutation. A
bias mitigation method BM is effective if it exhibits a better trade-off than the
Fuirea baseline (i.e., if it is above the red line).

models constructed by model behaviour mutation. In the following, we explain how
we obtain these points.

Trade-off points Collection: The starting trade-off point is based on the accuracy
and fairness of the original model (i.e., the model without applying any bias mit-
igation method), as shown by point Fpy, in Figure 4.1. The remaining points are
based on the accuracy and fairness of a series of pseudo models whose behaviours
are mutated from the original model. The hypothesis is that these models could
improve the fairness of the original model in a naive way: by “blindly” sacrificing
its accuracy with model behaviour mutation. For example, when Fairea mutates the
original model into a random guessing model, the fairness will be greatly improved
(because the predictive performance are equally worse among different protected
groups), yet the accuracy is largely sacrificed. The fairness-accuracy trade-offs of
such mutated models are expected to be surpassed by any reasonable bias miti-
gation methods. This hypothesis holds unless the original model performs even
worse than a random guess model. Moreover, the bias measured by fairness metrics
should monotonically decrease with an increased mutation degree. As far as we
know, widely-adopted fairness metrics such as SPD, AOD, and EOD all satisfy this
condition.

Mutation Degree: To obtain mutated model behaviours, we copy the original model

predictions, then mutate the predictions made by this model (i.e., instead of return-
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ing the original predicted label, a random subset of the predictions is replaced by
other labels). We consider different mutation degrees (i.e., the fraction of predic-
tions to mutate) from 10% to 100%, with a step-size of 10%. For example, when
the mutation degree is 10%, we randomly choose 10% of the predictions made by
the original model to mutate.

Mutation Strategy: There are different mutation strategies we can choose to mu-
tate the prediction behaviours, such as random mutation or mutating all the chosen
predictions into the same label. In this chapter, we choose the second strategy fol-
lowing the zero-normalisation principle introduced by Speicher et al. [44], which
states that fairness metrics are minimized when each individual receives the same
label. For an n-class classification problem, there are n labels that one can choose
to conduct mutation, therefore » mutation strategies are possible, one for each label.
We choose the label that will yield the highest accuracy when 100% of the predic-
tions are mutated, in order to provide a tighter trade-off baseline. We explore the
influence of different mutation strategies in RQ4 (see more details in Section 4.4.4).
Example: Table 4.1 illustrates an example of the mutation process and its cor-
responding fairness-accuracy trade-off for binary classification. There are 10 in-
stances in this example (ID from 1 to 10) belonging to two groups (g1 and g2). The
column “Bias” shows the absolute False Positive Rate (FPR) difference between
group g1 and g;. A larger absolute FPR difference indicates more bias in the model
towards the two groups. The original model achieves an accuracy of 0.80, with a
bias of 0.5. When the mutation degree is 40%!, the accuracy is reduced to 0.6,
the fairness is improved, with a bias of 0.17. Finally, mutating 100% of the labels
achieves the best fairness with a bias of 0.0, but also leads to a low accuracy of 0.50.
Baseline Construction: As shown by Table 4.1, each mutation degree corresponds
to one mutated model, whose accuracy and fairness will form a point for construct-
ing the baseline of Fairea. For example, in Figure 4.1, Fio, F20, F30, ..., F1o0 11-
lustrate the fairness and accuracy of mutated models with mutation degree of 10%,

20%, ..., 100%, respectively. These points, together with the initial fairness and

'In this example, mutating the predictions to label 1 and 0 have equal effects on the baseline
strictness. We thus demonstrate only the results of mutating the predictions into 1.
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Table 4.1: An example of the mutation procedure in Fairea. Bias is represented by the ab-
solute False Positive Rate difference (Bias). From the table, bias can be reduced
by simply “sacrificising” accuracy through mutating model predictions.

ID 1 2 3 4 5 6 7 8 9 10
Group gl gl gl gl gl gl g2 g2 g2 g2 | Accuracy Bias
True label o 1 o 1 o0 1 1 1 0 O
Original model o 1 o 1 o0 o0 1 1 1 O 0.80 0.50
mutation degree: 40% 1 1.1 1 0 O 1 1 1 O 0.60 0.17
mutation degree: 100% | 1 1 1 1 1 1 1 1 0.50 0.00

accuracy of the original model, are connected to form the baseline of Fairea. The
shape of the baseline is not necessarily linear. Different fairness metrics may have
different baseline shapes. Both accuracy and bias values are re-scaled to a range
between 0 and 12 for ease of presentation, which does not affect the relative com-

parison results among different bias mitigation methods.

4.2.2 Bias Mitigation Outcome Categorisation

After obtaining a baseline, Fairea categorizes the bias mitigation method’s effec-
tiveness into several regions, with different regions representing different categories
of bias mitigation effectiveness.

As shown by Figure 4.2, there are five mitigation regions. If a bias mitigation
method improves the accuracy and reduces the bias of the original model, it belongs
to the win-win region. This win-win region is challenging to achieve, but is still
possible [300]. A bias mitigation method falls in the lose-lose region if it reduces
the accuracy but at the same time increases the bias of the original model (i.e., it
produces worse results for both measures). If a bias mitigation improves accuracy
but introduces more bias it falls in the inverted trade-off region. The trade-off region
means that a bias mitigation method reduces bias but decreases accuracy. There are
two types of trade-off regions: the good trade-off region indicates that the bias
mitigation method achieves better trade-off than the baseline of Fairea; otherwise,
it belongs to the poor trade-off region.

This five-region categorisation of Fairea helps provide an overview of the over-

2Given a list of values x, each element x; € x is re-scaled given the minimum (x,;,) and maximum
(Xmay) i X2 x; = L Pmin_

Xmax —Xmin
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good trade-off region

D (better than baseline)

l:l poor trade-off region
(worse than baseline)

accurac!
y [ ] win-win region
baseline - inverted trade-off region

(better accuracy but worse fairness)

- lose-lose region

0 bias

Figure 4.2: Mitigation regions of bias mitigation methods based on changes in accuracy
and fairness. The baseline is created following the procedure we introduced in
Section 4.2.1

all effectiveness of a bias mitigation method. In the following, we introduce how

Fairea quantitatively measures the goodness of fairness-accuracy trade-off.

4.2.3 Trade-off Quantitative Evaluation

The win-win, lose-lose, and poor trade-off regions provide sufficiently clear signals
on the effectiveness of the bias mitigation method. Thus, in this section, we focus on
providing a quantitative measurement on the trade-off goodness of bias mitigation
methods that fall into the good trade-off region, to facilitate a more fine-grained

comparison for different bias mitigation methods.

Fairea measures the goodness of such a trade-off by calculating the area en-
compassed by a mitigation method and the Fairea baseline. Figure 4.3 illustrates the
area obtained by connecting the bias mitigation trade-off point to the Fairea base-
line, vertically and horizontally. The vertical line and horizontal line, together with
the Fairea baseline, form a closed area. For example, for the case in Figure 4.3,
the closed area is shown by the filled blue area, which is formed by five points:

BM,BM/,BMN,FM), and on.

When comparing the area of two bias mitigation methods, the method with a
larger area is regarded to have a better fairness-accuracy trade-off. Using the area
as a trade-off measurement, instead of other criterion such as the distance to the

baseline, ensures a reasonable comparison when the baseline is curved.
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Figure 4.3: Quantifying the fairness-accuracy trade-off of a given bias mitigation method
by measuring the area between Fairea baseline and the mitigation method. BM
represents the accuracy and bias of the mitigation method; the red line repre-
sents Fairea’s baseline; the area is constructed by connecting BM horizontally
(BM") and vertically (BM") to the Fairea baseline.

4.3 Experimental Setup

In this section, we describe the design of the experiments we carry out to evaluate
Fairea. We first introduce the research questions, then introduce the subjects and
the experimental procedure. The implementation code and the results are available

at our homepage [442] to support reproducibility and future studies.

4.3.1 Research Questions

Our evaluation answers the following research questions:

RQ1: Which mitigation regions do the existing bias mitigation methods fall
into according to Fairea?

This research question evaluates the overall performance of state-of-the-art bias mit-
igation methods by checking how they are matched into the five mitigation regions
shown by Figure 4.2, according to Fairea. To answer this question, we analyse the
effectiveness of 8 popular state-of-the-art bias mitigation methods when used with
three classification models, by mapping their accuracy-bias trade-off into mitigation
regions as illustrated in Figure 4.2. We show the proportion of bias mitigation cases
that fall into each mitigation region.

RQ2. What fairness-accuracy trade-off do state-of-the-art

bias mitigation methods achieve based on Fairea?

This research question compares the methods that fall into the good trade-off re-
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gion with the quantitative measurement Fairea provides. To answer this question,
we calculate the area for the target method under each mitigation task (with dif-
ferent ML models, datasets, and fairness metrics). This allows us to quantitatively
compare the methods and determine which bias mitigation method achieves the best
fairness-accuracy trade-off under each task.

RQ3. Can Fairea be used to tune trade-off parameters for in-processing bias
mitigation methods?

For in-processing methods, there are usually trade-off parameters for controlling
the degree of bias mitigation. A larger trade-off parameter mitigates more bias,
thus may sacrifice more accuracy. The quantitatively measurement of Fairea natu-
rally enables automatic tuning of such parameters for the purpose of achieving the
best trade-off. To answer the question, we investigate the in-processing methods
(Prejudice Remover [30] with fairness trade-off parameter 1, and Adversarial De-
biasing [36] with the adversary_loss_weight), then check whether our measurement
helps to easily spot parameters that yield good fairness-accuracy trade-off.

RQ4. How does the mutation strategy influence Fairea?

As explained in Section 4.2, different mutation strategies can be used to build
Fairea. This question evaluates the difference among mutation strategies in pro-
viding the baseline. To answer this question, we compare the baselines created by

the different strategies, to motivate the choice of the most suitable mutation strategy.

4.3.2 Datasets

We perform our experiments on the three’ mostly widely-studied, real-world
datasets in the fairness literature: the Adult, German, and COMPAS datasets (see
Section 2.4 for more details).

These datasets are the most widely-explored in the fairness literature. For ex-
ample, Galhotra et al. [60] used two datasets: Adult and German; Chakraborty et
al. [344] used the same three datasets.

Table 4.2 provides more information about these three datasets. This includes

3The number of datasets we used align with the fairness literature. According to our collection,
90% of fairness papers use no more than three datasets in their evaluation.
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Table 4.2: Dataset information.

Dataset ‘ Size Attri. Favour Label Majority Label Prot.Attrib Privileged
Adult 48,842 14 1 (income >50k) 0 (75%) Sex male
Race white
COMPAS | 7,214 28 0 (no recidivism) 0 (54%) Sex female
Race caucasian
German ‘ 1,000 20 1 (good credit) 1 (70%) Sex male

the size of the dataset (Column “Size”), the number of attributes (Column “Attri.”),
the favourable label, and the majority label. For each dataset, we present the pro-
tected attributes that are present in the dataset (Column “Prot.Attrib”). Privileged

groups are outlined for protected attributes (Column “Priviledged”).

4.3.3 Bias Mitigation Methods

We explore all the three types of bias mitigation methods during our evaluation (see
more details in Section 2.3). Under each type, we choose widely-studied methods,

which have been implemented in the IBM AIF360 library:

* Pre-processing: Optimized Pre-processing (OP), Learning Fair Representa-

tions (LFR), Reweighing (RW);
* In-processing: Prejudice Remover (PR), Adversarial Debiasing (AD);

» Post-processing: Reject Option Classification (ROC), Calibrated Equalized
Odds (CO), Equalized odds (EO).

In AIF360, ROC and CO are implemented with three different fairness metrics
to guide the bias mitigation process. ROC offers a choice between SPD, AOD, and
EOD; CO offers a choice between False Negative rate (FNR), False Positive Rate
(FPR), and a weighted metric to combine both. We implemented and evaluated
every of the three methods for ROC and CO. All together, we study 8 bias mitigation

methods.

4.3.4 Experimental Configuration

Pre-processing and post-processing methods are model independent. We implement

them using three traditional classification models, which have been widely adopted
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in previous works that study fairness: Logistic Regression (LR) [14, 15,28, 30, 34,
279], Decision Tree (DT) [14,15], and Support Vector Machine (SVM) [15,34,279].
As in previous work [14,15,28], we use the default configuration for each classifier,

as provided by Scipy.*

The two in-processing methods studied in this chapter have their own model
with different trade-off parameters. In this case, to build Fairea, when getting the
original model, we turn off the trade-off parameters (so that such a model does not
use any bias mitigation function); when evaluating the effectiveness of a in-process
method in RQ1 and RQ2, we use its default trade-off parameter. In RQ3, we explore
the trade-off performance of different parameters and investigate whether Fairea’s

quantitative measurement helps to tune the parameters to get the best trade-off.

We perform our experiments on the three most widely-studied, real-world
datasets in the fairness literature: the Adult, German, and COMPAS datasets. We
apply each of the bias mitigation methods to the three datasets and their protected at-
tributes, with three ML models and two fairness metrics. Thus, for each mitigation
method, it will be evaluated per (dataset, protected attribute, ML model, fairness

metric) combination. We call such as a combination a mitigation task.

Each optimisation process is repeated 50 times, each time with a random re-
spilt of the data based on a fixed train-test split ratio 7:3. We use the mean value
of these multiple runs to represent the method’s average performance, as a common
practice in the fairness literature [38,444]. We treat each single run as an individual
mitigation case, and present the proportion of cases that fall into each bias miti-
gation region for a bias mitigation method (to answer RQ1). The baseline is also
obtained by repeating the label model behaviour mutation procedure 50 times for

each mutation degree (10%, 20%, ..., 100%).

The source code containing the implementation of Fairea and the implementa-
tion/configuration of each bias mitigation method, as well as the results, are avail-

able in our project repository [442].

“https://www.scipy.org/
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4.3.5 Threats to Validity

The primary threat to internal validity lies in the implementation of Fairea. To re-
duce this threat, the authors independently reviewed the implementation code. The
adoption of IBM AIF360 framework [72], a widely adopted fairness tool in soft-
ware fairness [28,444], also reduces such threat. The threats to external validity lie
primarily with the subjects investigated. To reduce this threat, we use the three most
widely adopted datasets in fairness research. We study 8 bias mitigation methods,
with different classification models, to obtain more generalized conclusions. More-
over, we make our scripts and data publicly available, to allow for reproductions,

replications and its adoption in future bias mitigation studies [442].

4.4 Empirical Study Results

This section presents the results of our experiments to answer the research questions

explained in Section 4.3.1.

4.4.1 RQI1: Mitigation Region Distribution

The first research question checks the mitigation region distribution of the existing
bias mitigation methods. We apply bias mitigation methods to the three datasets to
evaluate their region distribution (Section 4.2) according to the baseline provided
by Fairea.

We apply each pre- and post-processing bias mitigation method on three clas-
sification models (LR, DT, SVM) used for five bias mitigation tasks (i.e., Adult-sex,
Adult-race, COMPAS-sex, COMPAS-race, German-sex). Each task is repeated for
50 times with different training-test splits. DT achieves a prediction accuracy below
the majority class for the German dataset. Therefore, it does not meet our baseline
requirement (as introduced in Section 4.2.1) and is disregarded in the subsequent
experiments. Thus, for each bias mitigation method, there are 5*3*50-50 = 700
evaluations.

For each in-processing method, as we introduced in Section 4.3.4, we build the
baseline upon an original model without applying bias mitigation (with the trade-off

parameter set to 0). For Prejudice Remover, its accuracy on the COMPAS/German
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Table 4.3: RQ1: Proportion of mitigation cases that fall into each mitigation region. We
observe that half of the existing bias mitigation methods either decrease accuracy
and increase bias (lose-lose) of the original model, or have a worse trade-off than
the Fairea baseline (poor trade-off).

Bias mitigation method Statistical Parity Difference (SPD) Average Odds Difference (AOD)
Lose-Lose Poor Inverted Good Win-Win | Lose-Lose Poor Inverted Good Win-Win
LFR 19% 48% 0% 20% 13% 33% 38% 0% 17% 13%
Pre OP 11% 16% 14%  40% 18% 20% 11% 13% 36% 20%
RW 5% 14% 4%  54% 23% 12% 12% 3%  49% 24%
I PR 1% 6% 0% 85% 8% 11% 0% 1% 81% 7%
n AD 29% 5% 12%  44% 10% 55% 5% 15% 17% 8%
COyyr 52% 2% 15% 30% 2% 52% 5% 14%  26% 2%
COppr 58% 20% 7% 7% 8% 66% 13% 7% 6% 8%
COyeighed 64% 3% 21% 6% 7% 64% 2% 20% 6% 8%
Post ROCspp 19% 26% 0% 45% 9% 28% 25% 0% 37% 9%
ROCyx0p 45% 16% 4%  26% 9% 26% 28% 3%  34% 9%
ROCgop 47% 15% 4%  26% 9% 43% 14% 3%  31% 9%
EO 11% 6% 6% 69% 8% 14% 4% 7%  67% 8%
Mean ‘ 33% 16% 7%  33% 10% ‘ 36% 15% 7%  31% 11%

dataset is too low to be reduced by mutation, we thus only present its results on
the Adult dataset. Therefore, our experiment conducts 50 evaluates on Prejudice
Remover, and 250 evaluations on Adversarial Debiasing.

We then calculate the percentage of evaluations that fall into each region. We
use the proportion as a high-level indication of the bias mitigation performance of

each method.

4.4.1.1 Overall Results

Table 4.3 shows the results of the region classification of bias mitigation methods.
Each row represents a bias mitigation method. Each cell contains a percentage of
scenarios that fall into corresponding regions for a mitigation method. The last row
shows the overall ratios for each mitigation region.

We make the following primary observations from Table 4.3. First, to our
surprise, a large proportion of bias mitigation performance falls into the lose-lose
trade-off region. For example, for the COy,, post-processing method, the propor-
tion is as high as 52% for AOD. The mean value of the lose-lose proportion is 33%
for SPD and 36% for AOD, which means that those bias mitigation methods per-
form worse than the original model. For SPD, 49% of the bias mitigation methods
perform worse than Fairea while 43% perform better. Similarly, 51% of the bias

mitigation methods achieve worse trade-offs than Fairea for AOD, while being bet-
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ter among 42% of the evaluations.

One possible reason for this is that mitigation methods are often designed to
optimize one fairness metric, but such kind of one-target optimisation usually af-
fects other fairness metrics [445,446]. For example, CO,, and COy), are designed
to optimize the difference of false negative/positive rate between privileged and un-
privileged groups. Their lose-lose percentages measured by SPD and AOD are over
50%. Nevertheless, we observe that when using the same metric to optimize and
measure mitigation performance, the lose-lose percentages are still high (i.e., 19%
for ROCspp measured by SPD, and 26% for ROC4op measured by AOD).

Second, a notable proportion of evaluations fall into the poor trade-off region
(16% for SPD and 15% for AOD). While this means that they achieve more fairness
than the original model, their fairness-accuracy trade-off is worse than the baseline
of Fairea.

We also observe a small ratio of evaluations falling into the win-win region
(10%) or inverted trade-off region (7%). A larger proportion of pre-processing
methods belong to the win-win region, in comparison to in- and post-processing
methods. This may indicate that optimising training data has more promises in
providing solutions to optimize both accuracy and fairness.

Third, pre-processing methods are more likely to fall into the win-win region
with both accuracy and fairness being improved. For example, for SPD, the aver-
age proportion of pre-processing methods that fall into the win-win region is 18%,
which is only 7% for post-processing methods. This suggests that, if one pursues
improving both accuracy and fairness, it might be favourable to pre-process the
training data and prevent the bias from reaching the model, than to mitigate the bias

after the model has learned the bias from the data.

4.4.1.2 Comparison among Different Models and Datasets

We further analyse the region distribution based on ML models (for pre- and post-
processing methods) and datasets. The purpose is to investigate whether the per-
formance of different bias mitigation methods are influenced by ML models or

datasets.
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Table 4.4: RQ1: Averaged proportion of mitigation cases that fall into each mitigation re-
gion organized by different ML models (top three rows) and datasets (bottom
five rows). The differences across models and datasets indicate that the effec-
tiveness of the methods we studied are model and dataset dependent.

‘Lose-Lose Poor Inverted Good Win-Win

LR 30% 20% 3%  41% 6%
DT 3% 8% 12% 24% 12%
SVM 28% 18% 6% 36% 13%
Adult - Sex 49% 17% 1% 32% 1%
Adult - Race 43% 15% 3%  37% 2%
COMPAS - Sex 18% 13% 10%  35% 23%
COMPAS - Race 26% 8% 15% 34% 16%
German - Sex 34% 27% 9% 19% 12%

Table 4.5: RQ2: Trade-off assessment results for pre-processings and post-processing
methods. For each method in the good trade-off region, a trade-off measure-
ment value provided by Fairea is given; for other regions the region type is
displayed. The values in bold indicate the best mitigation method for each mit-
igation task. From this table, we observe that Fairea provides distinguishable
measurements for trade-off comparison, and helps to detect the best mitigation
method under each bias mitigation task. We abbreviate “win-win” with “WW”,
and “lose-lose” with “LL".

‘ Logistic Regression (LR) ‘ Decision Tree ‘ SVM
Adult COMPAS German Adult COMPAS Adult COMPAS German
‘ Sex Race Sex Race Sex ‘ Sex Race Sex Race Sex Race Sex Race Sex
3 LFR poor  poor | poor  poor poor | poor  poor | poor poor | poor  poor | poor poor poor
§ Pre OP poor 0.002 | 0.076 0.011 LL | 0.008 0.111 | WW inverted | 0.000 0.002 | WW inverted LL
& RW 0.001 0.007 | 0.195 0.138 poor | 0.029 0.176 | WW WW | 0.001 0.029 | WW ww LL
a COpnr 0.014 0.019 LL LL LL LL LL LL LL | 0.011 0.012 LL LL LL
g COypr LL LL | poor LL 0.115 LL LL | 0.000 LL LL LL | poor LL 0.063
A COyighed LL LL LL LL LL LL LL LL LL LL LL LL LL LL
S Post ROCspp | 0.006 poor | 0.274 0.273 poor LL LL | 0.112 0.043 | poor poor | 0.264 0.258 poor
2 ROCpop LL LL | 0.185 0.185 poor LL LL LL LL LL poor | 0.172 0.180 poor
g ROCEop LL LL | 0.149 0.093 poor LL LL LL LL LL poor | 0.126 0.108 poor
EO 0.024 0.067 | 0.104 0.159 0.038 | poor LL | 0.002 0.000 | 0.021 0.054 | 0.118 0.166 0.018
° LFR LL LL | poor poor poor LL LL | poor poor | poor  poor | poor poor poor
% Pre OP poor 0.028 | 0.108 0.027 LL | poor LL | WW inverted | 0.028 0.041 | WW inverted LL
8 RW 0.041 0.039 | 0.213 0.153 poor | 0.016 LL | WW WW | 0.009 0.026 | WW ww LL
=
A COpnr 0.000 0.066 LL LL LL LL LL LL LL | 0.037 0.087 LL LL LL
é’ COppr LL LL | poor LL 0.054 LL LL | 0.000 LL LL LL LL LL 0.038
o COyeighed LL LL LL LL LL LL LL LL LL LL LL LL LL LL
gn Post  ROCspp LL  poor | 0.281 0.201 poor LL LL | 0.140 0.040 | poor  poor | 0.240 0.215 LL
§ ROCxop poor poor | 0.229 0.187 poor LL LL LL LL | poor 0.001 | 0.204 0.201 LL
< ROCEop LL LL | 0.197 0.112 poor LL LL LL LL LL 0.003 | 0.154 0.141 LL
EO 0.169 0.198 | 0.111 0.159 0.029 LL LL | 0.003 0.000 | 0.158 0.087 | 0.120 0.160 0.010

Table 4.4 shows the results. Among the three classification models, we observe
that different models have different results, which indicates that the effectiveness of
pre- and post-processing methods are model dependent. Overall, LR and SVM have
a better effectiveness (higher percentage of good trade-offs) than DT.

Among different datasets and protected attributes, the differences are also no-

table. We observe that for the COMPAS dataset, there are more scenarios in the
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win-win region and fewer scenarios in the lose-lose region. We suspect that this is
because COMPAS dataset is more balanced than Adult and German (54% of ma-
jority labels v.s. 75% and 70% majority labels according to Table 4.2).

To conclude, for RQ1, we have the following answer:

Answer to RQ1: Surprisingly, approximately 50% of the bias mitigation sce-
narios have a poor mitigation effectiveness, with 34% of them decreasing
accuracy and increasing bias (lose-lose), and 15% of them exhibiting a poor

trade-off according to Fairea.

4.4.2 RQ2: Quantitative Measurement for Fairness-Accuracy

Trade-off

To answer RQ2, we present the quantitative measurement results of the fairness-
accuracy trade-off achieved by different bias mitigation methods with Fairea. We
quantify results that fall into the good trade-off region, as the other regions are either
strictly dominating the original model (win-win), dominated by the Fairea baseline
(lose-lose and poor trade-off, or do not improve fairness (inverted). We use the
arithmetic mean results of the 50 runs to indicate the average level of mitigation
effectiveness.

Table 4.5 shows the results for pre- and post-processing bias mitigation meth-
ods. The values in bold indicate the best mitigation method for each mitigation task
(i.e., the combination of dataset, protected attribute, ML model, and fairness met-
ric). From the table, the quantitative trade-off measurement Fairea provides helps to
compare different the trade-offs among different mitigation method, and to choose
the best one under each mitigation task.

The same as RQ1, we observe that the trade-offs of bias mitigation methods
are highly dataset dependent. For example, the best trade-off on the Adult dataset
is achieved by EO (highest scores for both AOD and SPD). The best trade-off on
German is achieved by COy),.

We also explore whether the protected attribute considered under each dataset

impacts the performance of bias mitigation methods. From Table 4.5, for the same
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dataset, different protected attributes have very similar patterns. Specifically, in
85% (102/120) of the cases, bias mitigation methods are classified into the same
mitigation region with different protected attributes. This suggests, that the pro-
tected attribute has a limited impact on the trade-off performance of bias mitigation

methods.

Table 4.6: RQ2: Trade-off assessment results for in-processing methods.

Adult COMPAS German

Sex Race Sex Race Sex

.. . . R 0.042 0.003 NA NA NA
Statistical Parity Difference AD 0.176 0.042 | lose-lose lose-lose | lose-lose
. 0.090 0.011 NA NA NA

Average Odds Difference AD | lose-lose lose-lose | lose-lose lose-lose | lose-lose

Due to the different characteristics of in-processing methods, we provide their
quantitative results separately in Table 4.6. Prejudice Remover is not applicable to
the COMPAS and German dataset (see Section 4.4.1.1 for more details) so we mark
the results as “NA”. Adversarial Debiasing is applicable for all three datasets, how-
ever only achieves good trade-offs on the Adult dataset for SPD. All the other trade-
offs are in the lose-lose region. However, when comparing the two in-processing
methods on Adult dataset measured by SPD, Adversarial Debiasing has a better

trade-off than Prejudice Remover.

These observations lead to the following answer to RQ?2:

Answer to RQ2: The quantitative measurement of Fairea allows us to de-
termine and compare fairness-accuracy trade-offs achieved by different bias
mitigation methods. For example, Fairea measures that the EO method
achieves a 71.4% better trade-off than COy,, (i.e., 0.024 vs. 0.014) for the
case LR-Adult-Sex under Statistical Parity Difference. Different datasets
have different bias mitigation methods that achieve the best trade-off (i.e.,

EO for Adult; COy,, for German).
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4.4.3 RQ3: Parameter Tuning

In RQ3, we investigate the effectiveness of Fairea in evaluating the parameter tun-
ing for in-processing methods. For this purpose, we apply Fairea on the origi-
nal model of Prejudice Remover with 11 = 0, and Adversarial Debiasing with an

adversary_loss_weight = 0.

As in previous experiments, we perform 50 train-test splits for all numer-
ical values of n between 1-100 for PR, with a step size of 1. We evaluate
adversary_loss_weights in a range of 0.05-1, with a step size of 0.05. Due to lim-
ited space, we choose the Adult dataset as an example to illustrate experiments on

parameter tuning. Full results are available in our project repository [442].

We first plot the accuracy and fairness achieved by each parameter setting,
shown in Figure 4.4. For both methods, all parameter settings for SPD achieves
better trade-off than the original model. However, the bias mitigation effectiveness

for AOD is much worse.

Although the different parameters all belong to the good trade-off region, it is
difficult to determine which parameter setting achieves the best fairness-accuracy
trade-off. We therefore investigate whether our quantitative measurement in Fairea

helps spot the parameter that achieves the best trade-off.

Figure 4.5 shows these results. Sub-Figures 4.5 (a) and (b) show the trade-off
measurement results provided by Fairea with different trade-off parameters. The
remaining sub-figures show the accuracy and fairness changes separately without

Fairea.

From sub-Figure 4.5.(a) and sub-Figure 4.5.(b), we observe that, when the
trade-off parameter changes, our trade-off measurement first increases, then de-
creases, with a turning point indicating the parameter with the best trade-off. How-
ever, from the remaining sub-figures, without the support from Fairea, it is difficult
to choose a parameter with accuracy and fairness changing at the same time.

Of course, in practice, the desired trade-offs may depend on the application
scenario and the specific requirement. Some applications may demand a higher

degree of fairness, with the capability of enduring more accuracy loss. However,
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Figure 4.4: RQ3: Accuracy and fairness achieved by Prejudice Remover (sub-figure a and
b), and Adversarial Debiasing (sub-figure ¢ and d) with different parameters
on Adult-sex. Each green point represents a trade-off parameter, the blue line
represents the Fairea baseline.

the quantitative measurement in Fairea provides an engineering solution for finding

the best trade-off as a reference for developers.

,

Answer to RQ3: Our trade-off measurement helps to quantify the fairness-
accuracy trade-offs achieved by in-processing methods with different trade-
off parameter settings, and to identify parameters that achieve the best

fairness-accuracy trade-offs.

4.4.4 RQ4: Influence of Mutation Strategies

This research question is designed to investigate how the mutation strategy for sim-
ulating naive mitigation methods affects the construction of the Fairea baseline.
We show and compare three different mutation strategies: replace labels with “07,
replace labels with “1”, and replace labels at random.

Figure 4.6 shows the accuracy and fairness (SPD, AOD) of the three muta-
tion strategies. We analysed all three datasets, the conclusions are identical, so we

only present results for the Adult-sex task (full results are available in our project
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Figure 4.5: RQ3: In-processing trade-off parameter tuning with Fairea. The horizontal
axis in each sub-figure shows different parameter values. Figure (a) and (b)
show the trade-off measurement changes provided by Fairea. Figure (c), (d),
(e), (f) show the changes of accuracy and fairness separately.

repository [442]).

As can be seen, when we mutate the labels with the majority class label (0 in
the case for Adult-sex), its baseline is on top of the other two strategies. This means
that overwriting with the majority label provides a more strict baseline than the other
two strategies. Mutation with the minority class label (1 in the case for Adult-sex)
instead leads to a baseline with lower accuracy on the same level of fairness. Using
such a baseline would provide weaker conditions when checking the trade-off of
bias mitigation methods. Replacement with random labels leads to a baseline in-
between the other two strategies, but with 100% labels replaced, the fairness values

are not minimized at zero because of the imbalanced data distribution.
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Figure 4.6: RQ4: Comparison of three mutation strategies (mutate the original prediction
into 0, 1, or randomly (R)) on the Adult dataset with the protected attribute sex.

In this chapter, we adopted the strategy of mutating predictions with the major-
ity class label in the training data. Although this is the most strict among the three
strategies, it is still a naive bias mitigation method achieved simply by label over-
writing, which we expect that a reasonably effective bias mitigation method should

outperform.

Answer to RQ4: Among the different mutation strategies we explored, re-
placing labels with the majority class label for a dataset leads to the strictest

baseline.

4.5 Conclusions

In this chapter, we proposed Fairea, a novel approach to evaluating and quantita-
tively measuring the fairness-accuracy trade-off. There are three primary questions
that previous work could not answer without Fairea: 1) The Fairea baseline tells
whether a bias mitigation method trades accuracy for fairness (or even worse than
that). The qualitative approach used by previous work is not able to differentiate
“good trade-off”” and “poor trade-off™ like Fairea does; 2) Fairea provides extra in-
formation for developers by telling whether bias mitigation method A outperforms
method B when they both achieve a “good trade-off”’; 3) Fairea helps to tune the
fairness mitigation parameter for in-processing methods.

We performed a large scale empirical study to evaluate our baseline Fairea
on three widely used datasets and 8 bias mitigation methods. We found that half

of the bias mitigation methods are not able to achieve a reasonable bias mitigation
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effectiveness (either achieving a worse trade-off than our baseline, or decreasing ac-
curacy and increasing bias). In addition, few methods perform well on all datasets
and all models. These results show the limitations and challenges of the existing
bias mitigation methods, suggesting the need for further research effort on improv-

ing ML software fairness.



Fairness and Accuracy

Improvements with Post-Processing

Knowing that one may be subject to bias is one thing; being able to cor-
rect it is another.

— Jon Elster

A naive approach for repairing fairness issues in ML software is the removal of
sensitive attributes (i.e., attributes that constitute discriminative decisions, such as
age, gender, or race) from the training data. However, this has shown to not be able
to combat unfairness and discriminative classification, owing to correlation of other
attributes with sensitive attributes [19, 67, 95]. Therefore, more advanced methods
have been proposed in the literature, which apply bias mitigation at different stages
of the software development process (see Chapter 3). However, there are limitations
for the applicability of these methods and it has been shown that they often reduce
bias at the cost of accuracy [14, 15], known as the price of fairness [29].

In this chapter, we introduce a search-based procedure, which can be applied
to mutate classification models in a post-processing stage, in order to automatically
repair software fairness and accuracy issues. We conduct a thorough empirical
study to evaluate the feasibility and effectiveness of our search-based approach.
We apply our method on two widely-studied binary classification models in ML
software fairness research, namely Logistic Regression [14, 15,28, 30, 34,279] and

Decision Trees [14, 15,42, 97], which belong to two different families of classi-
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fiers. These two models are also widely adopted in practice on fairness-critical
scenarios, mainly due to their advantages in explainability.! We investigate the
performance on four widely adopted datasets, and measure the fairness with three
widely-adopted fairness metrics. Furthermore, we benchmark our method with all
existing post-processing methods publicly available from the popular IBM AIF360
framework [72].

The results show that our approach is able to improve both accuracy and fair-
ness of Logistic Regression and Decision Tree classifiers in 61% of the cases. The
three existing bias mitigation methods we studied conform to the fairness-accuracy
trade-off and therefore decrease accuracy when attempting to mitigate bias. Among
all investigated bias repair methods, our approach achieves the highest accuracy in
100% of the cases, while also achieving the lowest bias in 33% of these. With our
approach, engineers are able to develop fairer classification models without the need
to sacrifice accuracy.

In summary, we make the following contributions:

- We propose a novel search-based post-processing approach for mutating clas-
sification models to repair both, fairness and accuracy issues. This approach

is applied to Logistic Regression and Decision Trees.

- We carry out a thorough empirical study to evaluate the applicability and
effectiveness of our search-based post-processing approach to two different
classification models on four datasets, three fairness metrics, and three state-

of-the-art post-processing methods used as a benchmark.

Additionally, we make our scripts and experimental results publicly available to
allow for replication and extension of our work [447].

The rest of this chapter is organized as follows. Section 5.1 provides the
background and related work on fairness research, including fairness metrics and

bias mitigation methods. Section 5.2 introduces our approach that is used to adapt

! Decision-making scenarios that highly demand fairness often require high explainability, while
low explainability is a big disadvantage of big complex models such as Deep Neural Networks.
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trained classification models. The experimental design is described in Section 5.3.

Experiments and results are presented in Section 5.4. Section 5.5 concludes.

5.1 Background and Related Work

Our approach targets the design of fair ML software systems. While software sys-
tems can be designed to reduce discrimination, previous work has observed that
this frequently is accompanied by a reduction of the accuracy or correctness of
said models [34, 35, 43]. In their FSE’2020 work, Chakraborty et al. [28] inte-
grated bias mitigation into the design of ML software. In particular, they applied
multi-objective optimization to the hyperparameter tuning of a Logistic Regression
model. Similarly, our approach integrates bias mitigation into the software develop-
ment process, however at a different stage. While Chakraborty et al. [28] considered
pre- and in-processing approach for bias mitigation, we propose a post-processing
approach. Moreover, our approach is not focused on a single classification model,
but can be transferred to multiple ones, as we show by using it to improve Logistic
Regression and Decision Tree models. Lastly, while their multi-objective optimiza-
tion does not prevent the improvement of accuracy and fairness at the same time,

our approach demands the improvement of both.

Herein we propose a novel post-processing method, therefore in the follow-
ing we discuss the most common post-processing methods, which are also used as
a benchmark in our experiments (Section 5.4), and the main difference with the

approach we propose herein.

Kamiran et al. [14, 15] proposed Reject Option based Classification (ROC),
which exploits predictions with high uncertainty. This follows the intuition that
discriminatory decisions are made close to the decision boundary and therefore with
uncertainty. Given a region with low confidence (e.g., labels close to 0.5 in binary
classification), instances belonging to the unprivileged group receive a favorable
label, and instances of the privileged group an unfavorable label. Instances outside

the low confidence region remain unchanged.

Other than modifying predictions in a post-processing stage, trained classifiers
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can be addressed as well. Savani et al. [394] called the post-processing of trained
classification models “intra-processing” and proposed an approach for modifying

the weights of Neural Networks.

Kamiran et al. [42] applied leaf relabeling, as a post-processing method on
already trained Decision Trees. Usually, labels of leaves are determined by the
majority class of the training data which is classified by this particular leaf node.
In their debiasing method, leaves are relabeled to reduce discrimination (e.g., a leaf
that is returning “false” is changed to return “true”), while also keeping the loss in
accuracy minimal. In particular, each leaf node is investigated to select and relabel
the leaf with the highest ratio of discrimination reduction and accuracy loss. Their
approach assumes that, in order to lower discrimination of DTs, one has to lower

accuracy.

Hardt et al. [41] proposed a post-processing method based on equalized odds.
A classifier is said to satisfy equalized odds when it is independent of protected
attribute and true label (i.e., true positive and false positive rates across privileged
and unprivileged group are equal). Given a trained classification model, they used
linear programming to derive an unbiased one. Another variant of the equalized
odds bias mitigation method has been proposed by Pleiss et al. [40]. In contrast to
the original equalized odds method, they used calibrated probability estimates of
the classification model (e.g., if 100 instances receive p = 0.6, then 60% of them

should belong to the favorable label 1).

Our herein proposed post-processing approach differs from the leaf relabeling
approach proposed by Kamiran et al. [42], as we do apply changes to the classifica-
tion model only if they do not decrease its accuracy. In other words, our approach
is the first to deliberately optimize classification models for accuracy and fairness
at the same time, unlike existing methods that are willing to reduce bias at the cost
of accuracy [29]. Overall, we apply a search procedure rather than deterministic
approaches [14,15,40,41,42] and we do not assume that bias reduction has to come
with a decrease in accuracy. To the best of our knowledge our proposal is the first

to improve classification models according to both fairness and accuracy by mutat-
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ing the classification model itself, rather than manipulating the training data or the

predictions.

5.2 Proposed Approach

This section introduces the search-based procedure we propose for mutating classi-
fication models to simultaneously improve both accuracy and fairness. In addition,
we describe implementation details for two classification models (Logistic Regres-

sion, Decision Trees) to perform such a procedure.

5.2.1 Procedure

Our search-based post-processing procedure aims to iteratively mutate a trained
classification model in order to improve both accuracy and fairness at the same
time. For this purpose, we require a representation of the classification model that
allows changes (“mutation”) to the prediction function. To simplify the mutation
process, we apply mutation incrementally (i.e., repeatedly changing small aspects
of the classifier). Such a procedure is comparable to the local optimisation algorithm
Hill Climbing. Based on an original solution, Hill Climbing evaluates neighboring
solutions and selects them only if it improves the original fitness [448]. We mutate
a trained classification model clf with the goal to achieve improvements in accu-
racy and fairness. In this context, the fitness function measures the accuracy and
fairness of ¢/ f on a validation dataset (i.e., a dataset that has not been used during
the initial training of c/f). “Accuracy” (acc) refers to the standard accuracy in ma-
chine learning, which is the number of correct predictions against the total number
of predictions. To measure fairness, we use the three fairness metrics introduced in
Section 2.1 (SPD, AOD, EOD).

Algorithm 1 outlines our procedure to improve accuracy and fairness of a
trained classification model cl/f, where > denotes the domination operator (i.e.,
a > b shows that a dominates b) [449]. In a multi-objective optimization environ-
ment, a solution a dominates another solution b, if for none of the objectives a is
worse than b, and a is better than b in at least one objective. In line 4, firness(clf)

determines the fitness of the modified classification model in terms of accuracy
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(acc’) and a fairness metric (fair’). In our empirical study we experiment with three
different fairness metrics (see Section 2.1), one at a time. If desired, firness(clf)
can also be modified to take multiple fairness metrics into account simultaneously.

We only apply a mutation if the accuracy and fairness of the mutated model
(acc’, fair’) dominates the accuracy and fairness of the previous classification
model (acc, fair) (Line 5). If that is not the case, the mutation is reverted
(undo_mutation) and the procedure continues until the terminal condition is met
(e.g., the search procedure was repeated for a predefined number of iterations). A
mutation of the trained model at each iteration of the search process that leads to
an improvement in one objective (either accuracy or fairness) will almost certainly
change the other objective at the same time. If the other objective is not worsened,
the change is kept; otherwise, the change is reverted. This effect is accumulated
over each iteration.

To show the generalizability of the approach, and in line with previous
work [14, 15, 28], we use the default configuration, as provided by scikit [450] to

train the classification models before applying our post-processing procedure.

Algorithm 1 Post-processing Procedure of a trained classification model ¢/ f

1: acc, fair < fitness(cLf)
2: while terminal condition not met do
3: clf < mutate(clf)

4: acc, fair' < fitness(clf)

5. if (acc, fair') = (acc, fair) then
6: acc < acc

7: fair < fair

8: else

9: clf < undo_mutation(clf)
10: end if

11: end while

5.2.2 Logistic Regression

Representation. Logistic regression (LR) is a linear classifier that can be used for
binary classification. Given training data, LR determines the best weights for its
coefficients. Below, we illustrate the computation of the LR prediction with four

tuneable weights (bg,b1,b2,b3). At first, Equation 5.1 presents the computation of
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predictions with a regular linear regression classifier. To make a prediction, LR uses

this the Linear prediction in a sigmoid function (Equation 5.2):

Linear(x1 ,XQ,X3) = bo+b1x1 +byxy + b3x3 5.1

1

= 5.2
l+eY >-2)

P(Y)

This prediction function determines the binary label of a 3-dimensional
(x1,x2,x3) input. In a binary classification scenario, we treat predictions > 0.5 as
labels 1, and O otherwise.

This shows that the binary classification is determined by n variables
(bg...by,—1). To represent an LR model, we store the n coefficients in an n-
dimensional vector.

Mutation. Given that an LR classification model can be represented by one-
dimensional vector, we mutate single vector elements to create mutated variants
of the model. In particular, we pick an element at random and change its value

within a range of {—10%,10%}.

5.2.3 Decision Tree

Representation. Decision Trees (DT) are classification models that solve the clas-
sification process by creating tree-like solutions, which create leaves and branches
based on features of the training data. We are interested in binary DTs. In binary
DTs, every interior node (i.e., all nodes except for leaves) have exactly two child
nodes (left and right).

Mutation. We use pruning as a means to mutate DTs. The pruning process deletes
all the children of an interior node, transforming it into a leaf node, and has shown
to improve the accuracy of DT classification in previous work [451,452,453]. In
particular, we pick an interior node i at random and treat it as a leaf node by remov-
ing all subjacent child nodes. We choose to use pruning, instead of leaf relabeling,
because preliminary experiments showed that pruning outperforms leaf relabeling
(i.e., Kamiran et al. [42] used leaf relabeling in combination with an in-processing

method but not in isolation).
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5.3 Experimental Setup

In this section, we describe the experimental design we carry out to assess our
search-based bias repair method for binary classification models (i.e., Logistic Re-
gression and Decision Trees). We first introduce the research questions, followed

by the subjects and the experimental procedure used to answer these questions.

5.3.1 Research Questions

Our evaluation aims to answer the following research questions:
RQ1: To what extent can the proposed search-based approach be used to im-
prove both, accuracy and fairness, of classification models?

To answer this question, we apply our post-processing approach to LR and DTs
(Section 5.2) on four datasets with a total of six protected attributes (Section 5.3.2).

The search procedure is guided by accuracy and each of the three fairness met-
rics (SPD, AOD, EOD) separately. Therefore, for each classification model, we
perform 3 (fairness metrics) x 6 (datasets) = 18 experiments. For each of the fair-
ness metrics, we mutate the classification models and measure changes in accuracy
and the particular fairness metric used to guide the search (e.g., we post-process
LR based on accuracy and SPD). We then determine whether the improvement in
accuracy and fairness (as explained in Section 5.2) achieved by mutating the classi-
fication models are statistically significant, in comparison to the performance of the
default classification model.

Furthermore, we compare optimization results from post-processing with ex-
isting bias mitigation methods:

RQ2: How does the proposed search-based approach compare to existing bias
mitigation methods?

To answer this question, we benchmark our approach against three existing
and widely-used post-processing methods (Section 5.3.3), provided by the AIF360
framework [72]. In particular, we applied the existing post-processing methods to
LR and DTs on the same set of problems (four datasets) to compare their fairness-
accuracy trade-off with the one achieved by our proposed approach.

While the objectives considered during the optimization procedure are im-
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Table 5.1: Datasets used in our empirical study

Dataset Size Attributes Favourable Label Majority Label Protected Privileged - Unprivi-
leged
Adult 48,842 14 1 (income >50k) 0 (75%) Sex Male - female
Race White - non white
COMPAS | 7,214 28 0 (No recid) 0 (54%) Sex Female - male
Race Caucasian - not Cau-
casian
Bank ‘ 41,188 20 1 (yes) 0 (87%) Age >25-<25
MEPS19 ‘ 15,830 138 1 (> 10 visits) 0 (83%) Race White - non-white

proved, this has shown to carry detrimental effects on other objectives [28, 454].
Therefore, we determine the impact optimization for one fairness metric has on the
other two fairness metrics, which have not been considered during the optimization
procedure:

RQ3: What is the impact of post-processing guided by a single fairness metric
on other fairness metrics?

To answer this question, we apply our post-processing method on LR and DTs.
While optimizing for each of the three fairness metrics, we measure changes of
the other two. We are then able to compare the fairness metrics before and after
the optimization process, and visualize changes using boxplots. Moreover, we can
determine whether there are statistically significant changes to “untouched” fairness

metrics, which are not optimized for.

5.3.2 Datasets

We perform our experiments on four real-world datasets used in previous software
fairness work [26, 28] with a total of six protected attributes: Adult, COMPAS,
Bank, MEPS19. A detailed explanation for each datasets can be found in Sec-

tion 2.4.

In Table 5.1, we provide the following information about the four datasets:
number of rows and features, the favourable label and majority class. In addition,
we list the protected attributes for each dataset (as provided by the AIF360 frame-
work [72]), which are investigated in our experiments, and the respective privileged

and unprivileged groups for each protected attribute.
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Figure 5.1: Empirical evaluation of a single data split.

5.3.3 Benchmark Bias Mitigation Methods

As our proposed method belongs to the category of post-processing methods, we
compare it with all the state-of-art post-processing bias mitigation methods made

publicly available in the AIF360 framework [72]:
* Reject Option Classification (ROC) [14,15];
* Equalized odds (EO) [41];
* Calibrated Equalized Odds (CO) [40].

AIF360 [72] provides ROC and CO with the choice of three different fairness met-
rics to guide the bias mitigation procedure. ROC can be applied with SPD, AOD,
and EOD. CO can be applied with False Negative rate (FNR), False Positive Rate
(FPR), and a “weighed” combination of both. We apply both, ROC and CO, with
each of the available fairness metrics. EO does not provide choices for fairness

metrics to users.

5.3.4 Validation and Evaluation Criteria

To validate the effectiveness of our post-processing approach to improve accuracy
and fairness of classification models, we apply it to LR and DT. Since our opti-
mization approach applies random mutations, we expect variation in the results.
Figure 5.1 illustrates the empirical evaluation procedure of our method for a single
datasplit. At first, we split the data in three sets: training (70%), validation (15%),
test (15%). To mitigate variation, we apply each bias mitigation method, including

our newly proposed approach on 50 different data splits.
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The training data is used to create a classifier which we can post-process. Once
a classifier is trained (i.e., Logistic Regression or Decision Tree), we apply our opti-
mization approach 30 times (Step 2). To then determine the performance (accuracy
and fairness) of our approach on a single data split, we compute the Pareto-optimal
set? based on the performance on the validation set. Once we obtain the Pareto-
set of optimized classification models based on their performance on the validation
set, we average their performance on the test set. Performance on the test set (i.e.,
accuracy and fairness) is used to compare different bias mitigation methods and
determine their effectiveness. Each run of our optimization approach is limited to
2,500 iterations (terminal condition, Algorithm 1). The existing post-processing
methods are deterministic, and therefore applied only once for each data split.

In order to assess the effectiveness of our approach (RQ1) and compare it with
existing bias mitigation methods (RQ2), we consider both summary statistics (i.e.,
average accuracy and fairness), statistical significance tests and effect size mea-
sures, and Pareto-optimality. Furthermore, we use boxplots to visualize the impact
of optimizing accuracy and one fairness metric on the other two fairness metrics
(RQ3).

Pareto-optimality states that a solution a is not worse in all objectives than
another solution b and better in at least one [448]. We use Pareto-optimality to
both measure how often our approach dominates the default classification model or
is Pareto-optimal, and to plot the set of solutions found to be non-dominated (and
therefore equally viable) with respect to the state-of-the-art (RQs 1-2). In the case
where there are two objectives, such as ours, this leads to a two dimensional Pareto
surface.

To determine whether the differences in the results achieved by all approaches
are statistical significant, we use the Wilcoxon Signed-Rank test, which is a non-
parametric test that makes no assumptions about underlying data distribution [455].

We set the confidence limit, &, at 0.05 and applied the Bonferroni correction for

2This is the set of solutions that are non-dominated to each other but are superior to the rest of
solutions in the search space. In other words each solution of the Pareto-set includes at least one
objective inferior to another solution in that Pareto-set, although both solutions are superior to others
in the rest of the search space with respect to all objectives.
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multiple hypotheses testing (¢t/K, where K is the number of hypotheses). This
correction is the most conservative of all corrections and its usage allows us to
avoid the risk of Type I errors (i.e., incorrectly rejecting the Null Hypothesis and
claiming predictability without strong evidence). In particular, depending on the
RQ, we test the following null hypothesis:

(RQ1) Hy: The fairness and accuracy achieved by approachy is not improved with
respect to the default classification model. The alternative hypothesis is as follows:
H: The fairness and accuracy achieved by approach, improves with respect to the
default classification model. In this context, “improved” means that the accuracy is
increased and fairness metric values are decreased (e.g., a SPD of 0 indicates that
there is no unequal treatment of privileged and unprivileged groups).

(RQ3) Hy: Optimizing for accuracy and fairness metric my does not improve fair-
ness metric my with respect to the default classification model. The alternative
hypothesis is as follows: Hj: Optimizing for accuracy and fairness metric m im-
proves fairness metric my with respect to the default classification model. For this
RQ, we summarize the results of the Wilcoxon tests by counting the number of win-
tie-loss as follows: p—value<0.01 (win), p—value>0.99 (loss), and 0.01< p—value
>0.99 (tie), as done in previous work [456,457,458,459].

In addition to evaluating statistical significance, we measure the effect size
based on the Vargha and Delaney’s A, non-parametric measure [460], which does
not require that the data is normally distributed [461]. The Alz measure compares an
algorithm A with another algorithm B, to determine the probability that A performs

better than B with respect to a performance measure M:
A= (Ri/m—(m+1)/2)/n (5.3)

In this formula, m and n represent the number of observations made with algorithm
A and B respectively; R denotes the rank sum of observations made with A. If A
performs better than B, A ;> can display one of the following effect sizes: A, > 0.72
(large), 0.64 < A1, < 0.72 (medium), 0.56 < A} < 0.64 (small), although these

thresholds are not definitive [462].
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5.3.5 Threats to Validity

The threats to internal validity lie in the confidence that our experimental results
are trustworthy and correct. To alleviate this threat, we applied our post-processing
method and existing bias mitigation methods 50 times, under different train/vali-
dation/test splits. This allowed us to apply statistical significance tests to verify
our results and findings. We have used traditional measures used in the software
fairness literature to assess ML accuracy, while we recognize alternative measures
could be used to take into account data imbalance [463].

Threats to external validity: the generalizability of our results, are primarily
concerned with the investigated datasets, approaches and metrics. While we be-
lieve using more data will increase the generalizability of our results, the majority
of publications we surveyed investigated less than four datasets, and we have in-
cluded herein all datasets publicly available which have been previously used in
the literature to solve the same problem addressed in this chapter. Furthermore, we
have successfully applied our post-processing method on two inherently different
classification models (Logistic Regression, Decision Trees), which strengthens the
confidence that our approach could be applied to other classifiers. We have also
explored all state-of-the-art fairness metrics and post-processing debiasing meth-
ods available from the AIF360 framework [72] (version 0.3.0), which is publicly
available, to strength the generalizability and reproducibility of our work.

Threats to construct validity: to further support the applicability and general-
izability of our approach and the replication and extension of our work, we make

our scripts and results publicly available [447].

5.4 Results

This section presents the results of our experiments to answer the research questions

explained in Section 5.3.1.

5.4.1 RQI1: Fairness-Accuracy Improvement

In the first research question, we investigate whether our post-processing approach

is able to improve both fairness and accuracy when applied to binary classification



5.4. Results 115

Table 5.2: RQ1-Logistic Regression: Average accuracy and fairness of non-dominated so-

lutions over 50 different data splits (i.e., for each data split, we select the non-
dominated solutions and average their performance on the test set). Bold values
indicate improvements over the default classification model. The p-value of the
Wilcoxon Signed-Rank test comparing each approach with the default Logistic
Regression model, is given in brackets for each metric. Colors are used to show
the effect size ([large|, medium , small ).

Adult Compas Bank Meps19
Sex Race Sex Race Age Race
LRyefauir | 0.833 0.833 0.677 0.677 0.899 \ 0.838

LRspp 0.845 (0.00) 0.845 (0.00) | 0.676 (0.22) 0.675 (0.31) | 0.900 (0.01) 0.835 (0.00)

Accuracy yp op | 0.846 (0.00) 0.845(0.00) 0.675 (0.29) 0.675(0.31) | 0.900 (0.06) 0.834 (0.00)
LRzop | 0.846 (0.00) 0.845 (0.00) 0.675 (0.20) 0.676 (0.72) | 0.900 (0.05) 0.834 (0.00)
SPD LR e fauir | 0.191 0.034 | 0.279 0.173 0.074 | 0.123
LRspp | 0.171 (0.00) [0:086 (0:00)""0:199(0:00)" 0.157 (0.00) | 0.074 (0.59) [0.107 (0-00)
AOD LRyefqui | 0.120 0.044 | 0.254 0.150 0.051 | 0.125
LRiop |10:083(0:00) 0.041 (0.42) "0:178(0:00)" 0.133 (0.00) | 0.054 (0.20) 0.111 (0.00)
EOD LRy fauir | 0.150 0.078 | 0.194 0.094 0.076 | 0.205

LReop | 0.088 (0.00) 0.049 (0.01) 0.115 (0.00) 0.079 (0.00) | 0.082 (0.33) 0.175 (0.00)

Table 5.3: RQ1-Decision Tree: Average accuracy and fairness of non-dominated solutions

over 50 different data splits (i.e., for each data split, we select the non-dominated
solutions and average their performance on the test set). Bold values indi-
cate improvements over the default classification model. The p-value of the
Wilcoxon Signed-Rank test comparing each approach with the default Decision
Tree model, is given in brackets for each metric. Colors are used to show the
effect size ([large|, medium , small ).

Adult Compas Bank Meps19
Sex Race Sex Race Age Race
DTyefaur | 0.817 0.817 ‘ 0.622 0.622 0.877 0.760

DTspp 0.836 (0.00) 0.841 (0.00) 0.645 (0.00) 0.638 (0.00) | 0.892 (0.00) | 0.798 (0.00)

Accuracy | 0.838.(0.00)  0.838 (0.00)  0.648 (0.00) 0.640 (0.00) | 0.889 (0.00) | 0.798 (0.00)
DTeop | 0.832(0.00) 0.831(0.00) 0.646 (0.00) 0.642 (0.00) | 0.887 (0.00) | 0.791 (0.00)
D DTefaur | 0.180 0.085 | 0.129 0.114 0.107 0.128
DTspp | 0110 (0.00) 0.060 (0.00) 0.083 (0.00) 0.091 (0.00) | 0.088 (0.00) | 0.047 (0.00)
AOD DTyefaur | 0.073 0.035 | 0.107 0.098 0.068 0.091
DTaop | 10:032(0:00) 0.028 (0.00) 0.075(0:00) 0.081 (0.00) | 0.057 (0.00) | 0.036 (0.00)
EOD DTyefaur | 0.056 0.034 | 0.089 0.064 0.077 0.093

DTEop 0.041 (0.00) 0.034 (0.70) | 0.057 (0.00) 0.062 (0.81) | 0.081 (0.61) | 0.022 (0.00)
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models (namely LR and DT). The baseline considered is the default classification
model. We apply our approach on four datasets, as outlined in Section 5.3.4. In
total, we apply post-processing with three different configurations, to optimize for
accuracy and one of the three fairness metric at a time. We will call those configura-
tions DTspp, DTaop, DTEop, LRspp, LRspp, LRspp to determine the classification
model and the fairness metric considered during optimization. These configurations
are applied to four datasets on 50 train/validation/test splits and repeated 30 times.
Table 5.2 and Table 5.3 show these results for Logistic Regression and Decision
Trees respectively. These tables show the results of the default classification model

and the three optimization configurations.

We can see that our post-processing approach is able to improve the accuracy
of the two classification models (LR and DT) in 27 out of 36 cases. In the majority
of the cases the accuracy of LR is statistically significant better (9 out of 18 cases)
or comparable (2 out of 18 cases) with respect to the default model, while in the
remaining cases (6 out of 18) it is reduced although no statistical significant dif-
ference is observed. All the 18 out of 18 cases improve the accuracy of DT, all of

which are statistically significant with large effect sizes.

When investigating the impact of our post-processing approach on each of the
three fairness metrics (i.e., mutation is applied if the particular fairness metric and
accuracy are improved), we compare the fairness of the default classification model
with the configuration to optimize for that particular metric (e.g., we compare the
SPD of the default LR with the SPD achieved by LRgpp). Therefore, instead of 18

cases for LR and DT, we have six comparisons for each metric.

For each of the three fairness metrics (SPD, AOD, EOD) our post-processing
approach is able to improve fairness on 5 out of 6 datasets on LR. LRgpp is not able
to achieve SPD improvements on the Adult dataset (protected attribute = “race”),
LRsop and LRgpp are not able to achieve fairness improvements on the Bank
dataset. Among the 15 out of 18 cases that improve fairness on LR, 12 are sta-
tistically significant, with six of those having large effect sizes. Furthermore, it

can be noted that the instances where our approach is not able to improve fairness,
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already have a low bias score. According to the online tool of the AIF360 frame-
work [72], values < 0.1 can be seen as fair, when investigating SPD, AOD and
EOD.? Applied to DTs, our post-processing approach improves fairness for 16 out
of 18 cases. In particular, in 6 out of 6 cases DTspp and DTop achieve statistically
significant fairness improvements on their respective fairness metric. In 3 out of 6
cases, DTgop achieves statistically significant improvements. In the remaining two
cases (i.e., EOD on the Adult-race and Bank-Age datasets), our approach is not able
to significantly improve fairness, likely because the default model already shows a

low bias (< 0.1).

Overall, the three post-processing configurations achieve improvements in
both accuracy and fairness in 22 out of 36 cases, and improvements in at least one
of the two (i.e., either accuracy and fairness) in the remaining 14 out of 36 cases.
Notably, our post-processing approach improves accuracy and fairness of DTs in 16

out of 18 cases.

In addition to comparing the average performance of our optimization ap-
proach for each data-split (i.e., we average accuracy and fairness of all solutions in
the Pareto-front), we perform a comparison of each solution in the Pareto-front with
the default classification model. Table 5.4 shows the results. For each combination
of datasets and metric optimized by our approach, we compute the percentage of
solutions that: dominate the default model, are Pareto-optimal, are dominated by
the default model. This comparison (e.g., do solutions in the Pareto-front dominate
the default classification model?) is performed for each data-split and weighted ac-
cordingly, such that each data-split has the same contribution to the results (e.g., a
data-split with 10 solutions in the Pareto-front is treated equally as a data-split with
2 solutions in the Pareto-front). Our post-processing methods applied on Logistic
Regression achieves comparable or better performance than the default model in
91% of the cases across all datasets studied, and, specifically, it dominates the de-
fault model in 38% of the cases and is dominated in only 9% of the cases. This

shows that our approach is a useful tool for optimizing LR models (i.e., develop-

3https://aif360.mybluemix.net/
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Table 5.4: RQ1: Comparison of each individual run of our approach (30 runs over 50 datas-
plits) against the default classification model. For each dataset and metric, we
measure the percentage of runs that: dominate the default model - are Pareto-
optimal - are dominated by the default model.

Adult Compas Bank | Meps19
Sex Race Sex Race Age Race Total
SPD | 59-41-0  0-98-2 | 36-57-7 38-47-16 | 37-50-14 | 25-68-8 | 32-60-8
LR AOD | 65-34-1 50-50-0 | 36-54-10 37-48-16 | 26-50-24 | 15-65-19 | 38-50-12
EOD | 71-29-0 61-39-0 | 37-58-6 41-44-15 | 31-49-19 | 17-72-11 | 43-48-8
Total | 65-35-0 37-62-1 | 36-56-7 39-46-16 | 31-50-19 | 19-68-13 | 38-53-9
SPD | 100-0-0 100-0-0 | 91-9-0  76-23-2 | 69-31-0 | 99-1-0 | 89-11-0
DT AOD | 100-1-0 71-29-0 | 85-14-1  69-31-1 | 63-37-0 | 95-5-0 | 80-19-0
EOD | 78-22-0 54-46-0 | 78-20-2 47-52-1 | 43-57-0 | 89-11-0 | 65-35-0
Total | 92-8-0 75-25-0 | 85-15-1  64-35-1 | 58-42-0 | 94-6-0 | 78-22-0

Table 5.5: RQ2: Frequency of bias mitigation methods in the Pareto-front. Each combina-
tion of bias mitigation method and fairness metric is evaluated on six datasets.

Logistic Regression Decision Tree
Our CO ROC EO \ Our CO ROC EO
SPD 6 3 3 6 6 0 2 0
AOD 6 2 2 6 6 0 2 0
EOD 6 2 4 5 6 0 2 1
Total | 18/18 7/18 9/18 17/18 | 18/18 0/18 1/18 1/18

ers are either able to choose a strictly better model, or models with competitive
fairness-accuracy trade-offs). When we apply our approach to DTs, we observe an
even higher performance improvement: It dominates the default DT models in 78%

of the cases and not dominated in the remaining cases.

r

Answer to RQ1: In 22 out of 36 cases (61%), our search-based approach is
able to improve both, fairness and accuracy of Logistic Regression and Deci-
sion Trees with respect to the default model when considering all datasets and
fairness metrics. Notably, this happens in 16 out of 18 cases when applying
our optimization approach to Decision Trees, with 15 of these cases achiev-
ing statistically significant improvements with large and medium effect sizes

in the vast majority of case (14 out of 15).
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Figure 5.2: RQ2: Comparison of our proposed approach against existing bias mitigation
methods and default classification models based on Pareto-optimality. The fig-
ure shows six exemplary comparisons for LR and SPD.

5.4.2 RQ2: Comparison to Existing Bias Mitigation Methods

To answer RQ2, we compare our post-processing method against three existing
post-processing bias mitigation methods (Section 5.3.3) applied to LR and DT on
the same datasets (Adult, COMPAS, Bank, MEPS19) by using identical train/vali-
dation/test splits, as described in Section 5.3. The mean performance of these meth-
ods over 50 data splits, and of our post-processing method, are shown in Figure 5.2.
While this Figure only includes six cases for LR and measuring SPD, the remaining
results for other metrics and DTs are available in our online appendix [447]. In
each sub-figure, we show the performance of every non-dominated bias mitigation
method on the respective dataset and fairness metric. A summary on how often each

bias mitigation method is part of the Pareto-front is provided in Table 5.5.

When comparing the accuracy of classification models achieved after applying
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our post-processing method against the existing bias mitigation methods, we ob-
serve that all of the existing bias mitigation methods have a lower accuracy. More-
over, all of the existing bias mitigation methods reduce the accuracy of the default
classification model, thereby conforming to the fairness-accuracy trade-off. On the
other end, our approach, which takes into account accuracy in the bias mitigation
process, is always able to generate a widely applicable solution (i.e., our approach
always produces at least a solution belonging to each of 36 Pareto-fronts, and there-

fore is never dominated by any of the existing methods).

We can observe a difference in performance of our approach when applied to
LR and DT. While our approach, applied to LR, is able to outperform some of the
existing bias mitigation methods on the three fairness metrics (CO and ROC)), it is
only able to dominate EO in 1 out of 18 cases (Bank-age EOD). In the remaining
17 cases, EO has a lower accuracy than our approach while improving fairness to
a higher degree. On the other end, when applying our post-processing approach to
DTs, it not only produces solutions that dominate the default classification model
(as seen in RQ1), but also all investigated bias mitigation methods in 12 out of
18 cases. Furthermore, for DT, our approach outperforms existing bias mitigation
methods on the three fairness metrics, in addition to achieving the highest accuracy.
In particular, our approach achieves the lowest bias on all three fairness metrics for
the Adult, Bank and MEPS19 datasets. Only ROC is able to achieve a lower level
of bias for the COMPAS dataset in 6 out of 6 cases, and EO in 1 out of 6 cases. This
may be due to the fact that COMPAS is the smallest of the datasets we investigate

herein.
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Answer to RQ2: Our approach provides Pareto-optimal solutions when ap-
plied to both Decision Trees and Logistic Regression for each of the datasets
investigated in our study. In particular, it achieves the highest accuracy with
respect to the existing bias mitigation methods in 100% of the cases and the
highest fairness in 33% of the cases. Notably, our approach provides the best
performance when applied to Decision Trees, as in this case it generates so-
lutions that strictly dominate those provided by the existing bias mitigation
methods in 12 out of 18 cases (i.e., it achieves both higher accuracy and lower

bias), and achieves a higher accuracy in the remaining 6 out of 18 cases.

5.4.3 RQ3: Impact on Fairness Metrics

In RQ3, we investigate the impact of optimizing for one fairness metric on the other
two (e.g., if we optimize for accuracy and AOD, how do SPD and EOD change?).
Therefore, we apply the three configurations of our post-processing approach on the
four datasets and measure every kind of fairness metric at the end of the optimiza-
tion procedure. In accordance with RQ1 and RQ2, we investigate the performance
over 50 different train/validation/test splits.

Figure 5.3 shows the results of the optimization results. For each dataset, we
use boxplots to show the default performance of the classification model, as well as
the performance after optimization with each of the three configurations. Thereby,
three colors represent optimization with one of the fairness metrics, and one color
represents the fairness of the default classification model.

Given the results, we can see that the fairness achieved by an optimized, post-
processed classification model behaves similarly, independent of the fairness metric
used for optimization. For example, this can be seen on the Adult-sex dataset for LR
and DT. Regardless of the fairness metric considered during optimization, the aver-
age AOD of all three configurations is better than the default classification model.
Such a behaviour (all three optimization configurations achieve improvements on a
fairness metric) happens in 28 out of 36 cases. There is one case (Adult-race for

LR) in which none of the three search configurations achieve improvements on SPD
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Figure 5.3: RQ3: Summary of bias values (the lower the better) achieved by the three dif-
ferent post-processing settings (SPD, AOD, EOD) and the default classification
models. Boxplots are grouped based on the fairness metric they measure.
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Table 5.6: RQ3: Win-tie-loss summary of the Wilcoxon tests when optimizing for one fair-
ness metric and measuring the other two (e.g., use SPD during optimization and
test on EOD) in comparison to the default classification model.

Method SPD AOD EOD Total
Test AOD EOD | SPD EOD | SPD AOD

LR | 420 4-1-1|420 51-0|3-3-0 4-2-0 | 24-11-1
DT | 6-0-0 3-2-1|6-0-0 3-3-0|3-2-1 3-3-0 | 24-10-2

(neither LRspp, LRAop nor LREop).

In the remaining 7 out of 36 cases, there are differences when using different
optimization configurations. One example for this is the Bank-age datasets for LR.
Only LRspp achieves improvements over the default LR model in SPD, AOD and
EOD. LR4pp and LRgop are not able to improve any fairness metric (neither SPD,

AOD or EOD).

To evaluate the overall level of bias mitigation achieved by optimization on a
different fairness metric, we summarize the statistical significance differences we
found over the four datasets in Table 5.6. In particular, we investigate whether
significant improvements over the default classification models are achieved (win),
whether no significant differences can be found (tie), or whether the default clas-
sification model has a statistically significant lower bias than the optimized model
(loss). Combining the results for LR and DT, there are 48 wins, 21 ties and 3 losses.
This indicates, that while our post-processing approach optimizes for one fairness

metric, it can positively effect other metrics as well.
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Answer to RQ3: Based on the three investigated fairness metrics (SPD, AOD,
EOD), fairness improvements are achieved independently of the metric used
during optimization. In 78% of the cases (28 out of 36), fairness metrics are
improved by all three configurations (e.g., SPD on the Adult-sex dataset is
improved by LRspp, LRoop, LREop). We do not observe any dramatic detri-
mental effect, as in 96% of the cases (69 out of 72) there is no performance
deterioration in “untouched” fairness metrics, which are not optimized for.
Among those, in 67% of the cases (48 out of 72), our approach even leads to

statistically significant improvements.

5.5 Conclusions

We proposed a novel search-based approach to mutate classification models in a
post-processing stage, in order to simultaneously repair fairness and accuracy is-
sues. This approach differentiates itself from existing bias mitigation methods,
which conform to the fairness-accuracy trade-off (i.e., repair fairness issues come at
a cost of a reduced accuracy). We performed a large scale empirical study to eval-
uate our approach with two popular classifiers (Logistic Regression and Decision
Trees) on four widely used datasets and three fairness metrics, publicly available in

the popular IBM AIF360 framework [72]).

We found that our approach is able to simultaneously improve accuracy and
fairness of both classification models in 61% of the cases. Our approach is partic-
ularly effective for Decision Trees, where we achieve statistically significant im-
provement on both accuracy and fairness in 81.1% of the cases. Moreover, we
achieved improvements without detrimental effect on other fairness metrics that are

not considered during optimization.

The comparison with three existing post-processing bias mitigation methods
showed that none of these methods is able to achieve an accuracy as high as our
method in any of the datasets. Furthermore, our approach is able to outperform

existing post-processing methods in both accuracy and fairness in 12/18 cases for
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Decision Trees.

These findings show not only the feasibility but also the effectiveness of our ap-
proach with respect to existing bias mitigation methods. Software engineers would
benefit to have this tool at their disposal when developing fair software, as it allows
them to find good trade-offs between competing objectives rather than proposing a
solution which often sacrifices accuracy, as done in previous work. According to
their needs, engineers can choose the solution that better conforms to their fairness

and accuracy constraints.



Age Attribute and Fairness

Forty is the old age of youth; fifty is the youth of old age.

— Victor Hugo

Among the sensitive attributes studied in software fairness literature, race and gen-
der are categorical features, that are used to divide the population into privileged and
unprivileged groups (e.g., male - female, white - non-white) [17]. The protected at-
tribute “age” is continuous and needs to be addressed differently.! While there exist
methods for dealing with continuous attributes (e.g., pairwise comparisons [465]
and correlations [219,239]), we focus on treating protected attributes as binary at-
tributes, in accordance with prior works [28, 95, 135]. To divide the population into
two groups (i.e., young - old) one needs to select an age threshold which divides the
population as follows: everyone older than the threshold is “old”; everyone of the
same age as threshold or younger is “young”.

Figure 6.1 illustrates the impact of different age thresholds on fairness, when
treating different populations groups, and the risks of selecting unsuitable thresh-
olds. In Figure 6.1 (a) a high threshold is applied, dividing the population in three
young individuals and one old individual. By doing so, the “old” population group,
on average, receives a more favourable treatment (represented by smiling faces)
than the “young” group. Using instead the age threshold shown in Figure 6.1 (b),

we can observe that an equal treatment of the two groups is possible, when an ad-

! As pointed out by Jacobs and Wallach [464], protected attributes, such as race and gender, are
contested constructs.
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Figure 6.1: Example of the fairness of two different age thresholds. Smiling faces represent
a favourable treatment.

equate age threshold is chosen. While this is a simplified example, it signifies the
importance of selecting sensible age thresholds when investigating the fairness of

ML software.

Currently, there exists no systematic study focusing on the problem on how
to approach the choice of sensible age thresholds when faced with new datasets,
and what the impact of age thresholds has on: 1) the dataset; 2) the classification
models that are trained on the dataset. Therefore, we aim to provide guidelines on
how to approach the protected attribute “age” from a computational point of view.
Nonetheless, if regulations exist, the final choice of acceptable age thresholds is to

be done by law makers and domain experts [97,466].

In summary, the main contributions of this chapter are:

* a general approach on how to choose age thresholds;

* an empirical evaluation on bias in classification models with respect to age

thresholds on two datasets.

The rest of this chapter is organized as follows. Section 6.1 presents related work
on software fairness research, including types of bias and an overview of methods
to combat bias in classification models. The experimental design, fairness metrics
and datasets are outlined in Section 6.2. Experiments and results are presented in

Section 6.3 while Section 6.4 concludes.
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6.1 Related Work

To foster a better understanding of fairness issues and increase the usability of fair-
ness techniques, frameworks, such as AIF Fairness 360 (AIF360) [72] and Fair-
learn [441], have been created. Among others, these provide bias mitigation meth-
ods, fairness metrics, datasets, and have been frequently used by the research com-
munity [2,28, 135].

Investigations on the effect of datasets on fairness have been carried out by
Zhang and Harman [26], and Kamiran and Calders [95]. Zhang and Harman [26]
investigated the influence of training data on the fairness of classification models.
Particularly, rich feature sets have the ability to improve the fairness of ML models.
Kamiran and Calders [95] proposed a pre-processing method called “massaging”
with the goal to create an unbiased datasets with the least intrusive modifications be-
fore training classification models. Their investigation covered the German dataset
(see Section 6.2.3), for which they chose an age threshold of 25, as a high degree
of bias was observed. This age threshold is incorporated in the AIF360 frame-
work [72]. Nonetheless, other thresholds have been used as well, such as 30 and 45

for other datasets [98,414], and 50 for the German dataset [98].

While Kamiran and Calders [95] focus lay on proposing a novel bias mitiga-
tion method on the German dataset with the protected attribute “age”, we focus our
investigation entirely on the choice of age thresholds for multiple datasets. In par-
ticular, we do not only consider the German dataset, but a second dataset (Bank),
which uses the same age threshold of 25 (according to the AIF360 framework [72]).
In addition to measuring the bias and comparing the usability of different age thresh-
olds (e.g., is an age threshold of 25 suitable for the Bank dataset?), we measure the
impact of age thresholds on the proceeding bias of three classification models (Lo-

gistic Regression, Decision Tree, Support Vector Machine).

6.2 Empirical Study Design

In this section, we describe the design of the analysis we carry out to investigate the

impact age thresholds have on the fairness of datasets and classification models. We
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first introduce the research questions, followed by the subjects and the experimental

procedure.

6.2.1 Research Questions

To determine the relation of the protected attribute “age” and the resulting bias in

classification problems, we first investigate the bias present in datasets:

RQ1: What is the impact of age thresholds on the bias in datasets?

To answer this research question, we investigate the dataset fairness of two datasets
(German [69] and Bank [70]) according to the dataset fairness metric Mean Differ-
ence (see Section 2.1). In particular, we evaluate Mean Difference for each possible
age threshold for the respective dataset (i.e., the ages present in the dataset). Not
only does this allow us to detect the degree of bias that the datasets exhibit, when
following different rules to divide the population in to “young” and “old”, but also

the direction of bias (i.e., which population group receives a favourable treatment).

After determining the degree of bias with respect to the age threshold within
a dataset, we investigate the impact of age thresholds on the bias in classification

models:

RQ2. What is the impact of age thresholds on the bias in classification models?
For this purpose, we train three different classification models (Logistic Regres-
sion, Decision Trees, Support Vector Machine) on two datasets (German [69] and
Bank [70]). According to the experiments in RQ1, we train the classification mod-
els for every possible age threshold to measure resulting biases. This allows us to

determine the relation of dataset bias and classification bias in two aspects:

* RQ2.1 What is the impact of dataset bias on the direction of classification bias
(e.g., if the dataset bias favours privileged groups, do classification models as

well)?

* RQ2.2 What is the impact of dataset bias on the degree of classification bias

(e.g., does a high dataset bias lead to a high classification bias)?
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Figure 6.2: Distribution of favourable and unfavourable labels in the German and Bank
dataset by age.

6.2.2 Fairness Metrics

For our investigation, we are concerned with the disparate treatment of popula-
tion groups (privileged and unprivileged). Therefore, we use group fairness met-
rics [28, 30,43, 48], to determine the “age” bias in datasets. We investigate four
group fairness metrics in total (one dataset metric and three classification metrics).
We use Mean Difference to measure dataset bias. SPD, EOD and AOD are used to

measure classification bias. See Section 2.1 for definitions of the four metrics.

6.2.3 Datasets

We perform our experiments on two publicly available, real-world datasets, widely
studied in the fairness literature [28, 34, 38, 39, 67, 68]: the German, and Bank

dataset. While there exist other datasets that have been used for fairness research,
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Table 6.1: Dataset Information

Dataset ‘ Size Features Favour Label = Majority Label Priv. - Unpriv.
German ‘ 1,000 20 1 (good credit) 1 (70%) >25-<25
Bank ‘ 41,188 20 1 (yes) 0 (87%) >25-<25

such as the Adult [69] and COMPAS [17] datasets, we only focus on those datasets
that are publicly available in the AIF360 framework [72], have age as a protected at-
tribute, and use a default threshold to divide the privileged and unprivileged groups.

Table 6.1 provides more information about the two datasets. This includes the
size of the dataset, the number of features, the favourable label, and the majority
label. The default criteria to form privileged and unprivileged groups from the
protected attribute “age” are given.” At the time of performing our experiments,
individuals with an age > 25 are part of the privileged group in the German datasets,
whereas the individuals with an age > 25 are part of the privileged group in the Bank
dataset, according to the default settings of the AIF 360 framework [72].

For the two datasets, Figure 6.2 provides histograms to show how many indi-
viduals receive favourable and unfavourable outcomes. When comparing the two
datasets, we can see that the average age of the Bank dataset is higher than on the
German dataset (40 vs. 35.5). Furthermore, the age range within the dataset is

larger on the Bank dataset (17-98) in contrast to the German dataset (19-75).

6.2.4 Experimental Configuration

To carry out our experiments, we use the dataset and fairness metric implemen-
tations provided by the AIF360 framework [72]. When loading the datasets, the
AIF360 framework allows the definition of rules to determine the age threshold
which we use to modify the datasets in RQ1 and RQ2.

For RQ?2, we use the data investigated in RQI1 to train classification models. In
particular, we consider three classification models that have previously been used

in fairness research: Logistic Regression (LR) [14, 15,28, 30, 34,39, 135], Decision

ZWe use the default parameter from version 0.4.0 or the AIF360 framework, last updated on the
fourth of March 2021.
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Trees (DT) [14, 15], and Support Vector Machines (SVM) [15, 34,39, 135]. We
implemented each classification model with scikit-learn [450], according to their
default configuration.

When training classification models (RQ2), we use random data-splits with a
train-test split of 70%-30%. For each age threshold, we adjust the “age” label of
the underlying dataset to “young” and “old” before training classification models.
To measure the classification bias, we repeat experiments 50 times, with different
train-test splits, and average the results [38,444].

As RQ2.2 considers the degree of bias and not the direction of bias, we com-
pute the absolute bias values. Thereby, bias is minimized at 0 and maximized at
1. Afterwards, we use the Pearson correlation coefficient [467] to determine the

correlation between dataset bias and classification bias.

6.3 Empirical Study Results

This section presents the results of our experiments to answer the research questions

explained in Section 6.2.1.

6.3.1 RQ1: Dataset Fairness

The first research question investigates the fairness of the two datasets (German,
Bank) according to the dataset fairness metric Mean Difference (see Section 2.1).
To evaluate datasets based on Mean Difference (probability that unprivileged
group receives a favourable label - probability that privileged group receives a
favourable label), we compute the Mean Difference for every possible age thresh-
old to create privileged and unprivileged groups. In particular, we gather a list of
unique ages that are present in the two datasets (i.e., there are 53 unique age values
in the German dataset and 78 unique ages in the Bank dataset) and use each value
to separate privileged and unprivileged groups. Given an age threshold «;, the priv-
ileged group consists of all instances of a dataset for which age > a,, the remaining
instances are part of the unprivileged group. This is due to the fact that for both,
the German and Bank dataset, “young” individuals are deemed (according to the

default configuration of the AIF360 framework [72]). We perform this for each age
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that is present in the dataset except for the maximum (oldest) age, to ensure that
both groups (privileged and unprivileged) are not empty. Therefore, we collect 52
measures of Mean Difference for the German datasets and 77 measures for the Bank

dataset. Figure 6.3 illustrates the results.

When analyzing the Mean Difference of the different age thresholds, we can
see that general notion of bias and privilege holds for the German dataset: Privi-
leged groups are more likely to receive a favourable outcome. This is indicated
by a negative Mean Difference. Only at the thresholds 52 and 67 are non-negative
Mean Difference values reached (0.002 and 0). Furthermore, we observe that the
default setting (age > 25 is old) provided by the AIF360 framework [72] which
was chosen according to Kamiran and Calders [95], is a logical choice. The Mean
Difference with an age threshold of 25 is —0.15, which is a local minimum. This
divides the dataset into an unprivileged group which contains 19% of the instances,
the remaining 81% are part of the privileged group. A balanced division of groups,
according to the age median of 33, achieves a Mean Difference of —0.1 while 48%
of the instances belong to the privileged and 52% to the unprivileged group. Given
the purpose of the protected attribute (e.g., causing the highest disparity between
privileged or unprivileged, or having groups of balanced sizes) an age threshold

between 25 and 33 inclusive is reasonable.

Using age thresholds of 19, 68 and 74 achieves an even higher Mean Difference
than 25, however they cause imbalanced sizes of privileged and unprivileged groups

(with the smaller of the two being of size 2%, 7%, 2% respectively).

The Mean Difference of age thresholds for the Bank dataset shows a different
situation: There are thresholds at which the unprivileged group is more likely
to receive a favourable outcome than the privileged group. In particular, the
Mean Difference is positive within the intervals 18-38 (38 being the median age
of the Bank dataset) and 89-94. We disregard the latter interval, because the size
of the privileged group at an age threshold of 89 is only 10%, given a dataset size
of 41,188 (Table 6.1). Choosing an age threshold within 18-38 would violate our

conception of bias, as it does not favour the privileged group. Therefore, using a
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Figure 6.3: RQ1: Mean Difference of the German and Bank dataset for each possible age
threshold to divide privileged and unprivileged groups.

default threshold of 25, which is motivated based on the German datasets’ threshold,
does not represent the dataset correctly (given that the privileged group is “old”™).
Either the notion of privileged and unprivileged groups ought to be adjusted (i.e.,
“young” is a privileged group given an age threshold of 25) or the threshold value
should be increased. Potential values, for which our notion of bias holds, are 47 (the
75%-percentile with a Mean Difference of -0.05) or 59 (mean difference of -0.31),
which is the first threshold followed by a sharp decrease in Mean Difference as seen
in Figure 6.3. The size of the privileged group at a threshold of 59 is 3%, opposed
to 24% at a threshold of 47.

To conclude: We showed that the age threshold does not only impact the de-

gree of bias, but also the bias direction. While an age threshold of 25, to distinguish
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privileged and unprivileged groups, is reasonable for the German datasets, it vio-
lates our notion of fairness on the Bank dataset, by favouring the unprivileged group.
In addition to determining the bias between privileged and unprivileged group, age

thresholds also impact the balance between the group sizes.

6.3.2 RQ2: Classification Fairness

Following, we carry out experiments to determine the bias of classification models,
when being trained on the German and Bank datasets under different age thresholds.
In particular, we investigate the relation of the bias present in the dataset and its

impact when using it to train classification models.

6.3.2.1 RQ2.1: Bias direction.

To answer RQ2.1, we consider the same pair of datasets as used for RQ1 as well
as the same procedure to determine age thresholds. For each age threshold, the
datasets are adjusted (i.e., setting the protected attribute age to “young” or “old”
depending on the age of an individual and the age threshold). We then train three
classification models (LR, DT, SVM) for each dataset and age threshold. After-
wards, we determine the bias degree of the classification models according to three

classification metrics (SPD, AOD, EOD).

If the bias measures are < 0 it signifies that the privileged group is favoured,
whereas if bias measures > 0 it shows that the unprivileged group receives a
favourable treatment. If there is no bias present in the prediction made by a classi-

fication model the metric is equal to 0.

Table 6.2 shows the results. For the two datasets and three classification met-
rics, we perform experiments for every age threshold and measure the proportion
of bias directions which agree with the Mean Difference. On the Bank dataset, we
can observe that for every of the nine pairs (three classification values and three
classification metrics) the direction of bias agrees with MD in at least 77% of the
cases. For each classification model, the bias direction of SPD agrees with MD in
at least 96% of the cases. This value is higher than for the two confusion matrix

metrics AOD and EOD, as the computation of SPD and MD are similar.
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Table 6.2: RQ2.1: Percentage of age thresholds for which Mean Difference and classifica-
tion metrics are in the same direction (favour the same population group.

German Bank
SPD AOD EOD | SPD AOD EOD
Logistic Regression 100% 80% 97% | 96% 80% T7%
Decision Tree 89% 49% 89% | 9% 91% 87%
Support Vector Machine 6% 6% 14% | 97% 87% 81%

While for 15 out of 18 evaluations, the direction of MD and classification met-
rics are alike (at least 77% of measures have the same direction), we are not able to
confirm that an underlying dataset bias leads to classification models that are biased
in the same way (e.g., a dataset that is biased towards the privileged group does
not always lead to classification models that do the same). In particular, there are
cases on the German dataset which on the dataset level favour the privileged group,
but when trained on SVMs are more likely to favour the unprivileged group. Rea-
sons for this disparity can be seen in the small size of the German dataset (1,000
instances) or the high degree of imbalance (87% of the instances receive an un-

favourable outcome).

6.3.2.2 RQ2.2: Bias intensity.

In addition to investigating the relation of bias direction in regards to dataset and
classification bias, we are interested to see whether a highly biased dataset (e.g.,
high Mean Difference) leads to highly biased classification model, or vice versa
(i.e., low dataset bias leads to fair classification models). Since we are only inter-
ested in the bias intensity and not the direction of bias, we continue our investigation
with absolute bias values.

Figure 6.4 illustrates the relation of dataset and classification bias for the Bank
dataset and Figure 6.5 for the German dataset. Each age threshold is represented
as a point in the graphs, with the intensity of dataset bias (Mean Difference) on the
x-axis and intensity of one of the classification metrics on the y-axis. In addition to
the dataset-classification bias pairs, each graph displays a regression line, with the

corresponding Pearson correlation coefficient [467] shown in Table 6.3. We fol-
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Table 6.3: RQ2.2: Pearson correlation coefficient and the corresponding p-value for Mean
Difference (MD) and classification metrics (SPD, AOD, EOD).

Correlation Bank German
(p-value) SPD AOD EOD SPD AOD EOD

0.95 (0.00) 0.83 (0.00) 0.63 (0.00) | 0.98 (0.00) 0.91 (0.00) 0.82 (0.00)
1.00 (0.00) 0.99 (0.00) 0.72(0.00) | 0.91(0.00) 0.46 (0.01) 0.88 (0.00)
0.98 (0.00) 0.92 (0.00) 0.75 (0.00) | -0.69 (0.00) -0.69 (0.00) 0.28 (0.11)

Logistic Regression
Decision Tree
Support Vector Machine

low the guidelines proposed by Evans [468], who described correlation strength as:
very weak (£0.00 +0.19), weak (40.20 £0.39), moderate (+0.40 £0.59), strong
(£0.60 £0.79) and very strong (£0.80 £+1.00).

When looking at the Bank dataset, we can observe that the correlation between
dataset and classification metrics are either very strong (for SPD and AOD) or strong
(EOD) for all classification models. The Bank dataset confirms the intuition that
a high bias in the dataset (according to Mean Difference) leads to a high bias in
classification models that are trained on this data. A similar conclusion can be drawn
for the German dataset when only considering LR and DT classification models.
However, the results on SVMs do not comply with this intuition. Differently from
all the other evaluations, dataset bias and classification bias are inverse-correlated
for SVMs on the German dataset (i.e., a large dataset bias leads to classification
models with little bias). Reasons for such observations could be the small dataset

size or properties of the classification model.

6.4 Conclusions

Recent advances on the investigation of software fairness are conducted by divid-
ing the population in two groups (privileged and unprivileged) based on protected
attributes. Protected attributes come in the form of categorical, and continuous at-
tributes for which thresholds need to be chosen. Our work provides choices on
thresholds when dealing with continuous protected attributes (i.e., “age’), which
has a direct impact on the perceived bias of software systems. We performed a de-
tailed study on age thresholds and their impact on fairness for two frequently used
datasets in fairness research.

Critically, the choice of age bias impacts the degree of bias measured in
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(SPD, AOD, EOD). Each point represents the bias of an age threshold (dataset
bias before training and classification bias after training the given classification
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datasets and classification models trained on this data. Thereby, practitioners run
the risk of fairness measurements to incorrectly represent the real world when se-
lecting inaccurate thresholds. For example, practitioners could deliberately choose
an inaccurate threshold to “fairwash” their system [403,439]. In this context, “fair-
washing” means that instead of debiasing the ML model, an age threshold is chosen
that leads to low bias measurements according to a fairness metrics (e.g., an age
threshold of 67 shows no dataset bias on the German dataset).

Moreover, our findings show that age thresholds that are sufficient for one
dataset (e.g., 25 for the German dataset) can not be transferred to other datasets
without further considerations. Furthermore, even though the dataset bias is cor-
related to the bias in subsequently trained classification models (e.g., high bias in
datasets leads to a high bias in classification models), we also found examples for
which this is not true. Therefore, we cannot confirm the notion that a high bias in
datasets corresponds with a high bias in classification models.

While we provided potential age thresholds for the German and Bank datasets,
and support the decision making process when dealing with continuous protected
attributes, we note that the ultimate choice of age thresholds is up to practitioners

and lawmakers.



Conclusions

The end of a melody is not its goal; but nonetheless, if the melody had not
reached its end it would not have reached its goal either. A parable.

— Friedrich Nietzsche

This thesis addresses the problem of trade-offs when applying bias mitigation meth-
ods for improving the fairness of ML systems and associated performance deterio-
ration with respect to other objectives, such as accuracy.

In particular, the thesis set out to achieve the following objectives:
1. Analyze state-of-the-art methods for bias reduction.
2. Measure and compare the quality of bias mitigation methods.
3. Improve the accuracy and fairness of Machine Learning software.

At first, we performed a literature review of 341 bias mitigation method. These
are divided in 13 categories and analyzed further. Among others, we investigated
popular datasets (i.e., the Adult dataset is the most popular dataset for fairness re-
search), benchmarking practices, and the metrics used to measure fairness.

Secondly, we proposed Fairea, a model behaviour mutation approach to bench-
marking ML bias mitigation methods. The usefulness of Fairea as a baseline and
benchmarking approach is evaluated in an empirical study of 8 bias mitigation meth-
ods. In 49% of the cases, the baseline of Fuairea exhibits a better bias mitigation

ability than the studied bias mitigation methods, reinforcing its competitiveness.
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34% of the cases accord to the fairness-accuracy trade-off, which allows Fairea to

quantify their trade-off goodness.

We also found 10% of bias mitigation methods that reduced bias in hand with
an improvement in fairness, which we categorize as a “win-win” scenario. This
“win-win” scenario motivates our novel post-processing bias mitigation method
(Chapter 5). Our post-processing methods provides a general search procedure that
can be applied to any classification model as long as a modification operator exists.
In our case, we considered two classification models of different families: Logistic
Regression and Decision Trees. In comparison with three existing post-processing
methods, our approach achieved the highest accuracy in all cases, while also ex-

hibiting the lowest degree of bias in 33% of the cases.

Moreover, this thesis addresses the challenge of dealing with the fairness of ML
software and the impact of different age thresholds (i.e., dividing the population into
young and old) on bias mitigation (Chapter 6). We analyzed two datasets (Bank and
German) with pre-defined age thresholds, to show that age thresholds do not only
impact the intensity of bias in these datasets, but also the direction (e.g., which

population group receives favourable treatments).

Our literature review (Chapter 3) collected a multitude of metrics and datasets
to carry out experiments, as well as bias mitigation methods for benchmarking,
which allow for large-scale empirical studies and an extension of our experiments
in future work. For instance, Fairea can be applied for a larger set of bias mitigation
methods, datasets and fairness metrics. Also, the availability of additional metrics
may lead to an increase in the required trade-offs to consider when developing fair
ML systems. Investigating other mutation operators could lead to further improve-
ments in our results. For example, we carried out preliminary experiments with
additional mutation operators for Decision Trees (i.e., leaf relabeling and swapping
of subtrees) which were outperformed by pruning, but no systematic study was con-

ducted.

Moreover, our post-processing approach (Chapter 5) can be applied to one

of the 49 classification models that have been used for evaluating bias mitigation,
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two of which have already been addressed (i.e., Logistic Regression and Decision
Trees). This includes the creation of novel representations for a diverse set of clas-
sification models and new modification operators.

While choosing a unified fairness metric is challenging and still an open chal-
lenge [20, 144, 265], other aspects of the empirical evaluation for bias mitigation
methods could be consolidated. For example, open-source frameworks, such as the
AIF360 framework, support this by making selected datasets and bias mitigation
methods available. However, considerations on which and how many datasets to use
for evaluation, the size of training and test splits, as well as number of repetitions
for experiments are up to practitioners and exhibit a high variation. In addition to
evaluating bias mitigation methods on a common set of real-world datasets, a suite
of synthetic datasets with designated fairness properties and degrees of bias could
support the benchmarking of bias mitigation methods further.

Lastly, while bias mitigation methods have been extensively studied from a re-
search standpoint, as shown by the 341 publications gathered in the literature review
(Chapter 3), the underlying purpose is to achieve fairness in real world systems. One
aspect that can support the applicability of bias mitigation methods by practitioners
is the prevention of fairness-accuracy trade-offs, as shown by our post-processing
approach. In this way, existing systems would not require performance deterioration

for fairness improvements.
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